
`

FUTURE OF SPREADSHEET

PROGRAMMING

A COMPARISON BETWEEN TWO PROMISING
TECHNOLOGIES

by

Georgi Ivanov Zhivkov

Master thesis

Supervisors: Bent Thomsen and Thomas Bøgholm

.

3

SUMMARY

This project deals with a comparison of two different approaches to define user-

defined functions (UDFs) in a spreadsheet. One of the ways is Excel’s Lambdas and

the other is SDFs (sheet-defined functions) in FunCalc.

The project answers three questions. The first question is about the speed of the

calculation of each technology and aims to determine which is better for

computations. To answer this a number of benchmarks is done. The number of

samples for the testing is found by firstly doing a random sampling with the size of

100 and then applying Cochran’s formula. The results of these benchmarks were

found to be inconclusive but pointed towards the dominance of FunCalc. Excel

performed better on two of the 7 benchmarks. One of the sheets that Excel performed

better on was “Groundwater_daily” which is a big workbook with multiple sheets.

The results for FunCalc on this sheet were consistent with another study. For future

work investigation into whether Excel uses parallel or sequential execution also

whether the difference between the representation of data in both technologies impacts

their performance.

The second question is “which of these technologies is preferred by the programmers”

and deals with issues connected to the Cognitive Dimensions. The question is

answered by doing an analysis of the Cognitive Dimensions and then a user study

involving live coding with people unfamiliar with the technology, which also connects

the Discount Evaluation method with the Cognitive Dimensions questionnaire. The

result of both the analysis and the user study shows that Excel’s Lambdas are more

useful compared to SDFs in FunCalc. Participants pointed much more issues in

FunCalc than in Excel. Some of the issues of FunCalc that were pointed out were

connected to the way of defining the functions, using the cell identifiers instead of

variable names, the length of the function definitions, and writing the functions in the

function sheet. In Excel, the participants had problems with the parentheses and

commas, the name manager window, and the way how the expression comes directly

after the parameters.

The third question is whether these technologies have any application in the

educational sphere. Are the UDFs applicable in teaching Computational Thinking to

people unfamiliar with it? Due to the delimitations of the study only a philosophical

discussion on the topic was done. The study looked into the application of functional

programming and its similarities to UDFs.

In conclusion, the study proved successful and contributed to the following things:

1. Tested the performance of the recently introduced UDFs in Excel against

FunCalc’s SDFs.

FUTURE OF SPREADSHEET PROGRAMMING

4

2. Compared Excel’s UDFs to FunCalc SDFs in a study with participants

unfamiliar with the technologies and concluded which one is familiar.

3. Investigated how functional programming with spreadsheets can be used to

facilitate Computational Thinking.

ACKNOWLEDGMENTS

I want to thank my family and my friends for believing in me. I want to thank my

supervisors for giving me helpful feedback and good suggestions. Finally, I want to

give my thanks to the participants of my study for giving me meaningful results for

the study.

ABSTRACT

The goal of this study is to compare two different technologies for creating user-

defined functions in Spreadsheets, one of them is the recently introduced Lambda

expressions in Excel and the other is the SDFs in FunCalc, and how they can be used

to facilitate computational thinking. In order to do so first, a performance test will be

conducted and then a user study will be done.

5

TABLE OF CONTENTS

Chapter 1. Introduction .. 7

1.1. Background ... 7

1.2. Problem statement ... 7

1.3. Introduction of the technologies .. 8

1.4. Constraints of the study ... 13

1.5. Targeted group for user testing ... 13

Chapter 2. Performance experiments .. 14

2.1. Performance experiments decisions .. 14

2.2. Choice of programs ... 14

2.3. How the testing is done ... 15

2.4. Test and Results .. 16

2.5. Discussion of the results .. 18

2.6. Conclusion .. 20

2.7. Future work ... 20

Chapter 3. Analysis of Cognitive Dimensions ... 21

3.1. Cognitive dimensions chosen .. 22

3.2. Discussion ... 23

3.3. Conclusion .. 24

Chapter 4. User testing ... 25

4.1. Study setup .. 26

4.2. Study results .. 27

4.3. Discussion ... 33

4.4. Conclusion .. 34

4.5. Future work ... 34

Chapter 5. Computational thinking .. 35

5.1. Discussion and Future work .. 37

Chapter 6. General conclusions of the study .. 39

Chapter 7. Bibliography ... 40

Appendices ... 41

FUTURE OF SPREADSHEET PROGRAMMING

6

TABLE OF FIGURES

Figure 1. Overview of the FunCalc GUI .. 9
Figure 2. Example formula .. 9
Figure 3. Picture showing where the name manager menu is located. 10
Figure 4. Name manager window .. 11
Figure 5. Creating a new named function .. 12
Figure 6. Groundwater Daily ... 15
Figure 7. Masking with Excel Lambdas ... 15
Figure 8. Masking a function in FunCalc ... 15
Figure 9. Code for Factorial in FunCalc .. 17
Figure 10. Factorial code with Lambda in Excel. .. 22
Figure 11. Factorial code in FunCalc ... 22
Figure 12. SDF definitions in FunCalc .. 23
Figure 13. UDFs definitions in Excel... 23
Figure 14. The correct way of defining functions that take a range as an argument in

FunCalc .. 28
Figure 15. Mistake done by participant 2 ... 29

https://d.docs.live.net/70de1938f867ccb0/Documents/nn%20(1).docx#_Toc105532899
https://d.docs.live.net/70de1938f867ccb0/Documents/nn%20(1).docx#_Toc105532902

7

CHAPTER 1. INTRODUCTION

1.1. BACKGROUND

Spreadsheets are computer applications used for data analysis and data storage created

more than 40 years ago. The spreadsheets are used in accounting, bioinformatics, and

other fields. They are a 2D grid of cells where every cell has coordinates and can

contain a value or formula. Their use can be both as a programmable tool for doing

calculations and a database.

Spreadsheets can be viewed as a program, where instead of coding in lines, the

relationships between data are connected in the aforementioned grid environment

(Georgi Zhivkov, 2021). Some of the spreadsheets come with pre-defined functions

for arithmetic or statistics and with the option for user-defined functions, for example,

Microsoft’s Excel and VBA functions.

While there are other data analysis tools, spreadsheets are still one of the most popular

ones with 800 million of active users Microsoft Excel (Gislason, 2018). But,

according to some data scientists, spreadsheets are falling behind in the age of Big

Data (Chase, 2020). And thus finding an improvement of the support for the end-user

development can keep the spreadsheets’ status as a useful and programmable tool used

by many data scientists around the world since their current implementation provides

little support for abstraction and reuse of computations, unless external languages like

VBA are used (Sestoft, 2017).

1.2. PROBLEM STATEMENT

In the age of big data, the need for better, robust, and reliable calculations inside

spreadsheets is increasing in order to keep their relevance. One of the ways that it can

be achieved is the user-defined function approach since these functions offer better

abstraction and can offer better programmability. In this project, we will explore two

promising solutions that allow user-defined functions in spreadsheets and compare

them on several criteria. One of them being the recently introduced Lambdas in Excel

and the other being the FunCalc technology, creation of Peter Sestoft.

The study aims to answer thtree main questions:

Q: Which of the methods has better performance?

The answer to this question is found in the performance testing that is performed. The

performance testing looks at criteria such as speed, memory usage, and others.

Q: Which of the methods is more familiar and understandable to the users?

FUTURE OF SPREADSHEET PROGRAMMING

8

This answer is found by conducting a user study and analyzing the results and doing

own analysis of chosen cognitive dimensions.

Q: Can UDFs languages be used to facilitate computational thinking?

To answer this question, a philosophical study based that considers the answers from

the user study will be done.

1.3. INTRODUCTION OF THE TECHNOLOGIES

Currently, Excel uses an external language called Visual BASIC for Applications for

creating user-defined functions. In order to avoid the drawbacks of VBA, Microsoft

is introducing Lambda expressions. One of the first proposals for creating user-

defined functions was in (Simon Peyton Jones, 2003). There the authors argue that

adding one of the most important mechanisms- the ability to create reusable

abstractions/user-defined functions will be beneficial to the Excel users. According to

them, the functions help the user to: Reduce errors during maintenance, for real estate

management, achieve better performance, protect intellectual property and

encapsulate and re-use domain-specific expertise.

The first technology that is discussed in the report is the FunCalc. FunCalc is the

extension of CoreCalc which is an environment that has the core functionality of

spreadsheets. Funcalc allows user-defined functions in the form of “sheet-defined

functions” without resorting to external languages such as VBA. Both of the

aforementioned technologies are research prototypes and not fully usable

replacements for Excel and other spreadsheets (Sestoft, 2017).

The following screenshot shows the FunCalc environment. The FunCalc environment

can create both function sheets and non-function sheets.

CHAPTER 1. INTRODUCTION

9

Figure 1. Overview of the FunCalc GUI

Unlike Excel, the functions can only be defined inside the spreadsheet and it doesn’t

support ”Name Manager” functionality. The functions are defined with the ”DEFINE”

keyword. The sheet-defined functions are compiled to .NET(CLI). Funcalc supports

some of the basic formulas from Excel’s formula language such as “SUM”,

“AVERAGE” etc. It also supports different types of Arrays such as Horizontal

(HARRAY) and a Vertical (VARRAY) while Excel doesn’t make difference between

these.

Figure 2. Example formula

The second technology that is introduced in this project is Excel’s Lambda functions.

Excel’s Lambda functions made the language Turing-complete since Lambda calculus

FUTURE OF SPREADSHEET PROGRAMMING

10

is Turing-complete. and gave it the optionality for user-defined functions. Currently,

Lambda functions are available only for beta testers. Like many functional-paradigm

languages, Excel’s Lambdas come with helper functions.

The first step of creating an Excel Lambda function is opening the Name Manager,

where user-defined Lambdas can be named.

Figure 3. Picture showing where the name manager menu is located.

CHAPTER 1. INTRODUCTION

11

By opening the Name Manager the user is prompted to the following window, where

they can choose to either create, edit or delete a named function.

Figure 4. Name manager window

After deciding to create a new function the following window appears, it allows the

user to name a function and define it, by writing it in the “refers to” box. Another way

that Lambdas can be named is by the use of the LET keyword

FUTURE OF SPREADSHEET PROGRAMMING

12

Figure 5. Creating a new named function

The Excel’s Lambda’s come with implementation for standard helper functions.

MAP Returns an array formed by “mapping”

each value in the array(s) to a new value

by applying a lambda to create a new

value.

REDUCE Reduces an array to an accumulated

value by applying a LAMBDA function

to each value and returning the total

value in the accumulator.

SCAN Scans an array by applying a LAMBDA

to each value and returns an array that

has each intermediate value.

MAKEARRAY Returns a calculated array of a specified

row and column size, by applying a

LAMBDA function.

CHAPTER 1. INTRODUCTION

13

BYROW Applies a LAMBDA to each row and

returns an array of the results.

BYCOL Applies a LAMBDA to each column

and returns an array of the results.

ISOMITTED Checks whether the value is missing,

and returns TRUE or FALSE.

Table 1. List of Excel's LAMBDA helper functions (Gross, 2021)

1.4. CONSTRAINTS OF THE STUDY

This study has some constraints attached to it. The first of them is the time limitation,

the study is conducted in the period 01.02.2022-10.06.2022. The second constraint is

finding people fitting the criteria to perform the user testing on.

1.5. TARGETED GROUP FOR USER TESTING

The candidates for user testing are people who are familiar with spreadsheet

technologies because the study will demand the users to already have some knowledge

of the Formula language. It is preferable that some of the users are not from computer

science backgrounds since a more extensive study on how the SDFs can be used to

facilitate computational thinking can be done.

FUTURE OF SPREADSHEET PROGRAMMING

14

CHAPTER 2. PERFORMANCE

EXPERIMENTS

2.1. PERFORMANCE EXPERIMENTS DECISIONS

The performance testing is performed on some of the programs described in (Bock,

2019), the decision behind it is that these programs both can be used to describe the

expressivity but also can be used as a good performance benchmark. Some of these

programs are also short and easily implementable thus meaning that they could also

be used for user testing. The performance experiments will be done using the external

VBA timer function for Excel and by the built-in benchmark for FunCalc.

2.2. CHOICE OF PROGRAMS

Since Excel does not support single-celled arrays and array-slicing some of the

programs mentioned in (Bock, 2019) are reworked and not translated 1:1. In general,

for the study, it’s better to create some small and widely used programs.

The first functions that are tested are Fibonacci and Factorial. This decision was

motivated by the fact that both programs can be used in the user study later and they

are similar in implementation. The Factorial program is used later in the user study

since it is a program that uses recursion and recursion and/or looping are concepts that

are some of the key components in most programming languages.

Another function is the SUMCOLUMNS. This program contains recursion over an

array. The program sums all the numbers in a horizontal array.

Another function that is used the Finding the index of the minimum element. This

program is a simple traversing of an array and comparison. The program is easy and

simple to implement. A supplementary example for it could be INDEXOF, which

finds the index of the first occurrence of an element in the array.

Another book of spreadsheets that have been tested is “Groundwater_daily”, it is a

prepared data consisting of three sheets, one with 7700 rows of data, one with 8680

rows, and one with 15234 rows.

CHAPTER 2. PERFORMANCE EXPERIMENTS

15

Figure 6. Groundwater Daily

A sheet defined functions that “mask” the Excel formulas in the fields “Average”.

“Low”, and “High” is done. What “masking” means in this context is that the formula

from these fields is taken and is just being named as shown below

 =AVERAGE(L$6:L$15234)-L15221

This formula is masked i.e. turned into a function as the following Excel function

named AVERAGE.

In a similar fashion the function has been defined in FunCalc:

 Figure 8. Masking a function in FunCalc

Performance test on each of the maskings.

2.3. HOW THE TESTING IS DONE

The testing methodology is using doing a random sample with the size of 100 and

then using the Cochran’s formula to find a suitable sample size for each of the

programs as done in (Anne Benedicte Abildgaard Ejsing, 2021). For the Excel a VBA

script was written, a modified version of the code taken from (Anon., n.d.) that

incorporated the Cochran’s formula (code can be seen in Appendix C), and for

FunCalc a modified version benchmark functionality that incorporates the Cochran’s

formula was used (code can be seen in Appendix D). The testing was done on the

=LAMBDA(X,Y,AVERAGE(X)-Y)

 Figure 7. Masking with Excel Lambdas

FUTURE OF SPREADSHEET PROGRAMMING

16

latest version of Excel up to 01.04.2022 and the publicly available version of FunCalc

from 2014.

2.4. TEST AND RESULTS

The programs were benchmarked on an HP Pavilion laptop with the following

parameters:

Processor AMD RYZEN 7 5800H with RADEON

GRAPHICS (16 CPUs) ~3.2 Ghz

Memory 16 GB

OS Windows 10 home 64-bit

Table 2. Computer Specifications

The testing procedure consists of the following, first the cells between A4:T1000 are

filled with the function calls, this choice is done since FunCalc supports the range of

A1:T1000 and the function logic is written in the cells, thus leaving the range between

A1:T3 for this purpose. Then the method from (Anne Benedicte Abildgaard Ejsing,

2021) for conducting benchmarks is applied. It starts by conducting a random sample

with the size of 100 benchmark results, then the Cochran’s formula is used to find the

number of samples needed to determine the final sample size denoted as n in the

equation bellow and then n number of benchmarks are run and an average is presented

as a final result. The benchmark used is “Full Recalculation”

 𝑛 = (
𝑍𝑎/2∗𝜎

𝑟∗𝜇
)

2

 Equation 1. Cochran's formula

Here Z represents a Z table function and a represents the significance level, σ is the

standard deviation is desired error margin and μ is the mean of the population. The

significance level is related to the confidence level in the following manner:

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 = 1 − 𝑎

 Equation 2. Relation between significance and confidence levels

Meaning that at a 95% confidence level, the significance level would be 0.05, the Z-

table function provides a standard Z-score for the desired level of confidence, for

CHAPTER 2. PERFORMANCE EXPERIMENTS

17

example for a 95% confidence level the score is 1.96 (Anne Benedicte Abildgaard

Ejsing, 2021).

First, the factorial function was calculated with the use of the following code for

Excel:

=LAMBDA(N,IF(N<=0, N, N*Factorial(N-1)))

 Listing 1. Code for factorial in Excel

The following code doesn’t use tail recursion for the factorial function. The

benchmarking for the factorial function was done on the 10th element (Factorial(10)).

For FunCalc the following code was used, and the testing was done in the same

manner as in Excel, FunCalc supports a built-in benchmark technique for

FullRecalculation, so no calls to VBA were done:

 Figure 9. Code for Factorial in FunCalc

Another function tested was the Tail-Recursive and Non-Tail Recursive version of the

Nth-Fibonacci number, where N was 10 in the case. Other functions were Sum

Columns of an array, index of a number of an array, and minimum index

The following results were gotten:

 Excel Funcalc

Program Number

of runs

Runtime Number

of runs

Runtime

Non-Tail Recursive Factorial (10) 4655 24.02

ms

756 8.9 ms

Non-Tail Recursive Fibonacci(10) 3467 318.7

ms

438 102.4

ms

FUTURE OF SPREADSHEET PROGRAMMING

18

Tail Recursive Fibonacci (10) 16775 29,5 ms 475 21.1 ms

SumColumns(arr) 1884 36,4 ms 5271 40.2 ms

INDEXOF(900,arr) 9189 12.3 ms 7342 5.3 ms

MINDEX(arr) 1840 80,36

ms

1550 29,3 ms

Groundwater_daily 1101 1 276.11

ms

4 25033.7

ms

Groundwater_daily without UDF 62 1 261.29

ms

52 31314.7

ms

*arr is array equal to {500,1000,900,100,230,150,90,20,30,420,6969,1312,14}

Table 3. Benchmark Results

In 5 of the cases, FunCalc performed faster than Excel. FunCalc had issues with the

Groundwater_daily sheet and the results gotten there seemed suspiciously weird but

they were verified with two different scripts.

2.5. DISCUSSION OF THE RESULTS

Although FunCalc is faster in most situations, the study results are inconclusive. There

are several reasons that this might be, one of the issues for example is that some things

in both languages can be called incomparable. For example, one reason could be that

FunCalc makes difference between Vertical and Horizontal arrays while Excel does

not, logically this can mean that they have different data representations which can

affect the runtime. An experiment has been done that compares the runtime of

“VARRAY”. “HARRAY” (the single-celled representations of the horizontal and

vertical in FunCalc) against the arrays in Excel which are multi-celled, the experiment

consisted of doing a benchmark of 20,000 copies of an array of the numbers between

1 and 10. In Funcalc the arrays were pasted in the fields between A1:T1000, while in

excel the array was pasted from A1:A20000 (the first element of the array,

considering that the array is multi-celled), FunCalc also by default “renders” the cells

between A1:T1000 and at least the version used in the experiments doesn’t allow

inserting more rows or columns, though the option exists it just clears the existing

row/column. The experiment resulted in similar results in both Excel and FunCalc so

the theory of different representations was dismissed.

CHAPTER 2. PERFORMANCE EXPERIMENTS

19

Technology name Result

Excel 7,13 ms

FunCalc 7,5 ms

Table 4. Benchmark of FunCalc and Excel Arrays

Another theory could be that either FunCalc or Excel has an issue with calculating

multi-sheeted books, this theory was also dismissed by an experiment consisting of

using a Sheet Defined Factorial function with parameter 10 first in one sheet and then

in 10 sheets for both technologies, from this experiment the following results were

gotten.

Excel 1 sheet Excel 10 sheets FunCalc 1 sheet FunCalc 10

sheets

22,18 ms 227,25 ms 9,0 ms 118,2 ms

Table 5. Benchmark of Factorial based on a different number of sheets in each technology.

The results for one-sheeted workbook with Factorial function are consistent with the

results from table 3. This proves that making 10 sheets in both slows down the

calculation time by around 10 times for both. So, the theory can be dismissed.

 Because of the 6 seconds improvement in Groundwater_daily FunCalc with SDFs

but didn’t improve the runtime in Excel, another theory was crafted, this theory

consists of checking whether the functions are compiled and formulas are interpreted.

This experiment consisted of pasting data into the fields between A1:T500 and

formulas or functions in the fields A501:T1000, first benchmark a with the formula

shown below pasted in the fields and after then the formula is converted to an UDF in

both technologies. The aim of this experiment is to prove whether “masking” with

UDFs improves the runtime.

=AVERAGE(A1:T500)*MIN(A1:T500)

-SUM(A1:T500)*MAX(A1:T500)-

ABS(SUM(A1:T500)) Function 1. Formula used for the masking experiment

FUTURE OF SPREADSHEET PROGRAMMING

20

The benchmarks produced the following results, which ultimately proves that

“masking” with an SDF doesn’t improve the runtime of a program so the 6s

improvement in FunCalc can be considered as a deviation.

Excel Excel Lambda FunCalc FunCalc SDF

351.351351 ms 352.030948 ms 8685.3 ms 9431.3 ms

Table 6. Results of the experiment that compares Funcalc and Excel with and without SDFs

This however points out that Excel performs better on “masked” formulas than

FunCalc but doesn’t perform well on functions that are not a “masking” of existing

functions.

2.6. CONCLUSION

In conclusion, the results of this part of the study were inconclusive. A reason has not

been found why the results of the Groundwater_daily mismatch the other results by a

lot, the FunCalc results are however consistent with the results shown in (Møller,

2016). Also using UDFs as “masking” didn’t improve the performance dramatically

according to the results. In FunCalc a 6-second improvement is noted but the result

stays within the same diapason. While most other results are being somewhat

consistent in showing that FunCalc is faster. However, Excel performs much better

on “masked” formulas and formulas in general than FunCalc while FunCalc proves

better on functions that involve recursion. The reason for this is not researched in this

project.

2.7. FUTURE WORK

For future work, an investigation of the abnormal results of Groundwater_daily one

can check if the Excel version from 2022 uses parallel or sequential execution.

Another thing that could be done is to do more experiments on large sheets and use

more complex functions. Another thing that can be done is to do a more in-depth

analysis of the datatype representation in each technology. Another thing that could

be done is to investigate why formulas that are “masked” by UDFs are calculated way

faster in Excel than in FunCalc.

CHAPTER 3. ANALYSIS OF COGNITIVE DIMENSIONS

21

CHAPTER 3. ANALYSIS OF

COGNITIVE DIMENSIONS

NOTE: Chapter 3 and Chapter 4 are meant to be taken as a whole since they both

answer the 2nd question of the problem statement.

In this section, the analysis independent of the user study based on the cognitive

dimensions will be done. The analysis will consist of an analysis of some of the

dimensions based on comparisons of the languages.

First, the 14 cognitive dimensions will be introduced. The Cognitive Dimensions of

Notations are a lightweight approach to analyzing the quality of an existing design or

guiding new design decisions. There are 14 cognitive dimensions that can evaluate

the design of the programming language.

1. “Abstraction gradient: What are the minimum and maximum

levels of abstraction? Can fragments be encapsulated?

2. Closeness of mapping: What ‘programming games’ need to be

learned?

3. Consistency: When some of the language has been learnt, how

much of the rest can be inferred?

4. Diffuseness: How many symbols or graphic entities are required

to express a meaning?

5. Error-proneness: Does the design of the notation induce ‘careless

mistakes?

6. Hard mental operations: Are there places where the user needs to

resort to fingers or pencilled annotation to keep track of what’s

happening?

7. Hidden dependencies: Is every dependency overtly indicated in

both directions? Is the indication perceptual or only symbolic?

8. Premature commitment: Do programmers have to make

decisions before they have the information they need?

9. Progressive evaluation: Can a partially-complete program be

executed to obtain feedback on ‘How am I doing’?

10. Role-expressiveness: Can the reader see how each component of

a program relates to the whole?

11. Secondary notation: Can programmers use layout, colour, other

cues to convey extra meaning, above and beyond the ‘official’

semantics of the language?

FUTURE OF SPREADSHEET PROGRAMMING

22

12. Viscosity: How much effort is required to perform a single

change?

13. Visibility: Is every part of the code simultaneously visible

(assuming a large enough display), or it at least possible to

juxtapose any two parts side-by-side at will? If the code is

dispersed, is it at least possible to know in what order to read it?

14. Juxtapossility: Can different parts of the notation be juxtaposed

at the time? ” (M. Petre, 1996)

3.1. COGNITIVE DIMENSIONS CHOSEN

Since the delimitations of this study, only a handful of cognitive dimensions will be

analyzed by the author. The cognitive dimensions chosen to be analyzed are the ones

that the author found more frustrating. The cognitive dimensions chosen are

Expressivity, Visibility, and Error-proneness.

Expressivity

In comparison to Excel, FunCalc can be called long-winded, this is because function

definition in FunCalc takes much more space than the one in Excel.

 Figure 11. Factorial code in FunCalc

 As you can see the way functions are defined in Funcalc takes much more space. The

Factorial function in Excel can be defined in one row, taking fewer characters(38

characters) while in FunCalc the function definition is defined in two cells with a

bigger character count(58 without whitespace and not counting the content of A1).

So it can be concluded that Excel’s Lambda expressions are far more expressive than

FunCalc.

Visibility

=LAMBDA(X,IF(X=0,1,X*Factoriala(X-1)))

Figure 10. Factorial code with Lambda in Excel.

CHAPTER 3. ANALYSIS OF COGNITIVE DIMENSIONS

23

The basic fact that the function definitions in both technologies are hidden in cells on

separate sheets or the name manager makes the code not so visible, in FunCalc.

multiple function definitions can be viewed but at the same time, it can be argued that

it is harder to keep track of the functions scattered in the Function sheet. The fact that

the functions take multiple rows and cells means that the programmer has to spend

attention on more places when programming in comparison to Excel where the

functions are much more compact and are stored inside the “Name Manager”.

 Figure 12. SDF definitions in FunCalc

 Figure 13. UDFs definitions in Excel.

Error-Proneness

It can be argued that in FunCalc the programmer is more likely to make careless

mistakes since the programmer has to keep track of the individual cell addresses and

has to spend more time looking at the cells, rather than using a placeholder variable

name. Some of the most common mistakes could be:

1. Mistaking the cell addresses when making an expression

2. Mistaking the cell addresses when using the “define” statement

3.2. DISCUSSION

It can be argued that Excel provides more intuitive syntax, and better expressivity and

keeps the attention of the programmer easily since Excel’s syntax is more compact,

FUTURE OF SPREADSHEET PROGRAMMING

24

doesn’t require memorizing cell addresses when declaring a function, and the

programmer will spend more time thinking about the cell addresses when declaring

functions instead of working with variables as parameters of the function but it could

also be argued that it could be difficult to use the concept of variables for people with

no programming backgrounds, this hypothesis can only be proven if the study is

extended to people with little to no programming knowledge like people that use

spreadsheets only for business things like accounting.

3.3. CONCLUSION

In conclusion, based on the analysis of the three cognitive dimensions chosen, Excel

offers much more expressive power than FunCalc’s SDFs, also the programmers are

less prone to making errors in Excel Lambdas. Both technologies don’t offer a lot of

visibility.

CHAPTER 4. USER TESTING

25

CHAPTER 4. USER TESTING

User testing is conducted by a mixture of Discount Method for Programming

Language Evaluation and Cognitive Dimensions of Notations questionnaire. The

users are likely not to be familiar with either of the technologies, so a sheet of example

programs should be written. According to (Svetomir Kurtev, 2016) the discount

method consists of the following procedure:

1. Creating a sheet of sample programs, this sheet should be clear and navigable

so the users can browse it easily. The code samples will give the users a better

understanding of the language.

2. Estimating the task duration by measuring how fast you can complete the

given tasks. Participants are likely to take more time to solve the tasks since

they are unfamiliar with the language. It is recommended to have more tasks

than the amount the participant is expected to be able to solve but the

participant should be aware that it’s not expected for him to solve them all.

3. Prepare the setup by choosing the environment that we want the users to use,

it can vary from pen and paper to a full coding environment.

4. Gather participants, the golden rule for the number is 5.

5. When the testing is started make sure that the participants are aware that it is

not them being tested but the language.

6. Keep the participants talking. Try to talk to the participants and as a

facilitator, you might give answers to questions asked by the participants.

We are not testing the participants' ability to perform the task but their ability

to put it into code in the respective language.

7. After the testing, the participants should be interviewed or given a

questionnaire if there are many participants.

8. After all the tests analyze the data and list the problems encountered by the

participants. The problems can be split into the following categories:

Cosmetic problems consist of typos and small keyword and character

differences that can be fixed by replacing the wrong part.

 Serious problems consist of structural errors that usually impact code

structure, and are small enough to be fixed with a few changes.

 Critical problems consist of fundamental misunderstandings of how

the language structures code and large errors of this type would

require revision of the code.

A version of the Cognitive Dimensions questionnaire described in (Green, 2000) is

being incorporated into the ”interview” part of the Discount method.

FUTURE OF SPREADSHEET PROGRAMMING

26

4.1. STUDY SETUP

The participants for the study are Masters students in the 10th semester of CS-IT

programme at Aalborg University. Ideally, the aim for the study size was 5 but due to

the time limits, only 3 people participated. The study setup consisted of the

participants being seated in front of a laptop with a keyboard and mouse connected to

them, all the sessions were screen recorded and the author of the study was a

facilitator. The participants were asked to solve the tasks given below both with Excel

Lambda expressions and FunCalc. Before solving the tasks they were shown a quick

presentation of both. They were shown how to create a simple function that sums up

two numbers together and a basic example of recursion. They were also shown how

to switch between Function Sheets and Non-Function sheets in FunCalc and how to

use the ”Name Manager” in Excel. While solving the tasks the participants

communicated with the facilitator and requested help. The participants were also

given a cheat sheet of similar programs although neither of the participants felt a need

to use it.

The participants had to complete 3 programming tasks that made them use UDFs and

one warmup task without UDFs.

The following task was given since it is easily solvable, contains a conditional, and

also makes the participants use basic arithmetic operations.

Exercise 1. In a quadratic equation (a2 ± bx ± c), having a negative

discriminant means that the equation has no solution. Create a

function “isSolvable” that calculates the discriminant with given

a,b,c as parameters and returns Boolean value “True” if there is

solution and ‘False’ if there is not. The discriminant is calculated as

follows D = b2 - 4ac. Test it with 2x² + 4x − 4 = 0 i.e. a=2,b=4,c=-

4

Exercise 2. In Absurdia you pay for utilities in advance based on

estimation, the estimation is done by calculating the average of the

sum of previous 9 months consumption divided by 3 (i.e. the average

of 3 slices of 3 month consumption measures or simply put as the

average of 3 quarters of the year), then the real consumption is

balanced after three months and if it is smaller than the estimate you

get money in return, otherwise you have to give more money to the

issuer. Calculate a function that takes array of the estimate of the 9

months as an array, the real 3-month expenses as array(which should

be summed up) and returns how much money should you should get

or pay to/from the issuer (negative amount meaning that you

consumed more than paid for and a positive amount meaning that

you will get money in return).

 Listing 2. First Excercise

 Listing 3. Second Excercise

CHAPTER 4. USER TESTING

27

This task was given so the participants get a grasp of how the “ranges” work in both

languages.

This task was done so the participants get a grasp of how recursion works in both

languages.

Then the participants have given the aforementioned cognitive dimensions

questionnaire which by their choice they solved in written form, without supervision.

4.2. STUDY RESULTS

First, the participants answered a few questions about their backgrounds.

Participant 1 answered that they are very familiar with the concept of functional

programming, familiar with spreadsheets and that they were proficient in the use of

Excel’s formula language. When asked if they used any similar technologies they

answered “no”.

Participant 2 answered that they were somewhat familiar with the concept of

functional programming and spreadsheets, they stated that they were unfamiliar with

Exercise 3. A factorial is mathematical operation which

represents the multiplication of all numbers from 1 to the

desired number i.e. 5! = 1*2*3*4*5, Create a recursive

factorial function and test it with a Factorial of 10.

 Listing 4. Third Excercise

FUTURE OF SPREADSHEET PROGRAMMING

28

Excel’s formula language. When asked if they’ve used similar technologies they

replied with Python, MATLAB, Julia, and OpenOficeCalc. And that they use the

system for data collection.

Participant 3 stated that they were somewhat familiar with functional programming,

very familiar with spreadsheets, and proficient in Excel’s formula language. Other

similar systems they’ve used were DAX and Python and they use the system for data

analysis.

The participants were mostly dissatisfied with the GUI and the bugs in both software

and some of them felt demotivated to do the study, especially in FunCalc. All of them

successfully completed the study and their feedback is reported below.

Participant 1. During the coding session participant 1 rushed the tasks, he didn’t test

all the functions. Participant 1 had difficulties with the commas and parentheses in

both languages and also a problem with using the “define” function in FunCalc, the

participant was confused with cell names used as variable names in FunCalc when

defining a function but adapted to it quickly. The participant seemed to get used to the

language fast and didn’t use principles like TDD. The participant quickly adapted to

both FunCalc and Excel and was quick to ask questions to the facilitator.

Participant 2. Participant 2 had done everything in a systematic way, he made use of

principles like TDD, and the participant wrote everything in a systematic way. A

problem that the participant had was the ranges/lists, the participants found it

counterintuitive that when creating a new function that takes a list, the parameter isn’t

specified to be a list, especially in FunCalc where lists as a parameter are described as

a variable/cell name, e.g. SUM(A1) but when calling the function a range is given.

An example is shown below:

Figure 14. The correct way of defining functions that take a range as an argument in FunCalc

The participant wondered how to denote the range as a function parameter in FunCalc

and one of them tried to denote it in the fashion shown below while doing the 2nd task:

CHAPTER 4. USER TESTING

29

 Figure 15. Mistake done by participant 2

Participant 3. The last participant wasn’t systematic as the first two, the participant

quickly finished the tasks, and the participant seemed a little bit careless since he had

done the survey after work. The participant shared the general confusion about the

FunCalc using cells instead of variables. The participant also had a problem sharing

with Participant 1 with the “define” keyword.

 Table 7. List of mistakes done by each participant

Now the results of the cognitive dimensions questionnaire will be presented.

Visibility and Juxtaposibility

Participant Cosmetic

problems

Serious

problems

Critical

problems

Participant 1 Missing

parenthesizes and

comas in Excel

Participant 2 Not being able to

grasp how the

array structure

works in

FunCalc.

Participant 3 Using

inappropriate

names for the

Variables in

Funcalc.

Missing the

“Define”

Keyword when

defining the

function in

FunCalc.

Missing the

”Lambda”

keyword in

Excel.

FUTURE OF SPREADSHEET PROGRAMMING

30

Participant 1 answered that one issue with the visibility is the comas and parentheses,

Participant 2 also said that the language was “parentheses soup” but this was stated

under the questions about Viscosity.

Participant 2 also argued that hiding the functions in a different tab wasn’t offering

much visibility but this comment was mostly directed to the GUI.

Participant 3 didn’t offer much to the questionnaire.

Viscosity

Participant 1 found Excel easier to make changes than Funcalc.

Participant 2 had issues with FunCalc keystrokes randomly deleting and pasting

content into cells. They also criticized both languages to be difficult to make changes

in.

Participant 3 argued that it is hard to keep track of the cell names in FunCalc especially

when trying to make a change.

Diffuseness

Participant 1 didn’t raise any issues with the length of the notation but raised the issue

with “naming the variables with cell identifiers”.

Participant 2 stated that both languages were quite expressive but stated also that in

FunCalc “function definitions occupied several cells in an unstructured manner that

made me want a new sheet for every function definition”

Participant 3 didn’t elaborate anything but stated that both notations were quite brief.

Hard Mental operations

Participant 1 argued that it was hard to think sequentially when developing a solution

and was hard to go back and define a variable, also the participant stated that in their

head it was difficult to keep track of variable names in FunCalc since they were

represented with cell identifiers.

Participant 2 argued that it was difficult to understand the ranges in FunCalc and Excel

but during the coding session they had more issues in FunCalc. Also that the

Expression in Excel lambda came directly after the arguments when defining a

CHAPTER 4. USER TESTING

31

function. Also stated that ranges were quite hard to grasp and that in FunCalc “I could

not for the life of me understand how they are handled”

Participant 3 found using the “define” keyword in FunCalc pretty hard to grasp,

especially the 2nd argument given to it (the pointer to the formula).

Error proneness

Participant 1 had an issue with keeping track of commas and parentheses, especially

when editing the signature of the function.

Participant 2 raised an issue with error reporting in both languages in connection with

the syntax errors.

Participant 3 stated that missing parentheses and misspelling the function name was a

big issue.

Closeness of Mapping

Participant 1 stated that it is strange to use the cell identifiers as variables when

declaring a function.

Participant 2 said that Excel’s notation was closer to the result it was describing and

that “Having to refer to cell names in FunCalc removed a lot of the mathy notation”.

Also, they stated it was quite strange the way that a function that takes a range in

FunCalc was declared.

Participant 3 stated only that it was strange to them to use the pointer in the “define”

keyword in FunCalc (the 2nd argument).

Role Expressiveness

Participant 1 stated that the recursion in FunCalc is particularly hard to interpret.

Participant 2 stated that in Excel’s notation it was pretty straightforward to tell each

part of it when reading it while FunCalc required “several clicks” and “switching

between sheets”. FunCalc’s array handling and argument passing were difficult to

interpret, also they stated that error reporting in both languages was “almost non-

existent”.

Participant 3 said that the notations were well structured.

Hidden dependencies

FUTURE OF SPREADSHEET PROGRAMMING

32

Participants agreed that there were no significant hidden dependencies.

Progressive evaluation.

Participant 1 stated it was quite difficult to stop in the middle of creating a function

since it is “very difficult to keep track of long definitions ” and that they can’t see how

much progress they’ve made.

Participant 2 stated that it was easy to get a partial result is easy but it is hard to keep

track of how much progress you’ve made since viewing code and functions at the

same time is impossible.

Participant 3 said that it is easy to stop in the middle of creating a function but only if

you properly close the parentheses.

Provisionality

Participant 1 answered that neither of the languages made it easy to sketch things out

when playing with ideas.

Participant 2 stated it was possible to define sample arguments and a function call

before defining the function itself.

Participant 3 didn’t answer anything in this section.

Premature commitment

Participant 1 stated that the system didn’t force them to think in any particular order.

And that the only thinking needed to be done in advance is the definition of the

“necessary blocks and encapsulating the logic”

Participant 2 stated that writing a function returning a partial result is possible and

then refining the calculation itself to return the desired result.

Participant 3 stated the order didn’t matter as well and that one could start by doing

either the expression or the definition of the function in FunCalc

Consistency

Participant 2 answered that the conditional is similar to a function call when asked

“Where there are different parts of the notation that mean similar things, is the

similarity clear from the way they appear?” and that there are no things that ought to

be similar that are made different by the notation.

CHAPTER 4. USER TESTING

33

Participants 1 and 3 didn’t answer the questions in this sphere or stated they were

“irrelevant” to the type of questions they answered in the coding session.

Secondary notation

Participant 2 answered that it was possible to make notes to yourself by writing in the

cells and that it “is a very nice benefit of sheet-based programming languages”.

Participants 1 and 3 didn’t use comments during the coding session so they left the

section blank.

Abstraction mechanism

Participant 2 stated that the system doesn’t system insist that they start by defining

new terms before they can do anything else and stated that although an error is thrown

the cell value is saved and that they “love reactivity like that”. They also stated that

they can use cells in defining a “sort of” variables.

The other participants didn’t give significant answers to this section and rather gave

neutral answers.

When asked what they could improve the participants stated the following things:

1. “in funcalc a more designated and readable spot for adding the functions,

in excel it is quite intuitive and readable”

2. “blend the formula tab (function sheet) and the regular tab (non-function

sheet)” (FunCalc)

3. “ Allow expressions directly in a FunCalc “DEFINE” function rather than

referencing a cell”, “Easy multi-line cells/Excel LAMBDA fields”, “No

difference between function sheets and calculation sheets in FunCalc”,

and “Fix the FunCalc editor”

4.3. DISCUSSION

Most of the participants are dissatisfied with FunCalc, most of the comments they

made are connected to using the “define” keyword, using cell identifiers instead of

variables, the segregation between Function and non-function sheets, and recursion.

The participants preferred Excel’s Lambda compared to FunCalc but they also gave

criticism to it as well. A lot of participants were confused by the interface of both

FUTURE OF SPREADSHEET PROGRAMMING

34

technologies and were dissatisfied with the bugs in FunCalc. The participants

criticized the Lambdas for not making a special place for the expression but simply

putting it after the arguments. The participants also found common flaws in both

languages with the use of commas and parentheses some even calling them

“parentheses soup”.

4.4. CONCLUSION

Based on the answers to this survey and the coding session, it can be concluded that

people familiar with computer science prefer Excel’s Lambdas over FunCalc. They

found both technologies unfamiliar and struggled to understand them but they ended

up preferring Excel. A full copy of the answers to the questionnaire is available in

the appendix section of this report.

4.5. FUTURE WORK

A further expansion of this study can be done by finding more subjects of different

backgrounds, this could diversify the results of the study and conclude if the results

of this study are biased on the participant’s background.

CHAPTER 5. COMPUTATIONAL THINKING

35

CHAPTER 5. COMPUTATIONAL

THINKING

Computational thinking as a concept describes the ability to think like a computer

scientist. It is best described as the ability to conceptualize problems like a computer

scientist not just program them, computational thinking does not teach one how to

think like a computer but how to think using the concepts and limitations of

computing, it combines mathematical and engineering thinking, it can be taught to

anyone and everywhere, it can be taught to biologists, medical specialists and many

others (Wing, 2006).

To answer the 3rd question from the problem statement a rather philosophical study

will be done, taking into account the aforementioned user study.

According to (Alfred Aho, 2022) the core idea of computational thinking is

abstraction and all abstractions in computer science have two properties.

1. A data model is 1 or more types of data plus the possible relationships

between them, for example, the cells in spreadsheets can be represented as

graph nodes and the connection between them can be represented as an edge.

2. A way of manipulating that data could be either the Formula language, the

Lambda expressions, or the FunCalc’s SDF.

Spreadsheets themselves can be used in a way similar to one of the databases, in their

basic sense they contain data, and relationships between data (if any). The

relationships can be described through formulas, every formula is dependent on the

cells given as parameters. The database offers an abstraction of the data by

encapsulating the different structures of data records in tables with fields and offers a

way to access this data by commands. In comparison, some could argue that

spreadsheets create such abstractions by encapsulating the data in a cell and then

creating the dependency graph of the cells.

In the study (Sanford, 2018) the author suggests that using spreadsheets is a good

way to introduce computational thinking to students and states that the spreadsheets

are a good way to introduce computational thinking, the author argues that the

spreadsheets are as “visual as pen and paper”, and “students can produce useful

material with minimal instruction” and that they have “extensive library of features

and functions”, “graphical presentation is easily produced” and “it’s unlikely that they

are suppressed anytime soon”. The author provided examples of how spreadsheets

could be used to solve some mathematical problems. The author concludes that

spreadsheets are the medium but there are other options for teaching computational

thinking.

FUTURE OF SPREADSHEET PROGRAMMING

36

It can be also argued that introducing UDFs to the spreadsheets can teach non-

programmers some programming aspects such as recursion and Turing completeness.

For example, the introduction of Lambdas to Excel can teach people about Lambda

Calculus and Turing Machines and since Lambda calculus is equivalent to Turing

machine this means that the concept of Turing machine can be explained through

Lambda calculus and this is crucial knowledge for computer scientists. The UDFs also

offer abstraction overexpression which corresponds with Tennent’s principle of

abstraction. These factors can contribute to teaching computational thinking to non-

computer scientists.

But on the other hand, it can be argued that neither FunCalc nor Excel’s lambdas

introduce enough abstraction of the data. Neither of those technologies offers

information hiding and it could be argued that the data in the cells is rather raw and

the cell addresses are not a form of abstraction but rather pointers to the raw data’s

location. There are only raw data stored in the cell’s address and some sort of “range”

or “array” structures. There are no abstract data types, objects, or structs.

There is also no language that is used to modify the data itself similar to the one used

in databases, there is no way to modify a value of a cell by using UDFs or the Formula

Language. Spreadsheets only do computations, but they don’t allow the data to be

modified by formulas. This could be argued to be the missing key feature that makes

spreadsheets suitable for teaching computational thinking. Most programming

languages use concepts such as variable assignments (C, C++, Java, etc.). Not having

a way to assign/mutate value to cells by code but instead a way to do computations on

it.

Some think that these features are crucial to learning for most computer scientists but

pure functional programming doesn’t allow the assigning and mutating of variables

either and both languages are in the functional paradigm, similar to Haskell. Haskell

is a purely functional language that supports similar features. There are also a lot of

impure programming languages such as Python which is widely used by data

scientists too. UDFs support also key components that are included in most

programming languages such as conditionals and recursion. Most languages support

constructs such as loops and these loops can be presented through conditionals and

recursion. One of the types of abstraction is functions which divide the functionality

into general-purpose entities that structure the program.

As stated in (Niemelä, 2018) there are some analogies between functional

programming and mathematics. The problem-solving technique in both consists of

decomposition, solving subproblems, and evaluation of the result. The problem-

solving in algebra is similar to the abstraction, automation, and analysis in CT. First

the problem-solving starts with abstracting, then after this, the problem is decomposed

into smaller solvables and then the result is analyzed.

CHAPTER 5. COMPUTATIONAL THINKING

37

The spreadsheets themselves are useful for teaching computational thinking already

and introducing the UDFs can teach some crucial key points of computer science such

as recursion and Lambda calculus (in the case of Excel) but as shown in the user study

the introduction of UDFs comes with a lot of drawbacks. Even people with knowledge

of Computer Science were dissatisfied with them and found major usability issues in

both of the technologies.

Most of the participants of the study found major usability issues in both. Even though

they were experienced programmers. Some of them were dissatisfied with the Lambda

syntax, others were dissatisfied with the way of defining functions in FunCalc. Some

of the participants called both languages “parenthesis soup”. Many of the participants

criticized also the way of defining the functions and the “places” where the function

definitions were located.

In Excel, the participants gave their criticism for the use of the Name Manager, the

parentheses and commas usage, and using the place of the “last argument” as a place

where the expression is written.

 The participants criticized FunCalc much more than Excel. In FunCalc they criticized

the use of function sheets, using cell addresses instead of variable names, and that

function definitions take multiple rows.

In the analysis of the cognitive dimensions chapter, it is argued that Funcalc is less

expressive in comparison to Excel, also that the programmer is much more prone to

serious mistakes when coding in FunCalc. Also, both of the technologies don’t offer

much visibility.

Another issue with the UDFs is their use cases, are there suitable use cases of UDFs

for people with no or limited understanding of Computational Thinking. Will the

people with no computational thinking e.g. accountants have to encounter a situation

where UDFs are a must or at least helpful? This question can be answered by

analyzing the applications of UDFs and the work activities of the spreadsheet users

unfamiliar with CT.

Because of the hardships that experienced programmers had with both technologies,

it can be concluded that while UDFs (especially in Excel) can be used to teach crucial

concepts of Computer Science, they can’t be recommended as an educational tool.

5.1. DISCUSSION AND FUTURE WORK

The focus on this chapter was limited and most of the arguments presented are rather

philosophical, since the time and resource limitations and not being able to find

subjects from non-Computer Science related backgrounds. One way to expand this

part of the study is to put those philosophies to a test by finding test subjects, another

FUTURE OF SPREADSHEET PROGRAMMING

38

way to expand them is by looking at specific use cases of UDFs, in order to do this

analysis of specific use cases should be done, similar to the one in (Sanford, 2018).

CHAPTER 6. GENERAL CONCLUSIONS OF THE STUDY

39

CHAPTER 6. GENERAL CONCLUSIONS

OF THE STUDY

In conclusion, all three questions from the problem statement were answered,

therefore the study can be considered a successful one.

Q: Which of the methods has better performance?

This question was answered in Chapter 2, the answer to it is that the results of the

benchmark experiments were inconclusive. FunCalc was faster in 5 out of 7 of the

cases, one of the cases where FunCalc lost to Excel was the Groundwater_daily

workbook. Several theories on why it happened have been constructed and all of them

were disproved. It should also be noted that introducing UDFs to this workbook as

“masks” didn’t improve the workbook runtime in FunCalc, however, it should also be

noted that Excel performs much better on ‘masked’ functions and formulas, while

FunCalc performs better on functions involving recursion. The reason for this has not

been investigated in the project.

Q: Which of the methods is more familiar and understandable to the users?

This question was answered in Chapters 3&4, to answer this question first analysis

of three cognitive dimensions was done. The cognitive dimensions chosen for this

analysis were Visibility, Expressivity, and Error-Proneness. The analysis found that

Excel Lambdas are more expressive than FunCalc’s SDFs, programming in Excel

Lambdas is less error-prone, and both technologies don’t offer good visibility.

In Chapter 4 the results of the user study are explained, the participants preferred

Excel’s Lambdas over FunCalc’s SDFs but were dissatisfied with both.

Q: Can UDFs languages be used to facilitate computational thinking?

To answer this question only a philosophical study was done. While Functional

programming has some parallels with mathematics and UDFs can also teach non-

programmers concepts like recursion, Turing-completeness, and Lambda Calculus

(Excel), the UDFs in spreadsheets can’t be recommended for teaching computational

thinking since the major usability issues experienced by the participants of the user

study.

FUTURE OF SPREADSHEET PROGRAMMING

40

CHAPTER 7. BIBLIOGRAPHY

Alfred Aho, J. U., 2022. Abstractions, Their Algorithms, and Their Compilers.

[Online]

Available at: https://cacm.acm.org/magazines/2022/2/258231-abstractions-their-

algorithms-and-their-compilers/fulltext#R9

Anne Benedicte Abildgaard Ejsing, J. R. N. C. S. N. L. R. M. J., 2021. The Influence

of Programming Paradigms on Energy Consumption, s.l.: s.n.

Anon., u.d. Excel performance: Improving calculation performance. [Online]

Available at: https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-

performance/excel-improving-calculation-performance

Bock, A. A., 2019. A Comparison Between SISAL 1.2 and Funcalc, s.l.: s.n.

Chase, C., 2020. SPREADSHEETS ARE OBSOLETE IN THE AGE OF BIG DATA—

WHAT IS REPLACING THEM?. [Online]

Available at: https://demand-planning.com/2020/09/14/spreadsheets-are-obsolete-in-

the-age-of-big-data-what-is-replacing-them/

Georgi Zhivkov, K. F. J. P. L. C. W., 2021. Puffin, A spreadsheet programming

language, s.l.: s.n.

Gislason, H., 2018. Excel vs. Google Sheets usage — nature and numbers. [Online]

Available at: https://medium.grid.is/excel-vs-google-sheets-usage-nature-and-

numbers-9dfa5d1cadbd

Green, A. F. B. a. T. R., 2000. A Cognitive Dimensions Questionnaire Optimised for

Users. s.l., s.n.

Gross, C., 2021. Announcing LAMBDA Helper Functions: Lambdas as arguments

and more. [Online]

Available at: https://techcommunity.microsoft.com/t5/excel-blog/announcing-

lambda-helper-functions-lambdas-as-arguments-and-more/ba-p/2576648

M. Petre, T. G., 1996. Usability Analysis of Visual Programming Environments : A

‘Cognitive Dimensions’ Framework. Journal of Visual Languages and Computing .

Møller, N. K., 2016. Pre-Analyses Dependency Scheduling with, s.l.: s.n.

Niemelä, P., 2018. From Legos and Logos to Lambda A Hypothetical Learning

Trajectory for Computational Thinking, s.l.: Tampere University of Technology.

APPENDIX A. ANSWERS TO THE SURVEY

41

Sanford, J., 2018. Spreadsheets, Introducing Computational Thinking Through, s.l.:

Springer International Publishing AG, part of Springer Nature 2018.

Sestoft, P., 2017. Corecalc and Funcalc. [Online]

Available at: http://www.itu.dk/~sestoft/funcalc/

Simon Peyton Jones, A. B. B., 2003. A User-Centred Approach to Functions in Excel.

ACM SIGPLAN Notices.

Svetomir Kurtev, T. A. C. B. T., 2016. Discount Method for Programming Language

Evaluation. s.l., PLATEAU 2016.

Wing, J. M., 2006. Computational Thinking, s.l.: Communications of the ACM.

APPENDICES

Appendix A. Answers to the survey

Participant 1 answers.

Survey:

Answer the following questions (35 min):

Visibility and Juxtaposability

• How easy is it to see or find the various parts of the notation while it is being created

or changed? Why?

It is somewhat easy for both languages

• What kind of things are more difficult to see or find?

FUTURE OF SPREADSHEET PROGRAMMING

42

In excel commas and parentheses , in funcalc also the variable names are confusing

 • If you need to compare or combine different parts, can you see them at the same

time? If not, why not?

The scope and visibility of functions are difficult to view at the same time so rather

not

Viscosity

• When you need to make changes to previous work, how easy is it to make the

change? Why?

It is difficult to find the definitions of functions in funcalc, while in excel it is quite

easy as it is organised where the definitions are exactly.

• Are there particular changes that are more difficult or especially difficult to make?

Which ones?

In funcalc it is difficult to find the function definition itself, in excel there are not very

difficult things to do

Diffuseness

 • Does the notation a) let you say what you want reasonably briefly, or b) is it long-

winded? Why?

For both languages the notation is very concise, yet for funcalc it is a bit confusing

naming the variables with cell identifiers

 • What sorts of things take more space to describe?

none

Hard Mental Operations

• What kind of things require the most mental effort with this notation?

It is difficult to think sequentially when developing the solution as when doing

sequential operations it is not very intuitive where to go back and define the variable

(for both languages)

• Do some things seem especially complex or difficult to work out in your head (e.g.

when combining several things)? What are they?

APPENDIX A. ANSWERS TO THE SURVEY

43

In excel no, in funcal the variable names being represented by cell identifiers

Error Proneness

• Do some kinds of mistake seem particularly common or easy to make? Which ones?

in both languages commas are difficult to keep track of, also parentheses

 • Do you often find yourself making small slips that irritate you or make you feel

stupid? What are some examples?

When editting the signature of the functions losing track of the syntax more

particularly paranthases

 Closeness of Mapping

• How closely related is the notation to the result that you are describing? Why?

__

• Which parts seem to be a particularly strange way of doing or describing something?

In funcalc it is strange that cell identifiers are used as variables, in excel things seems

simple and logical

Role Expressiveness

• When reading the notation, is it easy to tell what each part is for in the overall

scheme? Why?

Yes, after defining the identifiers it is easy to use them

• Are there some parts that are particularly difficult to interpret? Which ones?

In excel no, in funcalc when doing recursion it is weird that using the cell identifier

and then think of it as variable and not the cell

 • Are there parts that you really don’t know what they mean, but you put them in just

because it’s always been that way? What are they?

no

FUTURE OF SPREADSHEET PROGRAMMING

44

Hidden Dependencies

• If the structure of the product means some parts are closely related to other parts,

and changes to one may affect the other, are those dependencies visible? What kind

of dependencies are hidden?

no, none

• In what ways can it get worse when you are creating a particularly large description?

In longer expressions it is difficult in both languages to understand the expressions

 • Do these dependencies stay the same, or are there some actions that cause them to

get frozen? If so, what are they?

the dependencies stay the same

Progressive Evaluation

• How easy is it to stop in the middle of creating some notation, and check your work

so far? Can you do this any time you like? If not, why not?

it is very difficult to keep track of long definitions so it is very difficult

 • Can you find out how much progress you have made, or check what stage in your

work you are up to? If not, why not?

no, the whole definition will have to be gone through to identify how far the definition

is towards completion

• Can you try out partially-completed versions of the product? If not, why not?

irrelevant question

Provisionality

• Is it possible to sketch things out when you are playing around with ideas, or when

you aren’t sure which way to proceed? What features of the notation help you to do

this?

I didn’t get the feel of either language making it easy to do

APPENDIX A. ANSWERS TO THE SURVEY

45

• What sort of things can you do when you don’t want to be too precise about the exact

result you are trying to get?

Not sure, was not included in the questions set

Premature Commitment

• When you are working with the notation, can you go about the job in any order you

like, or does the system force you to think ahead and make certain decisions first?

In both languages the order of definitions is not relevant

• If so, what decisions do you need to make in advance? What sort of problems can

this cause in your work?

define necessary blocks that encapsulate the logic

Consistency

• Where there are different parts of the notation that mean similar things, is the

similarity clear from the way they appear? Please give examples.

was not covered in exercises

 • Are there places where some things ought to be similar, but the notation makes them

different? What are they?

no

Secondary Notation

• Is it possible to make notes to yourself, or express information that is not really

recognised as part of the notation?

not sure

• If it was printed on a piece of paper that you could annotate or scribble on, what

would you write or draw?

write

Abstraction Management

FUTURE OF SPREADSHEET PROGRAMMING

46

• Does the system give you any way of defining new facilities or terms within the

notation, so that you can extend it to describe new things or to express your ideas more

clearly or succinctly? What are they?

Yes, we can define multiple functions

• Does the system insist that you start by defining new terms before you can do

anything else? What sort of things?

no

• Do you find yourself using this notation in ways that are unusual, or ways that the

designer might not have intended? If so, what are some examples?

no

• After completing this questionnaire, can you think of obvious ways that the design

of the system could be improved? What are they? Could it be improved specifically

for your own requirements?

in funcalc a more designated and readable spot for adding the functions, in excel it is

quite intuitive and readable

Participant 2 answers.

Survey:

Answer the following questions both for FunCalc and for Excel: e.g. In Excel that and

in FunCalc that

APPENDIX A. ANSWERS TO THE SURVEY

47

Visibility and Juxtaposability

• How easy is it to see or find the various parts of the notation while it is being created

or changed? Why?

For excel, I still do not know to this day where the documentation to the various

functions is found. I was, however, able to recall the SUM function from having used

it previously.

For Funcalc, I was able to guess the name of the SUM function since it matched the

one used in Excel.

• What kind of things are more difficult to see or find?

There was absolutely no chance of using either without documentation. In the GUI,

there was no indication on how to solve the task using the tools available.

I will add that in Excel, the “named entities,” or whatever, dialog was strangely named

for what it does.

 • If you need to compare or combine different parts, can you see them at the same

time? If not, why not?

It drove me up the wall how the contents of the Funcalc cells would be hidden behind

various error messages while not in focus. Having the expression hidden by an error

message by default in the function sheets made it harder for me to use.

The fact that Excel did not allow viewing the functions at all (outside their weird

dialog) was arguably worse.

Both languages, being sheet-based, were exceptionally good at showing intermediate

results and the input variables, since they are all visible in the cells.

Viscosity

• When you need to make changes to previous work, how easy is it to make the

change? Why?

In Excel it was merely tedious. Going back to continue working on a formula after

checking the intermediate result was mostly pain-free. Though it was weird to have

to go into a dialog to do it.

FUTURE OF SPREADSHEET PROGRAMMING

48

The extreme usability issues with FunCalc’s interface meant that making changes

became difficult. These issues prevent me from evaluating the language itself, because

unexpected deletions of cells, and insertions of characters, as well as inexplicable

errors, prevented me from reliably making changes to my code.

A hypothetical well-functioning editor might have been slightly easier to use than the

also janky excel counterpart, but having two different kinds of sheets felt backwards.

And counter to the sheet-oriented paradigm.

• Are there particular changes that are more difficult or especially difficult to make?

Which ones?

Both languages had issues with parenthesis soup, where keeping track of the

appropriate number of parentheses was difficult by itself. Finding the appropriate

place to make changes even more so, not aided by the interface of either program.

Diffuseness

 • Does the notation a) let you say what you want reasonably briefly, or b) is it long-

winded? Why?

Expressions in both languages were compact almost to a fault. Function definitions in

Excel was also well-hidden and therefore arguably compact. In FunCalc, function

definitions occupied several cells in an unstructured manner that made me want a

new sheet for every function definition.

 • What sorts of things take more space to describe?

In FunCalc, having more arguments to a function takes significantly more space.

Hard Mental Operations

• What kind of things require the most mental effort with this notation?

The ultra-compact conditionals were hard for me to keep track of. Of course this is

the case for both languages.

The last argument in the Excel LAMBDA definition function seemed weird to me,

but I adapted quickly.

Managing arguments in FunCalc was extremely difficult and not something I ever got

comfortable with.

APPENDIX A. ANSWERS TO THE SURVEY

49

• Do some things seem especially complex or difficult to work out in your head (e.g.

when combining several things)? What are they?

Lists were difficult to grasp in both languages. In Excel I got it eventually, in FunCalc

I could not for the life of me understand how they are handled.

Error Proneness

• Do some kinds of mistake seem particularly common or easy to make? Which ones?

Both languages had extremely bad reporting of syntax errors.

 • Do you often find yourself making small slips that irritate you or make you feel

stupid? What are some examples?

Only in interfacing with the UI. Both systems made unexpected and unwanted

changes to my input, or handled key strokes differently from what I’d expect.

 Closeness of Mapping

• How closely related is the notation to the result that you are describing? Why?

Excel was much closer, since it allowed named arguments. Having to refer to cell

names in FunCalc removed a lot of the mathy notation.

• Which parts seem to be a particularly strange way of doing or describing something?

Arrays in FunCalc.

Role Expressiveness

• When reading the notation, is it easy to tell what each part is for in the overall

scheme? Why?

In Excel it actually started to be pretty straightforward, despite the small editing

window and the parenthesis soup.

Reading a function in Funcalc takes several clicks for switching sheets and reading

the obscured values of cells.

• Are there some parts that are particularly difficult to interpret? Which ones?

FunCalc array handling. FunCalc argument passing to an expression, since there is no

highlighting of a cell reference and corresponding variable.

FUTURE OF SPREADSHEET PROGRAMMING

50

Error reporting on syntax mistakes is nonexistent for both languages, so I suppose

that’s pretty hard to interpret.

 • Are there parts that you really don’t know what they mean, but you put them in just

because it’s always been that way? What are they?

Array handling in Funcalc. Argument passing in FunCalc.

Hidden Dependencies

• If the structure of the product means some parts are closely related to other parts,

and changes to one may affect the other, are those dependencies visible? What kind

of dependencies are hidden?

Both being functional languages, there are not many hidden dependencies.

The actual expression of a function (its definition as well) is hidden in FunCalc until

you click into it.

• In what ways can it get worse when you are creating a particularly large description?

Both languages are designed for having one-liners, which is just terrible.

Possibly you can calculate your expression in more than one cell in FunCalc? But the

UI was so janky that I did not fancy trying to experiment with that.

 • Do these dependencies stay the same, or are there some actions that cause them to

get frozen? If so, what are they?

Well FunCalc just fully became unusable due to something being stuck. It is unclear

if it was a bug or a hidden dependency.

Progressive Evaluation

• How easy is it to stop in the middle of creating some notation, and check your work

so far? Can you do this any time you like? If not, why not?

It required a few clicks for both, but it was very easy by just returning a partial result.

APPENDIX A. ANSWERS TO THE SURVEY

51

 • Can you find out how much progress you have made, or check what stage in your

work you are up to? If not, why not?

This is hard because for both, looking at the code while looking at a result at the same

time is not possible.

• Can you try out partially-completed versions of the product? If not, why not?

Aye.

Provisionality

• Is it possible to sketch things out when you are playing around with ideas, or when

you aren’t sure which way to proceed? What features of the notation help you to do

this?

Yes, it was possible for me to define sample arguments and a function call, before

actually defining the function. In both languages. This helped me think about what I

wanted the function to do and what its signatureshould be.

• What sort of things can you do when you don’t want to be too precise about the exact

result you are trying to get?

I have no idea.

Premature Commitment

• When you are working with the notation, can you go about the job in any order you

like, or does the system force you to think ahead and make certain decisions first?

By returning some partial result, I can start with any part of the calculation and then

refine it how I like. However, once I’ve written in one part of the calculation, I sort of

have to keep it in my function and add to it, rather than make several small

components.

• If so, what decisions do you need to make in advance? What sort of problems can

this cause in your work?

I did not think about my decisions that much. These were small programs.

Consistency

• Where there are different parts of the notation that mean similar things, is the

similarity clear from the way they appear? Please give examples.

FUTURE OF SPREADSHEET PROGRAMMING

52

I suppose the conditional is strikingly similar to a function call. The definition notation

as well.

 • Are there places where some things ought to be similar, but the notation makes them

different? What are they?

No, can’t say there is.

Secondary Notation

• Is it possible to make notes to yourself, or express information that is not really

recognised as part of the notation?

Yes, I added the variable names above all the sample arguments. This is a very nice

benefit of sheet-based programming languages.

• If it was printed on a piece of paper that you could annotate or scribble on, what

would you write or draw?

I might actually be able to write out a sample cell structure.

Abstraction Management

• Does the system give you any way of defining new facilities or terms within the

notation, so that you can extend it to describe new things or to express your ideas more

clearly or succinctly? What are they?

I can sort of do variables (pi for example) by hard-coding them into certain cells. I’m

sure it is also possible to do function calls to simpler functions. I suppose I did that

with the SUM function. Though writing my own function to call from another never

came up.

• Does the system insist that you start by defining new terms before you can do

anything else? What sort of things?

Actually not. It throws an error, but saves the cell value. I love reactivity like that.

I’m not sure FunCalc always accepted my error-cells, but I think so.

• Do you find yourself using this notation in ways that are unusual, or ways that the

designer might not have intended? If so, what are some examples?

I don’t believe that I did.

APPENDIX A. ANSWERS TO THE SURVEY

53

• After completing this questionnaire, can you think of obvious ways that the design

of the system could be improved? What are they? Could it be improved specifically

for your own requirements?

Fix the FunCalc editor.

Allow expressions directly in a FunCalc “DEFINE” function rather than referencing

a cell.

Easy multi-line cells/Excel LAMBDA fields.

No difference between function sheets and calculation sheets in FunCalc.

Participant 3 answers.

 Survey:
Answer the following questions (35 min):
Visibility and Juxtaposability
• How easy is it to see or find the various parts of the notation while it is
being created or changed? Why?
It is easy
• What kind of things are more difficult to see or find?
__
__
__
__
__

• If you need to compare or combine different parts, can you see them at
the same time? If not, why not?
You can
Viscosity
• When you need to make changes to previous work, how easy is it to make
the change? Why?
it's easy to make the change, you just go the the formula tab

FUTURE OF SPREADSHEET PROGRAMMING

54

• Are there particular changes that are more difficult or especially difficult
to make? Which ones?

 maybe the variables that they have to be [letter][number] format

Diffuseness

APPENDIX A. ANSWERS TO THE SURVEY

55

• Does the notation a) let you say what you want reasonably briefly, or b) is
it long-winded? Why?
a
• What sorts of things take more space to describe?
-
Hard Mental Operations
• What kind of things require the most mental effort with this notation?
having to point to the formula's code and having to write the define key word every
time
• Do some things seem especially complex or difficult to work out in your
head (e.g. when combining several things)? What are they?
-
Error Proneness
• Do some kinds of mistake seem particularly common or easy to make?
Which ones?
miss parantesis, misspel the function name

• Do you often find yourself making small slips that irritate you or make you
feel stupid? What are some examples?
-
Closeness of Mapping
• How closely related is the notation to the result that you are describing?
Why?

FUTURE OF SPREADSHEET PROGRAMMING

56

Very close
• Which parts seem to be a particularly strange way of doing or describing
something?
pointing to the functions code
Role Expressiveness
• When reading the notation, is it easy to tell what each part is for in the
overall scheme? Why?
yeah, it's well structured
• Are there some parts that are particularly difficult to interpret? Which
ones?
__
__
__
__
__

• Are there parts that you really don’t know what they mean, but you put
them in just because it’s always been that way? What are they?
__
__
__
__
__

Hidden Dependencies
• If the structure of the product means some parts are closely related to
other parts, and changes to one may affect the other, are those
dependencies visible? What kind of dependencies are hidden?
__
__
__
__
__

• In what ways can it get worse when you are creating a particularly large
description?

APPENDIX A. ANSWERS TO THE SURVEY

57

haven't experienced that one
• Do these dependencies stay the same, or are there some actions that
cause them to get frozen? If so, what are they?
__
__
__
__
__

Progressive Evaluation
• How easy is it to stop in the middle of creating some notation, and check
your work so far? Can you do this any time you like? If not, why not?
you can do this at any time but you have to properly end the formula
• Can you find out how much progress you have made, or check what stage
in your work you are up to? If not, why not?
yes
• Can you try out partially-completed versions of the product? If not, why
not?
__
__
__
__
__

Provisionality
• Is it possible to sketch things out when you are playing around with ideas,
or when you aren’t sure which way to proceed? What features of the
notation help you to do this?
i don't know if it has this feature

FUTURE OF SPREADSHEET PROGRAMMING

58

• What sort of things can you do when you don’t want to be too precise
about the exact result you are trying to get?
__
__
__
__
__

Premature Commitment
• When you are working with the notation, can you go about the job in any
order you like, or does the system force you to think ahead and make
certain decisions first?
I think you can do it in any of the 2 directions write function's code first and then the
fucntion definition or vice versa
• If so, what decisions do you need to make in advance? What sort of
problems can this cause in your work?
__
__
__
__
__

Consistency
• Where there are different parts of the notation that mean similar things,
is the similarity clear from the way they appear? Please give examples.
__
__
__
__
__

• Are there places where some things ought to be similar, but the notation
makes them different? What are they?
no
Secondary Notation
• Is it possible to make notes to yourself, or express information that is not
really recognised as part of the notation?

APPENDIX B. USER TASKS AND QUESTIONS ASKED BEFORE.

59

i don't know
• If it was printed on a piece of paper that you could annotate or scribble
on, what would you write or draw?
describe the function's definition elements
Abstraction Management
• Does the system give you any way of defining new facilities or terms
within the notation, so that you can extend it to describe new things or to
express your ideas more clearly or succinctly? What are they?
new functions
• Does the system insist that you start by defining new terms before you
can do anything else? What sort of things?
no
• Do you find yourself using this notation in ways that are unusual, or ways
that the designer might not have intended? If so, what are some examples?
__
__
__
__
__

• After completing this questionnaire, can you think of obvious ways that the
design of the system could be improved? What are they? Could it be
improved specifically for your own requirements?

 blend the formula tab and the regular tab together

Appendix B. User tasks and Questions
asked before.

 Survey
You have 1 hour to solve this questionnaire, in the 2nd section you will
encounter some programming tasks which you will have 30 mins to solve,

FUTURE OF SPREADSHEET PROGRAMMING

60

the tasks are not used to evaluate your programming skills but to evaluate
the language that you program in.
First you will watch a video (5 mins)
1st. Something about yourself(5 min)
How familiar are you with the concept of Functional Programming?

□1-Not familiar □2 –Somewhat familiar □3 – Familiar □4- Very familiar

□5- Everyday use

How familiar are you with Spreadsheets?

□1-Not familiar □2 –Somewhat familiar □3 – Familiar □4- Very familiar

□5- Everyday use

Do you consider yourself proficient in Formula language use?

□1-Yes □2 –No

Have you used other similar systems? I.e. other data analysis languages like
python, R, Matlab (If so, please name them)
__
__
__
__

What task or activity do you use the system for?
__
__
__
What is the end-product of using the system?
__
__
__
Programming Tasks: Write in both FunCalc and Excel the following
programs. You are not obliged to write all the programs but as much as the
time permits, you are allowed to use the cheat sheet..
Exercise 0. Without defining a function calculate the volume of a sphere.
Defined as V = 4/3 πr³.
Exercise 1. In a quadratic equation (ax2 ± bx ± c), having a negative
discriminant means that the equation has no solution. Create a function
“isSolvable” that calculates the discriminant with given a,b,c as

APPENDIX C. CODE USED FOR DOING A FULL RECALCULATION IN EXCEL.

61

parameters and returns Boolean value “True” if there is solution and ‘False’
if there is not. The discriminant is calculated as follows D = b2 - 4ac. Test it

with 2x2 + 4x − 4 = 0 i.e. a=2,b=4,c=-4.
Exercise 2. In Absurdia you pay for utilities in advance based on estimation,
the estimation is done by calculating the average of the sum of previous 9
months consumption divided by 3 (i.e. the average of 3 slices of 3 month
consumption measures or simply put as the average of 3 quarters of the
year), then the real consumption is balanced after three months and if it is
smaller than the estimate you get money in return, otherwise you have to
give more money to the issuer. Calculate a function that takes array of the
estimate of the 9 months as an array, the real 3-month expenses as
array(which should be summed up) and returns how much money should
you should get or pay to/from the issuer (negative amount meaning that
you consumed more than paid for and a positive amount meaning that you
will get money in return).

Exercise 3. A factorial is mathematical operation which represents the
multiplication of all numbers from 1 to the desired number i.e. 5! =
1*2*3*4*5, Create a recursive factorial function and test it with a Factorial
of 10.

Appendix C. Code used for doing a Full
Recalculation in Excel.

Private Declare PtrSafe Function getFrequency Lib "kernel32" _

Alias "QueryPerformanceFrequency" (cyFrequency As Currency) As Long

Private Declare PtrSafe Function getTickCount Lib "kernel32" _

Alias "QueryPerformanceCounter" (cyTickCount As Currency) As Long

'

Function MicroTimer() As Double

FUTURE OF SPREADSHEET PROGRAMMING

62

'

' Returns seconds.

'

 Dim cyTicks1 As Currency

 Static cyFrequency As Currency

 '

 MicroTimer = 0

' Get frequency.

 If cyFrequency = 0 Then getFrequency cyFrequency

' Get ticks.

 getTickCount cyTicks1

' Seconds

 If cyFrequency Then MicroTimer = cyTicks1 / cyFrequency

End Function

Sub FullcalcTimer()

 DoCalcTimer

APPENDIX C. CODE USED FOR DOING A FULL RECALCULATION IN EXCEL.

63

End Sub

Sub DoCalcTimer()

 Dim dTime As Double

 Dim dOvhd As Double

 Dim oRng As Range

 Dim oCell As Range

 Dim oArrRange As Range

 Dim sCalcType As String

 Dim lCalcSave As Long

 Dim bIterSave As Boolean

 Dim Stringify As String

 Dim inte As Integer

 Dim avg As Double

 Dim popmean As Double

 Dim stdev As Double

 Dim numb As Double

 Dim arr(100) As Double

 Dim zerocount As Integer

 Dim opa As Double

 On Error GoTo Errhandl

FUTURE OF SPREADSHEET PROGRAMMING

64

' Initialize

 dTime = MicroTimer

 ' Save calculation settings.

 lCalcSave = Application.Calculation

 bIterSave = Application.Iteration

 If Application.Calculation <> xlCalculationManual Then

 Application.Calculation = xlCalculationManual

 End If

 sCalcType = "Full Calculate open workbooks: "

 avg = 0

 For inte = 0 To 100

' Get start time.

 dTime = MicroTimer

 Application.CalculateFull

' Calc duration.

 dTime = MicroTimer - dTime

 On Error GoTo 0

 dTime = Round(dTime, 5)

 arr(inte) = dTime

APPENDIX C. CODE USED FOR DOING A FULL RECALCULATION IN EXCEL.

65

 avg = avg + dTime

 Next inte

 popmean = avg / 100

 avg = 0

 For inte = 0 To 100

 avg = avg + (arr(inte) - popmean) ^ 2

 Next inte

 stdev = Math.Sqr(avg / 100)

 numb = ((1.96 * stdev) / (0.005 * popmean)) ^ 2

 MsgBox sCalcType & " " & CStr(numb) & " times", _

 vbOKOnly + vbInformation, "CalcTimer"

 avg = 0

 For inte = 0 To CInt(numb)

 dTime = MicroTimer

 Application.CalculateFull

' Calc duration.

 dTime = MicroTimer - dTime

 On Error GoTo 0

FUTURE OF SPREADSHEET PROGRAMMING

66

 dTime = Round(dTime, 5)

 avg = avg + dTime

 If dTime > 0.01 Then countzeroes = countzeroes + 1

 Next inte

 opa = avg / CInt(numb)

 MsgBox sCalcType & " " & CStr(avg) & " Seconds", _

 vbOKOnly + vbInformation, "CalcTimer"

Finish:

 ' Restore calculation settings.

 If Application.Calculation <> lCalcSave Then

 Application.Calculation = lCalcSave

 End If

 If Application.Iteration <> bIterSave Then

 Application.Calculation = bIterSave

 End If

 Exit Sub

Errhandl:

 On Error GoTo 0

 MsgBox "Unable to Calculate " & sCalcType, _

APPENDIX D. COCHRAN’S FORMULA IN FUNCALC SOURCE CODE.

67

 vbOKOnly + vbCritical, "CalcTimer"

 GoTo Finish

End Sub

NOTE: Due to software bug the division avg/numb is done manually.

Appendix D. Cochran’s formula in
FunCalc source code.

private void BenchmarkWorkbook(WorkbookForm wf, int runs,
string benchmarkName, Func<long> benchmark) {
 Log("=== Benchmark workbook called: ");
 List<double> parts = new List<double>();
 List<double> finalresult = new List<double>();
 Stopwatch stopwatch = new Stopwatch();
 double z = 1.96;
 double stdev = 0;
 double popMean=0;
 for (int i = 0; i < runs; i++) {
 stopwatch.Reset();
 stopwatch.Start();
 benchmark();
 stopwatch.Stop();
 double average = stopwatch.ElapsedMilliseconds;
 parts.Add(average);

 Log(String.Format("[{0}] Average of the {1} runs:
{2:N2} ms",
 benchmarkName, runs, average));
 wf.SetStatusLine((long)(average + 0.5));
 }

FUTURE OF SPREADSHEET PROGRAMMING

68

 popMean = parts.Average();
 stdev = Math.Sqrt(parts.Average(v => Math.Pow(v -
popMean, 2)));
 double n = Math.Pow((1.96*stdev)/(0.005*popMean), 2);
 Log(String.Format("[{0}] is N",
 (int) n));
 double rex = 0;
 int countzeroes = 0;
 if(n>0) {
 for (int i = 0; i < (int) n; i++)
 {
 stopwatch.Reset();
 stopwatch.Start();
 benchmark();
 stopwatch.Stop();
 double average =
stopwatch.ElapsedMilliseconds;
 rex += average;
 if(average>0.01)
 countzeroes++;

 }
 Log(String.Format("[{0:0.0}] is result",
 rex/(double) n));
 }
 else
 {
 Log(String.Format("undefined N"
));
 }
 }

Appendix E. CHEATSHEET

APPENDIX E. CHEATSHEET

69

 Excel programs
Money after interest are calculated by the
formula:
A = P(1 + rt). Where P is the initial amount of
money invested, r is the interest rate and t is
the time.Write a function that calculates the
monetary gain after interest rate.

Eligible for discount. In Munchausen shops,
you are eligible for discount if you are under
18 or above 65, and earning less than 40,000
kronnor. Make a function that checks if you
are eligible for discount.

=LAMBDA(p,r,t,p*(1+r*t))

=LAMBDA(age,income,IF(OR(age<18,AND(age>65,income<4
0000)),TRUE,FALSE))

FUTURE OF SPREADSHEET PROGRAMMING

70

Tax exemption. In Absurdia tax exemption is
calculated based on the sum of the income for
each month divided by four(4). If this results
in a result lower than 50,000 then the person
is exempt from taxation. Create a function
that takes array of incomes as input and
returns “true” if the result is 50,000 else
returns “false”.

=LAMBDA(x,IF(SUM(x)>50000,TRUE
,FALSE))

APPENDIX E. CHEATSHEET

71

The Fibonacci sequence is a sequence of
numbers that Write a function that returns
the N-th Fibonacci number.

=LAMBDA(N,IF(N<=1,0,NFib(N-
1)+NFib(N-2)))

FUTURE OF SPREADSHEET PROGRAMMING

72

Funcalc programs
Money after interest are calculated by the
formula:
A = P(1 + rt). Where P is the initial amount of
money invested, r is the interest rate and t is
the time.Write a function that calculates the
monetary gain after interest rate.

Eligible for discount. In Munchausen shops,
you are eligible for discount if you are under
18 or above 65, and earning less than 40,000
kronnor. Make a function that checks if you
are eligible for discount.

APPENDIX E. CHEATSHEET

73

Tax exemption. In Absurdia tax exemption is
calculated based on the sum of the income for
each month divided by four(4). If this results
in a result lower than 50,000 then the person
is exempt from taxation. Create a function
that takes array of incomes as input and
returns “true” if the result is 50,000 else
returns “false”.

FUTURE OF SPREADSHEET PROGRAMMING

74

The Fibonacci sequence is a sequence of
numbers that Write a function that returns
the N-th Fibonacci number.

APPENDIX F. DICTIONARY AND EXPLANATION OF SOME TERMS

75

Appendix F. Dictionary and explanation
of some terms

UDF= User-defined functions, this includes both SDFs and Lambdas

SDFs= Subcase of UDF, the way UDFs are defined in FunCalc

Excel Lambdas/ Excel UDF= Subcase of UDF, the way UDFs are defined in Excel.

