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The envisioned wireless networks, 6G
in-X subnetworks have extreme require-
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was predicted using an autoregressive
(AR) model of order 20. We also found
that the interference power could be
predicted using the AR(20) predictor for
up to 8 [ms] when the velocity is 2 [m/s].
Additionally, the AR(20) predictor out-
performed the last value predictor for all
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Danish Summary

Vi er i en tid, hvor der kommer mere og mere trådløs kommunikation, dette sker da
vi er midt i en overgang fra internet af ting til internet af alting. For at fuldende
denne overgang bliver der nødt til at være trådløse forbindelser som opfylder ekstreme
krav for data-rate, pålidelighed og forsinkelse. Et trådløst netværk der er udset til
at opfylde disse ekstreme krav er i-X undernetværker. I dette projekt fokuserer vi
på i-robotter undernetværker i en industriel sammenhæng. Vi fokuserer specifikt på
den interferens der sker mellem undernetværkerne, eftersom at denne interferens kan
være med til at de ekstreme krav om pålidelighed ikke bliver opfyld.

I denne afhandling analyseres interferensen fra i-robotter undernetværker i en indus-
triel sammenhæng, derudover vil interferensen blive prædikteret. Vi starter med at
lave en interferens model hvor alle de forskellige dele af interferensen bliver beskrevet.
Specifikt, hvilken model for trafik, small scale fading, shadowing og path-loss der vil
blive brugt igennem rapporten. Ydermere er det beskrevet, hvordan undernetværk-
erne bevæger sig. Efterfølgende bliver der lavet en matematisk beskrivelse af interfer-
ensen givet ud fra den beskrevet interferens model. Ud fra den matematiske beskriv-
else er analytiske udtryk for middelværdien og autokorrelationsfunktionen (ACF’en)
udledt. Disse udtryk indholder integraler, som vi ikke kan løse analytisk, så de bliver
løst ved hjælp af Monte Carlo (MC) integration. Det bliver vist, at når det analytiske
udtryk for middelværdien bliver regnet ved hjælp MC integration, så stemmer det
overens med den empiriske middelværdi af interferensen, når den bliver simuleret ud
fra interferens modellen. I tilfældet hvor ACF’en bliver løst ved hjælp af MC inte-
gration, ses det, at ACF’en for det simuleret interferens bliver overestimeret. Dog ses
det også, at de har samme form. Det vises også, at ved hjælp af en tilpas skalering, så
ligger ACF’en, udregnet ved hjælp af MC integration, oveni ACF’en af interferensen
simuleret fra interferens modellen.

Basis teorien bag autoregressive modeller præsenteres, og anvendes til at konstruere
en interferens prædiktor. Et forudgående forsøg bliver lavet, hvori forsøgsindstillinger
bliver valgt sammen med ordenen af prædiktoren. Den autoregressive interferens
prædiktor bliver testet under forskellige scenarier, hvori størrelsen af rummet, un-
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dernetværkernes hastighed og antallet af undernetværker ændres. Prædiktoren kan
forudsige interferensen for tidsforskydninger op imod 8 [ms], når der er lav signal til
støj ratio og hastigheden af undernetværkerne er 2 [m/s]. Desuden præsterer den
autoregressive prædiktor bedre end en sidste værdi prædiktor for alle testscenarierne.



Abbreviation List

ACF Autocorrelation function.

ADAS Advanced driver-assistance systems.

AR Autoregressive.

ARMA Autoregressive moving average.

CSMA Carrier sensing multiple access.

DDCA Distributed dynamic channel allocation.

DNN Deep neural network.

i.i.d. Independent identically distributed.

MC Monte Carlo.

BPP Binomial point process.

MPP Matern point process.
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TDD Time Division Duplexing.

TU Time unit.
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Notation List

N+ Set of positive integers {1, 2, . . . }.

N Set of the natural numbers {0, 1, 2, . . . }.

P(·) Probability measure.

P(·|·) Conditional probability measure.

E Expected value operator.

E· Expected value operator with respect to ·.

z ∼ f(z)
z follows a distribution with probability density function
f(z).

v Vector.

h··(·) Small scale fading.

ℓ(·) Path-loss function.

γ··(·) Traffic function.

ζ(·, ·) Shadowing.

N Number of sensor actuator pairs in a subnetwork.

M Number of subnetworks.

K Number of channel groups.

Nsg Number of subnetworks per channel group.
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NTU Number of time units in either uplink or downlink.

TUL Duration of uplink.

TDL Duration of downlink.

Tf Duration of a frame.

L0 Number of waves in small scale fading.

fc Carrier frequency.

J0 Zeroth-order Bessel function of first kind.

α Path-loss exponent.

d
Minimum distance between the centers of the subnet-
works.

r The cell radius of the subnetworks.

ν Velocity of the subnetwork.

[M ] integers up to M , [M ] = 1, 2, . . . ,M .

Φ = {x[M ]}
A collection of the locations of the control units of the
subnetworks.

Φk = {xk[M ]}
A collection of the locations of the sensor actuator pairs
of the k-th subnetwork.

Ξk = {ξk[M ]}
A collection of the locations of sensor actuator pairs of
the k-th subnetwork relative to the control unit.

| · | The Lebesgue measure.

U Uniform distribution.

N Normal distribution.

j Imaginary unit,
√
−1.

x̂ Estimate of x.
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1. Introduction

In today’s day and age there is an ever increasing number of wireless solutions [2,
p. 23]. This is all around us, from wireless keyboards, to the washing machine send-
ing a message when it is done, to a type one diabetic with wireless glucose monitor
attached to their body, to much more. This increase in wireless solutions we are
experiencing is the transition from internet of things to internet of everything, where
objects, processes and people are connected instead of objects only [3]. The require-
ments to fully transition to internet of everything cannot be reached with the 5th
generation network but rather with the 6th generation network. This is due to 5G
will be unable to completely support the extreme requirements envisioned in internet
of everything [3]–[5], that is, higher reliability, lower latencies and higher data rates.
A type of wireless networks which is envisioned to comply with extreme requirements
is in-X subnetworks [4], here "X" stands for an entity, for example, vehicles, robots or
the human body. The term subnetwork is because the network cells can be connected
to the 6G network but should also be able to operate when being outside of coverage
of the wide area network, as the subnetworks are expected to support life-critical
functions.

Interference can decrease reliability of a link in a wireless network. Interference
occurs when two or more transmitters transmit on the same channel at the same time
to each of theirs receiver but since they transmit on the same channel the receivers
receive a sum of the transmitted signals. Interference is thus the unintended messages
that are received which makes it harder to decode the intended message [2, pp. 21-22].
The use-cases for the in-X subnetworks can result in dense scenarios, such as, a large
number of cars at an intersection or in-body during crowded events, which necessitates
the need for proactive interference management [5], [6]. A great deal of research in 6G
network has already begun, and many countries have already initiated a 6G project
[3]. In [7], they investigate the potential gain of using distributed dynamic channel
allocation (DDCA) for mobile 6G in-X subnetworks in an industrial setting, they
further propose three different algorithms to perform the DDCA. In [8], a design of
a short range wireless isochronous real time in-X subnetworks is proposed with the
focus on life-critical applications with low latency and high reliability. This type of
network is envisioned to be deployed in robots or vehicles. Interference prediction can
be used to improve the reliability and the latency in a network, as it is a proactive
method which can be used before interference occurs, and thus reduce the overhead
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2 Chapter 1. Introduction

of spectrum sensing and the outage probability [9]. With the ambitious 6G network,
it may be possible to reach industry 4.0 and robotics, where wired solutions become
wireless while a high reliability and low latency is preserved [10]. Thus, in order to
aid in satisfying these extreme requirements, the focus of this report is analyzing and
predicting the interference within in-robot subnetworks in a factory setting.

This master thesis is structured as follows: In Chapter 2, the problem is analyzed
and the current progress within interference prediction as well as research within in-X
subnetworks are presented, the chapter is concluded with our problem statement. In
Chapter 3, we present our interference model for the in-robot subnetworks in a factory
setting, and we derive the mean interference and autocorrelation function (ACF)
under the interference model. In Chapter 4, we present the proposed interference
predictors which are used in a numerical evaluation. In Chapter 5 we compare the
derived mean interference and ACF to the empirical ones as well as test the proposed
interference predictors. The results are discussed in Chapter 6, and conclusions of
the thesis are drawn in Chapter 7. Lastly, future research possibilities are described
in Chapter 8.



2. Problem Analysis

In this chapter, we will present the problem statement which involves predicting in-
terference in a future type of network, known as in-X subnetworks. However, before
doing that, it is necessary to present the current progress within the field of interfer-
ence in wireless networks. Therefore initially, we will shortly present different aspects
of wireless networks, and how stochastic geometry is a useful tool. Afterwards, vari-
ous results will be presented from articles where interference has been characterized
using different model assumptions. Envisions about the in-X subnetworks are then
presented as well as specific use cases, requirements and challenges. Various existing
interference predictors are then presented, where after we will conclude the chapter
by presenting the problem statement.

2.1 Brief History on Wireless Networks

In the modern society, there has been an increasing demand for the connectivity of
mobile devices. Staying connected anywhere at anytime helps people live more ful-
filled lives [11, p. 4]. The cellular network has evolved greatly over the past three
decades and is the main source of such ubiquitous connectivity [11, p. 3].

The increasing demand for connectivity yields challenges for the network operators.
There are mainly three points that should be considered, that is, affordability, avail-
ability and quality. Affordability covers the expenses of deploying and maintaining a
network as well as the price of acquiring a spectrum license. Availability has largely
been solved by the introduction of 2G cellular networks which is available almost ev-
erywhere. The quality of a network is indicated by the average total throughput per
unit area. The average total throughput per unit area is the capacity of a network
[11, pp. 4-5]. The capacity is the product between the average number of active con-
nections per unit area and the average rate on such data connections. The average
rate can be found as the product of the bandwidth and the spectral efficiency of the
data connections. The spectral efficiency and the SINR of a link are closely related.
This relation can be seen in Shannon’s capacity formula which is given by

C = Blog2
(
1 +

S

N + I

)
(2.1)

3



4 Chapter 2. Problem Analysis

where C is the capacity, B is the bandwidth, S is the average signal power, N is
the average noise power and I is the average interference power, that is, the average
interference power is obtained by averaging over instantaneous interference power for
a given time [12, pp. 272-273].

From Eq. (2.1), the quality of a network can be improved by increasing the bandwidth.
However, the bandwidth of a network is not easy to increase, as new spectrum is rarely
freed up and it is expensive when it happens. The quality can also be increased
by improving the spectral efficiency. A way to improve the spectral efficiency is
by dividing existing bands into smaller bands provided that the smaller bands are
appropriate to support an acceptable data rate. However, these divisions of the
frequency spectrum can only happen a finite amount of times before the bands cannot
support an acceptable data rate. [11, p. 5]

An alternative way to increase the quality, and thereby the capacity, is by spec-
trum reuse, here the spectrum is shared among multiple users where they try to
mitigate their mutual interference. In the time period 1955-2020 spectrum reuse has
been the greatest contributor to the increase of network capacity. [11, p. 5] [13], [14]

2.1.1 Analysing Wireless Networks Using Stochastic Geometry

When analysing the performance of a proposed network through simulations, many
simulations may not necessarily provide a useful insight as the performance of the
network is too low for those scenarios. Since 2010 some analytical and semi-analytical
results regarding the SINR distribution has been found for various networks. Say that
we could relate the SINR distribution at a user to the parameters of the deployment
of a network, such as, transmission power and densities of the cells. Then some of the
scenarios which do not yield a sufficient network performance could be eliminated.
The tools used to derive the analytical results are mainly from the mathematical
field stochastic geometry, and specifically to model the base stations location as a
realizations of point processes has proven useful. [11, p. 9]

There has been derived several useful results regarding the SINR when the base
stations are distributed according to a homogeneous Poisson point process (PPP), as
it is the best understood model and it is analytical tractable. However, there also
exist some tractable models where the points are either more clustered or the distance
between the points are greater than that of a Poisson process. Both cases are useful
when modeling a cellular network. For example, in coverage-oriented deployment
there is a minimum distance between neighbouring base stations. Hence it would
be reasonable to model the locations using a point process where the points repel
each other. On the other hand, in a capacity-oriented deployment the base stations
are grouped together around hot spots, an appropriate point process to model the
locations is then one in which the points appear in clusters. [11, pp. 10-12]
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2.2 Modelling Interference in Wireless Networks

The interference can be characterized in different ways, depending on what type of
network is considered. Various models exist some of them are more general and
tractable while others are more specific and complex. Which kind of model should
be used depends on the application [15]. For example, a lot of work has been done
in order to obtain analytical results using stochastic geometry, but this is often done
using more general models.

Before presenting the different models, we want to present the basic components
that need to be modelled, so consider the interference received at a point y ∈ R2 at
time t ∈ R.

Iy(t) =
∑
x∈Φ

ℓ(y − x)Hy(x, t)γx(t) (2.2)

where ℓ is a path-loss function, Hy is a random nonnegative field, γx is the traffic
parameter of the node at x and Φ is a collection of node locations. Note that the
node locations Φ may be time dependant, Φ(t), but for ease of notation we write
Φ. The path-loss ℓ is a nonnegative function. The random nonnegative field Hy is a
random propagation field containing effects like small-scale fading, shadowing and/or
transmission power [11, p. 43]. When modelling interference the transmission power
is usually set to 1. The traffic parameter γx is usually an indicator function which is
1 if the node x is transmitting and 0 if idle. The node locations Φ at time 0 is usually
described using a point process and then move according to some mobility model if
they are mobile.

The PPP is by far the most common model for node locations, as the PPP is the most
tractable and well understood model. Networks using a PPP to model the locations
of the nodes are referred to as Poisson networks. Furthermore, the interference in a
Poisson network accurately estimates the interference in a cellular network where the
nodes/base stations repel each other, if the intensity is chosen carefully, according to
[16]. Some work of modelling the interference in Poisson networks has been done in
[16]–[20] for wireless networks.

In wireless networks the antennas are usually assumed to be omni-directional, and
each node is equipped with a single antenna. In [16], the interference in a cellular net-
work is modelled. The interference is modelled using a Poisson network with distance
dependant path-loss and an iid unit variance circularly symmetric complex Gaussian
variable as a fading model. They put a lot of emphasis on the PPP approximation
theorem, where the interference with nodes placed according to a repulsive point pro-
cess can be estimated by a PPP with an exclusion region around the receiver, and
use it to characterize the SINR and related performance metrics.

In contrast to [16], the authors in [21] state that a PPP should not be used to
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approximate a point process where the points repel each other, as it is only accu-
rate for first order statistics and not higher order statistics. Specifically, they use
a Matérn point process (MPP) in [21], to approximate the usage of carrier sensing
multiple access (CSMA) as a minimum distance should be imposed between active
nodes. The reason is that if CSMA is used, it is highly unlikely that two nodes close
to each other can be active at the same time. In [21], they derive a close form ex-
pression for the temporal correlation of the interference, using an interference model
with iid Nakagami fading and non-singular distance dependant path-loss. Further,
they compare the Matérn network to a Poisson network and show that the average
interference may be similar, however, the correlation function behaves significantly
different. Hence, one should be careful with approximating an MPP using a PPP.

In [22], the throughput and outage probability is analysed for home users during
the corona virus disease 2019 (COVID-19). Due to the pandemic, many industries
and institutions had to make their employees work from home, this resulted in an
increase in the amount of people who use video streaming applications. Due to the
inhomogeneities in a city’s building formation the Wi-Fi access points should not be
modelled as being uniformly located. A Neyman Scott process was used in order to
model Wi-Fi access points in clusters. Specifically, they used a homogeneous PPP as
the mother process and a uniform distribution for the daughters, where the number
of daughter points in each cluster is Poisson distributed.

In [19], the interference in a Poisson network is characterized in terms of a bursti-
ness and a memory measure from the theory of temporal networks. The analysis
is performed on a channel which is modelled using non-singular distance dependant
path-loss and Nakagami block fading. The nodes transmit according to a probability
all with the same message duration. Two mobility models are considered namely
Brownian motion and random direction. The paper attempts to determine which
factors of a Poisson network causes the bursty behavior observed in interference. It
concludes that it is a combination of the rapidly and slowly changing factors con-
tributing to the interference as well as the characteristics of Brownian motion that
causes an increase in burstiness and memory. The rapidly and slowly changing factors
are associated with the channel and the traffic, specifically the fading block length,
the message length and the node velocity.

In [17], significant work has been put into deriving the temporal correlation of the
interference in Poisson networks, this is done using the Pearson correlation coefficient.
The correlation function is derived under various model assumptions. The node lo-
cations are modelled as a homogeneous PPP. The nodes are active with respect to
a probability and the messages have constant length for all transmissions, resulting
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in slotted ALOHA. The node mobility follows either Brownian motion or linear di-
rection mobility. Lastly, the channel is modelled using a non-singular path-loss in
combination with Nakagami block fading or Rayleigh fading generated using Clarke’s
model. They found that the temporal correlation of the interference changes if the
velocity of the node movement, the message duration, the transmission probability
or the block length changes. That is, the node location, traffic and wireless channel
all contribute to the temporal correlation of the interference.

2.3 In-X Subnetworks Model

In-X subnetworks models are used to model networks consisting of subnetworks which
each consists of a control unit and multiple sensors and actuators. The in-X subnet-
works operate in the higher frequency bands around 6 − 10 [GHz] [7]. The sensors
transmit information to the control unit, which will then process the information and
transmit actions to the actuators. In-X subnetworks are expected to satisfy extreme
requirements such as ultra reliable low latency communication with latencies below
0.1 [ms] and a packet error rate in the order of 10−6 to 10−9 [8]. The name in-X
subnetworks refers to a subnetworks placed inside X which could be a car, house,
factory or even the human body. In [4] they describe envisions for the different, just
mentioned, use cases. The choice of where the subnetwork is placed obviously im-
pacts how and if the subnetwork are able to move as well as the requirements for
the subnetworks. We will briefly go through the four use cases mentioned in [4] and
the envisioned requirements for each. Afterwards, the challenge of interference in
6G in-X subnetworks and how it is currently being mitigated will be discussed. The
requirements are intended to be the most extreme cases, and they may be relaxed in
cases where such demanding requirements are unnecessary.

2.3.1 Factory in-X Subnetworks

Factory in-X subnetworks are subnetworks that are placed in a factory setting, for
example, in robots in a factory hall. The in-X subnetworks are expected to replace
some of the wired solutions where it is critical to have latencies below 0.1 [ms] [4].
The subnetworks could control a robots movements and its precision when it comes
to manufacturing products in a production line. Furthermore, subnetworks in mobile
robots could control the mobility and thereby avoid other mobile robots and obstacles.
The transmission traffic in the subnetworks may be a periodic traffic pattern for
most use cases, however, some event-based traffic could also be used, in case of
sporadic events. The subnetworks may also be able to collect statistics or other key
performance indicators, which can be send to a local server. The robots could then be
analyzed in order to identify anomalies in their behaviors and stop the robots before
any production errors occurs. The expected number of devices, that is, sensors and
actuators, in a robot is in the order of 10 − 20 for motion and force control, while
for mobile robots it is 20 − 40. The maximum subnetwork density is expected to
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be around 40000/km2. The robots should be ultra reliable and the communication
service should satisfy the quality of service requirements 99.9999 − 99.999999 % of
the time.

2.3.2 In-vehicle Subnetworks

In-vehicle subnetworks are envisioned to replace the controller area network bus.
Hence, the subnetworks will handle stuff like the anti-lock breaking system and the
engine control. For highly critical transmissions such as high priority trigger messages
the maximum latency is 0.054 [ms] [23]. This critical traffic may be accompanied with
high data rates from advanced driver-assistance systems (ADAS) which utilizes data
from camera sensors for adaptive cruise control and traffic sign recognition. The data
rates are envisioned to be less then 10 Gbps for the ADAS and 10 Mbps for the
control. The traffic can be both periodic and event-based like in the factory setting.
The reliability is critical and the probability that the service is delivered according to
the quality of service should be in the order 99.9999 − 99.999999 %. The density of
the subnetworks varies depending on where the car is, however, a maximum density
is expected to be around 150/lane-km. Besides cars the subnetworks could also be
placed in various segments inside an airplane.

2.3.3 In-body Subnetworks

The devices used in in-body subnetworks can be divided into two categories, devices
on the body and devices inside the body. The devices on the body could be skin
patches and sensors for temperature and blood pressure while devices inside the body
could be implants in the form of a pacemaker, insulin pump or muscle controllers.
The control unit could be placed in a wristband or possibly in the form of a brain
implant. The implants could be able to help people suffering from diseases, like
patients suffering from diabetes could have a wireless insulin pump implanted to
maintain the right glucose level [24]. Likewise, muscle controllers could be used
to enable movements in people with motor disabilities [25]. The control unit could
potentially be connected to an external network, and in case of anomalies, for instance
unusual heart beat pattern, then the person could be sent to the hospital. A critical
requirement for the in-body subnetworks is the battery placed in the wireless devices
as they are expected to last for years. The in-body subnetworks do not require
high data rates or low latencies, however, the required service level most be fulfilled
as the applications can be life-critical. The probability of satisfying the quality of
service should be 99.9999999 % with the traffic being periodic and event-based. The
density of subnetworks may vary greatly depending on where the person is, and
the requirements should be satisfied despite the person being in crowded areas with
chances of higher interference, for instance at a concert. The maximum subnetwork
density is envisioned to be around 2/m2.
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2.3.4 In-house Subnetworks

The in-house subnetworks are expected to cover the data flow across devices in dif-
ferent rooms or in the same room. The applications are usually not latency critical,
here it is assessed that a maximum latency of 5 [ms] is sufficient for entertainment
applications, such as gaming with extended virtual reality. Extended virtual reality
may include a full body haptic suit where devices are distributed on the persons body.
Extended VR requires high data rates, and it is envisioned that a data rate of 7 Gbps
is needed. The traffic between the devices is event-based. It is expected that the
maximum density is 1/room.

2.3.5 Interference Challenges and Its Mitigation in 6G in-X Sub-
networks

Due to the some of the life-critical application envisioned for the 6G in-X subnetworks,
the subnetworks should be resilient to dense scenarios which may occur [4]. The dense
scenarios could for example be humans attending a concert, cars on a congested road
or at an intersection or even an in-body subnetwork inside an in-car subnetwork [5].
In order for the 6G in-X subnetworks to maintain the extreme requirements, the
problem of interference that occur in these dense scenarios needs to be addressed.
This problem has led to research within radio resource allocation methods for dense
6G in-X subnetworks [5], [7], [26].

To aid the reliability, a combination of blind repetition and channel hopping can
be used, that is the same message is transmitted on different channels regardless of
the previous transmission attempts were successfully received. This is proposed for
applications where the transmissions mainly consist of control loops [4]. In [8], an
initial design is proposed for short range wireless isochronous real time in-X sub-
networks for life-critical applications where the latency of control loops should be
shorter than 0.1 [ms]. Specifically, potential frequency bands are presented along
with a frame structure for the transmissions, and further the required bandwidth in
order to achieve ultra reliable low latency communication is investigated. However,
this transmission scheme, with blind repetition and channel hopping, may not be
sufficient to ensure the high reliability that some applications require [4]. Thus some
additional methods to reduce the interference may be needed. Most of the existing
methods for 5G are reactive, hence interference is experienced before action is taken.
Reactive methods is not recommended for the 6G in-X subnetworks with low latency
requirements. Instead it is envisioned that the methods used for the in-X subnetworks
should be proactive [4], [5].

Depending on the application the interference can be managed in different ways.
One approach is centralized management, where the subnetworks report to a cen-
tral controller such that information about transmissions from the different subnet-
works is shared among each other [4]. Another approach is distributed interference
management where the subnetworks do not share information, but instead rely on
information on the portion of the frequency band where they are active, that is local
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sensing. From the local sensing, the subnetworks should make decisions on the al-
location of its resources. This decision can be made using machine learning such as
a deep neural network (DNN) or reinforcement learning [6], [26]. In [26], a DNN is
trained for each of the subnetworks, the DNN uses the local sensed interference power
as input and performs a mapping to a class of shared frequency channels. In [6], rein-
forcement learning it used to solve a multi-objective optimization problem where the
sum capacity is maximized at each subnetwork subject to the power and transmission
bandwidth constraints. It could also be of interest to use prior knowledge about the
6G in-X subnetworks in the proactive algorithms, for instance Bayesian reinforcement
learning could be used to perform resource allocation where prior knowledge about
the interference and mobility of the subnetworks can be incorporated [4]. Further
in [7], three heuristic approaches for DDCA is presented and compared with a cen-
tralized method, centralized graph coloring. The distributed methods utilizes local
sensed interference power and SINR measurements and the performance is compara-
ble with the centralized scheme. A combination between centralized and distributed
interference management may also be of interest, so the subnetworks use central-
ized management when possible and distributed when out of range from the central
controller.

The different resource allocation methods for in-X subnetworks decreases the in-
terference, or in other words decreases the outage probability, however, the current
methods mainly rely on current interference power measurements. Interference pre-
diction has a potential to aid the interference mitigation techniques, since it will allow
the resource allocation to be determined before the interference occurs [7], [9].

2.4 Existing Interference Predictors

Interference is a well-known problem in wireless communication, where the interfer-
ence may cause an outage of a link, that is, the SINR drops below a certain threshold.
Several interference mitigation methods have been developed, in order to decrease the
interference amount. A proactive method is by predicting when the interference is
below a certain threshold and then to transmit the message at the predicted time
instance. This is particularly useful in cognitive radio networks, where the cognitive
radio users can use licensed frequency bands when the primary users are not occupy-
ing them [9]. The cognitive radios then need to perform spectrum sensing, spectrum
decision, spectrum mobility and lastly spectrum sharing. All of these could be im-
proved with the use of interference prediction, as the real time sensing and decision
making overhead are reduced, as well as the cognitive radios leave the channel before
interfering with the primary users which is the case without prediction [9]. The use-
fulness of this method depends on the accuracy of the predictor. In order to design
an accurate predictor it has to be designed for a model which reflects the interference
pattern.
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The authors of [17], have in [20] designed a simple interference predictor based of the
K ≤ 5 strongest interfering nodes. The predictor has a setup phase, where the differ-
ent 2K interference values are calculated and stored together with their transcodes,
in a table, reflecting which nodes were transmitting. In the learning phase, real inter-
ference values are measured and stored in a new table with the previous transcodes.
The new table takes far away interference into account. While measuring the inter-
ference, the message length and message probability is estimated for each of the K
nodes. In the predicting phase, the predictor assumes that if a node is idle it will
remain idle in the next time step, and if it is transmitting it will transmit in the
next time step unless it has been transmitting for the estimated message length, then
it is idle in next time step. Doing this for each K nodes, the predictor predicts a
transcode for the next time step, and a corresponding interference value is found in
the table made in the learning phase. The predictor can then be used multiple times
to predict more time steps ahead. A flaw with this predictor is that it does not utilize
the estimated message probabilities. Hence, in its prediction it does not account for
new messages. The predictor is tested by using it to perform a simple slot selection,
on a Poisson network where the nodes transmit according to a Poisson arrival process
and the message length is exponential distributed and the channel is subject to iid
Nakagami fading and non-singular distance dependant path-loss. The slot selection
algorithm is tested against a random slot selection which it outperformed.

The same authors as [20] has since then designed an interference predictor in [1] based
on the correlation function they found in [17]. The new predictor is based on an au-
toregressive moving average (ARMA) approximation of the ACF where the ARMA
coefficients are used in a linear Kalman filter to predict the next interference sam-
ples. It was found that the predictor performs better if it is used in a network without
channel sensing, this is because it is designed using an interference model where the
nodes transmit according to a probability with fixed message duration, hence it does
not account for channel sensing. The predictor was tested on interference simulated
according to long term evolution (LTE), wireless sensor network (WSN) and Wi-Fi
and yielded promising results.

Other kinds of predictors are channel predictors which tries to predict whether or not
there is significant interference on a channel, for instance hidden Markov models with
binary states can be trained and used to predict states for whether a channel is free
or not [9], [27]. Further ARMA models have proven useful as predictors in channel
sensing, spectrum decision and spectrum mobility [9].
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2.5 Problem Statement

There is a lack of models and analytical expressions regarding the interference in the
in-X subnetworks as they have recently been envisioned and a lot of research still
has to be made. Since the different user applications need to be modelled differently
we chose to focus on the in-robot subnetworks in a factory setting. The already
existing interference predictors have been designed with an outset in the existing
networks, so it would be interesting to see how such predictors perform on the in-
robot subnetworks. It would further be interesting to see, if it is possible to design
new interference predictors with an outset in a new model describing the in-robot
subnetworks. This has lead up to the following problem statement.

"How can a mathematical model be made to realistically capture the inter-
ference power in in-robot subnetworks in a factory setting, and how can
the interference power from this model be predicted? Additionally, is it
possible to find statistics for the interference power from such a model?"



3. Description of Interference Model

In this chapter, the interference model is described along with all of the individual
components. Afterwards, the interference power will be described using a more math-
ematical approach, and the mean and ACF of the interference are derived under the
described model.

For simplicity, we consider the interference at x1 which is the location of the first
control unit. Let M be the number of subnetworks and N the number of sensor and
actuator pairs in each subnetwork. Then the interference at control unit x1 at time
t is given as

Ix1(t) =
M∑
k=2

h2k0(t)ℓ(xk − x1)γ1k0(t)ζ(x1,xk)

+
M∑
k=2

N∑
j=1

h2kj(t)ℓ(xkj − x1)γ1kj(t)ζ(x1,xkj)

(3.1)

where h2k0(t) is the small-scale fading on the link from the control unit in the k-th
subnetwork to x1 at time t, ℓ(xk − x1) is the path-loss from the control unit of
subnetwork k to x1 and γ1k0(t) is the traffic function, that is, an indicator function
equalling 1 if the control unit of subnetwork k transmits at time t and the subnetwork
is in the same channel group as the first subnetwork. Lastly, ζ(x1,xk) is the shadow
effect between x1 and xk. Analogously, h2kj(t), ℓ(xkj − x1), γ1kj(t) and ζ(x1,xkj)
are the fading, path-loss, traffic function and shadowing effects between x1 and the
j-th sensor in the k-th subnetwork at time t.

In the following sections the individual components will be described, that is, the
small-scale fading, path-loss, traffic function and shadowing, along with a description
of the models for deployment and mobility of the subnetworks.

3.1 Model Description

Traffic model

The traffic function γ1k0 is an indicator function equaling one if xk transmits at the
same time and channel as we are measuring x1 at. Hence, γ describes the traffic in the

13
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TUL TDL TUL

SN1 1UL 2UL 3UL 4UL 1DL 2DL 3DL 4DL 2UL 4UL 3UL 1UL

3UL 4UL 2UL 1UL 3DL 4DL 2DL 1DL 4UL 1UL 2UL 3UL

TDL TUL TDL TUL

SN2 1DL 3DL 3UL 2UL 1UL 4UL 3DL 2DL 1DL 4DL 3UL 1UL

3DL 4DL 1UL 4UL 3UL 2UL 1DL 4DL 3DL 2DL 4UL 2UL

TU

Table 3.1: Depiction of the frame structures of two subnetworks. Note that the transmission order
is the same from UL to DL and that the transmission order is shuffled in the next frame. Additionally,
note the synchronization mismatch between the subnetworks, as a consequence subnetwork 1 (SN1)
may receive both UL and DL interference from SN2, see 1UL as an example.

network. For the traffic we will only consider where Time Division Duplexing (TDD)
is used. We assume cyclic transmission patterns where a frame duration is TF = 0.1
[ms]. The frame duration can be divided into sub-frames TF = TUL + TDL. During
the first part, all of the sensors transmit to the control unit (uplink), and in the second
part the control unit transmits to all the actuators (downlink). We assume that the
duration of the uplink (UL) and downlink (DL) is the same, TUL = TDL, as we have
the same number of sensors and actuators. The sub-frames can further be divided
into NTU time units (TUs), where a TU is the transmission time from either a sensor
to the control unit or the control unit to an actuator. This concept is illustrated
in Table 3.1. During the UL all the sensors transmit one at a time, each taking a
TU. Afterwards in the DL, the control unit transmits to the corresponding actuators
in the same order as it received transmissions from the sensors. The order of the
transmissions within the sub-frames are shuffled each frame, this helps circumvent
jamming attacks, we will refer to this shuffling of each frame as random activity.
Additionally, all the TUs do not have to be occupied, so we may have some empty
TUs, for instance if we only had N = 3 devices then device 4 could be removed from
Table 3.1.

The subnetworks do not work on the same clock, that is, there is a synchronization
mismatch which we assume is a factor of a TU. A consequence of the synchronization
mismatch, is that the UL and DL phases are not necessarily aligned in time across
subnetworks.

As mentioned in Section 2.3.5, in order to lower the interference and latency, mul-
tiple channels and channel hopping in conjunction with blind repetition are used for
in-X subnetworks (for more information about channel hopping and blind repetition
see [8]). First we split the channels into K channel groups where K is chosen such
that there is an equal number of channels in each group. The subnetworks are as-
signed to the channel groups uniformly, such that on average there are Nsg = M/K
subnetworks in a channel group. Let Ncg be the number of channels in each channel
group. Then the messages are repeated blindly Ncg − 1 times, that is, once on each
channel in the channel group, as is seen for both of the subnetworks in Table 3.1 for
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TUL TDL TUL

SN1 1UL 2UL 3UL 4UL 1DL 2DL 3DL 4DL 2UL 4UL 3UL 1UL

TDL TUL TDL TUL

SN2 1DL 3DL 3UL 2UL 1UL 4UL 3DL 2DL 1DL 4DL 3UL 1UL

TU

Table 3.2: Depiction of the frame structures of two subnetworks with Ncg = 1.

the case of two channels in each group. We then have that, when a sensor transmits
a message on one channel it repeats the same message on the other channels with a
small delay between each transmission. However, since we only focus on the inter-
ference on one channel, which could be any of the channels, we will not model this
blind repetition, this results in Table 3.2 instead of Table 3.1

Let NTU be the number of TUs during UL or DL and N be the number of active
sensor actuator pairs. Then, the expected value of the traffic function for the link
between control units of the 1-st and k-th subnetwork is given by

E[γ1k0] = P(γ1k0 = 1) (3.2)

=
N

NTU

TDL

TF

Nsg − 1

M − 1
(3.3)

=
N(Nsg − 1)

2NTU(M − 1)
. (3.4)

In Eq. (3.3) the first fraction is the probability of the k-th control unit interfering
given that the k-th subnetwork is doing DL and is in the same channel group as the
first subnetwork, the second fraction is the probability of a subnetwork doing DL and
the third fraction is the probability of another subnetwork being in the same channel
group as the first subnetwork. Eq. (3.4) holds since we have that TDL/TF = 1/2. For
the traffic function for the sensors we have

E[γ1kj ] =
TU
TF

Nsg − 1

M − 1
(3.5)

=
Nsg − 1

2NTU(M − 1)
. (3.6)

In Eq. (3.5), the first fraction is the probability of a single sensor interfering given that
the k-th subnetwork is in the same channel group as the first subnetwork, whereas
the second fraction is the probability of the sensor being in the same channel group
as the first subnetwork.

Small-scale Fading Component

The small scale fading is modelled using Rayleigh fading which in turn is simu-
lated using Jake-Doppler’s model, specifically we have used the reformulated fading
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Figure 3.1: A plot of |hl(t)|2 for a single link, where L0 = 20 and fc = 3 [GHz].

model in [28]. When using Jake’s model, we assume that we have L rays arriv-
ing with angles αn = 2π(n − 0.5)/L, such that the n-th ray has a Doppler shift
ωn = (2πfcν/c) cos(αn), where fc is the carrier frequency, ν the velocity of the sub-
networks and c is the speed of light. Using L0 = L/4 complex oscillators, Jake’s
model for time t yields

hl(t) =

√
2

L0

L0∑
n=1

(
cos(βn) + j sin(βn)

)
cos(ωnt+ θn,l) (3.7)

where βn are the phases and θn,l are the initial phases where θn,l ∼ U(0, 2π) and l
denotes the specific link between x1 and the interfere that is either a sensor or control
unit from another subnetwork. It should be noted that it is more likely to receive
interference on a link from a control unit than a specific sensor. The phases βn are
chosen as

βn =
nπ

L0
for n = 1, 2, . . . , L0. (3.8)

This provides the same power for the real part and imaginary part and makes them
uncorrelated. Further the normalization

√
2/L0 makes it so

E[h2l (t)] = 1. (3.9)

An example of small scale fading is shown in Figure 3.1 for |hl(t)|2 with L = 20, a
carrier frequency of fc = 3 [GHz]. When we measure interference, we may receive
interference from a different link for each frame, as can be seen from the frame
structure in Table 3.2, which makes the small scale fading look like Figure 3.2.

When generating correlated Rayleigh fading using Jake-Doppler’s model, the ACF
should approximately follow the same pattern as the zeroth-order Bessel function of
first kind [28], specifically

Re
{E [hl(t)hl(t+ τ)]− E [hl(t)]E [hl(t+ τ)]

σhl
(t)σhl

(t+ τ)

}
≈ J0(2πντfc/c) (3.10)
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Figure 3.2: A plot of |hl(t)|2 where L0 = 20, fc = 3 [GHz] and the chosen link varies for each time
step.
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Figure 3.3: The real part of an empirical ACF of h and the zeroth order Bessel function of the
first kind. The empirical ACF has been made by averaging over 1024 realizations with 106 points
and a sample frequency of 10000 [Hz].

where J0 is the zeroth order Bessel function of first kind and σhl
is the standard

deviation of hl. A comparison of an empirical ACF and the Bessel function is shown
in Figure 3.3. Furthermore, the ACF of |hl|2 can be approximated by J2

0 (2πντfc/c),
as can be seen in Figure 3.4. For ease of notation we will use h2l instead |hl|2 for the
remainder of this project.

Path-loss

To model the path-loss a non-singular distance dependant path-loss model is used
[17], specifically

ℓ(xk − x1) = min
(
1, ∥xk − x1∥−α

2

)
. (3.11)

A plot of the path-loss as a function of distance can be seen in Figure 3.5, for α = 3.
The changes in distance is caused by the mobility of the nodes. Our mobility model
is described later in this section.
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Figure 3.4: Empirical ACF of the small scale fading |hl|2 and the zeroth order Bessel function of
the first kind squared. The empirical ACF has been made averaging over 1024 realizations with 106

points and a sample frequency of 10000 [Hz].
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Figure 3.5: Path-loss as a function of distance using Eq. (3.11) with α = 3.
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Shadowing

We will use a similar shadowing model as [29], that is a log-normal random field,
since it is argued that correlated shadow is more realistic, as ignoring the correlation
will over-estimate the diversity of adjacent or closely located links [30]. In order, to
describe the log-normal random field, we will focus on the Gaussian random field in
the following. In the beginning of a snapshot a Gaussian random field is generated
on a grid. Let ∆ be the spacing along the grid, then we have a grid containing
(width× height)/∆2 points on the random field f . We then have Gaussian random
variables with the following covariance at the grid points

cov(f(s), f(t)) = σ2
se

− ∥s−t∥2
δ (3.12)

where δ is the decorrelation distance, σ2
s is the variance of the shadow map and

f(s) and f(t) are Gaussian random variables at the points s and t in the grid,
respectively. We have calculated the shadow map using an algorithm that utilizes
circulant embedding which is described in [31, p. 374]. In Figure 3.6a a shadow map
using the parameters σ2

s = 3, δ = 5 and ∆ = 1/20 is seen. In Figure 3.6b we see a
histogram of the values of the shadow map. The mean and variance of the values in
the histogram are −0.21951 and 3.36746, respectively, which are fairly close to the
true mean and variance which are 0 and 3, respectively. However, we do not always
see this close of a representation of the mean and variance. We have simulated 1024
shadow maps and found the mean and variance for each of the maps, these can be
seen in two histograms in Figure 3.7. This means that the shadow map and how it
is distributed changes a lot between each realization.

The shadowing component is modelled in dB according to

ζ̃(x1,xk) =
1− e(−d1k/δ)

√
2
√

1 + e(−d1k/δ)

(
f(x1) + f(xk)

)
(3.13)

where d1k is the distance between the control units from the 1-st and k-th subnet-
work. The shadowing component is calculated similarly for links involving sensors
and actuators. The shadowing component in the linear scale is then given as

ζ(x1,xk) = 10ζ̃(x1,xk)/10. (3.14)

In Figure 3.8, we have plotted the shadow values against distance on a scatter plot.
Here it is seen that the further the distance between the subnetworks, the bigger the
spread of the shadow values. This increase continues until we reach a distance of
approximately 7-8 meters, then the spread remains somewhat constant.
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Figure 3.7: Histograms of the means and variances found for 1024 different shadow maps generated
with the parameters σ2

s = 3, δ = 5 and ∆ = 1/20.
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Figure 3.8: Scatter plot of values from shadowing versus distance using 25000 points. The shadow
map used is the one shown in Figure 3.6a
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Figure 3.9: Left: Illustration of an in-X subnetworks model with radius r and 5 sensor actuator
pairs, the red circles represent half of the minimum distance d. Right: Illustrates two subnetworks
colliding, where the sensor actuator pairs are the same color as the cell radius for each of the
subnetworks. In this case d = r, and an overlap is possible.

Deployment and Mobility

In our work, we have chosen to focus on in-robot subnetworks in a factory setting.
That is the subnetworks are placed in a rectangular room and can move around freely,
in the form of robots, as long as they maintain a minimum distance to each other.
We assume that each of these subnetworks has the same number of sensor actuator
pairs. Furthermore, that these pairs are co-located randomly throughout the cell
of the subnetwork as seen in Figure 3.9. When the subnetworks comes within the
minimums distance of each other or comes within a radius of a wall a new direction
is drawn randomly.

As in Figure 3.10, we have chosen a square room. We assume that the number
of subnetworks is known before deployment. When deploying a new subnetwork it
cannot be placed arbitrarily close to already deployed subnetworks. Say the subnet-
works have a cell radius r and there should be a minimum distance d between the
centers of each of the subnetworks. Furthermore, if d < 2r then the subnetwork cells
can overlap, see Figure 3.9. Let A be the area of a factory hall, then the radius of the
subnetworks r will result in a deployment area Ã = A⊖r which is an erosion of the
area, A, by r. This can also be seen in Figure 3.10. The first subnetwork is placed
uniformly in Ã whereas the second is placed uniformly in Ã with a circle with radius
d and center at the first subnetwork removed. In general the deployment of the k-th
subnetwork is conditioned on the deployment of the previous k − 1. Specifically, the
k-th subnetwork is placed uniformly in Ã with areas removed such that the center of
the k-th subnetwork is at least a minimum distance away from the other subnetworks.

Initially, each of the subnetworks draws a random direction uniformly in the
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Figure 3.10: Illustration of the deployment area Ã.

interval [0, 2π). All the subnetworks move with the same velocity ν in their respective
directions, until they meet a wall or another subnetwork, then a new direction is drawn
uniformly in the interval [0, 2π). If two subnetworks collide both of them gets a new
direction.

In Figure 3.11 there is shown an example of a deployment of M = 16 subnetworks
within A = [−15, 15]2, with a minimum distance of d = 3 [m] and radius of r = 2
[m]. The deployment is at time t = 0 [s] and then the subnetworks move in a random
direction with a velocity of ν = 2 [m/s]. The outer ring is the radius of the subnetwork
r and the inner ring has radius d/2. The color of the subnetworks indicate the channel
group that they belong to. Here we also see that the number subnetworks in each
channel group can vary a lot.

Simulating Interference in in-X Subnetworks

In this section, we simulate interference from the interference model described through-
out this chapter. Additionally, we want to investigate how the simulated interference
samples are distributed and correlated. The simulation settings are found in Ta-
ble 3.3. The simulated interference as well as the path-loss, small scale fading and
shadowing are plotted in Figure 3.12 for the first 0.2 [s] (2000 samples) of a snap-
shot. In order to see the effects of only one interfere, the interference was simulated
where the first subnetwork is in a channel group with only one other subnetwork. In
general, in the snapshots the first subnetwork is not constrained to be in a channel
group with only one other subnetwork, but the number of subnetworks assigned to a
certain channel is random as shown in Figure 3.11.

We want to investigate how the interference samples are distributed, therefore
1024 snapshots have been simulated, and a histogram has been made using all the
interference samples. For the simulations the number of channel groups is set to 4.
The histogram of the interference samples is seen in Figure 3.13a.
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Figure 3.11: Illustration of in-factory subnetworks, where we have M = 16 subnetworks within
A = [−15, 15]2, with a minimum distance of d = 3 [m] and radius of r = 2 [m]. The deployment is
at t = 0 [s], afterwards they move with velocity ν = 2 [m/s], in a random direction. The outer ring
denotes the cell radius and the inner half of the minimum distance. There are 4 channel groups, and
the subnetworks are colored according to the assigned channel group.

Parameter Value
Number of subnetworks, M 16

Number of sensor actuator pairs, N 18
Cell radius, r 2 [m]
Room size 30× 30 [m2]

Minimum distance, d 3 [m]
Velocity, ν 2 [m/s]

Carrier frequency, fc 3 [GHz]
Path-loss exponent, α 3
Number of waves, L0 20

Variance of shadow map, σ2
s 3

Decorrelation distance, δ 5 [m]
Step size in the shadow map, ∆ 1/20 [m]

Number of snapshots 1024
Simulation time 30 [s]

Sample frequency 10 [kHz]

Table 3.3: Settings used for simulating interference power using the in-X interference model.
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From the histogram it is observed that the interference samples are almost nor-
mally distributed in the dB scale, that is, the interference samples are log-normally
distributed in the linear scale.

Beside the distribution of the interference samples, we also want to examine how the
samples are correlated. In order to assess how the interference samples are correlated,
we have calculated an empirical ACF of the interference samples for each snapshot
and then averaged over the 1024 snapshots to obtain an estimate of the ACF. The
ACF of the interference samples is seen in Figure 3.13b.

From Figure 3.13b it is seen that the ACF decreases really fast, meaning that given
previous samples we will have very little information to predict the future samples.
We conject that the rapidly decreasing ACF is due to random activity, that is, the
shuffling of the transmission order for each time frame. In order to investigate this
conjecture, we will perform a test of predictability in order to implement and analyse
the interference in in-X subnetworks.

3.2 Test of Predictability in Order to Implement and Anal-
yse the Interference in in-X Subnetworks

In this section we have tested the predictability of the interference power for different
setups. First we have an initial test, where it is seen that when random activity is
off the ACF is greater. Afterwards, we see that when random activity is off it does
not make a difference how many sensors there are but only the relation between TUL

and TDL. Then there will be made tests on different scenarios given only one sensor
in each subnetwork. At the end we describe the changes this causes to the model.

As we saw in the previous section, the ACF of the interference power decreases very
fast (see Figure 3.13b). We suspect that this is because of the random activity.
Thus we have simulated 1024 snapshots where random activity is off, the ACF and
distribution of the interference samples from these snapshots are seen in Figure 3.14.
If we look at Figure 3.14b we see that the ACF is greater by a big margin compared
to the ACF when random activity is on. Furthermore, we also see in Figure 3.14a
that the interference samples in the histogram are still normal distributed in dB scale.

When there is no random activity, we argue that the number of sensors does not
matter but only the relation between TUL and TDL. This is due to the fact that, if we
receive interference from a sensor in one time step, we will receive interference from
the same sensor for all time steps, and the fact that the placement of all the sensors
follow the same distribution. Thus, when simulating data we only need to place one
sensor for each subnetwork.
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Figure 3.12: Plot of the interference power as well as plots of the components constituting the
interference power, that is, the small-scale fading, path-loss and shadowing. This is done in the case
where there is only one other subnetwork in the channel group as the first subnetwork.
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Figure 3.13: A histogram (a) and an ACF (b) of interference simulated from the interference
model using the settings in Table 3.3.
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Figure 3.14: A histogram (a) and an ACF (b) of interference simulated from the interference
model using the settings in Table 3.3, with random activity turned off.
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Scenario Misalignment Number of
Channels

1 off 4
2 off 1
3 on 4
4 on 1
5 fractional 1

Table 3.4: Settings for the different scenarios to be tested.

We will now test the interference model for five different scenarios which can be seen
in Table 3.4. The simulation settings that we change in the different scenarios are
misalignment and the number of channels. These scenarios are selected to examine
the difference in the interference power, when receiving from sensors only compared
to receiving from a combination of sensors and control units. Furthermore, the effect
of different amount of subnetworks interfering is also examined. Misalignment refers
to the synchronization mismatch between the subnetworks. When this is on we can
receive interference from both sensors and control units, whereas when it is off we
only receive interference from sensors. In scenario 5, the misalignment is fractional,
that is, we allow interference from both a sensor and a control unit from the same
subnetwork, the scale of the contribution from the sensor is drawn randomly from
{0, 0.25, 0.5, 0.75, 1}, and then the scale of the contribution from the control unit is
chosen such that the sum of the scales equals one. As mentioned in Section 3.1, we
only model one channel in a channel group, thus the number of channels is the same
as the number of channel groups.

The simulations are once again made using the settings from Table 3.3, with
number of sensor and actuator pairs set to one. We found that the interference power
seems to follow a log-normal distribution for all the scenarios as seen in Figure 3.15a.
In order to assess how well a log-normal distribution fits the interference power for the
different scenarios, we have calculated the Kullback–Leibler divergence [32] between
a normalized histogram of the interference power samples in dB and a fitted normal
distribution. The discrete Kullback-Leibler divergence between two probability mass
functions h and f is defined as

D(h||f) =
Nbins∑
i=1

h(xi) log
(h(xi)
f(xi)

)
. (3.15)

The Kullback-Leibler divergence is a measure of the inefficiency of assuming a distri-
bution f when the real distribution is h, the closer the value gets to zero the better
f fits. In our case, we set the normalized histogram as the real distribution. We use
Nbins = 1024 bins in the range [−50, 0] [dB].

In Table 3.5 the mean interference power, the estimated parameters for the normal
distribution in dB and Kullback-Leibler divergence for each scenario are found. In
Figure 3.15b the ACFs for all the different scenarios are plotted. Here it is seen that
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Figure 3.15: Histograms (a) and ACFs (b) of the interference from the different scenarios simulated
from the interference model using the settings in Table 3.3.

the ACFs are all very close, in fact the ACFs for scenario 1-4 are placed almost on
top of each other. It is observed that the ACF for scenario 5 is slightly above the
other ACFs.

In Figure 3.16 we have a time trace of each of the scenarios. In the first time trace
plot the interference power has been simulated from the original interference model
with random activity turned off, that is, with 18 sensor actuator pairs. As mentioned
earlier, we see that this corresponds to scenario 3 where 4 channel groups are used
and misalignment is on.

From Table 3.5, it is seen that the mean interference and the distribution pa-
rameters of a scenario is similar in size to other scenarios with the same amount of
channels. Additionally, looking at the values of the KL-divergences the interference
samples seem to closely follow a log-normal distribution for all scenarios. Together
with the parameters and the histogram in Figure 3.15a, it is seen that the interference
for scenario 1 and 3 follows a distribution with a lower mean value and that the stan-
dard deviation (scale) is significantly larger when compared to the other scenarios.
This is because for scenario 1 and 3 there are 4 channels, hence the channel groups
have 4 subnetworks on average yielding a lower interference power. Additionally,
since the number of subnetworks in each channel group is chosen randomly, and that
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Scenario Mean
Interference [dB]

Log-Normal
Parameters

KL-
Divergence

1 −19.843
loc = −25.646
scale = 7.310

0.00170

2 −13.758
loc = −16.023
scale = 4.233

0.00458

3 −20.464
loc = −26.079
scale = 7.499

0.00548

4 −14.358
loc = −16.220
scale = 3.944

0.00218

5 −14.379
loc = −16.072
scale = 3.824

0.00305

Table 3.5: Results of the different scenarios from Table 3.4.

the interference power depends on the number of subnetworks in the channel group
we are measuring, we have an increase in standard deviation (scale).

Looking at scenario 1 and 2, the mean interferences and the loc parameters are
slightly higher compared to that of scenario 3 and 4, respectively. This is expected,
as the misalignment is off for scenario 1 and 2, that is, we only receive interference
from sensors. The distance between sensors and the control unit of the first sub-
network is sometimes less and sometimes greater than the distance between other
control units and the first, since the sensors are randomly distributed inside the sub-
network cell while the control unit is at the center. Since the path-loss function is a
nonlinear function which attenuates the interference received from greater distances,
see Figure 3.5 when the sensor is closer to the control unit of the first subnetwork it
increases the interference power more than it decreases the interference power when
it is further away. As a result the received interference power will be slightly less
when misalignment is on, compared to when misalignment is off.

3.2.1 Changes to the Model

Based on the ACFs in Figure 3.15b and Figure 3.13b and the plots of the interference
time traces in Figure 3.16 and Figure 3.12, we deem that random activity should be
turned off in order for the interference signal to be predictable. This changes the
expected value of the traffic functions γ1k0 and γ1k1 from Eq. (3.3) and Eq. (3.5) to

E[γ1k0] =
Nsg − 1

2(M − 1)
(3.16)

and

E[γ1k1] =
Nsg − 1

2(M − 1)
, (3.17)
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respectively. The expected values are equal to the product of two probabilities. The
first probability is the probability of receiving interference from a sensor or a control
unit from a subnetwork given that the subnetwork is in the same channel as the
first subnetwork. Since we have from Section 3.1 that TUL = TDL, that is, an equal
amount of time on UL and DL, the probability of receiving UL or DL interference at
a given time is 1/2. The second probability is the probability of being in the same
channel group as the first subnetwork. When the average number of subnetworks per
group is Nsg and there are M subnetworks this probability is (Nsg − 1)/(M − 1).

3.3 Stochastic Interference Model

In this section we want to describe the interference model from the previous section
more mathematically. Furthermore, we will derive the mean and covariance of in-
terference power, using the interference model, and use these to find the ACF, this
is done in Section 3.4. We start by describing the distribution of the placement of
the subnetworks and the sensor actuator pairs. Afterwards, we will go through the
derivations of the mean and ACF.

In Section 3.1 the deployment and mobility of the in-X subnetworks are described.
We will use that as an outset to describe it from a stochastic geometry standpoint. To
describe the placement of the subnetworks, we focus on the placement of the control
units as they are at the centres of the subnetworks. Let

Φ = {x1,x2, . . . ,xM} = {x[M ]} for M > 0 (3.18)

be the location of the control units where we use the notation x[M ] to denote the
M first control units. This notation will also be used in other cases for example
f(x[M ]) = f(x1,x2, . . . ,xM ) and dx[M ] = d(x1 × x2 × · · · × xM ).

The first control unit is placed uniformly over Ã resulting in a probability density
function (pdf)

f(x1) =


1

|Ã|
, for x1 ∈ Ã,

0, else
(3.19)

where |Ã| is the Lebesgue measure of Ã. When the second subnetwork is placed, it is
conditioned on the location of the first one. Let b(x, r) be a circle in R2 with center
at x and radius r. Then the location of the control unit of the second subnetwork
has the following pdf

f(x2|x1) =


1

|Ã\b(x1, d)|
, for x2 ∈ Ã\b(x1, d),

0, else
(3.20)
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where the area of the first subnetwork is excluded to make sure that the position of
the second subnetwork, x2, is feasible. Generally, the conditional pdf of the location
of the control unit of the n-th subnetwork is given by

f(xn|x[n−1]) =


1

|Ã\
⋃n−1

k=1 b(xk, d)|
, for xn ∈ Ã\

⋃n−1
k=1 b(xk, d),

0, else.
(3.21)

These pdfs corresponds to uniform distributions within the feasible areas. Say we
want to deploy M subnetworks, to see that the conditional pdfs f(xn|x[n−1]) for
n ∈ [M ] (where [M ] = {1, 2, . . . ,M}) are indeed valid pdfs consider∫

R2

f(un|x[n−1])dun =

∫
Ã\

⋃n−1
k=1 b(xk,d)

f(un|x[n−1])dun (3.22)

=
1

|Ã\
⋃n−1

k=1 b(xk, d)|

∫
Ã\

⋃n−1
k=1 b(xk,d)

1dun (3.23)

= 1. (3.24)

Thus, we have that f(xn|x[n−1]) for n ∈ [M ] are valid pdfs, since they are non-
negative and integrate to one. In the context of point processes, this defines M
different binomial point processes (BPPs) each with one point, that is,

xn|x[n−1] ∼ Binomial
(
Ã\

n−1⋃
k=1

b(xk, d), 1, f(xn|x[n−1])
)

(3.25)

where the first entry of the BPP is the deployment area, the second entry is the
number of points being deployed and the third entry is the density (for the defini-
tion of BPP see definition A.6). The location of the control units, Φ, are thus the
superposition of these point processes.

We can use the conditional distributions to find the distribution of the point
process [33, p. 165]

f(x[M ]) = f(x2, . . .xM |x1)f(x1) (3.26)
...

=

M∏
k=1

f(xk|x[k−1]). (3.27)

If we consider the locations of the sensor actuator pairs in a subnetwork, then they
can be described according to a BPP with a uniform pdf. Specifically, let

Ξk = {ξk1, ξk2, . . . , ξkN} = {ξk[N ]} (3.28)
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be the location of sensor actuator pairs within the k-th subnetwork relative to the
k-th control unit. The location of the pairs with respect to origin is found by adding
the location of the control unit within the k-th subnetwork. That is, if we define

Ξk ∼ Binomial
(
b(0, r), N,

1

πr2

)
for k ∈ [M ], (3.29)

then the positions of the sensor actuator pairs in the k-th subnetwork in A are given
by

Φk = {xk[N ]} (3.30)
where

xki = xk + ξki for i ∈ [N ] (3.31)
where xk is the location of the k-th control unit.

As we discussed in Section 3.2, we will focus on the case where N = 1, that is,
each subnetwork only has one sensor actuator pair. Therefore, the mean and ACF
will be derived for the case with one sensor in each subnetwork.

3.4 Derivation of the Mean and ACF of the Interference

In this section the goal is to derive the temporal ACF of the interference power which
is particular useful as it indicates how the interference samples are related over a
certain time period. In order to obtain the ACF, we need to find expressions for
the mean and the temporal covariance of the interference power. It is assumed that
there is misalignment, that is, we may receive interference from both control units
and sensors.

3.4.1 Derivation of the Mean Interference

In the following, the notation EΦ means that we take the expected value with respect
to Φ. The mean interference at a control unit is derived using Eq. (3.1). For simplicity
we consider the interference received at the first control unit, x1, as the expected
interference pattern should look similar across all control units.

E[Ix1(t)] = EΦ,Φk,h,γ

[ M∑
k=2

h2k0(t)ℓ(xk − x1)γ1k0(t)ζ(x1,xk)

+

M∑
k=2

h2k1(t)ℓ(xk1 − x1)γ1k1(t)ζ(x1,xk1)
]

(3.32)

= EΦ,h,γ

[ M∑
k=2

h2k0(t)ℓ(xk − x1)γ1k0(t)ζ(x1,xk)
]

+ EΦk,h,γ

[ M∑
k=2

h2k1(t)ℓ(xk1 − x1)γ1k1(t)ζ(x1,xk1)
]

(3.33)

= E[Ix1cu(t)] + E[Ix1s(t)]. (3.34)
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The first expected value in Eq. (3.34) is the expected interference received from other
control units, and the second expected value is the expected interference received
from sensors within the other subnetworks.

Starting with the expected interference received from the other control units,
E[Ix1cu(t)], we have the following.

E[Ix1cu(t)] = EΦ,h,γ

[ M∑
k=2

h2k0(t)ℓ(xk − x1)γ1k0(t)ζ(x1,xk)
]

(3.35)

= EΦ

[ M∑
k=2

Eh[h
2
k0(t)]ℓ(xk − x1)Eγ [γ1k0(t)]ζ(x1,xk)

]
(3.36)

=
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

ℓ(xk − x1)ζ(x1,xk)
]

(3.37)

where we used the fact, from Eq. (3.9) and Eq. (3.16), that Eh[h
2
k0(t)] = 1 and

Eγ [γ1k0(t)] =
Nsg−1
2(M−1) . Let ÃM = Ã× Ã×· · ·× Ã be Ã M -fold times. Then using the

joint pdf in Eq. (3.27) to evaluate the expected value in Eq. (3.37) yields.

E[Ix1cu(t)] =
Nsg − 1

2(M − 1)

∫
ÃM

( M∑
k=2

ℓ(uk − u1)ζ(u1,uk)
)
f(u[M ])du[M ]. (3.38)

We do not know of any methods to calculate the integral in Eq. (3.38) on closed
form, so we need to use numerical methods to do so. Therefore, when evaluating the
integral in Eq. (3.38) Monte Carlo (MC) integration will be used. MC integration is
described in Appendix B.
Now turning to the expected interference received from the sensors from the other
subnetworks, that is, E[Ix1s(t)].

E[Ix1s(t)] = EΦk,h,γ

[ M∑
k=2

h2k1(t)ℓ(xk1 − x1)γ1k1(t)ζ(x1,xk1)
]

(3.39)

= EΦ

[ M∑
k=2

Eξk

[
Eh[h

2
k1(t)]ℓ(xk + ξk − x1)Eγ [γ1k1(t)]ζ(x1,xk + ξk)

]]
.

(3.40)

Notice as Φk constitutes of Φ and ξk, as seen from Eq. (3.31), we may change the
expectation with respect to Φk to two expectations over Φ and ξk as in Eq. (3.40).
Once again we use the fact that Eh[h

2
k1(t)] = 1 and Eγ [γ1k1(t)] =

Nsg−1
2(M−1) in Eq. (3.40)

this results in

E[Ix1s(t)] =
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

Eξk

[
ℓ(xk + ξk − x1)ζ(x1,xk + ξk)

]]
(3.41)

=
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)dv
]

(3.42)
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where Eq. (3.42) is due to the definition of expected value of ξk with the pdf 1/(r2π)
on b(0, r). If we define

κx1(xk) =
1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)dv, (3.43)

then Eq. (3.42) is written as

E[Ix1s(t)] =
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

κx1(xk)
]
. (3.44)

Taking the expectation with respect to Φ yields

E[Ix1s(t)] =
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

κx1(xk)
]

(3.45)

=
Nsg − 1

2(M − 1)

∫
ÃM

( M∑
k=2

κu1(uk)
)
f(u[M ])du[M ]. (3.46)

A similar argument follows for the integral in Eq. (3.46) as for Eq. (3.38), so it will
also be evaluated using MC integration. The mean interference at the first control
unit is then given as the sum of Eq. (3.38) and Eq. (3.46). We will gather these two
equations under the same integral, since it will be more computational efficient.

3.4.2 Derivation of Temporal Covariance of the Interference

The temporal covariance of the interference observed at the first control unit is given
by

cov(Ix1(t1)Ix1(t2)) = E[Ix1(t1)Ix1(t2)]− E[Ix1(t1)]E[Ix1(t2)]. (3.47)

The term E[Ix1(t1)]E[Ix1(t2)] is known from Section 3.4.1, hence we will focus on
the term E[Ix1(t1)Ix1(t2)]. We assume that the interference power is a wide-sense
stationary (WSS) process, that is, the expected mean is constant over time and the
ACF only depends on time lag (for a formal definition of WSS see [34, pp. 20-21]).
Let τ = t2 − t1 and Ωkτ be the displacement of the k-th subnetwork over the time
τ . Note the displacement Ωkτ depends on the location of all the subnetworks, since
the direction is changed if the subnetworks gets closer than a minimum distance d
to each other. Furthermore, when a subnetwork is rotated the sensor actuator pairs
are also rotated. Let Rkτ be a rotation matrix that denotes the rotation of the k-
th subnetwork at time τ . The term E[Ix1(t1)Ix1(t1 + τ)] can then be calculated as
follows.
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E[Ix1(t1)Ix1(t1 + τ)]

= E
[( M∑

k1=2

h2k10(t1)ℓ(xk1 − x1)γ1k10(t1)ζ(x1,xk1)

+

M∑
k1=2

h2k11(t1)ℓ(xk1 + ξk1 − x1)γ1k11(t1)ζ(x1,xk1 + ξk1)
)( M∑

k2=2

h2k20(t1 + τ)

× ℓ(xk2 +Ωk2τ − x1 − Ω1τ )γ1k20(t1 + τ)ζ(x1 +Ω1τ ,xk2 +Ωk2τ )

+
M∑

k2=2

h2k21(t1 + τ)ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )γ1k21(t1 + τ)

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)
)]

(3.48)

= E[Ix1cu(t1)Ix1cu(t1 + τ)] + E[Ix1cu(t1)Ix1s(t1 + τ)]

+ E[Ix1s(t1)Ix1cu(t1 + τ)] + E[Ix1s(t1)Ix1s(t1 + τ)] (3.49)
= Σcucu(τ) + Σcus(τ) + Σscu(τ) + Σss(τ). (3.50)

The four expected values in Eq. (3.50) will be treated separately in the following
sections. As was done for the mean interference, the expressions for the four expected
values will result in integrals for which we use MC integration to evaluate their values.

Calculation of Σcucu(τ)

Σcucu(τ) = E
[ M∑
k1=2

M∑
k2=2

h2k10(t1)h
2
k20(t1 + τ)ℓ(xk1 − x1)ℓ(xk2 +Ωk2τ − x1 − Ω1τ )

× γ1k10(t1)γ1k20(t1 + τ)ζ(x1,xk1)ζ(x1 +Ω1τ ,xk2 +Ωk2τ )
]

(3.51)

= EΦ

[ M∑
k1=2

M∑
k2=2

Eh[h
2
k10(t1)h

2
k20(t1 + τ)]ℓ(xk1 − x1)ℓ(xk2 +Ωk2τ − x1 − Ω1τ )

× Eγ [γ1k10(t1)γ1k20(t1 + τ)]ζ(x1,xk1)ζ(x1 +Ω1τ ,xk2 +Ωk2τ )
]

(3.52)

=
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

Eh[h
2
k0(t1)h

2
k0(t1 + τ)]ℓ(xk − x1)

× ℓ(xk +Ωkτ − x1 − Ω1τ )ζ(x1,xk)ζ(x1 +Ω1τ ,xk +Ωkτ )
]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(xk1 − x1)

× ℓ(xk2 +Ωk2τ − x1 − Ω1τ )ζ(x1,xk1)ζ(x1 +Ω1τ ,xk2 +Ωk2τ )
]
. (3.53)
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In equation (3.53) the sums have been split up into terms for which k1 = k2 = k and
k1 ̸= k2. In the latter sum, we have that

Eγ [γ1k10(t1)γ1k20(t1 + τ)] =
(Nsg − 1)

2(M − 1)

(Nsg − 2)

2(M − 2)
=

(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
(3.54)

Eh[h
2
k10(t1)h

2
k20(t1 + τ)] = Eh[h

2
k10(t1)]Eh[h

2
k20(t1 + τ)] = 1 (3.55)

where Eq. (3.55) is due to independence and Eq. (3.54) can be seen as the probability
of two control units transmitting at the same time and in the same group as the first
subnetwork. In the former sum, we have

Eγ [γ1k0(t1)γ1k0(t1 + τ)] =
Nsg − 1

2(M − 1)
(3.56)

which is the probability of receiving interference from the control unit of subnetwork
k. This requires that subnetwork k and the first subnetwork are in the same channel
group and that it is doing DL. This is due to no random activity as well as we
sample once in each frame, so if we receive interference from an interfere at t1 we
also receive interference from the same interfere at t1 + τ . In order to determine
Eh[h

2
k0(t1)h

2
k0(t1 + τ)], we use the fact that Jake Doppler’s model was used to model

our small scale fading, from Eq. (3.10) and [17], we have

E
[
h2l (t)h

2
l (t+ τ)

]
− E

[
h2l (t)

]
E
[
h2l (t+ τ)

]
σh2

l
(t)σh2

l
(t+ τ)

≈ J2
0 (2πντfc/c) (3.57)

where J0 is first order Bessel function of zeroth kind, ν is the velocity of the subnet-
work, fc is the carrier frequency and c is the speed of light. Using that E

[
h2l (t)

]
= 1

and assuming that the standard deviation is time-invariant, that is, σh2
l
(t)σh2

l
(t+τ) =

σ2
h2
l
. We have that

Eh[h
2
kj(t1)h

2
kj(t1 + τ)] ≈ J2

0 (2πντfc/c)σ
2
h2
l
+ 1 (3.58)

for j = 0, 1. Using this and Eq. (3.27) to calculate the expected value in Eq. (3.53)
yields

Σcucu(τ) ≈
(J2

0 (2πτνfc/c)σ
2
h2
l
+ 1)(Nsg − 1)

2(M − 1)

∫
ÃM

M∑
k=2

ℓ(uk − u1)ℓ(uk +Ωkτ − u1 − Ω1τ )

× ζ(u1,uk)ζ(u1 +Ω1τ ,uk +Ωkτ )f(u[M ])du[M ]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)

∫
ÃM

M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(uk1 − u1)ℓ(uk2 +Ωk2τ − u1 − Ω1τ )

× ζ(u1,uk1)ζ(u1 +Ω1τ ,uk2 +Ωk2τ )f(u[M ])du[M ]. (3.59)
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Calculation of Σcus(τ) and Σscu(τ)

Σcus(τ) = E
[ M∑
k1=2

M∑
k2=2

h2k10(t1)h
2
k21(t1 + τ)ℓ(xk1 − x1)

× ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )γ1k10(t1)γ1k21(t1 + τ)

× ζ(x1,xk1)ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)
]

(3.60)

= EΦ

[ M∑
k1=2

M∑
k2=2

Eξk2

[
Eh[h

2
k10(t1)h

2
k21(t1 + τ)]ℓ(xk1 − x1)

× ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )Eγ [γ1k10(t1)γ1k21(t1 + τ)]

× ζ(x1,xk1)ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)
]]

(3.61)

=
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(xk1 − x1)ζ(x1,xk1)

× Eξk2

[
ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)
]]
. (3.62)

The two sums in Eq. (3.62) have been changed to sum over the different pairs of
control units and sensor from different subnetworks, since we cannot receive inter-
ference from both a control unit and a sensor from the same subnetwork. Addi-
tionally, Eh[h

2
k10

(t1)h
2
k21

(t1 + τ)] = 1 due the independence between the links and
Eγ [γ1k10(t1)γ1k21(t1 + τ)] is given by

Eγ [γ1k10(t1)γ1k21(t1 + τ)] =
Nsg − 1

2(M − 1)

Nsg − 2

2(M − 2)
=

(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
. (3.63)



3.4. Derivation of the Mean and ACF of the Interference 39

Using the definition of expected value of ξk2 in Eq. (3.62) with the pdf 1/(r2π) on
b(0, r) yields

Σcus(τ) =
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(xk1 − x1)ζ(x1,xk1)

× Eξk2

[
ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)
]]

(3.64)

=
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(xk1 − x1)ζ(x1,xk1)

× 1

r2π

∫
b(0,r)

ℓ(xk2 +Ωk2τ +Rk2τv − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τv)dv
]
. (3.65)

If we define

αx1(xk2) =
1

r2π

∫
b(0,r)

ℓ(xk2 +Ωk2τ +Rk2τv − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τv)dv,

(3.66)

then taking the expected value with respect to Φ yields

Σcus(τ) =
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(xk1 − x1)ζ(x1,xk1)αx1(xk2)
]

(3.67)

=
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)

∫
ÃM

M∑
k1=2

M∑
k2=2
k2 ̸=k1

ℓ(uk1 − u1)ζ(u1,uk1)αu1(uk2)f(u[M ])du[M ].

(3.68)

Turning to the similar case Σscu(τ) then by the same approach we obtain

Σscu(τ) =
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)

∫
ÃM

M∑
k2=2

M∑
k1=2
k1 ̸=k2

ℓ(uk2 +Ωk2τ − u1 − Ω1τ )

× ζ(u1 +Ω1τ ,uk2 +Ωk2τ )κu1(uk1)f(u[M ])du[M ] (3.69)

where
κx1(xk) =

1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)dv (3.70)

is identical to Eq. (3.43).
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Calculation of Σss(τ)

Σss(τ) = E
[ M∑
k1=2

M∑
k2=2

h2k11(t1)h
2
k21(t1 + τ)ℓ(xk1 + ξk1 − x1)

× ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )ζ(x1,xk1 + ξk1)

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)γ1k11(t1)γ1k21(t1 + τ)
]

(3.71)

= EΦ

[ M∑
k1=2

M∑
k2=2

Eξk1 ,ξk2

[
Eh[h

2
k11(t1)h

2
k21(t1 + τ)]ℓ(xk1 + ξk1 − x1)

× ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )ζ(x1,xk1 + ξk1)

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk2)Eγ [γ1k11(t1)γ1k21(t1 + τ)]
]]

(3.72)

=
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

Eξk

[
Eh[h

2
k1(t1)h

2
k1(t1 + τ)]ℓ(xk1 + ξk − x1)

× ℓ(xk +Ωkτ +Rkτξk − x1 − Ω1τ )ζ(x1,xk + ξk)ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτξk)
]]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

Eξk1 ,ξk2

[
ℓ(xk1 + ξk1 − x1)

× ℓ(xk2 +Ωk2τ +Rk2τξk22 − x1 − Ω1τ )ζ(x1,xk1 + ξk1)

× ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τξk21)
]]
. (3.73)

In Eq. (3.73) the sums have been arranged such that terms for which k1 = k2 = k are
grouped and terms for which k1 ̸= k2 are grouped. In the first sums we are looking
at the same sensors at t1 and t1 + τ , hence Eγ [γ1k1(t1)γ1k1(t1 + τ)]

]
=

Nsg−1
2(M−1) . For

the case k1 ̸= k2 we are looking at sensors from different subnetworks, hence we have

Eγ [γ1k11(t1)γ1k21(t1 + τ)] =
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
, (3.74)

Eh[h
2
k11(t1)h

2
k21(t1 + τ)] = Eh[h

2
k11(t1)]Eh[h

2
k21(t1 + τ)] = 1 (3.75)

where Eq. (3.75) is due to independence and Eq. (3.74) can analogous to Eq. (3.54) be
seen as the probability of two sensors from different subnetworks transmitting at the
same time in the same channel group as the first control unit. Rewriting Eq. (3.73)
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into an expression for which it is easier to use the definition of expected value yields.

Σss(τ) =
Nsg − 1

2(M − 1)
EΦ

[ M∑
k=2

Eξk

[
Eh[h

2
x1k1(t1)h

2
x1k1(t1 + τ)]ℓ(xk + ξk − x1)

× ℓ(xk +Ωkτ +Rkτξk − x1 − Ω1τ )ζ(x1,xk + ξk)ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτξk)
]]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

Eξk1

[
ℓ(xk1 + ξk1 − x1)

× ζ(x1,xk1 + ξk1)
]
Eξk2

[
ℓ(xk2 +Ωk2τ +Rk2τξk2 − x1 − Ω1τ )

× ζ(xk2 +Ωk2τ +Rk2τξk2 ,xk1 + ξk1)
]]
. (3.76)

Again, we use the result in Eq. (3.58), that is,

Eh[h
2
k1(t1)h

2
k1(t1 + τ)] ≈ J2

0 (2πτνfc/c)σ
2
h2
l
+ 1, (3.77)

and using the definition of expected value gives the following.

Σss(τ) ≈
(J2

0 (2πτνfc/c)σ
2
h2
l
+ 1)(Nsg − 1)

2(M − 1)
EΦ

[ M∑
k=2

1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)

× ℓ(xk +Ωkτ +Rkτv − x1 − Ω1τ )ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτv)dv
]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

1

r2π

∫
b(0,r)

ℓ(xk1 + v − x1)ζ(x1,xk1 + v)dv

× 1

r2π

∫
b(0,r)

ℓ(xk2 +Ωk2τ +Rk2τv − x1 − Ω1τ )ζ(x1 +Ω1τ ,xk2 +Ωk2τ +Rk2τv)dv
]
.

(3.78)

If we define

ηx1(xk) =
1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)ℓ(xk +Ωkτ +Rkτv − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτv)dv, (3.79)

and use it together with Eq. (3.43) and Eq. (3.66) in Eq. (3.78) we get the following.

Σss(τ) ≈
(J2

0 (2πτνfc/c)σ
2
h2
l
+ 1)(Nsg − 1)

2(M − 1)
EΦ

[ M∑
k=2

ηx1(xk)
]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)
EΦ

[ M∑
k1=2

M∑
k2=2
k2 ̸=k1

κx1(xk1)αx1(xk2)
]
. (3.80)
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Taking the expectation over Φ yields

Σss(τ) ≈
(J2

0 (2πτνfc/c)σ
2
h2
l
+ 1)(Nsg − 1)

2(M − 1)

∫
ÃM

M∑
k=2

ηu1(uk)f(u[M ])du[M ]

+
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)

∫
ÃM

M∑
k1=2

M∑
k2=2
k2 ̸=k1

κu1(uk1)αu1(uk2)f(u[M ])du[M ].

(3.81)

We have now derived all the components needed to approximate the temporal covari-
ance,

cov(Ix1(t1)Ix1(t1 + τ)) = E[Ix1(t1)Ix1(t1 + τ)]− E[Ix1(t1)]E[Ix1(t1 + τ)] (3.82)

where E[Ix1(t1)Ix1(t1+τ)] is approximate using the four terms derived in this section,
that is,

E[Ix1(t1)Ix1(t1 + τ)] ≈ Σcucu(τ) + Σcus(τ) + Σscu(τ) + Σss(τ). (3.83)

3.4.3 Autocorrelation Function of the Interference

The temporal ACF (or Pearson’s correlation coefficient) is defined as

ρ(Ix1(t1), Ix1(t2)) =
cov(Ix1(t1), Ix1(t2))√
var[Ix1(t1)]var[Ix1(t2)]

. (3.84)

The covariance was found in Section 3.4.2. The variance of the interference is found
by evaluating the covariance at t1 = t2 = t, that is

cov(Ix1(t), Ix1(t)) = E[I2x1
(t)]− E[Ix1(t)]

2 = var[Ix1(t)]. (3.85)

Assuming that the interference power is stationary and has a finite variance and that
the temporal covariance only depends on the time lag τ = t2 − t1, we can rewrite
Eq. (3.84) to

ρ(Ix1(t1), Ix1(t1 + τ)) =
cov(Ix1(t1), Ix1(t1 + τ))

var[Ix1 ]
= ρIx1

(τ) (3.86)

which can be estimated using MC integration for various time lags τ .
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In this chapter, the proposed interference predictors are presented. Two predictors
are considered, namely a last value predictor and an autoregressive (AR) predictor.
The last value predictor is chosen since, as mentioned in Section 2.3.5, the differ-
ent resource allocation method used for interference mitigation only use the current
measurements to make their decisions. These decisions only impact the future mea-
surements, thus it is like predicting the future measurements to be like the current,
which is the main idea behind the last value prediction. The AR predictor is chosen
because of its simplicity.

For the sake of prediction, the interference samples are divided into two parts,
a measurement part and a prediction part. The measurement part will be used to
estimate the parameters used in the predictor, that is the AR coefficients for the
AR predictor. Afterwards, the predictor can be used to predict samples beyond
the measurement part. The predicted samples can then be compared with the real
interference samples in the prediction part to measure how accurate the prediction
is. The length of the measurement part and the prediction part in samples will be
referred to as the measurement horizon and prediction horizon, respectively.

4.1 Last Value Predictor

The last value predictor works as the name suggests, it takes the interference power
at the measurement horizon and predicts that the interference power will stay at this
value. The equation used to perform last value prediction is seen below

Î(n) = i(MH) for n = 1, . . . , τ (4.1)

where Î(1 : τ) is the predicted interference samples, τ is the prediction horizon,
i(MH) is the interference sample at time MH and MH is the measurement horizon.

4.2 Autoregressive Processes and Predictors

In this section, AR processes will be presented as well as how the parameters for such
processes can be estimated. The AR process will be used to predict the interference
power simulated from the interference model. Thus, this section will be concluded
with an algorithm of the prediction scheme.

43
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4.2.1 Autoregressive Processes and Yule Walker Equations

Assuming that the interference power can be modelled using an AR model of order
p, that is, the interference sample at time t is given by a linear combination of the
previous p interference samples. The definition of an AR model is stated below.

Definition 4.1 (Autoregressive Model)
An AR model of order p is of the form

x(t) = β0 + β1x(t− 1) + β2x(t− 2) + · · ·+ βpx(t− p) +w(t) (4.2)

where x is WSS, w(t) ∼ N (0, σ2
w) is white Gaussian noise and β0, β1, β2,. . . , βp

are constants where
β0 = µx(1− β1 − β2 − · · · − βp) (4.3)

and µx is the mean of x.

In the case where x is a zero mean time series, the AR coefficient β0 is equal
to zero. For this reason the mean interference is subtracted from the interference
samples before using the AR model, for ease of notation the interference samples
will still be written as i throughout this section, even though the mean has been
subtracted. Modelling the interference as an AR model of order p is then done by

i(t) =

p∑
j=1

βji(t− j) +w(t). (4.4)

The coefficients β1, β2, . . . , βp can be estimated using the Yule Walker equations,
which will be derived in the following. Multiplying both sides of Eq. (4.4) with
i(t− h), for h ≥ 1 and taking the expected value yields

E[i(t)i(t− h)] =

p∑
j=1

βjE[i(t− j)i(t− h)], (4.5)

since E[i(t− h)w(t)] = 0 for h ≥ 1. It follows that E[i(k)i(l)] = cov(k− l) because i
is a WSS zero mean time series. Hence

cov(h) =
p∑

j=1

βjcov(h− j) h = 1, 2, . . . (4.6)

and evaluation for h = 0 we have that

cov(0) =
p∑

j=1

βjcov(j) + σ2
w, (4.7)
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since E[i(t)w(t)] = σ2
w. Isolating for σ2

w we have

σ2
w = cov(0)−

p∑
j=1

βjcov(j) (4.8)

This yields the Yule Walker equations given in the following definition [34, p. 113].

Definition 4.2 (Yule Walker Equations)
The Yule Walker equations are given by

cov(t) =
p∑

j=1

βjcov(t− j) t = 1, 2, . . . , p (4.9)

σ2
w = cov(0)−

p∑
j=1

βjcov(j). (4.10)

Normalizing Eq. (4.9) with cov(0) gives

ρ(t) =

p∑
j=1

βjρ(t− j) t = 1, 2, . . . , p. (4.11)

Vectorizing Eq. (4.11) gives

ρ = Rβ (4.12)

where ρ = [ρ(1),ρ(2), . . . ,ρ(p)]T , R = {ρ(i− j)}pi,j=1 and β = [β1, β2, . . . , βp]
T . The

AR parameters can then be solved for

β = R−1ρ. (4.13)

Since the ACF is not known on closed form, it will be estimated. Hence, the Yule
Walker estimates are given by

β̂ = R̂−1ρ̂ (4.14)

where ρ̂ = [ρ̂(1), ρ̂(2), . . . , ρ̂(p)] and R̂−1 = {ρ̂(i − j)}pi,j=1. In our prediction, the
sample ACF is used as the estimate of ρ.

AR prediction is done by first estimating the AR parameters of the time series, and
then calculating the next step(s) of the time series where the noise is set to zero. An
algorithm describing how the interference is predicted, using AR prediction, is seen
in Algorithm 1.
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Algorithm 1 Predicting Interference Power Using AR(p)

Input) Prediction horizon: τ , measurement horizon: MH, interference samples:
i(1 : MH) and order: p.
Output) The predicted interference samples: Î(1 : τ).
1) Estimate β̂ ∈ Rp with Yule Walker equations Eq. (4.14) using i(1 : MH) −
mean(i(1 : MH)).
2) Define ip = i(MH − p+ 1 : MH).
3) for n ∈ (1, 2, . . . , τ):
4) Î(n) = β̂

T
ip.

5) ip = [iTp (2 : p) Î(n)]T .



5. Numerical Evaluation

In this chapter, numerical evaluation of the analytical expressions of the mean and
ACF from Section 3.4 and the predictors from Chapter 4 will be performed. We
start by evaluating the analytical expressions of the mean and ACF, and then the
predictors, this is done in Section 5.1 and Section 5.2, respectively.

5.1 Evaluating the Mean and ACF From the Stochastic
Interference Model

In this section, we start by deriving expressions for the MC integrals of the mean
and then the ACF of the interference received at a control unit in an in-robot sub-
network. The derivation of the MC integrals is based on the analytical expressions
from Section 3.4.1 and Section 3.4.3. After the MC integrals have been constructed,
we perform some numerical experiments, where we simulate interference from the
interference model in Chapter 3 and compare the mean and ACF of that to the mean
and ACF obtained with MC integration. We use MC integration to evaluate the
integrals instead of classical numerical integration methods, such as, the trapezoidal
and Simpson’s rule since it is more feasible for higher dimensions [35, pp. 1-5], [36,
pp 30-33]. The dimensionality of our integrals corresponds to two times the number
of control units we deploy in the in-X subnetworks, as each control unit has an x and
y coordinate. For a short introduction to MC integration see Appendix B.

5.1.1 Using MC Integration To Estimate the Mean Interference
Power

In order to obtain the mean interference, derived in Section 3.4.1, we have to evaluate
the integrals of the form

E[Ix1cu(t)] =
Nsg − 1

2(M − 1)

∫
ÃM

( M∑
k=2

ℓ(uk − u1)ζ(u1,uk)
)
f(u[M ])d(u[M ]) (5.1)

where ℓ is a path-loss function, ζ is the shadowing component and

f(x[M ]) =

M∏
k=1

f(xk|x[k−1]) (5.2)

47
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is the joint probability density function (pdf) of the locations of the control units.
Recall from Eq. (3.21) that for 0 < k ≤ M

f(xk|x[k−1]) =


1

|Ã\
⋃k−1

j=1 b(xj , d)|
, for xk ∈ Ã\

⋃k−1
j=1 b(xj , d),

0, else
(5.3)

is the conditional pdf of the k-th control unit.
In terms of MC integration, we draw Nsim samples from the joint density f .

Specifically, let x(i)
[M ] be the i-th realization of the locations of the control units, then

x
(1)
[M ],x

(2)
[M ], . . . ,x

(Nsim)
[M ]

iid∼ f(x[M ]). (5.4)

The integral in Eq. (5.1) can then be estimated by

Qx1cu[Nsim] =
1

Nsim

Nsg − 1

2(M − 1)

Nsim∑
i=1

(∑M
k=2 ℓ(x

(i)
k − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k )

)
f(x

(i)
[M ])

f(x
(i)
[M ])

(5.5)

=
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

ℓ(x
(i)
k − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k )

)
. (5.6)

The interference contribution from the control units is estimated using Eq. (5.6). In
the case for the sensors, Ix1s, we get almost the same expression with exception of
having κ

x
(i)
1

instead of ℓ and ζ in the inner sum as seen in Eq. (3.46).

Qx1s[Nsim] =
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

κ
x
(i)
1

(x
(i)
k )

)
(5.7)

=
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

1

r2π

∫
b(0,r)

ℓ(x
(i)
k + v − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v)dv

)
.

(5.8)

As seen in Eq. (5.8) there is another integral that needs to be solved. We also solve
this integral using MC integration. That is,

κ
x
(i)
1

(x
(i)
k ) =

1

r2π

∫
b(0,r)

ℓ(x
(i)
k + v − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v)dv (5.9)

≈ 1

Lsim

1

r2π

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

p(v(n))
(5.10)

= κ̂
x
(i)
1

(x
(i)
k , Lsim) (5.11)
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where the samples v(1),v(2), . . . ,v(Lsim) iid∼ U(b(0, r)), in this case p = 1/(r2π). Using
Eq. (5.11) to estimate Eq. (5.8) yields

Qx1s[Nsim] ≈ Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

)
(5.12)

= Qx1s[Nsim, Lsim]. (5.13)

It should be noted, that in the case of scenario 1 from Table 3.4 there is no misalign-
ment, that is, all the received interference is from sensors from other subnetworks.
Consequently, if the mean interference is estimated for this scenario using MC inte-
gration, Eq. (5.13) should be used after multiplying it with 2. For scenario 2 which
is not only without misalignment but also with only one channel, which gives that
Nsg = M and thus resulting in the following

Qx1s[Nsim, Lsim] =
1

Nsim

Nsim∑
i=1

( M∑
k=2

1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k +v(n)−x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k +v(n))

)
.

(5.14)
From Section 3.4.1, we have that the expected interference can be estimated as the
sum of Eq. (5.6) and Eq. (5.13).

Qx1 [Nsim, Lsim] = Qx1cu[Nsim] +Qx1s[Nsim, Lsim] (5.15)

=
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

ℓ(x
(i)
k − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k )

)

+
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

)
(5.16)

=
Nsg − 1

2Nsim(M − 1)

Nsim∑
i=1

( M∑
k=2

(
ℓ(x

(i)
k − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k )

+
1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

))
. (5.17)

The mean obtained from using Eq. (5.17) corresponds to the mean interference from
scenario 3 with multiple channels and misalignment. The case for scenario 4 and 5
where there is only one channel, which again gives that Nsg = M and thus resulting
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in the following

Qx1 [Nsim, Lsim] =
1

Nsim

Nsim∑
i=1

( M∑
k=2

ℓ(x
(i)
k − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k )

+
1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

)
. (5.18)

As seen in Appendix B the accuracy of the MC integration depends on the number
samples used, that is, Nsim and Lsim. Thus, we have to investigate appropriate
values for Nsim and Lsim such that the results we obtain are accurate. Afterwards,
the mean interference power estimated using MC integration can be compared to the
mean interference power estimated by simulating from the interference model. This
is done in the next section.

5.1.2 Comparing the Mean Estimated Using MC Integration to the
Mean of Simulated Interference Power

In this section, the mean interference power estimated using MC integration and
mean interference power from simulations using the interference model are compared.
However, in order to do this, the MC integration parameters, Nsim and Lsim, have
to be determined first.

Determining Nsim and Lsim

Now we will determine the MC integration parameters, Nsim and Lsim, and make
sure they are large enough for the integral to have converged. In Appendix B, it is
shown that the variance decreases linearly with a factor 1/N where N is the number of
samples, which in turn means the standard deviation decreases with a factor 1/

√
N .

In order to see the convergence of the estimators when Nsim and Lsim are in-
creased, a variance analysis is conducted. First we look at the case in Eq. (5.13),
where the mean interference comes from sensors only. In order to perform the anal-
ysis, we perform the MC integration Nint = 1024 times for each choice of Nsim and
Lsim and then calculate the empirical standard deviation. Let Qx1s[Nsim, Lsim, i] be
the i-th realization of the MC integration in Eq. (5.13). Then the estimated standard
deviation is given as

σs[Nsim, Lsim] =

(
1

Nint

Nint∑
i=1

(
Qx1s[Nsim, Lsim, i]− 1

Nint

Nint∑
j=1

Qx1s[Nsim, Lsim, j]
)2

)1/2

.

(5.19)
In order to evaluate Eq. (5.13), we have used the parameters as specified in Table 3.3.
The results of Eq. (5.19) for various Nsim and Lsim are seen in Table 5.1. We see
that increasing Lsim does not significantly decrease the standard deviation compared
to when Nsim is increased.
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Lsim

Nsim 10 25 50 100

10 0.00219 0.00138 0.000918 0.000683

25 0.00197 0.00126 0.000903 0.000620

50 0.00197 0.00122 0.000865 0.000615

Table 5.1: The estimated standard deviation of the mean interference from Eq. (5.13) using the
settings in Table 3.3 for Nsim = 10, 25, 50, 100 and Lsim = 10, 25, 50.

Lsim

Nsim 10 25 50 100

10 0.00155 0.000982 0.000692 0.000484

25 0.00150 0.000940 0.000666 0.000479

50 0.00149 0.000904 0.000666 0.000458

Table 5.2: The estimated standard deviation of the mean interference from Eq. (5.17) using the
settings in Table 3.3 for Nsim = 10, 25, 50, 100 and Lsim = 10, 25, 50.

Secondly, we want to examine the estimated mean interference from Eq. (5.17).
Specifically, let Qx1 [Nsim, Lsim, i] be the i-th realization of the estimated mean. The
estimated standard deviation σ[Nsim, Lsim] is then defined similar to Eq. (5.19) where
Qx1 [Nsim, Lsim, i] is used instead of Qx1s[Nsim, Lsim, i]. The estimated standard de-
viation of the mean interference is seen in Table 5.2 for various Nsim and Lsim. Again,
we observe that increasing Lsim does not provide any significant improvements com-
pared to when Nsim is increased.

Based on these results we choose set Nsim = 50 and Lsim = 10 as the size of the
95% confidence interval will then be smaller than 2 [dB]. The confidence interval is
calculated using the following expression[

Ĩx − 1.96σ[50, 10], Ĩx + 1.96σ[50, 10]
]

(5.20)

where the values −1, 96 and 1.96 are the 2.5% and 97.5% quantiles of the standard
normal distribution, that is, Φ0.025 = −1.96 and Φ0.975 = 1.96, and

Ĩx =
1

Nint

Nint∑
j=1

Qx1 [Nsim, Lsim, j]. (5.21)

The intervals for scenario 1, 2 and 3 are [−21.619,−19.767] [dB], [−14.629,−12.778]
[dB] and [−22.337,−20.680] [dB], respectively. For scenario 4 and 5 the interval is
[−15.347,−13.691] [dB].
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Comparing the Mean Interference Power From the Interference Model
and the Stochastic Interference Model

The mean interference estimated using MC integration is now compared to the em-
pirical mean obtained through simulating from the model in Chapter 3. We simu-
lated 1024 snapshots and calculated the mean interference for all of the snapshots,
this is done for all the scenarios in Table 3.4. Histograms of the means for the
different scenarios can be seen in Figure 5.1. In the plots we have marked the
2.5%, 25%, 50%, 75%, 97.5% quantiles. Furthermore, the edges of the confidence in-
tervals for the means obtained using MC integration are also plotted. Here we see
that, the median of the simulated means from interference model is in the middle of
the confidence interval for all scenarios. Since the median is in the middle of the con-
fidence interval for all the scenarios, we deem that the mean interference for scenario
1, 2 and 3 can be estimated well using Eq. (5.13), Eq. (5.14), and Eq. (5.17), respec-
tively. Additionally, the mean interference for scenario 4 and 5 can be estimated well
using Eq. (5.18).

5.1.3 Using MC Integration to Estimate the ACF of the Interfer-
ence Power

In this section, we will derive the MC integrals for the ACF of the interference in
in-robot subnetworks at different time lags using the theory from Appendix B and
the analytical expressions from Section 3.4.2. Afterwards, the ACF obtained using
MC integration is compared with empirically estimates of the ACF using simulated
data from the interference model in Chapter 3.

In the estimation of the covariance of the interference, we need to calculate some
integrals. Specifically, we need to estimate κx1 , αx1 and ηx1 , which will also be done
using MC integration. The function κx1 has already been estimated in Eq. (5.11).
Recall from Section 3.4.2 that αx1 and ηx1 are defined as

αx1(xk) =
1

r2π

∫
b(0,r)

ℓ(xk +Ωkτ +Rkτv − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτv)dv

(5.22)

and

ηx1(xk) =
1

r2π

∫
b(0,r)

ℓ(xk + v − x1)ζ(x1,xk + v)ℓ(xk +Ωkτ +Rkτv − x1 − Ω1τ )

× ζ(x1 +Ω1τ ,xk +Ωkτ +Rkτv)dv (5.23)

where τ = t2 − t1 is the time lag, Ωkτ is the displacement of the k-th subnetwork
after the lag τ , Rkτ is the change in direction of the k-th subnetwork after the lag τ
and r is the cell radius of the subnetwork.



5.1. Evaluating the Mean and ACF From the Stochastic Interference Model 53

40 30 200.000

0.025

0.050

0.075

0.100

Scenario 1

18 16 14 12 100.0

0.1

0.2

0.3
Scenario 2

40 30 200.000

0.025

0.050

0.075

0.100

No
rm

al
ize

d 
fre

qu
en

cy

Scenario 3

20 18 16 14 120.0

0.1

0.2

0.3
Scenario 4

18 16 14 12
Means

0.0

0.1

0.2

0.3

Scenario 5
2.5%
25%
50%
75%
97.5%
MC int

Figure 5.1: Histograms of the empirical means of the interference power simulated using the model
in Chapter 3 with the settings described in Table 3.3 for the scenarios described in Table 3.4.
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When performing the MC integration we deploy the subnetwork according to the joint
pdf in Eq. (3.27). Afterwards, we let the subnetworks move according to the mobility
model described in Chapter 3 for lag τ . Thus, after the lag τ the displacements, Ωkτ ,
and change in direction, Rkτ , for all the subnetworks are known.

Regarding the MC integration, we do analogously as we did with the mean inter-
ference, and use

x
(1)
[M ],x

(2)
[M ], . . . ,x

(Nsim)
[M ]

iid∼ f(x[M ]) and v(1),v(2), . . . ,v(Lsim) iid∼ U(b(0, r)) (5.24)

as the samples for the locations of the control units and sensors to estimate the
integrals. The functions αx1 and ηx1 can then be estimated as

α
x
(i)
1

(x
(i)
k ) ≈ 1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k +Ω

(i)
kτ +R

(i)
kτv

(n) − x
(i)
1 − Ω

(i)
1τ ) (5.25)

× ζ(x
(i)
1 +Ω

(i)
1τ ,x

(i)
k +Ω

(i)
kτ +R

(i)
kτv

(n)) (5.26)

= α̂
x
(i)
1

(x
(i)
k , Lsim) (5.27)

and

η
x
(i)
1

(x
(i)
k ) ≈ 1

Lsim

Lsim∑
n=1

ℓ(x
(i)
k + v(n) − x

(i)
1 )ζ(x

(i)
1 ,x

(i)
k + v(n))

× ℓ(x
(i)
k +Ω

(i)
kτ +R

(i)
kτv

(n) − x
(i)
1 − Ω

(i)
1τ )

× ζ(x
(i)
1 +Ω

(i)
1τ ,x

(i)
k +Ω

(i)
kτ +R

(i)
kτv

(n)) (5.28)

= η̂
x
(i)
1

(x
(i)
k , Lsim) (5.29)

respectively. We have chosen the same MC integration parameter, Lsim, for α and η
as for κ, since the area of integration is the same.

We start by considering covariance of the interference power for the scenarios with
misalignment, that is, scenario 3, 4 and 5. Since, the covariance of these scenarios get
contributions from all four terms from Eq. (3.83), whereas the covariances of scenario
1 and 2 only get a contribution from Σss. It should be noted that the constants in Σss

are slightly different for scenario 1 and 2, which will be shown later in this section.
The four terms contributing to the covariance of scenario 3, 4 and 5 can be estimated
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as

Σcucu(τ) ≈
(J2

0 (2πτνfc/c)σ
2
h2
l
+ 1)(Nsg − 1)

2(M − 1)

1

Nsim
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1 − Ω

(i)
1τ )ζ(x
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1 ,x
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kτ )
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)

(5.30)

= Σ̂cucu(τ ;Nsim), (5.31)

Σcus(τ) ≈
(Nsg − 1)(Nsg − 2)

4(M − 1)(M − 2)

1
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1 )
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(i)
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;Lsim) (5.32)

= Σ̂cus(τ ;Nsim, Lsim), (5.33)

Σscu(τ) ≈
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= Σ̂scu(τ ;Nsim, Lsim) (5.35)

and

Σss(τ) ≈
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= Σ̂ss(τ ;Nsim, Lsim) (5.37)
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where σ2
h2
l

is found through simulation of small scale fading to be ≈ 0.7. The ACF
of the interference is given as

ρIx1
(τ) =

cov(τ)
cov(0)

=
E[Ix1(t1)Ix1(t1 + τ)]− E[Ix1(t1)]E[Ix1(t1 + τ)]

E[I2x1
(t1)]− E[Ix1(t1)]

2
. (5.38)

From Eq. (3.83) we have that

E[Ix1(t1)Ix1(t1 + τ)] ≈ Σ̂cucu(τ ;Nsim) + Σ̂cus(τ ;Nsim, Lsim)

+ Σ̂scu(τ ;Nsim, Lsim) + Σ̂ss(τ ;Nsim, Lsim) (5.39)

= Σ̂(τ ;Nsim, Lsim). (5.40)

Using this and Eq. (5.17), for a given time lag τ , the ACF of the interference is
estimated as

ρIx1
(τ) ≈ Σ̂(τ ;Nsim, Lsim)−Qx1 [Nsim, Lsim]2

Σ̂(0;Nsim, Lsim)−Qx1 [Nsim, Lsim]2
. (5.41)

Note that when using MC integration to estimate Σ̂(τ ;Nsim, Lsim) the sum that goes
up to Nsim can be taken out of Σ̂cucu(τ ;Nsim), Σ̂cus(τ ;Nsim, Lsim), Σ̂scu(τ ;Nsim, Lsim)
and Σ̂ss(τ ;Nsim, Lsim) and then we have one sum which goes up to Nsim. This is
done when calculating the correlation since it is more efficient.

When estimating the ACF of the interference power for scenario 1 and 2 Eq. (5.41) is
still used, the only difference being that, as mentioned, we only get contribution from
Σss. Thus Σ̂ = Σ̂ss, however Σ̂ss is slightly changed compared to scenario 3, 4 and 5.
Specifically, the first and second terms are multiplied by 2 and 4, respectively. This is
because for scenario 1 and 2 only receive interference from UL, hence the probability
of receiving UL interference is 1, and thus when considering the traffic function in
Eq. (3.17) and Eq. (3.74) only the probability of being in the same channel group is
needed. This results in

Σ̂ss(τ ;Nsim, Lsim) =
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= Σ̂(τ ;Nsim, Lsim). (5.43)
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5.1.4 Comparing the ACF Estimated Using MC Integration to the
ACF of Simulated Interference Power

In this section, the ACF estimated using MC integration is compared to the ACFs
simulated using the interference model. In order to estimate the ACF using MC
integration, we need to determine values for Nsim and Lsim. Since it is more compu-
tational heavy to estimate the ACF compared to the mean, we will pick large values
instead of making a variance analysis like we did for the mean interference. We choose
Nsim = 1600 and Lsim = 100.

For the empirical ACFs, we use the same ACFs as in Section 3.2, where 1024 snapshots
were used for each scenario. In this section, we will consider the distribution of the
ACFs by looking at the quantiles over the different snapshots. In Figure 5.2 the
quantiles of the ACFs from scenario 1 through 5 are seen together with the ACFs
estimated using MC integration. From Figure 5.2, we see that the ACF estimated
using MC integration is greater than more than 95% of the empirical ACFs for scenario
2, 4 and 5, and for scenario 1 and 3, we see that the ACF estimated using MC
integration is greater than approximately 95% of the empirical ACFs. Even though
the ACFs obtained using MC integration overestimate the empirical ACFs, the shape
still seem to match the empirical ones, that is, their shape is similar to the Bessel
function of the first kind squared (the Bessel function of the first kind squared can
be seen in Figure 3.4). Since, they have similar shape it seems like there is an offset,
which could be a scaling factor we failed to account for in the derivation or a mistake
in the implementation. Looking at Eq. (5.41), we suspect that it is in Σ̂ where
the scaling mistake lies, as the MC means, seen in Figure 5.1, seem to be correctly
estimated for all the scenarios. If we try to correct the offset with a scaling factor k,
that is using

ρIx1
(τ) ≈ Σ̂(τ ;Nsim, Lsim)k −Qx1 [Nsim, Lsim]2

Σ̂(0;Nsim, Lsim)k −Qx1 [Nsim, Lsim]2
, (5.44)

then we obtain ACFs seen in Figure 5.3. The scaling factor is different for each
scenario. We found that an appropriate scaling factor for scenario 1 (k = 1/5) was
half as big as the factor for scenario 2 (k = 2/5). This was also the case for scenario 3
and 4, where k = 1/11 and k = 2/11 are used for scenario 3 and 4, respectively. Recall
that the only difference between scenario 1 and 3 and scenario 2 and 4, respectively,
is the number of channel groups. For scenario 5, a scaling factor k = 1/5 was chosen.

It should be noted that the 0.05 quantile has a drop at its first time step. This may
be due to an issue with the mobility model, when two or more subnetworks collide
and new directions are drawn uniformly. When the new directions are drawn, there is
no guarantee that the subnetworks will not collide again in the next time step. When
a subnetwork changes direction the placement of the sensors in that subnetwork are
also rotated. Thus, there is an instantaneous change in position of the sensors which
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Figure 5.2: Quantiles of the ACFs for scenario 1 through 5 together with the ACF estimated using
MC integration.

affects both the path-loss and the shadowing. However, despite of this flaw in the
mobility model, we still maintain the same assessment, as the interference signal were
simulated using a sample frequency of 10000 [Hz] and a velocity of the subnetworks 2
[m/s], so this issue only affects a small portion of the simulated interference samples.
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Figure 5.3: Quantiles of the ACFs for scenario 1 through 5 together with the ACF estimated using
MC integration multiplied with adjusting factors.
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5.2 Performance Evaluation of the Predictors

In this section, the performance of the proposed predictors is evaluated. The perfor-
mance evaluation will be based on scenario 3 from Table 3.4, as this scenario includes
interference received from both UL and DL as well as multiple channels. We will
change some of the settings from Table 3.3, specifically, room size, number of sub-
networks, and velocity, in order to see if and how changing these parameters will
change the performance of the predictors. The changes made to these settings for the
different test scenarios can be seen in Table 5.3. The rest of the settings are the same
as the settings in Table 3.3. Before the evaluation of the predictors is conducted,
a preliminary experiment is carried out. In this preliminary experiment we will de-
termine an appropriate sample frequency for the interference predictor as well as to
determine the order and training time for the AR predictor.

Settings
Test scenario 1 2 3 4 5 6

Room size 30x30 30x30 60x60 60x60 60x60 60x60
Velocity 2 20 2 20 2 20
Number of subnetworks 16 16 16 16 32 32

Table 5.3: Settings for the different test scenarios.

5.2.1 Preliminary Experiment

First, we start out with a preliminary experiment where we test for which sample
frequency it makes sense to predict the interference as well as select an appropriate
model order and a measurement horizon for the AR predictor. It is important to
choose an appropriate sample frequency since, if the sample frequency is too high,
the change in power between each sample could be almost negligible. In order to see
the change between each sample, we have made a histogram of the absolute difference
between neighboring samples. This is done for test scenario 1 for different sample
frequencies, 5000, 1000, 500, 250 [Hz], these histograms can be seen in Figure 5.4.
We have chosen a sample frequency of 250 [Hz], since we deem that when the median
of the differences between samples is 1 [dB] there is enough change between samples.
For the remainder of this chapter a sample frequency of 250 [Hz] is used.

As presented in Chapter 4, we want to use an AR predictor to predict the interfer-
ence power. In order to select an appropriate order as well as a measurement horizon,
an initial prediction experiment is conducted. In order to evaluate the accuracy of a
prediction, we use the normalized mean squared error (NMSE), since the NMSE is a
commonly used metric to evaluate the accuracy of interference predictions [1], [37].
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Figure 5.4: Histograms of the difference between neighboring samples for test scenario 1 with
sample frequencies of 5000, 1000, 500, 250 [Hz].

The NMSE is defined as

NMSE(τ) =
1

Nobs

Nobs∑
j=1

NMSEj(τ) =
1

Nobs

Nobs∑
j=1

∑PT
t=1

(
ij(MH + t+ τ)− Îj(t+ τ)

)2∑PT
t=1

(
ij(MH + t+ τ)

)2
(5.45)

where Nobs is the number of snapshots, NMSEj(τ) is the NMSE of the j-th snapshot
for a prediction horizon τ , PT is the prediction time within each snapshot, MH is
the measurement horizon, ij is the true interference power of the j-th snapshot and
Îj is the predicted interference values for the j-th snapshot. Throughout all of the
experiments the NMSE will be calculated using Nobs = 1024 and PT = 250.

In the experiments, noise has been added to the snapshots to represent the mea-
surement noise when the interference power is sampled by the predictors. Let īj be
the mean interference of the j-th snapshot, then the noise is added in the following
way

ĩj(t) = ij(t) + w2
j (t) (5.46)

where {wj(t)}t
iid∼ N (0, σ2

w,j) and

σ2
w,j = 10SNR/10īj . (5.47)
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Figure 5.5: Plots of interference traces for scenario 1 in (a) and scenario 2 in (b).

The AR predictors then train on data with noise added to it, this is done for different
signal to noise ratios (SNRs) specifically 5, 10 and 20 [dB]. For the initial experiment,
test scenario 1 and 2 from Table 5.3 will be used. The only difference between the two
scenarios is the velocity of the subnetworks, which is 2 and 20 [m/s] for scenario 1 and
2, respectively. We found that increasing the velocity of the subnetworks changed the
interference power significantly compared to changing the other simulation settings.
Hence, for the initial test we use the two scenarios. Time traces of the simulated
interference power for the three different SNR values are seen in Figure 5.5a and
Figure 5.5b for the first and fourth test scenario, respectively.

Based on the time traces of the interference, we expect a good prediction performance
for the cases with SNR of 20 [dB] and slightly worse performance for SNR of 10 [dB]
while we expect a bad performance for SNR of 5 [dB]. Additionally, the difference
between scenario 1 and 2 is apparent, we see an increased volatility of the interference
power of scenario 2, hence we expect a worse prediction accuracy for scenarios with
velocity of 20 [m/s] compared to scenarios with velocity of 2 [m/s].
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Figure 5.6: Plots of the NMSE, for a one-step prediction, against the measurement horizon for
scenario 1 and 2.

In order to evaluate which AR order and measurement horizon to use, the AR
predictors are tested by comparing them for one-step ahead predictions (τ = 1 corre-
sponding to 4 [ms]) for different choices of measurement horizons. The AR orders we
test for are 1, 10, 20 and 50. The prediction is carried out according to Algorithm 1
seen at the end of Chapter 4. The NMSE, for a one-step prediction, is plotted against
the measurement horizon in Figure 5.6 for test scenario 1 and 2.

For both velocities it is observed that a measurement horizon of 5 [s] is enough for
the AR predictors to be trained, and that AR(10), AR(20) and AR(50) performs
better than the last value predictor. For a velocity of 2 [m/s], it is observed that
AR(50) performs best for SNRs of 5 and 10 [dB], while for an SNR of 20 [dB] it is
AR(10) and AR(20) that have the best performances. For a velocity of 20 [m/s],
it is seen that AR(20) and AR(50) performs similarly across all SNR values. Based
on these observations, we assess that the AR(20) predictor performs the best when
considering both scenarios, and that a measurement horizon of 5 [s] is sufficient, that
is, MH = 1250. Thus, we will use the AR(20) predictor in the remainder of the
performance evaluation with a measurement horizon of 5 [s].

5.2.2 Performance Evaluation of the Predictors

As mentioned we will test the AR(20) predictor for different settings, namely, room
size, velocity and number of subnetworks, the different settings for these parameters
can be seen in Table 5.3 for the 6 test scenarios. For the performance evaluation of
the AR(20) predictor, we will consider three different aspects. First, the mean NMSE
from Eq. (5.45) is plotted against the prediction horizon. Second, the CDF of the
NMSE is plotted, this is done in order to see the distribution of NMSEj(τ) instead
of the mean values NMSE(τ). Lastly, the NMSE is plotted against the SNR values
ranging from 0 to 25 [dB], this is to see, how robust the AR(20) predictor is to differ-
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set to 5 [s] for test scenario 1 and 2.

20 0 20
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(N
M

SE
<a

bs
cis

sa
)

Prediction horizon 4 [ms]

20 0 20
0.0

0.2

0.4

0.6

0.8

1.0
Prediction horizon 20 [ms]

SNR
5 [dB]
10 [dB]
20 [dB]

Velocity
2 [m/s]
20 [m/s]

NMSE [dB]

Figure 5.8: CDF of NMSE for the AR(20) predictor with prediction horizons on 4 and 20 [ms] and
a measurement horizon on 5 [s] for test scenario 1 and 2.

ent levels of noise. The evaluation is made for SNR values of 5, 10 and 20 [dB] and for
a one-step (4 [ms]) and a five-step (20 [ms]) prediction. An example of a time trace
plot of a prediction for each scenario can be seen in Figure C.1-C.3 in Appendix C.
To evaluate when a prediction is successful a threshold has to be chosen, that is, we
deem predictions with an NMSE lower than that threshold successful. To the best of
our knowledge, there is no generally accepted value for such a threshold. The choice
of threshold depends on the application, since when a prediction is useful depends a
lot on the application. In this evaluation of the predictor we set the threshold to −5
[dB]. The threshold is plotted as a black line throughout the remainder of the per-
formance evaluation. The results for test scenario 1 and 2 are seen in Figure 5.7-5.9.
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Figure 5.9: NMSE versus SNR for the AR(20) predictor with prediction horizons on 4 and 20 [ms]
and a measurement horizon on 5 [s] for test scenario 1 and 2.

From Figure 5.7, it is seen that in the case of a velocity of 2 [m/s], the AR(20)
predictor makes successful predictions for one step and two step predictions (4 and
8 [ms]) for an SNR of 10 and 20 [dB]. Otherwise, the prediction errors are above
the −5 [dB] threshold for all prediction horizons for a velocity of 20 [m/s], and the
prediction with SNR of 5 [dB] and velocity 2 [m/s]. From the CDFs in Figure 5.8
for one-step prediction, it is observed that when the velocity is 2 [m/s] the NMSEs
are below the threshold for 50, 75 and 90 % of the predictions for SNRs of 5, 10
and 20 [dB], respectively. Note that for one-step predictions the distributions of the
NMSEs are generally wider for a velocity of 2 [m/s], since more smaller errors occur,
there are no NMSE values below −10 [dB] for velocity of 20 [m/s]. However, when
looking at higher NMSE values, for instance 0 [dB], then the probability of observing
errors lower than that value becomes almost the same for both of the scenarios. For
the five-step prediction the probability of observing a prediction error less than the
threshold is below 30 % for both scenarios for all SNR values. It is also observed that
the distributions of the NMSEs, for a velocity of 20 [m/s], are almost identical for
one-step prediction as for five-step prediction. This is also apparent from Figure 5.7,
where the NMSEs for scenario 2 do not seem to increase much with the prediction
horizon. From the NMSE plotted against different SNR values in Figure 5.9, for one
step prediction it is seen that the prediction error for a velocity of 20 [m/s] stays
slightly above the threshold, while for a velocity of 2 [m/s] the NMSEs are below
the threshold for SNR levels greater than 7 [dB]. For the five-step prediction, it is
observed that the NMSEs are above the threshold for both velocities across all SNRs.
Additionally, it is seen that, for a velocity of 2 [m/s], the AR(20) predictor gets un-
stable for high values of SNR. This is also visible for an SNR of 20 [dB] in Figure 5.8
from the heavy tail of the NMSE distribution and in Figure 5.7 as it has the largest
error at a prediction horizon of 20 [ms].
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Figure 5.10: NMSE versus prediction horizon for the AR(20) predictor with measurement horizon
set to 5 [s] for test scenario 3 and 4.

The results for scenario 3 and 4 are seen in Figure 5.10-5.12. From Figure 5.10, similar
results as for scenario 1 and 2 are seen, that is, the prediction errors for velocity of
2 [m/s] and SNR of 10 and 20 [dB] for one and two step prediction, respectively, are
below the threshold. Additionally, the NMSE for a velocity of 20 [m/s] and SNR
of 20 [dB] is approximately equal to the threshold for all prediction horizons. In
Figure 5.11, it is seen that for a velocity of 2 [m/s] and SNRs of 5, 10 and 20 [dB]
that the one step prediction errors are below the threshold for 45, 70 and 90 % of
the predictions, respectively. For a velocity of 20 [m/s] and SNR of 20 [dB], it is
observed that the NMSE is below the threshold for approximately 60 % of both the
one-step and five-step predictions, while rest of the five-step predictions are below the
threshold less than 30 % of the time. Again, it is seen that the NMSE distributions
for a velocity of 20 [m/s] are similar for one-step and five-step predictions. From
Figure 5.12, similar behavior as for scenario 1 and 2 are seen for scenario 3 and 4. It
should be noted that, the prediction errors are higher for scenario 3 and especially 4
for low SNR values compared to that of scenario 1 and 2, respectively.

The results for scenario 5 and 6 can be seen in Appendix C in Figure C.4-C.6.
The results for these two scenarios are similar to the previous results.

5.2.3 Comparing AR(20) Predictor with Last Value Predictor

In this section, we compare the AR(20) predictor to the last value predictor. The
reason for this comparison is, as mentioned in Chapter 4, the different resource al-
location methods used for interference mitigation rely on current interference power
measurements, and when a decision is made, it only influences future measurement,
hence it is like they use last value prediction. Therefore, if the AR(20) predictor
performs better than the last value predictor, it is still an improvement, even though
it might not be a good prediction compared to the threshold. In this comparison, we
will only look at one step prediction, which corresponds to 4 [ms], since in [7] their
dynamic channel allocation algorithms measure the SINR every 5 [ms], thus one step
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Figure 5.11: CDF of NMSE for the AR(20) predictor with prediction horizons on 4 and 20 [ms]
and a measurement horizon on 5 [s] for test scenario 3 and 4.
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Figure 5.13: CDF of NMSE for the AR(20) and last value predictor with prediction horizons on
4 [ms] and a measurement horizon on 5 [s] for test scenario 1 and 2
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Figure 5.14: NMSE versus SNR for the AR(20) and last value predictor with prediction horizons
on 4 [ms] and a measurement horizon on 5 [s] for test scenario 1 and 2.

prediction gives sufficient insight about SINR for this application. Furthermore, we
also only use scenario 1 and 2, since, as we saw in the previous section, there was
only a small difference in the prediction performance between scenario 1, 3 and 5 and
between scenario 2, 4 and 6.

From the plots seen in Figure 5.13 and Figure 5.14, we see that the AR(20) predictor
outperforms the last value predictor for all SNRs and both velocities, with the only
exception being that the AR(20) predictor, for the case with a velocity of 2 [m/s] and
an SNR of 20 [dB], has a higher probability of observing an NMSE greater than ≈-9
[dB] than the last value predictor.



6. Discussion

In this chapter we elaborate on the results obtained in Chapter 5. Specifically, the
estimation of the mean and ACF of the interference in Section 5.1 and the perfor-
mance evaluation of the AR(20) interference predictor in Section 5.2.

For the estimation of the mean interference using MC integration, we deem that
we estimated the mean interference well for all the scenarios. In the estimation of the
ACFs using MC integration, we found that the estimations overestimates the empiri-
cal ACFs significantly. The reason for this overestimation is unknown, however, from
Figure 5.3, the overestimation seems to be caused by a wrong scaling factor. Despite
the overestimation, the shape of the estimated ACF still resembles the empirical ACF
quite closely. In fact, when trying to correct for the potential scaling factor the ACFs
almost coincide with the empirical ones. Both the estimated and empirical ACFs
have a shape that is very close to that of the zeroth order Bessel function of the first
kind squared. This Bessel function is used to approximate the ACF of the Rayleigh
small scale fading, see Figure 3.4. The considered in-robot subnetworks have a ve-
locity of 2 [m/s] which in turn means that they move 0.1 [m] over 50 [ms]. Thus, the
changes in interference power is mainly due to small scale fading, as the position of
the subnetworks changes slowly so path-loss and shadowing remain almost constant
when considering small lags in time. In fact, when looking at the adjusted estimated
ACFs, see Figure 5.3, we see a similar estimation error as the approximation error
caused by using the zeroth order Bessel function of first kind instead of the ACF of
the Rayleigh fading, see Figure 3.4.

From Section 5.2, a notable difference in prediction accuracy was seen for cases where
the subnetworks moved with a velocity of 2 [m/s] and 20 [m/s]. Generally, the
prediction error did not decrease significantly when predicting multiple steps for 20
[m/s], this is apparent in all of the plots of the CDFs and the NMSE plotted against
prediction horizon (see Figure 5.7-5.8 and Figure 5.10-5.11). The subnetwork moving
with a velocity of 20 [m/s], may be too fast for the AR(20) predictor to model it
properly. In Figure 6.1, a histogram of the absolute difference between consecutive
interference power samples is seen. Comparing this to Figure 5.4, a sample frequency
of 250 [hz] may be too low to fully capture the fast variation in power we see with 20
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Figure 6.1: Histogram of the absolute difference between consecutive samples from test scenario 2
in Table 5.3.

[m/s]. Despite this, the AR(20) predictor still captures some of the information in
the interference samples when the velocity is 20 [m/s], as can also be seen from the
time trace plots in Appendix C. Further, it also outperforms the last value predictor,
hence it might still be useful from an application point of view.

In the case where the subnetworks moved with a velocity of 2 [m/s], the AR(20)
predictor had a prediction error below the threshold for SNR values greater than 7
[dB] for one-step predictions. However, when making five-step predictions the AR(20)
predictor seem to become unstable as the SNR is increased. The reason for this, may
be a model mismatch, and that the AR predictor is not well suited for predicting more
than one step ahead for interference in the in-robot subnetworks model we consider.
If we look at the plot in Figure 5.5 where the SNR and velocity are 20 [dB] and 2[m/s],
respectively, the interference trace looks very smooth, whereas for 20 [m/s] the traces
fluctuate significantly more. The increased velocity seem to aid the stability of the
AR(20) predictor, as the predictor does not get unstable for high SNR values when
the velocity is 20 [m/s]. This suggests that in the case of longer prediction, the AR
predictor is more suited for interference with more fluctuations such as when there is
low SNR or high velocity.

When comparing the results from test scenario 1 and 2 (16/900 subnetworks per
[m2]) to test scenario 3 and 4 (16/3600 subnetworks per [m2]) the effects of increasing
the room size becomes apparent. The prediction error for low SNR values seem to
increase when the room size is increased, whereas the prediction error for high SNR
values are slightly reduced (see the case with 20 [m/s]) or are close to similar. When
the room size is increased, it makes the effect of path-loss more severe and the cor-
relation due to shadowing smaller, as the distances between the subnetworks are on
average larger than for test scenario 1 and 2. When comparing test scenario 3 and
4 (16/3600 subnetworks per [m2]) with test scenario 5 and 6 (32/3600 subnetworks
per [m2]), the effect of increasing the number of subnetworks is seen. Increasing the
number of subnetworks increases the density of the subnetworks, hence it is expected
that it partly reverses the effect from increasing the room size. This is exactly what
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we observe for low SNR values, here the results are between what is observed from
test scenario 1 & 2 and test scenario 3 & 4. In the case of high SNR values, all the
NMSEs are comparable.

In this report, we used an AR(20) model as our best interference predictor, since it
is very simple to implement and use. However, ideally a more sophisticated interfer-
ence predictor could be designed, which could use prior information from the in-robot
subnetworks model. In Section 3.2 it was shown that the interference power from the
in-robot subnetworks interference model is log-normally distributed. Additionally, in
Section 5.1, the mean and ACF of the interference power have been estimated using
MC integration. Thus, it could be of interest to design an interference predictor which
could utilize the distribution and/or some of the first and second order statistics of
the interference power samples. This could for example be achieved using a Bayesian
predictor which utilizes prior information. However, even though the AR(20) predic-
tor is over-simplistic it still provides reasonable results which could potential decrease
the overhead associated with resource allocation in wireless networks. For instance,
the subnetworks could use predicted interference samples to channel sensing instead
of using the current measurements, and thereby avoid the interference before it oc-
curs. It was argued that using current samples to perform the distributed dynamic
resource allocation corresponds to using the interference power predicted using the
last value predictor. Thus, since the AR(20) predictor outperforms the last value pre-
dictor across all scenarios, there is a potential gain which could be harvested using
this simple predictor.





7. Conclusion

In this Master’s Thesis, we have analyzed and predicted the interference power of in-
robot subnetworks in a factory setting. In order to do so we set the goal of answering
the following problem statement.

"How can a mathematical model be made to realistically capture the inter-
ference power in in-robot subnetworks in a factory setting, and how can
the interference power from this model be predicted? Additionally, is it
possible to find statistics for the interference power from such a model?"

In order to derive the statistics of the interference power for in-robot subnetworks
in a factory setting, we first made a model describing all the different parts of the
interference power. From this model first and second order statistics were derived,
specifically, the mean and the ACF of the interference power. The expressions for
the mean and ACF contained some high dimensional integrals which we could not
solve analytically, thus we used the numerical method MC integration. We found
that when we solved the expression for the mean interference, using MC integration,
it coincided with the empirical mean when the interference power was simulated for
all scenarios. When we solved the expression for the ACF of the interference power,
we found that it overestimated the empirical ACF of the simulated interference power
by a big margin, however, they did have the same form. Furthermore, we saw that if
we scaled Σ̂ appropriately in the calculations of the ACF, then it matched the ACF
of the simulated interference power.

It was shown that a simple AR(20) predictor was able to predict the interference
samples up to a time-lag of 8 [ms], when the interference power was simulated from
the in-robot subnetworks model, and the velocity of the subnetworks was 2 [m/s].
The predictor was tested under different scenarios, specifically, the predictor was
tested for scenarios with different room sizes, velocities and number of subnetworks.
Further, the AR(20) predictor outperformed a last value predictor for all the different
scenarios.

73





8. Future Research

Considering that a main use of interference prediction is to increase the SINR by
allocating the resources according to some algorithm. It could be interesting to com-
bine the predictor with such an algorithm, for instance, if channel switching was
included in the interference model. Since it would most likely change the statistics of
the different channels. Furthermore, it could be interesting to implement the DDCA
algorithms from [7] and use the information from the AR predictor to see how and if
it improves the results.

In future research, it could be interesting to use/design a Bayesian predictor that
could use some of the prior information, that is, the interference power is log-normal
distributed, how the mean and the ACF of the interference power is given. A Bayesian
predictor which uses this information well.
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A. Point Process Theory

In this chapter, we give a brief introduction to the point process theory, which will be
used in Chapter 3. Before we can define a point process, point patterns are needed.
A point pattern is defined as the deterministic sequence φ = (xk)k≤K ∈ N where
xk ∈ X , N is the space containing all point patterns φ and K, k ∈ N+ [11, p. 18].
Here it is assumed that X is a space equipped with a metric d, such that, (X , d) is a
complete, separable metric space [38, pp. 4-5]. Usually the ordering of the points in φ
does not matter. The point pattern φ is called simple if xi ̸= xk for i ̸= k, and then
φ is a countable subset of X . Associated with every point pattern φ is a counting
process Nφ. The counting measure does as the name suggests count the number of
points from a point pattern which fall in the space B. More mathematical definition
of the counting measure is given below [11, p. 18].

Definition A.1 (Counting Measure)
The counting measure Nφ : B → N of φ is defined as

Nφ(B) =

K∑
k=1

1(xk ∈ B), (A.1)

for any bounded Borel set B ∈ B, where B is the Borel σ-algebra and 1(xk ∈ B) is
the indicator function equalling 1 if xk ∈ B and zero otherwise. [11, p. 18]

We can now define a point process. A point process is the random process that
has N as the outcome space.

Definition A.2 (Point process)
A point process Φ is a measurable map from Σ → N , where (Σ,F ,P) is a probability
space [11, p. 18].

Point processes can be equivalently defined as a random counting measure NΦ

and as a random point pattern if the point process is simple. When using the ran-
dom counting measure, measurability is needed, therefore NΦ(B) needs to be defined

77



78 Appendix A. Point Process Theory

for a sufficiently rich class of subsets of X , where the Borel σ-algebra, B(X ), is the
natural choice. When using the random point pattern we need the realizations of Φ
to be simple with probability 1 [11, p. 19].

Next we will define the distribution of a point process, but in order to do so the
subsets of N which needs to be measurable has to be specified. The σ-algebra in-
duced by EB,k, B ∈ B, k ∈ N0 where

EB,k = {NΦ(B) = k} = {φ ∈ N : Nφ(B) = k} (A.2)

is sufficiently rich for all the events of interest to be measurable. We denote this
σ-algebra R [11, p. 20].

An important quantity when describing point processes is the intensity measure
Λ. The intensity measure is defined below [11, p. 19].

Definition A.3 (Intensity measure)
The intensity measure is defined as

Λ(B) = E[NΦ(B)] ∀B ∈ B. (A.3)

A point process with locally finite intensity measure is a point process that satisfies
Λ(B) < ∞ for |B| < ∞, where | · | is the Lebesgue measure.

Now we define the measurable space (N ,R). This measurable space can be ex-
tended to a probability space by adding the point process distribution P to it. This
results in the probability space (N ,R, P ) which is called the canonical probability
space for point processes [11, p. 20].

Definition A.4 (Point Process Distribution)
The point process distribution is the probability measure, P , pertaining to the
probability space (N ,R, P )

P (E) = P(Φ−1(E)) = P(Φ ∈ E) (A.4)

where Φ−1(E) is the pre-image of E, given by

Φ−1(E) = {ω ∈ Σ : Φω ∈ E}. (A.5)

Next we will present the class of point processes called stationary point processes.
Stationary point processes have the property of being translation invariant [11, p. 21].
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Definition A.5 (Stationary Point Processes)
A point process is stationary if its distribution is translation invariant i.e.

P (E) = P (E + x) ∀E ∈ R and ∀x ∈ X (A.6)

where E + x is the translation of the event E by x.

Stationary point processes have almost surely an infinite number of points all
throughout X . Furthermore, the intensity measure of stationary point processes is
proportional to the Lebesgue measure Λ(B) = |B|ρ, the constant ρ is called the
intensity of the stationary point process [11, p. 21].

A.1 Binomial Point Process

In this section we will define the BPP. A BPP is a point process which is conditioned
on the number of points, and each of these points are placed iid according to some
known distribution f . A formal definition of a BPP is given below.

Definition A.6 (Binomial Point Process)
Let f be a density on a set B ⊂ X and let n ∈ N+. Then a point process,
Φ, with n iid points with density f is called a Binomial process. We then write
Φ ∼ Binomial(B, n, f). [39, p. 14]

The simplest BPP is where the distribution, f , of the points is uniform over
area B. An example of such an BPP is given in Figure A.1, where 100 points are
distributed uniformly over the area B = [0, 5]× [0, 10].
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Figure A.1: An BPP Φ ∼ Binomial([0, 5]× [0, 10], 100, 1
50
).



B. Monte Carlo Integration

In order to compute the mean interference as well as the ACF of the interference
power in Chapter 5, we need to evaluate some integrals which we could not find any
closed form solutions to. Hence, we will use MC integration instead to estimate the
mean and ACF of the interference power.

If we want to evaluate an integral of the form

I =

∫
Ω
f(x)dx (B.1)

where Ω is the domain of integration and f : Ω → R. Using MC integration, the
integral in Eq. (B.1) may be estimated by [36, p. 37]

Q[N ] =
1

N

N∑
i=1

f(xi)

p(xi)
(B.2)

where xi for i = [N ] are drawn iid from a chosen density p : Ω → R+. This estimator
is unbiased as can be seen by [36, p. 38]

E[Q[N ]] =
1

N

N∑
i=1

E
[
f(xi)

p(xi)

]
(B.3)

=
1

N

N∑
i=1

∫
Ω

f(x)

p(x)
p(x)dx (B.4)

=

∫
Ω
f(x)dx (B.5)

= I (B.6)

given that f(x)/p(x) is finite when f(x) ̸= 0. The variance of Q[N ] is often useful
in order to assess how much the estimator has converged. The variance of Q[N ] is

81



82 Appendix B. Monte Carlo Integration

found by [36, p. 39]

Var[Q[N ]] = Var
[
1

N

N∑
i=1

f(xi)

p(xi)

]
(B.7)

=
1

N2

N∑
i=1

Var
[
f(xi)

p(xi)

]
(B.8)

=
1

N
Var

[
f(x)

p(x)

]
(B.9)

where Eq. (B.8) holds due to the independence between xi and xj for i ̸= j. Thus,
the variance of Q[N ] decreases linearly with a factor 1/N . Since the estimator is
unbiased and the variance decreases with the number of samples, we are guaranteed
that the result is close to the true value, if we choose a sufficiently large N .



C. Additional Results

In this chapter additional results from Section 5.2 are presented. Specifically a time
trace plot of a prediction for each of the test scenarios and the plots for the perfor-
mance evaluation of the AR(20) for test scenario 5 and 6. The plots for the time
traces and the performance evaluation can be seen in Figure C.1-C.3 and Figure C.4-
C.6, respectively. In the time trace plots we have predicted for 5 time steps, which
corresponds to 20 [ms], the true interference power is also shown together with the
predicted interference powers.
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Figure C.1: Time trace plot a prediction for scenario 1 and 2.
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Figure C.2: Time trace plot a prediction for scenario 3 and 4.
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Figure C.3: Time trace plot a prediction for scenario 5 and 6.

4 6 8 10 12 14 16 18 20
Prediction horizon [ms]

15

10

5

0

NM
SE

 [d
B]

SNR
5 [dB]
10 [dB]
20 [dB]

Velocity
2 [m/s]
20 [m/s]

Figure C.4: NMSE versus prediction horizon for the AR(20) predictor with measurement horizon
set to 5 [s] for test scenario 5 and 6.
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Figure C.5: CDF of NMSE for the AR(20) predictor with prediction horizons on 4 and 20 [ms]
and a measurement horizon on 5 [s] for test scenario 5 and 6.
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