
Summary
Drosophila melanogaster, also commonly known as the fruit fly, has for decades been used
in scientific research due to its inexpensiveness and substantial equivalency with the human
genome. Large-scale experiments can quickly be materialized, and conclusions can be drawn
based on the years of research that has made Drosophila one of the most comprehensively
studied organisms. However, one significant issue with relying on Drosophila laboratory ex-
periments is the often labor-intensive process of conducting the experiment. Many experiments
require the manual counting of a large number of containers, each containing as many as 100
Drosophila eggs, larvae, or eclosed eggs.
As with many manual work processes, software can be a considerable help in automating

the process. The use of software for Drosophila research is an already explored field, with
stand-alone software systems and modifications to existing systems being employed. However,
to our knowledge, utilizing the state-of-the-art within deep learning is hitherto unexplored.
Therefore, we propose using the modern deep learning model, YOLOv5m, for a software
system that gives biology researchers the ability to easily and automatically perform object
detection and counting on their Drosophila image data.
Previous knowledge of the deep learning domain should not be required. For that reason,

a web application is proposed where the model details are obfuscated from the user through
the conventional front-end/back-end architecture. Since the user’s contact with the object
detection process is controlled through a front-end user interface, unnecessarily complex model
details can be hidden. Assuming the web application is hosted, this also assures that a tedious
setup process is avoided for the user.
Using data from the Department of Chemistry and Bioscience at Aalborg University, we train

and test two models used in the object detection process. The central YOLOv5m model and
a secondary neural network used to handle the domain-specific problem of object clumping,
commonly seen in Drosophila data. The two models are combined in the complete object
detection process, which can be employed from the user interface. Beyond presenting the
object detection process, we also present the architecture of the proposed software system.
The central segments of the user interface are shown, and the workflow for a user using the
system to detect and count objects in uploaded data and subsequently view the results, is
highlighted. Since the system should function as a fully-featured production system, we also
present features explicitly created to fulfill this requirement. User management and granular
resource management, both in terms of processing and storage resources, are included.
Since the selected YOLOv5m model is central to the complete software system, we conduct a

comparative study of multiple state-of-the-art deep learning models. In this study, we compare
five models, namely YOLOv5m, YOLOv5x6, Faster R-CNN, RetinaNet, and EfficientDet, in
their ability to handle issues specific to Drosophila data. Object detection metrics, regression
metrics, and the models’ proficiency at handling diverse data are all considered to find the
optimal model for the system. Ultimately, both YOLOv5 variants achieved the best results,
YOLOv5x6 performing slightly better with a significantly slower inference time. Since the
objective is to produce a production-ready software system, the faster but slightly worse per-
forming YOLOv5m model is chosen. The selected YOLOv5m model achieved a mAP@0.50 of
0.724 and mAP@[0.50:0.95] of 0.543 under a confidence threshold of 0.25 and an NMS IOU
threshold of 0.45 with an inference time of 0.3 seconds per image on the test set. When ignor-
ing bounding boxes and classes and only accounting for the object count, the model achieved
a MAE of 5.305.
To conclude, we have provided a deep learning-based web application that accounts for

domain-specific problems and provides the user with the required functionality as well as
supplementary features to function in a production environment.

1



Musca: Deep Learning-Based Web Application for Counting

Laboratory Populations of Drosophila melanogaster

Christian S. Godiksen
Aalborg University

cgodik17@student.aau.dk

Kristoffer N. Knudsen
Aalborg University

kknuds19@student.aau.dk

Abstract
The fruit fly Drosophila melanogaster has seen extensive
use in scientific research due to its application as a ver-
satile model organism. However, conducting large-scale
experiments with Drosophila is time-consuming, poten-
tially requiring the manual counting of Drosophila eggs
and larvae in thousands of Petri dishes. In recent years,
machine learning, particularly deep learning, has been a
groundbreaking technology for alleviating manual labor.
We explore the state-of-the-art within deep learning for
object detection and conduct a comparative study to se-
lect the optimal model for this domain. Leveraging the
state-of-the-art deep learning model for object detection,
YOLOv5m, we devise an innovative web application1 that
will give researchers the ability to automatically detect
and classify objects in Drosophila image data. On our
93 image test set, we achieve a mAP@0.50 of 0.724 and
mAP@[0.50:0.95] of 0.543 under a confidence threshold of
0.25 and an NMS IOU threshold of 0.45 with an infer-
ence time of 0.3 seconds per image. Further, when treat-
ing the detector as class-agnostic while ignoring the pre-
dicted bounding box and only counting the detections,
we achieve a MAE of 5.305. The proposed software so-
lution provides an opportunity to utilize the cutting-edge
within deep learning without requiring prior knowledge of
the field and tedious setup from the user. Specifically,
the software fulfills the base requirements for supporting
Drosophila research and provides extended functionality
to increase usability. Domain-specific issues, such as di-
verse data setups and clumping of objects, are handled
explicitly. Further, the system provides granular control
of users and resources to function optimally as a produc-
tion software system.

1. Introduction
Due to the low cost, rapid generation time, and innovative
genetic tools such as balancer chromosomes [1], Drosoh-
pila melanogaster have become essential for biology re-
search. Continuous research over the last century has led
to Drosophila being one of the most well-understood or-
ganisms on the phenotype level. Furthermore, the fruit
fly has a simple genome which, even with its simplicity,
is 60% homologous to that of humans [2]. The significant
connection to the human genome, coupled with the fact
that about 65% of genes responsible for human diseases
have homologs in flies [3], has made research involving
Drosophila a cornerstone of substantial areas of biology,
such as genetic research. Underlining the immense role

1https://musca.bio.aau.dk/

of the fruit fly are the six Nobel prizes in physiology or
medicine that have been awarded to work based on fruit
fly research. The first was given to Thomas Hunt Morgan
in 1933 for his work in proving the chromosomal theory
of inheritance [4] and the most recent was given to Jeffrey
C. Hall, Michael Rosbash, and Michael W. Young in 2017
for their discoveries of molecular mechanisms controlling
the circadian rhythm [5].

Drosohpila melanogaster research that relies on large-
scale experiments, particularly research involving system-
atic counting of certain Drosophila life stages such as eggs,
is heavily influenced by the labor-intensive process of man-
ual counting. Software systems, and especially in recent
years deep learning, have played an essential role in alle-
viating manual labor. However, such automated systems
are, in certain circumstances, similarly laborious due to
the requirement of a tedious setup process. Furthermore,
concerning deep learning, many state-of-the-art methods
are negatively impacted by the need for significant knowl-
edge within the field to utilize them. Cutting-edge deep
learning research is centered on optimizing performance
and efficiency, thereby deprioritizing ease of use. Never-
theless, difficulties specific to Drosophila object counting
necessitate the use of the latest technology. The minus-
cule size, clumping of objects, and cracked food surfaces
obscuring eggs are among the significant issues hindering
the use of automated, easy-to-use software systems.

In this work, we propose a software solution that incor-
porates the state-of-the-art deep learning model for ob-
ject detection, YOLOv5m, to aid in object counting for
Drosophila research. The software solution is usable by
researchers in biology and other related fields without re-
quiring any prior knowledge of the underlying deep learn-
ing model. In addition, minimal setup is required to use
the system, which eliminates laborious elements to a large
extent from the process of systematic object counting in
Drosophila melanogaster image data. The solution also
accounts for various domain-specific issues. This includes
specific support for handling the clumping of objects and
support for a multitude of different data setups. The lat-
ter is caused by the large variety of research conducted
using Drosophila data, resulting in differences in the used
containers, the storage conditions of these containers, and
the color of the growth medium.

To ensure that the deep learning model that provides
the foundation for this software solution is optimal, we
conduct a comparative study of multiple state-of-the-art
deep learning models within object detection and count-
ing. The models in this study are evaluated based both on
conventional performance metrics within the field of ma-
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chine learning and also on their ability to handle domain-
specific issues. Specifically, the models’ capability to han-
dle multiple data setups and their generalizability to new
and unseen data setups are considered. As the conclusion
to this study, we select the model used in the final software
solution.

The remainder of this paper is organized as follows. Sec-
tion 2 examines existing methods for counting Drosophila,
while section 3 explores state-of-the-art deep learning
methods for object detection within the biomedical field.
In section 4, we present the system of methods used for
the proposed web application, including the data, the deep
learning model, and the complete object detection process.
The proposed software is then described in detail in sec-
tion 5, with a focus on presenting the architecture, user
interface, and significant features. To substantiate the se-
lection of YOLOv5m as the central deep learning model,
we conduct a comparative study in section 6. Finally, we
conclude the work and discuss potential future work in
section 7.

2. Existing methods for counting Drosophila
Developing methods for reducing the workload of manual
counting is not a new endeavor. As early as 1959, Geof-
frey Keighley and E.B. Lewis from the California Insti-
tute of Technology devised a method to count Drosophila
populations using a hydraulic system [6]. In recent years
efforts have continued, focusing on using software tools
and fully-fledged software systems. In 2015, Waithe et
al. developed the software QuantiFly, for counting eggs
with a density estimation approach [7]. To our knowl-
edge, QuantiFly is the earliest example of using trainable
machine learning methods to solve this specific problem.
More fundamental image processing techniques were em-
ployed by Nouhaud et al. in a Java plug-in for the open-
source image processing software ImageJ2 [8]. Specifically,
they employed the built-in Analyse Particles functionality
to count Drosophila eggs.

Quantifying fruit fly adults is also an area that has seen
work in recent years. Using statistical analysis of the
body size distribution and a workflow that requires ini-
tially anesthetizing the insects, Yati et al. developed a
MATLAB software tool for counting live Drosophila [9].
Similarly, Karpova et al. developed a tool for counting
adult fruit flies using a modified mobile application, ini-
tially intended for counting wheat grains [10].

3. Deep learning for object detection
The software methods mentioned in section 2 have vary-
ing degrees of convenience in terms of ease of use. Existing
methods require setting up stand-alone desktop software,
employing extensions to existing software tools, or adapt-
ing counting applications developed for other purposes.
Furthermore, existing tools only employ conventional ma-
chine learning, statistical analysis, or image processing
means to accomplish the task of object counting. To the
best of the authors’ knowledge, deep learning has not yet
been employed to solve the problem of counting different
Drosophila life stages, primarily eggs, in a laboratory ex-
periment setting.

2https://imagej.net/

Deep learning has emerged as a groundbreaking tech-
nology for object detection and classification in images.
It has especially seen success within the biomedical field
with diverse use cases. For example, U-Net, a deep learn-
ing model designed for cell counting, detection, and mor-
phometry [11], has seen extensive use in the field. U-Net
is particularly useful for segmentation tasks, for example,
being applied by Dong et al. for brain tumor detection
and segmentation [12].

For non-segmentation tasks, the Region-Based Convo-
lutional Neural Network (R-CNN) family of models has
seen success. R-CNN, and more advanced versions such
as Fast R-CNN and Faster R-CNN, accomplish object de-
tection by using bounding boxes instead of complete image
segmentation [13]. Within the field of biomedical image
processing, R-CNNs have been employed for a wide vari-
ety of applications such as cancer cell detection [14] and
DNA damage analysis [15]. Another group of deep learn-
ing models used in the field is the You Only Look Once
(YOLO) family of models [16]. Five main versions of the
YOLO model currently exist, each adding performance
and efficiency improvements to the previous. The only
outlier is the fifth model version, where the main contri-
bution is a more accessible implementation while main-
taining performance and efficiency.

The main difference between R-CNN and YOLO is the
detection process. R-CNN employs a two-stage detection
process, where the first stage is used to extract regions
of objects and the second is used for classification and
refining the extracted regions. In contrast, YOLO han-
dles this entire process in a single stage, with the benefit
of speed and simplicity but usually at the cost of accu-
racy. Other one-stage detectors such as RetinaNet have
emerged to attempt to solve this problem of decreased ac-
curacy while still maintaining speed [17]. This model has
also seen success within the biomedical field, for example,
being successfully applied for the detection of pneumonia
in chest x-ray images [18] and lesion detection in Com-
puted Tomography (CT) scan images [19].

Achieving state-of-the-art accuracy is not only a com-
plex issue in architecture design but also costly in terms
of resources. To counteract this, certain families of mod-
els are explicitly designed with efficiency in mind. One
such family is EfficientDet, which focuses on scalability
and general efficiency over a wide range of resource con-
straints [20]. The objective of EfficientDet is to minimize
the needed number of model parameters and floating-point
operations used for annotating a single image while still
maintaining performance. This area of focus means the
model is less ideal in static and resource-rich environments
but makes it favorable for environments where resources
are scarce, either due to computational costs or hardware
limitations.

A complete object detection model is generally struc-
tured using a multi-stage design, where the Convolutional
neural network backbone, used for feature extraction, is
the initial stage. Usually, the backbone is pre-trained on
an existing public image database, such as ImageNet3,
which results in a model that is generalizable to new and
unseen data. The backbone feeds into the head of the ob-
ject detector, supplying features to the stage responsible
for predicting classes and bounding boxes of objects.

3https://www.image-net.org/
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Finally, modern object detectors employ an intermedi-
ary stage between the backbone and head, called the neck.
This stage is usually comprised of multiple bottom-up and
top-down paths, used to collect feature maps throughout
the layers to shorten the information path between lower
layers and topmost features [16].

4. Methodology

In this section, we present the system of methods used
in the final proposed software. First, we introduce the
data supplied by the Department of Chemistry and Bio-
science at Aalborg University. The chosen object detec-
tion model, YOLOv5, is thoroughly introduced, including
details about the model’s backbone, neck, and head. Fol-
lowing that, the solution for the domain-specific problem
of object clumping is established. Finally, we present the
complete object detection process, focusing on the internal
processing required to obtain the final result.

4.1. Data

In collaboration with the Department of Chemistry and
Bioscience at Aalborg University, we have obtained 541
images of Petri dishes containing Drosophila eggs, eclosed
eggs, and larvae. About 10% of the Petri dishes contain no
objects, while the most populated Petri dish contains 101
objects. The images are taken through a stereomicroscope
using two different phones at different image resolutions
and orientations. One of the phones captures photos at a
resolution of 4000x3000 or 3000x4000, depending on the
orientation of the photo during the capturing, while the
other phone captures at a resolution of 4032x1908.

The images are taken over an extended period of time
and include various data setups, as seen in Appendix A
in figure 9. These setups differ in the color of the growth
medium for the base, as well as if the Petri dishes are
fresh or if they have been frozen down before the image
was taken; a standard procedure at the bioscience depart-
ment, allowing for more time-controlled experiments. An
exhaustive list of the data setups and their corresponding
number of images is found in table 1. Further, each con-
tainer has a varying amount of noise, such as oatmeal, dry
yeast, cracks, bubbles, and light reflections. A concrete
sample picture containing 39 class instances on the green-
blue medium is seen in figure 1a. The object classes, seen
in figure 1b, are following:

1. Egg. This covers Drosophila eggs where the larva has
not emerged from the egg. This class constitutes the
majority of the objects.

2. Eclosed egg. Empty Drosophila eggs where the larva
has emerged resulting in an empty egg.

3. Larva. An emerged Drosophila larva.

4. Lump. A dense collection of Drosophila eggs, where
even domain experts have a hard time counting the
exact amount of eggs.

(a) An image can contain multiple classes and several
objects within the same class. Note also the light
reflections in the growth medium.

(b) Zoomed in rectangle from subfigure (a) showing the
different classes. Green rectangles indicate Drosophila
eggs; likewise purple indicate eclosed eggs, teal indicates
larvae, while red indicates lumps.

Figure 1. These images contain Drosophila eggs,
eclosed eggs, larvae, and lumps.

Do note that the 72 Petri dishes used for the fresh grey
setups are the same Petri dishes used for the frozen grey
setup; likewise, the 84 fresh black Petri dishes are the
same as the frozen black Petri dishes. While the Petri
dishes are the same, inevitably, there will be differences in
the placement of the Petri dish, angle of the camera, light
reflections, bubbles, and the frozen setups are generally
more blurry. Further, the physical objects can change lo-
cation between the fresh photo is taken and the Petri dish
is frozen. As a result of these dissimilarities, the bounding
boxes are not equivalent, and the images can be seen as
distinct images; figure 10 in Appendix B exemplifies the
differences between fresh and frozen Petri dishes.

The images are labeled manually using the online tool
Supervise.ly4 with assistance and guidance from the De-
partment of Chemistry and Bioscience at Aalborg Univer-
sity.

Detecting small objects is notoriously known for being
more difficult than larger objects, with e.g YOLOv4 hav-
ing an average precision (AP) of 20.4% for small objects,
44.4% for medium objects, and 56.0% for large objects on
the MS COCO dataset at resolution 416 [16]. The lower
AP for small objects is a common pattern also appearing
in other models such as SSD, RetinaNet, CornerNet [16].

4https://supervise.ly/
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Table 1. The dataset consists of six different data setups.

Data setup Image count Description
Pink spoon 160 Pink spoon with black growth medium
Blue-green 71 Petri dish with blue-green growth medium
Fresh grey 72 Petri dish with grey growth medium
Frozen grey 70 Petri dish with grey growth medium that has been frozen
Fresh black 84 Petri dish with black growth medium
Frozen black 84 Petri dish with black growth medium that has been frozen
Total 541

Consequently, we introduce a dataset similar to our afore-
mentioned Drosophila dataset, with the only difference be-
ing a tiling preprocessing step, where all images are cut
into multiple rows and columns, making the objects rela-
tively larger compared to the image size. We will refer to
these as tiled images, and refer to the original images as
full-sized images. The tiling process will be explained in
greater detail in section 4.4.

4.2. YOLOv5
The specific YOLO model presented in this section is
YOLOv5, chosen due to its more accessible implementa-
tion and increased usability in a production-ready soft-
ware solution. We present the architecture of YOLOv5,
including which backbone, neck, and head the model em-
ploys to perform object detection and classification. Note
that YOLOv5 and YOLOv4 mainly differ in implemen-
tation details, which means the more rigorously defined
YOLOv4 model will be used to outline the architecture.

The backbone was selected based on experiments and
the theoretical justification that more layers result in a
higher receptive field to handle increased input size, and
more parameters result in a greater capacity to detect ob-
jects of different sizes in a single image. Note that the
receptive field is defined as the size of the region in the in-
put that produces the feature, which, when increased, also
helps in recognizing large objects [21]. Thus, Bochkovskiy
et al. selected CSPDarknet53 as the backbone of YOLOv4
[16]. The same backbone is used in YOLOv5 [22], we as-
sume the motivation is similar.

CSPDarknet53 is a C-based open-source neural network
implementation of the Cross Stage Partial Network (CSP-
Net), which allows for more gradient flow through the
network, solving problems with redundant gradient infor-
mation causing inefficient optimization and costly infer-
ence. CSPNet works by partitioning feature maps into two
parts. One part is sent through a dense block of multiple
convolutions while the other is sent directly to the next
transition layer, thereby increasing gradient flow [23].

To further increase the receptive field while still main-
taining network operation speed, Spatial Pyramid Pool-
ing (SPP) is used in the neck of the model. SPP al-
lows for pooling features at a deeper layer in the network
to generate fixed-length outputs that can be fed to fully
connected layers, thereby eliminating the need for initial
cropping and warping of the input [24]. Furthermore, a
Path Aggregation Network (PANet) is used in the neck
to achieve parameter aggregation from different backbone
levels. PANet aims to boost information flow and employs
adaptive feature pooling to propagate useful information
from each feature level to the predictor [25].

The head of the YOLOv5 architecture is an anchor-
based prediction head that has been similarly used in
YOLOv3 and YOLOv4. Anchor-based heads use pre-
determined anchor boxes to represent the objects’ ideal
shape, size, and location. A large number of anchor boxes
are added to the image, these are then filtered, catego-
rized, and their coordinates refined before finally repre-
senting the object detection results [26]. To summarize,
YOLOv5 uses a CSPDarknet53 backbone with Spatial
Pyramid Pooling and a Path Aggregation Network as the
neck to link the features to the anchor-based prediction
head.

YOLOv5 provides multiple pretrained weights, trained
on different architectures, that can be used to achieve
promising results even with few images and few epochs.
These pretrained weights, referred to as checkpoints, are
trained on the COCO dataset5. These checkpoints are
intermediate weights from which we continue the train-
ing to specialize the model to detect Drosophila life
stages. YOLOv5 provides five different architectures with
a varying number of layers: nano (YOLOv5n), small
(YOLOv5s), medium (YOLOv5m), large (YOLOv5l), and
extra large (YOLOv5x).

As each checkpoint is trained on a distinct architecture
and each has their advantages and disadvantages, there
is no definite best model. Choosing a larger architec-
ture limits the batch size as well as the input image size,
due to memory constraints. On the contrary, a smaller
architecture might not be able to capture enough infor-
mation resulting in lower performance. For each of the
five mentioned checkpoints, there is also a supplementary
checkpoint, trained on the same architecture, but using
images of size 1280px rather than 640px. The checkpoints
trained on 1280px size images are suffixed with a ”6”, e.g
”YOLOv5n6” instead of ”YOLOv5n” indicates that the
checkpoint is trained on the nano architecture with im-
ages of size 1280px.

4.3. Estimating lumps
In this section, we present a method to solve the problem
caused by Drosophila objects clumping together, resulting
in the lump class presented in section 4.1. One technique
that could solve this problem is annotating each object
in a lump and relying on the model to provide the de-
tection of each object in subsequent lumps. The prob-
lem with this method is that the objects are overlapping
and so tightly concentrated in a small area that providing
bounding-box annotations for each object might decrease
the overall quality of the model. This is due to an object
in a lump possibly not being representative of a general

5https://cocodataset.org/
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object. To visualize the weakness of this approach, an
attempt to annotate individual objects in a lump is pre-
sented in figure 2a, showing overlapping bounding boxes in
even a relatively simple lump. Reinforcing the need for an
alternative method is the presence of even more complex
lumps, such as the one seen in figure 2b.

(a) Simple lump with
overlapping annotations.

(b) Complex lump with
overlapping objects.

Figure 2. Extracts from the data showing the
complexity of the lump problem.

Since individual annotations are undesirable, we have
employed an alternative method where lumps are first an-
notated as a single object. This results in the model being
able to detect areas where further prediction is necessary.
As the final objective of the object detection process is to
count each individual Drosophila object, the detection of
lumps serves only as an intermediary step.

After an image is annotated with the object detection
CNN model, the detected eggs, eclosed eggs, and larvae
are sent to the final result while the detected lumps are
further examined. Lump object detections are used to
extract the specific segment of the image containing the
lump. Each lump image is then passed through a separate
neural network model, explicitly trained to estimate the
object count in a single lump.

Due to the high complexity of obtaining an exact ob-
ject count of a lump, the output of the lump count model
should only be seen as a rough approximation. To account
for this, the estimated count of each lump n, is converted
to an integer interval [⌊n− (n ∗ 0.2)⌋..⌈n+ (n ∗ 0.2)⌉]. An
expert user can then leverage this range of numbers to de-
cide the exact count of the lump efficiently. Finally, the
user-specified count is added to the total object count of
the image in question. We assume that all objects in a
lump belong to the egg class. Note that the process of the
user supplying the exact count is handled in the proposed
software solution and is described in section 5.2.

The neural network model employed to estimate the ob-
ject count of a single lump is trained using data extracted
from the data described in 4.1. The annotated image data
from the Department of Chemistry and Bioscience at Aal-
borg University was parsed to extract 486 images, each
containing a single lump. These images were then indi-
vidually labeled to provide the object count of each lump
image. Using the images as input to a CNN model was
explored but resulted in less than ideal performance, most
likely due to the complex composition of the lumps. In-
stead, continuous features are extracted from the images
and fed to a more conventional neural network.

Each feature was chosen based on an assumed correla-

tion with the object count of the lump. The final fea-
ture set was selected based on an ablation study where
features were added and removed systematically to gauge
the individual contribution of each feature. The size of the
lump image is used as a feature, as well as two features
aiming to describe the lump specifically. To avoid issues
with spread-out lumps resulting in large lump images that
inflate the object count, color thresholding is used to ap-
proximate the percentage of the image that consists of the
lump itself. Finally, to capture information about indi-
vidual objects within the lump, Canny edge detection [27]
is applied to the image, and the percentage of the image
consisting of these edges is calculated. The final feature
set is size, lump percentage, and edge percentage. Finally,
the features are normalized to ensure that each feature is
equally influential.

In terms of model architecture, the neural network is a
conventional sequential deep network with six layers. This
includes five hidden non-linear layers and one linear out-
put layer. The first layer has 256 neurons, the second and
third 128 neurons, and the fourth and fifth 64 neurons.
Each layer uses the Rectified Linear Unit (ReLU) activa-
tion function. For training, we use mean absolute error for
the loss function, and Adam [28] with a learning rate of
0.001 for the optimizer. All hyperparameters were selected
using grid search, including the number of layers, number
of neurons in each layer, activation function, optimizer,
and learning rate.

The data was split into training, validation, and test
sets using 64% for training, 16% for validation, and the
final 20% for testing. Evaluating the trained model on the
test set resulted in a mean squared error of 1.1630 and a
mean absolute error of 0.7618. We consider this adequate
for estimating the object count of lumps in future data.

4.4. Object detection process
In this section, we present the complete object detection
process, from the user supplying a batch of images to the
final result. The section aims to illuminate the internal
architecture of the actual object detection process used in
the proposed tool. The described process assumes the ex-
istence of a trained YOLOv5m model and a trained lump
estimation neural network.

The full process for detecting objects in a single image
is shown in figure 3. For a batch of images, the shown
process is run on each image in the batch sequentially.
When the user supplies an image to the object detection
process, the image is first tiled to ensure the images sup-
plied to the YOLOv5m model are of ideal size. The tiling
method used during inference is identical to the method
used during training to ensure the controllable aspect of
the image data, namely size, is equivalent to the training
data. As mentioned in section 4.1, smaller images result in
the objects being larger relative to the image size, there-
fore, being easier to detect and classify. However, smaller
tiles also require more processing to handle a single full-
sized image. Based on experiments, 1280x960 was chosen
as the ideal tile size, maintaining inference speed while
optimizing detection results. It should be noted that to
avoid zero-padding when border tiles are not large enough
to fill the entire 1280 width or 960 height, the excess pixels
are concatenated to the tile to the left with excess width
and the tile above with excess height.
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Figure 3. Full object detection process from the user supplying an image to the detections being saved in the
database for later retrieval.

When the full-sized image has been fully divided into
tiles, each separate tile is fed into the YOLOv5m model.
As explained in detail in section 4.2, the model processes
the image by passing it through the pre-trained backbone,
which passes image features to the head by utilizing the
model neck. In the model head, detections, containing
both information about the bounding box and class, are
generated. Eggs, eclosed egg, and larvae detections are
sent directly to the database, where they are persisted
for later retrieval. As mentioned in section 4.3, lump de-
tections are further processed to estimate the egg count
within each lump.

The bounding box information is used to extract each
lump detection into a separate lump image. After extrac-
tion, each lump image is processed to retrieve the three
aforementioned continuous features, namely size, lump
percentage, and edge percentage. The feature data is then
passed through the layers of the lump estimation neural
network to retrieve an estimated count of the number of
eggs within the specific lump. This count is then com-
bined with the lump detection and saved in the database
for later retrieval. It should be noted that this count is
initially marked in the database as an estimate and will
only be marked as the actual count when a user manually
supplies the count. The process for supplying the actual
lump egg count is described in detail in section 5.2.

5. Proposed software
We now present our proposed software solution to solve the
problem of manually counting Drosophila eggs in scientific
experiments. The purpose of the software is to provide
a usable, fast, and flexible platform that researchers can
utilize in their work without requiring prior knowledge of
deep learning. In relation to that, the platform should not
require a lengthy or tedious setup. Fulfilling this require-
ment would provide researchers within the bioscience field
an opportunity to utilize the state-of-the-art within deep
learning. We propose a web application solution6 to ob-
fuscate the implementation details of the above-described
YOLOv5 model and remove the need for individual setup.
As a minimum requirement, the web application should

6https://musca.bio.aau.dk/

provide functionality for image uploads and subsequent
viewing of the object detection results. The natural front-
end/back-end architecture of web applications enables hid-
ing the model in the back-end, and it requires no setup
from the individual user, assuming the web server is al-
ready hosted.

In this section, we first describe the system architecture
for the proposed web application and present the workflow
for using the application to detect objects in Drosophila
image data. Then, we present the supplementary features
of the application, added to increase usability. Finally, we
present features that support using the proposed software
in a production environment.

5.1. System architecture
The complete system architecture can be seen in figure 4.
The users of the application interact with the front-end,
which is implemented in the statically typed programming
language Typescript. The user interface is built using the
open-source front-end framework React7. Communication
between the front-end and back-end is handled using an
Application Programming Interface (API), specifically us-
ing Django8, which is a framework for developing web
applications in Python. We adhere to RESTful conven-
tions such as a uniform interface, separation between client
and server, and statelessness. From the perspective of the
front-end, requests are made to the API using the promise-
based HTTP client Axios9.

Due to the main objective of the server being inter-
action with the YOLOv5m PyTorch model, Python was
chosen as the implementation language. This allows di-
rect usage of the model in the server without further mes-
sage brokering to external clients. To store user infor-
mation, uploaded images, detections, and other persis-
tent data, we use the small, fast, and self-contained SQL
database engine, SQLite10. SQLite is especially powerful
in a resource-sparse production environment because the
entire database is contained within a single file. The inter-
nal Django object-relational mapper (ORM) is employed

7https://reactjs.org/
8https://www.djangoproject.com/
9https://axios-http.com/

10https://www.sqlite.org/
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Figure 4. Full system architecture of the proposed web application.

to interact with the SQLite database from the Python
server.

5.2. User interface

Run a job
The main requirement of the web application is to allow for
object detection and classification in manually uploaded
image data. The workflow for accomplishing this task us-
ing the proposed software solution is seen in figure 5. To
initialize the task, the user interacts with the Run page.
The user interface of this page can be seen in figure 11 in
appendix C. The user can upload a collection of related
images and create a new job with a name and description.
For example, the user might want to group image data
from the same experiment or data within the experiment
that conforms to a certain set of criteria. When the job
is submitted, the name, description, and image data are
sent to the server. From here, the name and description
are used to create a new result in the database, and the
image data is sent to the YOLOv5m model. The images
pass through the model’s backbone-neck-head architecture
and is subsequently passed through the lump estimation
model. The resulting object detections are saved in the
database. It should be noted that this is a heavily sim-
plified view of the internal processing required to obtain
detections from the given image data. The entire process
is described in detail in section 4.4.

View the results
When the above-described process is completed, the user
can now view the object detection and classification re-
sults using the Results page. The user interface of this
page is shown in figure 12 in appendix C. The page in-
cludes a browsable list of all the user’s results. When a
result is selected, the user is presented with an interactable
image canvas, an image list, an object list, and a list of
lumps. Selecting a new image in the image list changes
the presented image and object lists. From here, the user
can add new objects, edit the class of existing objects, or
delete objects.

As mentioned in section 4.3, the output of the neural
network responsible for counting eggs in lumps can only
be seen as a rough estimate. To account for this, counted
and uncounted lumps are presented separately in the user
interface with green and red, respectively. Images with

Table 2. Table representation of the per image class
distribution CSV file, generated when exporting a
result.

id filename egg eclosed egg larva total
89 run2 FreshBlack 27.jpg 31 1 0 32
90 run2 FreshBlack 19.jpg 45 0 0 45
93 run2 FreshBlack 24.jpg 24 1 1 26
96 run2 FreshBlack 31.jpg 1 0 0 1
97 run2 FreshBlack 20.jpg 90 2 0 92

Table 3. Table representation of the class distribution
CSV file, generated when exporting a result.

class name image count object count min max average
Eclosed Egg 4 5 0 2 0.26
Egg 19 475 1 90 25
Larva 1 1 0 1 0.05
Total 19 481 1 92 25.32

uncounted lumps are also marked with red in the list of im-
ages. The user can go through the uncounted lumps in the
list and provide an exact count, guided by the estimated
range. Finally, to provide a more usable version of the
result, the user can export and download the annotated
images and corresponding result statistics. Note that the
intended workflow is that the user counts all lumps man-
ually before exporting the result statistics. This is rein-
forced by the user being warned if trying to export a result
with uncounted lumps.

When exporting a result, two CSV files are downloaded.
One file shows the class distributions per image, and the
other shows total class distributions for the entire result.
The first five rows of the image statistics CSV file, gener-
ated when exporting the result shown in figure 12, can be
seen in table 2. The accompanying total class distribution
CSV file can be seen in table 3.

Share the results
Sharing results only using the above-described features
would require that the user exports the result and shares it
manually through external means. A supplementary page
is added to the web application to ease the process of shar-
ing results with other users. The Teams page enables the
creation of teams with other users of the system and allows
users to link their results to a team to share them with all
other team members. The user interface to support this is
shown in figure 13 in appendix C. The feature was added
to increase the usability for the intended user base, hereby
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Figure 5. How to use the web application to detect and count objects in uploaded data and view the results.

meaning researchers and aims to support the cooperative
nature of their work.

5.3. Production features
The above-described features provide a hypothetical ex-
emplary user the ability to use the system to fulfill the
main requirement, automatically counting Drosophila ob-
jects. However, when building a production-ready piece
of software, especially software open to the web, non-
exemplary, even in some cases malicious, users have to
be considered. Furthermore, deploying a web application
requires a host environment, most likely with limited re-
sources, necessitating strict resource management in terms
of processing power and storage.

User management
A foundational user system with login and register ca-
pability is included to support multiple users, each with
their own results and teams. To further limit the expen-
sive internal processing of the system from malicious users,
user verification by an admin is required, effectively limit-
ing the system to users approved explicitly by the hosting
body. A simple ownership-based permission system is em-
ployed to limit specific user actions on a per-object level.
Results and teams are visible to both owners and users
with whom the objects have been shared with, but create,
update, and delete actions are only available to the owner
of the corresponding result or team object.

Processing resource management
For processing resource management, the admins are given
complete control over limiting the resources on a per-user
level. Multi-threading is utilized to avoid blocking re-
quests to the server for the duration of model inference
and related processing when running a job. The CPU and
GPU heavy process is started in a separate thread, leav-
ing the main thread available for processing subsequent
requests. Using the same admin panel as for user verifica-
tion, admins can control how many concurrent job threads
a specific user can have simultaneously. If this maximum
is exceeded, the creation of new threads is blocked.

Storage resource management
Following the same system design methodology, storage
is similarly controlled on a per-user level, with complete

control given to the admin users. Storage space is primar-
ily used to store the images for the lifetime of a result,
which, even with heavy compression applied, are sizeable
compared to the objects stored in the relational database.
Admins can therefore control the amount of storage space
available to a specific user for image storage down to the
megabyte level. If a user attempts to start a job that would
exceed their maximum storage limit, the job is blocked,
and the user is notified, allowing them to delete or archive
previous results before attempting to run again. Archiving
a result only removes the images from the server but keeps
the data in the database required to view the class statis-
tics of a result. AutomaticGarbage collection of old results
is also employed to continuously archive no longer needed
results. Users are notified before results are achieved to al-
low them to postpone the garbage collection process man-
ually.

6. Experiments
In this section, we will first introduce the performance
metrics used to evaluate the models. Subsequently, we will
introduce the deep learning models used in the compara-
tive study in addition to the already introduced YOLOv5.
After having introduced the models, we will examine the
models’ performance on the dataset using both object de-
tection and regression performance metrics. Finally, we
will conduct a failure analysis for each model on a con-
crete image to further inspect the inference results.

For YOLOv5, we use the medium-sized architecture,
YOLOv5m, found to achieve the best results on a subset
of our Drosophila dataset in a previous YOLOv5 compar-
ative study [29]. Supplementary to YOLOv5m, we include
YOLOv5x6 in the comparative study under the hypothe-
sis that the larger architecture and the higher resolution
of the images in the pretrained COCO dataset will lead
to a more generalizable model that supports detection of
objects in multiple, or previously unforeseen, data setups.

The models are trained in Aalborg University’s High-
Performance Computing environment CLAAUDIA with a
NVIDIA Tesla V100 GPU. When conducting the experi-
ments, the models will be evaluated on a regular consumer
GPU; namely the NVIDIA GeForce RTX 3060 with 12GB
VRAM.
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Figure 6. IOU is calculated by dividing the
intersection of the bounding boxes by the union of
the bounding boxes.

6.1. Performance metrics
We validate our models using the Average Precision
(AP@k) performance metric. AP@k is a commonly used
performance metric in image classification [30–32], and is
a measurement of both Precision and Recall under specific
Intersection Over Union (IOU) thresholds. Thus, AP@k
measures the model’s ability to detect the ground truths
while minimizing the amount of false positive detections.
Inspired by the well-acknowledged computer vision arti-
cles “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks” and “YOLOv4: Optimal
Speed and Accuracy of Object Detection” [16,33], we use
both AP@0.50 and AP@[0.50:0.95] to evaluate the perfor-
mance.
IOU corresponds to how well the predicted bounding

box covers the ground truth bounding box [34]. These
bounding boxes are illustrated in figure 6, while the def-
inition is seen in Eq. (1). It is worth noting that since
humans create the ground-truths in Supervise.ly, these
ground-truth bounding boxes might be off by a few pixels
between the objects; thus, a mean IOU of 100% is un-
achievable.

IOU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(1)

Average Precision (AP) is defined as the area under
the precision-recall curve (AUPRC). The precision-recall
curve shows each class’s precision at a given recall level.
Figure 7 shows an example of such a curve. In this arti-
cle, we follow the COCO convention of approximating the
AUPRC using a 101-point interpolation [35]; these points
being 0.00, 0.01, 0.02, .. , 1.00. We define APr as the pre-
cision at recall r. Let R be the set of interpolation points,
such that R = {0.00, 0.01, .., 1.00}. We then define AP as
seen in seen in Eq. (2).

AP =
1

101

∑
r∈R

APr (2)

Finally, AP@k is the average precision, where the
precision-recall curve results from the model using an IOU
threshold of k, e.g., AP@0.50 uses an IOU threshold of
0.50. AP@[0.50:0.95] is the mean of AP@0.50, AP@0.55,
.. AP@0.95, i.e., the average AP at IOU thresholds from
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Figure 7. Precision-recall curve. The precision and
recall values in this figure are not a part of the
experimental results.

0.50 to 0.95 with a step of 0.05. Thus, AP@k can be used
to examine the tightness of the predicted bounding boxes.

In continuation of AP, we define mean Average Precision
(mAP) simply as the mean of multiple average precisions,
i.e., the mean of each class’ average precision.

Supplementary to the aforementioned image classifica-
tion performance metrics, we also introduce a traditional
regression performance metric as adopted by other exist-
ing object counting papers [36,37]. We disregard the pre-
dicted bounding boxes for this metric and solely focus on
the number of detected objects. Inspired by [36], we use
Mean Absolute Error (MAE). More formally, let Yi be the
observed number of objects in image i, Ŷi be the number
of detected objects in image i, and n be the number of
images. We then define MAE as seen in Eq. (3).

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (3)

Lower MAE values are preferable, with the range of
MAE being [0, ∞). This performance metric and AP are
used to decide the model in the comparative study.

Finally, it should be noted that the model can make
a seemingly correct detection without getting rewarded
with a correct detection, ultimately decreasing the AP and
increasing the MAE. Such an occurrence is exemplified in
figure 8, where the ground truth annotation is a lump,
but the model instead detects two eggs. The detection is
not technically wrong in such a situation, yet it does not
equate to the ground truth. In this concrete example, the
AP for both egg and lump decreases, while the MAE for
egg, lump, and the total number of objects increases.

6.2. Training, validation, and test data sets
Prior to introducing the remaining models, we briefly dis-
cuss how the data is split into subsets for training, valida-
tion, and testing.

First, to enable examining the models’ ability to adapt
to new unprecedented setups, we exclude the blue-green
Petri dish setup from the training, validation, and testing
subsets. Instead, we use the 71 images from the setup as
a holdout set. This setup is chosen as the growth medium
visually distinguishes the most from the medium in the
other setups.
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Table 4. Five of the setups are split into training,
validation and test sets.

Training Validation Test
Median
objects

Pink spoon 96 32 32 5.0
Fresh black 50 17 17 16.5
Frozen black 50 17 17 18.0
Fresh grey 46 13 13 8.0
Frozen grey 43 13 14 6.5
Total 285 92 93

We employ a stratified split to enforce an even distribu-
tion of the setups across the subsets. Further, this strati-
fied split also satisfies that images with a dense or sparse
number of objects are equally distributed across the sub-
sets. For each of the remaining five setups, we find the
median number of objects per image, m. Subsequently,
we partition the images in the setup into two subsets. The
first subset contains the images with less than m objects,
while the second subset contains the images with greater
than or equal tom objects. Finally, we split these two sub-
sets into training, validation, and test subsets, where we
use 20% of the images for testing, 20% for validation, and
the remaining 60% images for training. Finally, the respec-
tive subsets are concatenated, resulting in a single train-
ing, validation, and test set. This stratified split leaves us
with the dataset as seen in table 4.

6.3. Comparative study
In this section, we introduce the models that will be used
in the comparative study in more detail. Specifically,
we present the architecture and distinguishing features of
three different families of deep learning models: Faster
R-CNN, RetinaNet, and EfficientDet. A detailed exami-
nation of YOLOv5, which is the object detection model
used in the tool, can be found in section 4.2.

Faster R-CNN
Faster R-CNN [13] is an upgrade to Fast R-CNN with
improved inference speed, obtained mainly by improv-
ing computations associated with region proposals. The
model consists of two modules, where the first module
proposes regions of interest, while the subsequent module
is the Fast R-CNN detector, which conducts the object

(a) Ground truth is a lump. (b) Potentially the model

detects the two eggs as

individual eggs.

Figure 8. It is possible for a model to make a
seemingly correct detection, without the detection
being a ground truth.

classification. While being two modules, both networks
share convolution layers to reduce the cost of comput-
ing proposals. Specifically, we use Faster R-CNN X101
32x8d FPN, a modification of the original Faster R-CNN
to use ResNeXt-101-32x8d [38] as the backbone, while also
adding a Feature Pyramid Network neck to support vary-
ing image resolutions.

Data augmentation techniques used in Faster R-CNN
include rescaling images while keeping the aspect ratio,
rotating, random flip, and random crop. These data
augmentations are, as well as the model itself, provided
through Facebook AI Research’s (FAIR) library Detec-
tron2 [39]. FAIR achieved a mAP@[0.50:0.95] of 0.430
with this model on the MS COCO dataset.

RetinaNet
RetinaNet is introduced in the 2017 article ”Focal Loss for
Dense Object Detection” [17]. Contrary to Faster R-CNN,
RetinaNet is a one-stage detector and thus does not have a
separate initial module to propose regions. By not having
a region proposal network, RetinaNet faces the challenges
of both determining which of the hundreds of thousands
of anchors includes objects and are not just background,
while also having to reposition the anchors to only cover
the object. To overcome this, RetinaNet’s head consists
of two parallel sub convolution networks. The classifica-
tion subnet predicts, for each anchor and each class, the
probability of the object class being present within the an-
chor. Simultaneously, the box regression subnet regresses
the anchor to fit the detected object.

Concretely, we use the RetinaNet model with ResNet-
101-FPN for the backbone as FAIR found this achieved
the highest AP on the COCO dataset. Data augmenta-
tion techniques are identical to the ones used in Faster
R-CNN. On the MS COCO dataset, FAIR achieved a
mAP@[0.50:0.95] score of 0.404 using this model. While
this is slightly lower than that obtained using Faster R-
CNN, RetinaNet used only 55% of Faster R-CNN’s infer-
ence time.

EfficientDet
EfficientDet [20] is a one-stage detector employing Effi-
cientNet as the backbone, while using their proposed bi-
directional feature pyramid network (BiFPN) as the fea-
ture network to support input images of varying resolu-
tions. BiFPN is a modification of PANet used by, e.g.,
YOLOv5. The head of EfficientDet consists of a class
and box network. EfficientDet challenges existing detec-
tors and aims to achieve both higher accuracy and more
efficiency. As EfficientDet uses predefined anchors, we cal-
culate the anchor ratios using the K-means algorithm on
our training set, with IOU as the distance measure, as
seen in other work [13, 40]. Inspired by their work, we
solely use horizontal flipping and random image rescaling
as data augmentation techniques.

EfficientDet provides multiple scaling configurations,
denoted by ϕ and referred to as the compound coefficient.
Due to memory constraints during training and later in-
ference, we use ϕ = 0, which uses the smallest EfficientNet
backbone and has the lowest number of channels and lay-
ers. However, we modify the model to train on input size
1280, as seen with compound coefficients ϕ = 5 and ϕ = 6,
rather than the default input size 512. The Google Brain
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Team achieved 0.346 mAP@[0.50:0.95] using ϕ = 0, while
they achieved 0.515 using ϕ = 5.

6.4. Comparative study results

Object detection results
Examining the results for the full-sized images, seen in ta-
ble 5, it is evident that both YOLOv5 models outperform
the remaining models on the test set, with YOLOv5x6
achieving the highest mAP@0.50 and mAP@[0.50:0.95]
on both the test and holdout set, while YOLOv5m ob-
tained the fastest inference speed. Concretely, YOLOv5x6
on the test set achieved a mAP@0.50 of 0.739 and a
mAP@[0.50:0.95] of 0.561 in 40 seconds, while achiev-
ing respectively 0.341 and 0.206 on the holdout set.
YOLOv5m, being the fastest, had an inference speed of
14 seconds, while achieving close to 90% of YOLOv5x6’s
performance metrics on the test set, but only nearly 50%
of YOLOv5x6’s performance metrics on the holdout set.

Faster R-CNN and RetinaNet yielded lower perfor-
mance metrics than YOLOv5m on the test set. However,
they outperformed YOLOv5m on the holdout set, with
Faster R-CNN achieving mAP@0.50 and mAP@[0.50:0.95]
of respectively 0.296 and 0.140 compared to YOLOv5m’s
performance metrics of 0.178 and 0.097. EfficientDet
achieved significantly worse results than all the other mod-
els, with EfficientDet only being able to detect lumps, as
the remaining objects were too small to be correctly de-
tected by its anchors.

For the full-sized images, we conclude that YOLOv5x6
is the most suited model, with the remaining models
being uncompetitive on either the test or holdout set.
YOLOv5x6 achieved the best results on the holdout set,
whereas YOLOv5m did not manage to keep up with the
larger architecture on the not previously seen growth
medium color.

The performance metrics for the models when using
tiled images, contrary to full-sized images, are listed in
6. Also here YOLOv5x6 outperformed the remaining
models w.r.t mAP except for mAP@[0:50:0.95] on the
test set, where YOLOv5m achieved slightly better results.
YOLOv5m especially improved on the holdout set, where
its mAP@0.50 and mAP@[0.50:0.95] increased from 0.178
and 0.097 to 0.402 and 0.257. On the test set, YOLOv5m
increased from 0.670 and 0.479 to 0.724 and 0.543.

Disregarding the inference time, all the models except
for YOLOv5x6 benefitted positively from using tiled im-
ages on both the test and the holdout set. YOLOv5x6’s
performance metrics on the test set decreased slightly by
using tiled images, possibly due to a reduction in con-
textual information near the objects. Despite the slight
decrease on the test set, YOLOv5x6 did significantly
improve on the holdout set, with the mAP@0.50 and
mAP@[0.50:0.95] increasing from 0.341 and 0.206 to 0.447
and 0.284.

Particularly EfficientDet improved by using tiled im-
ages, making it outperform Faster R-CNN and RetinaNet
on the test set, with EfficientDet increasing its perfor-
mance metrics from 0.101 and 0.050 to 0.583 and 0.383.
On the holdout set, EfficientDet outperformed RetinaNet
while achieving results similar to Faster R-CNN.

In this experiment, we found that the YOLOv5 mod-
els achieved the highest mAP on both the test and the

holdout set, with YOLOv5x6 obtaining slightly higher ac-
curacy. Further, we also found YOLOv5m to be the model
with the fastest inference speed among all the models.

When comparing the two tables, it is evident that object
detection is slower on the tiled images compared to the
full-sized images. For the YOLOv5 models, the inference
time was slowed down by a factor of two, while for the
remaining models, it slowed down by a factor of nine. It is
also worth noting that all the models consistently achieve
lower mAP scores for the holdout set compared to the test
set, indicating that, to some extent, new and unseen data
setups challenge all the models. As such, there are no
guarantees that the models will be equally successful on
non-industry standard setups or growth medium colors.

Regression results
While we in the previous experiment found that the
YOLOv5 models with tiled images achieved the highest
mAP, we will in this experiment continue exploring the
most suited model from a regression perspective. Here,
we examine the models’ ability to count the various ob-
ject classes. For this, we use the MAE regression met-
ric previously mentioned in section 6.1. The MAE is de-
termined for each object class per model. Further, for
each model, we also determine the single-class MAE. The
single-class MAE is calculated by treating the detector as
class-agnostic, and thus solely comparing the number of
detections to the number of ground truths while disre-
garding the predicted class.

For easier comparison, we include a baseline non-
detector. This baseline model predicts each image to have
zero objects. We will not discuss the results from this
baseline method, as it is only included for comparison.

The results are shown in table 7. The classes will not
be intercompared within the same model due to the high
variance in class occurrences. E.g., many images do not
contain eclosed eggs, so naturally, this is likely to have
a low MAE compared to the egg class, which has a high
occurrence rate.

Examining the results, we observe that YOLOv5x6
achieved the lowest MAE values, with the tiled images
attaining the lowest MAE for eggs, lumps, and single-
class, while the YOLOv5x6 with full-sized images obtained
slightly lower MAE results for eclosed eggs and larvae.
More concretely, YOLOv5x6 with tiled images achieves
the following MAE results: 0.707 for eclosed eggs, 4.427
for eggs, 1.067 for larvae, and 0.671 for lumps and 4.591 for
single-class. For the same classes, YOLOv5m with tiled
images obtains respectively 0.707, 4.634, 1.055, 0.884, and
5.305. This does indicate that on tiled images YOLOv5x6
does outperform YOLOv5m with respect to MAE.

The highest MAE per class when disregarding the base-
line detector is: RetinaNet for eclosed eggs with 0.896
MAE; 14.085 for eggs by EfficientDet when using full-
sized images; 1.488 for larvae by EfficientDet on full-sized
images; 1.366 using tiled-imaged with EfficientDet; and fi-
nally 16.573 for single-class again by EfficientDet, but with
full-sized images. These large MAE results by especially
EfficientDet will be further examined in the next section,
where we explore the inference results.

Altogether, we found that YOLOv5x6 with tiled im-
ages yields the best MAE results, but at the higher in-
ference time found in the previous experiment. With
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Table 5. Performance metrics per model on full-sized images

Validation set Test set Holdout set

Model
mAP
@0.50

mAP
@[0.50:0.95]

mAP
@0.50

mAP
@[0.50:0.95]

Inference speed
mAP
@0.50

mAP
@[0.50:0.95]

YOLOv5m 0.685 0.479 0.670 0.479 0m14s 0.178 0.097
YOLOv5x6 0.726 0.527 0.739 0.561 0m40s 0.341 0.206
Faster R-CNN 0.413 0.216 0.412 0.219 0m34s 0.296 0.140
RetinaNet 0.269 0.116 0.311 0.147 0m16s 0.215 0.096
EfficientDet 0.049 0.098 0.101 0.050 0m52s 0 0

Table 6. Performance metrics per model on tiled images

Validation set Test set Holdout set

Model
mAP
@0.50

mAP
@[0.50:0.95]

mAP
@0.50

mAP
@[0.50:0.95]

Inference speed
mAP
@0.50

mAP
@[0.50:0.95]

YOLOv5m 0.756 0.567 0.724 0.543 0m28s 0.402 0.257
YOLOv5x6 0.750 0.557 0.725 0.537 1m32s 0.447 0.284
Faster R-CNN 0.532 0.334 0.487 0.297 4m38s 0.317 0.182
RetinaNet 0.463 0.282 0.428 0.268 2m19s 0.234 0.132
EfficientDet 0.392 0.599 0.583 0.383 6m40s 0.291 0.161

YOLOv5m obtaining comparable results on both eclosed
eggs, eggs, and larvae, we can almost inconsequentially re-
place YOLOv5x6 with YOLOv5m for a three times faster
inference speed. However, this replacement comes at the
cost of a slight increase in MAE for lumps, with the MAE
increasing from 0.671 to 0.884. The consequence of miss-
ing a lump will naturally depend on the size of the lump.

Failure analysis
To further inspect the inference results, we examine each
of the models’ detections on the image in the test set with
the most objects. The main objective of this further ex-
amination is to make the detection differences between the
models more perceptible. All the images that are referred
to are found in Appendix D. The original image is seen in
figure 14. In the following images, detection failures are
marked with a blue rounded rectangle.
YOLOv5m: In the full-sized image (figure 15), two

mostly-transparent eggs are missed in the top of the
growth-medium. A larva that is partially covered by
eggs in a lump is also missed. Some of the objects are
location-wise correctly detected but are misclassified; this
includes two eggs incorrectly classified as larvae, and some
instances of two nearby eggs getting classified as one egg.
When examining the tiled image (figure 16), we see that
the two missed eggs in the top are now correctly detected,
and moreover, the partially covered larva is also correctly
detected. Further, the nearby eggs that would otherwise
get detected as one egg is now detected as a lump of two
eggs.
YOLOv5x6: In the full-sized image (figure 17),

the model missed the same partially covered larva as
YOLOv5m on the full-sized image. The model also de-
tects two relatively close-laying eggs as one lump. It would
have been more correct for the model to detect these as
two independent eggs; however, the lump estimation com-
ponent will handle this in the postprocessing phase. We
also see some eggs that are counted both as an egg and as a
part of a lump; NMS does not remove these egg detections
due to NMS not being class-agnostic. It is worth noting
that a class-agnostic NMS still would not solve this, as
the IOU is low. In the tiled image (figure 18), we see that

some blurry eggs are misclassified as eclosed eggs, as well
as two eggs in continuation of each other, almost looking
like a larva, actually getting detected as a larva. Another
mistake, so far unique to this model, is some noise getting
misdetected as an egg.

Faster R-CNN: Examining the full-sized image (figure
19), it is seen many of the bigger lumps are missed. While
the model does detect some of the objects, the majority
are missed. Besides missing lumps, various eggs are also
missed. The only clear pattern in which eggs are missed is
near the edge of the container, where the growth-medium
is slightly lighter or darker than the middle. Some de-
tected objects are misclassified as eclosed eggs rather than
eggs. The network greatly improved from tiled images (fig-
ure 20), but it tends to detect nearby eggs as one single
egg rather than multiple eggs or a lump. As we saw in
some earlier models, mostly-transparent eggs and larvae
are missed. This model also missed one of the larger lumps
in the bottom of the container, as well as eggs where only
the top of the egg is visible.

RetinaNet: This model also misses a lot of objects
in the full-sized image (figure 21. Much like Faster R-
CNN, RetinaNet also misses lumps near the edge of the
container. Many of the missed eggs are also comparable
to those missed by Faster R-CNN. RetinaNet does, how-
ever, also miss quite a few eggs in the middle of the con-
tainer, which Faster R-CNN did correctly detect. While
this model also benefitted from using tiles (figure 22), it
still misses some lumps in both the bottom and the top of
the container. The model misses some slightly misshaped
and blurry eggs, and like Faster R-CNN some close-laying
eggs are misdetected as being a single egg instead of a
lump.

EfficientDet: Only lumps are detected in the full-
sized image (figure 23), due to the other objects being too
small for the anchor. Despite only detecting lumps, many
smaller lumps are still false negatives. Overall, the model
has a very low recall, missing a vast majority of the ground
truths. On the other hand, when using tiled images (fig-
ure 24), the model can detect objects smaller than lumps
and achieves inference results comparable to the YOLOv5
models. Still, some of the lumps close to the container’s
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Table 7. Mean Absolute Error for detected objects per class per model

Model Eclosed eggs Eggs Larvae Lumps Single-class
YOLOv5m, full-sized 0.707 7.415 0.988 0.774 8.555
YOLOv5m, tiled 0.707 4.634 1.055 0.884 5.305
YOLOv5x6, full-sized 0.659 5.183 0.970 0.890 4.811
YOLOv5x6, tiled 0.707 4.427 1.067 0.671 4.591
Faster R-CNN, full-sized 0.665 7.348 1.048 0.854 8.220
Faster R-CNN, tiled 0.884 8.000 1.134 1.048 8.970
RetinaNet, full-sized 0.756 8.970 1.396 0.915 11.610
RetinaNet, tiled 0.896 9.152 1.140 0.939 10.494
EfficientDet, full-sized 0.829 14.085 1.488 0.707 16.573
EfficientDet, tiled 0.707 6.610 0.994 1.366 6.409
Baseline non-detector 0.774 14.140 1.488 1.384 17.786

border are missed, possibly due to the container having a
slightly different growth-medium color in these areas. We
also note that some of the eggs are misclassified as larvae,
and the aforementioned partially covered larva is not de-
tected as an object. Eggs, where only the top of the egg,
and not the whole egg is visible, are most often missed.
It is evident that especially EfficientDet greatly improved
from using tiled images.

Based on the experiments in the study, we chose
YOLOv5m with tiled images for the proposed software,
as this model achieved results comparable to YOLOv5x6
while using less than a third of the inference time.

7. Conclusion and future work
In this work, we proposed a software solution to solve
the problem of laborious manual counting of different
Drosophila life stages in laboratory experiments. Through
a study of the state-of-the-art within deep learning for ob-
ject detection, four models, namely Faster R-CNN, Reti-
naNet, EfficientDet, and YOLOv5, were selected to be
part of a comparative study. Examining the models’ per-
formance in terms of various object detection metrics, re-
gression metrics, and a failure analysis, it was found that
the two YOLOv5 models performed significantly better
than the other models. While the larger YOLOv5x6 con-
sistently achieved the best metrics, the faster YOLOv5m
model was chosen due to its comparable results while be-
ing three times faster. Specifically, the chosen YOLOv5m
model has a mAP@0.50 of 0.724 and a mAP@[0.50:0.95]
of 0.543 on the test set, achieving these metrics with a
per-image inference time of 0.3 seconds. Treating the cho-
sen model as a class-agnostic detector yielded a MAE of
5.305.

One main issue with automating the process of manual
counting is the large variety of data setups used to perform
experiments. Such data setups can vary in the containers’
material, shape, and storage conditions and in the color
of the growth medium in the containers. To support this
characteristic of Drosophila experiments, data from multi-
ple different setups were used to train and test the models
in the comparative study. Furthermore, a holdout setup
was used to test the models’ ability to process new and un-
seen data conditions. Here, the selected YOLOv5m model
achieved a mAP@0.50 of 0.402 and a mAP@[0.50:0.95] of
0.257.

Another property of Drosophila data is the significant
clumping of eggs. Since an important requirement of ob-

ject detection is having a clear equivalency between ob-
jects of the same class, treating eggs within a lump in
the same manner as individual eggs could significantly de-
crease the model’s performance. To solve this problem,
lumps were treated as separate single objects, allowing
the model to detect areas of the image where further pro-
cessing is required. Due to the high complexity of obtain-
ing the actual egg count within a lump, it was decided
that the user should provide the actual final count. To
aid in this decision, we provide a lump estimation neu-
ral network, trained on a processed version of the original
dataset, that can supply a range covering the options for
the final actual count.

To eliminate as many tedious aspects of using the above-
described YOLOv5m and lump estimation models, we pro-
posed a web application tailored to hide the deep learning
aspects of the system from the user. This system, designed
to be used by a user without prior knowledge of the deep
learning domain, provides the user with the functionality
to upload images, process the images automatically, and
view the results. Beyond fulfilling the main requirement
of a common user, the system also accommodates users
sharing their results with other users. Finally, to support
the system running in a production environment, features
aimed at providing the hosting body with intricate control
over processing and storage resources are included.

7.1. Future work
Even though the proposed software solution is presented
as a complete piece of production software, we acknowl-
edge that further work could extend the functionality and
usability of the solution. In this case, the software solu-
tion provides a strong foundation for future development,
both in terms of optimizing the internal object detection
process and improving the web application.

Optimizing object detection
One significant advantage of the architecture chosen for
the tool is the simplicity of plugging a new model into the
system. This allows the underlying model to be optimized
or even changed without disturbing the system’s users.
Further optimization of the chosen YOLOv5m model or
extending the comparative study to include more models
is, therefore, ideal future work. Beyond further hyperpa-
rameter optimization, domain-specific optimization could
also be considered. One characteristic of the data that
could be exploited is that there is a significantly higher
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chance of seeing a larva object when in close proximity to
an eclosed egg and vice versa.
Since the internal object detection process depends

on both the YOLOv5m model and the lump estimation
model, both should be considered when optimizing the
internal process as a whole. Using CNNs for the lump es-
timation model was attempted. However, it was quickly
abandoned in favor of a more conventional neural network
due to the complexity of CNNs and less than ideal per-
formance. Revisiting CNNs and using the entire image
as the input to the model instead of extracting contin-
uous features could be a viable method to optimize the
predicted egg count. Furthermore, extending the exist-
ing neural network with more complex features could be
equally viable.
Optimizing the internal object detection architecture

is not only dependent on optimizing each separate part.
Making larger changes to the structure of the architecture
could be similarly productive. One such change could be
changing the models from being fully trained offline to
work as online models. Since the web application provides
the user with functionality to add, change, and delete de-
tections, this user input could be used to train the models
further while the system is running. The lump estimation
model is especially ideal for this change since the user is
expected to provide the actual count for each lump, which
could then easily be converted into new training data.

Modifying the data
As with any tool dependent on a trained machine learning
model, extending the data used in the training process is
a viable next step. One main contribution of this work is
the diverse data setups used in the data, which could be
further extended to include even more, possibly domain
or institution-specific, setups. The data setups covered
here represent the industry-standard, but further training
might be necessary if non-standard setups are used. This
necessity is further supported by the models achieving sig-
nificantly worse results on the holdout setup, signifying
that unseen data setups are problematic.
Beyond extending the data, work could also be focused

on attempting to increase the quality of the current data.
One significant issue with the data is the clumping of ob-
jects and how this is currently handled. The lump class,
created through our solution to this problem, is problem-
atic since it is only relevant to the internal object detection
process and not to the final user. Since the user only cares
about eggs, eclosed eggs, and larvae objects, lumps obfus-
cate the objects of interest. The lump class also negatively
impacts the performance metrics. Changing the final ob-
ject count by aggregating multiple objects, and causing
some objects to be different from the ground truth while
not being technically wrong, are both negative effects of
the lump class that could be avoided.
Currently, all data from the different setups feature the

Drosophila melanogaster fly. The fruit fly is an ideal ini-
tial focus due to its popularity in academic experiments.
However, since the web application is not designed to be
specific to Drosophila, supporting further species such as
conventional house flies or soldier flies would be an ideal
next step. Technically, if the lump estimation features are
removed, the web application is generalizable to any ob-
ject detection and classification task. It should be noted

that this also requires re-training the YOLOv5m model
and removing the lump estimation step.

More features
Finally, we acknowledge that the web application could be
extended with more features to increase usability. Cur-
rently, the only preprocessing applied to the data before
being evaluated by the models is tiling. More advanced
preprocessing, such as cropping the image to only include
the area of interest, could be provided as an option to the
user. Furthermore, usability features aimed at making the
internal processing more transparent would be relevant.
This could, for example, be achieved by showing the user
the live progress of a job. Many tools providing advanced
functionality to users also commonly provide features to
walk new users through the system’s functionality. Due to
non-standard characteristics of the system, such as lump
handling, this might be relevant to include.
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Bibliographical remarks
Parts of the article are based on our article from the previ-
ous semester [29]. The abstract and section 1 are rewritten
to include new results and article structure. Further, we
have updated section 1 to include details regarding the
comparative deep learning study conducted in this arti-
cle. Section 2, Existing methods for counting Drosophila,
is copied from last semester as we found there had not
been significant progress within the field.

Section 3 is significantly extended to include more deep
learning models relevant for object detection. Section 4 is
heavily modified to include our new dataset, various data
setups, our proposed lump estimation neural network, and
the process of detecting objects using tiles. However, sec-
tion 4.2, where we introduce YOLOv5, is mostly copied
with only minor changes to make the section shorter with-
out reducing coherence.

The introduction to section 5, Proposed software, is
heavily inspired by our work in the previous semester,
while the remainder of the section is rewritten to reflect
the new software architecture and user interface.

While Intersection Over Union and the Average Pre-
cision performance metric in section 6.1 is influenced by
our work last semester, the section has been significantly
shortened while replacing both the regression performance
metric and the experiment using the regression perfor-
mance metric.
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Appendix
A. Six data setups

(a) Blue-green (3000x4000). (b) Fresh black (3000x4000).

(c) Frozen black (4000x3000). (d) Fresh grey (4000x3000).

(e) Frozen grey (4000x3000). (f) Pink spoon (4032x1908).

Figure 9. The dataset consists of six different setups and has three different resolutions.
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B. Petri dish storage conditions

(a) Petri dish with black medium before being frozen
down.

(b) Same Petri dish as in (a) after being frozen. At first
glance, it can be difficult to see it is the same Petri dish.

Figure 10. Illustration of the dissimilarity between the fresh and the frozen Petri dishes.

C. User interface of proposed web application

Figure 11. User interface for uploading data to do object detection and classification.
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Figure 12. User interface for viewing the object detection and classification results.

Figure 13. User interface for creating teams and sharing results with other users.
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D. Inference results to examine models

Figure 14. This image contains 53 eggs, 2 larvae and 26 lumps making it the most object dense image in the
test set. The ground truths are annotated as follows: green rectangle indicates an egg, teal rectangle
indicates a larva, while lumps are indicated by a red rectangle.
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Figure 15. YOLOv5m on full-sized image. Errors include: Missing mostly-transparent egg and larva, eggs
misclassified as larvae, two close eggs being detected as a single egg, and missing a larva partially covered by
a lump.
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Figure 16. YOLOv5m on tiled image. Errors include: Neighboring eggs misclassified as a single egg,
neighboring eggs misclassified as multiple eggs rather than a lump, and an egg misclassified as an eclosed egg.
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Figure 17. YOLOv5x6 on full-sized image. Errors include an egg being marked both as an egg and part of a
lump, noise being marked as an egg, two eggs being marked as one lump instead of two individual eggs, an
egg misclassified as an eclosed egg, and an egg misclassified as a larva.
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Figure 18. YOLOv5x6 on tiled image. Errors include a single egg getting marked as both an egg and a lump,
eggs misclassified as larvae or eclosed eggs, a partially covered larva missed, eggs classified as both part of a
bigger lump as well as an individual egg, noise misdetected as an egg, multiple eggs forming a lump marked
as individual eggs rather than a lump.
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Figure 19. Faster R-CNN on full-sized image. Errors especially include large quantity of missed objects as
well as lumps misclassified as being single eggs. Errors also include a lump being detected as multiple lumps.
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Figure 20. Faster R-CNN on tiled image. Errors especially includes many missed objects and again lumps
misclassified as being single eggs. In the top of the container we also observe an egg being detected but with
an out-of-proportion bounding box.
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Figure 21. RetinaNet on full-sized image. Like Faster R-CNN, errors especially includes false negatives with
both eggs and lumps being missed. Notably, all the lumps in the top of the container are missed. Most eggs,
except those to the right, are also missed. Further, some lumps are misclassified as being a single egg.
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Figure 22. RetinaNet on tiled image. Using tiles, more of the eggs are now correctly detected compared to
using full-sized images, but many objects are still missing and some lumps are again misclassified as being
single eggs.
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Figure 23. EfficientDet on full-sized image. Only large lumps are detected, while smaller lumps, larvae, and
eggs are all ignored. While this model has a high precision, it has a very low recall.
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Figure 24. EfficientDet on tiled image. Compared to the tiled model, we immediately observe tremendous
differences, and most eggs are now correctly detected, though a few are still not detected. There are still
some misclassifications, including lumps detected as a single egg, two eggs detected as one larva, and single
eggs misclassified as a larva. We also observe some neighboring eggs misclassified as a lump rather than two
individual eggs. At the top of the container, we also observe misdetected lumps.
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