
Summary

This project explores the energy consumption of software - more specifically it
explores the energy consumption of the microservice architecture compared to the
monolithic architecture. The project utilizes the well described Pet Store example
to provide the solutions that are to be tested for energy consumption.

We create two implementations, one in Java and on in C#. This is in order to
have a reference point for the energy consumption. In order to deploy in similar
environments, and be able to easily deploy on Linux, we use Docker to containerize
the solutions. To mimic users and send requests in a test plan, we utilize the Java
program, JMeter as a client. JMeter is extended with Ultimate Thread Group that
allows for ramping up the amount of requests during testing. Lastly, for the test
setup, we utilize Docker Compose together with NGINX to scale the microservices.
However, this was deemed to be unnecessary due to being restricted to a single test
computer.

The energy consumption is measured using a Rust wrapper of Running Aver-
age Power Limit (RAPL) by Intel. To conduct the tests, a variety of shell scripts are
created to automate testing and to reduce human interference. To further reduce
external factors, like human interference and operating system processes, a mini-
mal install of a server operating system is also installed. Lastly, we also follow a
measurement protocol for a consistent test setup.

To gain a deep picture of the energy consumption between the two architec-
tures, a series of experiments were conducted. One test setup consisted of the
services all utilizing a single shared database. We also setup a test setup, where
each microservice has access to its own database. We do this to conform to our
definition of a true microservice architecture. As one of the pros of running a mi-
croservice architecture is the ability to easily scale the services by spawning new
instances, we also setup a test case where we scale the services with Docker Com-
pose and NGINX. However, these experiments were restricted as the JMeter test
plan was setup to stress test the services and thus by only having 1 test computer,
utilized 100% of the CPU. This meant that scaling the services only spawned more
instances, with the same amount of computing power, leading to only limiting the
throughput.

As our experiments with scaling services were redundant, our results only
speak to the case of a microservice vs. monolithic architecture, in a non-scaling
environment. From this we find that the energy per transaction for C# is 35,29% to
42% higher in the monolithic architecture compared to the microservice architec-
ture depending on the use of individual databases for each service. For Java it is
0% to 41,18% higher. For the future work, we propose a test plan that would ensure
that experiments were not restricted. Moreover, we propose more experiments and
different setups that also lower the threats to validity.

Energy Consumption of Software
Architectures
A comparison between microservice- and monolithic
architectures in C# and Java

Daniél Garrido-Y Martinez Nielsen
Kristian Theilmann Gregersen

Cand.polyt. & cand.scient.
Master Thesis· 30 ECTS
Aalborg University
Department of Computer Science
cs-22-pt-10-01

Computer Science 10th semester
Aalborg University

http://www.aau.dk

Title:
Energy Consumption of Software Archi-
tectures
A comparison between microservice-
and monolithic architectures in C# and
Java

Theme:
Programming Technology

Project Period:
Spring Semester 2010

Project Group:
cs-22-pt-10-01

Participant(s):
Daniél Garrido-Y Martinez Nielsen
Kristian Theilmann Gregersen

Supervisor(s):
Bent Thomsen
Thomas Bøgholm

Copies: 1

Page Numbers: 64

Date of Completion:
June 9, 2022

Abstract:

We explore the energy consump-
tion of architectures of software ap-
plications. We investigate two ar-
chitectures, namely the microservice
and monolithic architecture. We
implement the well described test-
application, Pet Store in the languages
C# and Java, following each architec-
ture. We utilize JMeter, Docker and
a wrapper implementation of Running
Average Power Limit (RAPL) by In-
tel, to setup a test suite where con-
trolled tests are run. Docker Compose
and NGINX are used for scaling mi-
croservice testing. We setup a set of
shell scripts to automatically conduct
the tests. We use a test protocol and a
minimal install of an operating system,
for a consistent test setup. We find that
the energy consumption per transac-
tion in a non-scaling environment for
C# is 43,79% to 38,80% higher in the
microservice architecture compared to
the monolithic architecture depending
on the use of individual databases for
each service. For Java it is 0,86% to
40,30% higher.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface vii

1 Introduction 1
1.1 Motivation . 1
1.2 Java Pet Store . 2

1.2.1 Microservice Candidates . 3
1.3 Problem Hypotheses . 3

2 Technologies 5
2.1 Automation of HTTP Requests . 5

2.1.1 Cypress . 5
2.1.2 JMeter . 6

2.2 Deployment . 6
2.2.1 Docker . 6

2.3 Scaling Microservices . 7
2.3.1 Kubernetes . 7
2.3.2 Docker Compose . 7
2.3.3 NGINX . 7

2.4 System Monitoring . 7
2.4.1 Windows Performance Monitor 8
2.4.2 Docker Stats . 8
2.4.3 Running Average Power Limit 8
2.4.4 Intel Power Gadget . 8
2.4.5 RAPL.rs . 8

2.5 Summary . 9

3 Related work 11
3.1 The hunt for the guzzler: Architecture-based energy profiling using

stubs . 11
3.2 A Comparative Review of Microservices and Monolithic Architectures 12

iii

iv Contents

3.3 Evaluating the monolithic and the microservice architecture pattern
to deploy web applications in the cloud 12

3.4 Performance evaluation in the migration process from a monolithic
application to microservices . 13

3.5 From Monolithic Systems to Microservices: A Comparative Study of
Performance . 14

3.6 Container-based microservice architecture for cloud applications . . 15

4 Methodology 17
4.1 Implementation . 17

4.1.1 Monolithic Architecture . 18
4.1.2 Microservice Architecture . 19
4.1.3 .NET . 20
4.1.4 Java . 21

4.2 JMeter . 21
4.2.1 API Testing . 21
4.2.2 JMeter Thread Groups . 22
4.2.3 JMeter Test Plan . 23
4.2.4 Stepping Load Ramp-Up . 24

4.3 Experiments . 24
4.4 Measurement Protocol . 25
4.5 Test Setup . 26

5 Results 27
5.1 Expectations . 27
5.2 Testing Restrictions . 27
5.3 C# Single Shared Database . 28

5.3.1 Energy Consumption . 28
5.3.2 CPU Utilization . 30
5.3.3 Response Time . 32
5.3.4 Throughput . 33

5.4 C# Individual Microservice Database 33
5.4.1 Energy Consumption . 33
5.4.2 CPU Utilization . 34
5.4.3 Throughput . 35

5.5 Java Single Shared Database . 35
5.5.1 Energy Consumption . 35
5.5.2 CPU Utilization . 37
5.5.3 Throughput . 38

5.6 Java Individual Microservice Database 38
5.6.1 Energy Consumption . 38
5.6.2 CPU Utilization . 39

Contents v

5.6.3 Throughput . 40

6 Discussion 41
6.1 C# Single Shared Database . 41

6.1.1 Energy Consumption . 41
6.1.2 CPU Utilization . 42
6.1.3 Response Time . 42
6.1.4 Throughput . 43

6.2 C# Individual Microservice Database 43
6.2.1 Energy consumption . 43
6.2.2 Throughput . 44

6.3 C# Energy Consumption Ramp-up . 44
6.3.1 Energy Fluctuation . 44

6.4 Java Single Shared Database . 45
6.4.1 Energy Consumption . 45
6.4.2 CPU Utilization . 45
6.4.3 Throughput . 45

6.5 Java Individual Microservice Database 46
6.5.1 Energy Consumption . 46
6.5.2 Throughput . 46

6.6 Java Energy Consumption Ramp-up 46
6.7 Threats to Validity . 49

6.7.1 Local Requests . 49
6.7.2 Business Logic . 49

6.8 Future Test Proposal . 49
6.8.1 Test Setup Proposal #1 . 49
6.8.2 Test Setup Proposal #2 . 50

7 Conclusion 53
7.1 Conclusion . 53

7.1.1 Hypotheses . 54
7.2 Future Work . 54

7.2.1 Scaling of Microservices . 54
7.2.2 Remote Inter-Process Communication 55
7.2.3 External Client . 55
7.2.4 Realism . 55
7.2.5 Architecture . 55

Bibliography 57

A JMeter configuration 61

vi Contents

B Result comparison 63

Preface

This project is a Master Thesis on the 4th semester of the Master of Software and the
Master of Computer Science at Aalborg University. All code and implementations
can be found on GitHub at https://github.com/orgs/P10-energy-consumption/
repositories as well as RAPL.rs at https://github.com/cs-21-pt-9-01/rapl.
rs. This project spans from 1st of February 2022 to 10th of June 2022. The project
is supervised by Bent Thomsen1 and Thomas Bøgholm2.

Aalborg University, June 9, 2022

Daniél Garrido-Y Martinez Nielsen
<dgmn17@student.aau.dk>

Kristian Theilmann Gregersen
<kgrege16@student.aau.dk>

1https://vbn.aau.dk/da/persons/110568
2https://vbn.aau.dk/da/persons/112525

vii

https://github.com/orgs/P10-energy-consumption/repositories
https://github.com/orgs/P10-energy-consumption/repositories
https://github.com/cs-21-pt-9-01/rapl.rs
https://github.com/cs-21-pt-9-01/rapl.rs
https://vbn.aau.dk/da/persons/110568
https://vbn.aau.dk/da/persons/112525

Chapter 1

Introduction

In the field of energy aware programming, studies have shown that coding style[5]
[25], choice of programming language[4] and implementation specific details[23],
all affect the energy consumption of a program. However, in order to fully develop
a system that is energy aware, the software architecture should also be consid-
ered. The microservice architecture has already been widely adopted as a way to
organize code due to its ability to scale and structure software, along with other
advantages. While the microservice architecture is popular, it usually comes with
different definitions. Some use it to organize code in smaller repositories, while
others use it as a mean to easily scale applications. In this project, a microservice
architecture is an architecture where an application is split into different services
that each have access to its own database. However, structuring code as microser-
vices, also increases the quantity of requests that an application produces, in order
to communicate between the services. This likely also means an increase of energy
consumption. However, to which order the energy consumption increases, is still
an unknown. In this project, we investigate the energy consumption of microser-
vice architecture, compared to a monolithic architecture.

This project is built on top of [22] and we will refer to this source throughout
the project.

1.1 Motivation

The motivation behind this project arose from researching different architectures
to compare. We studied an article that compared the resource allocation of mi-
croservices against monolithic architecture[16]. A graph from the article, quoted in
Figure 1.1, says that it can be expected that microservices will outperform a mono-
lithic architecture in terms of memory and that this trend only increases when the
number of instances increases.

1

2 Chapter 1. Introduction

Figure 1.1: "Monoliths require more resources than Microservices, as more instances are running"[16]

In this project, we want to create a similar comparison. However, we are fo-
cusing on the energy consumption of the two architectures, when the number of
instances increases.

1.2 Java Pet Store

A well described example that developers are familiar with is the Pet Store ex-
ample. The Pet Store has its origins from May 2001 where Sun Microsystems
presented the Pet Store solution implemented in Java. The goal of the solution was
to showcase the best practices for developing J2EE™-based Web applications[20].
In November of 2001, Microsoft also implemented the Pet Store using their .NET
environment. The purpose of the .NET implementation was to demonstrate how
C# and .NET performed better than the Java implementation, and Microsoft also
presented benchmarks results alongside the implementation. As the Pet Store is
a well described example, the team providing the API documentation tool Swag-
ger1, also provides an implementation of the Pet Store, both for showcasing the
documentation tool2, as well as for their online editor3. In this project, we use the
official Swagger documentation of the Pet Store, as a basis for our implementation
of a monolithic- and microservice back-end. We searched GitHub for existing so-
lutions and found the solution 4, from which we utilized the native SQL queries as
well as the database creation script.

1https://swagger.io/
2https://petstore.swagger.io/
3https://editor.swagger.io/
4https://github.com/HenrikDK/PetStore

1.3. Problem Hypotheses 3

1.2.1 Microservice Candidates

Following the Pet Store example provided by Swagger, as well as a solution found
at https://github.com/HenrikDK/PetStore, we extract three overall services: Store-
Service, PetService and UserService. We use these services as our base implemen-
tation with the possibility to extend each service with more functionality if needed.
To facilitate communications between a hypothetical front end and the services,
we also implement a GatewayService that functions as a middleware between the
front- and back end.

1.3 Problem Hypotheses

To sum up the introduction chapter, we create a list of hypotheses based on the
motivational section that we will study and try to confirm or deny in this project:

1. The monolithic architecture has a higher throughput / has a higher measur-
able performance, than the microservice architecture.

2. With no scaling, the energy consumption of the monolithic architecture, will
be lower

3. Scaling the microservices will cause the microservice architecture to outper-
form the monolithic architecture in terms of power consumption, eventually.

https://github.com/HenrikDK/PetStore

Chapter 2

Technologies

In this chapter, we describe the different technologies that make up the tool-set that
we utilize to conduct experiments. We base this chapter on the source [22]. For
a detailed explanation for why different technologies were chosen, please refer to
the source. For technologies that were considered in this project, we describe why
they ultimately were chosen or discarded.

2.1 Automation of HTTP Requests

As we investigate the energy consumption of microservices, we will need a way of
sending HTTP requests to the services and the monolith, containing the relevant
data for the endpoints. To reduce human interference in the experiments, we con-
sidered different technologies and approaches to automate the process of sending
requests.

2.1.1 Cypress

Cypress1 is a JavaScript library for creating automated end-to-end tests written in
JavaScript. The library supplies tools for asserting that specified HTML elements
occur on a website. Moreover, Cypress also enables the monitoring of the relevant
HTTP requests on a given website. For example, in a webshop, Cypress can moni-
tor that the request for getting the product data, is being sent and it can assert on
the HTTP response code. Cypress can also intentionally make sure that the request
fails or is in a loading state, to assert that the correct loading elements are being
shown. Though that Cypress provides a lot of relevant functionality, we decide on
not utilizing it, due to a combination of not having a front-end service, but also for
lacking functionality for our experiments.[6]

1https://www.cypress.io/

5

6 Chapter 2. Technologies

2.1.2 JMeter

JMeter is a Java application, created to do load testing on web-sites, but has since
then expanded to be able to load test a multiload of services, while measuring
the performance of the testing. Like Cypress, JMeter has functionality for sending
HTTP requests. However, where Cypress does not provide functionality for scaling
tests, JMeter provides functionality for specifying number of threads (users), to
send the specified requests. Moreover, JMeter provides the ability to iteratively
send these requests and the ability to specify for how long the tests should run,
along with other relevant features such as a ramp-up period specifying how long
JMeter should take to start a specified number of threads. Additionally, you are
also able to define the request itself and you are capable of setting a request body
or query parameters. As we want to be able to continuously send requests to our
services, as well as to be able to control the parameters for how these requests are
being sent, JMeter is chosen as the tool for testing our services.[15]

2.2 Deployment

Working with web applications, a form of deployment is needed. Simply deploying
locally with a web server is a possibility but we look to find other possibly smarter
options, as we want to deploy on a Linux computer in similar environments be-
tween the services. Moreover, we will need to be able to scale the microservices,
which also emphasizes the importance of deployment technologies. Though, exter-
nal services, applications and other most likely consume power themselves which
should be considered during the collection of data.

2.2.1 Docker

Docker is an application allowing the ability to package software into containers
that contain the needed libraries and tools to run the software [2]. Docker eases
the deployment of applications along with the development and experiment of the
implementations in relation to Operating System usage. Docker also allows for
the C# and the Java version to run in similar environments. A tool for building
the application and a Dockerfile describing the web server and a description of
moving the built application to the web server is all that is needed for deploying
in a Docker container.

This also ensures that nothing more than the web server running the application
is running in the container and keeps the application isolated on the host machine.
This allows for the possibility to isolate the performance of the container and thus
the individual application.

Based on the ability to isolate the performance of each application, we choose
to utilize Docker as a method of deployment.[7]

2.3. Scaling Microservices 7

2.3 Scaling Microservices

One of the main motivations for using microservices is the ability to scale services
such that whenever response times become increasingly high, a new instance of
a service can be started on a new server. This way, the load may be distributed
between the active instances to offload the services. This requires a way to organize
and scale the individual services together with a load balancer to distribute load.

2.3.1 Kubernetes

Kubernetes is a Docker container orchestration tool. It allows for a detailed con-
figuration of Docker containers that enables Kubernetes to facilitate a resilient and
secure deployment environment. Kubernetes handles auto-scaling, what to do
when services fail, load-balancing and more. Kubernetes serves a complex deploy-
ment environment, but requires a lot of setup. For this project Kubernetes seems
excessive and requires a long setup period.[17]

2.3.2 Docker Compose

Docker Compose provides the ability to scale individual services by instantiating a
specified amount of instances and automatically manage and assign them available
ports. Simply referencing the exposed Docker container ports will grant access to
the service. As a simpler alternative to Kubernetes, Docker Compose is ideal and
chosen for managing the scaling as we use Docker for deployment.

2.3.3 NGINX

As we refrained from using Kubernetes, we need another load-balancer to dis-
tribute the requests to the services. Together with Docker Compose, NGINX may
be used as a load-balancer by forwarding requests and will automatically refer-
ence the correct ports assigned in the Docker Compose setup. Given the ease of
setup and coupling NGINX with the microservice application, it is used as a load-
balancer for our applications.[21]

2.4 System Monitoring

While testing the services for energy consumption, we need to be able to monitor
the energy consumption of the services. Moreover, it would be beneficial if we
monitor the computer for other metrics such as memory consumption, CPU usage
and network usage, as we will be more able to determine what causes the en-
ergy consumption. This is helpful to eliminate other factors such as the operating
system doing background tasks, and cross referencing the test results.

8 Chapter 2. Technologies

2.4.1 Windows Performance Monitor

Windows Performance Monitor, or PerfMon, is a tool created by Microsoft to mon-
itor the system. The tool enables one to create a range of custom data collectors,
wherein you can specify metrics to monitor. For example, you can create a data
collector, which monitors how many megabytes of memory are available. The tool
also allows for specifying how often PerfMon should monitor the given metric and
then log the output. Though PerfMon allows for detailed system monitoring, it
will not be utilized in this project due to the need of utilizing a Linux operating
system.[18]

2.4.2 Docker Stats

Docker Stats is a CLI command that one can provide to monitor the resource uti-
lization of a Docker container. It is able to monitor memory consumption, CPU
utilization, network recources and more. As we will deploy the services using
Docker, Docker Stats is ideal for measuring the resource utilization of the different
services.[8]

2.4.3 Running Average Power Limit

Running Average Power Limit or RAPL, is a tool created by Intel, to measure the
energy consumption of the CPU, RAM and GPU in case of integrated graphics.
It provides a detailed overview of different domains of the CPU and in turn al-
lows for a detailed overview of where power is being consumed. For a detailed
description of how RAPL functions, please visit chapter 3, in [22].[13]

2.4.4 Intel Power Gadget

Intel Power Gadget is a high level implementation of RAPL. It allows for monitor-
ing the energy consumption of the CPU, RAM and GPU, as well as general usage.
Intel Power Gadget provides the same functionality as RAPL and runs on the same
platforms. However, you are restricted in the sense that you can not customize how
often the system is being monitored and logged. Intel Power Gadget also provides
the ability for starting the monitoring through a shell.[12]

2.4.5 RAPL.rs

RAPL.rs is an implementation of the RAPL tool provided by Intel, and is partly
created by the authors of this project. The tool is a wrapper for RAPL written in
Rust. Other than allowing the ability to run a specified application from within
RAPL.rs, a logging session parallel to the running application is started to cap-
ture the energy consumption of the application. Thus, the RAPL logs provided by

2.5. Summary 9

RAPL.rs only contain information from the session of running the specified appli-
cation skipping the otherwise necessity of filtering and processing the RAPL data.
For a detailed description of the RAPL.rs tool, please visit section 4.2 in [22].

2.5 Summary

In summary, the technologies for setting up the test-setup comprises of a Docker
setup, where the services will be running in containers in Docker. Docker enables
us to easily scale and spawn instances of the microservices with Docker Compose
and eases the deployment of the services to the Linux operating system. Together
with Docker Compose, NGINX will be used as a load-balancer to distribute the
requests when scaling the microservices. The operating system has to be a Linux
operating system to be able to measure the energy consumption by using RAPL.rs.
JMeter will be used to send requests to the services, which allows us to monitor
statistics and be able to specify the amount of users, allowing for easy ramp-up of
users to explore different loads. Finally, for monitoring the test computer, we uti-
lize Docker Stats together with JMeter statistics, to monitor memory consumption,
response time and CPU usage. For measuring the energy consumption, RAPL.rs
will be utilized.

Chapter 3

Related work

In this chapter, a technique for isolating energy consumption within an application
together with the state of the art related to tools and methodology for measur-
ing performance of applications with microservice and monolithic architecture is
presented.

3.1 The hunt for the guzzler: Architecture-based energy pro-
filing using stubs

[14] presents a method for determining which parts of a software architecture
draws the most power. They achieve this by studying the product application
’City Explorer’, a dutch application that serves over 8000 annually. In the paper,
they utilize JMeter together with bash scripts to automate testing, and they utilize
Microsoft Joulemeter, as well as a WattsUp? Pro to determine the energy consump-
tion. In the hunt of determining which parts of a software architecture consumes
the most amount of power they present the sTEP method. The sTEP method com-
prises of different phases that make up the testing routine. In short, one have to
select a functional component and describe what the component serves to do. Then
you create an energy profile of the component by creating a test case for the com-
ponent. Once you have a baseline energy profile, the next phase in sTEP method
is to introduce stubbing, meaning that the component should do less computing.
After stubbing the component, once again you create a description of the stubbed
component and perform the same tests to create a new energy profile. The differ-
ence of power consumed between the stubbed element and the original, serves to
provide information about the energy consumption of that exact element.

11

12 Chapter 3. Related work

3.2 A Comparative Review of Microservices and Monolithic
Architectures

[1] compare an implementation with monolithic architecture to one with a mi-
croservice architecture in relation to performance.

JHipster is utilized to generate a web application with a microservice architec-
ture. JMeter is then used to test the performance in two test scenarios, namely load
testing and concurrency testing. Lastly, a scenario testing the impact of different
technologies is performed. The performance metrics captured are the throughput
and response time.

JMeter is installed on a remote client and connected to the server through an
Ethernet cable with Docker used to run the applications.

Load testing is performed by investigating the impact of increasing the user
amount. 100 threads and a ramp-up of two minutes and a ’hold-time’ of two min-
utes is utilized in the start where the number of threads is gradually increased until
7.000 threads. Results show that the throughput around 100 threads is significantly
better on a monolithic architecture. The increase of threads brings the throughput
closer for both architectures and results in an average difference of 0.87%. The
amount of processed requests is also higher on a monolithic architecture when
utilizing a lower amount of threads where the advantage is shifted towards the
microservice architecture when the amount of threads is increased.

Concurrency testing is performed by sending 100 requests to each service with
no ramp-up time and a gradually increasing amount of requests until 1.000 re-
quests. This is to check the performance of the application with all services in use.
The results show an average throughput increase for monolithic architecture com-
pared to microservices of 6%. Though, no significant difference could be observed
in relation to response time.

Lastly, 10.000 threads are used throughout 20 minutes of total runtime consist-
ing of 10 minutes of ramp-up with five step ups increasing the number of threads
by 2.000 until 10.000. After 10.000 threads are reached, the hold time is set to 10
minutes. JHipster utilizes a service discovery tool called Eureka but a new tool
called Consul was added to the configurations in order to examine performance
differences. Consul had a higher throughput of about 3.8% together with little
better response time.

3.3 Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud

[28] also create two implementations of an application. One with monolithic ar-
chitecture and another with microservice architecture. The implementations are

3.4. Performance evaluation in the migration process from a monolithic application to
microservices 13

created with the Play web framework in Java.
JMeter is used to experiment with the performance. JMeter is configured to

perform 30 requests per minute to one service, S1, and 1.100 requests per minute to
another service, S2, for 10 minutes. Results show that the average response time for
the monolithic architecture of S1 was lower than for the microservice architecture.
Although, the microservice architecture had a slightly lower average response time
for S2.

Microservices offer the advantage of being able to have small teams to main-
tain independent codebases using a more practical methodology in contrast to the
monolithic architecture.

3.4 Performance evaluation in the migration process from a
monolithic application to microservices

[11] examine the process of migrating from a monolithic application to microser-
vice architecture with the help of models such as NGINX and IBM. An initial
monolithic implementation is created using PHP programming language (1). Af-
terwards, the implementation programming language is changed to Java (2). Sub-
sequently, services are identified and implemented using RESTful Web Services
with design patterns (3) and without design patterns (4). Lastly, the microservices
are fully implemented with frameworks and tools such as Spring Boot, Eureka and
Zuul with design patterns (5) and without design patterns (6).

The performance of the different implementations is examined using JMeter.
JMeter is configured to create 10, 100 and 1.000 threads simultaneously accessing
10.000 database records. Results show that failed executions are more frequent in
implementations without design patterns. The CPU usage across all implementa-
tions are more or less the same. In regards to memory usage, the lowest memory
consuming implementation is (1) but it should be noted that this implementation
failed 100% of executions. The lowest memory consumption in relation to failed
executions, is implementation (5). Implementation (3), (4), (5) and (6) utilized the
network more than (1) and (2). This is to be expected as microservices utilize
the network to make requests in contrast to regular function calls in monolithic
implementations.

The performance in regards to the database is based on response time. The
lowest response time in relation to failed executions, is implementation (5) followed
by (3). It is concluded that performance-oriented patterns enhance the performance
in regards to multiple aspects. Even more when they are combined with REST
architecture.

14 Chapter 3. Related work

3.5 From Monolithic Systems to Microservices: A Compar-
ative Study of Performance

[27] examines a monolithic application running on a virtual server with KVM (Sce-
nary 1) is compared to a microservice application running in Docker containers
(Scenary 2) utilizing stress tests with the same hardware setups. A Non-Parametric
regression model is applied to explain the dependency relationships between var-
ious performance variables.

Two JMeter cases are created. Case one consists of 273 requests, 10.000 gener-
ated data, 30 repetitions, three threads and three terminals. Case two consists of
1.053 requests, 20.000 generated data, 70 repetitions, five threads and three termi-
nals.

Both cases are executed with JMeter GUI to view processed data. JMeter re-
quest results in Table 3.1 show that the microservice application is better at han-
dling requests. Both in terms of throughput and overall speed for both cases while
consuming more network data.

Furthermore, performance values in relation to hardware utilization and JMeter
request results can be seen in Table 3.2 which show that the monolithic applica-
tion utilizes the CPU less while utilizing disk and memory more. To no surprise,
the microservice application utilizes the network more while still maintaining rel-
atively low overall hardware utilization.

Overall, the microservice architecture outperforms the monolithic application
in terms of efficiency. Though, as microservices communicate through network,
slow and communication failure might occur making the architecture significantly
more complicated in its nature.

Case 1 Case 2
Scenary 1 Scenary 2 Scenary 1 Scenary 2

Total requests 1053 1053
OK 273 273 1051 1053
Error 0 0 2 0
Duration time 00:01:50 00:01:29 00:14:17 00:12:08
Requests/s (average) 2.5/s 3.1/s 1.2/s 1.4/s
Duration per request
Min 7 ms 4 ms 22 ms 8 ms
Max 3677 ms 2793 ms 35,784 ms 10,832 ms
Average 1150 ms 936 ms 3934 ms 3411 ms
Median 695 ms 312 ms 2548 ms 715 ms
Standard deviation 1094.66 ms 1082.4 ms 38.05 ms 4220.21 ms
Total data
Received 85,014.43 KB/s 105,193.29 KB/s 86,342.29 KB/s 102,433.12 KB/s
Sent 0 KB/s 0 KB/s 0 KB/s 0 KB/s

Table 3.1: Results of the stress test of both scenarios from [27].

3.6. Container-based microservice architecture for cloud applications 15

Calculation
CPU

Consumption
(%)

Disk
Reading
(MB/s)

Disk
Writing
(MB/s)

Memory
Consumption

(MB)

Network
Reception

(B/s)

Network
Transmission

(B/s)
Monolithic 2.3877 3.833604 12.40030 4.525155 3.285871 3.129852

Microservices 7.851149 3.833604 3.168329 2.887646 10.48274 4.505547

Table 3.2: Calculation of performance values from [27]

3.6 Container-based microservice architecture for cloud ap-
plications

[26] proposes a deployment methodology together with results from experiments
on the performance differences between a monolithic and a microservice web ap-
plication implementation. Additionally, scalability and deployment time is ana-
lyzed in relation to monolithic and microservice architecture.

JMeter is used to experiment with performance and two tests are performed.
In the first test, JMeter created 50 threads with a ramp-up time of 10 seconds
and a loop count of 1. With a low amount of threads, the difference in response
time is negligible while the performance for microservice architecture compared to
the monolithic architecture gradually increases along with the amount of threads
suggesting better performance when more load is applied.

In the second test JMeter created 2.000 threads with a ramp-up time of 100
seconds and a loop count of 10. Results show that the microservice architecture
outperforms the monolithic implementation. The load is distributed between in-
stances of services running in the microservice implementation while the mono-
lithic implementation need the whole application to process a single request. As
with the first test, the microservice architecture performance increases gradually
compared to the monolithic architecture in relation to throughput.

In regards to scalability and deployment time, the microservice architecture is
favored due to only needing to apply changes to individual services in contrast to
the whole application.

Chapter 4

Methodology

We present the methodology that we follow in order to create a consistent and
reliable test setup that in turn enables us to gather clean data. We describe how we
implement our test systems and what technologies we use to test and measure the
energy consumption of said systems. We describe in depth the test setup and the
testing protocol we use.

4.1 Implementation

Following the microservice candidates we defined in 1.2.1, we implement each
service. The structure of the different implementations are described in Figure 4.2
and Figure 4.3 with their respective endpoints described in Table 4.1, 4.2 and 4.3.

As the Pet Store was originally developed in C# and Java, we also decide on
this. We create two implementations in the two languages to examine whether
performance tendencies can be seen or if we are able to find performance dis-
crepancies between the implementations. This also enables us to more accurately
determine how the architecture itself contributes to the energy consumption. For
POST- and PUT-requests, the services receive data formatted in JSON (JavaScript Ob-
ject Notation) as parameters, while in GET- and DELETE-requests, we follow RESTful
standards and parse the parameters in query parameters through the URL path.
Examples of each type can be seen in Table 4.1 with {id} denoting the path pa-
rameter and {status} denoting the query parameter.

17

18 Chapter 4. Methodology

HTTP Method URL Path Description

GET /pet/{id}
Fetches a pet with the
specific ID in the store

POST /pet Adds a pet to the store
PUT /pet Update a pet in the store

DELETE /pet/{id}
Deletes a pet with the
specific ID in the store

GET /pet/findByStatus?status={status}
Fetches all pets with the
specific status

Table 4.1: Pet service endpoints.

HTTP Method URL Path Description
GET /user/{username} Fetches a user with the specific Username
POST /user Adds a user
PUT /user Update a user
DELETE /user/{username} Deletes a user with the specific Username

Table 4.2: User service endpoints.

HTTP Method URL Path Description
GET /store/inventory Fetches amount of pets for each status
GET /store/order/{id} Fetches an order with the specific ID
POST /store/order Adds an order
DELETE /store/order/{id} Deletes an order with the specific ID

Table 4.3: Store service endpoints.

For the database, we utilize the database implementation that was found in
the solution described in section 1.2. We use this design in order to save time.
Though database selection may affect the energy consumption, this is not in the
research-scope of this project. The PostgreSQL database consists of four tables.
Namely, order, pet and user with a variety of columns of different types to vary
the processed data in the services. The database structure can be seen in Figure 4.1.

4.1.1 Monolithic Architecture

Figure 4.2, depicts the architecture of the monolithic Pet Store. We expose three
endpoints, which all access their own respective repository. The repositories live
in the data access layer, which has a direct connection to a PostgreSQL database.

4.1. Implementation 19

pet

id integer

name character varying

category integer

status integer

tags character varying

created timestamp

createdby character varying

modified timestamp

modifiedby character varying

deleted timestamp

deletedby character varying

isdelete boolean

order

id integer

petid integer

quantity integer

shipdate timestamp

status integer

complete boolean

created timestamp

createdby character varying

modified timestamp

modifiedby character varying

deleted timestamp

deletedby character varying

isdelete boolean

user

id integer

username character varying

firstname character varying

lastname character varying

email character varying

passwordhash character varying

salt character varying

phone character varying

status integer

created timestamp

createdby character varying

modified timestamp

modifiedby character varying

deleted timestamp

deletedby character varying

isdelete boolean

Figure 4.1: PostgreSQL database structure.

Database

PostgreSQL Server

Docker
Container API

Data Access
Layer

StoreRepository PetRepository UserRepository

API Gateway

StoreController PetController UserController

Monolithic Server

Figure 4.2: Monolithic Architecture

The controllers expose the endpoints and is where the requests will hit the ser-
vice. Often a layer containing the business logic will exist between the controllers
and the data access layer. However, extra logic is not necessary for the our testing.

4.1.2 Microservice Architecture

Figure 4.3 depicts the architecture of the Pet Store, organized in microservices.
The architecture consists of an API gateway, which exposes the same endpoints
as the monolithic solution. However, whereas the monolith directly accesses the
datalayer, the API-gateway distributes the requests to the respective service.

20 Chapter 4. Methodology

Docker
Container API

Micro Service
Access Layer

StoreRepository PetRepository UserRepository

API Gateway

StoreController PetController UserController

Docker Container

API

PetRepository

Service API

PetController

Pet Micro Service

Data Access
Layer

Docker Container

API

StoreRepository

Service API

StoreController

Store Micro Service

Data Access
Layer

Docker Container

API

UserRepository

Service API

UserController

User Micro Service

Data Access
Layer

Database

PostgreSQL
Server

Micro Service Server

Figure 4.3: Microservice Architecture

Each service, exposes the same functionality as the repositories in the mono-
lithic solution. Likewise, in each service, the repositories live in the data access
layer and each have a direct connection to the PostgreSQL database.

4.1.3 .NET

The .NET implementation of the architecture, takes it starting point in the ASP.NET
Core Web API template. The template contains an example controller that imple-
ments a RESTful service. Moreover, the template also contains a Docker container.
The .NET version implements the architecture described in subsection 4.1.1 and
4.1.2. Dependency injection is setup to manage the repositories and the specific
implementation is thus injected into controllers at runtime. The default resource
lifecycle is RequestScoped which means a new instance of a resource is created
with each new request in contrast to a singleton with only one instance per appli-
cation.

The .NET implementations are written in .NET 6.

4.2. JMeter 21

4.1.4 Java

Following the same architecture described in subsection 4.1.1 and 4.1.2, two Java
implementations are created with their respective architecture. Jakarta RESTful
Web Services (JAX-RS)1 is utilized to create service resources along with WildFly
25.0.0.Final2 for deployment of the services.

For the monolithic implementation, an incoming request handled by an end-
point in a Controller is converted to a POJO (Plain Old Java Object) with the ex-
ception of endpoints accepting Path and Query parameters. The POJOs are then
converted into regular Java objects with types such as dates. This is done for easy
object and data manipulation and interaction. The data received by the endpoint is
further sent to Repositories to be included in native SQL queries. The queries are
simply executed through an open database connection and the result is returned
back to the Controller. Lastly, a response of the result is built and returned to the
client.

With the case of the microservice implementation, as described in subsec-
tion 4.1.2, the API-gateway is required to send the request further to the respon-
sible microservice Controller. In order to achieve this, the raw request received is
attached to a new regular HTTP request and sent to the respective service. The
individual services are then responsible for serializing the result for the response.
Lastly, the HTTP responses are deserialized when needed for the API-gateway re-
sponse. Other than that, the functionality remains the same as with the monolithic
implementation.

Likewise, as with the .NET implementation, the JAX-RS default resource life-
cycle is RequestScoped.

4.2 JMeter

As a part of automation and minimizing human interference, JMeter 5.4.3 is uti-
lized to automatically send requests to our services3. Which tests we want to
conduct and the JMeter configurations to execute the tests are described in this
section.

4.2.1 API Testing

To fully explore the performance of the implementations under different loads,
one would preferably configure a set of test plans that each test a specific attribute.
Services often undergo extensive testing to make sure that the service in question

1https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html
2https://www.wildfly.org/news/2021/10/05/WildFly25-Final-Released/
3https://jmeter.apache.org/usermanual/component_reference.html

https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html
https://www.wildfly.org/news/2021/10/05/WildFly25-Final-Released/
https://jmeter.apache.org/usermanual/component_reference.html

22 Chapter 4. Methodology

is able to handle the expected amount of users. Below is a set of test that a service
might undergo before reaching production.

• Spike testing (∼30% CPU utilization with Random 100% CPU utilization)

• Linear Load Ramp-Up (Linearly increase thread count)

• Stepping Load Ramp-Up (Gradually increase thread count)

However, in this project we are not interested in testing if the services are ca-
pable of handling different levels of load, but rather interested in the energy con-
sumption across the different levels of load. Because of this, we setup the JMeter
test plan to follow a Stepping Load Ramp-Up test methodology. To run a Stepping
Load Ramp-Up test, we set up a set of requests in JMeter which each utilize every
endpoint of the services. To control the load and increasingly ramp-up the load,
we configure JMeter to control the number of threads for a given time period. How
this test is conducted in described in subsection 4.2.4.

4.2.2 JMeter Thread Groups

As a way to structure your JMeter test plan, JMeter provides thread groups. A
thread group is a controller for threads determining the number of threads, how
long JMeter should spend starting the threads and how many times a test should
be repeated. This means JMeter also gathers what requests the threads should be
making.

4.2. JMeter 23

Figure 4.4: JMeter Thread Groups and Requests

Whenever a thread is spawned in a thread group, the test (collection of the
requests) in the group is executed in order. In our test plan, we utilize three thread
groups: a setup thread group, a testing thread group and a tear-down thread
group. Figure 4.4 depicts the requests that make up the test plan. The figure also
depicts the three thread groups.

The setUp thread group is responsible for setting up the database content and
prepare for testing by making 100 post requests to each service while tearDown is
responsible for cleaning up after testing leaving an empty database. The Clients
thread group is responsible for the actual testing by making requests to endpoints
retrieving and manipulating data.

4.2.3 JMeter Test Plan

The test plan described in section 3.2 from [1] uses the same form of thread count
ramp-up by gradually increasing the amount of threads running concurrently. The
thread count increases from 100 to 7.000 with a ’hold-time’ of two minutes.

The test plans used in [26] described in section 3.6 uses a form of ramp-up as
well. Though, in their case, it is done linearly from zero to 50 threads and another
test from zero to 2.000.

Similar to the studies described in section 3.3, 3.4 and 3.5, we perform a test
to measure and record the response time and throughput of the applications in an
attempt to compare performance of monolithic and microservice applications.

24 Chapter 4. Methodology

By researching similar papers mentioned in chapter 3, we aim to create a test
plan which takes inspiration from the related work, but also fits the testing needs
in this project.

4.2.4 Stepping Load Ramp-Up

JMeter is extended with a plugin called Ultimate Thread Group4 used to create thread
groups allowing for a ramp-up in thread count by more than one unlike the stan-
dard ramp-up period simply allowing a linear thread count increase. This thread
group is used in conjunction with the Clients thread group to steadily increase
load after a specific delay. Every seven and a half minutes, the thread count is in-
creased in order to record performance of the implementation in a single test. In a
seven and a half minute test run, no anomalies in response times were uncovered,
justifying the length of the test for a given thread count.

Figure 4.5: Clients thread group configuration - visualized

The total number of threads, together with how the thread count is being
ramped up, is depicted in Figure 4.5. The exact configuration can be seen in Ta-
ble A.1 and A.2 in the appendix. The increase amount is doubled at thread count
100 and 400 to speed up the test plan. The response time and energy consumption
is recorded and examined afterwards which means we are able to uncover whether
a significant event occurs in between each thread count increment.

This specific test plan is used for all testing.

4.3 Experiments

An experiment with a singular shared database server is to be conducted as this is
a common occurrence for monolithic applications.

Furthermore, a test giving each service their own database running in Docker
containers to manage is conducted exploring how this would impact the response
time and energy consumption. Having a database instance with only data needed

4https://jmeter-plugins.org/wiki/UltimateThreadGroup/

4.4. Measurement Protocol 25

for that service is needed to stay true to the concept of microservices in relation
scalability and the management of individual services [9].

The summary, the following experiments will be conducted:

• Singular shared database server

• Individual database server

4.4 Measurement Protocol

To further decrease the error margin and human interference and increase valid-
ity, we setup a measurement protocol. The measurement protocol consists of a
set of shell scripts that automatically execute the test plan that we are to run. In
total we create three shell scripts: TestSystemBuildAndKillDocker.sh is respon-
sible of building and starting the relevant Docker containers and lastly kill the
Docker processes when the test is over. TestSystemJMeterRunTestPlan.sh sim-
ply starts with a sleep command followed up by the execution of a JMeter test
plan and ending with a sleep command. The sleep commands are used to gather
idle data used for comparing how much energy the individual applications con-
sume. Lastly, TestSystemRunAllBenchmarks.sh handles all the timing of start-
ing the TestSystemBuildAndKillDocker.sh process, starting process of gathering
hardware utilization metrics and starting RAPL.rs with the TestSystemJMeterRunTestPlan.sh
shell script.

To further ensure validity for each test, we define a measurement protocol that
executes each of the shell scripts. The measurement protocol also ensures that we
follow a set of steps to make each as equal as possible.

1. Restart system

2. Run test script

(a) Build and run services

(b) Start logging Docker hardware utilization

(c) Execute JMeter test plan

(d) Stop services and logging

(e) Repeat step (a), (b), (c) and (d) for next application

RAPL.rs is responsible for executing the JMeter test plan and ensures that en-
ergy consumption from RAPL is logged to a file. JMeter creates log files containing
results in relation to throughput, response time, etc. from the execution of a test
plan while a background Docker Stats process logs hardware utilization metrics.

26 Chapter 4. Methodology

4.5 Test Setup

A single test setup was used consisting of a single test system in order to en-
sure consistency and validity in results obtained from testing. The system and the
tests are conducted in the same location as to reduce the impact of external fac-
tors and limit the factors to the individual implementations and their respective
performance.

The test system hardware specifications can be seen in Table 4.4 and the soft-
ware specification in Table 4.5.

Hardware Specification
Computer type Dell OptiPlex 5050 (07A2)
Motherboard Dell 0WWJRX

RAM
2x 8GB; 2400 MHz; DDR4; DIMM;
Micron Technology (8ATF1G64AZ- 2G3B1) and
Hynix Semiconductor (HMA81GU6AFR8N-UH)

CPU
Intel i7-6700; Skylake; 3.4GHz
(overclock: 4.2GHz); 64bit; clock 100MHz

GPU Integrated
Disk 256GB SSD; INTEL SSDSC2FK25

Table 4.4: Hardware specification of test system.

Software Specification
Operating system Ubuntu Server 21.10, minimal install
Login manager lightDM
Window manager i3 (X11)
C# .NET 6.0
Java OpenJDK 11.0.12+7-Ubuntu-0ubuntu3
PostgreSQL PostgreSQL 14

Table 4.5: Software specification of test system.

We made sure to install Ubuntu Server 21.10 as a minimal install, to reduce
energy consumed by background processes of the operating system. A common
practice in a measurement protocol is to close unrelated processes running on the
operating system. However, as we have made sure to install this specific operating
system, almost no unnecessary processes are running. Moreover, we have not
installed any other programs than what has been necessary to run the tests.

Chapter 5

Results

In this chapter we describe the results from running the test plans described in sub-
section 4.2.4 using the measurement protocol mentioned in section 4.4. However,
in chapter 6 we will discuss the findings and explain the various results.

5.1 Expectations

Before presenting the results, we will share what we expect from the testing. After
having studied the article[16] mentioned in section 1.1, we expect the monolith to
perform better in terms of throughput, response time while facilitating fewer total
requests. However, as depicted in Figure 1.1, we expect that the more instances
that is instantiated, the lower the resource utilization becomes for the microser-
vice architecture, when compared to the monolithic architecture. From this, we
also expect for the energy consumption to follow a similar trend, which is also
why we are ramping up the number of threads increasingly as described in sub-
section 4.2.1. Following subsection 2.3.2, which describes how we can scale the
microservices with Docker, we also expect that at some threshold the throughput
would eventually be higher with the scaled microservices than in the monolith.
However, we did not form any expectations for when this would happen or what
the energy consumption would look like. However, it is important to research this
threshold and its consequences in terms of throughput and energy consumption,
as otherwise, microservices could just be scaled infinitely without describing the
downsides to the architecture.

5.2 Testing Restrictions

A large part of the microservice architecture is the fact that one can scale the ser-
vices when needed. Upon running the experiments on the test computer, we dis-

27

28 Chapter 5. Results

covered a range of restrictions when scaling the microservices. In subsection 2.3.2,
we describe how we utilized Docker Compose in order to orchestrate the Docker
containers to run multiple instances of each service to achieve this simulation of
scaling. However, upon running the test plan on the scaled microservices, we
found that the throughput was ultimately lower on the scaled microservices, com-
pared to a non-scaled environment. We concluded that this is due to the fact that
we are limited in computation power with the current JMeter test plan and that
spinning up more instances on a single computer only leads to a lower throughput
due to more request having to be sent through the network, while running at a
100% CPU load.

Implementation
C# Microservice
Preliminary

C# Microservice Scaling
Preliminary

Total transactions 7.889.433 5.764.767
Transactions/s 1.947,97 1.423,20

Table 5.1: Preliminary throughput results for C# microservices and microservices with scaling with
individual databases.

Ideally, multiple servers on multiple computers would be setup, but this would
require a complete restructuring of the testing setup. Moreover, when comparing
energy consumption of two architectures, we would like that the implementations
ultimately reflect each other as much as possible. With scaling microservices, one
would have to ask the question of when to stop the scaling and how many instances
one should run, in order to create a fair comparison. Without determining these
parameters, microservices could be scaled infinitely, leading to an infinite energy
consumption in theory. Because of this, all tests and results reflected in this chapter,
only concerns with microservices vs. monolithic architecture, in a non-scaling
environment, where we did not use the load-balancer, nor NGINX.

5.3 C# Single Shared Database

This section describes the results for the microservice and monolithic architectures
for the C# implementation, utilizing a single shared database. The section describes
the results for all metrics gathered during the execution of the JMeter test plan.

5.3.1 Energy Consumption

The energy consumption results from the respective architectures are depicted in
Figure 5.1 and Figure 5.2. The figures show the energy consumption delta values,
which is the difference between the previous recorded energy consumption, and

5.3. C# Single Shared Database 29

the current. Thus, we are able to see possible increases or decreases in energy
consumption in relation to the JMeter test plan.

Figure 5.1: Energy consumption from C# monolithic service with a single shared database.

Figure 5.2: Energy consumption from C# microservice with a single shared database.

30 Chapter 5. Results

In the figures it is possible to see a lack of energy consumption in the first and
last 450 seconds. This is a part of the test plan where the internal sleep command
has been called to showcase the baseline energy consumption of the system, before
any test is running. After the initial 450 seconds, we see the energy consumption
of the running JMeter test plan. Every 450 seconds is marked by a purple dotted
vertical line in order to mark the increase in thread count to assist in showcas-
ing the effect. In both Figure 5.1 and Figure 5.2, we see that initially the energy
consumption is high during the beginning of the test plan execution. However, at
1.800 second mark, going from 75 to 100 thread count, the energy consumption de-
creases immediately leading into a consistent consumption while still showcasing
similar fluctuations as before the decrease.

5.3.2 CPU Utilization

The CPU utilization for the monolithic and microservice implementations can be
seen in Figure 5.3 and Figure 5.4, respectively. Due to the test system consisting of
a processor with multiple cores, the CPU percentages reach above 100% in relation
to the utilization of cores.

For the monolithic architecture, the CPU usage is just around 0% during the
initial and ending sleep command as expected. This increases drastically increases
to about 330% for the 450 seconds after the sleep command with a thread count of
25. The CPU usage slightly decreases over the next thread count increments down
to about a steady 240% usage up until the ending sleep. For the microservice
architecture, we see that the CPU usage of the individual services is remarkably
lower. However, if you add up each service the CPU usage would be higher in
total.

5.3. C# Single Shared Database 31

Figure 5.3: CPU usage results from C# monolithic service with a single shared database.

Figure 5.4: CPU usage results from C# microservice with a single shared database.

32 Chapter 5. Results

5.3.3 Response Time

The response time results can be seen in Figure 5.5 and Figure 5.6 for the monolithic
and microservice implementations, respectively. The data is grouped in values in
1 minute intervals for better presentation. The different colored plotted lines each
showcases the response time for a given request in the JMeter test plan.

In Figure 5.5 the ramping up of threads described in subsection 4.2.4 is repre-
sented. There is a clear resemblance between Figure 5.5 and Figure 4.5. Likewise,
in the microservice architecture, a similar trend is seen, however, not as clearly as
with the monolithic architecture.

From examining the CPU utilization, the response time results are likely due to
the CPU being under 100% load with the application constantly attempting to serve
all requests. As more requests are waiting to be served by the increase in thread
count, the response time increases explaining the steady ramp-up in response time.
This problem is caused by the nature of our JMeter setup.

As the response times do not provide any valuable information about the ap-
plication, we choose to examine the throughput as a measure of performance.

Figure 5.5: Response times with grouped values in 1 minute intervals from C# monolithic service
with a single shared database.

5.4. C# Individual Microservice Database 33

Figure 5.6: Response times with grouped values in 1 minute intervals from C# microservice with a
single shared database.

5.3.4 Throughput

The throughput (transactions per second) is considerably higher for the monolithic
application by about 39,27% over the microservice application.

Implementation C# Monolith C# Microservice
Total transactions 22.822.178 13.859.193
Transactions/s 3.169,61 1.924,79

Table 5.2: Throughput results for C# monolithic service and microservice with a single shared
database.

5.4 C# Individual Microservice Database

This section describes the results for the C# implementation with an individual
database for each service from the execution of the JMeter test plan.

5.4.1 Energy Consumption

Examining the results from giving the microservices each their own database in
Figure 5.7, the small decrease in energy consumption seen early on for the imple-
mentation without individual databases is not present for the counter implemen-
tation. This results in a slightly higher average energy consumption.

34 Chapter 5. Results

Figure 5.7: Energy consumption from C# microservice with individual databases.

5.4.2 CPU Utilization

The CPU utilization for C# microservice with individual databases can be seen
in Figure 5.8 and shows very similar results to CPU usage without individual
databases as seen in Figure 5.4.

The CPU usage is slightly lower due to the databases consuming some of the
CPU processing power. Otherwise, the CPU usage is maxed out giving the same
pattern of response times as previously.

5.5. Java Single Shared Database 35

Figure 5.8: CPU usage results from C# microservice with individual databases.

5.4.3 Throughput

This experiment provided the microservice with individual databases with a higher
throughput than with a singular database by about 6,42% while still being lower
than the monolith.

Implementation C# Microservice DB C# Microservice
Total transactions 14.810.071 13.859.193
Transactions/s 2.056,88 1.924,79

Table 5.3: Throughput results for C# microservice with individual databases.

5.5 Java Single Shared Database

This section describes the results from all the metrics that were recorded during
the JMeter test plan execution of the Java implementations.

5.5.1 Energy Consumption

The energy consumption results from the microservice and monolith test can be
seen in Figure 5.10 and 5.9, respectively. The sleep duration is reflected on the
graph from zero to 450 seconds showing low energy consumption as expected
during a sleep. Afterwards, the JMeter test plan is executed and causes a large
increase in energy consumption from 450 to about 900 seconds and slowly fades

36 Chapter 5. Results

into a stable consumption of about 51 Watts to lastly end the JMeter execution
resulting in a low and stable consumption during the ending sleep to end the test.

Figure 5.9: Energy consumption results from Java monolithic service with a single shared database.

Figure 5.10: Energy consumption results from Java microservice with a single shared database.

5.5. Java Single Shared Database 37

5.5.2 CPU Utilization

The CPU utilization for the Java monolithic and microservice implementations can
be seen in Figure 5.11 and Figure 5.12, respectively.

The monolithic service has about a 560% CPU utilization quickly decreasing to
a steady utilization of about 540%.

Somewhat similar for the microservice, the CPU utilization steadies quickly af-
ter a small decrease. Furthermore, all services except the gateway starts fluctuating
more than previously during the test around 4950 seconds with a thread count of
600.

Summing the individual CPU utilization values for the microservice shows
about the same CPU utilization as the monolithic service simply spread between
services.

Given that the CPU usage is not increasing along with the increase in thread
count, we can assume that the Java applications are under maximum load and
that the response time simply increases steadily due to more requests from more
threads similar to the C# applications.

Figure 5.11: CPU usage results from Java monolithic service with a single shared database.

38 Chapter 5. Results

Figure 5.12: CPU usage results from Java microservice with a single shared database.

5.5.3 Throughput

The monolith and microservice implementations achieve almost identical through-
put results with the monolithic implementation reaching a throughput 0,29% higher.

Implementation Java Monolith Java Microservice
Total transactions 2.130.473 2.124.268
Transactions/s 295,76 294,90

Table 5.4: Throughput results for Java monolithic service and microservice with a single shared
database.

5.6 Java Individual Microservice Database

This section describes the results for the Java implementation with an individual
database for each service from the execution of the JMeter test plan.

5.6.1 Energy Consumption

The energy consumption can be seen in Figure 5.13 and is very similar to the
experiment with a singular shared database except for the fluctuations between 51
and 45 watts.

5.6. Java Individual Microservice Database 39

Figure 5.13: Energy consumption results from Java microservice with individual databases.

5.6.2 CPU Utilization

The CPU utilization is very similar to the experiment with a singular shared
database while seemingly having smaller fluctuations.

As with the C# experiment, the CPU usage in this experiment is slightly lower
due to the databases consuming some of the CPU processing power as well. Oth-
erwise, the CPU usage is maxed out giving the same pattern of response times as
previously.

40 Chapter 5. Results

Figure 5.14: CPU usage results from Java microservice with individual databases.

5.6.3 Throughput

The throughput is significantly higher for this experiment boasting an increase of
37,73% which is also significantly higher than the monolith.

Implementation Java Microservice DB Java Microservice
Total transactions 3.410.771 2.124.268
Transactions/s 473,59 294,90

Table 5.5: Throughput results for Java microservice with individual databases.

Chapter 6

Discussion

In this chapter we discuss the findings described in chapter 5. We try to explain
outlier datapoints and why the energy consumption, CPU utilization, response
time and throughput looks the way it does. Moreover, we discuss the threats to the
validity of this project as well.

6.1 C# Single Shared Database

This section relates to the results described in section 5.3. The purpose of this
section is to try to explain the various results.

6.1.1 Energy Consumption

An overlap of the energy consumption results from the C# implementation can
be seen in Figure B.1 in the appendix and shows that the microservice implemen-
tation generally consumes more energy. Simultaneously, the microservice imple-
mentation has a stable consumption in contrast to the monolithic implementation
which consumes less but fluctuates more. This observation is supported by the
computed standard deviation and mean seen in Table 6.1 which is computed from
start to end of the JMeter test plan execution to focus on the actual usage of the
application.

The difference in total energy consumption by each implementation is not large
considering the length of the experiment. Though, when examining the total
amount of transactions processed, the monolith implementation achieves signif-
icantly better results. These values allow us to compute an energy pr. transaction
result which is averaged over all JMeter requests.

41

42 Chapter 6. Discussion

Implementation C# Monolith C# Microservice
Standard deviation 4,88 4,44
Mean 30,50 35,75
Total power (J) 240.056,71 259.354,70
Energy pr. transaction 0,011 0,019

Table 6.1: Standard and mean energy consumption together with RAPL statistics for C# monolithic
service and microservice with single shared database.

The C# microservice implementation uses about 43,79% more energy pr. trans-
action which is further emphasized considering energy consumption when the
sample count is evened. If we were to consider a sample count of 10.000.000 trans-
actions, the energy consumption for the monolith was to reach 10.000.000 ∗ 0, 011 =

110.000, 00J while the microservice was to reach 10.000.000 ∗ 0, 019 = 190.000, 00J
which is a difference of 80.000J possibly realized in two hours from any application
that constantly serves clients under full load.

The microservice implementation might use more power due to using more
memory. Even though the instances are smaller than the monolith, significantly
many more instances to process requests are made all while double the amount of
controllers are created to handle redirecting requests to the respective services.

This makes choosing between the two architectures a significant decision in
relation to both performance and energy consumption considering the use of C#.

6.1.2 CPU Utilization

As described in subsection 5.3.3, the CPU is likely used 100% constantly. Interest-
ingly, the monolith CPU usage is decreasing as the thread count increases. This
is likely due to the fact that JMeter CPU utilization increases as it is required to
send more requests to the application. Otherwise, the utilization is to be expected
considering the testing restrictions described in section 5.2.

6.1.3 Response Time

The monolith implementation generally reaches lower response times than the mi-
croservice variation which additionally, fluctuates more. This is likely because of
the application being split into services. There might not be as many pet service
instances as store instances while their will be monolith instances according to the
amount of JMeter request.

However, as described in subsection 5.3.3, as more requests are waiting to be
served by the increase in thread count, the response time increases together with
a CPU usage of 100% explaining the steady ramp-up in response time. This issue

6.2. C# Individual Microservice Database 43

renders the response time results unusable and we instead look towards through-
put.

6.1.4 Throughput

The network communication overhead from utilizing microservices is very ap-
parent in the throughput results. The implementations both utilize instance-per-
request making the only difference the network communication between services
and memory usage. With low response times, the importance of being able to
quickly respond with services close to each other is highlighted through through-
put. With a monolithic application, the services do not get any closer and thus
achieves superior results.

6.2 C# Individual Microservice Database

This section relates to the results described in section 5.4. Similar to previous
section, the purpose of this section is to try to explain the various results.

6.2.1 Energy consumption

Due to the C# implementation with individual databases not having the small
decrease in energy consumption in the start, a slightly higher mean energy con-
sumption and lower standard deviation is reached as seen in Table 6.2. This is
likely due to the increase in database instances running and is to be expected as
no other additions are made.

As the throughput is about 6,42% higher together with an overall slightly lower
energy consumption, the microservice test with individual databases for each ser-
vice achieves about 8,16% lower energy pr. transaction but about 38,80% higher
energy pr. transaction than the monolithic implementation. This gives this imple-
mentation the advantage in terms of both energy consumption and throughput.

Implementation C# Microservice DB C# Microservice
Standard deviation 4,52 5,91
Mean 35,06 31,32
Total power (J) 254.541,15 259.354,70
Energy pr. transaction 0,017 0,019

Table 6.2: Standard and mean energy consumption for C# microservice with single shared database
and microservices with individual databases.

Similar to the CPU utilization for the test with a single shared database, the
CPU usages show no noticeable differences.

44 Chapter 6. Discussion

6.2.2 Throughput

The throughput is slightly higher for the microservice with individual databases
(2.056 requests per second to 1.924 requests per second) likely due to the database
instances not being under as much load as the single instance for the other test and
allowing for better performance.

6.3 C# Energy Consumption Ramp-up

Both in Figure 5.1 and Figure 5.2, we initially see an increase of energy which
soon after reduces to a stable level. After having studied the ASP.NET environ-
ment and its documentation, we find an article that describes the lifecycle of an
ASP.NET application.[19] We find that in ASP.NET projects, an HttpApplication-
Manager class is being instantiated upon an incoming request to the application.
However, the documentation also states that due to the garbage collector of .NET,
the same HttpApplicationManager can be cached and reused to improve perfor-
mance. We initially suspected that the initial increase of energy consumption was
due to a process like the one in ASP.NET projects where .NET instantiates new ob-
jects, until relevant objects have been cached. However, since the following energy
consumption flattens and appears consistent, it seems that the API is under 100%
load from shortly after the initial beginning of the test. This could also explain the
rise and then immediate decrease in energy consumption, because we initially see
an increasing load on the API, corresponding to the energy increase, until the API
is under 100% load, leading to a steady energy consumption. This also explains
why we do not see a further increase in energy consumption, while the thread
count is increasing.

6.3.1 Energy Fluctuation

Another trend in the energy consumption is that the microservice architecture
seems to fluctuate a bit more than the monolithic architecture. After having stud-
ied the diagnostic tool that Visual Studio provides, we suspect that the fluctuation
occurs due to the services are awaiting for either receiving a request or awaiting
the API-gateway’s processing of the response. The diagnostics tool shows us that a
service utilizes very little CPU usage when idling. Since this is the case, whenever
a service awaits for a request, the service would almost be at idle energy consump-
tion, which could explain the fluctuation.

6.4. Java Single Shared Database 45

6.4 Java Single Shared Database

This section relates to the results described in section 5.5. Similar to section 6.1, the
purpose of this section is to try to explain the various results.

6.4.1 Energy Consumption

A comparison of the two implementations in relation to energy consumption can
be seen in Figure B.2 in the appendix. Overall, the results comparing the two
architectures show little to no difference in energy consumption during the test.
The results show the same tendencies which is also showcased by the standard
deviation and mean energy consumption that can be seen in Table 6.3. The effect
of choosing between the two architectures for an application and usage scenario
comparable to the one modelled in the JMeter test plan used in this project is
negligible (0,86%).

This allows developers to focus on practical aspects when choosing between
these architectures. This is quite surprising given that the microservice needs to
create a connection to a respective services and parse the result from it leading to
believe that the microservice architecture would use more processing power and
thus consume more energy.

Implementation Java Monolith Java Microservice
Standard deviation 0,94 0,95
Mean 50,62 50,89
Total power (J) 368.038,42 370.185,62
Energy pr. transaction 0,17 0,17

Table 6.3: Standard and mean energy consumption together with RAPL statistics for Java monolithic
service and microservice with single shared database.

6.4.2 CPU Utilization

Interestingly, the overall CPU usage percentage is significantly higher than the C#
counterpart. About 500% for the Java implementations and 200 to 250% for the C#
implementations which we were unable to find a reason for.

6.4.3 Throughput

Similar to the overall energy consumption of each Java implementation, the through-
put shows no significant differences. This is interesting given the same reasoning
as for the energy consumption.

46 Chapter 6. Discussion

6.5 Java Individual Microservice Database

This section relates to the results described in section 5.6. Similar to section 6.1, the
purpose of this section is to try to explain the various results.

6.5.1 Energy Consumption

The similarity between the energy consumption from the Java experiment with and
without individual databases for each service is very apparent. The only difference
is the fluctuation between the steady 51 Watts seen without individual databases
and 45 Watts. Similar to the experiment with C#, this is likely due to the increase in
database instances running and is to be expected as no other additions are made.
This is quite a significant advantage as this leads to an overall lower energy pr.
transactions as seen in Table 6.4. An advantage of about 40,30% to be specific.
The overall energy consumption is not far from each other but the throughput is
instead mostly responsible for the advantage.

Implementation Java Microservice DB Java Microservice
Standard deviation 2,56 0,95
Mean 48,50 50,89
Total power (J) 351.742,43 370.185,62
Energy pr. transaction 0,10 0,17

Table 6.4: Standard and mean energy consumption together with RAPL statistics for Java microser-
vice with single shared database and microservice with individual databases.

Very similar to the CPU utilization for the Java test with a single shared database,
the CPU usages show no noticeable differences.

6.5.2 Throughput

The throughput is significantly higher for the microservice with individual databases
(473,59 requests per second to 294,90 requests per second) and is again likely due to
the database instances not being under as much load as the single instance for the
other test and allowing for better performance. This is similar to the experiment
with C# except Java benefits significantly more from this change.

6.6 Java Energy Consumption Ramp-up

A version of Figure B.2 without the initial sleep and stable energy consumption is
depicted in Figure 6.1 showcasing the slow increase in energy consumption. This is
a contrast to other studies showcasing energy consumption in relation to start-up

6.6. Java Energy Consumption Ramp-up 47

and warm-up of the Java Virtual Machine (JVM) usually showing a slow decrease
in energy consumption as these phases are surpassed.

Figure 6.1: Energy consumption results from Java microservice and monolithic service from 450 to
1.200 seconds with single shared database.

Looking at the logs, it does not seem to be a phenomenon stemming from
JMeter as all threads are up and running in a matter of a few seconds while the
phenomenon is happening for about 250 seconds. This leads us to believe that
it either relates to the Just-In-Time (JIT) compiler, the fact that the application is
under heavy load, an increasing amount of processes and memory usage or a
combination.

The progression of memory usage and process count can be seen in Figure 6.2
and 6.3, respectively. As indicated by the memory usage, the phenomenon would
be explained if it were not for the memory usage waiting to increase until about
1.800 seconds and not at the start of the execution. The amount of processes helps
visualize the increase in thread count and how it related to how the application
handles the requests by creating several instances. Though, it does not indicate
a relation to the energy consumption as the amount of processes at the time of
increase in energy consumption is relatively stable and low.

48 Chapter 6. Discussion

Figure 6.2: Memory usage results from Java monolithic service with single shared database.

Figure 6.3: Amount of processes running in Docker container progression results from Java mono-
lithic service with single shared database.

The JIT compiler might not have compiled the whole application at the time
of starting the JMeter test plan and may done on the fly whenever needed and
whenever code is executed the first time, the compiler spends energy compiling.
Though, it would seem that all the different JMeter requests are processed well be-
fore 250 seconds have passed making it unlikely to be the sole explanation. Zakaria
Ournani et al.[24] explores energy consumption of different JVMs and showcase
that the energy consumption almost immediately increases to the peak consump-
tion and, depending on the service, decrease or maintain a stable consumption for

6.7. Threats to Validity 49

all tested distributions. Even HotSpot which is utilized by the OpenJDK version
installed on our test system. This is in contrast to what we experience.

6.7 Threats to Validity

This section discusses the threats of the validity of this project and we will provide
recommendations for what could be done to increase the validity.

6.7.1 Local Requests

A part that we consider a threat to the validity of this study, is the fact that we
only tested on a single system, sending requests locally. Energy consumption from
a client, as well as a server would be needed in order to create a better picture
of the cost of running a microservice architecture, when it comes to energy con-
sumption. There also is the energy consumption cost of communicating on the
network, which also contributes to the final energy consumption. Coroama et
al.[3] tries to provide a formula for the energy consumption of the internet. The
study of Coroama et al. could also be incorporated in determining the true energy
consumption of microservices that are hosted.

6.7.2 Business Logic

The business logic in this study have been reduced to the minimal to reduce exter-
nal factors like implementation differences between Java and C#. However, in real
world applications business logic might be complicated and communicate between
a number of microservices. This could introduce loading and a higher load in each
service. This is not the case for this study, where each service does not commu-
nicate with one another, and the business logic is minimal. To increase validity,
testing on real world applications could be an interesting contribution.

6.8 Future Test Proposal

To lower the threats to validity, described in section 6.7, we want to share our
thoughts and ideas for a future setup that improves on the areas which threatens
the validity of the findings. In a future iteration, this testing setup could be used
for future experiments.

6.8.1 Test Setup Proposal #1

Figure 6.4, depicts an ideal testing setup. The figure shows that the client and the
servers are separated. Moreover, it shows that additional computers are needed for

50 Chapter 6. Discussion

each service, especially whenever scaling the microservices is needed, as to reflect
the real world. Finally, in the figure, we also see that the energy consumption will
be measured across the client, API-gateway and the microservice servers.

Client API-Gateway

Microservice 1

Microservice 2

Microservice 3

...

...

Client

Client

Figure 6.4: Test Setup Proposal #1

Besides the physical testing setup, we recommend that for the testing software
in the test setup, RAPL.RS, JMeter, Docker and NGINX can be used like it has
been used in this project. Together with bash-scripts, everything can be deployed
automatically and execution can be done from a bash-script, reducing human inter-
ference. We do however, recommend that the JMeter test plan should be modified
to fit the needs of a given new experiment. With additional computation power
with the services living on their own server, ramping up like has been done in this
project might be possible, without maxing out the testing setup. Likewise, a test-
ing setup where one is not ramping up and might be mimicking real world web
applications, could also be utilized.

6.8.2 Test Setup Proposal #2

For the second ideal test setup, the major difference is the extraction of the client
on its own computer. This way the true energy consumption of the architecture
is what is being measured, and not JMeter as well. Moreover, we propose that
the testing plan should be modified to not utilize 100% of the CPU at all times.

6.8. Future Test Proposal 51

By controlling how much the CPU is being utilized, scaling the services virtually
with Docker on a single computer can be done successfully. However, we still
deem the fact that all the services are limited and being run on a single server, is
not completely reflective of the real world. However, this setup would lower the
threats to the validity.

Client

Client

Client

Virtualized Server Setup

Figure 6.5: Test Setup Proposal #2

Figure 6.5 depicts the testing setup in this project, however, one where the
clients have been extracted. In this setup, all the microservices and the API-
gateway would all live on the virtualized server setup. In this setup, it is important
to control the CPU utilization of the services with JMeter, such that is it possible to
scale the microservices on the setup.

Chapter 7

Conclusion

This chapter concludes the project and sums up the findings. It also has a section
on ideas for future iterations of the project.

7.1 Conclusion

In this project we have studied the energy consumption of the microservice- and
monolithic architecture. We have created two implementations of the Pet Store for
examination, and ramped up the number of users for each solution to determine if
scaling affects the energy consumption, similar to how it affects the resource usage
as described in section 1.1.

Due to the fact that we are limited in computation power while scaling the
microservices, the experiments in this study can only relate to the comparison
of microservices against monolithic architecture, in a non-scaling environment.
This comparison is still relevant as many utilize microservices to structure code
in smaller repositories and to reduce downtime, thus the findings are still relevant
for determining the architecture of a real world application. When scaling is not
considered we can compare the results, but will ultimately be an unfair comparison
due to the fact that a large part of microservices is in fact the ability to scale.

Our findings show that in a non-scaling environment, the energy consumption
per transaction for C# is 43,79% to 38,80% higher in the microservice architec-
ture compared to the monolithic architecture depending on the use of individual
databases. For Java it is 0,86% to 40,30% higher. Using individual databases im-
proves performance but does not necessarily improve energy consumption which
means using individual databases for each service may greatly improve the result-
ing energy consumption due to throughput. We also find that the throughput is
higher in a monolithic architecture, which is in line with the expectations.

However, we should also conclude that this does not mean that microservices
are inferior in energy consumption. One could still speculate that in certain edge

53

54 Chapter 7. Conclusion

cases when scaling is implemented, microservices would be more energy efficient.
Lastly, peculiar ramp-up in energy consumption can be seen for Java application
likely related to the utilized JVM which should be further experimented with.

7.1.1 Hypotheses

To sum up the results, we refer back to the hypotheses listed in section 1.3. We
want to answer the following:

1. The monolithic architecture has a higher throughput / has a higher measur-
able performance, than the microservice architecture.

2. With no scaling, the energy consumption of the monolithic architecture, will
be lower

3. Scaling the microservices will cause the microservice architecture to outper-
form the monolithic architecture in terms of power consumption, eventually.

For the first hypothesis (1), we can confirm the hypothesis - in a non-scaling
environment, as we find that the monolithic architecture, in both implementations,
has a higher throughput. For the second hypothesis (2), we can also confirm the
hypothesis, as we find that in a non-scaling environment, the monolithic architec-
ture outperformed the microservice architecture. For the third hypothesis (3), we
can not confirm or deny the hypothesis, as the testing for the scaling microservices,
were restricted by the testing setup.

7.2 Future Work

In this section we discuss what future iterations of this project could look like. We
also look into what technologies easily could have been changed in this current
iteration to feature new possible experiments.

7.2.1 Scaling of Microservices

As this study does not account for the scaling of microservices, further experiment-
ing with scaling microservices are needed. However, this should include multiple
computers for both scaling the monolithic application, as well as the microservices,
for a fair comparison. One should also be able to determine whether or not there
exists a threshold for when microservices are more energy efficient and when the
monolithic architecture is more efficient, and determine what this threshold is.

7.2. Future Work 55

7.2.2 Remote Inter-Process Communication

In [10] S. Georgiou et al. the energy consumption of various inter-process commu-
nication (ICP from here) technologies like gRPC, RPC and REST are investigated.
In this project, we only investigate the use of HTTP requests to communicate be-
tween the microservices. However, as a part of the future works, various ICP
technologies could be implemented to investigate the impact that each have. S.
Georgiou et al. compares the energy consumption of the ICP technologies across
various CPU platforms and programming languages. To fit the study of S. Geor-
giou et al. to the study in this project, the focus would be on how the energy
consumption of microservices would be impacted by interchanging the ICPs.[10]

7.2.3 External Client

In this project, all tests are conducted on a singular test computer that serves the
clients (JMeter) as well as the services. In a future iteration of this project, it would
be interesting to measure the individual energy consumption of the client as well
as the server, on separated systems. This is also mentioned as a part of the threats
to the validity in subsection 6.7.1.

7.2.4 Realism

One of the test design elements in this project, is that all our requests end up
responding with a successful response. In a future iteration, it could be interesting
to investigate the energy consumption of a more realistic system where requests
have higher response time and some services might fail. It would be interesting to
compare a monolithic and a microservice architecture when considering services
potentially have to hold for other services due to failed calls or load-times. This
also ties together with subsection 6.7.2 and subsection 6.7.1 that are mentioned in
the threats to the validity of this project, and further researching this could lower
the threats to the validity.

7.2.5 Architecture

Lastly, the obvious future iteration would be to extend this project to investigate
other languages and other software architectures. The goal of this project was
to investigate how microservices impact the energy consumption. However, other
architectures, such as a serverless architecture, also needs to be investigated to fully
develop a picture of what architecture is the best fit for a project that concerns with
the energy consumption.

Bibliography

[1] Omar Al-Debagy and Peter Martinek. “A Comparative Review of Microser-
vices and Monolithic Architectures”. In: 2018 IEEE 18th International Sympo-
sium on Computational Intelligence and Informatics (CINTI). 2018, pp. 000149–
000154. doi: 10.1109/CINTI.2018.8928192.

[2] Amazon. What is Docker? Last retrieved 14-03-22. url: https://aws.amazon.
com/docker/.

[3] Vlad C. Coroama et al. “The Energy Intensity of the Internet: Home and
Access Networks”. In: ICT Innovations for Sustainability. Ed. by Lorenz M.
Hilty and Bernard Aebischer. Cham: Springer International Publishing, 2015,
pp. 137–155. isbn: 978-3-319-09228-7.

[4] Marco Couto et al. “Towards a Green Ranking for Programming Languages”.
In: Proceedings of the 21st Brazilian Symposium on Programming Languages. SBLP
2017. Fortaleza, CE, Brazil: Association for Computing Machinery, 2017. isbn:
9781450353892. doi: 10.1145/3125374.3125382. url: https://doi.org/10.
1145/3125374.3125382.

[5] Luis Cruz et al. “Do Energy-Oriented Changes Hinder Maintainability?” In:
2019 IEEE International Conference on Software Maintenance and Evolution (IC-
SME). 2019, pp. 29–40. doi: 10.1109/ICSME.2019.00013.

[6] Cypress. Why Cypress? Last retrieved 02-06-22. url: https://docs.cypress.
io/guides/overview/why-cypress#Setting-up-tests.

[7] Docker. Docker. Last retrieved 02-06-22. url: https://www.docker.com/.

[8] Docker. Docker Stats. Last retrieved 03-06-22. url: https://docs.docker.
com/engine/reference/commandline/stats/.

[9] Martin Fowler and James Lewis. Microservices. Last retrieved 25-05-22. 2014.
url: https://martinfowler.com/articles/microservices.html.

[10] Stefanos Georgiou and Diomidis Spinellis. “Energy-Delay Investigation of
Remote Inter-Process Communication Technologies”. In: Journal of Systems
and Software 162 (Dec. 2019), p. 110506. doi: 10.1016/j.jss.2019.110506.

57

https://doi.org/10.1109/CINTI.2018.8928192
https://aws.amazon.com/docker/
https://aws.amazon.com/docker/
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1109/ICSME.2019.00013
https://docs.cypress.io/guides/overview/why-cypress#Setting-up-tests
https://docs.cypress.io/guides/overview/why-cypress#Setting-up-tests
https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.jss.2019.110506

58 Bibliography

[11] Daniel Guaman et al. “Performance evaluation in the migration process from
a monolithic application to microservices”. In: 2018 13th Iberian Conference on
Information Systems and Technologies (CISTI). 2018, pp. 1–8. doi: 10.23919/
CISTI.2018.8399148.

[12] Intel. Intel Power Gadget. Last retrieved 02-06-22. url: https://www.intel.
com/content/www/us/en/developer/articles/tool/power-gadget.html.

[13] Intel. Running Average Power Limit Energy Reporting. Last retrieved 02-06-22.
url: https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/advisory-guidance/running-
average-power-limit-energy-reporting.html.

[14] Erik Jagroep et al. “The hunt for the guzzler: Architecture-based energy pro-
filing using stubs”. In: Information and Software Technology 95 (2018), pp. 165–
176. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2017.
12.003. url: https://www.sciencedirect.com/science/article/pii/
S0950584917303841.

[15] JMeter. Apache JMeter. Last retrieved 02-06-22. url: https://jmeter.apache.
org/.

[16] Alexander Kainz. Microservices vs. Monoliths: An Operational Comparison. Last
retrieved 25-05-22. 2020. url: https://thenewstack.io/microservices-vs-
monoliths-an-operational-comparison/.

[17] Kubernetes. What is Kubernetes? Last retrieved 02-06-22. 2022. url: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[18] Craig Marcho. Windows Performance Monitor Overview. Last retrieved 02-06-
22. url: https://techcommunity.microsoft.com/t5/ask-the-performance-
team/windows-performance-monitor-overview/ba-p/375481.

[19] Microsoft. ASP.NET Application Life Cycle Overview for IIS 7.0. Last retrieved
03-06-22. url: https://docs.microsoft.com/en-us/previous-versions/
bb470252(v=vs.140)?redirectedfrom=MSDN#life-cycle-stages.

[20] Middleware-Company.com. The Petstore Revisited: J2EE vs .NET Application
Server Performance Benchmark. Last retrieved 20-05-22. url: https://web.
archive.org/web/20031203221937/http:/www.middleware-company.com/
j2eedotnetbench/.

[21] NGINX. NGINX Docs. Last retrieved 02-06-22. url: https://docs.nginx.
com/nginx/admin-guide/load-balancer/http-load-balancer/.

[22] Daniél Garrido-Y Martinez Nielsen et al. Energy Benchmarking With Doom -
Utilizing video game source ports for macrobenchmarking. Aalborg University,
2021.

https://doi.org/10.23919/CISTI.2018.8399148
https://doi.org/10.23919/CISTI.2018.8399148
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://doi.org/https://doi.org/10.1016/j.infsof.2017.12.003
https://doi.org/https://doi.org/10.1016/j.infsof.2017.12.003
https://www.sciencedirect.com/science/article/pii/S0950584917303841
https://www.sciencedirect.com/science/article/pii/S0950584917303841
https://jmeter.apache.org/
https://jmeter.apache.org/
https://thenewstack.io/microservices-vs-monoliths-an-operational-comparison/
https://thenewstack.io/microservices-vs-monoliths-an-operational-comparison/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://docs.microsoft.com/en-us/previous-versions/bb470252(v=vs.140)?redirectedfrom=MSDN#life-cycle-stages
https://docs.microsoft.com/en-us/previous-versions/bb470252(v=vs.140)?redirectedfrom=MSDN#life-cycle-stages
https://web.archive.org/web/20031203221937/http:/www.middleware-company.com/j2eedotnetbench/
https://web.archive.org/web/20031203221937/http:/www.middleware-company.com/j2eedotnetbench/
https://web.archive.org/web/20031203221937/http:/www.middleware-company.com/j2eedotnetbench/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/

Bibliography 59

[23] Wellington Oliveira et al. “Recommending Energy-Efficient Java Collections”.
In: 2019 IEEE/ACM 16th International Conference on Mining Software Reposito-
ries (MSR). 2019, pp. 160–170. doi: 10.1109/MSR.2019.00033.

[24] Zakaria Ournani et al. “Evaluating the Impact of Java Virtual Machines on
Energy Consumption”. In: Proceedings of the 15th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). ESEM
’21. Bari, Italy: Association for Computing Machinery, 2021. isbn: 9781450386654.
doi: 10.1145/3475716.3475774. url: https://doi.org/10.1145/3475716.
3475774.

[25] Cagri Sahin, Lori Pollock, and James Clause. “How Do Code Refactorings
Affect Energy Usage?” In: Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ESEM ’14. Torino,
Italy: Association for Computing Machinery, 2014. isbn: 9781450327749. doi:
10.1145/2652524.2652538. url: https://doi.org/10.1145/2652524.
2652538.

[26] Vindeep Singh and Sateesh K Peddoju. “Container-based microservice archi-
tecture for cloud applications”. In: 2017 International Conference on Computing,
Communication and Automation (ICCCA). 2017, pp. 847–852. doi: 10.1109/
CCAA.2017.8229914.

[27] Freddy Tapia et al. “From Monolithic Systems to Microservices: A Compara-
tive Study of Performance”. In: Applied Sciences 10.17 (2020). issn: 2076-3417.
doi: 10.3390/app10175797. url: https://www.mdpi.com/2076-3417/10/17/
5797.

[28] Mario Villamizar et al. “Evaluating the monolithic and the microservice ar-
chitecture pattern to deploy web applications in the cloud”. In: 2015 10th
Computing Colombian Conference (10CCC). 2015, pp. 583–590. doi: 10.1109/
ColumbianCC.2015.7333476.

https://doi.org/10.1109/MSR.2019.00033
https://doi.org/10.1145/3475716.3475774
https://doi.org/10.1145/3475716.3475774
https://doi.org/10.1145/3475716.3475774
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.3390/app10175797
https://www.mdpi.com/2076-3417/10/17/5797
https://www.mdpi.com/2076-3417/10/17/5797
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476

Appendix A

JMeter configuration

The Ultimate Thread Group setup is specified in Table A.1 and A.2.

Start threads count 25 50 75 100 150 200 250 300
Initial delay, sec 0 450 900 1350 1800 2250 2700 3150
Startup time, sec 1 1 1 1 1 1 1 1
Hold load for, sec 7199 6749 6299 5849 5399 4949 4499 4049
Shutdown time 0 0 0 0 0 0 0 0

Table A.1: Clients Ultimate thread group configuration.

Start threads count 350 400 500 600 700 800 900 1000
Initial delay, sec 3600 4050 4500 4950 5400 5850 6300 6750
Startup time, sec 1 1 1 1 1 1 1 1
Hold load for, sec 3599 3149 2699 2249 1799 1349 899 449
Shutdown time 0 0 0 0 0 0 0 0

Table A.2: Clients Ultimate thread group configuration continued.

61

Appendix B

Result comparison

Figure B.1: Overlap of energy consumption results from C# microservice and monolithic service
implementation tests.

63

64 Appendix B. Result comparison

Figure B.2: Overlap of energy consumption results from Java microservice and monolithic service
implementation tests.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Java Pet Store
	1.2.1 Microservice Candidates

	1.3 Problem Hypotheses

	2 Technologies
	2.1 Automation of HTTP Requests
	2.1.1 Cypress
	2.1.2 JMeter

	2.2 Deployment
	2.2.1 Docker

	2.3 Scaling Microservices
	2.3.1 Kubernetes
	2.3.2 Docker Compose
	2.3.3 NGINX

	2.4 System Monitoring
	2.4.1 Windows Performance Monitor
	2.4.2 Docker Stats
	2.4.3 Running Average Power Limit
	2.4.4 Intel Power Gadget
	2.4.5 RAPL.rs

	2.5 Summary

	3 Related work
	3.1 The hunt for the guzzler: Architecture-based energy profiling using stubs
	3.2 A Comparative Review of Microservices and Monolithic Architectures
	3.3 Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud
	3.4 Performance evaluation in the migration process from a monolithic application to microservices
	3.5 From Monolithic Systems to Microservices: A Comparative Study of Performance
	3.6 Container-based microservice architecture for cloud applications

	4 Methodology
	4.1 Implementation
	4.1.1 Monolithic Architecture
	4.1.2 Microservice Architecture
	4.1.3 .NET
	4.1.4 Java

	4.2 JMeter
	4.2.1 API Testing
	4.2.2 JMeter Thread Groups
	4.2.3 JMeter Test Plan
	4.2.4 Stepping Load Ramp-Up

	4.3 Experiments
	4.4 Measurement Protocol
	4.5 Test Setup

	5 Results
	5.1 Expectations
	5.2 Testing Restrictions
	5.3 C# Single Shared Database
	5.3.1 Energy Consumption
	5.3.2 CPU Utilization
	5.3.3 Response Time
	5.3.4 Throughput

	5.4 C# Individual Microservice Database
	5.4.1 Energy Consumption
	5.4.2 CPU Utilization
	5.4.3 Throughput

	5.5 Java Single Shared Database
	5.5.1 Energy Consumption
	5.5.2 CPU Utilization
	5.5.3 Throughput

	5.6 Java Individual Microservice Database
	5.6.1 Energy Consumption
	5.6.2 CPU Utilization
	5.6.3 Throughput

	6 Discussion
	6.1 C# Single Shared Database
	6.1.1 Energy Consumption
	6.1.2 CPU Utilization
	6.1.3 Response Time
	6.1.4 Throughput

	6.2 C# Individual Microservice Database
	6.2.1 Energy consumption
	6.2.2 Throughput

	6.3 C# Energy Consumption Ramp-up
	6.3.1 Energy Fluctuation

	6.4 Java Single Shared Database
	6.4.1 Energy Consumption
	6.4.2 CPU Utilization
	6.4.3 Throughput

	6.5 Java Individual Microservice Database
	6.5.1 Energy Consumption
	6.5.2 Throughput

	6.6 Java Energy Consumption Ramp-up
	6.7 Threats to Validity
	6.7.1 Local Requests
	6.7.2 Business Logic

	6.8 Future Test Proposal
	6.8.1 Test Setup Proposal #1
	6.8.2 Test Setup Proposal #2

	7 Conclusion
	7.1 Conclusion
	7.1.1 Hypotheses

	7.2 Future Work
	7.2.1 Scaling of Microservices
	7.2.2 Remote Inter-Process Communication
	7.2.3 External Client
	7.2.4 Realism
	7.2.5 Architecture

	Bibliography
	A JMeter configuration
	B Result comparison

