
IrregularDB: A model-based time series DBMS
for regular & irregular time series data

Master Project (P10)
Group cs-22-dt-10-02

Software
Aalborg University

June 2022



5th Year Software
Software

Selma Lagerløfs Vej 300
9220 Aalborg Øst

https://www.aau.dk/

Title

IrregularDB: A model-based time
series DBMS for regular & irregular time
series data

Theme

Time series databases

Project period

February 2022 - June 2022

Project group

cs-22-dt-10-02

Participants

Esben Kaa Nedergaard
Kenneth Ljunggren Nørholm
Simon Teodor Manojlovic

Supervisor

Christian Thomsen

Amount of pages: 73
Appendices: 4 (13 pages)
Project finished: 17-06-2022

Abstract:

Given the vast amount of time series data pro-
duced by sensors in different domains, special-
ized time series DBMSs are needed to ingest,
compress, store, and analyze the time series
data. Many time series DBMSs have already
been developed and proven to be efficient but
with the ever increasing requirements for col-
lecting time series data new approaches should
be explored such as systems that can efficiently
handle both regular and irregular time series
data.

In this project we design, implement, and
test a new time series DBMS, IrregularDB.
Tests show that IrregularDB achieves 1.03-2.69
times better compression, and 0.61-27.39 times
the ingestion speed of existing open-source sys-
tems: InfluxDB and ModelarDB while sup-
porting both regular and irregular time series
data.

In order to achieve these results Irregul-
arDB uses a novel approach we name Multi-
Timestamp Multi-Value Model Compression
(MTVMC). The approach applies one of mul-
tiple timestamp compression models to the
timestamp data and one of multiple value com-
pression models on the measured values. The
timestamp- and value models are then stored
as segments in a relational DBMS. From here
the data can be queried with full SQL support
directly on the DBMS.
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with agreement from the authors.
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Summary

The amount of sensors that are used to capture time series data is increasing every year. The
sensor data can be information such as temperatures or energy production from a wind turbine.
No matter what specific information is measured most of these recorded values need to be stored,
and depending on the use case some need to be stored long term. The long term data storage
can become a challenge with the ever-increasing amount of data collected. Therefore, systems
that are optimized for storing and processing time series data are a necessity.

Existing purpose-built time series DBMSs have among other strategies used model-based com-
pression to handle these vast quantities of data. In this project we differentiate between two
types of model-based compression: timestamp-model-based compression and value-model-based
compression. Timestamp-model-based compression means that models are created to compress
timestamps of a time series. Value-model-based compression is the same but for values. An
example of value-model-based compression could be to fit the values of a time series interval to a
linear function, e.g. f(x) = ax+ b. Then this linear function’s parameters can be saved instead
of storing the individual values.

Model-based compression can be extended to multi-model-based compression. This is done by
supporting multiple different model types and then selecting only the best model for a given
time series interval. Multi-model-based compression can then be utilized for both timestamp-
model-based compression and value-model-based compression by for example supporting multiple
different value model types leading to multi-value-model-based compression.

Systems like ModelarDB [1] have applied multi-value-model-based compression. However, Mod-
elarDB only supports regular time series data i.e. data points that are always measured with a
fixed interval. The purpose of this project is to create a system inspired by ModelarDB but with
support for both regular and irregular time series data, thereby increasing the scope of data that
can be compressed with the strengths of multi-value-model-based compression. Other systems,
e.g. Informix [2], have applied multi-timestamp-model-based compression to have better hand-
ling for both regular and irregular time series. The aforementioned systems have inspired this
project to utilize both multi-value-model-based compression and multi-timestamp-model-based
compression by creating the, to our knowledge, novel approach that we call Multi-Timestamp
Multi-Value Model Compression (MTVMC).

The system produced in this project is called IrregularDB . IrregularDB can ingest data from
either a TCP connection or CSV files. The system separates the ingestion from the processing
of the data points such that the ingestion endpoints will always be responsive to the devices
offloading their data. The MTVMC processing is performed by background worker threads,
using several user-configurable parameters such as error bound and threshold. This leads to a
time series being divided into segments of various lengths. Each segment represents a time series
interval, a part of the time series, by storing model representations of the timestamps and the
values. These models can then be used to recreate the time series interval represented by the
given segment. The segments are sent in batches to a PostgreSQL database. The segments can
then be queried using full SQL support from the database and a proof-of-concept user-defined
PL/Java function can be used to decompress them.

IrregularDB was benchmarked against ModelarDB and InfluxDB for comparison. ModelarDB
was chosen as it is the system that IrregularDB is most heavily inspired from and thus it is a
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natural choice for performance evaluation. InfluxDB was chosen as it is a broadly used system
[3] and is also often used by papers for comparison. For evaluation, the real-life dataset REDD
[4] as well as a dataset created using the Time Series Benchmarking suite(TSBS) data generator,
was used. The tests performed cover both compression ratio, ingestion speed, and query speed.

The test results show that the ideas utilized in IrregularDB to support MTVMC are worth in-
vestigating further, as IrregularDB shows promising results for both compression and ingestion.
As for querying IrregularDB lacked behind the other two systems. But on the other hand, Irreg-
ularDB offers full SQL-query support, and handling of irregular time series, which ModelarDB
does not.

Two ways have been identified, which should increase the query performance to be competitive
with the other systems. The first way to increase query performance is to replace the proof-of-
concept decompress segment function implemented in Java with a C implementation. The second
improvement is to include additional summary information for segments since the summary
information already implemented adds significant speed ups to relevant queries.
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1 | Introduction

An increasing number of sensors are used to monitor devices. This has led to the generation of
vast quantities of time series data. Time series data is often used for analysis to gain insight
into the behavior of systems and their devices. This insight can help increase the reliability of
a system by using the sensor data to detect anomalous behavior. Detecting anomalous behavior
allows the system to correct its behavior before it has consequences e.g. downtime [5].

Time series data is not optimally stored and processed in traditional RDBMSs (Relational Data-
base Management Systems). Because the RDBMSs are not well suited to handle the velocity
and volume of the time series data produced by large sensor networks [6]. Time series data
is better stored in Time Series Management Systems (TSMSs) as they are optimized towards
quickly ingesting large amounts of time series data and storing the time series data compactly
compared to the raw data. Furthermore, TSMSs are often optimized for answering typical time
series queries.

The volumes of time series data produced by sensors can become large. For example, the sensors
on a single Boeing 787 produce up to half a terabyte of data per flight [6]. The large volumes of
data mean that storing the raw sensor data can, therefore, be infeasible or prohibitively expensive
[1]. Compression is, therefore, often used to reduce the cost of storing the data. ModelarDB [1]
has demonstrated multi-model-based compression of values to be effective at compressing time
series data. Multi-model-based compression will be explained in more detail in Section 2.2.
However, ModelarDB has the drawback that it only supports regular time series [1]. A regular
time series is a time series where its data points are always measured with a fixed time interval
between them. The main reason that ModelarDB only supports regular time series is that the
domain ModelarDB was developed for (wind turbine monitoring data) consists of only regular
time series.

It is far from all time series domains that only use regular time series data. For example, a
system monitoring the stock market would only need to generate a data point whenever a stock
changes its value. This results in irregular time series data as the data is not monitored with a
fixed interval. Furthermore, regular measured time series can have imprecise readings resulting
in almost regular time series data [7]. This means that systems often have to handle both regular
time series and irregular time series, which is not possible in ModelarDB.

Problem definition:

ModelarDB has shown that multi-model-based compression of values is effective at handling
regular time series data. It is, therefore, interesting to research the possibilities of applying
multi-model-based compression in a system that supports both regular and irregular time series
data. The goal of this project is therefore to answer the following question:

How should a time series management system be made such that it supports effective compres-
sion and efficient ingestion using multi-model-based compression of values for both regular and
irregular time series?

The time series management system developed in this project is named IrregularDB 1.

1https://github.com/IrregularDB/IrregularDB
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2 | Domain

This chapter presents some necessary definitions and an understanding of the domain. Sec-
tion 2.1 describes some of the contexts wherein time series databases operate. Section 2.2
introduces the concept of model-based compression. Some of the terms used will be formally
defined in Section 2.3. In Section 2.4 we will discuss the related works that use model-based
compression for ingesting time series data. Lastly, the main idea of IrregularDB is presented in
Section 2.5.

2.1 Time series databases

The domain of time series databases is characterized by having a large amount of data, requiring
high throughput and availability. An example of a business domain that produces large amounts
of sensor data is the energy production domain for wind turbines, which the ModelarDB paper
[1] focuses on. The paper presents an example company with 16 windmill parks where each park
has 12 wind turbines on average. Each turbine is monitored by 98 sensors that each measures
every 100 ms. In total, this leads to:

• 18816 unique time series

• ∼ 11.3 million data points per minute

• 5.5 TiB data per month if timestamps are stored using a 64-bit long and the value is stored
using a 32-bit float.

It is not only the energy production domain that produces large-scale data. Large-scale web
applications such as Facebook, TikTok, and Netflix that require sophisticated monitoring of e.g.
servers to offer availability for their users also produce massive amounts of data. This monitoring
produces vast quantities of data making it challenging to ingest and store the data efficiently
while still offering acceptable query times. Considering the numbers mentioned in the Gorilla [8]
paper from 2015, a system developed by Facebook to monitor their systems, Gorilla should be
able to handle:

• 2 billion unique time series.

• 700 million data points per minute.

• ∼ 40,000 queries per second at peak.

To handle these amounts of data the systems used need to provide high insertion throughput
and low query latency with efficient storage based on compression. Storing that amount of data
in a traditional SQL database as raw data is not feasible in practice. Therefore, specialized time
series databases are used that efficiently ingest, compress, and offer acceptable query times [9].
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2.2 Model-based compression

Time series databases typically implement a strategy to compress the time series data. One
approach is to use model-based compression. The idea behind model-based compression is that
instead of storing the raw data points one could simply store models that can be used as a
‘formula’ for how to reconstruct the original data points. Model-based compression can be
implemented as either lossless or with an allowed deviation. Allowing deviations mean that the
reconstructed data points are approximations. In general, a higher deviation will allow for a
higher rate of compression at the cost of precision.

In this project we differentiate between two types of model-based compression:

• Timestamp-model-based compression: timestamp models are created that compress
the timestamps of the data points in a time series.

• Value-model-based compression: value models are created that compress the values
of the data points in a time series.

This differentiation means that the data points are reconstructed by using the timestamp model
to reconstruct their timestamps and the value model to reconstruct their values.

2.2.1 Value model-based compression example

Figure 2.1 shows a subset of ten data points from a fictional time series. This subset is called a
time series interval as it only shows a portion of the entire time series. To keep the example
simple we will only be focusing on constructing the value model using a single value model
type.

Figure 2.1: Simple example of a value model fitted to a set of data points from a time series.

The dotted red line represents the value model, which represents the values of the data points.
In this example, the value model that fits the values of the time series interval could be mv :=
f(t) = 2.85 as all the values of the time series interval are equal to 2.85. This example compressed
ten values to a single value resulting in a 10x compression ratio for the values.
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The value model created in this example was created using the PMC-mean value model type,
which is discussed in more detail in Appendix B.1. PMC-mean works by producing constant
models such as mv by trying to fit all values in the time series interval to a single constant value.
This value model type is therefore highly dependent on the characteristics of the data points’
value patterns.

If the data points do not all have the same value this value model type can not be used. However,
if an error bound εv can be tolerated we can model data points with some variance in their values
with the same model. If we allow an error of εv = 25%, meaning the values of the reconstructed
data points can deviate up to 25% of the original measured value, we can use the same value
model type as before to construct a value model that represents the values of the data points in
Figure 2.2.

Figure 2.2: Model example with error bound.

2.2.2 Multi-model-based compression

The above example showed how model-based compression can lead to significant compression
results as long as the data fits the model types used. A single model type cannot fit all data point
patterns, which leads to the use of multiple model types, a technique known as multi-model-based
compression. Multi-model-based compression attempts to fit the same data points to different
model types and will then store the model of the model type that achieved the best compression
ratio. By using a multi-model-based compression approach, ingestion time is sacrificed for an
increase in compression ratio, which is the use case IrregularDB focuses on.

The differentiation between two types of model-based compression also leads to two types of
multi-model-based compression:

• Multi-timestamp-model-based compression: the timestamps of the data points are
fitted to multiple different timestamp model types and only the timestamp model achiev-
ing the best compression is stored for each time series interval.

• Multi-value-model-based compression: the values of the data points are fitted to mul-
tiple different value model types and only the value model achieving the best compression
is stored for each time series interval.
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2.3 Definitions

This section gives a set of definitions that forms a common foundation for the domain worked
with in this project. The project focuses on handling data from sensors and monitoring devices,
which produce data points. Our formal definition of a data point is shown in Definition 2.3.1.

Definition 2.3.1 (Data point): A data point is a pair d = (t, v) consisting of a timestamp
t ∈ N and a value v ∈ R recorded at time t.

For the timestamps, we use natural numbers as we choose to represent time using Unix epoch
time meaning that each timestamp is represented by storing the number of milliseconds that
have elapsed since January 1, 1970.

The data points are then combined into a sequence of data points, a time series, which is defined
in Definition 2.3.2.

Definition 2.3.2 (Time series): A time series TS = ⟨(t1, v1), (t2, v2), ...⟩ with a tag T
is a sequence of data points that is uniquely identified by T . For each data point in the
time series, its timestamp must be larger than the previous i.e. ti < ti+1 for i ≥ 1.

To identify which data points belong to which time series the data points are received as time
series readings (Definition 2.3.3).

Definition 2.3.3 (Time series reading): A time series reading R is a pair R = (T, d)
consisting of a tag T and a data point d, where T is a string used to identify which time
series d belongs to.

The definition of a time series shown in Definition 2.3.2 is unbounded, which means that the
time series can contain an arbitrary amount of data points. However, when working with time
series we often only work with fractions of them. We call these fractions time series intervals,
which are defined in Definition 2.3.4. We denote the number of data points in a time series
interval called TSI as |TSI|.

Definition 2.3.4 (Time series interval): A time series interval TSI = ⟨d1, d2, ..., dn⟩ is a
subsequence of consecutive data points from a time series TS. A time series interval can
also be seen as a bounded time series.

Model-based compression is used in IrregularDB to reduce the amount of storage space needed
to store the time series intervals. This means that IrregularDB stores models for the different
time series intervals instead of the raw data points. In IrregularDB we differentiate between two
types of models: Timestamp models (see Definition 2.3.5) which represent timestamps and
value models (see Definition 2.3.6) which represent values. As an example of a model consider
the following time series interval TSI and the value model mv, which is a linear function that
can represent the values of TSI:

• TSI = ⟨(0ms, 50), (100ms, 150), (200ms, 250), (300ms, 350)⟩
• mv := f(t) = 1 · t+ 50
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Users can define allowed levels of imprecision in the constructed models because this can be used
to further reduce the amount of storage used. Imprecisions can lead to further compression as it
allows the models to fit more data points. This means that for the value models the users can
specify a percentage error bound εv, which specifies the percentage allowed deviation. However,
for the timestamp models it is not ideal to use percentage error, as discussed in more detail in
Section 3.1.1, so instead a threshold value Tt is used, which specifies the allowed deviation in
milliseconds.

Definition 2.3.5 (Timestamp model): A timestamp model mt with threshold Tt for a
time series interval TSI = ⟨(t1, v1), (t2, v2), ..., (tn, vn)⟩ is a representation that can be
used to reconstruct approximations ⟨t∗1, t∗2, ..., t∗n⟩ of the timestamps ⟨t1, t2, ..., tn⟩, where
it holds that |ti − t∗i | ≤ Tt for 1 ≤ i ≤ n

Definition 2.3.6 (Value model): A value model mv with error bound εv for a time
series interval TSI = ⟨(t1, v1), (t2, v2), ..., (tn, vn)⟩ is a representation that can be used to
reconstruct approximations ⟨v∗1 , v∗2 , ..., v∗n⟩ of the values ⟨v1, v2, ..., vn⟩, where it holds that
|vi−v∗

i |
vi

≤ εv for 1 ≤ i ≤ n.

These models are constructed using timestamp model types that do timestamp-model-based
compression, and value model types that do value-model-based compression. The definition of
the model types are seen in Definition 2.3.7 and Definition 2.3.8. As an example, a value
model type could be MV = SWING, because SWING as explained in Appendix B.2 outputs
linear functions that can be used as value models.

Definition 2.3.7 (Timestamp model type): A timestamp model type MT and its
provided threshold Tt ≥ 0 is a function that takes a time series interval TSI =
⟨(t1, v1), (t2, v2), ..., (tn, vn)⟩ as input and returns a timestamp model mt. The timestamp
model mt can be used to create approximations ⟨t∗1, t∗2, ..., t∗n⟩ of the timestamps
⟨t1, t2, ..., tn⟩, where it holds that |ti − t∗i | ≤ Tt for 1 ≤ i ≤ n.

Definition 2.3.8 (Value model type): A value model type MV and its provided
error bound εv ≥ 0 is a function that takes a time series interval TSI =
⟨(t1, v1), (t2, v2), ..., (tn, vn)⟩ as input and returns a value model mv. mv can be used
to create approximations ⟨v∗1 , v∗2 , ..., v∗n⟩ of the values ⟨v1, v2, ..., vn⟩, where it holds that
|vi−v∗

i |
vi

≤ εv for 1 ≤ i ≤ n.

Segments are used to keep track of the timestamp models and value models used to represent
the different time series intervals of a time series.
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Definition 2.3.9 (Segment): A segment is a 5-tuple S = (T, ts, te,mt,mv) that repres-
ents data points for a time series interval TSI = ⟨(ts, vs), (ts+1, vs+1), ..., (te, ve)⟩ where
|TSI| ≥ 1 where:

• T : is the tag of the time series that TSI is a subsequence of

• ts: is the start time of TSI

• te: is the end time of the TSI

• mt: is a timestamp model approximating the timestamps of TSI

• mv: is a value model approximating the values of TSI

Another term used throughout the report is the sampling interval, which can be used to
describe certain time series intervals, where the time elapsed for each data point remains constant.
The sampling interval is defined in Definition 2.3.10.

Definition 2.3.10 (Sampling interval): For a time series interval TSI =
⟨(t1, v1), (t2, v2), ..., (tn, vn)⟩ where it holds that ti+1−ti = ti+2−ti+1 for 1 ≤ i < n−1 then
the time elapsed between the timestamps in TSI is referred to as its sampling interval.

2.4 Related work

The paper primarily discussed in this section is the ModelarDB paper [1] as IrregularDB is
inspired by ModelarDB.

2.4.1 ModelarDB

ModelarDB’s [1] main contribution is to introduce a new category of model-based compression
methods called Multi-Model Group Compression (MMGC). MMGC is a combination of two other
methods:

• Multi-model-based compression (MMC): refers to selecting the best model from a set
of models (as explained earlier in Section 2.2.2). It is worth noting that what is referred
to as a model type in ModelarDB is what this project refers to as a value model type. This
means that the multi-model-based compression that ModelarDB supports is what we call
multi-value-model-based compression.

• Model-based Group Compression (MGC): refers to grouping together time series
with similar value patterns in a so-called Time Series Group (TSG). The idea is then to
only store models for one of the time series in the group and then apply a scaling factor to
these models to get values for the other time series in the group. This approach can lead
to a better compression ratio by having to store fewer segments compared to compressing
each time series individually.

ModelarDB is used only for ingesting time series with a constant sampling interval. An overview
of the system components can be seen in Figure 2.3. The system is a multi-node system running
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in an Apache Spark cluster. A partitioner component splits time series into Time Series Groups
and assigns each Time Series Group to a worker node. The worker node generates segments
by using the MMGC algorithm and stores segments in persistent storage. A query processing
component is responsible for reconstructing original data points from segments when the user
queries data points.

Figure 2.3: ModelarDB component overview [1].

ModelarDB offers an API to extend the system with user-defined model types by implementing
an interface. The system only supports time series with constant sampling intervals, which
is key for achieving a state-of-the art compression and query performance. The reason for this
choice is based on ModelarDB’s domain focus on energy production, namely wind turbine energy
production where high-quality wired sensors are used to monitor and send data, which ensures
the data is regular. Not all time series domains can safely make the same assumption about only
processing regular time series data.

2.4.2 Other related work

This section describes related time series database systems that also use some form of model-
based compression.

Towards Online Multi-Model Approximation of Time Series

The ‘Towards Online Multi-Model Approximation of Time Series’ paper [10] is among the first to
propose a multi-value-model-based compression approach for time series data. The paper’s main
contribution is to propose an algorithm used to select the value model type that results in the best
compression ratio for a specific segment among a set of value model types. Furthermore, the paper
proves that their algorithm will always produce a fewer or equal amount of segments compared to
any single model-based compression approach, which should lead to a better compression ratio.

VergeDB

VergeDB [11] can be used as a lightweight storage engine or as an edge device database that
compresses and offers analysis of compressed and uncompressed data. In other words, VergeDB
ingests, compresses, and stores data on edge devices. The system has support for various com-
pression methods and will attempt to select the best compression method based on available
system resources and ingestion ratio. VergeDB focuses on better utilizing new edge device cap-
abilities and the trend in workloads being shifted towards machine learning. Figure 2.4 is an
overview of the system components.
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Figure 2.4: System component overview of the VergeDB system [11]

In step 5 the compression threads dynamically choose a specific compression algorithm depending
on parameters such as storage capacity, network bandwidth, and ingestion rate. VergeDB does
not attempt to achieve the optimal compression ratio always but adaptively selects a model type
depending on current resource usage. Some of the compression methods VergeDB supports are
Gzip, snappy, and Gorilla. VergeDB’s model-based compression compresses the time series as a
combined entity i.e. their model types are a combined value model type and timestamp model
type.

The VergeDB paper [11] also discovers that compression methods, that require full decompres-
sion of stored data before users can perform data analytics, are weaker than other compression
methods because they give extended query time due to decompression overhead.

Informix extension

The paper [2] suggests a distributed TSDBMS that uses three different storage formats for
different types of time series. The compression used depends on the time series type. The
system supports both lossless and lossy (within the user-defined error bound) compression. The
three formats can be seen in Figure 2.5.

Figure 2.5: The different storage formats proposed by [2].
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The data format used depends on the time interval that the source time series are sampled.
The first two formats are similar in that they store a timestamp, deviceid, count, and valueBlob
header. The valueBlob header is a pointer to the compressed time series data. The regular time
series structure only stores values in the blob data, as for regular time series the timestamps
can be reconstructed simply using the sampling interval. For the irregular time series the data
structure stores timestamp-value pairs in the blob data. Both the regular and irregular time
series blob data structure only contains data from a single time series source and each structure
can hold up to b data points. The b-value is user-configurable.

The mixed grouping data structure is different by grouping different time series sources in a
single blob. In this blob, triples are stored: (deviceid, timestamp, values). The system maintains
which group a device is in. The mixed grouping data structure is used for time series with a
low sampling interval. The mixed grouping data structure is compressed using a quantization
algorithm.

Informix uses multi-timestamp-model-based compression as it uses two different methods to store
the regular and irregular timestamps. It also supports value-model-based compression as both
the regular and irregular data structures are compressed using the linear compression algorithm
[12].

Heracles

Heracles [9] focuses on improving the existing performance monitoring time series systems. To
do this they made the following two main contributions:

• New storage model: Heracles uses a new storage model that tries to remove the issue of
storing the same timestamps multiple times. This is done by grouping together time series
with the same timestamps and then utilizing a shared timestamp column.

• Two-level epoch memory manager: They designed an improved memory manager that
keeps data available for querying in-memory data for longer periods by not immediately
discarding data after flushing but instead keeping it in a two-level cache before discarding
it.

We will focus on describing the new storage model as it is the most relevant part in relation to
IrregularDB’s domain. The paper’s main idea is to store each timestamp only once and create
a mapping from these timestamps to the values associated with the timestamps. They created
two different mappings and storage compression methods one for in-memory and one for on-disk
storage. We only focus on the compression methods. The compression methods work as follows:

• In-memory compression: for value compression they use a value model type similar
to Gorilla’s value model type [8]. For timestamp compression, they develop a timestamp
model type, where they store a base timestamp tb and then store for each of the remaining
timestamps ti store a delta value calculated as ∆ = ti − tb.

• On-disk compression: they use the same value model type as in-memory, but improve it
by e.g. choosing more efficient base values. For their on-disk timestamp model type, they
choose to calculate an approximation of the sampling interval SI. Then for each timestamp
ti they store the difference d = ti− (t1+SI · (i−1)), which is how far away the actual time
is from a value recreated using the calculated SI. This approach should perform better
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than the in-memory timestamp model type as this difference value should be smaller than
the deltas from the base timestamp.

Heracles, therefore, utilizes multi-timestamp-model-based compression as it uses two different
timestamp model types for in-memory and on-disk compression.

2.5 IrregularDB’s main idea

The main idea utilized in IrregularDB is to use multi-timestamp-model-based compression as well
as multi-value-model-based compression. This is achieved by utilizing multiple timestamp model
types and multiple value model types to compress data points. It was also chosen to compress
timestamps and values separately in IrregularDB as it can result in better compression. We
call this, to our knowledge, novel approach Multi-Timestamp Multi-Value Model Compression
(MTVMC).

2.5.1 Multi-timestamp-model-based compression

The reason for utilizing multiple different timestamp model types is that sensors can produce
time series intervals that follow various timestamp patterns. Certain timestamp model types are
better suited to handle certain timestamp patterns. Figure 2.6 illustrates some of the patterns
that can occur for the time series’ timestamps.

Figure 2.6: Example of various timestamp patterns

IrregularDB differentiates between the following categories of timestamp patterns:

• Regular timestamp pattern: If the timestamps of the data points in the time series
interval arrive with a fixed sampling interval then the time series interval follows the regular
timestamp pattern.

• Almost regular timestamp pattern: In some cases regularly sampled time series do
not produce exactly regular data points due to noise or imprecise sensors. We identify
these time series intervals as almost regular.

• Irregular timestamp pattern: Some time series contain data that might be sampled
randomly or based on other factors e.g. the value of a stock changing. Time series intervals
that do not follow the regular timestamp pattern nor the almost regular timestamp pattern
are classified as following the irregular timestamp pattern.
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As an example of how different timestamp model types are better suited to handle certain
timestamp patterns consider a simple timestamp model type called MTsimple

that produces
timestamp models by calculating a sampling interval for a time series interval by taking the
difference between the first two timestamps i.e. SI = t2 − t1. The timestamp models produced
by MTsimple

would then be: mt := f(i) = t1 + SI · (i− 1), where i is the index of the data point
in the time series interval.

MTsimple
would work well for TSI1 from Figure 2.6 but would be ill-suited for TSI3 as it would

reconstruct data points with timestamps that are very different from the original timestamps as
shown in Figure 2.7.

Figure 2.7: Example of the simple timestamp model type MTsimple
being ill-suited

Instead, some other timestamp model types such as the Gorilla timestamp model MTgorilla
ex-

plained in Appendix A would be better suited to construct a timestamp model for time series
intervals, such as TSI3, that follow an irregular timestamp pattern. This example, therefore,
illustrates why a system that supports regular and irregular time series could benefit by utiliz-
ing multiple different timestamp model types thereby supporting multi-timestamp-model-based
compression.

The patterns are primarily used as an abstraction by the developers of IrregularDB to determine
which timestamp model types should be supported in IrregularDB to enable better timestamp
compression. The users of IrregularDB do not have to specify which timestamp patterns their
time series follow.

2.5.2 Multi-value-model-based compression

The idea is that IrregularDB will use multi-value-model-based compression by utilizing multiple
value model types. The reason for using multi-value-model-based compression is that multi-
value-model-based compression has been shown to always produce equal or better compression
compared to single model value compression in papers such as [1] and [10].

2.5.3 Separating compression of timestamps and values

Existing systems often look at data points as a single entity and compress both the values and
timestamps together instead of separating them. This leads to them using a predefined combin-
ation of the timestamp model type and value model type e.g. Mgorilla = (MTgorilla

MVgorilla
),

which is a combination of Gorilla’s timestamp model type (Appendix A) and value model type
(Appendix B.3). There are cases where the predefined combinations of model types do not
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give the optimal compression, which could instead be achieved by changing either the timestamp
model type or value model type. Consider the example shown in Figure 2.8.

Figure 2.8: Example of time series interval for which combined Gorilla model type is not ideal

In the figure, the data points arrive with a fixed sampling interval so they follow a regular
timestamp pattern. Using the Gorilla timestamp model type i.e. MTgorilla

would not give the
optimal compression. The timestamps could instead be further compressed using a timestamp
model type that uses a sampling interval value to reconstruct the timestamps. For example a
timestamp model type similar to MTsimple

. For the values, the best compression model would
still be MVgorilla

. The reason for this is that the values cannot be represented using a linear
function or a constant function within a reasonable error bound.

The idea is to have no predefined combinations in IrregularDB but instead define timestamp
model types and value model types separately. IrregularDB should therefore compress the
timestamps and values separately, then select the combination of model types that achieves
the best compression.

2.5.4 Compared to related work

Our novel Multi-Timestamp Multi-Value Model Compression (MTVMC) approach is a new
contribution because, to our knowledge, no work has been published that supports:

• Multi-timestamp-model-based compression

• Multi-value-model-based compression

• Does compression of timestamps and values separately.

For example, ModelarDB [1] supports multi-value-model-based compression as it utilizes multiple
value model types. However, ModelarDB only supports regular time series, therefore, only
supports a single timestamp model type. Another example is the Informix extension, discussed
in [2], which supports multi-timestamp-model-based compression as they utilize multiple different
timestamp model types but Informix only support a single value model type.
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3 | Algorithm Design

This chapter will describe the design of the model types used in IrregularDB . The timestamp
model types will be discussed in Section 3.1 and the value model types in Section 3.2.
Then, before discussing the segment generation the necessity of Fallback model types is discussed
in Section 3.3. Then Section 3.4 describes how the model types are utilized for creating
segments representing data points. Section 3.5 describes the solution to a problem with the
threshold affecting ordering of timestamps.

The following sections will mention user-configurable metrics. These user-configurable metrics
are included in IrregularDB to allow its users to customize the system to fit their needs. An
overview of the metrics can be found in Appendix C.

3.1 Timestamp model types

The timestamp model types implemented in IrregularDB to support multi-timestamp-model-
based compression are Regular , DeltaDelta, and SIdiff . Before describing these timestamp model
types the concept of threshold used for timestamps is discussed in Section 3.1.1. Then the three
timestamp model types will be described in Sections 3.1.2 to 3.1.4.

3.1.1 Error for timestamps

The users of IrregularDB can allow deviations in the reconstructed timestamps. Allowing de-
viation can result in higher compression. The naive approach used to allow deviation could be
to use percentage error. However, due to the nature of the time dimension it is not ideal. The
problem with this approach is that the same difference between the original timestamp ti and
its approximation t∗i would give different percentage errors depending on the value of ti. To
illustrate this consider the timestamps shown in Figure 3.1.

Figure 3.1: Example of timestamps where the same difference between actual and approximated
timestamps gives different error percentages

In Figure 3.1 the original timestamps are shown as full circles and approximations are shown
with dotted lines. As seen in the figure for both ta and tb the difference between them and their
approximations is 10 but we would get the following percentage errors:

• ta: e(ta, t
∗
a) =

|ta−t∗a|
ta

= |110−100|
110 ≈ 9.09%
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• tb: e(tb, t
∗
b) =

|tb−t∗b |
tb

= |10010−10000|
10010 ≈ 0.1%

Percentage error is therefore not satisfactory because the same difference would give smaller
errors as time passes. The problem is also magnified by the fact that IrregularDB uses Unix
epoch time as mentioned in Section 2.3. This means that timestamps will reach quite high
base values because for example 1/1/2022-T00:00:00 has the timestamp 1640991600000. These
high base values result in differences having to be quite big to give meaningful percentage errors
or the users having to use small error bounds.

Threshold

Instead, a threshold value Tt is used. The motivation for the threshold is to ensure that differences
are treated equally no matter what the current value of the timestamp is. This means that for
a timestamp ti and its approximation t∗i their difference should be less than the threshold Tt as
seen in the definition for timestamp model types: Definition 2.3.7.

The downside of this approach is that threshold values are strongly affected by how often data
points arrive for any given time series. For example, a time series sampled every 10ms would be
more affected by a threshold of Tt = 10 than a time series sampled every 1000ms. IrregularDB,
therefore, supports individual thresholds for each time series as seen in Appendix C.

3.1.2 Regular timestamp model type

The Regular timestamp model type is based on the timestamp model type used in ModelarDB
[1]. The idea behind this timestamp model type is that for a time series interval TSI =
⟨ts, ts+1, ..., te⟩ simply save a start time ts, end time te, and a sampling interval SI and use
these values to reconstruct approximations of the timestamps by using Equation (3.1).

t∗i = ts + SI · (i− 1) for i ∈ ⟨s, ..., e⟩ (3.1)

Determining the sampling interval naively

In IrregularDB the sampling interval is not known before constructing segments. It is therefore
necessary to be able to determine a sampling interval for a regular time series interval. Ideally,
the sampling interval found should allow as many data points as possible in the segment when
the threshold is considered.

The first approach considered for determining the sampling interval is similar to MT−simple

discussed in Section 2.5.1. The idea is to simply calculate the difference between the first two
timestamps and use this as the sampling interval. This can, however, easily result in sub-optimal
compression as the first two timestamps can easily have deviations compared to the actual SI.
Consider the following list of timestamps, which come from a time series with a sampling interval
of 100, as a small example of the problems with this approach:

⟨0, 90, 200, 305, 400⟩

The second and fourth timestamps did not arrive at their exact expected time due to either
noise or imprecise sensors. If the naive approach is used the sampling interval is calculated to
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be SI = 90 and the recreated timestamps would then be:

⟨0, 90, 180, 270, 360⟩

The recreated timestamps will continuously drift further from the original timestamps. Only
the first two timestamps can be represented with, say, a threshold Tt = 15, since the difference
between the third approximated timestamp and the actual timestamp is |t3− t∗3| = |200−180| =
20 which is larger than Tt = 15. This approach is, therefore, prone to represent shorter time
series intervals than what is possible.

Improvements to determining a sampling interval

The approach shown in Listing 3.1 is a suggested improvement to combat the problem of short
segments from the naive approach.

1 Input: Stream of timestamps ST = ⟨t1, t2, ...⟩, threshold Tt.
2 Output: The found SI as an integer.
3

4 SI ← t2 − t1
5 T imestampList← ⟨t1, t2⟩
6 i← 2
7 while ST .hasNext() do:
8 i← i+ 1
9 ti ← ST .next()

10 T imestampList.add(ti)
11 t∗i ← t1 + SI · (i− 1)
12 if not withinThreshold(ti, t∗i , Tt) then:
13 // Current SI does not fit. So calculate and test new Candidate SI
14 duration← ti − t1
15 candidateSI ← round(duration / (T imestampList.size() − 1))
16 j ← 1
17 while j < TimestampList.size() do:
18 t∗j ← t1 + SI · (j − 1)
19 if not withinThreshold(T imestampList.get(j), t∗j , Tt) then:
20 // Candidate SI could not fit so return previous SI
21 return SI
22 j ← j + 1
23 SI ← candidateSI
24

25 return SI

Listing 3.1: Improved Regular approach

The idea in the improved approach is as before to initially calculate the SI from the first two
timestamps as seen on line 4. The difference is that a new candidate SI is calculated when the
current timestamp cannot be fitted to the current sampling interval as seen on lines 12-15. The
candidate SI is then tested against all the ingested timestamps on lines 17-19. If one of the
ingested timestamps is not within the threshold Tt then the old SI is returned as seen on line 21.
Otherwise, the current sampling interval is updated as seen on line 23 and more timestamps can
be ingested.

To illustrate how this improvement allows the Regular timestamp model type to fit more timestamps
consider the timestamps from the example in the naive approach. With the naive approach, only
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the first two timestamps could be represented using the initial sampling interval SI = 90. With
the improved approach, a new candidate sampling interval is calculated: SI = 200−0

3−1 = 100.
Using the new candidate sampling interval we would get the following differences between the
real timestamps and their approximations:

⟨|0− 0| = 0, |90− 100| = 10, |200− 200| = 0, |305− 300| = 5, |400− 400| = 0⟩

These differences are all below the threshold Tt = 15 meaning that the improved approach for
recalculating the sampling interval can fit all the timestamps. The new method can be used
to determine a better sampling interval SI = 100 because that sampling interval can represent
more timestamps within the provided threshold.

This improvement of the Regular timestamp model type allows it to fit more timestamps, how-
ever, it adds some computational overhead. The effect of this computational overhead is limited
by the fact that IrregularDB uses a max segment length for segments as discussed in Sec-
tion 3.4.1.

3.1.3 SIdiff timestamp model type

The main idea utilized in SIdiff is inspired by Heracles’s [9] on-disk time stamp compression.
The idea is to compute a sampling interval SI for a sequence of timestamps T = ⟨t1, t2, ..., tn⟩
by using Equation (3.2).

SI(T ) =
tn − t1
n− 1

(3.2)

The SIdiff timestamp model type stores a sequence of differences (d) between actual timestamps
and expected timestamps. The function for calculating the difference d for the i’th timestamp
between the actual timestamp ti and its expected timestamp is shown in Equation (3.3).

d(i) = ti − (t1 + SI · (i− 1)) (3.3)

The expected timestamps as seen in Equation (3.3) are calculated for each timestamp by
using the sampling interval and the start time of the sequence of timestamps, this is similar to
Equation (3.1)

Bucket encoding

The data needs to be stored in a database that uses a fixed number of bytes per value so no
"real" compression is achieved as long as the d values would need to be stored using integers.
Therefore, an integer variable-length encoding is used to actualize the compression gained from
using the SIdiff timestamp model type.

The variable-length encoding scheme used to store each difference value d is shown in Listing 3.2.
This variable-length encoding is referred to as bucket encoding because the values are placed in
different buckets based on their size. The bucket encoding from Listing 3.2 ensures that smaller
values are stored with fewer bits.
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Input: Difference value d of a timestamp ti
Output: Bit pattern used to represent d

Return one of the following bit patterns based on d:
Bucket 1: Control bits ‘00’ if the difference value is zero i.e. d = 0.
Bucket 2: Control bits ‘01’ if d ∈ [−511, 511], followed by a signed bit that is ‘0’ if the

number is negative and ‘1’ otherwise, and then the absolute value of d using 9 bits.
Bucket 3: Control bit ‘10’ if d ∈ [−65535, 65535] followed by a signed bit and then absolute

value of d (16 bits).
Bucket 4: Control bit ‘11’ if d ∈ [−2147483647, 2147483647] followed by a signed bit and

then the absolute value of d (31 bits).

Listing 3.2: Pseudo code for the bucket encoding

The bucket encoding used in IrregularDB is similar to the encoding used in the Gorilla timestamp
model type discussed in Appendix A. The primary difference between IrregularDB’s bucket
encoding and Gorilla’s encoding is that a constant amount of bits are used as control bits in
IrregularDB. Only two control bits are used in IrregularDB, which results in a total of four
different cases/buckets compared to Gorilla’s five buckets. Using a constant amount of control
bits uses less control bits in cases where the higher buckets are used more frequently. This is
seen as an advantage since the Regular timestamp model type will likely be used in cases where
bucket 1 is predominately used.

IrregularDB uses a different amount of buckets and a different amount of bits in each bucket
because IrregularDB works with time in milliseconds, whereas Gorilla uses seconds. IrregularDB,
therefore, needs more bits to store the same timestamps compared to Gorilla. IrregularDB,
therefore, uses different bucket sizes than Gorilla. The size of each bucket is currently defined
based on what is thought to be desirable. However, further testing is needed to determine the
bucket sizes that give the best compression, which as discussed in Section 7.2 is left as future
work. The bucket sizes catch the following timestamp values:

• Bucket 2: the second bucket is used to store values up to around half a second as it can
store absolute integer values up to 511ms or about 0.5 seconds.

• Bucket 3: can contain values for just over a minute as this bucket can store absolute
values up to 65535ms or about 65 seconds.

• Bucket 4: is the catch-all bucket that handles the remaining values.

Approximation

IrregularDB introduces approximation in the SIdiff model type by utilizing that smaller difference
values use fewer bits due to the variable-length encoding. If a difference value d can be put in a
smaller bucket, thus using fewer bits to store the value, and still be within the threshold value
Tt, then approximation is applied on d.

How the approximation is done can be seen in Listing 3.3. A max values set MAX-VALUES is
used. The set contains the maximum value that can be contained in each bucket from Listing 3.2
(except the largest one as no values can be shrunk to the largest bucket). For the above-mentioned
bucket sizes these are the following values: MAX-VALUES = {0, 511, 65535}.
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1 Input: Absolute value of the difference d, threshold Tt, and a set of max values MAX-VALUES
2 Output: Approximation of the absolute value of d within threshold Tt

3

4 foreach max ∈ MAX-VALUES do:
5 if max ≤ d and d ≤ max+ Tt then
6 return max
7

8 return d

Listing 3.3: Pseudocode for approximation of d

In Listing 3.3 the d value is compared with all max values to see if d is within the threshold
range for any of them. If d is within the threshold range of one of the max values, then the
current max value is returned as seen on line 6. If d could not be approximated using any of the
max values within our threshold then the original d value is returned as seen on line 8.

The effect of the approximation can have is illustrated in Figure 3.2.

Figure 3.2: SIdiff approximation example with SI = 100 and Tt = 15

In the example shown in Figure 3.2, a threshold of Tt = 15 is used. For the second timestamp
t2 = 110 this means d = 0 is stored instead of d = 10 since for max = 0 we have that 0 ≤ d
and d ≤ 0 + 15 (from Listing 3.3). This approximation means that IrregularDB would store
t2’s difference using Bucket 1 from Listing 3.2. This reduces the number of bits used to 2 bits
instead of 12 bits if Bucket 2 was used for t2.

3.1.4 DeltaDelta timestamp model type

The DeltaDelta timestamp model type is heavily inspired by the Gorilla timestamp model type.
A detailed description of the Gorilla timestamp model type can be found in Appendix A. This
description of the Gorilla timestamp model type is placed in the appendix as it was produced in
connection with previous work.

The idea behind the DeltaDelta timestamp model type is to store delta-of-delta values for the
timestamps. Delta-of-delta timestamp values are likely smaller than raw timestamp values. A
delta-of-delta value D is calculated for all timestamps except the first two in a sequence of
timestamps ⟨t1, t2, ..., tn⟩. The delta-of-delta value D is calculated as shown in Equation (3.4).

D = (ti − ti−1)− (ti−1 − ti−2) for 2 < i ≤ n (3.4)

Figure 3.3 exemplifies delta-of-delta values.
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Figure 3.3: Example of delta-of-delta values

As shown in Figure 3.3 it is not possible to calculate a delta-of-delta value D for the first two
timestamps t1 and t2 so special handling is done for them. t1 is stored as a base timestamp and
for t2 a delta value is stored ∆ = t2 − t1. For the remaining timestamps, we store their delta-of-
delta values D. The delta-of-delta values can be used to reconstruct the original timestamps by
using t1, the initial ∆ value, and previous delta-of-delta values.

The delta-of-delta values are compressed using a variable-length encoding similar to the bucket
encoding used for SIdiff shown in Listing 3.2. The same approximation approach used for the
SIdiff timestamp model type (Listing 3.3) is also used for the DeltaDelta timestamp model type
to gain further compression.

3.2 Value model types

IrregularDB supports multi-value-model-based compression by using value model types to com-
press the values of data points. The value model types supported in IrregularDB are PMC-mean,
Swing , and Gorilla. PMC-mean can construct value models that represent data using a con-
stant mathematical function. The Swing value model type builds value models that represent
data using linear mathematical functions. Gorilla is a lossless value model type that uses the
XOR operator with the previous value to store a variable-length encoding of the values. A de-
tailed description of the value model types used in IrregularDB can be found in Appendix B.
This description is put in the appendix as it was produced in a previous project.

Floats are used instead of doubles to save additional space when compressing the values, as this
reduction in storage usage was considered to be worth the precision loss. Using floats results in
PMC-mean storing a float and Swing storing two floats for each value models. Thus, the value
models use 4 and 8 bytes respectively instead of the 8 and 16 bytes needed if doubles were used.
For Gorilla the initial value is a float and the number of bits used for leading zeroes (LZ) is
reduced from 5→ 4 bits and for the length (L) it is reduced from 6→ 5 bits.

PMC-mean and Swing both guarantee that the values reconstructed using their value models
are within a given error bound εv thereby upholding the condition defined in Definition 2.3.8.
However, Swing does not provide this guarantee if the timestamps are approximated as will be
explained in Section 3.2.1. Gorilla will always reconstruct the actual values without any error
and will therefore always be within εv.
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3.2.1 Threshold’s effect on value model types

Having a threshold for timestamps introduces a problem when it comes to value model types such
as Swing as its recreated values depend on the timestamp. For example consider the time series
interval TSI = ⟨(0ms, 50), (100ms, 150), (200ms, 250), (300ms, 350)⟩, an error bound εv = 0%,
and a threshold Tt = 20. The Swing value model type could then be used to create the linear
mathematical function mv := f(t) = t + 50 which represents TSI’s values. The problem arises
by the second data point d2 = (100ms, 150). This data point could be approximated to be
t∗2 = 120ms as this is within the threshold Tt. This timestamp approximation is what would
be stored in IrregularDB and be used to reconstruct the values for TSI. Applying the linear
function to t∗2 = 120ms would give v∗2 = 170, which is not within the error bound εv = 0%. This
is also illustrated in Figure 3.4. Where the red data point represents the approximation of d2
created using t∗2.

Figure 3.4: Example of threshold affecting values

Using a threshold value above 0, therefore, means that the Swing value model type cannot
guarantee that its reconstructed values will be within εv. In order to combat this IrregularDB
by default disables Swing if a threshold above zero is provided.

However, it does not necessarily make sense to disable Swing in this example, as the data points
follow a linear pattern as seen in Figure 3.4. The sensor would likely have measured the value 170
if the sensor would have measured at time 120. IrregularDB, therefore, allows the user to enable
Swing when the threshold is not 0 with the user-configurable parameter ‘model.value.error_-
bound.strict’. This parameter is described in more detail in Appendix C.
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3.3 Fallback model types

Some of the model types supported in IrregularDB need a certain amount of data points to be
able to create a model. For example, the Regular timestamp model type needs at least two data
points to be able to calculate the sampling interval used in its timestamp model. There can
be cases where there are not enough data points left to create a model since the user can choose
to disable model types used for ingesting data.

In order to handle this a Fallback value model type and a Fallback timestamp model type are
added to IrregularDB. These two model types will be utilized if none of the used model types can
handle the remaining data points. The Fallback model types work by creating models containing
the raw timestamp and value of a data point.

3.4 Segment generation

This section will discuss the approach used in IrregularDB to create the timestamp model and
value model that are stored in a segment in order to represent a time series interval. Sec-
tion 3.4.1 discusses the user-configurable length bound and the max segment length. Sec-
tion 3.4.2 then describes how the models are created while Section 3.4.3 describes how models
are selected. Then Section 3.4.4 gives a small example to illustrate how segment generation
works.

3.4.1 Length bound

IrregularDB introduces a user-configurable length bound for its model types which is necessary
because some of the model types can represent an arbitrary number of data points. For example,
the Gorilla value model type can consume an infinite amount of values and never exceed the
error bound as it reconstructs precise values. The supported model types that need to adhere to
the length bound are: DeltaDelta, SIdiff, and Gorilla.

The value chosen for the length bound affects both the compression ratio, query speed, and
ingestion speed of the system. The query speed is affected by the length bound because entire
segments need to be decompressed, even when only querying a single data point. If the length
bound is large then it takes longer to answer queries as larger segments need to be decompressed.
The advantage of having a large length bound is that fewer segments need to be stored, which
generates less overhead. The length bound is therefore a trade-off parameter between compression
ratio and query performance, and it can be configured by the user based on what they want.
Length bound can also affect the ingestion time of the system because having a larger length
bound can lead to faster ingestion as fewer segments have to be generated and sent to the
database for storage.

The test described in Appendix D.1 was done in order to determine a default value for the
length bound. The result of this test is that a default length bound of L = 400 is chosen as
increasing the length bound beyond this value provided very little increase in ingestion speed
and compression ratio.
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Max segment length

Some model types are not limited by a length bound (Regular, PMC-mean, and Swing). These
model types are not bound by length bound since they are bound by either error bound or
threshold instead. Not being bound by a length bound means that their models can grow very
large resulting in long query times. Furthermore, model types that are not limited by the length
bound can create indefinitely large models if the data follow the right pattern. This can lead
to out-of-memory exceptions as observed during the evaluation of the TSBS dataset. A max
segment length is therefore used which is a user-configurable parameter named ‘segment.max_-
length’ (Appendix C). The max segment length applies to all model types.

3.4.2 Creating the models

This section describes the approach used in IrregularDB to create models from its supported
model types. Listing 3.4 shows the approach used to create value models from the value model
types. A similar approach is used to create timestamp models.

1 Input: A length bound L, a maximum segment length SEGMAX−L, an error bound εv, and a
stream of data point values SV = ⟨v1, v2, ...⟩.

2 Output: List of values models finishedV alueModels
3

4 activeV alueModelTypes ← {PMCMean, Swing,Gorilla}
5 finishedV alueModels← {}
6 amtIngestedV alues← 0
7

8 while activeV alueModels.notEmpty() do:
9 nextV alue← SV .next()

10 // Try and append new value to still active value model types
11 foreach MV ∈ activeV alueModelTypes do:
12 appendSucessful←MV .appendV alue(nextV alue, εv)
13 if not appendSuccessful then:
14 activeV alueModelTypes← activeV alueModelTypes−MV

15 finishedV alueModels← finishedV alueModels ∪MV .getValueModel()
16

17 amtIngestedV alues← amtIngestedV alues+ 1
18

19 if amtIngestedV alues = L then:
20 // Length bound, L, reached finish GORILLA
21 activeV alueModelTypes← activeV alueModelTypes−Gorilla
22 finishedV alueModels← finishedV alueModels ∪Gorilla.getValueModel()
23

24 if amtIngestedV alues = SEGMAX−L then:
25 // Maximum segment length reached finish remaining value model types
26 foreach MV ∈ activeV alueModelTypes do:
27 activeV alueModelTypes← activeV alueModelTypes−MV

28 finishedV alueModels← finishedV alueModels ∪MV .getValueModel()
29

30 return FinishedV alueModels

Listing 3.4: Value model creation approach
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The idea used in Listing 3.4 is to first pull a new value from the stream as seen on line 9 (waiting
until a value arrives if the stream is empty). This value is appended to each of the active value
model types as seen on line 12. Then, on lines 13-15 the value model types that could not fit the
current value within the error bound εv are removed from the list of active value model types
and their value model is moved to the list of finished value models. Then, on lines 19-22 the
value model type that adheres to the length bound, i.e. Gorilla, is finished if the length bound
has been reached. An additional check is performed to test if the max length for segments has
been reached on line 24. If the max segment length has been reached all the remaining active
value model types are finished on lines 26-28. The loop continues until all of the value model
types are finished as seen on line 8. Finally, the list of finished value models is returned on line
30.

3.4.3 Model selection

The result of the approach discussed in Section 3.4.2 is two lists: FinishedTimeStampModels
and FinishedValueModels. Since IrregularDB only uses one timestamp model and one value
model for a segment then IrregularDB needs to select one model from each list. IrregularDB
selects models based on their achieved bytes per data point.

The models stored in the finished lists have different lengths as the models fit data points differ-
ently. The value model and timestamp model for a segment must have the same number of data
points. The problem is then how to select a value model and a timestamp model for a segment
and ensure they have the same length. Consider the following two ways to handle this problem:

• Brute force: For each timestamp model in FinishedT imeStampModels combine it with
each value model in FinishedV alueModels to get a set S of all possible model combina-
tions. Then, for each combination-pair P from S do the following:
◦ Reduce the longest model in P to be the same length as the shorter model.
◦ Then calculate P ’s number of bytes per data point as the storage usage of both models

in P divided by the number of data points the models represent.
Then select the pair that has the lowest amount of bytes per data point to be used in the
segment.

• Greedy: Calculate the amount of bytes per data point of the timestamp models and value
models separately. Then select the timestamp model and value models with the lowest
amount of bytes per data point to be used in the segment. Then reduce the longer model
to have the same amount of data points as the shorter model.

IrregularDB supports both methods and allows the user to choose which of the model selec-
tion methods to use. This is done by utilizing the user-configurable parameter ‘model.picker’
described in Appendix C.

A segment can then be created using the timestamp model and value model that were selected
by one of the selection methods above. The segment also contains a start and end time that
are derived from the selected models. The original data points cannot be used to determine the
start time and end time because the data points are approximated using a threshold. Therefore,
the timestamp model are decompressed to determine the correct timestamps for the start time
and end time that should be stored in the segment.
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3.4.4 Example of segment generation

This section gives an example of how segment generation works. An error bound εv = 0%, a
threshold TT = 0, a length bound L = 6, and the time series interval:

TSI = ⟨(0ms, 0.0), (100ms, 1.0), (200ms, 2.0), (300ms, 3.0), (400ms, 4.0), (500ms, 0.0)⟩

is used for this example. The example will primarily be focused on the creation and selection of
value models to keep the example concise.

Creating the models example

The first step to generate a segment is to create timestamp models and value models using the
approach discussed in Section 3.4.2. Figure 3.5 illustrates the three value models created
using the supported value model types in IrregularDB for the example time series interval.

Figure 3.5: Example of value models created in IrregularDB with error bound εv = 0% and
length bound L = 6 for a TSI

Because the error bound is εv = 0% the PMC-mean can only fit the first data point since
the second data point’s value is 1.0 and a constant function cannot represent both 0.0 and 1.0
with εv = 0%. PMC-mean is therefore removed from the ActiveV alueModelTypes list and its
constant function mvPMCmean

:= f(t) = 0.0 is added to the FinishedValueModels list.

Swing can still represent the value at v2 as it can create a linear function value model going
through 0.0 and 1.0. Swing can also append the next three values, however, the last value cannot
be fitted to the linear function. Swing is, therefore, removed from the ActiveV alueModelTypes
list at value v6 and its current linear function mvSwing

:= f(t) = 0.01t + 0 is added to the
FinishedValueModels list.

Gorilla can fit all the values as it will continue to fit data points up to the defined length bound
of 6. Furthermore, the values are exact since the Gorilla is lossless. Notice that the model shown
in Figure 3.5 for the Gorilla is simplified. In practice, a sequence of bytes representing the
original values is stored. The Gorilla model finishes after the sixth data point when the length
bound of L = 6 is reached and the model is then added to the FinishedValueModels list.

Model selection example

The greedy model selection approach is used to keep the model selection simple as it means
the selection of value models is done separately from the selection of timestamp models. The
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following amounts of bytes per data point are calculated to select a value model for the created
value models in the example:

• PMC-mean: 4.0 bytes
data point

◦ Storage usage: PMC-mean’s constant function is stored using a float giving a total
of 4 bytes.

◦ Amount of data points: can only represent 1 data point.

• Swing: 1.6 bytes
data point

◦ Storage usage: Swing’s linear function is stored using two floats giving a total of 8
bytes.

◦ Amount of data points: Can represent 5 of the 6 data points.

• Gorilla: 2.5 bytes
data point

◦ Storage usage: The base value and the following XORs are stored in 15 bytes.

◦ Amount of data points: All 6 data points.

The selected value model would be the Swing value model as it uses the least amount of bytes
per data point. The calculations here are simplified as they do not consider the storage usage
of the additional/overhead information added when storing a segment. An example of overhead
could be the start and end times of a segment.

Similar model creation and selection would be done for the timestamp model types. However, in
this example, it is clear to see that the timestamps follow a regular pattern, which means that
the Regular timestamp model type is best suited for this example. The greedy approach would
therefore select the Regular timestamp model.

The Regular timestamp model would have to be reduced in length as the final step of the greedy
model selection since the Swing value model is only able to represent five of the data points in
this example. A segment is then created using the selected models.

3.5 Keeping the order of the data points

Intuitively it makes sense to keep the data points in a time series ordered after time, meaning
that each data point’s timestamp is larger than the previous data point’s timestamp. That
is the reason for the condition ti < ti+1 is included in the definition for time series found
in Definition 2.3.2. However, during the integration tests discussed in Section 5.2, it was
discovered that IrregularDB did not uphold this condition.

Approximations of data points’ timestamps can lead to some data points being out of order when
a threshold above zero is used. This problem can occur both within a timestamp model of a
single segment or across multiple segments. The following sections will discuss these problems
and the solutions chosen to handle them.
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3.5.1 Within model approximation problem

The approximation used for the bucket encoding used in the SIdiff and DeltaDelta timestamp
model types lead to a problem of timestamps overtaking each other within a single timestamp
model. To exemplify this consider the timestamp sequence T = ⟨0, 50, 75, 300⟩, which is ingested
using the SIdiff timestamp model type and a threshold Tt = 50. This leads to the approximations
shown in Figure 3.6 as SIdiff creates a timestamp model with SI = 100.

Figure 3.6: Example illustrating why additional conditions are needed when approximating
with a threshold larger than 0

In this example, the difference value d2 is within the threshold Tt = 50. The difference value
d2 is, therefore, reduced to d2 = 0 approximating the second data point’s timestamp to 100.
However, d3 is not approximated because of d3 > Tt. The actual difference value is stored for d3.
This results in the second data point having timestamp 100 and the third data point timestamp
75 when reconstructing the data points from the SIdiff. The full list of reconstruced data points
is: ⟨0, 100, 75, 300⟩. Each of the reconstructed timestamps is within the threshold Tt = 50 but
out of order. A similar example could be created for the DeltaDelta timestamp model type.

Solution

The solution is to add an additional condition for when approximations are allowed for SIdiff
and DeltaDelta timestamp model types. The condition is the following: “Approximations of the
difference/delta-of-delta values are only allowed as long as the approximated timestamp created
using them is between the previous and next timestamp in the timestamp model”. It is possible to
check this condition for each timestamp except the first and last timestamp in a model because
SIdiff and DeltaDelta first create their timestamp models once the length bound discussed in
Section 3.4.1 has been reached.

The Regular timestamp model type is not affected by the within model approximation problem.
Recall the reconstruction of approximated timestamps formula from Section 3.1.2:

t∗i = ts + SI · (i− 1) for i ∈ [s, ..., e]

Ordering of timestamps for the Regular timestamp model is guaranteed because only positive SI
values are used and i is increasing in size for each successive reconstructed data point.
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3.5.2 Overlapping segments problem

Timestamp model types do not have knowledge about data points outside their current timestamp
model. This leads to a problem where the last data point in a segment can have an approximation
of its timestamp that comes after the first data point in the next segment.

Figure 3.7 illustrates the problem. To keep the example simple only the Regular timestamp
model type is used to ingest the timestamp sequence T = ⟨0, 100, 200, 275, 290⟩ with a threshold
Tt = 25.

Figure 3.7: Example where the end time of a segment comes after the start time of the next
segment with threshold Tt = 25

The Regular timestamp model type can fit the first four data points with the initial sampling
interval SI = 100. This is because for the fourth timestamp t4 the reconstructed timestamp
would be t∗4 = 300 which is within the threshold.

The fifth timestamp t5 = 290 cannot be fitted to the current model as its approximation t∗5 = 400
is outside the threshold. The Regular timestamp model type, therefore, tries to find a new
sampling interval that can fit all the timestamps: SIcandidate = 290

5−1 = 72.5. This candidate SI
can not fit all the data points. A segment would therefore be created to represent the four first
timestamps using a timestamp model with the initial sampling interval of SI = 100. The last
timestamp created using this model would be t∗4 = 300.

The problem is now that the next segment would start with the timestamp t5 = 290, which is
before the previous timestamp, thereby breaking the condition that each timestamp must be
larger than the previous.

Solution

The chosen solution for the overlapping segments problem is to move the start time, ts−curr, of
the following segment to be after the approximation of the end time, t∗e−prev, of the previous
segment. This is done by updating the timestamp of the first data point in the current segment
to be ts−curr ← t∗e−prev + 1. In the above example, this would mean that t5 would be moved to
t∗5 = t∗4 + 1 = 301.

The reassignment of ts−curr should be within any given threshold Tt since none of the timestamp
model types used in IrregularDB tries to approximate the start time of a segment.
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Problem with the chosen solution

The chosen solution used to handle overlapping segments can in certain cases lead to IrregularDB
breaking the threshold if a threshold higher than the minimum difference between two timestamps
is used. The reason for this is that this solution can then require that, in addition to updating
ts−curr, its successor ts−curr+1 should be moved to t∗e−prev + 1. This occurs if the moving of
ts−curr makes it surpass its successor ts−curr+1.

Figure 3.8 illustrates this moving of multiple timestamps. In this example a threshold of
Tt = 2ms is used. The approximation t∗e−prev is within the threshold and the initial moving of
both ts−curr and ts−curr+1 is still within Tt.

Figure 3.8: Example of moving multiple timestamps

This moving of multiple timestamps can lead to IrregularDB breaking the threshold Tt in certain
edge cases. The problem is then that the timestamp model types have no knowledge about
this moving of ts−curr and ts−curr+1. Since none of the supported timestamp model types
approximate the first timestamp in a segment there it is not a problem that ts−curr is moved.
However, since the timestamp model types believe the actual value for ts−curr+1 to be 4, then
the timestamp model types believe that they can approximate ts−curr+1 to t∗s−curr+1 = 5. This
would break the threshold value of Tt as t∗s−curr+1 is 3 away from the original value as illustrated
in Figure 3.9.

Figure 3.9: Example of how moving of timestamps can lead to breaking the threshold

Implementing a solution to this problem was left as future work, as discussed in more detail
in Section 7.6. It was left as future work since the problem cannot occur in the setups used
to test/evaluate IrregularDB. The reason for this is that in order for the problem to occur the
irregular data has to be ingested with a threshold higher than the minimum difference between
two timestamps, which is never the case during the integration test and evaluation of IrregularDB.
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4 | Design

The design chapter is structured into five main parts. Section 4.1 will contain an overview of
the design of the full system. Section 4.2 contains a more in-depth description of the system
components that are responsible for data receiving. Section 4.3 will focus on the parts of the
system that are directly related to model-based compression. An overview of the core components
of the systems is then presented in Section 4.4. Then the design of the database and querying
of the system will be described in Section 4.5.

4.1 Architecture overview

This section will provide a simplified broad design overview. Later sections will introduce the
concrete detailed diagrams of the system.

Before presenting the design of IrregularDB an overall design choice is discussed. This design
choice is that IrregularDB is designed as a single node system. There are several reasons for
this, the first of which is that the scope of this project is limited. It would take significant
time to set up and get acquainted with multi-node programming frameworks, which would leave
less development time for the focus of this project which is developing a system supporting our
newly defined Multi-Timestamp Multi-Value Model Compression (MTVMC) approach. Another
reason for developing a single node system is that several other time series databases only provide
the single node version of the system for free. Therefore, the systems that IrregularDB will be
compared to in our evaluation in Chapter 6 will also be single-node systems.

4.1.1 Initial Idea

An initial idea for the structure of the system was to simply perform the model-based compression
of the data as soon as it was received and on the same thread. However, compression can be quite
a heavy process. Therefore, if this approach was used it would mean that while the thread is busy
performing the model-based compression it will be unavailable for receiving data. Therefore, to
keep the data receiving responsive for the clients that are sending data, it was decided that the
receiving of the data should be separated from the model-based compression.

4.1.2 Improved idea

To achieve a separation between data receiving and model-based compression the concept of
working sets is introduced in IrregularDB. The idea behind the working sets is that each working
set has a thread-safe buffer. Having this buffer allows the receiver to always receive new data
points, as it only has to deliver the data to the buffer. Each working set will then, in its own
thread, dequeue elements from the buffer and perform model-based compression.

Figure 4.1 shows a general overview of the system based on the idea of utilizing working sets.
The lines in this figure denote data flow. As indicated in the figure there exist several instances
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for some of the components that are running in separate threads. Namely, the data received
from each data source is handled in its own thread. Each working set also has its own thread.
As seen in Appendix C the amount of working sets in the system is user-configurable.

Figure 4.1: Component overview diagram

The separation between data receiving and model-based compression leads to a natural split of
the system into two main parts. A quick description of each part is given here:

• Data receiving: First, some data source outside IrregularDB send their data to Irreg-
ularDB. Each new data source is handled by IrregularDB spawning a new data receiver
in its own thread. The data receivers are responsible for transforming the data from the
data sources into a format that the rest of IrregularDB understands. Each data receiver
is then assigned to a working set using a partitioning component. The data receivers can
then push their data directly to the buffer of their assigned working set.

• Model-based compression: Each working set will then process the received data points
by extracting them from its buffer and then transferring them to a segment generator in a
FIFO manner. The segment generator component contains logic for performing the model-
based compression, as well as the segment generation discussed in Section 3.4. Lastly,
the generated segments are sent from the segment generator to the database for storage.

The two halves of the system will be further elaborated on in Sections 4.2 and 4.3. In
these sections whenever we reference a class then it will be highlighted as demonstrated here:
WorkingSet.

4.1.3 Class diagram standards

For the class diagrams shown in Sections 4.2 and 4.3, the UML class diagram standards will be
used. For quick reference, Figure 4.2 is provided to show the meaning of the arrows and access
modifiers used. Note that these definitions only apply to figures described as class diagrams.
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Figure 4.2: Meaning of arrows and access modifiers from UML class diagram standard

4.2 Data receiving

The first part of the system is responsible for receiving the data from outside the system, which
will be described in this section. A flow diagram has been created as seen in Figure 4.3 to
further specify the flow of the first half of the system. The purple color indicates abstract classes
whose implementation classes are described in ensuing sections.

Figure 4.3: Flow diagram of data receiving and partitioning part of the system

First, the Partitioner creates all WorkingSets in step 1. Then, in step 2, the DataReceiver-
Spawner gets a reference to a WorkingSet. Then in step 3 a DataReceiver is created by the
DataReceiverSpawner. This DataReceiver is assigned to the WorkingSet retrieved in step 2.
Each DataReceiver receives time series readings in step 4 from a single data source and forwards
the time series readings to their assigned WorkingSet in step 5.

The DataReceiverSpawner is needed since socket connections are initiated by a server socket.
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The DataReceiverSpawner’s purpose is to spawn a new DataReceiver every time a new client
connects to the server socket.

Multi-threading is used in IrregularDB to increase performance. This is among other things
achieved by having multiple WorkingSets that each run on their own thread in parallel. To
achieve this the data needs to be partitioned between the WorkingSets which is done using the
Partitioner.

This in broad terms covers the data receiving and partitioning part of the system. The following
sections give an in-depth explanation of each class.

4.2.1 Data receiver spawner

As mentioned earlier the DataReceiverSpawner is responsible for spawning DataReceivers. Be-
cause of this, there must exist a specific DataReceiverSpawner for each type of DataReceiver. In
Figure 4.4 a slightly simplified class diagram can be seen. The abstract superclass DataReceiv-
erSpawner holds the common parts of each specific implementation and there are implementations
for both CSV and Socket data sources. One thing to highlight is how the superclass has the pro-
tected method runReceiverInThread(), which takes a newly created DataReceiver and runs it in
a new thread. This approach avoids having to implement this functionality twice.

Figure 4.4: Simplified class diagram of DataReceiverSpawner

4.2.2 Data receiver

The DataReceiver’s purpose is to handle the data from a DataSource and then transfer it to
its assigned WorkingSet. In Figure 4.5 both the super and sub classes can be seen with some
of the important properties and methods. Something to highlight here is the abstract method
receiveData(). This is the method that is executed in a separate thread by the DataReceiverS-
pawner.
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Figure 4.5: Simplified class diagram of DataReceiver

As reading data from a CSV file is relatively trivial this will not be described. However, the socket
communication has nontrivial parts. When communicating using a socket connection the sender
and DataReceiver must agree on how data are sent. This is because the DataReceiver must
know how many bytes to read to get a time series reading as well as how to interpret these
bytes. To achieve this some protocol must be used. Since time series readings are transferred
over the socket connection then the following needs to be transferred:

⟨TimeSeriesTag : String, T imestamp : Long, V alue : Float⟩

For writing the timestamp and the value there are no major challenges as these have a fixed
byte size. The timestamp is an 8-byte integer (Long) since epoch time is used for timestamps
as mentioned in Section 2.3. The value for the time series reading is simply a float. The time
series tag is problematic as it is a string, meaning that the number of bytes used depends on
both the length of the string as well as the encoding used for the string.

A string encoding that both sender and receiver agree on must be selected. It was chosen to use
UTF-8 in IrregularDB as it is a commonly used encoding. Next, for handling the variable length
of the string, an integer is sent on the socket connection before the string. The integer specifies
the number of bytes used for the encoded string.

For the transport protocol just described the sending of the string will take up the majority of
the data. One solution to combat this is to only send the tag with the first time series reading,
however, this would limit a connection to only a single time series. This would mean that if some
monitoring unit has say 5 different sensors it would have to make 5 connections to IrregularDB,
which is excessive. Therefore, the transport protocol is further updated to first send a byte
where the value 1 indicates that a string will be included in the message. Reversely, the value 0
indicates that the string from the last message should be used. This has the potential to save a
lot of bandwidth while maintaining the ability to send data for several time series through one
connection.
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4.2.3 Partitioner

The responsibility of the Partitioner is to assign each of the DataReceivers to a WorkingSet.
An optimal Partitioner would perform load balancing such that each WorkingSet gets an almost
equal amount of data points per time unit. In practice, it is hard to implement a Partitioner
that load balances perfectly since it is uncertain how many data points each DataReceiver will
produce.

Instead, a simpler solution was chosen in IrregularDB by utilizing a round-robin approach where
DataReceivers are distributed evenly across WorkingSets. This means that each receiver is
assigned incrementally to one of the allocated WorkingSets. The load balancing performed by
the Partitioner is, therefore, in the number of DataReceivers per working set instead of the
optimal approach where DataReceivers are distributed such that each working set receives the
same number of data points per time unit.

4.2.4 Working set

The WorkingSet is the workhorse of the system as it is responsible for receiving data from
multiple DataReceivers and then performing the model-based compression on the received data.
In Figure 4.6 the WorkingSet’s two public methods can be seen.

Figure 4.6: Simplified class diagram of the WorkingSet

The accept() method is a method that takes a time series reading and places it in the thread-safe
buffer. The run method starts an infinite loop in which it will attempt to dequeue a time series
reading from the buffer. If the dequeue operation succeeds it will process the time series reading
by feeding the time series reading to the TimeSeries it belongs to. This TimeSeries can be
identified using the private field timeSeriesTagToTimeSeries which, as its name states, is a map
from a time series tag to a TimeSeries instance. If no instance exists a new TimeSeries instance
is created for the given tag. More details about the TimeSeries class, which is an abstraction
used in the model-based compression, are found in Section 4.3.1.

Throttling data receiving

Consider the case where the data receiving part of the system is faster than the model-based
compression then the DataRecievers would just keep on adding data points to the WorkingSets’
buffers potentially causing a memory overflow. In order to combat this, the bufferSize instance
variable is used to ensure that the DataRecievers are throttled when the buffer reaches a certain
amount of data points.
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The user can configure this amount of data points with the ‘workingset.max_buffer_size_-
before_throttle’ configuration parameter. When the defined amount of data points is reached
the accept() method will return false (but still insert the data point in the buffer) signaling to
the DataReceiver to sleep for a duration before receiving data again. This duration is user-
configurable with the ‘receiver.throttle_sleep_time’ parameter.

4.3 Model-based Compression

This section will cover the right half of the diagram from Figure 4.1 in the architecture overview
section, which is the compression part of IrregularDB. The DatabaseConnection will also be
briefly described, however, the database design itself is left for Section 4.5. A flow diagram for
the compression part of the system can be seen in Figure 4.7.

Figure 4.7: Flow diagram of compression part of the system

The WorkingSet is responsible for sending time series readingss from its local buffer to the
correct TimeSeries instance in step 1. There are as many instances of the TimeSeries class
as the number of time series the system processes data for. The TimeSeries class has the
responsibility of forwarding the data points from the time series readings to the SegmentGenerator
in step 2. The SegmentGenerator is a core component of the model-based compression part of
IrregularDB and it is responsible for generating the segments that compress the measured data
points. The SegmentGenerator utilizes a CompressionModelManager and a ModelPicker that help
in the construction of segments in step 3 and 4. In step 5 the best pair of timestamp model and
value model is sent back to the SegmentGenerator. The SegmentGenerator then in step 6 creates
a segment from the models and additional information (e.g. start time and end time) and sends
the segment back to the TimeSeries instance that will write the segment to the database. The
following sections describe the individual classes in more detail.
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4.3.1 Time Series

The TimeSeries class is responsible for starting segment generation and communicating with the
DatabaseConnection interface. The class diagram for the TimeSeries can be seen in Figure 4.8.

Figure 4.8: Simplified class diagram of TimeSeries & DatabaseConnection

The TimeSeries’s processDataPoint() method will forward a data point to a SegmentGener-
ator instance. If the SegmentGenerator’s segment is finished the SegmentGenerator will sig-
nal this to the TimeSeries. The TimeSeries will then ask the SegmentGenerator for the fin-
ished segment and pass that segment to the DatabaseConnection through the getSegmentAnd-
SendToDb() method.

4.3.2 Segment Generator

The SegmentGenerator class is responsible for creating segments. Figure 4.9 is a class diagram
of the SegmentGenerator class and its dependencies. The SegmentGenerator class uses two helper
classes: CompressionModelManager and ModelPicker. The ModelPicker functionality is put into
its own class to make it easier to support different model selection approaches in IrregularDB
(currently a greedy and brute-force approach is available).
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Figure 4.9: Simplified class diagram of SegmentGenerator and CompressionModelManager which
make use of a ModelPicker.

The SegmentGenerator has an acceptDataPoint() method. This method first applies the solution
to the overlapping segments problem, described in Section 3.5.2. The main idea behind this
solution is to move the timestamp of the current data point if it is before the end time of the
previous segment. The end time of the previous segment is stored in the variable previousAp-
pendedTimestamp.

The data point is then added to notYetEmittet buffer. Then the tryAppendDataPointToAllM-
odels() method is invoked on the CompressionModelManager. The tryAppendDataPointToAllM-
odels() is used to construct timestamp- and value models in a manner similar to the approach
described in Section 3.4.2. The tryAppendDataPointToAllModels() method returns false when
either all the value model types or all the timestamp model types could no longer append
the given data point, which indicates that they are ready to construct their models.

Once the tryAppendDataPointToAllModels() method returns false then the SegmentGenerator’s
constructSegmentsFromBuffer() method is invoked. This methods is split into three parts:

1. Model selection: This method first tries to select a timestamp and value model using one
of the model selection approaches described in Section 3.4.3. This is done by calling the
getBestCompressionModel() method on the CompressionModelManager class, which in turn
calls the findBestCompressionModel() method on the ModelPicker class. This selection
method uses bytes per data point as selection criteria. When calculating bytes per data
point the method considers both the bytes used for the models themselves as well as
additional segment information. Additional segment information is required when storing
segments in the database since a segment for example contains a start time and an end
time. The summary information, discussed in Section 4.5.2, if enabled is also part of this
additional segment information. The selected timestamp- and value model are returned
as a compression model object, which is an object that wraps the timestamp- and value
model.
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2. Generating the segment: The SegmentGenerator then uses the selected models to gen-
erate a segment object that can be stored in the database and update the previousAppen-
dedTimestamp based on the end time of the generated segment.

3. Preparing for the next segment: Finally, the SegmentGenerator removes the N earliest
data points from the notYetEmittet buffer, where N is the length of the selected models.
The SegmentGenerator then calls the resetAndTryAppendBuffer() method, which does the
following two things:

(a) Resets the activeValueModelTypes and activeTimeStampModelTypes lists in the Com-
pressionModelManager to contain all the enabled model types.

(b) Then appends the remaining data points in the notYetEmittet buffer to the now
restarted activeValueModelTypes and activeTimeStampModelTypes lists.

The constructSegmentsFromBuffer() returns a list of segments because sometimes none of the
reset models can fit all the data points in the notYetEmittet buffer in step 3b. An example of
when this occurs is when the value of the newest data point is very far away from the previous
data point’ value and the Gorilla value model type is not enabled. If this occurs then we go
back to step 2 and generate a segment for data points that could be fitted to the model types
in step 3b.

4.3.3 Compression models

As part of performing the model-based compression, IrregularDB should have classes for the
timestamp model types and value model types described in Sections 3.1 and 3.2. For this, the
abstract classes ValueModelType & TimeStampModelType are created, which act as superclasses
for the specific model types. As the functionality for these two abstract classes overlap they both
inherit from an abstract base class called BaseModelType. The diagram for the abstract classes
can be seen in Figure 4.10.

Figure 4.10: Simplified class diagram of BaseModelType, ValueModelType & TimeStampModel-
Type
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The BaseModel contains common method implementations that both the ValueModelType and
TimeStampModelType use. The getBlobRepresentation() method returns a blob representation of
the current timestamp model for timestamp model types and value models for value model
types.

The reduceToSizeN() method is used during the model selection in the ModelPicker. Consider
the case where a value model type represents fewer data points than a timestamp model type.
In this case, the timestamp model type will be reduced to the same size as the value model
type because the models created by them must represent the same amount of data points in one
segment.

The resetAndAppendAll() method is used in the CompressionModelManager to append the list
of data points that are left in the SegmentGenerator’s notYetEmittet buffer after a segment has
been created.
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4.4 Component overview

Finally, connecting all the components described in the previous sections the full detailed over-
view of the system can be seen in Figure 4.11. The arrows in this figure denote associations.

Figure 4.11: Full component diagram.

The DataReceiverSpawner, Partitioner, and DataReceiver are responsible for handling input
data and transferring it to a WorkingSet.

The WorkingSet, TimeSeries, SegmentGenerator, CompressionModelManager, and ModelPicker
components are responsible for ingesting and compressing the input data.

Lastly, the DatabaseConnection and SQL database components are responsible for storage.
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4.5 Database design

A requirement for the SQL database is that it must support the creation of UDFs (User-Defined
Functions) in an imperative language. The reason for this is that it allows the database to be
extended with segment decompressing capabilities as discussed in more detail in Section 4.5.2.
Two databases were considered for the system: Oracle Database [13] and PostgreSQL [14].
Both databases support UDFs written in an imperative language and are relational databases.
PostgreSQL was chosen because Oracle’s terms of use do not allow for publishing test data run
on their system whereas PostgreSQL is an open-source DBMS.

4.5.1 Schema design

When creating a database schema, consideration regarding if tables grow at a fast or slow pace
is needed. This is particularly important to consider when developing a time series database
system. For IrregularDB, there are two major types of information that need to be stored:
metadata for time series and time series readings for the different time series. For this purpose
two tables are created, namely a time series table to store metadata and a segment table to store
segments representing the time series readings. The time series table grows slowly as only one
row is created per time series whereas the segment table grows rapidly as it stores the time series
data. The tables are shown in the ER diagram in Figure 4.12.

Figure 4.12: ER diagram for the database of the system

The time series table only contains a tag and an auto-generated (incremental) id. A time series
is identified by the tag from an outside perspective, however, a varchar is a very large key.
Optimization is therefore done by adding an auto-generated integer id that serves as the primary
key of the table instead. This is relevant because the segment table has a reference to the time
series table. The time series table is kept very simple for now as it does not currently store any
metadata regarding the time series. However, the table could easily be expanded with meaningful
dimensions. For the scope of the project, this has not been implemented.

The segment table holds the information that represents the data that has been ingested by the
system. Since this table grows rapidly several considerations have been given regarding keeping
this table as small as possible:
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• Smaller foreign key: The first measure, as mentioned above, is to use an auto-generated
integer id for the time series as the primary key instead of a varchar tag. This ensures that
the segment table only has to store a single integer to have a reference to the time series
table.

• Combined model type column: The smallest numeric column type PostgreSQL sup-
ports is a smallint (2 bytes). This leads to an optimization being done on the value_-
timestamp_model_type column. Instead of storing two individual shorts for the model
types it was chosen to combine two 1-byte values into a single short. The combination of
the two values is done by storing the first value in the most significant byte and the second
value in the least significant byte thereby saving 2 bytes for every segment.

• Column tetris: PostgreSQL expects data type columns to fit in eight bytes. If a four-byte
column is followed by an eight-byte column followed by a four-byte column, PostgreSQL
will insert four bytes of padding on the first column since it aligns all columns except the
last column into eight bytes using a total of 20 bytes. If instead the eight-byte column
is placed first then followed by the two four-byte columns only 16 bytes are used as no
padding is needed saving a total of four bytes per row. The saved space can be verified by
testing the ‘pg_column_size()’ function on the previously mentioned table column layouts.
This kind of column tetris has been done for the segment table in IrregularDB by ensuring
the segment table’s columns are aligned into 8 byte chunks so that no unnecessary padding
is added.

• End time stored as difference: The last optimization that has been made in terms of
compression ratio is to store the end_time as the difference from the start_time. This
results in IrregularDB being able to store the end_time as an integer instead of a long
reducing end_time’s storage usage from 8 bytes to 4 bytes.

Other than the already discussed fields the segment table simply holds the start_time of the
segment, as well as the value model and timestamp model stored in Blob objects with a binary
encoding.

4.5.2 Data querying

An important part of a DBMS is to be able to query the data stored in the system efficiently.
In [15], a paper concerned with managing sensor (time series) data, they identify four types of
fundamental query patterns for time series data:

• Time point query : returns the data point with the specified timestamp from a time series.
• Value point query : returns the data points from a time series whose value is equal to the

query value. There may be multiple data points for which the time series’ values satisfy
the query value.

• Time range query : returns the data points of a time series that exist in the time range.
• Value range query : returns the data points of a time series whose values are within the

value range.

Since IrregularDB stores segments it needs support for decompressing the segments to data
points to support the above query patterns. The following section discusses possible solutions to
handling the decompression of segments.
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Decompressing segments

The following two solutions for decompressing the segments were considered:

• Query interface: Some time series management systems, such as ModelarDB , provide a
query interface. This requires queries to be sent to ModelarDB. From here, ModelarDB
will extract the required data from the database and pass the result back to the caller.
This requires that query handling is built into the application but alleviates the necessity
of expanding the database with user-defined functions.

• UDFs: Another solution is instead to extend the DBMS with user-defined functions. This
means that the responsibility to retrieve the original data points is placed solely on the
DBMS.

The approach of using user-defined functions is chosen for IrregularDB. This solution was chosen
as it allows IrregularDB to have full SQL syntax support without needing to implement custom
query syntax parsing. Due to time constraints, only a proof-of-concept segment decompress UDF
is implemented in Java and installed into the PostgreSQL database with the PL/Java extension
[16]. It was chosen to go with a Java implementation as it allowed us to reuse code, however,
the PL/Java expansion is relatively slow compared to native PostgreSQL functions implemented
natively in C.

The user-defined function is defined to take a row from the segment table as input. In other
words, the user-defined function takes an argument of the composite type segment, which rep-
resents a single row of the segment table. The function then executes Java code that can decom-
press segments into data points. A set of the composite type sqlDataPoint given as (timeSer-
iesId:integer, timestamp:bigint, value:real) is returned. The user-defined function can be
seen as a flat map function that maps segments to data points.

The user-defined function is called ‘decompressSegment ’. An example of its usage can be seen
in Listing 4.1. The example shows how the UDF is used together with the time series table to
select all data points for a single time series by providing a tag in place of @myTimeSeriesTag,
which is a placeholder for an actual tag that is present in the database. The uncommon notation:
(decompressSegment(s)).* seen on line 1 turns the result, which is a set of composite type objects,
into a table response. This notation is specific to PostgreSQL.

1 SELECT (decompressSegment(s)).* FROM segment s
2 JOIN timeseries t on s.time_series_id = t.id
3 WHERE t.tag = @myTimeSeriesTag;

Listing 4.1: Example query using UDFs

Summary tables

Storing segments can risk resulting in poor query performance because full decompression of all
segments in a time series might be required before being able to produce results depending on
the query. To illustrate this consider the example where a user asks for all data points that have
values larger than 2.0 for a specific time series. In this case, all the segments representing the
time series would have to be decompressed before being able to produce results which are very
costly for the query time.

From the four query patterns discussed in Section 4.5.2 the time point query and time range
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queries are well supported in IrregularDB by having the start and end times on the segment
table. Having the start and end times on the segment table simplifies filtering segments that do
not need to be decompressed. This filtering can be done by checking the specified timestamp
against the start time and end time of a segment.

The current design used in IrregularDB results in long query times to answer the value point
and value range queries, as IrregularDB does not support accessing the values of the data points
without full decompression as illustrated in the value range query example above, where the
range [2.0, Double.MAX_VALUE] was queried. To speed up value queries the proposed idea is to
add summary information in the database, which for example could be the average, max, or min
value for a segment.

When answering a value point or range query the summary information can then be used to prune
away segments that should not be decompressed to answer the query. The user-configurable
parameter ‘model.segment.compute.summary’ is added to allow the user to decide if the increase
in query performance is worth the extra storage space and a possible increase in ingestion time.
Two options to implement summary information in the database were considered:

1. Summary information on segment table: The summary information can be directly
added as new columns on the segment table.

• Advantage: No joins necessary and no wasted storage on foreign keys.
• Disadvantage: If summary information is disabled by the user then null values have

to be stored in the empty columns using storage space.

2. Summary table: Adding a table that maintains summary information with a reference
to segments.

• Advantage: No need to store null values when summary information is disabled.
• Disadvantage: Joins need to be done to access summary info and foreign key refer-

ences are necessary.

The first approach is chosen because in PostgreSQL if a table contains eight or fewer columns then
it is free to store null values [17] thereby eliminating the disadvantage of the first approach. The
segment table from Figure 4.12 is therefore updated with min_value and max_value columns
used for summary information as seen in Figure 4.13. Note that the order of the fields in the
segment table is important given the column tetris discussed in Section 4.5.

Figure 4.13: Updated version of the database schema from Section 4.5
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The added summary information could then be used to prune away irrelevant segments before
decompressing them. An example of this could be done as shown in Listing 4.2 in which
the user should provide a min and max value of their range in place of @minRangeValue and
@maxRangeValue. In this query an overlapping range check is added on line 3 that ensures only
the relevant segments are selected for decompression.

1 SELECT timeseriesId , timestamp , value FROM (
2 SELECT (decompressSegment(seg)).* FROM segment seg
3 WHERE seg.min_value <= @maxRangeValue AND @minRangeValue <= seg.max_value
4 ) WHERE @minRangeValue < value AND value < @maxRangeValue;

Listing 4.2: Value range query example using summary information

Support for common query patterns

Since IrregularDB allows a threshold and error bound the actual stored values can differ from
the original values. This affects the queries. Consider the case where a user requests the data
point with timestamp 1303132931. If a threshold higher than zero was used when ingesting then
there is a chance that the exact timestamp does not exist in the database. The same can happen
for data point values when an error bound is used.

To be able to locate data given knowledge of the data before ingestion, four UDFs are imple-
mented. These UDFs are implemented in SQL and support the four query patterns, mentioned
at the start of Section 4.5.2. The four UDFs functions can be found on GitHub1 and their
definitions can be seen below:

• timePointQuery(tid integer, timestamp bigint, threshold integer)

• valuePointQuery(tid integer, theValue real, errorBound real, useSummary boolean)

• timeRangeQuery(tid integer, lowerBound bigint, upperBound bigint, threshold integer)

• valueRangeQuery(tid integer, min real, max real, errorBound real, useSummary boolean)

As seen here, the time-based queries take a threshold as input. This threshold is then for the
time range query used to extend the provided lower and upper bounds to accommodate the
approximations done by IrregularDB. This is done by updating the bounds to be: lowerBound :=

lowerBound - threshold and upperBound := upperBound + threshold

The time point query is implemented as a small time range query where both the upper and
lower bound are equal to the provided timestamp. The threshold is therefore used in the same
manner for the time point queries as for the time range queries.

The value point query is also implemented as a value range query, where similar moving of the
min and max value is done using the provided error bound. It is worth noting that the value
query UDFs also takes a boolean value called useSummary as input, which specifies if summary
information should be used to help speed up the query. This parameter should only be set to
true if the data has been ingested with summary information enabled, otherwise, the function
does not work.

1https://github.com/IrregularDB/IrregularDB/blob/master/irregulardb-core/src/main/resources/allSqlUDF.sql
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5 | Implementation

This chapter will describe the implementation of IrregularDB . Section 5.1 will present an
overview of relevant details regarding the implementation. Then Section 5.2 will describe an
integration test created to ensure that IrregularDB works as intended.

5.1 Overview

IrregularDB was implemented in Java 18 as this is the programming language with which the
team has the most experience. The source code is publicly available through GitHub [18]. In
total, the project consists of approximately 7800 lines of Java code. A total of 157 unit tests
have been created to ensure the functionality of individual components works as expected.

IrregularDB can be built with maven. A configuration file is needed to execute the resulting
JAR. The IrregularDB JAR expects the configuration file to be named config.properties and to
be in the same directory as the JAR.

The choice of IrregularDB using floating-point values instead of doubles, discussed in Sec-
tion 3.2, led to a problem when implementing the Swing value model type. To exem-
plify the problem, consider the cases where Swing ingests the time series interval TSI =
⟨(0ms, 1.00), (1ms, 1.05), (2ms, 1.10)⟩. In this case, one would expect Swing to be able to rep-
resent the TSI within an error bound of εv = 0%. However, due to floating-point imprecision
Swing tried to create the linear function mv := f(t) = 0.049999952t+1, which meant that Swing
could not represent TSI within εv. The problem is solved by transforming the error bound to
εv = 0.001% when an error bound εv = 0% is provided. This solution allows Swing to represent
TSI from the example above, however, also means that IrregularDB does not support truly
lossless value compression as it allows errors up to 0.001%.

5.2 Integration test

The goal of the integration test is to ensure that data points can be correctly ingested and re-
constructed when all system components are working together. The integration test is performed
by running the system and ingesting the dataset described in Section 5.2.1. The dataset is in-
gested with various combinations of error bounds and thresholds as described in Section 5.2.2.
The results of the integration test are then discussed in Section 5.2.3.

5.2.1 REDD dataset

The REDD dataset [4] is used for the integration test. The REDD dataset is a public dataset
containing time series data describing energy consumption for various channels/sources in six
different houses. In total, the REDD dataset contains 56, 341, 629 data points. If each data point
uses 12 bytes (timestamp:long, value:float) then REED uses a total of approximately 676MB if
stored as raw data points.
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Running a script that checks if a successive data point has a timestamp that is larger than the
previous reveals that data points in some cases are out of order in the dataset. The dataset was
therefore preprocessed by sorting the data points based on timestamps with a script.

5.2.2 Integration test cases

All integration tests where performed with the following fixed values for user-configurable para-
meters:

• Model Types: All timestamp model types and value model types

• Model Picker: Brute Force (based on results in Appendix D.2)

• Length bound: 400

• Strict Error Bound: True (should only affect test cases, where threshold > 0 by disabling
Swing in these test cases as discussed earlier in Section 3.2.1)

Integration tests were performed with the following three variations in user-configurable para-
meters for the data in house 1:

• Error bound=10%, Threshold = 0

• Error bound=0%, Threshold = 1000

• Error bound=10%, Threshold = 1000

An integration test with the following settings was performed for all houses:

• Error bound=0%, Threshold=0

After the REDD data was ingested the resulting segments were extracted from the database
and decompressed. The decompressed data points were written to a file. A script was then used
to verify that the data points from the original file and the recreated data points were within the
error bound and threshold from the corresponding test case settings. This script also verifies that
the timestamps of the reconstructed data points are still ordered correctly to ensure IrregularDB
upholds the condition for time series found in Definition 2.3.2.

5.2.3 Result of the integration test

The integration tests revealed errors in the initial implementation of the system. The oversights
found were:

• Missing handling of threshold affecting the reconstructed values (solution in Section 3.2.1)

• The need to handle out of order data points due to threshold (solution in Section 3.5)

• The necessity of throttling the amount of data received to avoid memory overflow (solution
in Section 4.2.4)

After having fixed the oversights all the integration test cases passed as all the data points could
be reconstructed correctly within their respective error bounds and thresholds.
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6 | Evaluation

IrregularDB will be tested and compared to ModelarDB and InfluxDB [19]. ModelarDB is an
obvious choice as IrregularDB is inspired by ModelarDB. As ModelarDB only supports ingestion
of regular data, ModelarDB will only be compared to the other systems on regular time series
data. InfluxDB is an opensource time series database that is widely popular [3]. InfluxDB
is offered as three products: InfluxDB enterprise, InfluxDB cloud, or InfluxDB OSS. For the
evaluation, InfluxDB OSS 2.2 is used as it is the newest opensource version available.

The systems are tested on two datasets: The REDD dataset and a TSBS [20] generated dataset,
these datasets will be described in Section 6.1. Then in Section 6.2 the hardware used and
settings of the three systems will be described. For each of the systems the following evaluation
metrics will be measured: storage usage in Section 6.3, ingestion speed in Section 6.4, and
query speed in Section 6.5.

6.1 Datasets

For evaluating the systems two different datasets are used: The REDD dataset that was described
in Section 5.2.1 and a second dataset generated using the data generator found in TSBS (Time
Series Benchmark Suite) [20]. This section will describe the two datasets as well as describe any
preprocessing that has been performed on the data before using it for the evaluation.

6.1.1 REDD

To be able to test all the systems two versions of the REDD dataset are created:

• Irregular version: the original timestamps are used. This is used to test IrregularDB vs.
InfluxDB. This dataset is also referred to as REDD-IR.

• Regular version: each timestamp is set to the previous timestamp + 1 second. This is
used to test IrregularDB vs. ModelarDB vs. InfluxDB. This dataset is also referred to as
REDD-R.

The need for the regular version of the dataset is because ModelarDB does not support irregular
data.

Extending the REDD dataset

As the original REDD dataset is relatively limited in size, both the regular and irregular versions
are extended. This means that copies of the houses from the REDD dataset were created.
However, to not simply have the same data, the values in the time series were multiplied by a
random factor between 0.1 and 10, which ensures that the generated data is different from the
original data. The factors used were rounded to three decimal places and all factors used were
unique meaning no factor was used twice. For example, we apply the following three factors to
house 1:
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• House_1_1.000x (the original values)

• House_1_2.000x (house 1 scaled so that each value vi = 2 · vi−orig)

• House_1_0.642x (house 1 scaled so that each value vi = 0.642 · vi−orig)

Some additional variance was then introduced by multiplying each value in each time series with
a random number between 0.9 and 1.1 after multiplying them with their scaling factor. This
means that for each time series its rows in the CSV-file would have their value multiplied by a
random variance-value, say 0.961 for the first row’s value, 1.031 for the second row’s value, etc.

Figure 6.1 illustrates the effect of this scaling and variance. Figure 6.1a shows a small sample
of the original data from house 1’s channel 3 and channel 4. Then in Figure 6.1b, the data has
been transformed by using a scaling factor of 2.048 and multiplying it with the random numbers
between 0.9 and 1.1.

(a) Original REDD data for house 1 (b) REDD data for house 1 scaled with 2.048

Figure 6.1: Example showing the effect of scaling and variance

The original REDD dataset, as discussed in Section 5.2.1, uses approximately 676 MB if stored
as raw data points (long + float). However, since the data is saved in CSV format encoded in
UTF-8 then the actual storage used on disk will be larger than the raw data. We, therefore,
decided to create raw data equal to around a third of the size of the disk to ensure all the data
could be contained on a single disk with size 480GB. This meant that we ended up multiplying
both the regular and irregular REDD datasets with 225 different factors as it gives a total of
12.677 billion data points resulting in 225 · 676MB = 152GB of raw data for both the regular
and irregular dataset. The upscaled REDD datasets each uses a total of 334GB when stored as
CSV data on disk. This meant that each data set could be stored separately on one of the disks
while still leaving space on the disk as a precaution.

6.1.2 TSBS

The TSBS dataset was generated by using the data generator from the Time Series Benchmark
Suite (TSBS) [20] project, which is an opensource project that provides a variety of tools for
testing time series DBMSs. The data generator was configured to use the ‘dev ops’ use case,
and generate data for 3 hosts, spanning 770 hours with a data point every 100 ms. The data
format of the generator was set to ‘influx’. This results in a total of 8.399 billion data points,
which is equal to 8.399 · 109data point · 12 byte

data point ≈ 100GB of raw data. Raw data means 4
bytes per value and 8 bytes per timestamp. For the TSBS dataset, a lower amount of raw data
is used than for REDD because the TSBS data contains some additional metadata in the form
of dimension data. The total amount of storage space used by the TSBS data, when stored as
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CSV data on disk is 325GB. Similar to the REDD datasets, empty space was left on the disk as
a precaution.

The TSBS data generator outputs generated data into a single file using the line protocol format
[21]. Each row includes a row type, a set of dimensions, a set of readings, and a timestamp.
Listing 6.1 shows an example of two rows in the generated data. The dimensions, readings,
and timestamp are separated by a space and the individual metrics are comma-separated.

1 cpu ,hostname=host_0 ,region=eu-west -1, datacenter=eu-west -1c,rack=87,
os=Ubuntu16 .04LTS ,arch=x64 ,team=NYC ,service =18, service_version =1,
service_environment=production usage_user =58i,usage_system =2i,
usage_idle =24i,usage_nice =61i,usage_iowait =22i,usage_irq =63i,
usage_softirq =6i,usage_steal =44i,usage_guest =80i,usage_guest_nice =38i
1451606400000000000

2 cpu ,hostname=host_1 ,/* ... */ usage_user =47i,usage_system =93i,
usage_idle =16i,usage_nice =23i,usage_iowait =29i, usage_irq =48i,
usage_softirq =5i,usage_steal =63i,usage_guest =17i,usage_guest_nice =52i
1451606400000000000

Listing 6.1: Example of two rows in generated data from TSBS data generator tool

The generated data measures different readings for hardware components on different hosts with
some additional dimensions. The dimensions can be simplified to a hardware component (CPU
in the example) and a hostname as these will still uniquely identify a reading as shown on line
2, where the irrelevant dimensions have been commented out.

IrregularDB and ModelarDB are not able to ingest this format. Therefore, a python script
was created that transforms the generated data into a format IrregularDB and ModelarDB can
ingest. The new structure is to split the file into multiple files by creating a file for each hardware
component, host, and measurement key. This would for example lead to the following files being
created:

• host0-cpu-usage_user.csv
• host0-cpu-usage_system.csv
• host0-cpu-usage_idle.csv
• ...

The created files contain a comma-separated timestamp and the measured value at this time for
measurement stored in the given file.

6.2 Evaluation setup

All of the evaluation is performed on the same server, which is provided by Aalborg University.
The server specs are the following: 1x AMD 7302p 16 cores @ 3GHz, 256 GB RAM (8x32), 8 x
480 GB SATA SSDs. All of the systems are run as single-node systems on the mentioned server
running Ubuntu 20.04.2. The following relevant programs were installed on the server: Java
18.0.1 and Postgres 12.9. All JARs executed for tests were run with additional heap memory
with the flag: -Xmx200g, meaning 200 GB of heap memory is allowed to be usable for the
executable JAR.
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6.2.1 IrregularDB setup

The fixed parameters set in IrregularDB are the following for all tests:

• Value model types: PMC-mean, Swing , and Gorilla

• Model picker: Brute force (based on Appendix D.2)

• Strict error bound: false

• Threshold: 500

• Length bound: 400 (based on Appendix D.1)

• Maximum Segment Length: 40,000

• Throttle buffer size: 10,000,000

• Throttle sleep time: 5,000

• Batch size: 10,000

• Working sets: 90

In the following the parameters whose values change based on the test case will be described.
When testing on regular data only the Regular timestamp model type is active as it should
be able to fit all the timestamps. However, when testing on irregular data all timestamp model
types are active.

For the REDD dataset doing ingestion, an error bound of εv = 10%. This error bound is
reasonable because the REDD data seems to follow an ON/OFF pattern as illustrated earlier in
Figure 6.1. This pattern means that even with a relatively high error bound the value model
types should still not be able to create linear or constant models that cross over these ON/OFF
states as the difference between the ON/OFF values are very large.

In TSBS however, the data does not follow this ON/OFF pattern. Instead, the data for example
follows a linear pattern as shown in Figure 6.2a or has small changes in value as seen in
Figure 6.2b.

(a) diskio - reads (b) CPU - usage_idle

Figure 6.2: TSBS data visualization of part of HOST 0’s data

The patterns shown in Figure 6.2 mean that the changes in values are not as drastic as in
REDD, where a device changes from ON to OFF. The error bound of εv = 10% might therefore
be too high as it could allow very long segments and might approximate away information that
is of interest to the users. Two different configurations are therefore created for TSBS one with
error bound εv = 1% to test a lower error bound and one with εv = 10% to allow for a more
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precise comparison with the REDD results. This also allows us to test the effect of different error
bounds.

Finally, all the datasets are ingested once with summary enabled and once without summary to
test the effect of including summary information. This in total results in the following 8 runs for
IrregularDB:

• Regular version of REDD w. summary

• Regular version of REDD no summary

• Irregular version of REDD w. summary

• Irregular version of REDD no summary

• TSBS with εv = 1% and w. summary

• TSBS with εv = 1% and no summary

• TSBS with εv = 10% and w. summary

• TSBS with εv = 10% and no summary

6.2.2 ModelarDB setup

ModelarDB is tested with the following parameters:

• Error bound: same as for IrregularDB

• Length bound: same as for IrregularDB

• Ingestors: same as amount of working sets for IrregularDB

• Value models: All available

• Database: PostgreSQL database

Since ModelarDB only supports regular time series it is only tested with the regular part of the
REDD dataset. For the TSBS dataset both an error bound of εv = 10% and εv = 1% is used to
test ModelarDB to be able to make a fair comparison to IrregularDB.

6.2.3 InfluxDB setup

InfluxDB is run with default parameters. Two different methods were used to ingest the data in
InfluxDB:

• For the REDD datasets, a custom Java client using the influxdb-java library [22] was
used to transform the CSV files of the REDD dataset into a format that InfluxDB could
understand.

• For the TSBS dataset, the InfluxDB2 Client 2.3 [23] was used since the data generated for
the TSBS dataset was already in a format InfluxDB could understand.

The TSBS dataset was also ingested using our Java client to test if these different ingestion
methods had an effect. This test showed that ingesting the TSBS data using our Java client was
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34.14% slower than when using the InfluxDB2 Client. This suggests that the Java client is likely
to bottleneck the ingestion speed of InfluxDB for the REDD datasets.

Due to time constraints, it was chosen not to try and remove this java client bottleneck from the
REDD ingestion speed test. As it is highly unlikely that InfluxDB would achieve better ingestion
speed results than the other systems even if this bottleneck was removed. Because, as shown
later in Section 6.4, IrregularDB ingests the REDD datasets 16.69 to 19.98 times faster than
InfluxDB.

6.2.4 Presentation of results

In the following sections, bar charts show the results of the evaluation of the different systems.
In these bar charts the following abbreviations will be used:

• Datasets:

◦ The regular version of the REDD data set (REDD-R)
◦ The irregular version of the REDD data set (REDD-IR)
◦ TSBS data when ingested with a 1% error bound (TSBS-1)
◦ TSBS data when ingested with a 10% error bound (TSBS-10)

• Systems:

◦ IrregularDB without summary information (IRDB-no-sum)
◦ IrregularDB with summary information (IRDB-w-sum)
◦ InfluxDB (Influx)
◦ ModelarDB (MDB)

Note that for TSBS-1 and TSBS-10 duplicate results will be used for InfluxDB as it has no
concept of error bounds.

6.3 Storage usage

To compare the storage usage of the systems we need to first retrieve the storage usage values.
For IrregularDB and ModelarDB the storage usage can be read from the PostgreSQL database.
PostgreSQL supports the command ‘pg_database_size()’, which is used to measure the size of a
database.

The size of the InfluxDB database is measured by seeing how much space the InfluxDB data
folder uses on the disk.

6.3.1 Results

To be able to compare the different systems their compression ratios are calculated. Their
compression ratios are calculated by dividing the size of the raw data (i.e. 152GB for REDD,
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and 100GB for TSBS) by the measured storage usage. Compression ratios make it easier to
compare results across the different data sets. Figure 6.3 shows the calculated compression
ratios for each of the systems - higher values mean better compression.
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(b) TSBS storage results

Figure 6.3: Storage usage results

The observations described in the following paragraphs can be derived from the storage usage
results.

Slightly worse compression with summary information. IRDB-w-sum has a slightly worse
compression ratio than IRDB-no-sum in all four test cases which is expected as two additional
floats have to be stored for each segment. In the following paragraphs, the other systems will
only be compared to IRDB-w-sum since the differences between IRDB-w-sum and IRDB-no-sum
are insignificant and IRDB-w-sum performs the worst of the two.

Similar results for IrregularDB and ModelarDB. This is as expected, as both systems use
similar model-based compression methods. IRDB-w-sum performs slightly better than MDB in
all the test cases, where it is possible to test both systems. There can be various reasons for the
small increase in compression ratio. The following reasons have been identified:

• Optimized Gorilla value model type: The Gorilla value model type, as explained
in Section 3.2, was updated to be better suited for float values in IrregularDB. Similar
updates are not done in ModelarDB.

• Segment table optimizations: IrregularDB as explained in Section 4.5 stores differ-
ences for the end time of a segment. This allows IrregularDB to use integers for end time
instead of the longs used in ModelarDB saving 4 bytes per segment. In addition, Irregul-
arDB has also done column tetris, which is not done in ModelarDB saving an additional 4
bytes per segment.

IrregularDB gains a significant compression advantage when compressing regular
data. This can be derived from the fact that IRDB-w-sum for REDD-R compresses 81.7%
better than Influx. Whereas for REDD-IR, IRDB-w-sum has a 33.1% better compression ratio
than Influx. This can be contributed to fact that IrregularDB supports the Regular timestamp
model type, which is very storage efficient.
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A higher error bound leads to better compression. This can be seen in the measured
compression ratios. As an example, IRDB-w-sum has a compression ratio of 29.735 and 40.024
for TSBS-1 and TSBS-10 respectively. These compression ratios show an improvement of 34.6%
when the error bound is increased from 1% to 10%. Similar results can be observed for IRDB-
no-sum and MDB. The reason behind this effect is that it allows the systems to create longer
Swing and PMC-mean value models.

All systems have better compression ratios on TSBS data. Even though both TSBS-10
and REDD-R are regular and ingested with a 10% error bound then all three systems achieve
significantly better compression ratios for the TSBS dataset than for REDD-R. For example,
IRDB-w-sum has a 728.5% higher compression ratio for TSBS-10 than for REDD-R. The higher
compression ratio is due to the value patterns present in the TSBS dataset being better suited
for the utilized value model types as a large portion of the time series in TSBS follow a linear or
constant pattern. In addition, no variance has been introduced in the TSBS dataset.

6.3.2 Summary

Overall IrregularDB achieves the best compression ratios based on the following observations:

• IRDB-no-sum achieves:

◦ 1.337 to 2.687 times better compression compared to InfluxDB.

◦ 1.055 to 1.221 times better compression compared to ModelarDB.

• IRDB-w-sum achieves:

◦ 1.331 to 2.604 times better compression compared to InfluxDB

◦ 1.031 to 1.184 times better compression compared to ModelarDB

6.4 Ingestion speed

The current system time in milliseconds is measured before starting to ingest the data and after
finishing ingesting the data to measure ingestion speed for the different systems. The difference
between these two values is then the ingestion time. The ingestion time of each system is
measured three times and the averages are used when comparing the systems to reduce variance.

6.4.1 Results

Figure 6.4 shows the ingestion speed results achieved for the three systems. The ingestion times
have been converted to millions of data points ingested per second - higher values are therefore
better. Using this unit allows for a more convenient comparison across the two datasets.
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(b) TSBS ingestion results

Figure 6.4: Ingestion speed results

The observations described in the following paragraphs can be derived from the ingestion speed
results.

InfluxDB is significantly slower than the other systems. InfluxDB has an ingestion speed
that is significantly lower than the other systems in all test cases. The primary reason for this is
that the OSS version of InfluxDB used in this evaluation according to InfluxDB’s documentation
is limited to around 750,000 field writes per second [24]. InfluxDB is therefore not considered in
the following paragraphs when discussing ingestion speed.

A lower error bound gives a higher ingestion speed for TSBS. It can be observed that
both ModelarDB and IrregularDB ingest TSBS-1 faster than TSBS-10. The difference between
these two setups is that for TSBS-1 both ModelarDB and IrregularDB usually fall back on the
Gorilla value model type, which always reaches the length bound. However, for TSBS-10 then
Swing and PMC-mean can fit more data points, which can lead to them being selected over
Gorilla even though they are still shorter than the length bound. Selecting shorter value models
leads to shorter segments, which lowers the ingestion speed. Why shorter segments can lower
the ingestion speed will be explained in Section 6.4.2.

To confirm that shorter segments were the cause of lower ingestion speed the percentage of
segments that are short segments was calculated for TSBS-1 TSBS-10 for all three systems as
shown in Table 6.1. We define a short segment as a segment, which has a length smaller than
half of the length bound i.e. less than 400

2 = 200.

TSBS-1 TSBS-10
IRDB-no-sum 0.21 % 76.00 %
IRDB-w-sum 0.08 % 72.00 %
MDB 0.19 % 76.27 %

Table 6.1: Percentage of segments that are short segments (i.e. shorter than 200 data points)

As can be seen from the table a significantly higher percentage of short segments is created
for TSBS-10 than for TSBS-1. This means that TSBS-10 is more greatly affected by the prob-
lem described in Section 6.4.2, thereby leading to TSBS-1 being ingested faster. However,
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IrregularDB still achieves higher compression ratio for TSBS-10 than for TSBS-1.

Summary information affects ingestion speed. Summary information effects ingestion
speed as can be seen from the results it can both help speed up or slow down the ingestion speed.
There are two primary reasons for this:

• Recomputing values: if summary information is enabled then created value models need
to be decompressed to be able to identify the minimum and maximum value of a segment.
This decompression takes time, which increases the ingestion time.

• Summary leads to fewer short segments: Summary information adds additional over-
head to each segment. This overhead affects shorter models more than long models, as they
represent fewer data points meaning their bytes per data point value are greater affected by
additional overhead. The bytes per data point values, as stated earlier, are used to select
models. This means that long models are more likely to be selected, which is a benefit for
ingestion speed. This is a benefit because the system is less likely to run into the problem
of short segments lowering ingestion speed discussed in Section 6.4.2.

Table 6.2 is an extension of Table 6.1 that also shows the percentage of short segments for
REDD-R and REDD-IR. However, the data for MDB has been dropped as it has no concept of
summary information.

REDD-R REDD-IR TSBS-1 TSBS-10
IRDB-no-sum 21.36 % 7.97 % 0.21 % 76.00 %
IRDB-w-sum 14.13 % 4.92 % 0.08 % 72.00 %

Table 6.2: Extension of Table 6.1 with percentage short segments for REDD-R and REDD-IR

As seen in Table 6.2 for IRDB-no-sum and IRDB-w-sum there is a difference ranging from 3.05
to 7.23 percent points in the number of short segments for REDD-R, REDD-IR, and TSBS-10.
Having this many fewer short segments outweighs the additional cost of decompressing the values
in these three cases. This leads to IRDB-w-sum ingesting the data faster as seen in Figure 6.4.
However, for TSBS-1 the difference in the number of short segments is only 0.13 percent point,
which means that here the benefit of having fewer short segments is smaller than for the other
cases, which is also the reason why IRDB-w-sum is slower than IRDB-no-sum for TSBS-1.

6.4.2 Short segments slow ingestion

The problem with creating short segments is that it can lead to recomputations. This occurs
because even though a short model, e.g. with a length of 1

3 of the length bound, is selected for
the segment then computations are still done to create models with a length equal to the length
bound for the model types that are length-bounded e.g the Gorilla value model type. Figure 6.5
has been created to exemplify this. To keep the example short only the PMC-mean and Gorilla
value model types are used with a length bound of L = 9.
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(a) Calculations for value models of the first segment

(b) Overlapping calculations for Gorilla

Figure 6.5: Example of recomputations done when selecting models

In Figure 6.5a we can see how after the third data point the PMC-mean value model types can
no longer fit the subsequent data points. However, computations continue for Gorilla until the
length bound L = 9 is reached. After reaching this length bound then one of the two value models
has to be selected. If it is assumed that PMC-mean’s value model has the best compression ratio
then it is selected and the three data points represented by it are removed from the buffer.

This leads to the case shown in Figure 6.5b, where we can now start creating a value model for
the following segment. The problem is that the Gorilla value model type ingests the data points
d4 to d9 multiple times. These recomputations slow down the ingestion speed of the system.
Having fewer short segments reduce this effect.

6.4.3 Summary

IrregularDB achieves the best ingestion speed on both the regular and irregular versions of
the REDD dataset. However, on the TSBS dataset ModelarDB is the fastest system, which is
different than for the REDD dataset. In total IrregularDB achieves the following:

• IRDB-no-sum achieves:

◦ 16.69 to 27.39 times faster ingestion compared to InfluxDB.

◦ 0.61 to 1.749 times the ingestion speed of ModelarDB.

• IRDB-w-sum achieves:

◦ 16.15 to 26.34 times faster ingestion compared to InfluxDB.

◦ 0.63 to 1.776 times the ingestion speed of ModelarDB.
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The identified reason behind why ModelarDB outperforms IrregularDB on the TSBS dataset
is that the time series in the TSBS dataset follows linear patterns. These linear patterns help
ModelarDB beat IrregularDB because ModelarDB has no max segment length meaning that one
to two segments are enough to represent many of the time series in TSBS. Whereas, IrregularDB
enforces a max segment length, which leads to IrregularDB generating and sending more segments
to the database than ModelarDB.

6.5 Query Speed

Seven unique queries are tested to evaluate the query performance of the different systems. The
query patterns used for testing are described in Section 6.5.1. Every query is executed five
times per system, where the highest and lowest results for each query are discarded to eliminate
outliers. Then, the average of the remaining three results is presented in Section 6.5.2.

6.5.1 Query Patterns

The query patterns shown in Table 6.3 are used to compare the query speed of the different
systems. The first four query patterns are inspired by the query patterns used in TSBS [20],
which is a popular benchmark suite for time series databases [9]. Query patterns no. 5 and 6 are
created to test the time point and value point query patterns from the four fundamental patterns
discussed in Section 4.5.2. There is no need to make an explicit query for the time range query
pattern as it is tested in query pattern no. 1-2. The value range queries are tested using query
pattern no. 4 as this is a value range from the high value to Double.MAX_VALUE. The last query
pattern is for fetching an entire time series which could be useful for data visualization tools.
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No. Query
Name

Description Reason for testing

1 1-12 Simple aggregate (AVG) for 1 time
series every 5 mins over a time span
of 12 hours

Tests query speed for a single time
series. This is also a time range
query.

2 5-12 Simple aggregate (MAX) for 5 time
series every 5 mins over a time span
of 12 hours

Tests time range querying and ag-
gregates across multiple time series

3 Last-point Get the last data point of each time
series

Tests lookup speed for newest
readings from many sources (use-
ful in system monitoring)

4 High-value Get all data points with a value
above a threshold for a single time
series

Tests the systems’ ability to filter
on data point values

5 Value-
point

All data points with a specified
value for a time series

Tests performance for the value
point query pattern

6 Timestamp-
point

All data points with a specified
timestamp for a time series

Tests performance for the time
point query pattern

7 All All data points for one time series Tests query speed for an entire
time series

Table 6.3: Query patterns

6.5.2 Results

Figure 6.6 is the legend data for the charts shown in Figure 6.7 and Figure 6.8. Figure 6.7
shows all query results on the REDD dataset across all systems. Each chart represents results
for a query from Table 6.3 and shows the query time in milliseconds for each system tested.
Figure 6.8 is the corresponding chart for the TSBS dataset. In both Figure 6.7 and Fig-
ure 6.8, lower values are better. Information about which specific time series from the datasets
were used can be found on IrregularDB’s GitHub page 1. Note that ModelarDB does not support
Last-point queries and the irregular dataset.

Figure 6.6: Legend info for bar charts

1https://github.com/IrregularDB/Scripts
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REDD query results
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(f) Timestamp-point
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Figure 6.7: Query speed results for both the regular and irregular REDD dataset

IrregularDB performs worse than the other systems overall across all queries for
both REDD datasets. This is to be expected as the focus has not been put on improving
query speed in IrregularDB and is left as future work as discussed in Section 7.4. Whereas,
both InfluxDB and ModelarDB have already implemented improved query support, which helps
speed-up their queries.

Summary information leads to speed-up in relevant queries. IrregularDB only provides
summary information in form of min and max values in an attempt to demonstrate the speedup
that can be achieved. The speedup of the summary information can be seen for the high-value
and value-point queries in Figure 6.7d and Figure 6.7e. Here, the following can be observed:

• For the high-value query for REDD-IR, the query response time was 6325 ms and 490 ms
for IRDB-no-sum and IRDB-w-sum respectively. This means IrregularDB achieves a query
speedup factor of 12.91 by utilizing summary information.

• For the value-point query for REDD-IR, the query response time was 3319 ms and 560 ms
for IRDB-no-sum and IRDB-w-sum respectively. This means IrregularDB achieves a query
speedup factor of 5.93 by utilizing summary information.

Similar results can be observed for the regular version of the data showing that summary in-
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formation can significantly improve query speed without sacrificing much storage space and even
increasing ingestion time in certain cases. The summary information also does not seem to slow
down any of the other queries.

IrregularDB is slower to decompress segments than ModelarDB. In the all data points
query pattern, all the segments in the time series need to be decompressed. This makes seg-
ment decompression speed the primary factor that affects the query speed for IrregularDB and
ModelarDB for this query pattern. As shown in Figure 6.7g IRDB-w-sum is 6.8 times slower
than ModelarDB for this query pattern. This suggests that IrregularDB is significantly slower
at decompressing segments than ModelarDB.

TSBS query results
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Figure 6.8: Query speed results for the TSBS dataset

The TSBS dataset shows different results for query speeds compared to the REDD datasets in
some cases. The primary differences will be discussed in the following paragraphs.

Max segment length affects certain queries. In the REDD dataset ModelarDB outper-
formed IrregularDB dominantly in the 1-12 query and timestamp point query. However, as seen
in Figure 6.8a, ModelarDB performs similarly to IrregularDB for the 1-12 query on the TSBS
dataset. Moreover, IrregularDB performs better than ModelarDB on the timestamp point query
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for the TSBS data set as seen in Figure 6.8f. This is due to the time series queried for the 1-12
and timestamp point query following a linear pattern meaning that ModelarDB can represent
them using only a single segment. This slows ModelarDB down significantly as it then has to
decompress the entire time series to answer the queries. IrregularDB does not run into this
problem as it has implemented a max segment length allowing it to only decompress the relevant
data.

Notice that ModelarDB achieves a significantly lower query duration than IrregularDB on the
5-12 query, as seen in Figure 6.8b, even though both systems achieved similar results for the
1-12 query pattern. The reason for this is that the time series used in the 5-12 query does not
follow a linear pattern. Therefore, the max segment length is irrelevant in the 5-12 query test
case.

InfluxDB results for the 5-12 query pattern are heavily impacted by source data
format. The way the TSBS data was ingested with InfluxDB made it necessary to introduce an
extra map operation in the 5-12 query that converts each integer value to a float. Without the
mapping operation, the query would fail. To our knowledge, this is the way to query the Influx
database correctly. The results are representative of the real response time needed to answer
an aggregate query across multiple time series when the source data is ingested as integers in
InfluxDB. However, it is worth mentioning that better query speeds are expected if the source
data was ingested as floats.

Summary information can lead to IRDB-w-sum outperforming the other systems.
As was the case for the REDD datasets, the added summary information lead to a significant
speed up for high-value and value-point queries as shown in Figure 6.8d and Figure 6.8d.
For the high-value query pattern, IRDB-w-sum outperforms InfluxDB but not ModelarDB. The
summary information is especially helpful for the value-point query, where IRDB-w-sum performs
better than the other systems.

6.5.3 Summary

The results show that IrregularDB achieves worse query speeds for most queries compared to
the other systems. The primary reason behind this is IrregularDB’s decompress segment func-
tion being slow. IrregularDB is currently using a proof-of-concept segment decompress UDF
implemented in Java as described in Section 4.5.2. This leads to IrregularDB being around 6
times slower at decompressing and returning an entire time series than ModelarDB, as seen in
Figure 6.7g and Figure 6.8g.

The results also show that summary information (max and min for a segment) offers a signific-
ant increase in query speed for the relevant query patterns (high-value and value-point). It is
therefore worth it to enable summary information compared to the relatively small trade-off in
storage space.
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7 | Future work

This chapter will cover the main future work that is left for IrregularDB .

7.1 Prettier querying

IrregularDB is queried through PostgreSQL. This leads to the syntax for the decompress function
implemented being unintuitive, as users have to wrap the call in parenthesis and then say .* on
it as illustrated in Listing 7.1.

1 SELECT (decompressSegment(s)).*
2 FROM segment s
3 WHERE s.time_series_id = 1

Listing 7.1: Example query using decompress segment

Another problem with having this decompress function is that the users need a deep understand-
ing of the internals of IrregularDB to efficiently and correctly query the data. The reason for
this is that the users need to understand how to efficiently filter out irrelevant segments so that
they don’t waste time decompressing unnecessary segments.

Instead, IrregularDB could provide a data point view to make querying easier and prettier for
the users. This would also allow the users to disregard the segment table completely and query
the data as if it was stored plainly as normal data points.

A good middle ground between the data point view and decompress segment function is to
implement SQL UDFs for common query patterns, as these can help the user query the system.
Support for some of these has already been implemented as discussed in Section 4.5.2. However,
supporting additional UDFs such as lastpoint(), etc. could help further improve the usability of
IrregularDB.

7.2 Bucket sizes

The bucket sizes for the bucket encoding in Section 3.1.3 were estimates for what were believed
to be desirable bucket sizes. Further tests and analyses could be performed to optimize the
bucket sizes. Selecting optimized bucket sizes could lead to better compression. The Gorilla [8]
paper performed timestamp distribution analysis of their data domain to select fitting bucket
sizes. A similar analysis could be done for data to be ingested in IrregularDB.

The bucket sizes are also subjects to become user-configurable parameters since the bucket sizes
are likely to depend on the data domain.
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7.3 Parameter tuning

Some of the parameters used for evaluating IrregularDB were decided based on some initial
testing. For example, testing was done for the length bound and model picker as described in
Appendix D. However, most of the configurable parameters were set to values thought to be
good for the current data. A similar analysis could be done for the threshold, error bound,
batch size etc. However, this parameter tuning was left as future work since there exist endless
combinations of parameters and the ideal parameters depend on the ingested data.

7.4 Faster query times

Designing, implementing, and testing a full time series DBMS is not a trivial task and takes time.
Early on the primary focus was, therefore, on supporting both regular and irregular time series
data and achieving relatively good ingestion speeds and compression ratios. Query speed was
therefore not prioritized as highly, which is also why IrregularDB achieved worse query speed for
most of the queries tested in Section 6.5.

The central decompress UDF function implemented in Java seems to be a bottleneck in Irregul-
arDB. This can be observed from the fact that IrregularDB is around 6 times slower to decompress
an entire time series than ModelarDB as discussed in Section 6.5.3. A way to alleviate the
bottleneck is by implementing this central decompress function in C. A faster execution time is
expected from a C implementation due to the PL/Java integration with PostgreSQL having a
significant overhead resulting in all queries being slower than necessary.

One of the few improvements made to try and speed up query time was to implement simple min
and max summary information. As discussed in Section 6.5.3 this kind of summary information
can speed up certain queries. To further speed up IrregularDB an idea could be to further extend
the system with additional helpful summary information to offer better query times in certain
cases. An example of this could be to include information about the newest data point on the
time series table in order to improve the ‘Last-point’ query performance.

7.5 Not having to decompress models during ingestion

In the IrregularDB system’s implementation, the models are decompressed during ingestion after
models have been found for a segment. The full decompression is required to find the actual
end time of the segment as this can be different from the original time series interval after
applying the threshold. The full decompression is also used for finding summary information for
segments when summary information is activated.

A better implementation could be to let the model classes keep track of the summary information
and compressed end times. Then, the information can be extracted from the model classes instead
of performing a costly decompress operation on segments.
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7.6 Breaking threshold

Recall that the chosen solution used to handle overlapping segments discussed in Section 3.5.2
can in certain cases lead to IrregularDB breaking the threshold if a threshold higher than the
minimum difference between two timestamps is used.

A possible solution to this problem is to make the timestamp model types aware that the
timestamps have been moved. This could for example be done by providing the timestamp model
types with both the original timestamp and the moved timestamp during ingestion. This would
allow the timestamp model types to check that their approximations are within the allowed
threshold compared to the original timestamp.
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8 | Conclusion

The vast amount of sensor data produced for different purposes poses challenges in terms of
storage and analysis. Different Time Series Management Systems (TSMSs) have already been
developed, with varying success depending on the employed techniques, to offer acceptable com-
pression and analytical capabilities. One such system that has been a source of inspiration for
this project is the time series DBMS ModelarDB . ModelarDB constrains itself to regular time
series data and then uses multi-value-model-based compression to achieve a high level of com-
pression. This constraint of ModelarDB only supporting regular time series data leads to the
following problem definition:

How should a time series management system be made such that it supports effective compres-
sion and efficient ingestion using multi-model-based compression of values for both regular and
irregular time series?

To answer this problem definition a new time series DBMS, IrregularDB was designed, imple-
mented, and tested. A novel model-based approach named Multi-Timestamp Multi-Value Model
Compression (MTVMC) was proposed that was inspired by multi-value-model-based compres-
sion from ModelarDB and multi-timestamp-model-based compression from Informix [2]. The
idea for IrregularDB was to use separate model types to compress the timestamps and values of
the time series data for better compression. Using both timestamp model types and value
model types allow for an elegant solution to handle both regular, and irregular time series
data.

Evaluation of the system was performed on three parameters: Storage usage, ingestion speed,
and query times. The storage usage tests showed that IrregularDB achieves ∼1.03 to ∼1.22 times
better compression rations than ModelarDB on regular time series data and ∼1.33 to ∼2.69 times
better compression ratios than InfluxDB .

For ingestion speed, the numbers showed that when comparing IrregularDB to ModelarDB then
IrregularDB achieved ∼0.61 to ∼1.78 times ModelarDB’s ingestion speed depending on the value
patterns present in the data. When comparing IrregularDB to InfluxDB then IrregularDB was
between ∼16.15 to ∼27.39 times faster.

When it comes to query performance IrregularDB has the slowest query time for most of the
queries. The bad performance is due to IrregularDB using a proof-of-concept decompression
method implemented in PL/Java, which makes IrregularDB’s decompression significantly slower
than ModelarDB’s decompression. A proof-of-concept decompression method was used since
querying was not the primary focus of IrregularDB. Future work should therefore focus on im-
proving the query performance by improving the custom user-defined function for decompressing
segments by moving the implementation from Java to C. However, contrary to ModelarDB,
IrregularDB offers full SQL query support and can handle irregular time series.

This project, therefore, fulfills the problem definition it sets out to solve as it succeeded in
creating a TSMS that can manage both regular and irregular time series data while achieving
effective compression and efficient ingestion by utilizing multi-model-based compression for the
values.
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Glossary

DeltaDelta One of the timestamp model types implemented in IrregularDB. Focuses on hand-
ling all timestamp patterns. Similar to Gorillas timestamp model type. 14, 19, 20, 22,
27

Fallback For both timestamp and value model types a fallback model type is added IrregularDB.
The purpose of this model is to handle singular data points. 14, 22

Gorilla One of the value model types implemented in IrregularDB. Focuses on handling arbit-
rary value patterns. 20, 22, 24, 25, 26, 39, 52, 55, 57, 58, 59

InfluxDB A time series DBMS developed by InfluxData written in Go. They have both an open
source and enterprise version. Is a popular system and other systems are often comared to
it. i, ii, 49, 53, 54, 56, 57, 59, 62, 64, 68

IrregularDB A time series DBMS developed by the authors. Can be used for both regular and
irregular time series. It utilizes our novel approach Multi-Timestamp Multi-Value Model
Compression (MTVMC) to do model-based compression. i, ii, iii, 1, 2, 4, 5, 7, 10, 11, 12,
13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 42,
43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 76, 79, 80, 81, 83, 85

ModelarDB An open-source Time Series Management System that uses model-based compres-
sion to reduce the amount of storage needed to store sensor data in the form of time series.
i, ii, iii, 1, 2, 7, 8, 13, 15, 44, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 68

model-based compression A compression method used to compress time series data by rep-
resenting their data using models instead of storing the raw data points. i, 2, 3, 4, 5, 7, 8,
9, 30, 31, 35, 36, 39, 55, 69, 70

multi-timestamp-model-based compression A sub set of multi-model-based compression,
which focuses on utilizing multiple different timestamp model types to achieve better com-
pression. i, 4, 10, 11, 12, 13, 14, 68

multi-value-model-based compression A sub set of multi-model-based compression, which
focuses on utilizing multiple different value model types to achieve better compression. i,
4, 7, 8, 11, 12, 13, 20, 68

multi-model-based compression An extension of model-based compression, where instead of
using only a single model type to compress time series data multiple different models are
considered for a time series interval, and the model offering the best compression is used.
i, 1, 4, 7, 68, 69

PMC-mean One of the value model types implemented in IrregularDB. Focuses on creating
constant mathematical functions.. 20, 23, 25, 26, 52, 56, 57, 58, 59

Regular One of the timestamp model types implemented in IrregularDB. Focuses on regular
and almost regular timestamp patterns. 14, 15, 16, 17, 18, 22, 23, 26, 27, 28, 52, 55
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SIdiff One of the timestamp model types implemented in IrregularDB. Focuses on handling all
timestamp patterns. 14, 17, 18, 20, 22, 27

Swing One of the value model types implemented in IrregularDB. Focuses on creating linear
mathematical functions. 20, 21, 23, 25, 26, 47, 48, 52, 56, 57

timestamp-model-based compression A sub set of model-based compression, which is the
part focused on compressing timestamp of a time series by using models. i, 3, 6

value-model-based compression A sub set of model-based compression, which is the part
focused on compressing values of a time series by using models. i, 3, 6, 10
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Acronyms

Influx InfluxDB. 54, 55

IRDB-w-sum IrregularDB with summary information. 54, 55, 56, 57, 58, 59, 62, 63, 64

IRDB-no-sum IrregularDB without summary information. 54, 55, 56, 57, 58, 59, 62

MDB ModelarDB. 54, 55, 56, 57, 58

MGC Model-based Group Compression. 7

MMGC Multi-Model Group Compression. 7, 8

MTVMC Multi-Timestamp Multi-Value Model Compression. i, ii, 11, 13, 30, 68, 69

REDD-R The regular version of the REDD data set. 49, 54, 55, 56, 58

REDD-IR The irregular version of the REDD data set. 49, 54, 55, 58, 62

TSBS-10 TSBS data when ingested with a 10% error bound. 54, 56, 57, 58

TSBS-1 TSBS data when ingested with a 1% error bound. 54, 56, 57, 58

TSMS Time Series Management System. 1, 68
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A | Gorilla Time Stamp Model Type

This appendix describes the timestamp model type used in the Gorilla paper [8] and Gorilla
in general. Gorilla’s value model type is presented in Appendix B.3. This appendix is taken
from our previous report [25] and has have been slightly modified to better follow the definitions
introduced in Section 2.3.

For compression of the timestamps, it was recognized that data often arrive at a relatively stable
interval [8]. Therefore delta-of-delta time is used. Delta-of-delta time is as the name implies the
difference in the difference of timestamps. E.g. if there are 60 seconds between each timestamp
then the delta time is 60 for all of the timestamps. Then, because the delta time is the same
between each data point the delta-of-delta time is 0 as there is no difference between the two
delta timestamps. Delta-of-delta time is thus a good idea because timestamps often arrive with
a fixed time interval.

In Listing A.1 the algorithm for performing gorilla compression with a variable-length encoding
on timestamps is described. In Listing A.1 it can be seen that the timestamp is stored to a
precision of within two hours of the first timestamp in the header of the chain, and the delta
from this time to the actual time is stored as 14 bits for the first timestamp. From here, the
range of the ∆-of-∆ time defines which case from the algorithm is applied.

1. The block header stores the starting timestamp, t−1, which is aligned to a two−hour
window; the first timestamp, t0, in the block is stored as a delta from t−1 in 14 bits.

2. For subsequent timestamps, tn:
(a) Calculate the delta of delta:
D = (tn − tn−1)− (tn−1 − tn−2)

(b) If D is zero, then store a single ’0’ bit
(c) If D is between [−63, 64], store ’10’ followed by the value D (7 bits)
(d) If D is between [−255, 256], store ’110’ followed by the value D (9 bits)
(e) If D is between [−2047, 2048], store ’1110’ followed by the value D (12 bits)
(f) Otherwise, store ’1111’ followed by D using 32 bits

Listing A.1: An algorithm describing gorilla timestamp compression taken from [8]

Table A.1 and Table A.2 give an example of how the timestamps are encoded with the above
algorithm. Table A.1 is the block header. The specific case applied from the algorithm in
Listing A.1 can be seen in the "Case" column. In total (though excluding the header data)
these 4 · 64-bit timestamps are stored in 40 bits (the encoding bits: 7 as well as the value bits:
33), which is a significant compression ratio.

Time Binary
0 0000 0000 0000 0000

Table A.1: Block header for Table A.2
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Timestamp ∆-time ∆-of-∆ time Encoding bits Value bits Case
0 0 - - 00 0000 0000 0000 1
60 60 60 - 0 = 60 10 011 1100 2C
120 60 60 - 60 = 0 0 - 2B
517 397 397 - 60 = 337 1110 0001 0101 0001 2E

Table A.2: Example values for timestamp compression
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B | Value model types

The following sections will describe the theory behind the value model types used in Irregul-
arDB . Their descriptions are taken from our previous report [25] and been slightly modified to
better follow the definitions introduced in Section 2.3.

B.1 PMC-mean Value Model Type

The PMC(Poor man’s compression)-mean value model type [26] is a simple model type that
constructs value models that are the average of a set of points [26]. Since PMC-mean represents
the average then it is a value model type that outputs constant value models. New points are
continuously sampled until the mean of all the current points is more than an error distance εv
away from either the observed minimum or maximum point, and thus it is an online algorithm
[26].

Example

As a simple example consider the following time series interval:

TSI = ⟨(100ms, 3.33), (200ms, 3.31), (300ms, 3.41), (400ms, 3.35), (500ms, 3.28), (600ms, 5.30)⟩

Say that the user defines an error bound εv = 5%. When trying to construct a value model mv

for TSI we calculate the average value and calculate the error for the min and max point in
TSI. In case both are within the error bound of εv the current data point can be appended to
mv.

To give an example of applying this value model type, the error for the first five data points
is calculated to see if a value model can be constructed for these. To do this first the average,
min, and max values are calculated: avg = 3.33+3.31+3.41+3.35+3.28

5 ≃ 3.34, min = 3.28, and
max = 3.41.

The errors for the min and max points are then:

errormin =
∣∣avg−min

min

∣∣ · 100% =
∣∣ 3.34−3.28

3.28

∣∣ · 100% ≃ 1.83%

errormax =
∣∣avg−max

max

∣∣ · 100% =
∣∣ 3.34−3.41

3.41

∣∣ · 100% ≃ 2.05%

Since the largest error is 2.05% for the max point we can construct a value model mv for the
first 5 data points within the error bound ϵ = 5%.

When including the sixth data point at time 600ms we get the following average, min, and max
values: avg600 = 3.33+3.31+3.41+3.35+3.28+5.30

6 ≃ 3.66, min600 = 3.28, and max600 = 5.30.

This gives the following error values:

errormin−600 =
∣∣ 3.66−3.28

3.28

∣∣ · 100% ≃ 11.59%
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errormax−600 =
∣∣ 3.66−5.30

5.30

∣∣ · 100% ≃ 30.94%

Since the error is larger than εv = 5% the data point at time 600ms cannot be included in the
value model constructed by PMC-mean for TSI and PMC-mean can therefore only construct a
value model for the first five data points.
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B.2 Swing Filter Value Model Type

Swing Filter [27] is a filtering technique used to filter out data points that can be represented by
a line segment within an error bound. Swing maintains a set of possible line segments for each
filtering interval. The filtering interval is defined as being representable by a line segment within
an error bound εv, such that whenever a new data point cannot be represented within the error
bound, the line segment ends and a new interval is started. A filtering interval consists of two
points (recordings) that together make a line. The last recording of an interval becomes the first
recording of the next interval, meaning connected line segments are obtained.

Swing supports data in any number of dimensions, however, for the remainder of this sec-
tion, we assume 1-dimensional data (i.e. d = 1) so our data could for example look like:
⟨(0ms, 0.0), (100ms, 1.0), (200ms, 2.0), (300ms, 0.0)⟩. As data points are appended, Swing checks
whether the value falls within the error bound of the upper and lower bounds. If it does the
data point is filtered out and no recording is made. We say that the current bounds represent
the data point within the error bound.

1 previous_recordings ← []
2 (t0, v0) ← getNext()
3 (t1, v1) ← getNext()
4 R0 ← (t0, v0) // Make a recording
5 previous_recordings.add(R0)
6 // Start a new filtering interval
7 lower1 ← a line passing through: R0 and (t1, v1 − εv)
8 upper1 ← a line passing through: R0 and (t1, v1 + εv)
9 k ← 1

10 while TRUE do
11 (tnext, vnext) ← getNext()
12 if (tnext, vnext) is NULL or (vnext < lowerk(tnext)− εv) or (vnext > upperk(tnext) + εv)
13 // The point is null or outside allowed deviation
14 // Make a new recording
15 Rk ← (tk, vk), such that tk ← tnext−1, lowerk(tk) < vk < upperk(tk) and vk minimize Ek.
16 previous_recordings.add(Rk)
17 if (tnext, vnext) is NULL
18 return previous_recordings
19 // Start a new filtering interval
20 lower(k+1) ← a line passing through: Rk and (tnext, vnext − εv)
21 upper(k+1) ← a line passing through: Rk and (tnext, vnext + εv)
22 k ← k + 1
23 else // The point was inside allowed deviation
24 if vnext > lowerk(tnext) + εv
25 Swing lowerk up such that it passes through Rk−1 and (tnext, vnext − εv)
26 if vnext < upperk(tnext)− ϵ
27 Swing upperk down such that it passes through Rk−1 and (tnext, vnext + εv)

Listing B.1: Swing Filter Algorithm, inspired by [27]

The algorithm for the Swing filter method can be seen in Listing B.1. getNext() reads the next
data point and returns null if none exists. In lines 2-4 the first two data points are read and a
recording is made of the initial data point.
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On lines 7-9 the first filtering interval is started where upper1 is a line that has to pass through
the initial data point and the second data point plus the error bound εv. The same occurs for
lower1 but the εv is subtracted.

In line 12 it is checked if any more data points exists if they do then it checks if the next data
point exceeds the upper bound (including error bound) or is below the lower bound (including
error bound). If no data point exists or if the data point exceeds the bounds a recording is
made (on line 15) of the previous timestamp with a value that generates a line segment that
minimizes Ek, which is the mean square error for all data points observed in the k’th interval.
The equations used to determine the value for Rk that minimize Ek are omitted from this report,
as they are not necessary to understand the idea behind the swing filter value model type. The
equations can be found in [27]. Then if more data points exist a new filtering interval is started,
as seen on lines 19-22.

If the data point instead was within the allowed deviation checked on line 12 then it is checked
if the data point is more than εv within the error bounds. If this is the case then the bounds are
"swung" to fit them within the distance of εv, as seen on lines 24-27. Finally, if the data point is
within the error bound of both the upper and lower bound, the data point is said to be filtered
out as it is already representable, which can be seen indirectly through the fact that no updates
are done to the upper and lower bounds.

Example

Consider the data points: ⟨(0, 0), (1, 1), (2, 2), (3, 0)⟩ and an error bound of εv = 0.1 1. The Swing
Filter first makes a recording R0 at (0, 0). It then creates an lower bound lower0(t), which should
pass through R0 and (1, 1 − 0.1) and a upper bound upper0(t), which passes through R0 and
(1, 1 + 0.1). The lines used for the lower and upper bound are therefore: upper0(t) = 1.1 · t+ 0
and lower0(t) = 0.9 ·t+0. This is illustrated in Figure B.1a, where the black lines represent the
upper and lower bounds, the green dotted lines represent the error bound of the upper bound,
and the blue dotted lines represent the error bound of the lower bound.

The next data point (2, 2) is then read as seen in Figure B.1b. The data point is within
the upper and lower bounds as none of the conditions checked on line 12 are true because
vnext < lowerk(tnext) − εv ⇒ 2 < (0.9 · 2 + 0) − 0.1 ⇒ 2 < 1.7 for the lower bound and
vnext > upperk(tnext) + εv ⇒ 2 > (1.1 · 2 + 0) + 0.1⇒ 2 > 2.3 for the upper bound.

It is then checked if the upper and lower bounds require adjusting on line 24-27. Given that
the data point is further than the defined error from the lower bound (line 24) because vnext >
lowerk(tnext)+εv ⇒ 2 > (0.9 ·2+0)+0.1⇒ 2 > 1.9 which is true so the lower bound is "swung"
such that it passes through R0 and (2, 2−0.1) hence it is updated to lower0(t) = 0.95·t+0 similar
actions are taken for the upper bound resulting in upper0(t) = 1.05 · t+ 0. This is illustrated in
Figure B.1c where the adjusted bounds can be seen.

Then the data point (3, 0) is read as seen in Figure B.1d. This point is not within the lower
bound since vnext < lowerk(tnext)− εv ⇒ 0 < (0.95 · 3+0)− 0.1⇒ 0 < 2.75 making at least one
of the conditions on line 12 true. The current segment is therefore finalized and a new recording

1This value is a simplification of the real error bound because in IrregularDB the error bound would be e.g.
5%, which Swing filter would then use calculate an allowed derivation value such as 0.1
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that minimizes the mean square error Ek is made.

The a new interval is started between our previous point and the new point (3, 0), which is
illustrated on Figure B.1e.

(a) Initialize bounds (b) Read next point (2,2) (c) Adjust bounds

(d) Read next point (3,0) (e) Start new interval

Figure B.1: Example of three steps of swing

In the case of IrregularDB, the data is also 1-dimensional, but rather than minimizing Ek to
get a line segment, the average of the upper and lower bound is used. Since IrregularDB uses
multi-model compression without overlap (i.e. disjoint segments) it will create a line segment
only for one interval. This means that IrregularDB would therefore stop before the step shown in
Figure B.1e and instead just emit the finalized segment from Figure B.1d. The compression
ratio of the value model representing this line segment is then compared to the value models
constructed by the other value model types.
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B.3 Gorilla Value Model Type

As part of IrregularDB, the value model type from Gorilla [8] is used. To get a better under-
standing of this value model type this section will describe the Gorilla algorithm conceptually
and with an example.

Gorilla value model type was developed as part of the application Gorilla that Facebook developed
to handle their monitoring needs. Gorilla value model type is a lossless value model type that
works on time series data given as a 3 item tuple (Key, T imestamp, V alue). The key is a string
and serves to uniquely identify time series (this is the same as the tag described in our time series
definition shown in Definition 2.3.2). The key is ignored for the remainder of this description
as it is not relevant for understanding the compression algorithm. Both the timestamp (a long)
and value (a double) are expected to use 64 bits.

The timestamp and value are split and compressed as two streams which we refer to as two
chains. A chain, therefore, consists of either all timestamps (including the block header) or all
values measured. The chains are essential in optimizing the compression. Both compression of
timestamps and values utilize a ’variable length encoding’ as a key feature in allowing a reduced
amount of storage space to be used. The time stamp compression of Gorilla is explained in
Appendix A.

For compressing the values, Gorilla has opted to store the XOR value of the previous value and
the current value using a variable-length encoding scheme. The algorithm itself can be seen in
Listing B.2.

1. The first value is stored with no compression
2. If XOR with the current value and the previous value is zero (same value), store single ’0’ bit
3. When XOR is non−zero, calculate the number of leading and trailing zeros in the XOR,

store bit ’1’ followed by either a) or b):
(a) (Control bit ’0) If the block of meaningful bits falls within the block of previous

meaningful bits, i.e., there are at least as many leading zeros and as many trailing zeros
as with the previous value, use that information for the block position and just store the
meaningful XORed value.

(b) (Control bit ’1’) Store the length of the number of leading zeros (also referred to as LZ)
in the next 5 bits, then store the length (also referred to as L) of the meaningful XORed
value in the next 6 bits. Finally, store the meaningful bits of the XORed value.

Listing B.2: An algorithm describing gorilla value compression taken from [8]

An example can be seen in Table B.1. To make the example easier to follow, the values, as well
as bit representation, are based on a regular integer representation (here using 8-bit unsigned),
because floating-point bit representation will unnecessarily complicate the example. In practice,
the values are, however, stored as double values. Note that this simplification will make the
example appear worse, that is to say, that the compression will not be as high as in normal use.

In Table B.1 4 values are compressed using the different cases from the algorithm Listing B.2.
For following happens for the different values:

• The first value is simply stored as-is.
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• The second value is outside our current range (as there is not range) and is therefore stored
using case 3B which is where first the control bits (CB) are stored followed by 5 bits used
to store the amount of leading zeroes (LZ) of the XOR’ed values. Then 6 bits are used to
describe the length (L) of the significant bits followed by said significant bits of the XOR’ed
value i.e. (1111111).

• For the third value, the amount of meaningful digits is the same as for the 2nd value,
therefore this is case 3A and we therefore simply only store the significant bits by reusing
the previous range.

• For the last value, the XOR’ed value is 0 and thus this value is saved as a single 0 bit and
is thus the case where the highest amount of compression is reached.

Value Binary value XOR CB LZ L Signif bits Case
62 00111110 - - - - 0011 1110 1
65 01000001 0111 1111 11 00001 000111 111 1111 3B
60 00111100 0111 1110 10 - - 111 1110 3A
60 00111100 0000 0000 0 - - - 2

Table B.1: Example of gorilla value compression
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C | User-configurable parameters

IrregularDB offers several features and parameters that can be set by the user. A detailed
overview of the configuration options is shown in Table C.1.

Key Values Description Default
workingset Unsigned integer Amount of working sets used

in the system
1

source.socket.port Port no. Server socket port where time
series data producers can get
a TCP connection to stream
data to. Can be any unsigned
integer representable with 16
bits

4672

source.csv Path File path to CSV files for in-
gestion from local files

None

source.csv.delimiter Delimiter used in
CSV

The delimiter used in the csv
source data

,

model.timestamp.types REGULAR,
SIDIFF,
DELTADELTA

The timestamp model types
to use during ingestion for
compression

All
timestamp
model types

model.timestamp.thres-
hold

Non-negative
integer

The default threshold for
timestamp model types

0

model.value.types PMC_MEAN,
SWING,
GORILLA

The value model types to use
during ingestion for compres-
sion

All value
model types

model.value.error_bound Non-negative float
value

The default error bound for
value model types

0.0

model.length_bound Unsigned integer The length bound for the
maximum amount of data
points that can be in a seg-
ment

400

model.value.error_-
bound.strict

Boolean Specifies if reconstructed val-
ues are allowed to deviate fur-
ther than error bound (see
Section 3.2.1)

true

model.segment.compute.
summary

Boolean Specifies if summary informa-
tion is calculated and inserted
in database tables.

false

database.jdbc.connecti-
on_string

Connection string Database connection string None

model.picker GREEDY,
BRUTE_FORCE

Model picker configuration BRUTE_-
FORCE

workingset.max_buffer_-
size_before_throttle

Non-negative
integer

The size of a working set’s
buffer before reader threads
are told to sleep.

1 000 000
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receiver.throttle_sleep_-
time

Non-negative
integer

How many milliseconds re-
ceivers should sleep after max
buffer size is reached.

50

database.jdbc.batch_size Non-negative
integer

The amount of segments
batched before writing to the
database

100

segment.max_length Non-negative
integer

The max length that all
model types have to respect

40 000

Table C.1: Detailed overview of user-configurable parameters

Individual time series can override the default threshold and error bound values by adding the
tag on the key e.g. ‘model.timestamp.threshold.{timeSeriesTag}=10’.

For configuration keys where several values can be specified the values must be comma separated.
Currently the three configuration keys where this is allowed are ‘source.csv’, ‘model.timestamp.types’
and ‘model.value.types’.

Only a database connection string is required for the system to run. CSV sources are optional
and naturally do not have a default value. All other settings have default values.
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D | Initial Testing

This chapter describes some of the initial tests that were conducted in order to determine, which
values to use for some of the different configuration parameters described in Appendix C.

D.1 Length bound test

An initial test was done in order to determine a default value for the length bound used in
IrregularDB . This testing was done by ingesting the entire REDD dataset (see Section 5.2.1
for more info on REDD) and measuring the ingestion speed and compression ratio. Measuring
these two metrics allows us to determine, at which point choosing a higher length bound would
provide very little increase in compression ratio and ingestion speed. The results of this test can
be seen in Figure D.1.

(a) Ingestion time (b) Storage usage

Figure D.1: Results of initial testing of different length bounds

A default value of L = 400 was chosen for the length bound as this seems to be around where
the curve flattens out. Because the ingestion speed for L = 350 was measured to be 72.413s,
whereas it for L = 400 was 70.266s giving an improvement of 2.147s. Then further increasing
the length bound to L = 500 only gives an improvement of 0.416s as the ingestion speed for
L = 500 is 69.85s. Similar results can be observed for the compression ratio.

D.2 Brute Force vs. Greedy Model Picker test

A test was conducted in order to test the two different model selection approaches discussed in
Section 3.4.3. In this test we chose to ingest the entire REDD dataset (see Section 5.2.1)
using the two different model pickers. The following relevant configuration parameters were used
when ingesting the data:

• Model Types: All timestamp model types and value model types.

• Error bound: 10%
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• Threshold: 100

• Length bound: 50

The ingestion speed of two runs for each model picker can be seen in Table D.1. Their storage
usage can be seen in Table D.2.

Brute Force Greedy
172.736 s 170.911 s
170.411 s 170.196 s

Average
171.574 s 170.554 s

Table D.1: Ingestion time results

Brute Force Greedy
193 569 571 B s 194 175 491 B

Table D.2: Storage usage results

As seen in the tables using the greedy approach leads to slightly faster ingestion speed at the cost
of compression. However, the differences between the two approaches is almost indistinguishable
as there is the following percentage differences between their values:

• Ingestion Speed: ∥Vbrute−Vgreedy∥
(Vbrute+Vgreedy)/2

· 100% = ∥171.574s−170.554s∥
(171.574s+170.554s)/2 · 100% = 0.596%

• Storage Usage: ∥Vbrute−Vgreedy∥
(Vbrute+Vgreedy)/2

· 100% = ∥193569571B−194175491B∥
(193569571B+194175491B)/2 · 100% = 0.31%
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