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Preface

This is a 9-10th semesters Master thesis in the subject of machine learning. It is made by group
974 of Signal Processing and Computing at Aalborg University. The project was written and
developed in the period from September 2021 to June 2022.

The code developed, as a part of the project, can be found in a GitHub repository at the following
address: https://github.com/PeterKjaerFisker/RL-for-Adaptive-Beamforming.

Chapter 1 and Chapter 2 are written based on a worksheets which was written in full cooperation
with another study group at Aalborg university, who also study signal processing and computing.
This group is: group 975, designated es-21-spa-9-975, consisting of Nicolai Almskou Rasmussen
and Victor Mølbach Nissen. Note however that while the worksheet was written in cooperation
with another group, the entire report was written solely by the authors given in the title page.

Reading Guide

The report follows the rules established by the ISO/IEC 80000 standard. Consequently, SI units
are used. In this report point (.) is used consistently as decimal separator. Citations are made
according to the IEEE citation method. All figures without citations are created by the authors
for the project. A list of acronyms used in the report and their meanings is found after the table
of contents. Figures, tables, equations, and algorithms are inserted and enumerated according
to chapter and order of insertion.
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Introduction 1
Technology is a big part of daily life in the 21st century, which is evident from the fact that, 3
of the 5 largest companies, by market cap, are technology firms [1]. However, technology does
not only consist of the hardware it’s built of, a large part of technological development pertains
to data, and the transfer of data. The global demand for data transfer is ever-present and
increasing. It has been estimated that 1,5 zettabytes was transferred throughout 2017, which is
predicted to increase to 4,8 zettabytes in 2022 [2], [3].

The total demand is not only increasing but the distribution of demand is also shifting. In 2017,
wired networks accounted for 48% of IP traffic, while wireless accounted for 52%. This balance
is projected to change to 29% for wired networks and 71% for wireless in 2022. Additionally,
mobile (cellular) networks is projected to account for 22 % of the global internet traffic in 2022,
an increase from 12% in 2017 [2].

This shows a shift towards wireless transfer, however it also shows that the wireless traffic
itself is increasingly coming from the mobile network. The rising demand for wireless data
transfer will require more infrastructure, but also different infrastructure. Technologies capable
of higher bandwidth is needed, and in the case of the mobile network this technology is 5G.
5G is the 5th generation of cellular network and is, as of this reports writing, in the process
of being deployed around the world, both in terms of 5G compatible mobile devices, but also
cellular towers. While 5G is being actively deployed, it still has problems which, if solved would
improve performance. In order to develop fitting and efficient solutions these problems have to
be identified and analyzed, both of which is done in the next section.

1.1 mmWave: Technology and challenges

The goal of this section is to explain the reasons behind 5G utilizing the mmWave range of
frequencies and the consequences which stem from this.

The mmWave frequencies range from 30GHz to 300GHz, which is higher than the current
frequencies used for 3G and 4G amongst others [4, p. 5]. The newer 5G communication standard
is expected to be able to use frequencies a lot closer to mmWave than the previous generations.
From a report from the Danish Energy Agency it has been noted that the frequency band at
26GHz will be reserved for 5G [4, p. 6].

A higher frequency band is desirable in communication networks as there is room for broader
bandwidths or more bands when using the same bandwidths as used at lower frequencies. A
broader bandwidth can lead to a higher throughput and makes it possible for more users to use
the same frequency range and cause minimal interference. These desirable features acquired by
using higher frequencies do not come without a cost. One part of it is having hardware which
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1.1.1. Power Loss in free-space Aalborg University

can handle operating at the higher frequencies and another part is how the higher frequencies
behave in the environment compared to lower frequencies. The first problem of hardware is out
of the scope of this report.

1.1.1 Power Loss in free-space

By analysing the Friis transmission equation [5], (seen in Eq. (1.1)), the free-space power loss’
dependency on the distance given a certain frequency can be found. The frequency plays into
the equation by its wavelength (λ), where a higher frequency equals a shorter wavelength. When
the wavelength becomes shorter the values of the right side of the equation becomes smaller by
a squared factor. From this it can be concluded that higher frequencies experience a higher
degree of power loss over distance travelled compared to a lower frequency when propagating in
free-space.

Pr

Pt
= DtDr

λ2

(4πd)2
(1.1)

where:

Pr : Received Power [W]
Pt : Transmitted Power [W]
Dr : The receiving antenna’s directivity with respect to an isotropic antenna [.]
Dt : The transmitting antenna’s directivity with respect to an isotropic antenna [.]
d : Distance between antennas [m]
λ : Wavelength of the radio frequency [m]

1.1.2 Atmospheric Absorption Rate

The Friis transmission equation only accounts for the free-space loss and therefore can only be
used to give an estimate on how fast the power will be lost when transmitting in free-space based
on a set frequency. For this reason the other impacts the environment will have on the higher
frequencies will also be studied.

From a study about mmWave and its behaviour - Millimeter Wave Mobile Communications for
5G Cellular: It Will Work! [6], there are several factors worth noticing. The study included a
figure on how much the power will attenuate due to the atmospheric absorption. A recreation of
the figure is shown in Fig. 1.1. Overall, the figure shows that the atmospheric absorption increase
as the frequency increase, but it also shows areas where the absorption increases drastically
compared to nearby frequencies. These frequencies should be avoided for transmitting. The
figure also shows some valleys where the absorption is relatively low and it is at these frequencies
it’s preferred to transmit.

2



1.1.3. Scattering effects Aalborg University

Figure 1.1: Atmospheric absorption across mm-wave frequencies in dB/km, based on [6, p. 338].

1.1.3 Scattering effects

The same study [6] also include a study of some scattering effects, namely penetration and
reflection. This study investigated how well signals transmitted at 28GHz penetrates different
materials typically used for building construction. For example for tinted glass and brick pillars
it was found that they respectively causes a penetration loss of 40.1 dB and 28.3 dB. The study
also included reflection loss for these materials, where it was found that for tinted glass and
concrete at an incident angle of 10° the coefficient was respectively 0.896 and 0.815 These aren’t
the only significant scattering effects, another being diffraction. According to multiple diffraction
models given in [7], knife edge diffraction (KED) and uniform theory of diffraction (UTD), the
power of the diffracted signal, all else being equal, diminishes as the frequency increases.

The high penetration losses and minuscule diffraction effects makes mmWave signals vulnerable
to objects in their paths, and blockage occurs often.

1.1.4 Alleviating the Consequences

In the previous section, the characteristics of communicating in the mmWave range of frequencies
were presented, and the reasons behind using it for 5G was presented. The disadvantages however
needs to be alleviated and are summarized below:

1. Higher power loss in free-space decreases the communication range.

2. Increased atmospheric absorption further increases the power loss.

3. Low penetration power increases the difficulty in transmitting past blockages.

The penetrative power cannot be changed without changing the building materials, however this
is infeasible because of costs. While the penetration power can’t be changed, the high reflection
coefficient can be advantageous, as it allows the signals to travel along non-line-of-sight paths
without being too attenuated.

The power loss due to transmission through free-space and the atmosphere cannot be eliminated,
but it can be counteracted. Of course the transmission power can simply be increased to

3



1.2. Wireless comm. problem Aalborg University

overcome the attenuation, however this becomes a problem for mobile units, as they have limited
power budgets. Another way to counteract the power-loss is by utilizing the transmission
power differently. Instead of broadcasting the signal omnidirectionally, signal power can be
concentrated by way of beamforming.

To be able to do beamforming, a linear or planar antenna array is needed. The size of the
antenna is dependent on which frequency it operates at, as for higher frequencies the antenna
becomes smaller. Likewise, in usual constellations of antenna arrays, the antennas are spaced
proportionally to the wavelength of the signal they receive. This has the effect that complex
and effective beamforming can be achieved using physically small arrays with many elements as
5G uses relatively high frequencies. With more antenna elements in an array, it is possible to
achieve higher directivity for the array, which is an advantage in mmWave systems.

1.2 Wireless comm. problem

Using beamforming to overcome the transmission loss however introduces new problems. As
the signal is no longer omnidirectional, the beams from the terminals have to be aligned, or
beamforming will result in worse performance. This gives rise to two problems if beamforming
is used in communication systems, initial access, and tracking. Initial access is the problem of
establishing a connection, with limited or no prior knowledge being available. Here a balance of
performance and time is important, as a direction with high performance can always be found
by an exhaustive search. However, this might be too time consuming, and as such other methods
will most likely be needed. Tracking is the problem of keeping a connection, ie. after connection
has been established, as such at least one prior direction where a connection is viable is known.

1.3 Current solutions

The problems mentioned above are not entirely novel, and as such several solutions have already
been developed. As mentioned earlier, exhaustive search is a way to find beams with high
performance. This is implemented by having both transmitter and receiver test all possible
beam pairs in sequence. While this gives good performance, is does not scale very well as the
amount of possible beams increases. This example is illustrated in a 2D case in Fig. 1.2.

Figure 1.2: Beams in an exhaustive search case [8]

4
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Another method is a hierarchical search, where beams of different width are available. By
checking broader beams first, the general direction of highest signal strength can be found, and
further search in that direction can be conducted with narrower beams. A downside of this
method is that the broader beams has shorter range than the narrow ones, increasing the risk
that the receiver is out of range, leading to wrong decisions. Fig. 1.3 illustrates this, where on
the left broad beams are used to find the sector with highest signal strength, and the right shows
that sector being more thoroughly searched. Both these methods implies that there is a finite
set of beams to choose from. Such a set is known as a codebook, with the individual beams
called codewords.

Figure 1.3: Beams in an hierarchical search case [8]

While these solutions work, they are rather simple and obvious, and aren’t the forefront of beam
alignment algorithms. A more advanced algorithm is the optimized two state search (OTSS)
developed by Li et al.[9]. It operates on the principle of assuming a fixed time and power budget
and allocating these resources differently from exhaustive search. While an exhaustive search
allocate equal time and energy to each codeword in the codebook the OTSS conducts, as the
name suggests, the search in two steps. The fist step is much like exhaustive search where all
codewords are tested, however this is done with a lower power budget. The second stage then
remeasures the most promising codewords to find the best and reduce error rate due to noise
corruption of initial measurements. This method was shown to outperform both exhaustive and
hierarchical search assuming equal energy budget. That is, it achieved the same performance
as the other algorithms, but faster with a strict energy budget, and better performance if the
budget was more lenient.

Another search method, not based on heuristics but on machine learning, is one developed by
Rezaie [10]. This method utilizes context information such as position, feeds this to a deep
neural network which proposes a couple of codewords, which are then measured and the optimal
is chosen. This method utilizes machine learning to find and exploit structure in the problem
which may not be apparent. This method was found superior to another data driven algorithm,
a generalization of the inverse fingerprint algorithm.

5
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1.4 Research question

While the last section presented a number of solutions, the problem is by no means perfectly
solved, and therefore another method is explored in this report. As has been pointed out in
[10] the propagation environment is not guaranteed to be stationary, which means it could
be beneficial to use a technique capable of compensating for, or otherwise handle this dynamic
environment. Preferably this technique should be able to adapt to its environment as it changes,
without the need for manual tuning of an algorithm. As machine learning has proven well
suited for this problem in the past, further research in this direction could prove beneficial. A
machine learning method which is known for its capacity to train and and keep learning in an
online manner, adapting to its environment, is Reinforcement Learning (RL). Its capability to
learn indefinitely through continuous interaction with the environment as it changes, makes it
something that in theory would be well suited for the problem of beam alignment and tracking.
Thus the research question of this Master Thesis is as follows:

Can Reinforcement Learning be implemented as a suitable solution for beam
alignment and tracking in a mmWave communication system, consisting of both
stationary and mobile units?

1.5 Problem scope

The research question has multiple solutions, and to ensure time, and budget constraints are
kept the project will be delimited in this section.

Data collection can happen through a number of different channels. Data can be obtained
by conduction measurements, simulating the measurements or by obtaining a third party’s
measurement/simulation data. Conducting real world measurements is outside the scope of this
project, as the measurements themselves isn’t the focus of this project, and real measurements
are prone to being affected by unknown variables. Data from a third party is also prone to
having not controlled for variables. Thus this project will gather data by simulation.

6



System model 2
As mentioned in Chapter 1, the data to be used in this project will be acquired by simulations.
The problem is centered around the successful transfer of signals from a transmitter attached
to a base station (BS) to a receiver attached to a user equipment (UE), when both are using
beamforming. Here the BS is synonymous with the cell tower, and the UE synonymous with a
mobile phone. As the alignment of beams heavily impacts the signal received, the variable of
main interest is the received signal at the receiver terminal.

This chapter presents first the models chosen to describe the received signal, the beamformers
and the wireless communication channel. Then follows a brief description of the simulation
tool used for the actual calculations. Finally the different models used to determine the UE’s
movement through the environment are presented in detail.

2.1 Received Signal Power

To calculate the received signal power at the receiver, a model from [11] used. The model
assumes a 2D multipath propagation scenario combined with the use of beamformers at both
the BS and the UE. (2.1) calculates how much power is received at the receiving antenna based
on transmitted power, chosen beam pair and a channel matrix.

R[p, q] =
∥∥∥√Ptw

H
q Hfps+wH

q n
∥∥∥2 (2.1)

where

p : Beam index for transmitter antenna p ∈ {0, . . . ,Nb,t − 1}
q : Beam index for receiver antenna q ∈ {0, . . . ,Nb,r − 1}
Nb,r : Number of different beams for the receiver antenna Nb,r ∈ N
Nb,t : Number of different beams for the transmitter antenna Nb,t ∈ N
Pt : Transmission power Pt ∈ R+

wq : qth combiner from beamforming codebook wq ∈ CNr×1

fp : pth precoder from beamforming codebook fp ∈ CNt×1

H : Nr ×Nt channel matrix CNr×Nt

Nr : Number of receiver antennas Nr ∈ N
Nt : Number of transmitter antennas Nt ∈ N
s : Transmitted symbol with normalised power s ∈ C
n : Complex Gaussian noise vector n ∼ CN (0, σ2I)

The symbol can be set to 1 for simplicity, the combiners and precoders are to be defined from
a pair of beamforming codebooks and a narrowband model is used for the channel matrix.

7
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2.2 Beamformers

Beamforming is a form of signal processing applied to antenna arrays, where certain directivity
patterns can be achieved. The patterns achievable depends on the number of antennas and their
intrinsic directivity pattern. Beamforming is implemented by combining signals from or to the
antenna array such that they constructively interfere with each other in certain directions. When
beamforming only a single directivity pattern is obtainable at any one time. Many patterns are
in theory obtainable with arbitrary beamforming, however doing this is costly, and as such a set
of discrete beamformers are usually used.

As mentioned in Chapter 1, such a collection is called a codebook, and each individual
beamformer is a codeword. Codebooks usually cover all angles to a greater or lesser extent,
however how many codewords are used to do this differ, which means each codeword covers a
different range of angles.

2.2.1 Analog and Digital Beamforming

2.2.2 Beamforming at mmWave frequencies

Using beamforming at mmWave frequencies presents some new challenges compared to lower
frequencies. At lower frequencies it is possible to perform the signal processing before the signals
are converted to analog, passed through the RF-chain and presented to the physical antennas.
Thus the signal processing task is mostly a digital one and not much hardware is shared between
the antenna elements. Fig. 2.1 illustrates this type of setup.

Figure 2.1: Conventional MIMO architecture at frequencies below 6 GHz [12].

In mmWave systems, the antenna elements are numerous, very small and placed very close to
each other, making it infeasible to pack circuits for ADCs and the RF-chain for each element.
Additionally, power consumption also becomes a problem for these circuits at very high sample
rates [12].

Therefore, conventional designs are not feasible for mmWave systems and special designs have
been developed that compliment the challenges and limitations present. One of the simplest
methods is using analog beamforming, where a network of phase-shifters are connected to the
antenna elements at one end and a single RF-chain at the other, as illustrated in Fig. 2.2.
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Figure 2.2: MmWave MIMO system using analog only beamforming [12].

The weights of the phase-shifters are then controlled individually to create the beam-patterns.
By using analog beamforming, only a single signal can be carried at a time, meaning that
multi-stream processing normally possible with MIMO systems are not available [12].

Another option is to use a hybrid architecture that combines analog and digital solutions.
Here a number of RF-chains are used, although the number is less than the total number of
antenna elements, and the RF-chains are then connected to an RF-precoding/combining stage
as illustrated in Fig. 2.3.

Figure 2.3: MIMO architecture at mmWave based on hybrid analog-digital precoding and combining
[12].

The RF-precoding/combining stage can then be implemented using analog methods such
as phase-shifters or switches. The hybrid method allows for some of the usual MIMO
communication benefits, at the cost of extra hardware.

To keep the problem simple, only a single-user scenario is considered and as such there is no
need for the MIMO features of the hybrid methods and thus this project is limited to the use of
analog beamforming.

2.2.3 Hierarchical codebook

It is sometimes advantageous to have access to both broad and narrow beams, which is possible
with a hierarchical codebook. Such codebooks contain multiple layers, referred to as codepages,
with different numbers of beams of different width. For this project it has been chosen to
use a hierarchical codebook for beamforming. The one implemented is described in the paper
"Hierarchical Codebook Design for Beamforming Training in Millimeter-Wave Communication"
[13]. This codebook consists of codewords created based on two criteria: 1) that the union of all
codewords in a layer covers the entire angle domain, and 2) that the coverage of a codeword in
one layer is covered by a union of the codewords in the next layer. It should be noted lower layers
have broader beams, while higher layers have narrower beams. Furthermore the codewords are
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designed to have a flat response over their coverage. This flatness of the gain is illustrated in
Fig. 2.4.

The codebook is generated in such a way, that each codeword in a layer is covered by an integer
positive number of codewords in the layer above. For this project it’s chosen that each codeword
gets covered by two narrower codewords on the layer above, which is illustrated on Fig. 2.5
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Figure 2.4: Beam pattern for four codewords in
layer two, for beamformer with 128 antennas
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Figure 2.5: Beam pattern for six codewords, the
two first, from the right, from layer two, the next
four from layer three

The beam pattern plots in Fig. 2.4 and Fig. 2.5 are generated based on calculating the gain
across the entire azimuth range, based on Eq. (2.2).

g(θ,W ) = |WH · a(θ)| (2.2)

g: Antenna gain in a given direction θ
θ: Azimuth angle
W : Codeword, a series of weights, one for each antenna
a: Array steering vector
aH : Raised H denotes Hermitian transpose

While this codebook is hierarchical, a non-hierarchical codebook can be generated from it by
simply picking out a codepage, and treating it as the entire codebook. The method for codebook
generation from the paper is used for both receiver and transmitter. With this definition of wq

and fp, what is left to explain is the channel matrix, which is done in the next section.

2.3 Narrowband model

The last variable in the signal model is H, which is the channel matrix. For simplicity it has
been chosen to use a narrowband channel model. It makes simulation easier and the principles
used with wide-band channels are similar as well, meaning that results should not be entirely
dependent on this choice.

The model is given by Eq. (2.3), based upon [11]. This model assumes that the antenna array at
both the transmitter and the receiver is a Uniform Linear Array (ULA), with Nt and Nr array

10



2.4. Antenna configuration Aalborg University

elements respectively.

H =

L∑
l=0

√
NrNt βl ar

(
θlr

)
aH
t

(
θlt

)
(2.3)

where

L : Number of multi paths L ∈ N
at : Steering vector for the transmitter antenna array at ∈ CNt×1

ar : Steering vector for the receiver antenna array ar ∈ CNr×1

θt : Angle of Departure (AoD) θ ∈ [0; 2π)
θr : Angle of Arrival (AoA) θ ∈ [0; 2π)

Here βl is the channel parameter for the lth multi path component and ar, at are the array
steering vectors for the receiver and transmitter, respectively. θlr and θlt denotes the Angle of
Arrival (AoA) and Angle of Departure (AoD) w.r to the ULA axes.

By assuming the antenna elements are spaced evenly by λ/2 and are all isotropic, the array
steering vectors are defined as,

ar

(
θlr

)
=

1√
Nr

[
1, e−jπ cos(θlr), . . . , e−jπ(Nr−1) cos(θlr)

]T
(2.4)

at

(
θlt

)
=

1√
Nt

[
1, e−jπ cos(θlt), . . . , e−jπ(Nt−1) cos(θlt)

]T
(2.5)

Which results in H being a Nr×Nt matrix. It should be noted that these array steering vectors
only take a single angle as an argument, and therefor cannot be steering vectors for all directions
in three dimensions. These are 2D steering vectors where the angle is in the plane, and the height
is disregarded.

2.4 Antenna configuration

As mentioned in Section 2.3 the antenna configuration is limited to a ULA if the models
assumptions should not be violated. While the antenna being a ULA specifies the placement of
the antennas it doesn’t dictate the number. Typical values for number of antennas can be seen
in Table 2.1

Base station 32 64 128
Mobile terminal 8 16 32

Table 2.1: Typical number of antennas for BSs and UEs [14]

2.5 Radio Channel Simulation

There are a couple of requirements for the channel simulator, the first is the calculation of
the channel parameters βl. This requirement is fulfilled by all channel simulators, the second
requirement is calculation of the AoA and AoD for each path. It is guaranteed to obtain mean-
ingful AoA and AoDs’ from geometrical models, one of which will be chosen. While not a
technical requirement a balance between performance and accuracy is essential, as the project
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is time limited. The model chosen, which fulfil all the requirements, is QuaDRiGa. QuaDRiGa
runs through MATLAB or Octave and is used for "generating realistic radio channel impulse
responses for system-level simulations of mobile radio networks" [15].

QuaDRiGa supports a variety of standardised channel models and simulation settings, for dif-
ferent radio network scenarios. In this project the scenarios "3GPP_38.901_UMi_LOS" and
"3GPP_38.901_UMi_NLOS" are used for Line Of Sight (LOS) and Non Line Of Sight (NLOS)
cases, respectively [16]. These scenarios supports carrier frequencies in the range 500MHz to
100GHz and for this project a carrier wave with center frequency of 28GHz is used. The max-
imum transmit radius supported in the scenarios is 200m and thus such an area surrounding the
transmitter is chosen as the location used in the simulations. For all simulations, QuaDRiGa
is set to simulate a multi path propagation situation, with scatterers placed randomly in the
simulation area. The scatterers emulate objects in the area that reflect incoming signals, thus
creating NLOS components.

Figure 2.6: Simplified overview of the modelling approach used in QuaDRiGa [17].

The simulations return the complex path parameters, the AoA and the AoD for each multi path
component at each position given by a track for each antenna terminal. Additionally, the move-
ment direction is returned as an orientation parameter. In the simulations, both the transmitter
and the receiver is set to consist of an isotropic antenna, such that the parameters only rely on
the channel characteristics.

2.6 User Mobility Model

As mentioned earlier, Quadriga needs a number of inputs, one of which being a track of positions
for each antenna terminal in the environment. Because it’s intended that the UE is mobile,
simulation of realistic movement patterns is required.

The mobility model used is based on an implementation of the model described in the paper
"Smooth is better than sharp: a random mobility model for simulation of wireless networks"
[18].
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This model is described both for continuous and discrete time, the implementation for this
project is for discrete time. The model is defined for a two dimensional space, where a unit
walks around in the plane. The movement is based on random events which change the speed,
v, and direction, ϕ, the unit is moving. Eq. (2.6) calculates the next position based on these
factors, and the sampling interval ∆t.

xn+1 = xn + cos(ϕ) · v ·∆t

yn+1 = yn + sin(ϕ) · v ·∆t
(2.6)

How v is calculated is described in the next section, and ϕ in Section 2.6.2.

2.6.1 Speed

The speed at any given point is calculated based on seven inputs:

• vchange [s], mean time between changing target speed

• vmax [m/s], maximum speed

• vmin [m/s], minimum speed

• vpref [m/s], list of preferred speeds

• pvpref [−], list of probabilities associated with preferred speeds

• acc_max [m/s2], maximum acceleration

• dec_max [m/s2], maximum deceleration

A specific parameter set belongs to a class of mobile units, like pedestrians or cars driving in an
urban environment. The speed changes when a speed change event occurs, which happens with
the probability given in Eq. (2.7), each time step.

p(speed change event) =
∆t

vchange
(2.7)

When such an event occurs, a new target speed will be found, which is based on the probabilities
given in pvpref, in the manner presented in Eq. (2.8).

p(vtarget) =



p(vtarget = vpref1) = pvpref1
p(vtarget = vpref2) = pvpref2

...

p(vtarget = vprefN ) = pvprefN

p(vtarget = U [vmin,vmax]) = 1−
n∑

i=1

pvprefi

(2.8)

After a target speed is chosen an acceleration or deceleration is drawn. The probability
distribution of the acceleration is given in Eq. (2.9). The deceleration is closely related, with
the difference being the uniform distribution is for the interval [dec_max, 0].
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p(acceleration) = U [0,acc_max] (2.9)

The velocity is changed each time step to accelerate/decelerate to the target velocity, according
to Eq. (2.10).

velocityn+1 = velocityn + accelerationn ·∆t (2.10)

The velocity keep increasing/decreasing until the target speed is reached, in which case the
acceleration/deceleration is changed to zero.

2.6.2 Direction

The direction at any given point is calculated based on three inputs:

• dirchange [s], mean time between changing target direction

• curvetime_max [∆t], maximum curve time

• curvetime_min [∆t], minimum curve time

In a similar manner to a speed change, a direction change is a random event with a given chance
to happen at each time step, which is given by Eq. (2.11).

p(direction change event) =
∆t

dirchange
(2.11)

If such an event occurs a target direction, dirtarget, is drawn with the distribution U [−π,π].
Then a curve time is drawn, which is the time from the turn is initiated to the unit is pointing
in the target direction, in time steps. This time is drawn as given in Eq. (2.12).

p(curvetime) ∼ ⌊(U [0,1] · (curve_max− curve_min) + curve_min)
∆t

⌋ (2.12)

2.6.3 Speed and direction correlation

In the previous sections the behavior of the speed and direction were described as independent
events. According to the model this isn’t generally the case [18]. They are interdependent,
and two scenarios which demonstrate these dependencies are integrated as part of the model.
The first scenario is the "stop-turn-and-go", where the direction changes are correlated with
speed changes. If the mobile unit decelerates to a stop, and after some time accelerates again,
a direction change is likely to also occur, such as stopping and driving through an intersection.
This scenario is described by the parameter "stop_dirchange [−]". This is the chance to
enter the "stop-turn-and-go" scenario, whenever the velocity of the unit reaches zero. If this
scenario is entered there’s a 67% chance to not incur a direction change, and 33% to incur. If a
direction change is incurred there’s a 50% chance to turn 90◦ left, and 50% to turn right. These
probabilities are expressed in Eq. (2.13).
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p(stop-turn-and-go|v = 0) = stop_dirchange

p(dirtarget = dir|stop-turn-and-go) = 0.67

p(dirtarget = dir + 90◦|dirtarget ̸= dir) = 0.5

p(dirtarget = dir − 90◦|dirtarget ̸= dir) = 0.5

(2.13)

The second scenario describes a speed dependency on direction changes. When changing
direction, there is a chance to decelerate to a calculated maximum speed, to emulate safe
navigation of corners. The maximum speed at which corners can be navigated is calculated
based on the friction coefficient, static_friction[−], as done in Eq. (2.14)

vcurve =
√
µs · g · rc (2.14)

Where g is the gravitational acceleration, and rc is the curve radius, which is calculated by:

rc =
vtarget · curvetime ·∆t

|∆ϕ|
(2.15)

When the curve speed has been calculated, a check is performed to gauge if deceleration is
necessary. If so, the unit slows down until the curve speed, vcurve, is reached and the actual turn
is performed.

2.6.4 Mobility case settings

A multitude of different parameters have been mentioned throughout Section 2.6 which differ
depending on which mobile unit the model is emulating. In this project, two different cases
have been identified as interesting and representative for data gathering. The first represents a
pedestrian in an urban environment and the second represents a car in an urban environment.
Parameters describing the behavior of both cases can be found in Table 2.2.

Pedestrian Urban car
vmax [m/s] 2 14
vmin [m/s] 0 0
vpref [m/s] [0, 0.7, 1.4] [0, 8.3, 14]
pvpref [−] [0.1, 0.1, 0.4] [0.3, 0.1, 0.4]

vchange [s] 100 50
dirchange [s] 100 50

stop_dirchange [−] 0.33 0.33
acc_max [m/s2] 1.44 2.5
dec_max [m/s2] 0.6 4

curvetime_max [s] 10 10
curvetime_min [s] 5 1
static_friction [−] 1 0.7

Table 2.2: Movement parameters of two different moving units

The values in Table 2.2 are derived from [18], [19] and [20, §42]. Examples of mobility traces for
both cases are illustrated on Fig. 2.7.
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(a) Urban pedestrian scenario. (b) Urban car scenario.

Figure 2.7: plots of seven random mobility traces made using by the mobility model parameters from
Table 2.2. The BS is placed at the origo, and the colored circle represents the range of the BS.

The pedestrian traces are in general shorter than the car traces, and the turn radii are larger
for the car due to the higher travel speeds.

2.7 User Orientation Model

In addition to a mobility model for the UE, a model for the orientation of the UE is developed.
From the QuaDRiGa simulation the orientation of the UE at a given position is given simply as
the direction of movement from the last position to the current one. While this is sufficiently
realistic for the case of a car moving with the terminal fixed to the chassis, in the case of a
pedestrian the orientation of the terminal is expected to vary slightly even when travelling along
a straight line. As an example, consider how a phone in the hand of a person might change
orientation, even if the person is walking straight ahead.

To better represent the random behaviour of the orientation in the pedestrian case, a filtered
random walk is added to the orientation supplied by QuaDRiGa. The random walk is modelled
after the walk proposed in [21, p. 51840].

The added random walk is a time series calculated by:

ᾱt = ᾱt−1 +N (0, σ2) (2.16)

where the start value ā0 = 0. The filter used to smooth the random walk is a simple k’th-order
moving average filter:

αt =
1

K

K−1∑
k=0

ᾱt−k (2.17)
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Figure 2.8: Orientation of receiver terminal in pedestrian case, without and with added filtered random
walk

The smoothness of the filtered walk, can be adjusted with the value of K, where a larger K gives
a slower variation in orientation. The output from the filter is then added to the orientation
parameter from QuaDRiGa and wrapped to be within [-π, π] to keep the orientation in absolute
angles. An example of the orientation before and after the added random walk can be seen on
figure Fig. 2.8a and Fig. 2.8b respectively.

2.8 Coordinate Transformation

When using beamforming, the direction of the beam is relative to the fixed coordinate system
of the antenna array and not the global coordinate system in which the terminal moves around.
When determining the steering vectors used in the channel matrix, the local angles are needed,
but only the global angles are supplied from the QuaDRiga simulation. Global AoA can be
converted to local AoA given the orientation of the UE. This is done by subtracting the global
orientation from the global AoA. However, the angles used for steering vector are relative to the
positive y-axis and not the x-axis, thus an offset π/2 is added to get the final local angle. This
is also described by equation Eq. (2.18).

AoAlocal =
π

2
+AoAglobal −Orientationglobal (2.18)

The conversion is illustrated in Fig. 2.9, where the black arrow is the orientation of the antenna,
and the blue arrow is the angle of arrival of the signal.
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Figure 2.9: Orientation changes from global to local

Throughout this chapter, the system model was defined, and explained, which is one of two
important precursors to developing solutions to the problem, the other being RL, which is
described in the next chapter, Chapter 3.
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Reinforcement Learning
Methods 3

In order to design a RL scheme for the specific task at hand, first a study of the general principles
and methods of RL is conducted.

In this chapter the concepts and central elements of RL are briefly introduced. Then, a small
selection of popular methods for implementing RL is presented.

3.1 The RL-framework

The purpose of RL is to learn some desired behaviour from interaction with a system. This
interaction can be seen as taking different actions when presented with different situations.
To better develop and analyze methods and algorithms a solid mathematical framework is an
invaluable tool.

This kind of interaction is precisely modelled by Markov decision processes (MDPs), as these
involve going from one state to another based on an action and receiving some reward, based
on the state and choice of action.

Typically an MDP is represented by a 4-tuple (S,A, Pa, Ra), where:

• S : is a set of possible states called the state space.

• A : is a set of possible actions called the action space, also seen as A(s), the set of possible
actions when in state s.

• Pa(s
′|s, a) : is the probability of transitioning from state s to state s′ when taking action

a.

• Ra(s, s
′, a) : is the reward function denoting the reward received when transitioning from

state s to state s′ having taken action a.

3.1.1 The Agent-Environment interaction

Using MDPs the RL problem is modelled as two systems interacting with each other. The first
is known as the agent, which represent the entity that learns and take actions. The other is
presented as the environment, which represent all that which is not part of the agent itself.
Thus, the environment consists of all that which the agent can readily observe and all it cannot.

The environment presents the agent with a situation, called a state, and the agent then decides
on an action, which the environment responds to with a new state and a reward, as illustrated
in Fig. 3.1.
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Figure 3.1: The Agent-Environment interaction model in an MDP.

This process then repeats indefinitely or until some terminal state is reached. In the simple case,
the agent and environment is said to interact at discrete moments in time, t = 0, 1, 2, 3, .... At
each time step, t, the agent receives a state from the environment, St ∈ S and takes an action,
At ∈ A(s). This action presumably has some impact on the state of the environment, and at
the next time step the environment responds with this new state, St+1, and a reward, Rt+1 ∈ R.

In the special case where the sets of states, actions and rewards are all finite sets, the MDP
is called finite, and it has well defined discrete probabilistic characteristics. These probabilities
can be collected into a single function p:

p(s′, r|s, a) = P (St = s′, Rt = r|St−1 = s,At−1 = a), (3.1)

for all s′, s ∈ S, r ∈ R and a ∈ A(s). Here the ’|’ is borrowed from the usual notation for
conditional probability to indicate the Markov nature of the MDP. The Markov property means
that the transition probabilities described by p are only dependent on the previous state and
action and entirely independent of any states and actions prior to these.

The probabilistic characteristics are known as the dynamics of the MDP, and based on these it
is possible to find optimal solutions by solving sets of equations known as the Bellman equations
[22, p. 74].

The derivation and solving of these equations is out of scope in this report. Additionally, in most
of the cases of practical interest no such solution exists as the strict assumptions of MDPs are no
longer valid and approximations are used instead. However, even though most of the concepts
and methods from RL are restricted to MDPs, they have proved to apply more generally as well.

This really shows how powerful a tool RL can be. Instead of needing valuable expertise to create
approximate models of a given problem and environment and then using further resources to find
a policy that works well with this model, RL can be used. By placing agents into the environment
and letting them interact with each other through actions and rewards, it is possible to learn
useful policies without any models at all. In some cases, the policy found through interaction
with the environment may even be very close to the optimal policy usually only obtainable
through solving the Bellman equations.

3.1.2 States and Actions

The MDP framework allows for very flexible notions of states and actions based on the problem
at hand. The state is some representation of how the environment is at the current time and can
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take almost any form. It can be something simple and objective like measurements from sensors
or a history of such data, but it can also be more abstract and subjective like not knowing
if a sensor is working or not. But importantly, the state can only consist of information that
is directly observable by the agent at the current time, meaning that the state may not be a
complete and exact representation of the environment at that time. Likewise, actions can be
more or less abstract, like which way to turn at an intersection or changing ones behavior from
careful to risky.

In general there is no best way to represent states and actions, it all depends on the task at
hand. However, care should be taken when designing the state and action spaces, as they have
a large impact on how well the RL algorithms work.

3.1.3 The goal of the agent; Reward and Return

Another important part of the design process is the reward function, as it is central to the goal the
agent tries to achieve. In simple terms the goal of the agent is always to maximize the amount of
reward it gets, not just immediately but also further into the future, i.e. the cumulative reward
over time. Thus, the reward function directly controls what kind of behaviour the agent learns
to follow. Similar to the state, the reward is a random variable presented to the agent from the
environment as a reaction to the previous action. This means that the reward also has to be
directly observable from the environment by the agent.

Rewards can be used in many ways to guide the agent towards learning the designers goals,
usually by giving positive or negative rewards to either encourage or discourage certain
behaviour. However, care should be taken when designing the reward function, as it is important
that the reward does not tell the agent how to learn, eg. by achieving subgoals, but only what
to learn.

As an example of a poorly designed reward function, imagine a cleaning robot tasked with re-
moving dirt from an office, that is rewarded based on the amount of dirt it removes. The agent
in this case might learn to knock over plants in the office so it has more to clean and thus receive
more reward, instead of simply cleaning the initial dirt as intended.

To further formalize the goal of the agent, it helps to introduce the concept of return. As
stated earlier, the agent strives to maximize not immediate reward, but the cumulative reward
long into the future. The return is precisely this cumulative reward, denoted as Gt. In cases
where time steps continue indefinitely, the return might go to infinity if the individual rewards
are all positive.

To counter this, often the notion of discounted return is utilized instead. The discounted return
is defined as:

Gt
.
=

T∑
k=t+1

γk−t−1Rk (3.2)

where T is the last time step, which might be infinity, and γ ∈ [0, 1] is the discounting factor.
To avoid infinite returns, the discounting factor must be less than 1 for MDPs with episodes
of infinite steps. Besides solving the problem of infinite returns, the discounting factor gives
the possibility to control how farsighted the agent is regarding future rewards. With a large
discounting factor, it takes longer for the weight γk−t−1 to become negligible and thus the
future rewards contribute to the return for a longer time.
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3.1.4 Value- and Policy Functions

When determining how good a state is to be in, or how good it is to take a given action in
a given state, the agent uses value functions. As the agent wants to maximize the cumulative
rewards it is tempting to define the value as the return from a given state. However, as the
reward received by taking a given action in a given state is a random variable, governed by the
dynamics of the MDP, the same action may not give the same reward when taken in the same
state consecutive times. Thus the value function is defined as the expected return instead.

The rewards the agent can expect to receive depends on how the agent behaves, thus a value
function is always defined relative to a specific behaviour, called a policy. A policy is a function,
π(a|s), that maps a state to probabilities of taking each possible action in that state. The goal
of RL methods are to specify how to update an agent’s policy, based on its experiences.

The state-value function of a state s, using the policy π, is the expected return when starting in
s and then following π from that point on. This is denoted by vπ(s) and for MDPs the function
can be defined as:

vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S (3.3)

where Eπ [·] is the expectation of a random variable, given that the agent follows the policy π.
Furthermore, the value for a terminating state, if it exists, is defined to be zero. In a similar
way an action-value function, for the value of starting in a state s, taking action a and then
following the policy π, is defined as:

qπ(s, a)
.
= Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(3.4)

3.2 Value approximation

Given a finite MDP with known dynamics, it is possible to find an optimal policy and value
function using dynamic programming and the Bellman equations. However, as this is rarely
the case, many practical reinforcement methods instead try to approximate the optimal value
function and update the policy based on the approximations instead.

In cases where the state-space is sufficiently small, it may be feasible to keep a table containing
the value estimates for all state-values, or even action-values. The entries in the table are then
updated based on experience. In cases where the state-space is very large, or even continuous,
it becomes unfeasible to keep a table of all the possible states. In such cases it can be better to
use function approximation methods to directly approximate the value or policy functions.

3.2.1 Tabular methods

When trying to solve finite MDPs with tabular methods, there are three methods which are
considered fundamental: dynamic programming, Monte Carlo methods and temporal-difference
learning. Dynamic programming is a very well developed mathematical field, however it requires
full knowledge of the dynamics of the MDP. Monte Carlo methods do not have this limitation,
however they are not very suited for online, step-by-step computations. Temporal-difference
learning has neither of these limitations, at the cost of being harder to analyze [22, p. 23].
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Due to their widespread use, only the temporal-difference methods are described in this report.
Likewise, only a select few methods are described in detail.

In the tabular case, the agent’s policy is updated based on the value estimates at each time step.
A popular choice is to estimate the action-value function, as it does not require any knowledge
of the dynamics. An often used type of policy is the greedy, or the closely related ϵ-greedy,
policy. Under the greedy policy, at each time step the agent takes the action with the highest
estimated action-value associated with it. The greedy policy is given by:

π(s) = argmax
a

qπ(s,a) (3.5)

The greedy policy is easily implemented when a table of action-values is available, as the
maximisation can be done directly on the entries in the table. For the ϵ-greedy policy, the agent
takes the greedy action with probability (1 − ϵ) and a random action otherwise. The ϵ-greedy
policy forces the agent to explore its environment to get better estimates of all action-values.

By always taking actions based on the current estimates in the action-value table, each time the
estimates in the table improves so does the policy. Thus, the task is how to update the entries
in the table based on the experience, such that the value estimates get better. Mutual for the
upcoming methods is a general update-rule:

NewV alue = OldV alue+ stepsize[Target−OldV alue] (3.6)

with the difference between the methods being what they use as target. The target is supposed
to be something which the value estimate should go towards. Based on (3.4), an intuitive choice
of target would be the expected return or an estimate of it.

SARSA

Indeed, this is also the case when using a method called SARSA, which utilizes the fact that
(3.4) can be written recursively as

qπ(s, a)
.
= Eπ [Gt | St = s,At = a]

= Eπ [Rt+1 + γGt+1 | St = s,At = a]

= Eπ [Rt+1 + γqπ (St+1, At+1) | St = s,At = a] (3.7)

The SARSA update-rule uses an estimate of the expression in (3.7) as its target. Instead of the
actual action-value for the next state and action qπ (St+1, At+1), it uses the current estimate
and instead of the expected value, a single sample is used. Thus the SARSA update-rule, under
the policy π, can be written as:

Q (St, At)← Q (St, At) + α [Rt+1 + γQ (St+1, At+1)−Q (St, At)] (3.8)

where Q(s, a) is the estimated action-value for the state-action pair (s, a) and At+1 is the next
action taken when following the policy π. This update is performed after each transition from
a non-terminal state St to the St+1. SARSA is illustrated in pseudocode in Algorithm 1.
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Algorithm 1: SARSA update rule [22][p. 130]
Input: α ∈ (0,1], ϵ > 0

Initialize Q(s,a), for all s ∈ S+,a ∈ A(s), arbitrarily except that Q(terminal, ·) = 0

for each episode do
Initialize S Choose A from S using policy derived from Q

for each step in episode do
Take action A, observe R, S′

Choose A′ from S′ using policy derived from Q

Q(S,A)← Q(S,A) + α[R+ γQ(S′,A′)−Q(S,a)]

S ← S′;A← A′

end
Until S is terminal

end

The SARSA method is called an on-policy method, as the policy used in the target is the
same as the one used by the agent to choose actions. Thus by using this method, the action-
value estimate converges not to the optimal action-value, but rather a sub-optimal action-value
function that takes exploration into account. The learned policy is therefore more risk averse,
as it knows that sometimes a random action is performed.

Q-learning

A method that instead directly estimates the optimal action-value function is Q-learning. The
update-rule for Q-learning is similar to SARSA, however the policy used in the target is always
the greedy policy, regardless of which policy is followed by the agent, thus making it an off-policy
method. The Q-learning update-rule is defined by

Q (St, At)← Q (St, At) + α
[
Rt+1 + γmax

a
Q (St+1, a)−Q (St, At)

]
. (3.9)

Q-learning is illustrated in pseudocode in Algorithm 2.

Algorithm 2: Q-learning update rule [22][p. 131]
Input: α ∈ (0,1], ϵ > 0

Initialize Q(s,a), for all s ∈ S+,a ∈ A(s), arbitrarily except that Q(terminal, ·) = 0

for each episode do
Initialize S for each step in episode do

Choose A from S using policy derived from Q Take action A, observe R, S′

Q(S,A)← Q(S,A) + α
[
R+ γmax

a
Q(S′,a)−Q(S,a)

]
S ← S′;A← A′

end
Until S is terminal

end

While the action-value function learned by Q-learning corresponds to a policy different to that
followed by the agent, the policy is still important. As the policy controls which state-action
pairs that gets visited, and thus which action-values that get updated, it is important to choose
a policy that explores the state-action space.
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However, even though it converges to the optimal action-values, an agent using Q-learning might
have worse online performance than one following SARSA. This is because the policy learned
by SARSA is tuned to give high return assuming that the agent explores, while the Q-learning
policy is tuned to give high return when the agent behaves greedily.

3.2.2 Approximate methods

When tabular methods prove infeasible, the domain of function approximation may be of use
instead. This happens in cases where the state-space becomes so large that it cannot fit easily into
a table and the probability that the agent encounters entirely new states after each transition
is high. Here it is desired that the knowledge the agent learns from visiting one state also
generalizes to other states that might not have been visited yet.

This is a goal known from supervised learning, a field which has been very thoroughly studied and
has many well-defined methods on its own. Fortunately many of the methods from supervised
learning can be modified to fit the problem of function approximation in RL.

There exists both parameterized and non-parameterized methods for function approximation.
Due to time and resource limitations, non-parameterized methods are put outside the scope
of this report. In parameterized methods the approximated value function is represented by a
vector of weights, w ∈ Rd. Thus the state-value, is retrieved not by look-up in a table, but
by evaluating the function v̂(s,w) ≈ vπ(s). As with the tabular methods the purpose of the
function approximation methods is to make the estimations of the values more accurate based on
experience. This is done by modifying the weights, usually using some sort of gradient method.

Stochastic-Gradient and Semi-Gradient Methods

In short, gradient methods are used to minimize an objective function relative to one of its
parameters, by moving the parameter in the direction of the negative gradient of the function at
the current parameter values. This depends on the objective function being differentiable with
relation to the parameter. When the update of the parameter happens based on a single sample,
maybe drawn stochasticly, and not the entire data set it is called stochastic gradient descent.
Due to the online nature of RL, stochastic gradient methods are especially suitable.

In the case of value function approximation, a useful objective function to minimize is the sample
value error between the actual value vπ(St) at state St and the approximation v̂(s,wt) using the
current parameters. The parameter update-rule at each time step t is the defined as:

wt+1
.
= wt −

1

2
α∇ [vπ (St)− v̂ (St,wt)]

2

= wt + α [vπ (St)− v̂ (St,wt)]∇v̂ (St,wt) (3.10)

where α is a positive step-size parameter and ∇ represents the gradient with respect to w. In
the more general case where vπ(s) is not available, another target can be used instead, e.g the
update targets known from the tabular methods. However, in the case of update targets used
in temporal-difference, the target depends on the approximated value function and the equation
in (3.10) is no longer valid. The use of (3.10) is then no longer a case of gradient descent, but
semi-gradient descent and convergence is not as robust in general, but in some cases it has been
proved to still converge reliably. One such case is when v̂(s,wt) is a linear function of w [22,
Chapter 9].
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Linear Methods

When using linear methods, the value function is approximated by the inner product between
the weight vector w and a vector x(s)

.
= (x1(s), x2(s), . . . , xd(s))

⊤ ∈ Rd:

v̂(s,w)
.
= w⊤x(s)

.
=

d∑
i=1

wixi(s) (3.11)

The vector x(s) is called a feature vector representing the state s, where the value of each
component xi(s) is known as a feature of s. Using a linear function, the update in the stochastic
gradient and semi-gradient methods becomes especially simple:

wt+1
.
= wt + α [Ut − v̂ (St,wt)]x (St) (3.12)

where Ut is some target function.

Some of the advantages of using linear methods are their favourable convergence characteristics
and their efficiency. [22, p. 210]. However, in order for the methods to give useful results it
is important that the features are chosen well. The features are used by the designer to add
important prior knowledge about the RL task at hand, such as ways it might be relevant to
generalize across the state space.

There is no right or wrong way to choose features, as it depends on the RL problem at hand,
but there exists some different general methods for constructing features that can be used as
frameworks [22, pp. 210–222].

Non-linear functions

Another widely used method for function approximation in RL is the use of artificial neural
networks, ANN. ANNs are used to approximate non-linear functions and a lot of work has been
done in the field of machine learning on the use of ANNs, especially the case of networks with
many hidden layers known as deep learning.

There exists many different types of ANNs, however in this overview only the classic feedforward
will be discussed as it illustrates well the general principles of ANNs. The feedforward ANN
consist of a number of units, grouped together in a number of layers, such that the outputs from
the units in one layer only feeds into the next layer. An example of a simple ANN is shown in
figure 3.2.
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Figure 3.2: A simple feedforward ANN with n input units, m output units and a single hidden layer
with k units.

Each unit in an ANN computes a weighted sum of all its inputs and passes this sum through a
non-linear function called an activation function and then outputs the result to the units in the
next layer. A variety of different activation functions can be used for different tasks, but some
popular choices are logistic Sigmoid functions, ReLU and softmax [23].

Like the linear methods, the neural network is parameterized by its weights as well, and during
training the weights are updated based on a stochastic gradient method.

3.2.3 Tabular or Approximate Methods

Whether tabular methods or function approximation is the appropriate choice for an agent,
largely depends on how large the state-action space is. Another contributing factor is how
stationary the environment is, i.e. how fast the true value of a state changes over time. In cases
with small state-action spaces and sufficiently stationary environments it may be possible to
use tabular methods, which demands fewer computation resources than function approximation
methods. In other words, if your state-action space is small enough to fit in a table in memory,
and it is possible to visit all relevant state-action pairs multiple times in a relatively short time,
then tabular methods offer guarantees of convergence that function approximation methods
cannot.

However, in more complex cases where the state-action space grows large it may be infeasible
to keep a record of each state-action pair and its value. Here it may be better to use function
approximation methods, where only a number of weights, less than the number of state-action
pairs, are needed. The reduction in memory usage comes at the cost of computation, which
might not be feasible on small devices. Thus both the size of the state-action space and the
intended device used has an impact on the choice between tabular and approximate methods.
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RL in Adaptive Beamforming 4
The problem was analyzed and clarified in Chapter 1, the modelling of the problem presented in
Chapter 2, and the principle of RL explained in Chapter 3. In this chapter, the different aspects
of applying the RL framework to the problem at hand are explored.

When using RL to solve a problem, the general framework described in Chapter 3 has to be
configured to the problem. Reviewing the framework it becomes clear that it can be divided into
three parts: The agent, the environment and the signals between them. In order to apply RL
each part of the RL framework has to be appropriately defined for the wireless communication
problem. The three parts can’t be designed separately, as design choices made for one part also
influences the others, making the design an iterative process. In the following sections some of
the design considerations for each part are described.

4.1 The modelling of the agent

The agent is the part that interacts with the environment through its actions, trying at all times
to optimize the total amount of reward it receives. The choices made when designing the agent
can impact both how the environment is defined and the interaction between the agent and the
environment. Some of the major choices are listed and discussed below.

4.1.1 Single vs. Multi Agent RL

First there is the high level abstraction of deciding where to put the agent relative to the
environment. One way is to have each antenna array in the network controlled by a separate
agent. This way, each UE and the BS has its own agent, and the actions control only the
beamforming happening at one device. From the perspective of each separate agent, the other
agents then become parts of the environment, their actions beyond the control of the agent
and information about them is only accessible through the combined state of the environment.
The agents may thus possibly have information about each other through their state, but keep
separate value estimates, update rules and hyper-parameters such as discounting factor, step
size and ϵ value when using an ϵ-greedy policy.

Another way is to have a single agent control all the devices in the network. Here the actions
control the beamforming performed at all the antenna arrays at once. Then at each time step, the
agent chooses a codeword for each device. In this case the agent has more information available,
as all devices have been removed from the maybe only partially observable environment and
become a part of the agent.

The case of a single agent interacting with the environment most closely resembles the framework
presented in Chapter 3, with the multi agent case being somewhat more complicated although
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many similarities exists. While an extensive exploration of Multi Agent RL is outside the scope
of this report, a brief introduction to some of the main concepts seems appropriate. In multi
agent RL, two or more agents are placed in the same environment, tasked with either competing
with each other to gain the most of some limited resource or cooperating with each other to
maximise the total reward of all agents.

When modelling multi agent RL an extension of the MDP framework can be used. For the case
of multiple agents that move through multiple states, the term multiplayer stochastic games
is used. Like MDPs, stochastic games can be described by a tuple consisting of state space,
action space, transition probabilities and reward functions, however now it is necessary to keep
a different action space and reward function for each agent, and the transition probability is
conditional not only on a single state and action, but on a state and the combination of actions
from all agents. The goal is still to find a policy, also known as a strategy, for each agent, such
that some equilibrium is reached where each agent no longer want to change their strategy to
gain better rewards. This is known as the Nash equilibrium [24, Chapters 3 and 4].

As with single agent RL, a variety of different methods have been developed to try and solve
multiplayer stochastic games. However, researching and implementing many of such methods is
out of the scope of this report. A single method has been implemented to act a reference later,
to investigate how well it performs compared to the more usual methods implemented in this
report. This is presented in Chapter 6.

4.1.2 Actions

The other part of the design of the agent is determining the action space. The action space
can be defined rather arbitrarily and at different levels of abstraction. For the problem of
beam alignment the intuitive choice of action space is the collection of codewords from the
codebook. The agent’s task is then, at each time step, to choose which codeword to use for
beamforming until the next time step. In the multi agent case, each agent may choose only a
single codeword and in the single agent case, the agent has to choose codewords for all antenna
arrays at once. However, even the simple action of choosing codewords, presents some different
design possibilities, because even if the total action space is just the codewords of the codebook,
the subset of the action space made available to the agent at each time step need not be constant.
Below, some methods of choosing the beamforming direction are outlined.

• one-of-all
In this method the agent can choose freely between all codewords or combinations of
codewords possible. This results in a large action space, that is kept constant for all
states, and thus the optimal choice of codewords is always possible.

• Adjacent
In this method the action space of the agent is limited by the currently used codeword.
Instead of being able to choose any codeword in the codebook, only those codewords
adjacent to the current codeword are available. By changing the action from choosing
a specific codeword, to picking a direction the action space becomes; Stay, navigate left,
right, down, up left and up right. The reason there are two and only two actions pertaining
to up is due to how the codebook is constructed. As seen on Figure 4.1 a beam in a given
layer is covered by exactly two narrower beams in the layer above. In the edge case of
residing in beam 5 and navigating to the right the next beam will become beam 2, because
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of wrap around, and so that navigating left/right only navigates within a single layer.
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Figure 4.1: Illustration of a hierarchical codebook, with each beam numbered

The one-of-all action encoding should lead to a more versatile agent, as any beam is available at
all times, however ensuring the performance of such an agent might be more difficult, especially
if the codebook has many codewords. Adjacent encoding will always only have six actions, and
as such a larger codebook will not necessarily make the decision process more complex. Even if
it does, then not to the same degree as the one-of-all encoding. Of course the obvious limitation
of this encoding is the fact that only six different beams are available at any one time.

4.2 The environment and the state

The environment is everything outside the agent, which in this case is primarily elements from
the propagation environment. The propagation environment and how it is simulated is described
comprehensively in Chapter 2. However, depending on where the agent/environment boundary
is placed, even some information about the UE and the BS can be said to be part of the
environment. The boundary may be placed very close to the abstract concept of the agent,
such that the physical and mechanical conditions of the UE is outside of the agent. The agent
can then be thought of as the "mind" making decisions, with the "body" being part of the
environment.

The state then, as mentioned in Chapter 3, is a representation of the environment, presented to
the agent by the environment at each time step. Using the state the agent chooses an action
based on its policy. A way to represent the state is as a combination of state parameters, each
describing a different aspect of the environment. The task when designing the state space is
then determining and combining state parameters.

4.2.1 State parameters

Using multiple sets of different state parameters it is possible to control the detail of the
knowledge of the environment. As the information about the environment becomes more
detailed, the agent becomes better at discerning different situations from each other and can
act accordingly. However, not all information about the environment might be relevant to the
problem at hand or even available to the agent, as in practice the information usually comes from
some finite amount of sensors in the environment. Additionally, by having a very detailed state
the state space grows larger which might pose problems when using tabular methods. Thus, the
main problem when designing the state is to determine which state parameters are available and
have a significant impact on which action to choose, so as to keep the state space from becoming
unnecessarily large.
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Determining the impact a state parameter has on the decision process of the agent is often more
difficult than determining which ones are available, as this relies more on specific field knowledge
and intuition. Thus, designing the state is more of a creative process than a direct method and
it involves trial and error to find out what works best. In the case of adaptive beamforming as
presented in this report, with simulation data from QuaDRiGa which uses the geometry of the
propagation environment, it is assumed that information about the placement and orientation
of the UE and BS relative to each other will have an impact on the decision process of the agent.
In addition to this, knowledge about the current codewords in use and histories of the mentioned
information might add some relevant information as well, as looking a bit into the past might
help the agent to make better decisions in the present.

All of the information mentioned above can easily be encoded separately and used in a state. In
the following list each piece is described briefly together with a short argument for its relevance.

• Codeword selection
This is simply the codeword most recently chosen, which might add valuable information
depending on how the actions are encoded.

• History of actions
A history of actions which can contain any number of previous actions, as previous actions
could have implication about how to act in the present.

• Orientation, and history hereof
The orientation of the UE, and a history hereof could be useful. If a drastic enough
direction change occur, assuming some consistency in the direction of strong paths, it
would indicate a change of codeword is needed.

• Distance, and history hereof
The distance between the BS and the UE. A change in distance could indicate a change
in behavior as the angle toward a BS changes at different rates at different distances.

• Location, and history hereof
Location would directly indicate the best direction to beamform in, assuming a LOS
scenario.

A state could be compromised of any combination of these, from having only the most recent
beam selection to the state being compromised of all of them. The length of the histories is also
variables which can be arbitrarily changed, which needs to be evaluated later. To find a good
state representation, tests with different combinations will be conducted and their performance
compared. More on these tests will be presented in Chapter 5.

4.3 The Reward

The reward is the metric dictating what the agent is trying to optimize and should be considered
carefully. The goal of the agent should be to choose a beamforming direction such that in the
long run a good connection is achieved. In the short term, the agent might take sub-optimal
actions if it has experienced that these actions increases the possibility of better possible actions
in the future. To discern between a good and a bad action, the logical solution is to let the
reward be high when an action results a good connection and low otherwise. This of course
leads to the question, what makes a connection "good". There are different metrics to describe
a wireless connection, and some of them are given below.

31



4.4. Design of RL algorithms Aalborg University

• Signal power

• SNR

• Error-rate

A simple measure of the quality of the codewords in use, is to look at the signal power of the
signal at the receiver and/or transmitter. If the signal power is high, one can usually assume
that the connection is better, although this might not always be the case. One might imagine a
situation where a system consists of multiple BSs, and the UE receives interfering signals from
the stations it is not currently connected to. However, in mmWave communication where range
is short and beamforming is used, this wouldn’t be very likely as the UE would need to cross
the beams of multiple BSs at once. Regardless, for this report this sort of noise is out of scope
and only thermal noise and the noise factor of the equipment is considered.

A way to differentiate between noisy signals and clearer signals is to instead use the Signal-to-
Noise Ratio (SNR). The SNR is slightly harder to estimate than the signal strength as the noise
also has to be estimated. Additionally, the SNR doesn’t say anything about total signal power
it could be possible the agent optimizes with respect to low noise rather than high signal.

Lastly, a somewhat more complex metric is the error-rate, a measure of how many packets were
received that contained errors. The error-rate is very different than the two other measures, as
this also depends on the communication protocol and if it has error correction. Depending on
how fast the RL algorithm runs this reward might not be immediately available. Additionally,
this method also needs the simulations to include the transfer of data packets between the BS
and the UE.
The error-rate is discarded as a measure of how high a reward the agent receives, as it is too
complicated to implement given the scope of this report. The SNR is discarded as well based
on the assumption that the noise added to each multipath component is from thermal noise and
thus the noise level is mostly independent of codeword choice.

Given this assumption one would predict that directions showing good SNR would also be the
directions that has high signal power. Thus, the reward is based on received signal power, with
high power giving a high reward. To further keep the problem simple, the reward signal is
chosen to be the received signal power directly, however other possibilities could be some linear
or non-linear functions of the signal power, which will be investigated further if needed.

4.4 Design of RL algorithms

4.4.1 Encoding of state parameters

As the state parameters consists mainly of information gained by observing the environment with
sensors, their values are inherently discrete, resulting in a finite state space. To represent the
information efficiently in the state, some thought has to go into how to encode it. Information
about the current codeword and a history of actions can be represented simply by numbering
each codeword and then using this number when referring to a codeword. In the following the
codeword selection parameter and its history consists of integers in the range [0−Nb− 1] with
Nb being the amount of codewords in the codebook.

Information about the orientation of the UE is more complex, as the reference orientation used
can be defined in many ways. The orientation may be relative to the initial orientation, the last
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known orientation, to some fixed coordinate system etc. If relative to a fixed coordinate system
the orientation would provide information about the absolute direction of the UE. If the agent
has obtained good state-value estimated, the absolute orientation likely contains information
about which direction is best to beamform in. In contrast a relative orientation would not
provide information about the beamforming direction, but the change in beamforming direction
which would be good. The absolute orientation have been chosen give the agent information
about it’s direction. The resolution denotes how many discrete values the orientation can take.
The directions each discrete orientation corresponds to constitute equally large parts of the
entire 360◦ spectrum, being numbered counter-clockwise. The first discrete orientation extend

from 0◦ up to
360◦

Ro
.

The information about distance can easily be encoded with some usual distance metric such
as meters, with the resolution being a tunable parameter. The location can be encoded using
GPS coordinates or by using some other coordinate system. An example of a coordinate system
could be a grid centered around the BS and the location of the UE can then be represented
in either rectangular or polar coordinates. In the following the location is represented by polar
coordinates, as then the distance parameter can be transformed to a location by adding the
corresponding angle to the UE. By controlling the resolution of both distance and angle, the
size of the state space can be made smaller or bigger.

4.4.2 Value approximation

A very central part of the design of the RL agent is choosing how the value of states or state-
action pairs is approximated. This often involves choosing between tabular methods and function
approximation together with a choice of update rule.

Tabular vs. Approximate Methods

As mentioned in Chapter 3 two factors are very important when deciding between tabular and
approximate methods, namely the size of the state-action space and the device intended to be
used for calculations. To better determine which method to use, the size of the state-action space
is investigated for different combinations of state-parameters and action encodings. The size of
the state-action is dependant on the size of the action-space which is different for the single and
multi agent case. The generated table will assume the action space of a single centralized agent,
to obtain the most extremes state-action space sizes. Any conclusions about what’s feasible will
also apply to the multi agent case.

In order to derive useful numbers it is assumed in the following calculations that the receiver
has eight antennas, and three layers, resulting in a total of 14 codewords. It is further assumed
that the transmitter has 32 antennas and four layers resulting 30 codewords. The number of
antennas are the minimum typical amounts given by Table 2.1. Additionally it is assumed that
for each state-action pair a double precision float can be used for the value estimate. It might
be possible to use less and keep the same performance, but as this is the default size used in
our Python simulations, this value is chosen as a baseline. Not all combinations of the state
parameters will be investigated due to time limitations, instead some combinations with low,
medium and high complexity are chosen. The states chosen are shown in Table 4.1.
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Table 4.1: Table of the state configurations used for size investigation.

Codeword
history

(Receiver)

Codeword
history

(Transmitter)

Orientation
history

Orientation
resolution

Distance
resolution

Angle
resolution

Low 1 0 0 0 0 8 32
Low 2 0 0 3 16 0 0
Low 2 2 2 0 0 0 0
Medium 1 0 0 2 8 4 8
Medium 2 2 2 0 0 4 8
Medium 3 2 2 2 8 0 0
High 1 2 2 2 8 4 8
High 2 3 3 2 8 4 8
High 3 3 3 2 8 8 32

The codeword history of size N is defined as the currently used codeword and the N−1 previously
used codewords. Calculating the total number of state-action pairs when using the one-of-all
action encoding is simple, as any codeword can be chosen in all states, meaning that simple
multiplication is sufficient. However, the adjacent action encoding does not allow for all actions
in all states, as descending to a lower layer is not possible at the lowest layer and similarly for
ascending at the topmost layer. For short histories of earlier actions, exact calculations are still
easy to make, but as the history increases, the combination space becomes hard to calculate and
it is easier to perform monte carlo simulations with an agent having an ϵ value of 1. By letting
the agent run for sufficiently many steps it is possible to directly observe how many different
state-action pairs are visited.

Table 4.2: Total state-action pairs and storage needed for value estimates for each state configuration.

One-of-all encoding Adjacent encoding
State

configuration
Total

state-action pairs Size in bytes Total
state-action pairs Size in bytes

Low 1 108 ·103 864 kB 9.22 ·103 73.8 kB
Low 2 1.72 ·106 13.8 MB 147 ·103 1.18 MB
Low 3 74.1 ·106 592 MB 189 ·103 1.51 MB
Medium 1 860 ·103 6.88 MB 73.7 ·103 590 kB
Medium 2 2.37 ·109 19.0 GB 6.05 ·106 48.4 MB
Medium 3 4.74 ·109 38.0 GB 12.1 ·106 96.8 MB
High 1 152 ·109 1.22 TB 387 ·106 3.10 GB
High 2 63.7 ·1012 510 TB 8.11 ·109 64.9 GB
High 3 510 ·1012 4.08 PB 64.9 ·109 519 GB

From Table 4.2 it follows that when using the one-of-all encoding the state-action space quickly
becomes too big for it to be implemented with tabular methods, as the needed storage size
exceeds tens and hundreds of terabytes. In this case it probably would be better to use function
approximation methods instead.

For the adjacent encoding, most of the configurations chosen here would probably be viable for a
single agent scenario, where storage is less of a concern. However, it is not easy to determine how
many of these state-action pairs are actually frequently visited and if their true value will change
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faster than they are visited. Likewise, it is also hard to determine how well each configuration of
state parameters will perform, based only on the size of the q-table. The easiest way to determine
this, is to run a simulation for some time and observe how the agent acts. For the multi agent
scenario the conclusion is largely the same, for the agent at the BS the conclusions for single agent
applies. An agent at the UE likely have more strict memory requirements, however the smaller
action space contributes to less stringent requirements. Again value approximation would be
more appropriate for the one-of-all encoding, and adjacent encoding is viable for investigation
with tabular methods.

4.4.3 Choosing an update rule

Both tabular and approximate methods require a choice of how to use experience to update value
estimates. There exists a large variety of different methods for this, as it is still currently an
area of research. To keep the design process simple, it has been chosen to only focus the analysis
on whether to use on-policy or off-policy methods. These categories encompass many of the
current popular methods and present some relatable high-level differences, which is convenient
for comparisons.

As mentioned in Chapter 3, the on-policy methods learn a sub-optimal policy that accounts
for the exploration that the agent performs due to a policy like ϵ-greedy. Thus, in situations
where exploratory actions during learning might have expensive consequences, like a self-driving
car choosing to run a red light, it is preferable to use on-policy methods. However, if the
consequences of exploratory moves are not that important it might be better to use an off-policy
method, as it learns the optimal policy directly.

As the actions in the framework presented so far consists of choosing a pair of codewords, the
consequences for taking an exploratory step are not very expensive. At worst the pair chosen
results in a loss of connection until the next time step, but it might also just give a slightly worse
connection. As the time steps between actions are in the order of milliseconds, a connection loss
for a few time steps is assumed to be acceptable.

Additionally, the consequences of choosing a bad beam pair do not differ substantially between
states. Therefore it is difficult to argue that a conservative policy from an on-policy method
results in much better online performance, than an off-policy method when assuming the same
ϵ-soft exploration.

Thus. it is not possible to discard one method based only on how the problem is formulated.
When using tabular methods, the choice of update rule is often not a complicated parameter
to change in the implementation of the agent, and different methods can conveniently be
interchanged and their performance compared directly. The same cannot necessarily be said
for approximate methods, especially when using deep neural networks (DNN), as the update
rules are somewhat more intertwined with the design of the neural network. However, even for
DNNs both on-policy and off-policy methods exists, with Deep Q-learning being one of the most
popular off-policy methods.

4.4.4 Hyper-parameters

Another part of implementing RL is finding the right values for the hyper-parameters of the
algorithms. When using TD-methods the core hyper-parameters are the step-size parameter,α,
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dictating how much the current value estimate is updated towards the target at each step, and
the discounting factor, γ, which determines how strongly the agents takes future rewards into
account when defining the target.

Another important hyper-parameter is the exploration factor, ϵ, if an ϵ-soft algorithm is used
to ensure exploration by the agent. In stationary environments it is generally advised that the
step-size and the exploration factor are decreased over time to ensure convergence to an optimal
policy. A simple way of implementing this is to set both parameters to 1

t or some variation of
this.

However, in non-stationary environments it is often best to at least keep ϵ from decaying
indefinitely to ensure that the agent always takes some exploratory moves once in a while.

This gives rise to the introduction of methods that decreases and increases the value of ϵ

dynamically over time, based on different metrics as seen in [25] or [26].

These methods however introduce hyper-parameters of their own, adding complexity to the
algorithms.

Calculating optimal values for hyper-parameters is not a feasible task, as they are very problem
specific, and thus usually a few different values are evaluated empirically and then compared.
Based on initial intuition about the problem, it may be possible to determine viable ranges
before testing.

To gain insight into how different choices of hyper-parameters impact the performance of the
agent, parameter sweeps are performed for the step-size parameter, the discounting factor and
exploration factor. Additionally some experiments are performed with decaying and varying
exploration factors. These experiments and their results are described further in Chapter 5 and
the accompanying test journals in appendices.

4.5 Summary

Based on the analysis and discussion in this chapter it has been decided that tabular methods
may be viable solution, given an hierarchical codebook and an adjacent-only encoding on the
actions. Additionally, a reward signal depending directly on the received signal power is deemed
sufficient under the constraint of keeping the calculations simple. However, other decisions about
the agent design, like state space, update rule, values of hyper-parameters and whether to use a
centralized or distributed approach are not easily made. Regarding the state space, some possible
state parameters have been uncovered by analysing the environment, however how to combine
them to obtain the best performance can best be determined through tests. Likewise for the
hyper-parameters, by using intuition about the problem it is possible to formulate likely ranges
for some of the parameters, but their exact influence have to be found through experiments.

Running such tests, and making the final design decisions, is the subject of the next chapter,
where the mentioned parameters are going to be tuned.
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As described in Chapter 4, the design of an RL algorithm involves many different choices, from
defining the environment and which parts of it are observable and relevant for the agent, to
deciding update rules and hyper-parameters. Some of the choices can be made based solely on
the problem at hand, as some possibilities may be infeasible, but for others it is only possible to
define some broad constraints or hypothesises.

In this chapter a sequence of experiments and their results will be presented, with the goal of
tuning the state space and the hyper-parameters. First the state space is explored through sweeps
over different combinations of state parameters, with fixed choices for hyper-parameters, with
the goal of finding the best combination. Then, using this combination, the hyper-parameters
are swept in turn. This procedure is performed for both a centralized and a distributed
implementation, in order to compare the two methods. In an urban scenario, with a dense
network of transmitters, the probability of the UE being close enough to at least one of the
transmitters to have LOS is very high. Thus the state and hyper-parameters are tuned to such
a scenario. How well the agent then performs in an NLOS scenario will we investigated in the
next chapter among other things.

5.1 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R
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Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment
• Median misalignment
• 1st quartile misalignment
• 3rd quartile misalignment

5.2 Test setup

For all tests in this chapter, the update rule SARSA is used, based on an arbitrary choice
between it and Q-learning, under the hypothesis that the results from tuning the different
parameters should generalize across the two methods due to their similarity. The codebooks
used are a 3 layer and a 4 layer hierarchical codebook for the UE and BS respectively, and the
actions are encoded with the adjacent-actions-only encoding. The environment is based on the
"3GPP_38.901_UMi_LOS" scenario with tracks based on pedestrian movement.

Table 5.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth [27]
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

Further elaborations about how the simulations were designed and performed can be found in
the accompanying test journals in Appendices A to D. However, a note should be added to
the methodology used when tuning hyper-parameters in this chapter. When tuning the hyper-
parameters, first a training period is undergone, followed by validation period. The training and
validation periods both follow the general setup described in Appendices A to D, except during
the validation period, the tracks are chosen from a validation data set. In the training period
the hyper-parameters take on a fixed set of default values regardless of the test. Then in the
validation period the hyper-parameters switch to the values to be tested. This extra step was
intended to ensure the parameters are tested on similar agents, and to investigate if there is
overfitting, which is tested by having the environment in the validation period be independent
from the one in the training period.

All the results from hyper-parameter tuning in this chapter are from tests following this
methodology. However, after the tests were performed, further reflection on the method found

38



5.3. Single centralized agent Aalborg University

that it does not make a lot of sense to do it this way, if the intention is to investigate overfitting.
Further comments about the effect of this mistake and a discussion about what should have
been done instead can be found in Chapter 7.

5.3 Single centralized agent

In this section a single centralized agent will be tuned, where the tuning parameters are the state
space, and a collection of hyper-parameters. The state space will be tuned first as it’s expected to
have the largest impact on performance. It’s also expected that a given set of hyper-parameters
will have the same impact independent of the state parameters. This means the impact of their
specific values can be ignored during the state space tuning, assuming sensible values.

5.3.1 State space

The state has been limited to a number of, thought to be useful, pieces of information as
described in Section 4.2.1. This encoding was further solidified in Section 4.4.2, which means
the state encoding consists of six values. They are given below with corresponding notation.

Nbr : Codeword history for UE
Nbt : Codeword history for BS
No : Orientation history
Ro : Orientation resolution
Rd : Distance resolution
Ra : Angle resolution

Testing all possible combinations of these state parameters is infeasible, so certain assumptions
and simplifications will be made to narrow the search space. First the state parameters are
grouped into three groups, whose values will be tuned in turn, as these groups are deemed
to add independent information to the state space. The parameters are grouped as follows;
codeword information: [Nbr, Nbt], orientation information: [No, Ro] and location information:
[Rd, Ra]. The last two groups is further denoted commonly as context information.

First the codeword histories will be tuned where, to simplify further, the values for the histories
of the UE and BS will be equal. Then the parameters for the context information will be tuned
in turn, however these tests will also include the codeword history found to be best from the
first test, as this information is deemed important enough to keep even when tuning the context
information.

In order to run the tests, some values for the hyper-parameters needs to be chosen. The initial
values have been chosen based on some basic heuristics, as they will be tuned properly later.
The exploration factor is chosen to be 5% or 1 out of 20 steps is an exploration step, based
on preliminary tests, where 0.05 lead to promising results. The step size is chosen to be 0.05

which, according to [22, p. 222], can be thought of as that the action-value estimate converges in
approximately 20 steps, assuming the target is unchanged. For the discounting factor no good
heuristic could be found, and a value of 0.7 was chosen at random. The hyper-parameters and
the values used for tuning the state space are shown in Table 5.2.
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Table 5.2: Initial hyper-parameter values for state space tuning.

Parameter Value
Exploration rate, ϵ 0.05

Step size, α 0.05

Discounting factor, γ 0.7

All the tests performed can be found in Appendix A, with only a subset of the results presented
and analyzed here.

Tuning of codeword information

For tuning the amount of codeword history to include in the state, three different choices were
selected and their performance compared. From Section 4.4.2 it was found that having a history
of 3 codewords in the state would put the state space at the limit of what would be viable to
store in a table. Thus having any history beyond this would not be a viable solution. Similarly,
the trivial state with no history at all would not be a viable solution as well. Thus the tests
are with a history of one, two and three codewords respectively, and the results from the test is
shown in Table 5.3 and Fig. 5.1.

Table 5.3: Table with misalignment measurements from tests with a single centralized agent with
different length codeword history. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
History of 1 codeword 30.2 dB 30.1 dB 22.3 dB 37.8 dB

History of 2 codewords 24.9 dB 24.9 dB 16.0 dB 33.4 dB

History of 3 codewords 28.4 dB 28.3 dB 20.6 dB 36.1 dB
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Figure 5.1: Average absolute misalignment from tests with a single centralized agent having only
codeword histories for receiver and transmitter.Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra
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It’s clear the best performance is from the state with a history of 2 codewords. The state with
only the current codewords most likely contains not enough information to be useful, as its
performance seems to be the same for all episodes. The state with a history of 3 codewords
seems to become better with more episodes, however with the rate visible from Fig. 5.1 it will
take a long time before it reaches the performance of having only a history of 2 codewords. Thus
a history of 2 codewords is chosen as the value for this state parameter.

Tuning of orientation information

Next the amount of orientation information was tuned. The orientation information is controlled
by two parameters; the amount of orientation history and the resolution of the orientation. The
sweeps for these parameters covered all combinations of four different values for each parameter.
The sweeps were intended to be very broad to investigate the impact over a large range of values.
The orientation history was given the range [1, 2, 3, 4] and the resolution was given the range
[4, 8, 16, 32]. The resolution range was made to correspond loosely with the codebook, where
each layer is also a multiple of 2. A collection of the best results from the test is shown in
Table 5.4 and Fig. 5.2, with the result from the state without orientation information added as
a reference.

Table 5.4: Table with misalignment measurements of a single centralized agent with different orientation
information. Results are from the last 1000 episodes in each test.

Test config. Absolute Misalignment
Nbr-Nbt-No-Ro-Rd-Ra Average Median 1st quartile 3rd quartile
Reference, no context information 24.9 dB 24.9 dB 16.0 dB 33.4 dB

2 - 2 - 1 - 8 - 0 - 0 24.5 dB 24.7 dB 14.9 dB 33.7 dB

2 - 2 - 2 - 8 - 0 - 0 25.1 dB 25.2 dB 15.2 dB 34.5 dB

2 - 2 - 3 - 16 - 0 - 0 25.1 dB 25.5 dB 15.3 dB 34.5 dB

2 - 2 - 4 - 16 - 0 - 0 24.7 dB 25.0 dB 15.1 dB 33.9 dB
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Figure 5.2: Average absolute misalignment from tests with a single centralized agent having different
orientation information. Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra
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In general it seems like adding orientation information to the state improves the performance,
however not by very much. Even so, the best option seems to be having a resolution of 8 with
a history of either 1 or 2. The former has worse performance to begin with, but becomes better
towards the end. The latter has a much higher variability in performance. Because of this
inconsistency and the better performance in the last steps, a history of 1 and resolution of 8 is
assessed to be the best.

Tuning of location information

Finally the amount of location information was tuned. The location information is controlled by
two parameters as well; the resolution of the distance and the resolution of the angle. As with
the orientation information, the sweeps covered a broad range of combinations of different values
for each parameter. The distance resolution was given the range [2, 4, 8, 16, 32] and the angle
resolution the range [4, 8, 16, 32] again based on how the codebook is implemented. A collection
of the best results from the test is shown in Table 5.5 and Fig. 5.3 , with the result from the
state without location information added as a reference.

Table 5.5: Table with misalignment measurements of a single centralized agent with different location
information. Results are from the last 1000 episodes in each test.

Test config. Absolute Misalignment
Nbr-Nbt-No-Ro-Rd-Ra Average Median 1st quartile 3rd quartile
Reference, no context information 24.9 dB 24.9 dB 16.0 dB 33.4 dB

2 - 2 - 0 - 0 - 2 - 32 14.2 dB 12.4 dB 4.4 dB 21.3 dB

2 - 2 - 0 - 0 - 4 - 32 14.7 dB 13.1 dB 5.1 dB 21.9 dB

2 - 2 - 0 - 0 - 8 - 32 13.9 dB 11.7 dB 4.2 dB 21.1 dB

2 - 2 - 0 - 0 - 16 - 32 13.1 dB 10.4 dB 3.6 dB 20.5 dB

2 - 2 - 0 - 0 - 32 - 32 11.9 dB 8.5 dB 3.0 dB 18.5 dB
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Figure 5.3: Average absolute misalignment from tests with a single centralized agent having different
location information. Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra
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The performance improves drastically by adding the relative location, with an improvement of
around 10 to 14 dB. The improvement in performance is not unexpected as the location would
directly indicate in which direction the BS should beamform given the line-of-sight scenario.
The state with the highest distance and angle resolution is the best here, although the difference
from changing the distance resolution is very little.

Combining the state parameters

Having tuned the state parameters separately, a final comparison is made with combinations of
the best results from earlier. From the best results from tuning of location information, both the
state with the lowest and the highest distance resolution has been chosen for this comparison, as
their difference in performance is small, but their state space size very different. Thus hopefully
the smaller state space will yield good results when combined with the orientation information.

During the tests, the simulation with the combination of the best results from all previous tests
repeatedly crashed because the machine ran out of memory and thus it is not in the results. It
is assumed that the table containing the action-values became too big to keep in memory. Thus
only a single combined state is presented here. The results of combining the state parameters,
and the results from the earlier tests are shown in Table 5.6 and Fig. 5.4, with the result from
the state without context information added as a reference.

Table 5.6: Table with misalignment measurements of a single centralized agent with different
combinations of state parameters. Results are from the last 1000 episodes in each test.

Test config. Absolute Misalignment
Nbr-Nbt-No-Ro-Rd-Ra Average Median 1st quartile 3rd quartile
Reference, no context information 24.9 dB 24.9 dB 16.0 dB 33.4 dB

2 - 2 - 0 - 0 - 2 - 32 14.2 dB 12.4 dB 4.4 dB 21.3 dB

2 - 2 - 0 - 0 - 32 - 32 11.9 dB 8.5 dB 3.0 dB 18.5 dB

2 - 2 - 1 - 8 - 0 - 0 24.5 dB 24.7 dB 14.9 dB 33.7 dB

2 - 2 - 1 - 8 - 2 - 32 11.9 dB 8.6 dB 2.9 dB 18.7 dB

(0, 1000)
(1000, 2000)

(2000, 3000)
(3000, 4000)

(4000, 5000)
(5000, 6000)

(6000, 7000)
(7000, 8000)

(8000, 9000)

(9000, 10000)

Episode range [-,-]

12

14

16

18

20

22

24

26

Av
er

ag
e 

ab
so

lu
te

 m
isa

lig
nm

en
t [

dB
]

Reference
2-2-0-0-2-32
2-2-0-0-32-32
2-2-1-8-0-0
2-2-1-8-2-32

Figure 5.4: Average absolute misalignment from tests with a single centralized agent having different
combined states. Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra
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While the orientation only provided marginal performance improvement by itself, as seen by
the green curve, it results in a larger improvement when combined with the relative location.
This is expected as the optimal beamforming direction cannot be derived from the orientation
itself, but can be with orientation and location. When comparing the combined state, with S =

2-2-0-0-32-32 which has no orientation, they have almost identical performance. This does not
mean they are equal however, when considering the size of the state space it can be seen the
size of context information part of the former is half that of the latter as, 32 · 32 = 1024 and
1 · 8 · 2 · 32 = 512. The codeword history affects the state space size equally in both and thus
S = 2-2-1-8-2-32 is smaller.

The best performing state of the ones tested is S = 2-2-1-8-2-32 as its average misalignment is
among the best while being of reasonable size.

5.3.2 Hyper-parameters

The hyper-parameters, outlined in Section 4.4.4, are the exploration rate ϵ, step size α and
discounting factor γ. As with the state parameters, testing all combinations is infeasible and
thus certain assumptions and simplifications will be made to narrow the search space. The hyper
parameters will only be tested for a single state, S = 2-2-1-8-2-32, which was found to be the
best.

First the discounting factor is tuned, followed by the step size and finally the exploration rate.
Initially all hyper-parameters start at the values found in Table 5.2. When a value has been
tuned, this value will carry on to the tests after it, instead of the default value. For the
discounting factor and the step size, only constant values will be tested, but for the exploration
rate a few different methods will be tested. In addition to constant values, some methods where
the exploration rate changes over time are tried as well. One method is to let ϵ decay over time,
which is a simple and popular method often used in practice for RL. Another method is to adapt
ϵ continuously, using the algorithm described in [25].

All the tests performed can be found in Appendix C, where a subset of the results will be
presented and analyzed here. In the following presentation, the reference results shown in black
are from the test with S = 2-2-1-8-2-32 and the initial hyper-parameters.

Tuning the discounting factor

For tuning the discounting factor the range of values was chosen to be broad, as there was
no good prior knowledge to narrow the choice. The discounting factor was given the range
[0.25, 0.50, 0.70, 0.95], with 0.7 being the reference from the state tuning tests. The results from
the test are shown in Table 5.7 and Fig. 5.5.

Table 5.7: Table with misalignment measurements of a single centralized agent with different discounting
factors. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
γ = 0.50 11.8 dB 7.2 dB 1.9 dB 19.3 dB

γ = 0.70 10.4 dB 6.5 dB 1.4 dB 16.5 dB

γ = 0.25 15.6 dB 12.5 dB 2.8 dB 26.4 dB

γ = 0.95 10.8 dB 7.8 dB 2.5 dB 17.0 dB
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Figure 5.5: Average absolute misalignment from tests with a single centralized agent having different
discounting factors.Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra & ϵ α γ

The test shows that the value of the discounting factor has a large impact on the performance.
The discounting factor should be large rather than small, however not too large. The initial
value of 0.7 gave the best performance, and most likely even better performance can be seen
by fine-tuning further around the value. However, such fine-tuning is out of the scope for the
current tuning process and thus the following tests are performed with γ = 0.70

Tuning the step size

Next the step size parameter was tuned. Based on the convergence interpretation from [22,
p. 222], the step size was varied such that convergence would be expected in 3 steps to 200
steps, with the following exact values used: [13 ,

1
6.66 ,

1
20 ,

1
100 ,

1
200 ,]. A collection of the results from

the test is shown in Table 5.8 and Fig. 5.6.

Table 5.8: Table with misalignment measurements of a single centralized agent with different step sizes.
Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
α = 0.01 9.9 dB 5.8 dB 1.7 dB 15.5 dB

α = 0.005 10.9 dB 7.3 dB 2.7 dB 17.2 dB

Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB

α = 0.15 10.6 dB 6.3 dB 0.9 dB 17.4 dB

α = 0.33 11.5 dB 7.8 dB 1.9 dB 18.4 dB
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Figure 5.6: Average absolute misalignment from tests with a single centralized agent having different
step sizes.Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra & ϵ α γ

This test indicates that the step size does not have a great impact on performance. However,
smaller values does seem to generally perform better, with the exception of the smallest of 0.005.
This might not be surprising, as with smaller values one would expect convergence to be slower
and thus the smallest value might not have converged yet in the 10000 episodes used in the test.
Regardless, the performance of the different values does not differ significantly, which is fairly
surprising as given a convergence interpretation of the parameter and the broad range of values
represented. Possibly this is because the environment is not stationary, making the action-values
moving targets which makes convergence impossible.

From this test, a step size of 0.01 is chosen for the next tests.

Tuning the exploration rate

Finally the exploration rate was tuned. As mentioned earlier, the exploration rate has been
implemented with three different methods, to investigate if an exploration rate that changes
over time is an advantage compared to keeping it constant.

Table 5.9: Values used for tuning each exploration rate method.

Method under test Value 1 Value 2 Value 3 Value 4
Constant 0.005 0.01 0.05 0.1
Decaying 300 600 900 1200
Adaptive 0.1 · 10−3 3.0 · 10−3 15.0 · 10−3 20.0 · 10−3

For the constant values, the heuristic for choosing values was a simple one; how often should
the agent make an exploratory move. From early experiments it was determined that a small
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value, ϵ < 0.1, would probably be best. The values for the tests with constant exploration rate
can be found in Table 5.9.

For the decaying exploration rate, the ϵ-value is initiated to 1 at the beginning of each episode
and then decays exponentially. To control the rate of the decay, a weight factor, wd, is added in
the exponent as shown in (5.1).

ϵ(t) = e

(
− t

wd

)
(5.1)

The values of the weight factor can be found in Table 5.9.

For the adaptive exploration rate, a separate ϵ-value is kept for each state. The value is initiated
with ϵ(s)0 = 1 and then updated after each visit to the state using:

ϵ(s)t+1 = δ · ϵ(s)t + (δ − 1) · ϵadj (5.2)

where 0 < δ < 1 is a constant and ϵadj is a value calculated based on the TD-error as given
below:

ϵadj =

1− exp

(
−|α · TD-error|

σ

)
1 + exp

(
−|α · TD-error|

σ

) (5.3)

where α is the step size and σ is a positive constant called the inverse sensitivity, adjusting how
sensitive ϵadj is to changes in the TD-error. Some consideration went into choosing the range of
the σ parameter, however after a few tests, it was found that by using the initial reasoning the
performance was not very good. The initial considerations can be found in the included work
sheets in Appendix H and in short the values from this reasoning proved to be too small. A
range of tests with larger values were conducted afterwards, and it is the results from these tests
that are shown in Appendix C. The values for σ can be found in Table 5.9.

A collection of the best result for each method used is shown in Table 5.10 and Fig. 5.7.

Table 5.10: Table with misalignment measurements of a single centralized agent with different epsilon
methods. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Adaptive 8.6 dB 5.1 dB 2.2 dB 12.3 dB

Constant 9.3 dB 5.9 dB 2.3 dB 13.7 dB

Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB

Decaying 10.9 dB 7.0 dB 3.2 dB 16.3 dB
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Figure 5.7: Average absolute misalignment from the best tests with a single centralized agent having
different epsilon methods.Legend values indicate: Nbr-Nbt-No-Ro-Rd-Ra & ϵ α γ σ · 103

It is evident that the decaying ϵ is unfit for the problem, as the performance gets worse than
the reference. This is expected as the environment is dynamic, and when ϵ reaches a low
enough value no more exploration steps will be taken. This will likely lead to outdated value
estimates. The adaptive ϵ method is a bit slower to learn, most likely because of the initial
value of 1. The constant and adaptive ϵ methods then perform similarly until the 5000-6000
episode range, where the constant method suddenly stops improving, while the adaptive method
keeps improving. While it’s hard to conclude if this is because of the inherent differences in the
methods or simply a result of the random nature of the tests, it can be concluded that an
adaptive method is either better than or equal to the constant method.

As the adaptive method should be more robust against a dynamic environment, this method is
preferred over other two methods. A collection of the tuned hyper-parameter values is shown in
Table 5.11.

Table 5.11: Tuned hyper-parameter values for single agent implementation.

Parameter Value
Inverse sensitivity, σ 15.0 · 10−3

Step size, α 0.01

Discounting factor, γ 0.7

5.4 Distributed agents

In addition to the centralized single agent implementation, a distributed multi agent
implementation is developed and tuned as well. For the multi agent implementation a very simple
setup is made, where two agents almost identical to the one in the centralized implementation
are placed in the same environment, such that each agent also becomes part of the others
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environment. The only difference between them is their action spaces, with each agent
choosing codewords from only a single codebook, belonging to the transmitter and the receiver
respectively. The same state- and hyper-parameters will be used as with the single agent case,
with the same encodings. As with single agent case, the state space will be tuned first followed
by the hyper-parameters. As the proposed multi agent implementation is very similar to the
single agent implementation, a complete walk-through of the tuning process is divided and put
into Appendices B and D, and only brief comments about the results are presented here.

5.4.1 State space

The state notation is consistent across both single and multi agent, the difference being that in
multi agent each agent posses their own state. The multi agent case is different than the single
agent in the sense that communication is implicitly assumed in the single agent case. A set of
states for the cases with and without communication was therefore be identified and tested.

Tuning of codeword information

At first a set of states consisting of only the codeword history for each agents own actions were
tested, followed by a test where the codeword history of the other terminal was introduced to
each agent, as two cases for differing amount of information about the two agents. These tests
showed that when the task of choosing codewords is separated into two agents, it is best for each
agent to only have a codeword history of its own actions. In fact performance gets much worse
when adding the other agents actions to the state, as seen in Table 5.12 and Fig. 5.8.

Table 5.12: Table with misalignment measurements from tests with two agents with and without
communication of codeword information between agents. Results are from the last 1000 episodes in
each test.

Test config. Absolute Misalignment
Average Median 1st quartile 3rd quartile

Without communication 21.3 dB 20.8 dB 10.7 dB 30.4 dB

With communication 26.2 dB 26.3 dB 18.1 dB 34.4 dB
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Figure 5.8: Average absolute misalignment from tests with two agents with and without communication
of codeword information between agents. Legend values indicate: Nbr-Nbt-Nr-Ro-Rd-Ra
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This might be a sign that the information added by including the actions of both agents in each
state, does not outweigh the increase in state space which makes it harder for the agents to keep
accurate action-value estimates.

Tuning of context information w. partial and full communication

While adding communication about codewords did not improve performance, the same
might not be the case with context information. Thus, it was investigated what happens
when communication is gradually added regarding context information. First only partial
communication is added, by giving both agents access to the relative position of the UE and
keeping the orientation information about the UE only available to the UE.

From this case it was determined that the relative location by itself provides a considerable
improvement in performance. Furthermore, adding the orientation information improved
performance even more, even to a higher degree than in the single agent case. This can be
caused by the fact that this information is largely useless for the BS, as the best direction to
beamform in a LOS scenario is always the direction pointing at UE, regardless of the orientation
of the UE. However, for the UE the best direction to beamform depends very much on its current
orientation. Thus it makes sense that when the two actions are decentralized the addition of
orientation information only where it is useful has a large effect.

Following these tests, the case with full communication was investigated, where both agents has
access to all information, as in the centralized case. Here the results showed that adding the
orientation information to the state at the BS, produces slightly worse results than the state
without, when all other state parameters are equal. This supports the logic presented earlier,
that the BS has little to gain from knowing the orientation of the UE.

Thus in summary, for the multi agent case the best performance is found when there is partial
communication between the agents, with location information being available to both agents.
The misalignment plot for this state is illustrated in Fig. 5.9.
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Figure 5.9: Average absolute misalignment from the best performing combination of state parameters
in the multi agent case.Legend values indicate: Nbr-Nbt-Nr-Ro-Rd-Ra for UE & BS
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5.4.2 Hyper-parameters

As before, a subset of hyper parameters will be tested independently in the same order, first
discounting factor, then step size and finally exploration factor. The test methodology remains
the same, and the state pair used is Sr =′ 2− 0− 1− 8− 2− 32′ & St =′ 0− 2− 0− 0− 2− 32′,
which was found to be best in the previous section.

To keep the amount of tests manageable, only tests where the hyper-parameters are the same for
both agents are performed. This might not be the best method, as the two agents might benefit
from having different hyper-parameter values, however it is assumed that in a broad sense the
best values will be similar. During training, the hyper-parameters are the same as the initial
values found in Table 5.2. All the tests performed can be found in Appendix D, and because
of the similarity with the single agent case only some brief comments will be presented here,
together with a summary of which values were found to be the best.

Assuming that the multi agent case is very similar to the single agent case, the ranges chosen
for the hyper-parameters are similar as well, only discarding some of the extreme values that
clearly gave bad performance. For the discounting factor, the best value ended up being smaller
than for the single agent. However, by fine-tuning the value for the single agent, a smaller value
might prove better there as well. Additionally the results show that varying the discounting
factor also has a large impact on performance in the multi agent case. Smaller values being
better in the multi agent case might be because in the multi agent case, the action of each agent
is uncoordinated with the other agent. Thus it might be better for an agent to focus more on its
own immediate reward instead of looking to far ahead, as its action-value approximations only
account for the expected return when it follows its own policy.

Table 5.13: Tuned hyper-parameter values for multi agent implementation.

Parameter Value
Inverse sensitivity, σ 10.0 · 10−3

Step size, α 0.01

Discounting factor, γ 0.6

For the step size, the overall trend in the results were very similar to the single agent case, with
not much difference in performance for the different values. The same value ended up being best
in both cases, but this might just be random as the margin to the second best is very small.
Finally, for the exploration rate the trend in the results were again almost the same as for the
single agent case. The decaying ϵ method is clearly worst and a constant value is very similar
to an adaptive one. Based on the same logic as before, the adaptive method is preferred over
the constant value as it is probably more robust to dynamic environments.

5.5 Summary

Through this chapter two different RL implementations have been tuned, with the intention of
getting a set of configurations and additionally an intuition about the influence of difference
parameters in an RL algorithm together with a deeper knowledge of the problem at large.

Based on the results from all the conducted tests in this chapter, it is possible to make some
initial conclusions. For the state parameters it has been proven that in a LOS scenario, context
information about the position of the UE relative to the BS is very informative for the RL agent.
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Something similar is also true of the orientation, however this information is likely only valuable
for determining the best codeword selection at the UE.

For the hyper-parameters results show that especially the discounting factor has a significant
impact on the performance, with the best value being somewhere above 0.5 and below 0.8.
This indicates, that in the specific scenario used in this chapter, an agent benefits from being
farsighted only to some degree. The step size proved to be not as sensitive as the discounting
factor, with the best performance being attained with a step size around 0.05, and very large
values resulting in worse performance. Finally, it was found that an adaptive exploration rate
performs just as well or better than a constant rate.

Table 5.14: Tuned hyper-parameter values for both the single and the multi agent implementations.

Parameter Single agent Multi agent
Inverse sensitivity, σ 15.0 · 10−3 10.0 · 10−3

Step size, α 0.01 0.01

Discounting factor, γ 0.7 0.6

The final settings for both implementations are collected in Table 5.14, and a comparison of
their performance is illustrated in Table 5.15 and Figures 5.10 and 5.11.

The two implementations have similar average misalignment in the end, however the multi agent
implementation has almost no learning curve compared to the single agent implementation. This
can likely be contributed to the much larger state space of the single agent implementation.

In addition to the average misalignment plots, two ECDF plots are included here, to give a more
nuanced picture of the performance of the two implementations.

Table 5.15: Table of different misalignment measurements from the tuned agents for both
implementations. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Multi agent implementation 7.8 dB 4.3 dB 0.4 dB 11.8 dB

Single agent implementation 8.6 dB 5.1 dB 2.2 dB 12.3 dB
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Figure 5.10: Average absolute misalignment from the tuned agents for both implementations.

As mentioned during the presentation of the test setup, the methodology used when tuning the
hyper-parameters is somewhat flawed, however the results are kept and are used in the next
chapter, as time did not allow for re-running all the simulations. In the next chapter, it will
be investigated how well the tuned parameters found in this chapter performs when the update
rule or the environment is changed significantly.

(a) After training, before validation (b) After validation

Figure 5.11: ECDF plots for the misalignment of the tuned agents. The plots show the ECDF after the
initial 10000 episodes of training, (a) and again after further 10000 episodes during validation. Results
are from the last 1000 episodes in each test
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Evaluation of tuned agent 6
In Chapter 5 a set of tuned settings were found for both a single centralized agent and a multi
agent RL implementation. However, as the tuning was based on a single choice of update rule
and fixed environment settings, there is an increased risk that the values are only valid in this
case. To investigate how well the tuned settings generalize, this chapter is devoted to tests where
the agent has other update rules and tests in different environments. The results from these
tests are of course compared with the previous results, but in addition to this an entirely new
algorithm is introduced to act as a reference for non-ML performance. Additionally, the actions
taken by the agent are investigated in an attempt to describe qualitatively what behaviour the
agent learns in different scenarios.

6.1 Test setup

For all tests in this chapter the codebooks used are a 3 layer and a 4 layer hierarchical codebook
for the UE and BS respectively, and the actions are encoded with the adjacent-actions-only
encoding.

Table 6.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth [27]
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

Further elaborations about how the simulations were designed and performed can be found in
the accompanying test journals in Appendices E to G.

6.2 Non-ML reference algorithm

To get an idea of how well the developed RL algorithms perform, it is interesting to compare
them with a heuristic algorithm, where the behavior is determined by a human hand. A simple
algorithm without learning, is one where actions instead are based on the last received signal
power and a threshold value. At each time step the received signal power is compared with
a fixed threshold value, and if the received power is lower than the threshold, a new pair of
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codewords are chosen at random, otherwise the current codeword pair is used again. To make
the comparison more even, the adjacent-actions-only encoding for actions is used for the heuristic
algorithm as well. The algorithm is illustrated in Algorithm 3.

Algorithm 3: Heuristic beam alignment algorithm
Input: Threshold > 0, action space A
for each episode do

Choose A from A at random;
for each step in episode do

Take action A, observe R

if R < Threshold then
Choose A′ from A at random;

else
A′ ← A;

end
A← A′

end
Until episode is done

end

A quick tuning of the threshold value found that a value of 0.0002 gives the best average
misalignment in a pedestrian LOS scenario.

6.3 Update rule

The update rules that will be tested are Sarsa, Q-learning, which were discussed in Section 3.2.1,
and a simple update rule that has the immediate reward as target. The simple update rule
approximates the action-value as the average immediate reward received when taking that action
in that state, and is implemented by modifying Sarsa with a discounting faction of γ = 0. The
three updates will be compared with the simple heuristic algorithm to gauge whether this RL
solution is worthwhile. The update rules will be judged based on their performance in terms of
misalignment measurements as in Chapter 5. They will further be analyzed based on the actions
the agent take, with a certain update rule, and how often each specific beam was visited.

6.3.1 Single centralized agent

Table 6.2: Table of different misalignment measurements of single centralized agents with different
update rules. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Q-learning 10.1 dB 7.1 dB 3.3 dB 14.7 dB

Sarsa 11.3 dB 7.7 dB 2.6 dB 17.6 dB

Simple 12.6 dB 6.9 dB 1.8 dB 21.3 dB
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Figure 6.1: Average absolute misalignment of single centralized agents with different update rules.

In Figure 6.1 graphs for three different update rules are plotted. Sarsa, which was used during
state and hyper-parameter tuning, is plotted in black. The heuristic algorithm performs well
despite it’s simplicity, however some of this performance can likely be assigned to the adjacent-
action-only encoding. If the received signal power at a given beam-pair goes below the threshold,
it is likely that a beam-pair consisting of codewords adjacent to the first pair has high power
as well. The Sarsa algorithm gets outperformed by the heuristic by around 2 dB which is
interesting, as the scenario is LOS and should be fairly simple. The size of the value space, and
the dynamic environment might be to blame for this. Q-learning outperforms Sarsa slightly, and
their performance being close isn’t unexpected as when ϵ is small their policies should approach
each other. While the actual ϵ-values are adapting all the time, they should become smaller
as approximations get better. The worst of them all is the simple update rule, indicating that
prioritizing only the immediate reward is not a good strategy.

Figure 6.2: Histogram of actions for the UE for
single centralized agents with different update rules.

Figure 6.3: Histogram of codewords chosen for
the UE for single centralized agents with different
update rules
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Figure 6.4: Histogram of codewords chosen for the BS for single centralized agents with different update
rules

When inspecting the actions, given in Fig. 6.2, as expected the heuristic algorithms chooses the
stay most often. Meanwhile the behavior for the three update rules are similar. From Fig. 6.3
and Fig. 6.4 it can be seen that the heuristic algorithm has the greatest propensity to stay in
the broader beams, and lower layers of the codebook. A likely explanation is that, when the UE
is close to the BS and a broad beam has sufficient power, the heuristic algorithm will stick with
it, even more so because of its large coverage. For the UE and to a lesser extent for the BS all
update rules tend to gravitate towards beams which lie at the edge of layers in the codebook,
see Fig. 4.1. This is not unexpected as these beams, while having broader coverage still have
similar gain compared to the other beams in the same layer, making them generally better to
choose. This is the case even more so for Sarsa, which is sensible as it’s an update which values
states that are close to low value state less, unlike Q-learning. The beam choices of Q-learning
and simple being more similar than Q-learning and Sarsa is peculiar as the two latter are more
similar.
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6.3.2 Distributed agents

Table 6.3: Table of different misalignment measurements of multiple distributed agents with different
update rules. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Q-learning 10.6 dB 7.6 dB 3.2 dB 16.0 dB

Sarsa 10.6 dB 7.2 dB 2.5 dB 16.7 dB

Simple 6.4 dB 3.7 dB 0.1 dB 9.2 dB
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Figure 6.5: Average absolute misalignment of multiple distributed agents with different update rules.

In Fig. 6.5 graphs for three different update rules are plotted. Sarsa, which was used during state
and hyper-parameter tuning, is plotted in black. Here Sarsa has very comparable performance
to Q-learning and both get outperformed by the heuristic. Based on the single agent results
this is expected. Unlike in the single agent case, Q-learning and Sarsa does not require a large
amount of episodes to converge to stable performance, which is expected as the state space is
smaller.

The simple update rule converges to a considerably better performance than both the heuristic
and the other two update methods quickly. This is surprising considering both that it’s a simpler
method, but also that the results for the single agent case showed something entirely different.
However, this could be because the larger state space could have impaired the algorithm in the
single agent case.
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Figure 6.6: Histogram of actions for the UE for
multiple distributed agents with multiple update
rules.

Figure 6.7: Histogram of codewords chosen for the
UE for multiple distributed agents with different
update rules.

Figure 6.8: Histogram of codewords chosen for the BS for multiple distributed agents with different
update rules.

Looking at the actions of the four methods, the heuristic algorithm still favors the stay option
more than the update rules. The simple update rule also favors the stay option significantly
more than the other update rules, unlike in the single agent case. While the simple algorithm
moves up and down layers with a similar frequency as the other update rules it chooses left and
right less often, likely meaning the simple algorithm is more likely to stick with a good beam.
The beam choices, in Fig. 6.7 and Fig. 6.8 are largely similar to those for the single agent case.
The simple algorithm behaves less like Q-learning than in the single agent case, while still being
somewhat similar. Again broader beams are largely preferred.
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In addition to the update rules above, another algorithm has been implemented for the multi
agent case as mentioned in Section 4.1.1. The algorithm is called "Win or Learn Fast - Policy Hill
Climbing", WoLF-PHC for short. This is a somewhat more sophisticated multi agent algorithm,
which updates action-values using Q-learning but uses policy hill climbing to update the policy
based on experience.

Table 6.4: Table of different misalignment measurements of multiple distributed agents with different
update rules and the WoLf-PHC algorithm. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Q-learning 10.6 dB 7.6 dB 3.2 dB 16.0 dB

Sarsa 10.6 dB 7.2 dB 2.5 dB 16.7 dB

WOLF 11.0 dB 7.9 dB 2.9 dB 17.1 dB
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Figure 6.9: Average absolute misalignment of multiple distributed agents with different update rules
and the WoLf-PHC algorithm.

In Fig. 6.9 graphs for two different update rules are plotted. Sarsa, which was used during state
and hyper parameters optimization, is plotted in black. The performance of the WoLF-PHC
algorithm has been plotted for comparison. The performance WoLF-PHC is similar to the two
update methods. This isn’t unexpected as WoLF-PHC uses the Q-learning update rule, which
was previously shown to perform similarly to Sarsa. The fact that it does not improve the
performance despite being an algorithm developed specifically for multi agent environments is
interesting. However, as it does not give worse performance it might still be viable to investigate
other dedicated multi agent RL-algorithms, even though this is outside the scope of this report.
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Figure 6.10: Histogram of actions for the UE for
multiple distributed agents with different update
rules and the WoLf-PHC algorithm.

Figure 6.11: Histogram of codewords chosen for
the UE for multiple distributed agents with differ-
ent update rules and the WoLf-PHC algorithm.

Figure 6.12: Histogram of codewords chosen for the BS for multiple distributed agents with different
update rules and the WoLf-PHC algorithm.

The distribution of the actions are almost indistinguishable between the methods. The beams
chosen are very similar between Q-learning and WoLF-PHC which isn’t surprising given their
similarity in both their update rule and performance.

6.4 Environment

The agent settings has been tuned using a line-of-sight scenario, with pedestrian movement
tracks. It is thus of interest to investigate how the agent performs when the environment
changes to a non-line-of-sight scenario and if the performance seen in pedestrian movement
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tracks is replicated when car movement tracks are used instead. In Chapter 2 it is mentioned
that one of the differences between the two movement models are that the car tracks move over
longer distances and has larger turn radii. Additionally, for the car the orientation of the UE
is fixed to the direction of movement, where in pedestrian movement the orientation is more
erratic.

6.4.1 Single centralized agent

Pedestrian case

Table 6.5: Table of different misalignment measurements of single centralized agents in different
environments in the pedestrian case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

LOS Sarsa 11.3 dB 7.7 dB 2.6 dB 17.6 dB

NLOS Heuristic 24.6 dB 24.7 dB 16.3 dB 32.3 dB

NLOS Sarsa 24.1 dB 24.1 dB 15.8 dB 31.8 dB
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Figure 6.13: Average absolute misalignment of single centralized agents in different environments in the
pedestrian case.

In Fig. 6.13 the performance of the tuned centralized Sarsa agent is shown, together with the
heuristic for comparison. The performance of the two methods in the LOS scenario is significantly
better than in the NLOS, as expected. The signal strength should be less erratic and the best
signal direction shouldn’t change drastically over short periods in LOS compared to NLOS. The
Sarsa performing worse in the NLOS scenario is also partially explained by the fact the state
lends itself better to the LOS scenario rather than NLOS. Pieces of information that would
be useful in the NLOS scenario like information about the geometry of the environment is
considerably more costly to obtain and process.
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Figure 6.14: Histogram of actions for the UE for
single centralized agents in different environments
in the pedestrian case.

Figure 6.15: Histogram of codewords chosen for
the UE for single centralized agents in different
environments in the pedestrian case.

Figure 6.16: Histogram of codewords chosen for the BS for single centralized agents in different
environments in the pedestrian case.

Looking at the actions taken in the NLOS conditions compared to the LOS conditions, they are
more evenly distributed among the possible actions for both Sarsa and the heuristic algorithm.
It’s sensible the action stay would be less useful as the NLOS scenario is more dynamic, which
likely would result in good codeword choices to shift around more.

Looking at Figures 6.15 and 6.16, the codewords used in NLOS are drastically different than in
LOS, as here neither algorithm is inclined to use codewords close to the edge of the codepages.
Instead, all codewords on any given codepage seems chosen equally often. One would still expect
the codewords at the edges of codepages to be more valuable by virtue of their larger coverage,
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this might still be the case as these choices aren’t optimal as seen on Fig. 6.13.

Car case

Table 6.6: Table of different misalignment measurements of single centralized agents in different
environments in the car case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 8.0 dB 6.1 dB 3.0 dB 10.7 dB

LOS Sarsa 7.9 dB 5.2 dB 1.5 dB 11.5 dB

NLOS Heuristic 23.6 dB 23.4 dB 14.8 dB 31.9 dB

NLOS Sarsa 23.1 dB 22.8 dB 14.0 dB 31.4 dB
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Figure 6.17: Average absolute misalignment of single centralized agents in different environments in the
car case.

In Fig. 6.17 the performance of the tuned centralized Sarsa agent is shown, together with the
heuristic for comparison. The performance in the car case is similar to that of the pedestrian
case, however with some improvement. This isn’t unexpected as both cases are somewhat similar.
The small performance improvement likely comes from the fact that the UE has a less random
orientation, because it’s simply the movement direction of the vehicle. This has also resulted
in the Sarsa agent reaching similar performance as the heuristic, which means the agent was
capable of exploiting the simpler environment more than the heuristic algorithm.
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Figure 6.18: Histogram of actions for the UE for
single centralized agents in different environments
in the car case.

Figure 6.19: Histogram of codewords chosen for
the UE for single centralized agents in different
environments in the car case.

Figure 6.20: Histogram of codewords chosen for the BS for single centralized agent in different
environments in the car case.

The actions, seen in Fig. 6.18, largely resemble those for the pedestrian case, which isn’t
unexpected due to the similarity of the cases. The codeword choices for the NLOS scenario
are close to being equally distributed, with a slight preference toward the edges of codepages.
For the BS some codewords close to the middle of codepages have been used more often, why this
is the case is unknown. Again the performance isn’t impressive, so any information interpreted
from the graphs can only be used as example of what not to do.
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6.4.2 Distributed agents

Pedestrian case

Table 6.7: Table of different misalignment measurements of multiple distributed agents in different
environments for the pedestrian case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

LOS Sarsa 10.6 dB 7.2 dB 2.5 dB 16.7 dB

NLOS Heuristic 24.6 dB 23.4 dB 16.3 dB 32.3 dB

NLOS Sarsa 17.7 dB 10.5 dB 9.4 dB 24.8 dB
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Figure 6.21: Average absolute misalignment of multiple distributed agents in different environments for
the pedestrian case.

In Fig. 6.21 the performance of the optimized Sarsa multi agents is shown, together with
the heuristic for comparison. Unlike in the single agent case, here the agents are learning
continuously during the entire simulation in the NLOS scenario. While learning naturally would
be slower in the single agent case because of the larger state space, it’s performance seemed like
it has converged. The fact that multi agent not only beats it in NLOS but does so convincingly,
is interesting as the single agent would have an easier time coordinating a pair of beams along a
strong reflected path. Regardless, the multi agent case outperforms the heuristic algorithm by
a wide margin in NLOS.
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Figure 6.22: Histogram of actions for the UE
for multiple distributed agents in different envir-
onments for the pedestrian case.

Figure 6.23: Histogram of codewords chosen for
the UE for multiple distributed agents in different
environments for the pedestrian case.

Figure 6.24: Histogram of codewords chosen for the BS for multiple distributed agents in different
environments for the pedestrian case.

Like in the single agent case, the choices for NLOS, as reflected in Fig. 6.22, are more evenly
distributed. This means an equal action distribution is not exclusively a trait of bad performance,
at least not in the NLOS scenario. When inspecting the codeword distributions for Sarsa in
NLOS it’s close to that of LOS, where the edges of codepages are preferred. This indicates that
such codeword distributions are correlated with having good performance. This behavior is still
slightly less pronounced for NLOS than LOS, however the performance is also worse in NLOS.
The slight preference for codewords in the lower half of codepages is interesting, and might point
toward trends in the data set, however the actual cause is unknown.
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Car case

Table 6.8: Table of different misalignment measurements of multiple distributed agents in different
environments for the car case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 8.0 dB 6.1 dB 3.0 dB 10.7 dB

LOS Sarsa 7.9 dB 4.8 dB 1.6 dB 11.5 dB

NLOS Heuristic 23.6 dB 23.4 dB 14.8 dB 31.9 dB

NLOS Sarsa 12.7 dB 10.5 dB 4.0 dB 19.5 dB
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Figure 6.25: Average absolute misalignment of multiple distributed agents in different environments for
the car case.

In Fig. 6.25 the performance of the optimized Sarsa multi agents is shown, together with the
heuristic for comparison. This results is not unexpected based on the pedestrian multi agent and
car single agent results. This performance closely mirrors that of the pedestrian case, although
slightly better, with the exception of the NLOS Sarsa which is significantly better. The less
challenging environment of the car case is likely the cause.
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Figure 6.26: Histogram of actions for the UE
for multiple distributed agents in different envir-
onments for the car case.

Figure 6.27: Histogram of codewords chosen for
the UE for multiple distributed agents in different
environments for the car case.

Figure 6.28: Histogram of codewords chosen for the BS for multiple distributed agents in different
environments for the car case.

The actions, in Fig. 6.26, resemble those of the pedestrian case. The behavior for Sarsa in car
NLOS has the same preference for the edges of codepages, especially for the UE in Fig. 6.27.
The behavior for the BS is slightly different as it also prefers a couple of codewords somewhere
between the edges and middle of the codepages. While previously unseen behavior it’s evidently
very efficient in the NLOS scenario in comparison to both the heuristic and single agents
behavior.
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6.5 Noise

Finally it is of interest to know how robust the implemented algorithms are towards noise in the
received signal power. As mentioned in Chapter 4, only the thermal noise and the noise factor
from the circuits at the transceivers are considered. The noise is modelled as additive white
circular Gaussian noise:

n ∼ CN (0, Pn) , (6.1)

where
Pn is the noise power. As the noise is considered to be thermal noise, the noise power can
calculated as:

Pn = kB · T ·B , (6.2)

where

kB : [J/K] Boltzmann constant
T : [K] Temperature
B : [Hz] Bandwidth

Under normal room temperature the temperature is 290K, and the bandwidth used for mmWave
systems is here assumed to be 400MHz, which results in a noise power of approximately
−88 dBm.

In addition to the thermal noise, which can’t be changed, it is also interesting to investigate the
performance if using less ideal equipment that add further noise due to its noise figure. The
noise figure is based on the assumptions made in the 3GPP channel model specifications, of 9 dB
[16]. However, as the previous tests were all performed with a transmission power of 40 dBm,
which is 10 dBm higher than in usual mmWave scenarios, an additional 10 dBm is added to the
noise in both cases.

Single centralized agent

Table 6.9: Table of different misalignment measurements of multiple distributed agents with different
amounts of noise. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic: No noise 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Heuristic: Thermal noise 9.1 dB 6.6 dB 3.7 dB 10.7 dB

Heuristic: Noise factor 8.9 dB 6.5 dB 3.6 dB 10.7 dB

Sarsa: No noise 11.3 dB 7.7 dB 2.6 dB 17.6 dB

Sarsa: Thermal noise 10.2 dB 7.4 dB 3.5 dB 14.6 dB

Sarsa: Noise factor 9.9 dB 6.9 dB 3.2 dB 14.2 dB
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Figure 6.29: Performance of single centralized agents with different amounts of noise.

In Fig. 6.29 curves for the performance of a single centralized agent in a noisy environment is
plotted. From this it’s clear that the heuristic algorithm suffers no degradation of performance
in noisy environments, at least for the LOS scenario. The agents performance actually improves
when noise is added which unexpected. Noise is expected to make the value estimates worse,
which would normally result in worse performance. This difference could be because of the
variations within each test, however the fact that the two noise tests produce practically identical
results would imply otherwise. Thus no real explanation for the difference has been found. The
fact that the performance is equal between the two noise levels is also unexpected, as one noise
level is approximately 40 dBm higher than the other. A possible explanation is that noise of
this level still only meaningfully affects beam pairs with already poor signal power. If the
performance of the agent in general results in high signal power, then the noise would only affect
the small amount of actions in which the signal power is low, and as such would only result in
a slight degradation of performance.

Distributed agents

Table 6.10: Table of different misalignment measurements of multiple distributed agents with different
amounts of noise. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic: No noise 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Heuristic: Thermal noise 9.1 dB 6.6 dB 3.7 dB 10.7 dB

Heuristic: Noise factor 8.9 dB 6.5 dB 3.6 dB 10.7 dB

Sarsa: No noise 10.6 dB 7.2 dB 2.5 dB 16.7 dB

Sarsa: Thermal noise 10.7 dB 7.4 dB 3.2 dB 16.3 dB

Sarsa: Noise factor 10.7 dB 7.7 dB 3.1 dB 16.2 dB
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Figure 6.30: Performance of multiple distributed agents with different amounts of noise.

In Fig. 6.30 in can be seen the noise affects neither the heuristic algorithm nor the Sarsa agent
very much. While unexpected this is still more reasonable than for the single agent case where
noise improved performance. The step size could be so low to the point where the levels of noise
added does not matter, which would mean the agent is resilient to noise.

6.6 Simple update rule

Because of the performance depicted in Fig. 6.5, where the simple update rule outperformed
all other methods considerably, the simple update rule will be further evaluated here. The
update rule will only be tested for the multi agent case as only it showed promise. It will
be tested in different environments, as multi and single agent was in Section 6.4, to discern
whether this performance improvement also applies to the NLOS scenario, and car case. The
test methodology is identical to Section 6.4.

Table 6.11: Table of different misalignment measurements of multiple distributed agents with the simple
update rule in different environments. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Car 4.2 dB 2.3 dB 0.0 dB 5.6 dB

NLOS Car 10.9 dB 8.6 dB 4.0 dB 15.7 dB

LOS Pedestrian 6.4 dB 3.7 dB 0.1 dB 9.2 dB

NLOS Pedestrian 13.4 dB 11.9 dB 6.1 dB 19.2 dB
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Figure 6.31: Performance of multiple distributed agents with the simple update rule in different
environments.

In Fig. 6.31 four curves are given, all for the simple update rule in different environments. In
the LOS pedestrian case, the multi agent Sarsa algorithm had an average absolute misalignment
of 10.6 dB, where it can be seen, in Table 6.11, that the simple update outperforms it by
about 4 dB. The case is the same in the NLOS pedestrian case where the difference is 4.4
dB. This difference becomes larger, relatively, in the car case. Here, the multi agent Sarsa
algorithm obtains an average absolute misalignment of 7.9 dB, where the simple update rule
has a misalignment almost half as large. The difference is less staggering in car NLOS where
Sarsa obtains 12.7 dB and simple 10.9 dB. The simple update rule outperforming Sarsa, but only
in multi agent environments, can be partially caused by the environment being more dynamic
than in the single agent case. In the multi agent case, an additional random element has been
added to the environment for each agent, namely the other agent. Thus it might make less
sense for the agent to look very far ahead when estimating the action-values, as even though it
follows its own policy, the policy of the other agent may change and thus predicting the expected
return becomes harder. However, this still does not account for not looking into the future at
all resulting in such good performance.

6.7 Summary

In this chapter the tuned parameter values from Chapter 5 have been tried in various different
scenarios to see how well they generalize. From Section 6.3 it was proven that the values in
general seem to generalize to other update rules, as both Q-learning and the simple update rule
has good performance. In the multi agent case, the simple update rule even outperformed all
other methods. For all update rules, the learned behavior of the agent(s) seems to be a lot of
the time in the edge beams of the codepages. This makes intuitively good sense, as these beams
are broader than the others in a codepage.

In Section 6.4 the tuned agents were put into environments drastically different than those used
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during tuning. When used on movement tracks corresponding to the car case, the performance
overall gets a bit better, which is probably because the orientation of UE is more stationary.
Additionally, these tracks are on average more straight and with softer curves, meaning that the
best beam-pairs only change slowly over time, making tracking easier.

When used in NLOS conditions, the centralized agent seems to chose codewords more at random,
likely because direction with best signal changes rapidly and the agent tries to keep up with
this. Thus the action-value estimates quickly becomes outdated or maybe they just become
very similar for all actions, making the agent choose actions seemingly at random. However, the
case with distributed agents the results were something else entirely. Here the agents succeeded
in learning a similar behavior as in the LOS conditions, leading to a significant increase in
performance compared to the centralized agent. It is speculated that because of the smaller state
space, it is possible to obtain more accurate action-value estimates, even in NLOS conditions.

In Section 6.5 the tuned agents were placed in a noisy environment, to investigate how robust
the RL-algorithm is against noise. Two levels of noise were tested, one consisting only of thermal
noise and one with a noise figure of 9 dB added as well. Overall, the performance didn’t change
much in the noisy environments compared with the noise-free one, but this might just be because
the added amount of noise was too low. However, as the total noise added in the environment
with both thermal noise and the noise figure was around −38 dBm, it is concluded that the
RL-algorithm is somewhat robust against noise.

Finally, based on the experiments in this chapter, it is concluded that to obtain the best
performance an implementation with distributed agents using the simple update rule should
be chosen. Compared with all other methods it is clearly the one with best performance, and
in addition to this it also uses a very small state space, which should comfortably fit into a UE
such as a phone. To further examine the performance and behavior of this implementation, the
ECDF of the four tests in Fig. 6.31 have been plotted below. In the LOS scenario, for both
the pedestrian and car cases, an alignment of 0 dB have been obtained at least one fourth of
the time. This is expected as the optimal pair of codewords almost always correspond to the
LOS which doesn’t change erratically. In the NLOS a single pair of codewords are less likely,
than LOS, to outperform every other pair by a large amount, which makes it more difficult to
distinguish. Strong paths in NLOS are also more likely to have similar signal strength, and with
the adjacent action encoding it may not be optimal to try to navigate to the strongest path
every time.
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Figure 6.32: ECDF of multiple distributed agents
with the simple update rule in different environ-
ments for the pedestrian case. Results are from the
last 1000 episodes in each test.

Figure 6.33: ECDF of multiple distributed agents
with the simple update rule in different environ-
ments for the car case. Results are from the last
1000 episodes in each test.
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In this chapter the process of designing, tuning and evaluating a RL algorithm will be discussed
further than was deemed appropriate in the respective chapters.

The design of the algorithm was from the beginning a very complex task, with many degrees of
freedom for design choices. It is worth noting that many different choices may have given even
better results than what was obtained in this report, especially regarding the design of the state
parameters. While the general information put into the state parameters is very valid, the way
to encode this information could have been done in many other ways. Especially the context
information comes to mind, where many different encodings of the orientation and location
information are possible. Two encodings which would have been interesting to investigate would
to encode orientation not relative to a fixed coordinate frame, but instead as relative to the
previous orientation and to encode the location not with polar coordinates but rectangular
coordinates instead. This could probably benefit from being the subject future work.

7.1 Assumptions during tuning and evaluation

During tuning of the designed algorithm, a lot of different assumptions were made in order
to make such a task feasible. In hindsight it is worth looking at some of these assumptions
again, and discuss their validity further. Firstly, it was assumed that it is possible to separate
the tuning of state parameters and hyper-parameters, as the optimal values for one should not
affect the other. This might not be entirely valid, especially in the case where two different state
parameter combinations have very different size state space. When the state space is very large,
a larger step size might be better as the same state might not be visited very often, however this
is again assuming that the action-value targets stays more or less the same between consecutive
visits to the same state.

Next it was assumed that the individual state parameters identified in Chapter 4 could be tuned
separately, as codeword information and context information added independent information to
the state. This assumption is probably still mostly valid, supported by the results from tuning
the state parameters in the multi agent case. Here tests with and without orientation information
at the receiver, combined with the tests with full communication, show that at least the result
that adding information about the other agents actions are still unnecessary regardless of the
context information added. However, it was also assumed that codeword information would be
the most important parameter, which is why tuning always started with this parameter. In
hindsight, it might have produced different results if instead the location information was tuned
first, as this seemed to add the most in LOS conditions.

Finally it was assumed that the single agent and multi agent cases are so similar that the results
from tuning the single agent would carry over to the multi agent case. This was partly done
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to save time during tuning, as a complete sweep of especially the state space would have been
very time and resource consuming. The similarity was mostly credited to the fact that both
cases had the same environment, why the same parameters should work in each case. However,
this fails to acknowledge that in the multi agent case, the environment, seen from each agent,
now also consists of the other agent acting on its own. Thus it would have been more correct to
have the broad sweeps again as in the single agent case, instead of the more narrow ones that
were performed. This became visible during evaluation, where in the multi agent case, having
a discounting factor of 0 proved to be much better than the tuned value of 0.6. In fact, the
discounting factor proved to be a very important hyper-parameter, and it has been the cause of
much debate during the project. As such this subject will be discussed later in this chapter.

Something else which might have had a big impact on the results, was the decision to make
conclusions based on single simulations. When simulating an RL-agent, there are a lot of random
aspects, which means that running a simulation twice with the same settings will produce small
differences in the results. In the beginning it was chosen that due to very long simulation times,
between 4 and 8 hours, resources would not be allocated to run each simulation multiple times
and instead focus would be on testing a variety of different settings. While this makes it hard to
draw any definite conclusions when the results are close, in many cases the differences between
settings were larger than what could be expected from the variance of the random processes.

7.2 Flawed validation method

In Chapter 5 a series of tests for evaluation of hyper-parameters were conducted. As admitted in
the summary of the same chapter, this method does not produce results which accurately depicts
the behavior and learning of a new agent with the chosen hyper-parameters. Neither does the
result provide insight into whether the parameters are overfitted or not. The performance of
a new agent with the given hyper-parameters was unknown as during the training period the
agent did not have the given hyper-parameters. Overfitting wasn’t as the same parameters were
not tested in two independent environments, as thus generalization wasn’t tested.

As mentioned, first a training period with a set of initial hyper-parameters was simulated.
This was followed by the agent continuing in a identically distributed but independently draw
environment with the hyper-parameters changed to the designated test values. While the result
does not work for their intended purpose, a useful test with the same methodology could be
constructed. If this system were to be implemented the Q-tables are likely to be pre-trained to
some extent. If any general unchanging knowledge is gained there’s no reason for this cost
to be occurred by each user if this could be embedded in the device at the factory. The
hyper-parameters need not be constant, end even if this is the case if a set of more optimal
parameters is found through further experimentation these could be downloaded at the device.
The performance of such a circumstance could be tested by the flawed testing methodology.
However as the training period wasn’t examined no comments will be made around such
circumstances. While the test methodology, for specific purposes, is useful the question of
performance and overfitting of the hyper-parameters remain. For this purpose another test
report was constructed, as described in Appendix I. This test was only conducted for the multiple
agent case in the interest of time. For these test a new agent with a default Q-table values is
used for the training period, then another agent is initialized and used for the validation period.
Each agent also posses the same hyper-parameters. The tested hyper-parameters remain equal
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across the flawed and this test, which are given in Table 7.1.

γ 0.6 0.7 0.8
α 0.005 0.01 0.05

ϵconstant 0.001 0.005 0.01
ϵ decaying weight 150 300 600 900
ϵ adaptive weight 0.3 1 10 15

Table 7.1: Value of hyper-parameters to be tested

First the training period will be shown, were conclusions about performance and convergence
times can be drawn. Hereafter the validation results will be presented to show whether the
training performance generalizes.
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Figure 7.1: Average absolute misalignment of
multiple agents with different discounting factors.
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Figure 7.2: Average absolute misalignment of
multiple agents with different step sizes.

When inspecting Fig. 7.1 γ = 0.6 still performs best. In Fig. 7.2 of the training results the best
would be for α = 0.05. This would have changed the settings for the rest of the simulations
were they performed properly the first time. Nevertheless the impact of the step size still seems
minimal.
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Figure 7.3: Average absolute misalignment of multiple agents with different exploration rates. Dashed
lines are for validation, and training otherwise
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From Fig. 7.3 the weight of w = 10 would still be concluded the best, although if this still would
be the case with α = 0.05 is unknown and this result is of limited value. While the optimal
results likely wouldn’t have changed drastically even if the tests were conducted properly the
performance would likely be concluded to be worse across the board. An interesting observation
is the fact that not only does the validation simulations perform as well as training, but better.
The fact that validation obtains better performance so consistently would likely point to some
difference between the data sets. Even if the validation set is less challenging it can still be
concluded that none of the parameters overfit.

7.3 Discounting factor

The most distinctive result is probably that given in Fig. 6.5. Here the multi agent case was
shown with different update rules. It was also shown that the simple update rule, which is
equivalent to γ = 0, outperformed every other method, which was expanded upon in Section 6.6.
The fact that simple performed the best suggests that future states and actions have very little
impact on what actions should be chosen in any given state. One factor which could cause this in
the multi agent case, but not single centralized, is the fact that action are no longer coordinated.
When this is the case a large factor impacting the reward is an unknown. Trying to account for
future states, and their values, without having knowledge about a large factor impacting that
value might be less useful than not trying at all. The consequences of an agents actions are also
different in the multi and single agent case. For the multi agent at the BS actions only have
the impact of restricting the reachable codewords within as few as seven steps and even less for
the UE. While this is still technically true for the single agent the number of possible routes
from a pair of codewords to any other arbitrary pair is much larger, as the routes have to be
considered together. A single centralized agent with adjacent action encoding is therefore not
expected to navigate the codebook better than the multi agents. The discounting factors impact
in general have been difficult to get an intuition about as it can be examined through different
lenses. Depending on how this value is interpreted different conclusions can be drawn about the
underlying cause of different behaviors observed. As mentioned in the paragraphs above it can
be interpreted as how much the agent considers the future. It can also be interpreted as how
much the agent trust already established values estimate from experiences ultimately from the
past. Given the dynamic environment the latter carries more weight than in the idealised RL
framework.

7.4 Future work

For further work, if not resource or time constrained, the test methodology should be corrected
such that each test includes multiple simulations of agents with the same parameters. This would
reduce the what variance is present within each test, and produce a more accurate picture based
on the results. The agent itself have only been tested with one state encoding. To gain insight
into how the encoding itself affects performance, tests where the same information is given to
the agent in different formats should be conducted. As the state is a large factor in the agents
performance any results in this area would be valuable for further development. The simulation
scenario itself also require more development to reflect reality more accurately. In the simulations
only a single BS and UE is considered. In reality each UE would face the problem of identifying
the best BS to connect to, and communicate with. The results obtain in this report are only
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indicative of performance if another system took on this task. Designating the RL algorithm
as entirely responsible would mean a more, but realistic simulation, which also affords the RL
algorithm the opportunity to find and exploit information or structure in the problem which
isn’t obvious.
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Conclusion 8
In this report the challenges of communicating in the mmWave spectrum were investigated
and analyzed. It was found that a major challenge in this field is the propagation behavior of
the electromagnetic waves. Because of the inherent differences between mmWave and previous
generations of the cellular network, mmWave signals generally produce lower signal power.
This is because of several factors; greater free space propagation loss, lower penetration power
and lower diffraction power, which all contribute to worse signal power and coverage. It was
concluded that the high attenuation had to be alleviated, where beamforming was proposed.
This was deemed suitable because of the small size of the antennas used in the mmWave
spectrum. Beamforming however introduced a new problem, that of beams having to align
along a path, preferably of low attenuation. The mechanism proposed for this was RL because
of its adaptability. This lead to the following research question, which underlie the rest the
work, which is

Can reinforcement learning be implemented as a suitable solution for beam alignment
and tracking in a mmWave communication system, consisting of both stationary and
mobile units?

To begin answering this question, a detailed preliminary work was conducted with modelling the
mmWave communication system to be able to realistically simulate the problems described in
Chapter 1. This consisted of first modelling the wireless communication aspects of the problem,
including modeling of the wireless channel, the actual signal passed through this channel and
the design of a codebook of beamformers. Then a model for how the UE would realistically
move around in a physical environment was implemented.

Following this, the subject of RL was researched thoroughly leading to an analysis of how the
general framework of RL can fit in the context of the mmWave communication problem. Based
on this analysis two RL algorithms, a centralized version with a single agent and a distributed
version with two agents were implemented, both utilizing tabular methods. Following this
their parameters were tuned through some broad sweeps of the parameter spaces. Finally, the
tuned algorithms were evaluated with the intention of coming closer to answering the proposed
research question. To determine the suitability of the developed algorithms, they were tested
under various different conditions, such as; LOS and NLOS conditions and noisy environments.
To act as a reference a simple heuristic algorithm was implemented as well and tested in the
same scenarios.

On the basis of these tests it is concluded that RL could definitely be a suitable solution for beam
alignment and tracking. While a single agent implementation might not be the best choice, the
multi agent implementation showed promising results, with a simple algorithm outperforming
the heuristic algorithm in both LOS and NLOS conditions.
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Analysis of state parameters
for a single agent with

adjacent actions A
A.1 Purpose

In this test report multiple states, for a single centralized agent with adjacent action scheme, will
be tested to evaluate performance. The states will be tested by simulating centralized agents
and recording performance metrics. Evaluation and comparison will be based on the recorded
metrics, and will focus on general performance. These tests are conducted to gain insight into
what constitutes a state with good performance. In order to compare the states and find a good
one, the performance metric is defined in the next section.

A.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
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to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

A.3 Test procedure

The test setup is generally the same for tuning of state parameters and hyper-parameters. The
general setup is as follows:

Table A.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.

• A history of the 2 previous beams at the UE
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• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

A.3.1 Variables

The algorithm consists of a number of variables, where every variable except the state will be
kept constant throughout this test to ensure valid comparisons. The constant variables are the
following.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.05
ϵ : [−] Exploration rate ϵ = 0.05
A : [−] Action space A = adjacent

The action space A is the adjacent action space as described in Section 4.1.2. ϵ is chosen to be
5% or 1 out of 20 steps is an exploration step. The optimal value of this is highly dependant on
the problem, and if the environment is dynamic, how quickly it changes. How often states are
visited also influences the choice, if a certain amount of exploration in each state is wanted. In
the interest of time this value is based on preliminary test, where 0.05 lead to promising results.
α is chosen to be 0.05 which, according to [22, p. 222], means the the action value estimate
converges in approximately 20 steps, assuming the target is unchanged. As an initial value this
is deemed an appropriate value. For the discounting factor no good heuristic could be found,
and a value of 0.7 was chosen at random.

A.3.2 States to be tested

It is infeasible to test every and all state combinations and therefore a subset will be identified.
Certain assumptions are made on the problem to simplify, and reduce the search over the possible
states. It is assumed the performance impact of adjusting the action/beam history is independent
of the impact of adjusting the rest of the state. Therefore the first two parameters of the state
can be investigated independently from the rest of the state. When an optimal value for these
two parameters have been found, test will be conducted on states consisting of the optimal
beam/action history, and a combination of UE orientation, or location and both. Independence
of the impact on performance by including the UEs orientation and relative location cannot be
guaranteed. However in the interest of time these parts of the state are going to be examined
independently. This means that a total five types of states are going to be tested. The first,
with only beam/action history. The second with beam/action history and UE orientation.
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The third with beam/action history and the distance between the two terminals. The fourth
with beam/action history and UE relative position. The fifth with beam/action history, UE
orientation and relative location. The action/beam history is kept as part of the state through
all types of states, as without it the adjacent action encoding in itself is not enough to accurately
know which way is being beamformed. It it therefore being judged important enough to be
included in all states being tested. In general the range of values are chosen by finding the
lowest sensible value. Then subsequent values are powers of two times the starting value to
ensure a difference in performance can be observed.

The first parameters to be adjusted are the length of the UE and BS action/beam history. To
simplify further the lengths of both terminals beam/action histories are kept equal, and adjusted
simultaneously. As such the first group of tests will be performed on the states presented in
Table A.2.

Nbt Nbr No Ro Rd Ra

State 1 1 1 0 0 0 0
State 2 2 2 0 0 0 0
State 3 3 3 0 0 0 0
State 4 4 4 0 0 0 0

Table A.2: States for testing optimal action/beam history length

Where Nbt is the codeword history of the UE, Nbr the codeword history of the BS, No the
orientation history, Ro the orientation resolution, Rd the distance resolution and Ra the angle
resolution. These values, and the encoding, are also explained in Section 4.4.2. The test of
which is found best will form a basis for the four other types of states to be tested, because they
all contain action/beam histories.

The second type of state, one with orientation is going to be explored, with four different history
lengths, and four different resolutions. The first four of which can be seen in Table A.3

Nbt Nbr No Ro Rd Ra

State 1 Ns Ns 1 4 0 0
State 2 Ns Ns 1 8 0 0
State 3 Ns Ns 1 16 0 0
State 4 Ns Ns 1 32 0 0

Table A.3: States for testing optimal orientation settings, where Ns is the optimal result from Table A.2

The rest of the state combinations differ by replacing No = 1 with No = 1, 2 & 3. Here Ns is the
optimal value found from the tests of the previous type of state. The next type of state includes
distance between the terminals, which is going to be tested with the values given in Table A.4.

Nbt Nbr No Ro Rd Ra

State 1 Ns Ns 0 0 2 0
State 2 Ns Ns 0 0 4 0
State 3 Ns Ns 0 0 8 0
State 4 Ns Ns 0 0 16 0
State 5 Ns Ns 0 0 32 0

Table A.4: States for testing optimal distance resolution, where Ns is the optimal results from Table A.2
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The fourth type of state to be analyzed contains the location of the UE with respect to the BS.
The first four of this type are given in Table A.5.

Nbt Nbr No Ro Rd Ra

State 1 Ns Ns 0 0 2 4
State 2 Ns Ns 0 0 2 8
State 3 Ns Ns 0 0 2 16
State 4 Ns Ns 0 0 2 32

Table A.5: States for testing optimal location settings, where No is the optimal result from Table A.2

The location is going to be explored with four different angle resolutions and five different
distance resolutions. The distance resolutions are 2, 4, 8, 16 and 32, given as Rd in the table.

The fifth type of state contains action/beam history, UE orientation and relative location.
Instead of testing a multitude of different combinations for this type of state, the values found
best in the previous test are going to be used here. That is the best action/beam history length
from tests of states type one. The best UE orientation resolution and history length from tests
of states of type two. The best relative location resolution from tests of states of type four.

A.4 Data processing

As mentioned in Appendix A.3 each test consists of 70.000.000 steps, however plotting the
relative misalignment for all steps would not result in a graph indicative of the general
performance of the state. To remove the variation within each episode, the misalignment is
calculated based on averages. First the linear misalignment is calculated, and transformed to
logarithmic scale.

MA = 10 · log10(R)− 10 · log10(Rmax)

This misalignment is then averaged across all steps within each episodes, resulting in a reduction
from 70.000.000 data points to 10.000.

RMpe =
1

7000
·
7000∑
i=1

RMi

where

RMm [−] Average reward for a given episode
RMi [−] Reward for a the i’th step in a given episode

In order to remove the influence of a specific track/path on the performance multiple episodes
are averaged to get the final performance measure. The 10.000 episodes are averaged in ten
intervals of 1000 episodes each.
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A.5 Results/Conclusion

In the following section the results of the simulations of agents with the states given in
Appendix A.3.2 are presented. The legend on every figure describes the state an agent had
when generating the data. This state is encoded in the same way, and order as Table 4.1.
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Figure A.1: Performance of states, from Table A.2, only containing action/beam history.
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

On Fig. A.1 the performance of several states can be seen. The best state is with a length of
two previous beams for both terminals, not only in obtained performance, but also convergence
time.
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Figure A.2: Performance of states, from Table A.3,
with orientation resolution of four
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Figure A.3: Performance of states, from Table A.3,
with orientation resolution of eight

Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

Fig. A.2 through Fig. A.5 plots of states of the second type from Table A.3 can be seen. Note
that here the state "2-2-0-0-0-0" from Fig. A.1 is also plotted to provide a point of comparison.
While more information gives the opportunity to distinguish more situations from each other
it also means more states, that needs values assigned. That means, if the information is not
valuable with regards to choosing good actions it becomes a hindrance, as likely demonstrated
on Fig. A.2.
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Figure A.4: Performance of states, from Table A.3,
with orientation resolution of 16
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Figure A.5: Performance of states, from Table A.3,
with orientation resolution of 32

Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra
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Figure A.6: Performance of the best states from Fig. A.2 to Fig. A.5
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

Figure A.6 plots the best performing states from the previous orientation states. It can be
seen that the orientation only provide a marginal benefit, if at all, even among the best states.

From the figure it can be seen that the best orientation provides around a
1

2
dB increase in

performance.
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Figure A.7: Performance of states, from Table A.4, with different distance resolutions
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

Fig. A.7 shows the states containing the distance between the UE and BS. It can be seen that
in general the distance does improve the performance, but only marginally. That is with the
exception of the state "2-2-0-0-4-0" which is strictly worse and does not follow the pattern of
the rest of the states. Why this is the case is unknown.
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Figure A.8: Performance of states, from Table A.5,
with distance resolution of two
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Figure A.10: Performance of states, from Table A.5,
with distance resolution of eight
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Figure A.11: Performance of states, from Table A.5,
with distance resolution of 16

Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra
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Figure A.12: Performance of states, from Table A.5,
with distance resolution of 32
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Figure A.13: Performance of the best states from
Fig. A.8 to Fig. A.12

Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

Figure A.8 through Fig. A.12 plots states of the fourth type with different angle and distance
resolutions. It can be seen that the location provides a significant performance increase, and this
increase is monotonically increasing with respect to the angle resolution. Fig. A.13 Shows the
best states from each graph. The best fourth type of state provide a performance improvement
of 10 to 13 dB.

While UE orientation did not provide a significant performance increase by itself, this and the
relative location may not be independent, and therefore their combined performance cannot be
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predicted from their individual performance. The fifth type of state which contains both have
been plotted in Fig. A.14
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Figure A.14: Performance of a combined state
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra

The state "2-2-1-8-2-32" is plotted along with the two states, "2-2-1-8-0-0" and "2-2-0-0-2-32",
which it is a combination of. A state comparable to it in performance is also depicted. It can
be seen that the combined state performs better than its parts. The performance gained from
adding orientation information to the initial state, and to the location state is different. It can
be seen that the orientation is more valuable if the location is known. The states "2-2-0-0-
32-32" and "2-2-1-8-2-32" are comparable in performance, however they are not equal. When
comparing the size of the action value space of the two, it becomes clear that the size of the
latter is half that of the former, which would result in less memory usage.

This leads to the conclusion that the optimal state for a single centralized agent, is one with a
state defined by the parameters given in the table below

Nbr Nbt No Ro Rd Ra

Optimal parameter 2 2 1 8 2 32

Table A.6: Optimal state parameters, for a single centralized agent
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Analysis of state parameters
for multiple agents with

adjacent actions B
B.1 Purpose

In this test report multiple states, for multiple agents with adjacent action scheme, will be tested
to evaluate performance. The states will be tested by simulating multiple agents and recording
performance metrics. Evaluation and comparison will be based on the recorded metrics, and will
focus on general performance. These test are conducted to gain insight into what constitutes
a state with good performance. In order to compare the states and find a good one, the
performance metric is defined in the next section.

B.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
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to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

B.3 Test procedure

The test setup is generally the same for tuning of state parameters and hyper-parameters. The
general setup is as follows:

Table B.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.

• A history of the 2 previous beams at the UE
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• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

B.3.1 Variables

The algorithm consists of a number of variables, where every variable except the state will be
kept constant throughout this test to ensure valid comparisons. The constant variables are the
following.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.05
ϵ : [−] Exploration rate ϵ = 0.05
A : [−] Action space A = adjacent

The action space A is the adjacent action space as described in Section 4.1.2. ϵ is chosen to be
5% or 1 out of 20 steps is an exploration step. The optimal value of this is highly dependant on
the problem, and if the environment is dynamic, how quickly it changes. How often states are
visited also influences the choice, if a certain amount of exploration in each state is wanted. In
the interest of time this value is based on preliminary test, where 0.05 lead to promising results.
α is chosen to be 0.05 which, according to [22, p. 222], means the the action value estimate
converges in approximately 20 steps, assuming the target is unchanged. As an initial value this
is deemed an appropriate value. For the discounting factor no good heuristic could be found,
and a value of 0.7 was chosen at random.

B.3.2 States to be tested

It is infeasible to test every and all state combinations and therefore a subset will be identified.
The problem of the search space is even worse in the multi agent case than in the single agent
case from Appendix A, as two states are present in any test. In the interest of time a partial
assumption is made. The assumption is that the optimal values of the context information,
ie. the UE orientation and relative location, is equal for the multi and single agent case, as
the physical environment is the same. This assumption does not cover whether the information
is useful, only that if it is, the optimal value for the parameters are the same. Furthermore
two different cases will be tested, one with communication between the two terminals, and one
without. In the case of communication each terminal can only know their own beam/action
history and only the UE knows its orientation. The relative position is assumed obtainable
without further communication overhead and can therefore be included in both cases.
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At first a set of states consisting of only the codeword history for each agents own actions will
be tested. After this the codeword history of the other terminal will be introduced to allow for
differing amount of information about the two agents. Then context information will then be
added to the state, with values that gave the best results in the tests with a single agent, as
mentioned earlier. Additionally, some information might now not be useful for both agents, and
thus different combinations of state parameters might be needed for the receiver agent and the
transmitter agent respectively.

The first type of state to be investigated are with the length of the UE and BS action/beam
history. In Table B.2 the states for the BS for can be seen. The UE has a set of corresponding
states where the values of Nbt and Nbr are interchanged.

Nbt Nbr No Ro Rd Ra

State 1 0 1 0 0 0 0
State 2 0 2 0 0 0 0
State 3 0 3 0 0 0 0
State 4 0 4 0 0 0 0

Table B.2: States for testing optimal action/beam history length for transmitter

Where Nbt is the codeword history of the UE, Nbr the codeword history of the BS, No the
orientation history, Ro the orientation resolution, Rd the distance resolution and Ra the angle
resolution. These values, and the encoding, are also explained in Section 4.4.2. In continuation
of the case with no communication the second type of states is where only the UE knows it’s
orientation. These states are given in Table B.3 and Table B.4. Nbo is the optimal value found
from the test for the states in Table B.2.

Nbt Nbr No Ro Rd Ra

State 1 0 Nbo 0 0 2 32
State 2 0 Nbo 1 8 2 32

Table B.3: States for testing optimal action/beam history length for UE

Nbt Nbr No Ro Rd Ra

State 1 Nbo 0 0 0 2 32
State 2 Nbo 0 0 0 2 32

Table B.4: States for testing optimal action/beam history length for transmitter

To further develop the case with communication another set of states regarding the action/beam
history are to be tested, which are given below: The third type of state, where communication
is allowed, an optimal amount of information about the other terminals beam/action history is
investigated with the states below. These states are for the BS, where the corresponding states
for the UE are where the values of Nbt and Nbr are interchanged.
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Nbt Nbr No Ro Rd Ra

State 1 1 Nbo 0 0 0 0
State 2 2 Nbo 0 0 0 0
State 3 3 Nbo 0 0 0 0
State 4 4 Nbo 0 0 0 0

Table B.5: States for testing optimal action/beam history length for transmitter

The fourth types of state is a further development of the case with communication, where both
terminals know location of the UE, and it’s relative location. Nboo is the optimal value of
action/beam history length found in the test from Table B.5. The states in Table B.6 belongs
to the BS, and Table B.7 belongs to the UE.

Nbt Nbr No Ro Rd Ra

State 1 Nboo Nbo 0 0 2 32
State 2 Nboo Nbo 0 0 2 32
State 3 Nboo Nbo 1 8 2 32

Table B.6: States for testing optimal action/beam history length for transmitter

Nbt Nbr No Ro Rd Ra

State 1 Nbo Nboo 0 0 2 32
State 2 Nbo Nboo 1 8 2 32
State 3 Nbo Nboo 1 8 2 32

Table B.7: States for testing optimal action/beam history length for UE

B.4 Data processing

As mentioned in Appendix B.3 each test consists of 70.000.000 steps, however plotting the
relative misalignment for all steps would not result in a graph indicative of the general
performance of the state. To remove the variation within each episode, the misalignment is
calculated based on averages. First the linear misalignment is calculated, and transformed to
logarithmic scale.

MA = 10 · log10(R)− 10 · log10(Rmax)

This misalignment is then averaged across all steps within each episodes, resulting in a reduction
from 70.000.000 data points to 10.000.

RMpe =
1

7000
·
7000∑
i=1

RMi

where

RMm [−] Average reward for a given episode
RMi [−] Reward for a the i’th step in a given episode
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In order to remove the influence of a specific track/path on the performance multiple episodes
are averaged to get the final performance measure. The 10.000 episodes are averaged in ten
intervals of 1000 episodes each.

B.5 Results/Conclusion

The legend on every figure describes the states the agents had when generating the data. This
state is encoded in the same way, and order as Table 4.1, where the first states is for the UE,
and the second state is for the BS.

Tuning of codeword information w.o. communication between agents

With no knowledge of each others actions, the amount of information an agent has about
codewords is limited to its own actions. A sweep of different amounts of codeword history was
run, with the history ranging from only the current codeword, to a history of four codewords.
As the state space is smaller than in the single agent case, a bigger range is chosen. The results
from the test is shown in Table B.8 and Fig. B.1.

Table B.8: Table of different misalignment measurements of multiple distributed agents with different
length codeword history. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
History of 1 codeword each 32.2 dB 32.2 dB 24.7 dB 39.5 dB

History of 2 codewords each 21.3 dB 20.8 dB 10.7 dB 30.4 dB

History of 3 codewords each 23.7 dB 23.6 dB 14.1 dB 32.7 dB

History of 4 codewords each 25.6 dB 25.7 dB 17.2 dB 33.9 dB
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Figure B.1: Average absolute misalignment from tests with multiple distributed agents having different
length codeword history.
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS
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As in the centralized implementation, it proves useful to have some knowledge of past actions,
however keeping track of too many probably expands the state space with not enough information
to compensate. Precisely as for the single agent, a history of two is optimal.

Tuning of codeword information w. communication between agents

To investigate whether information about the other agents actions is useful, a follow-up test is
performed, where each agent gets a history of the other agents actions. It is assumed that the
best amount of history of the other agents actions is independent from the history of ones own.
Thus each agent has a history of two codewords based on the previous test. The results from
the test is shown in Table B.9 and Fig. B.2.

Table B.9: Table of different misalignment measurements of multiple distributed agents with different
length codeword history of the other agents actions. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
History of 1 codeword from the other 27.6 dB 27.6 dB 20.0 dB 35.3 dB

History of 2 codewords from the other 26.2 dB 26.3 dB 18.1 dB 34.4 dB

History of 3 codewords from the other 26.6 dB 26.6 dB 18.9 dB 34.4 dB

History of 4 codewords from the other 25.6 dB 25.7 dB 17.7 dB 33.7 dB

(0, 1000)
(1000, 2000)

(2000, 3000)
(3000, 4000)

(4000, 5000)
(5000, 6000)

(6000, 7000)
(7000, 8000)

(8000, 9000)

(9000, 10000)

Episode range [-,-]

25.5

26.0

26.5

27.0

27.5

28.0

28.5

Av
er

ag
e 

ab
so

lu
te

 m
isa

lig
nm

en
t [

dB
]

2-1-0-0-0-0 & 1-2-0-0-0-0
2-2-0-0-0-0 & 2-2-0-0-0-0
2-3-0-0-0-0 & 3-2-0-0-0-0
2-4-0-0-0-0 & 4-2-0-0-0-0

Figure B.2: Average absolute misalignment from tests with multiple distributed agents having different
length codeword history of the other agent’s actions. Results are from the last 1000 episodes in each
test.
Legend values indicate: Nbr-Nbt-Nr-Ro-Rd-Ra for UE & BS

By comparing the results from this test with the results on Fig. B.1, it is clear that the
performance gets worse by adding information about the other agents actions. This might
be a sign that the information added by including the actions of both agents in their states, does
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not outweigh the increase in state space which makes it harder for the agents to keep accurate
action-value estimates.

Tuning of context information w. partial and full communication

While adding communication about codewords did not improve performance, this might not be
the case with context information. Thus, it was investigated what happens when communication
is gradually added regarding context information. First only partial communication is added,
by giving both agents access to the relative position of the UE. Thus the orientation information
about the UE is only available to the UE. This leads to two tests; one where the UE does not
use orientation information and one where it does. The results from these tests are shown in
Table B.10 and Fig. B.3, with the results from the test with no communication is added as a
reference in black.

Table B.10: Table of different misalignment measurements of multiple distributed agents with and
without orientation information in the state of the UE. Results are from the last 1000 episodes in each
test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference, no comm. 21.3 dB 20.8 dB 10.7 dB 30.4 dB

Without orientation information 13.6 dB 11.9 dB 4.2 dB 20.6 dB

With orientation information 10.5 dB 7.2 dB 2.4 dB 16.5 dB

(0, 1000)
(1000, 2000)

(2000, 3000)
(3000, 4000)

(4000, 5000)
(5000, 6000)

(6000, 7000)
(7000, 8000)

(8000, 9000)

(9000, 10000)

Episode range [-,-]

10

12

14

16

18

20

Av
er

ag
e 

ab
so

lu
te

 m
isa

lig
nm

en
t [

dB
]

Reference
2-0-0-0-2-32 & 0-2-0-0-2-32
2-0-1-8-2-32 & 0-2-0-0-2-32

Figure B.3: Average absolute misalignment from tests with multiple distributed agents with and without
orientation information in the state of the UE.
Legend values indicate: Nbr-Nbt-Nr-Ro-Rd-Ra for UE & BS

As for the single agent case the relative location by itself provides a considerable improvement
in performance. Adding the orientation information as well results in a larger performance
improvement than in the single case. This can be caused by the fact the this information is
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largely useless for the BS, as the best direction to beamform in a LOS scenario is always the
direction pointing at UE, regardless of the orientation of the UE. However, for the UE the best
direction to beamform depends very much on its current orientation. Thus it makes sense that
when the two actions are decentralized the addition of orientation information only where it is
useful has a large effect.

Following these tests, the case with full communication was investigated. Here both agents
has access to all information, as in the centralized case. As with the tests with only partial
communication, a few combinations are possible, where the agents utilize different amounts of
the available information. Even though it was proven earlier that codeword information should
not be shared between agents, these tests include it anyway to act as a comparison with the
single agent case. The results from these tests are shown in Table B.11 and Fig. B.4, with the
results from the test with only codeword communication is added as a reference in black.

Table B.11: Table of different misalignment measurements of multiple distributed agents with full
communication available between agents. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference, no context information. 26.2 dB 26.3 dB 18.1 dB 34.4 dB

Without orientation information 14.6 dB 13.1 dB 4.9 dB 21.9 dB

With orientation information, UE 11.1 dB 8.1 dB 2.9 dB 17.3 dB

With orientation information, both 11.7 dB 8.7 dB 2.9 dB 18.4 dB
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Figure B.4: Average absolute misalignment from tests with multiple distributed agents with full
communication available between agents.
Legend values indicate: Nbr-Nbt-Nr-Ro-Rd-Ra for UE & BS

The location still provides a large increase in performance by itself. A more interesting result is
the fact that the state pair where both agents know the orientation of the UE, performs slightly
worse than when only the UE knows. This supports the theory presented for the results in the
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case with partial communication. Additionally, even with context information, it is still worse
for an agent to use knowledge about the other agents actions. This would probably point to the
size of the state space being a problem to some degree, and this information being of fairly little
importance.

Thus in summary, for the multi agent case the best performance is found when there is partial
communication between the agents, with location information being available to both agents.
The optimal combinations of state parameters are shown below for the UE agent and BS agent
respectively.

Nbr Nbt No Ro Rd Ra

Optimal parameter for UE 2 0 1 8 2 32

Table B.12: Optimal state parameters, for an agent on the UE

Nbr Nbt No Ro Rd Ra

Optimal parameter for the BS 0 2 0 0 2 32

Table B.13: Optimal state parameters, for an agent on the BS
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C.1 Purpose

In this test report multiple values of hyper parameters, for a single centralized agent with
adjacent action scheme, will be tested to evaluate performance. The hyper parameters will
be tested by simulating centralized agents and recording performance metrics. Evaluation and
comparison will be based on the recorded metrics, and will focus on general performance. These
tests are conducted to gain insight into the optimal value of the hyper parameters which leads
to best performance. In order to compare values and find a good one, the performance metric
is defined in the next section.

C.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
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the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

C.3 Test procedure

The test setup is generally the same for tuning of state parameters and hyper-parameters, with
one important difference which will be discussed later. The general setup is as follows:

Table C.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.
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• A history of the 2 previous beams at the UE

• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

Additionally, the simulation has the following settings:

• The update rule used is SARSA.

• The codebooks used are a 3 layer and a 4 layer hierarchical codebook for the UE and BS
respectively.

• Transmit power at the BS is 40 dBm.

• The frequency of the carrier wave is 28GHz

• The actions are encoded with the adjacent actions only encoding.

As mentioned before, the test methodology is slightly different for the hyper-parameters, than
for the states. When tuning the hyper-parameters, first a training period is undergone, followed
by validation period. The training and validation periods both follow the general setup above,
except during the validation period, the tracks are chosen from a validation collection which
consists of all new tracks. In the training period the hyper-parameters will take on a fixed set of
default values regardless of the test. Then in the validation period the hyper-parameters switch
to the values to be tested. This extra step is to ensure the parameters are tested on similar
agents, and to investigate if there is overfitting, which is tested by having the environment in
the validation period be independent from the one in the training period.

All the results from hyper-parameter tuning in this chapter are from tests following this
methodology. However, after the tests were performed, further reflection on the method found
that it does not make a lot of sense to do it this way, if the intention is to investigate overfitting.
Further comments about the effect of this mistake and a discussion about what should have
been done instead can be found in Chapter 7.

C.3.1 Variables

The algorithm consists of a number of variables, where every variable except the hyper
parameters will be kept constant throughout this test to ensure valid comparisons. The constant
variables are the following.

S : [−] State space S =′ 2− 2− 1− 8− 2− 32′

A : [−] Action space A = adjacent
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The action space A is the adjacent action space as described in Section 4.1.2.

The state space is chosen as the best performing, from the tests described in A.

C.3.2 Values to be tested

It is infeasible to test every and all value combinations and therefore a subset of values will
be identified for testing. As resources are limited the search is conducted over each variable
separately. That is optimization will be performed with respect to a single variable at a time,
instead of over them jointly. The optimization will be performed in the order given below. The
value the variable takes before being optimized is also given.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.05
ϵ constant : [−] Exploration rate ϵ constant = 0.05
ϵ decaying : [−] Exploration rate ϵ decaying = N/A
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A

A thorough explanation of these variables can be found in Section 4.4.4. γ is chosen to be 0.7

which means the series of weights becomes, 0.7 0.49 0.34 0.24 0.17 0.12 and 0.08 and so on.
An actions only impact on the state, is on the beam/action history, as the other factors cannot
be influenced directly. This means the actions only have an impact on the possible codeword
selection in the codebook. This impact does not extend infinitely however as the codebook is of
finite state, and any codeword can be reached in a limited amount of actions. Specifically for a
codebook with four layers any codeword can be reached in at least seven actions, and therefore
values beyond this point should not have great effect.
α is chosen to be 0.05 which, according to [22, p. 222], means the the action value estimate
converges in approximately 20 steps, assuming the target is unchanged. As an initial value this
is deemed an appropriate value.
ϵ constant is chosen to be 5% or 1 out of 20 steps is an exploration step. The optimal value of this
is highly dependant on the problem, and if the environment is dynamic, how quickly it changes.
How often states are visited also influences the choice, if a certain amount of exploration in each
state is wanted. In the interest of time this value is based on preliminary test, where 0.05 lead
to promising results.
ϵdecaying is not directly chosen but calculated based on the equation given below

ϵdecaying = exp(− t

wd
) (C.1)

Where wd is a weight factor controlling the rate of decay of the logarithmic decreasing function.
ϵadaptive is not directly chosen but calculated based on a set of equations from [25]. A separate
ϵ belongs to each state which is adjusted based on the following equation

ϵ = δ · ϵ+ (δ − 1) · ϵadj (C.2)

where δ is a value weighting how much ϵ should be influenced by the calculated ϵadj value. ϵadj
is a value calculated based on the TD-error as given below

ϵadj =
1− exp(

−abs(α · TD − error)

σ
)

1 + exp(
−abs(α · TD − error)

σ
)

(C.3)
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where α is the step size and σ is a weight adjusting how sensitive ϵadj is to changes in the
TD-error.

These values are varied in a neighbourhood around their default values given above. The different
values being tested are given in Table C.2.

γ 0.25 0.5 0.7 0.95
α 0.005 0.01 0.05 0.1 0.15 0.25

ϵ constant 0.005 0.01 0.05 0.1
ϵ decaying weight 300 600 900 1200
ϵ adaptive weight 0.1 3 15 20

Table C.2: Value of variables to be tested

The values of ϵ decaying and ϵ adaptive are unlike that of ϵ constant, in the sense that the
latter simply describes the value of ϵ while the two former describe a weight, which has different
impact depending on the method.
The values of ϵ decaying are that of wd in Eq. (C.1). They are chosen in such a range that ϵ

converges to near zero at steps approximately equally space throughout the 7000 steps in a test,
and is resat at the end of an episode.
The values of ϵ adaptive are that of σ · 103 in Eq. (C.3). They are chosen such that the average
TD-error obtained in the case of a ϵ constant results in an exploration rate in the neighborhood
of that same constant ϵ.

C.4 Results/Conclusion

In the following section the results of the simulations of agents with the states given in
Appendix C.3.2 are presented. The legend on every figure describes the state and the hyper
parameters an agent had when generating the data. This state is encoded in the same way, and
order as Table 4.1. The hyper parameters are encoded as, starting value of ϵ, value of α, value
of γ and if applicable a weight factor, respectively.

Table C.3: Table of different misalignment measurements of single centralized agents with different
discounting factors. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
γ = 0.50 11.8 dB 7.2 dB 1.9 dB 19.3 dB

γ = 0.70 10.4 dB 6.5 dB 1.4 dB 16.5 dB

γ = 0.25 15.6 dB 12.5 dB 2.8 dB 26.4 dB

γ = 0.95 10.8 dB 7.8 dB 2.5 dB 17.0 dB

110



C.4. Results/Conclusion Aalborg University

(0, 1000)
(1000, 2000)

(2000, 3000)
(3000, 4000)

(4000, 5000)
(5000, 6000)

(6000, 7000)
(7000, 8000)

(8000, 9000)

(9000, 10000)

Episode range [-,-]

10

12

14

16

18

20

22

Av
er

ag
e 

ab
so

lu
te

 m
isa

lig
nm

en
t [

dB
]

 = 0.5
Reference
 = 0.25
 = 0.95

Figure C.1: Forgetting factor
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra & ϵ α γ

It can be seen that changing the forgetting factor significantly in either direction worsens the
performance. The initial choice, and it’s reasoning is therefore supported.

Table C.4: Table of different misalignment measurements of single centralized agents with different step
sizes. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
α = 0.01 9.9 dB 5.8 dB 1.7 dB 15.5 dB

α = 0.005 10.9 dB 7.3 dB 2.7 dB 17.2 dB

Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB

α = 0.15 10.6 dB 6.3 dB 0.9 dB 17.4 dB

α = 0.33 11.5 dB 7.8 dB 1.9 dB 18.4 dB
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Figure C.2: Stepsize
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra & ϵ α γ

The step size does not have a large impact on performance. The best value is 0.01 however only
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by a small margin. The performance of the non-optimized state is included for comparison.

Table C.5: Table of different misalignment measurements of single centralized agents with different
constant ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Constant: ϵ = 0.01 9.4 dB 5.9 dB 2.4 dB 14.3 dB

Constant: ϵ = 0.1 10.7 dB 6.8 dB 2.2 dB 17.0 dB

Constant: ϵ = 0.005 9.3 dB 5.9 dB 2.3 dB 13.7 dB

Constant: ϵ = 0.05 9.9 dB 5.8 dB 1.7 dB 15.5 dB

Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB
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Figure C.3: Constant epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra & ϵ α γ

Table C.6: Table of different misalignment measurements of single centralized agents with different
decaying ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB

Decaying: w = 300 10.9 dB 7.0 dB 3.2 dB 16.3 dB

Decaying: w = 600 11.0 dB 7.1 dB 2.8 dB 17.0 dB

Decaying: w = 900 11.7 dB 7.3 dB 2.7 dB 18.6 dB

Decaying: w = 1200 13.2 dB 9.2 dB 3.4 dB 21.1 dB
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Figure C.4: Decaying epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra & ϵ α γ wd

The decaying ϵ is consequently worse, this is not however unexpected. In a dynamic environment
completely getting rid of the exploration rate would likely result in outdated value estimate.
Keeping the exploration rate high seems worse, which would result in less exploitation of
knowledge.

Table C.7: Table of different misalignment measurements of single centralized agents with different
adaptive ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Decaying: w = 0.1 11.7 dB 8.6 dB 3.3 dB 17.9 dB

Decaying: w = 3 10.6 dB 7.0 dB 2.8 dB 16.4 dB

Decaying: w = 15 8.6 dB 5.1 dB 2.2 dB 12.3 dB

Decaying: w = 20 10.0 dB 6.5 dB 2.8 dB 14.9 dB

Reference 10.4 dB 6.5 dB 1.4 dB 16.5 dB
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Figure C.5: Adaptive epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra & ϵ α γ σ · 103

The adaptive ϵ results in even better performance than either of the other methods, however the
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price is the increase in complexity as the value has to be calculated. It should be noted more
values have been tested for this method, however to prevent cluttered graphs only a subset were
plotted.

This leads to the conclusion that the optimal values for the hyper parameters for a single
centralized agent are given in the list below

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A, σ = 15 · 10−3
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D.1 Purpose

In this test report multiple values of hyper parameters, for a multiple agents with adjacent
action scheme, will be tested to evaluate performance. The hyper parameters will be tested by
simulating agents and recording performance metrics. Evaluation and comparison will be based
on the recorded metrics, and will focus on general performance. These tests are conducted to
gain insight into the optimal value of the hyper parameters which leads to best performance.
In order to compare value and find a good one, the performance metric is defined in the next
section.

D.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R
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Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

D.3 Test procedure

The test setup is generally the same for tuning of state parameters and hyper-parameters, with
one important difference which will be discussed later. The general setup is as follows:

Table D.1: Technical parameters used when tuning agent parameters.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
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implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.

• A history of the 2 previous beams at the UE

• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

As mentioned before, the test methodology is slightly different for the hyper-parameters, than
for the states. When tuning the hyper-parameters, first a training period is undergone, followed
by validation period. The training and validation periods both follow the general setup above,
except during the validation period, the tracks are chosen from a validation collection which
consists of all new tracks. In the training period the hyper-parameters will take on a fixed set of
default values regardless of the test. Then in the validation period the hyper-parameters switch
to the values to be tested. This extra step is to ensure the parameters are tested on similar
agents, and to investigate if there is overfitting, which is tested by having the environment in
the validation period be independent from the one in the training period.

All the results from hyper-parameter tuning in this chapter are from tests following this
methodology. However, after the tests were performed, further reflection on the method found
that it does not make a lot of sense to do it this way, if the intention is to investigate overfitting.
Further comments about the effect of this mistake and a discussion about what should have
been done instead can be found in Chapter 7.

D.3.1 Variables

The algorithm consists of a number of variables, where every variable except the hyper
parameters will be kept constant throughout this test to ensure valid comparisons. The constant
variables are the following.

Sr : [−] State space of the UE Sr =′ 2− 0− 1− 8− 2− 32′

St : [−] State space of the BS St =′ 0− 2− 0− 0− 2− 32′

A : [−] Action space A = adjacent

The action space A is the adjacent action space as described in Section 4.1.2.

The state space is chosen as the best performing, from the tests described in A.
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D.3.2 Values to be tested

It is infeasible to test every and all value combinations and therefore a subset of values will
be identified for testing. As resources are limited the search is conducted over each variable
separately. That is optimization will be performed with respect to a single variable at a time,
instead of over them jointly. Furthermore the values of the hyper parameters will be equal
for both agents. The optimization will be performed in the order given below. The value the
variable takes before being optimized is also given.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ constant : [−] Exploration rate ϵ constant = 0.01
ϵ decaying : [−] Exploration rate ϵ decaying = N/A
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A

A thorough explanation of these variables can be found in Section 4.4.4. γ is chosen to be 0.7, as
it was found to be optimal in Appendix C and is therefore used as a starting point. α is chosen
to be 0.01, as it was found to be optimal in Appendix C and is therefore used as a starting
point. ϵ is chosen to be 1% or 1 out of 100 steps is an exploration step. This value was found
to be optimal in Appendix C and is therefore used as a starting point.

ϵdecaying is not directly chosen but calculated based on the equation given below

ϵdecaying = exp(− t

wd
) (D.1)

Where wd is a weight factor controlling the rate of decay of the logarithmic decreasing function.

ϵadaptive is not directly chosen but calculated based on a set of equations from [25]. A separate
ϵ belongs to each state which is adjusted based on the following equation

ϵ = δ · ϵ+ (δ − 1) · ϵadj (D.2)

where δ is a value weighting how much ϵ should be influenced by the calculated ϵadj value. ϵadj
is a value calculated based on the TD-error as given below

ϵadj =
1− exp(

−abs(α · TD − error)

σ
)

1 + exp(
−abs(α · TD − error)

σ
)

(D.3)

where α is the step size and σ is a weight adjusting how sensitive ϵadj is to changes in the
TD-error.

These values are varied in a neighbourhood around their default values given above. The different
values being tested are given in Table D.2.

γ 0.6 0.7 0.8
α 0.005 0.01 0.05

ϵconstant 0.001 0.005 0.01
ϵ decaying weight 150 300 600 900
ϵ adaptive weight 0.3 1 10 15

Table D.2: Value of variables to be tested
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The values of ϵ decaying and ϵ adaptive are unlike that of ϵ constant, in the sense that the
latter simply describes the value of ϵ while the two former describe a weight, which has different
impact depending on the method.
The values of ϵ decaying are that of wd in Eq. (D.1). They are chosen in a range around the
optimal value found in C, and is resat at the end of an episode.
The values of ϵ adaptive are that of σ · 103 in Eq. (D.3). They are chosen such that the average
TD-error obtained in the case of a ϵ constant results in an exploration rate in the neighborhood
of that same constant ϵ.

D.4 Results/Conclusion

In the following section the results of the simulations of agents with the states given in
Appendix D.3.2 are presented. The legend on every figure describes the state and the hyper
parameters an agent had when generating the data. This state is encoded in the same way, and
order as Table 4.1, where the first states is for the UE, and the second state is for the BS. The
hyper parameters are encoded as, starting value of ϵ, value of α, value of γ and if applicable a
weight factor, respectively.

Table D.3: Table of different misalignment measurements of multi agents with different γ-values. Results
are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.5 dB 7.2 dB 2.4 dB 16.5 dB

γ = 0.1 7.3 dB 3.9 dB 0.1 dB 10.7 dB

γ = 3 7.7 dB 4.3 dB 0.7 dB 11.4 dB

γ = 15 8.8 dB 5.5 dB 1.9 dB 13.6 dB
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Figure D.1: Forgetting factor
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS ϵ α γ

It can be seen that the optimal forgetting factor is slightly smaller than in the single agent case.
This slightly smaller value may favor the UE more as it’s codebook is smaller. The performance
of the non-optimized state pair is included for comparison.
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Table D.4: Table of different misalignment measurements of single centralized agents with different
adaptive ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.5 dB 7.2 dB 2.4 dB 16.5 dB

α = 0.01 7.3 dB 3.9 dB 0.1 dB 10.7 dB

α = 0.005 8.1 dB 4.3 dB 0.9 dB 12.6 dB

α = 0.05 8.2 dB 4.6 dB 1.0 dB 12.4 dB
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Figure D.2: Step size
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS ϵ α γ

Table D.5: Table of different misalignment measurements of single centralized agents with different
adaptive ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.5 dB 7.2 dB 2.4 dB 16.5 dB

Constant: γ = 0.001 7.7 dB 4.2 dB 0.4 dB 11.5 dB

Constant: γ = 0.01 7.3 dB 3.9 dB 0.1 dB 10.7 dB

Constant: γ = 0.005 8.6 dB 5.1 dB 1.7 dB 13.2 dB
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Figure D.3: Constant epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS ϵ α γ

The tuning of the constant epsilon has a marginal if any effect on the performance, best seen
when comparing Fig. D.2 and Fig. D.3.

Table D.6: Table of different misalignment measurements of single centralized agents with different
adaptive ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.5 dB 7.2 dB 2.4 dB 16.5 dB

Decaying: γ = 150 9.1 dB 5.5 dB 2.0 dB 14.0 dB

Decaying: γ = 300 8.9 dB 5.1 dB 1.3 dB 13.8 dB

Decaying: γ = 600 9.6 dB 5.6 dB 1.9 dB 15.0 dB

Decaying: γ = 900 9.9 dB 5.8 dB 1.7 dB 15.6 dB
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Figure D.4: Decaying epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS ϵ α γ wd

The decaying ϵ delivers poor performance, in agreement with the single agent results from
Appendix C.
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Table D.7: Table of different misalignment measurements of single centralized agents with different
adaptive ϵ-values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Reference 10.5 dB 7.2 dB 2.4 dB 16.5 dB

Adaptive: γ = 0.3 9.2 dB 5.2 dB 1.0 dB 14.4 dB

Adaptive: γ = 1 8.8 dB 5.0 dB 1.3 dB 13.6 dB

Adaptive: γ = 10 7.8 dB 4.3 dB 0.4 dB 11.8 dB

Adaptive: γ = 15 8.4 dB 5.0 dB 1.9 dB 12.4 dB
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Figure D.5: Adaptive epsilon
Legend values indicate: Nbr-Nbr-Nr-Ro-Rd-Ra for UE & BS ϵ α γ σ · 103

An optimal value of an adaptive ϵ delivers improved performance with regard to convergence
time, however no performance gain is seen in the final average misalignment.

This leads to the conclusion that the optimal values for the hyper parameters for an agent at
each terminal are given in the list below

γ : [−] Forgetting factor γ = 0.6
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A, σ = 10 · 10−3
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Update rule analysis of
agent(s) with adjacent

actions E
E.1 purpose

In this test report multiple action value estimate update methods, for agent(s) with adjacent
action scheme, will be tested to evaluate performance. The update methods will be tested by
simulating agents and recording performance metrics. Both the case of a single centralized agent,
and of an agent at each terminal will be simulated. Evaluation and comparison will be based on
the recorded metrics, and will focus on general performance. These tests are conducted to gain
insight into which update method performs the best. In order to compare the update methods,
the performance metric is defined in the next section.

E.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
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the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

E.3 Test procedure

The test setup is generally the same as for tuning of state parameters. The general setup is as
follows:

Table E.1: Technical parameters used when running tests with different update rules.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.
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• A history of the 2 previous beams at the UE

• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

E.3.1 Variables

The algorithm consists of a number of variables, where every variable except the update method
will be kept constant throughout this test to ensure valid comparisons. Two sets of variables
will be presented, the first for the case of a single centralized agent, and the next for an agent
at each terminal. The first set of constant variables are the following.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
S : [−] State space S =′ 2− 2− 1− 8− 2− 32′

A : [−] Action space A = adjacent

γ is chosen as the best performing, from the tests described in Appendix C. α is chosen as
the best performing, from the tests described in Appendix C. ϵ adaptive is chosen as it is the
best performing ϵ method and it’s weight value is chosen as the best performing, from the tests
described in Appendix C. The state space is chosen as the best performing, from the tests
described in A.

The second set of variables for an agent at each terminal is:

γ : [−] Forgetting factor γ = 0.6
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
Sr : [−] State space of the UE Sr =′ 2− 0− 1− 8− 2− 32′

St : [−] State space of the BS St =′ 0− 2− 0− 0− 2− 32′

A : [−] Action space A = adjacent

Note here that the agents at both terminals have the same hyper parameters. γ is chosen as the
best performing, from the tests described in Appendix D. α is chosen as the best performing,
from the tests described in Appendix D. ϵ adaptive is chosen as it is the best performing ϵ method
and it’s weight value is chosen as the best performing, from the tests described in Appendix D.
The state space is chosen as the best performing, from the tests described in B.
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E.3.2 Methods to be tested

A limited number of different methods for updating the value estimate will be tested. The
methods to be tested are SARSA, Q-learning and weighted average update. All these methods
share a similar update rule as given below

Q(s1,q1) = Q(s1,q1) + α · (R+ method term−Q(s1,q1)) (E.1)

where the method term differs by the method, as given below

Weighted average = 0
SARSA = Q(s2,a2)
Q-learning = max

ao
Q(s2,ao)

A more thorough explanation of these update rules can be seen in Section 3.2.1.

Additionally for the multi agent case another method, which isn’t strictly an update method,
WoLf-PHC will also be tested.

E.4 Data processing

As mentioned in Appendix A.3 each test consists of 70.000.000 steps, however plotting the
relative misalignment for all steps would not result in a graph indicative of the general
performance of the state. To remove the variation within each episode, the misalignment is
calculated based on averages. First the linear misalignment is calculated, and transformed to
logarithmic scale.

MA = 10 · log10(R)− 10 · log10(Rmax)

This misalignment is then averaged across all steps within each episodes, resulting in a reduction
from 70.000.000 data points to 10.000.

RMpe =
1

7000
·
7000∑
i=1

RMi

where

RMm [−] Average reward for a given episode
RMi [−] Reward for a the i’th step in a given episode

In order to remove the influence of a specific track/path on the performance multiple episodes
are averaged to get the final performance measure. The 10.000 episodes are averaged in ten
intervals of 1000 episodes each.

E.5 Results/Conclusion

In the following section the results of the simulations of agents with the update rules given in
Appendix E.3.2 are presented. The legend on every figure describes the state and the hyper
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parameters an agent had when generating the data. This state is encoded in the same way, and
order as Table 4.1. If the test is for a single agent the state is for that centralized agent, if not
then the first states is for the UE, and the second state is for the BS. The hyper parameters
are encoded as, starting value of ϵ, value of α, value of γ and if applicable a weight factor,
respectively.

E.6 Update rule

The update rules that will be tested are SARSA, Q-learning, which are discussed in Section 3.2.1,
and a simple update rule that has the immediate reward as target. The simple update rule
approximates the action-value as the average immediate reward received when taking that action
in that state, and is implemented by modifying SARSA with a discounting faction of γ = 0. The
three updates will be compared with the simple heuristic algorithm to gauge whether this RL
solution is worthwhile. The update rules will be judged based on their performance in terms of
the average misalignment. They will further be analyzed based on the actions the agent take,
with a certain update rule, and based on how often each specific beam was visited.

E.6.1 Single centralized agent

Table E.2: Table of different misalignment measurements of single centralized agents with different
update rules. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Q-learning 10.1 dB 7.1 dB 3.3 dB 14.7 dB

SARSA 11.3 dB 7.7 dB 2.6 dB 17.6 dB

Simple 12.6 dB 6.9 dB 1.8 dB 21.3 dB
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Figure E.1: Absolute misalignment of single centralized agents with different update rules.

In Figure E.1 graphs for three different update rules are plotted. Sarsa, which was used during
state and hyper parameters optimization, is plotted in black. The performance of a heuristic
algorithm has been plotted for reference. The heuristic algorithm performs well despite it’s
simplicity, some of this performance can be assigned to the adjacent action encoding. When
this algorithm chooses to change beam, an adjacent is chosen. If the currently chosen beam
was good, while not all, one of the adjacent beams are likely to be good. The Sarsa algorithm
gets outperformed by the heuristic by around 2 dB which is interesting, as the scenario is LOS
and should be fairly simple. The size of the value space, and the dynamic environment might
be to blame for this. Q-learning outperforms Sarsa slightly, their performance being close isn’t
unexpcted as when ϵ is small the update is the same most of the time.

Figure E.2: Histogram of actions of a single
centralized agent with different update rules for UE

Figure E.3: Histogram of UE codewords chosen
for a single centralized agent with different update
rules
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Figure E.4: Histogram of BS codewords chosen for a single centralized agent with different update rules

When inspecting the actions, given in Fig. E.2, as expected the heuristic algorithms chooses the
stay most often. The behavior for the three update rules are similar. From Fig. E.3 and Fig. E.4
it can be seen that the heuristic algorithm has the greatest propensity to stay in the broader
beams, and lower layers of the codebook. A likely explanation is during simulation if the UE is
close to the BS if a broad beam has sufficient power the heuristic algorithm will stick with it,
even more so because of it’s large coverage. For the UE and to a lesser extent for the BS all
update rules tend to gravitate towards beams which lie at the edge of layers in the codebook, see
Fig. 4.1. This is not unexpected as these beams, while having broader coverage have similar gain
to other beams in the same layer, and are generally better to chose. This is the case even more
so for Sarsa, which is sensible as it’s an update which values states that are close to low value
state less, unlike Q-learning. The beam choices of Q-learning and simple being more similar
than Q-learning and Sarsa is peculiar as the two latter are more similar.

E.6.2 Multi agent

Table E.3: Table of different misalignment measurements of multi agents with different update rules.
Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Q-learning 10.6 dB 7.6 dB 3.2 dB 16.0 dB

SARSA 10.6 dB 7.2 dB 2.5 dB 16.7 dB

Simple 6.4 dB 3.7 dB 0.1 dB 9.2 dB
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Figure E.5: Absolute misalignment of multi agents with different update rules.

In Fig. E.5 graphs for three different update rules are plotted. Sarsa, which was used during
state and hyper parameters optimization, is plotted in black. The performance of a heuristic
algorithm has been plotted for reference. Here Sarsa has every comparable performance to Q-
learning which is expected, where both get outperformed by the heuristic. Based on the single
agent results this is expected. Unlike in the single agent case Q-learning and Sarsa does not
require a large amount of episodes to converge to stable performance which is expected as the
value space is smaller. The simple converges to a considerably better performance than both
the heuristic and the other two update methods quickly. This is surprising considering both it’s
a simpler method, but also the results for the single agent case. The larger value space could
have impaired the algorithm in the single agent case. The method clearly learns over the entire
test, an quiet aggressively

Figure E.6: Histogram of actions for multi agents
with multiple update rules for UE

Figure E.7: Histogram of UE codewords chosen for
multi agents with different update rules
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Figure E.8: Histogram of BS codewords chosen for multi agents with different update rules

The heuristic algorithm still favors the stay option more than the update rules. Simple does
favor the stay option meaningfully more than the other update rules, unlike in the single agent
case. While the simple algorithm moves up and down layers with a similar frequency as the
other update rules it chooses left and right less often, likely meaning the simple algorithm is
more likely to stick with a good beam. The beam choices, in Fig. E.7 and Fig. E.8 are largely
similar to those for the single agent case. The simple algorithm behaves less like Q-learning than
in the single agent case, while still being somewhat similar. Again broader beams are largely
preferred.

An additional series of graphs have been illustrated below for the multi agent case. This is
to prove the WoLF-PHC algorithm with a point of comparison, while technically using the Q-
learning update rule, this was deemed the most appropriate place to include it, as it has a similar
effect on the policy as the other update rules.

Table E.4: Table of different misalignment measurements of multi agents with different update rules
and the WoLf-PHC algorithm. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Q-learning 10.6 dB 7.6 dB 3.2 dB 16.0 dB

SARSA 10.6 dB 7.2 dB 2.5 dB 16.7 dB

WOLF 11.0 dB 7.9 dB 2.9 dB 17.1 dB
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Figure E.9: Absolute misalignment of multi agents with different update rules and the WoLf-PHC
algorithm.

In Fig. E.9 graphs for two different update rules are plotted. Sarsa, which was used during state
and hyper parameters optimization, is plotted in black. The performance of the WoLF-PHC
algorithm has been plotted for comparison. The performance WoLF-PHC is similar to the two
update methods. This isn’t unexpected as WoLF-PHC uses the Q-learning update rule, which
was previously shown to perform similarly to Sarsa. The fact that it does not improve the
performance despite being an algorithm developed specifically for multi agent environments is
interesting. A cause could be the actions limited influence on the environment.

Figure E.10: Histogram of actions for multi agents
with multiple update rules and the WoLf-PHC
algorithm. for UE

Figure E.11: Histogram of UE codewords chosen
for multi agents with different update rules and the
WoLf-PHC algorithm.
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Figure E.12: Histogram of BS codewords chosen for multi agents with different update rules and the
WoLf-PHC algorithm.

The distribution of the actions are almost indistinguishable between the methods. The beams
chosen are very similar between Q-learning and WoLF-PHC which isn’t surprising given their
similarity in both their update rule and performance.
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agent(s) with adjacent

actions F
F.1 purpose

In this test report agent(s) with adjacent action scheme will be tested in different environments
to evaluate performance. The performance will be tested by simulating agents and recording
performance metrics. Both the case of a single centralized agent, and of an agent at each
terminal will be simulated. Evaluation and comparison will be based on the recorded metrics,
and will focus on general performance. These tests are conducted to gain insight into how well
the agent(s) perform in different circumstances. In order to compare the agents, the performance
metric is defined in the next section.

F.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
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the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

F.3 Test procedure

The test setup is generally the same as for tuning of state parameters. The general setup is as
follows:

Table F.1: Technical parameters used when running tests in different environments and scenarios.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.
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• A history of the 2 previous beams at the UE

• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

F.3.1 Variables

The algorithm consists of a number of variables, where every variable except the environment
will be kept constant throughout this test to ensure valid comparisons. Two sets of variables
will be presented, the first for the case of a single centralized agent, and the next for an agent
at each terminal. The first set of constant variables are the following.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
S : [−] State space S =′ 2− 2− 1− 8− 2− 32′

A : [−] Action space A = adjacent

γ is chosen as the best performing, from the tests described in Appendix C. α is chosen as
the best performing, from the tests described in Appendix C. ϵ adaptive is chosen as it is the
best performing ϵ method and it’s weight value is chosen as the best performing, from the tests
described in Appendix C. The state space is chosen as the best performing, from the tests
described in A.

The second set of variables for an agent at each terminal is:

γ : [−] Forgetting factor γ = 0.6
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
Sr : [−] State space of the UE Sr =′ 2− 0− 1− 8− 2− 32′

St : [−] State space of the BS St =′ 0− 2− 0− 0− 2− 32′

A : [−] Action space A = adjacent

Note here that the agents at both terminals have the same hyper parameters. γ is chosen as the
best performing, from the tests described in Appendix D. α is chosen as the best performing,
from the tests described in Appendix D. ϵ adaptive is chosen as it is the best performing ϵ method
and it’s weight value is chosen as the best performing, from the tests described in Appendix D.
The state space is chosen as the best performing, from the tests described in B.
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F.3.2 Environments to be tested

A limited number of different environments will be tested. The environments are limited by the
possibilities of the simulation tools. The environments that are being tested are

• Pedestrian in LOS conditions

• Pedestrian in NLOS conditions

• Car in urban environment in LOS conditions

An explanation of what pedestrian and car being in an urban environment means for the
simulation can be found in Section 2.6 and Section 2.6.4. The differences between LOS and NLOS
are explained in Section 2.5. These environments will be tested for both a single centralized
agent, and for each terminal possessing their own agent.

F.4 Data processing

As mentioned in Appendix A.3 each test consists of 70.000.000 steps, however plotting the
relative misalignment for all steps would not result in a graph indicative of the general
performance of the state. To remove the variation within each episode, the misalignment is
calculated based on averages. First the linear misalignment is calculated, and transformed to
logarithmic scale.

MA = 10 · log10(R)− 10 · log10(Rmax)

This misalignment is then averaged across all steps within each episodes, resulting in a reduction
from 70.000.000 data points to 10.000.

RMpe =
1

7000
·
7000∑
i=1

RMi

where

RMm [−] Average reward for a given episode
RMi [−] Reward for a the i’th step in a given episode

In order to remove the influence of a specific track/path on the performance multiple episodes
are averaged to get the final performance measure. The 10.000 episodes are averaged in ten
intervals of 1000 episodes each.

F.5 Results/Conclusion

In the following section the results of the simulations of agents in different environments given in
Appendix F.3.2 are presented. The agent settings has been tuned using a line-of-sight scenario,
with pedestrian movement tracks. It is thus of interest how the agent performs when the
environment changes to a non-line-of-sight scenario and if the performance seen in pedestrian
movement tracks is replicated when car movement tracks are used instead. In Chapter 2 it is
mentioned that one of the differences between the two movement models are that the car tracks
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move over longer distances and has larger turn radii. Additionally, for the car the orientation of
the UE is fixed to the direction of movement, where in pedestrian movement the orientation is
more erratic.

F.5.1 Single centralized agent

Table F.2: Table of different misalignment measurements of a single centralized agent in different
environments in the pedestrian case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

LOS Sarsa 11.3 dB 7.7 dB 2.6 dB 17.6 dB

NLOS Heuristic 24.6 dB 24.7 dB 16.3 dB 32.3 dB

NLOS Sarsa 24.1 dB 24.1 dB 15.8 dB 31.8 dB
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Figure F.1: Absolute misalignment of a single centralized agent in different environments in the
pedestrian case.

In Fig. F.1 the performance of the optimized centralized Sarsa agent is shown, together with
the heuristic for comparison. The performance of the two methods in the LOS scenario is
significantly better, however this is expected. The signal strength should be less erratic and
the best signal direction shouldn’t change drastically over short periods in LOS compared to
NLOS. The Sarsa performing worse in the NLOS scenario is also partially explained by the fact
the state lends itself better to the LOS scenario rather than NLOS. Pieces of information that
would be useful in the NLOS scenario like information about the geometry of the environment
is considerably more costly to obtain and process.
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Figure F.2: Histogram of actions for a single
centralized agent in different environments for UE
in the pedestrian case

Figure F.3: Histogram of UE codewords chosen for
a single centralized agent in different environments
in the pedestrian case

Figure F.4: Histogram of BS codewords chosen for a single centralized agent in different environments
in the pedestrian case

Seen on Fig. F.2 through Fig. F.4 is the actions taken, and codewords used for the LOS and NLOS
scenario for Sarsa and the heuristic algorithm. In contrast with the LOS scenario the actions
taken in the NLOS scenarios are more evenly distributed for both the heuristic algorithm and
Sarsa. It’s sensible the action stay would be less useful as the NLOS scenario is more dynamic,
which likely would result in good codeword choices to shift around more. The codewords used
in NLOS drastically different, as here neither algorithm is inclined to used codewords close to
the edge of the codepages. All codewords in any given codepage seems chosen equally often.
One would still expect the codewords at the edges of codepages to be more valuable by virtue
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of their larger coverage, this might still be the case as these choices aren’t optimal as seen on
Fig. F.1.

Table F.3: Table of different misalignment measurements of a single centralized agent in different
environments in the car_urban case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 8.0 dB 6.1 dB 3.0 dB 10.7 dB

LOS Sarsa 7.9 dB 5.2 dB 1.5 dB 11.5 dB

NLOS Heuristic 23.6 dB 23.4 dB 14.8 dB 31.9 dB

NLOS Sarsa 23.1 dB 22.8 dB 14.0 dB 31.4 dB
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Figure F.5: Absolute misalignment of a single centralized agent in different environments in the
car_urabn case for.

In Fig. F.5 the performance of the optimized centralized Sarsa agent is shown, together with
the heuristic for comparison. The performance in the car_urban scenario is similar to those
of pedestrian across the board, with a small improvement. This isn’t unexpected as both the
pedestrian and car_urban case are somewhat similar. The small performance improvement
likely comes from the fact that the car_urban case has a less random orientation, because it’s
simply the moving direction of the vehicle. This has also resulted in the Sarsa agent reaching
similar performance as the heuristic, which means the agent was capable of exploiting the simpler
environment more than the heuristic algorithm.
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Figure F.6: Histogram of actions for a single
centralized agent in different environments in the
car_urban case for the UE

Figure F.7: Histogram of UE codewords chosen for
a single centralized agent in different environments
in the car_urban case.

Figure F.8: Histogram of BS codewords chosen for a single centralized agent in different environments
in the car_urban case.

The actions, see in Fig. F.6, largely resemble those for the pedestrian case, which isn’t
unexpected, the cases similarity have already been remarked on. The codeword choices for
the NLOS scenario are close to being equally distributed, with a slight preference toward the
edges of codepages. For the BS some codewords close to the middle of codepages have been
used more often, why this is the case is unknown. Again the performance isn’t impressive, so
any information interpreted from the graphs can only be used as example of what not to do.
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F.5.2 Multi agent

Table F.4: Table of different misalignment measurements of multi agents in different environments for
the pedestrian case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 9.1 dB 6.5 dB 3.7 dB 10.8 dB

LOS Sarsa 10.6 dB 7.2 dB 2.5 dB 16.7 dB

NLOS Heuristic 24.6 dB 23.4 dB 16.3 dB 32.3 dB

NLOS Sarsa 17.7 dB 10.5 dB 9.4 dB 24.8 dB
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Figure F.9: Absolute misalignment of multi agents in different environments for the pedestrian case.

In Fig. F.9 the performance of the optimized Sarsa multi agents is shown, together with the
heuristic for comparison. Unlike in the single agent case, learning provides large improvement
in performance for the NLOS scenario. While learning naturally would be slower in the single
agent case because of the Q-tables’ size, it’s performance seemed like it has converged. The fact
that multi agent not only beats it in NLOS but does so, convincingly is interesting as the single
agent would have an easier time coordinating a pair of beams along a strong reflected path.
Regardless, the multi agent case outperforms the heuristic algorithm by quiet a wide margin in
NLOS.
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Figure F.10: Histogram of actions for multi agents
in different environments for the pedestrian case,
for the UE

Figure F.11: Histogram of UE codewords chosen
for multi agents in different environments for the
pedestrian case.

Figure F.12: Histogram of BS codewords chosen for multi agents in different environments for the
pedestrian case

Like in the single agent case the choices for NLOS, as reflected in Fig. F.10, are more evenly
distributed. This means an equal action distribution is not exclusively a trait of bad performance,
at least not in the NLOS scenario. When inspecting the codeword distributions behavior for
Sarsa in NLOS it’s much close to that of LOS where the edges of codepages are preferred.
This would support having this codeword distribution correlates with good performance. This
behavior is still slightly less pronounced for NLOS than LOS, however the performance is also
worse in NLOS. The slight preference for codewords in the lower half of codepages is interesting,
and might point toward trends in the dataset, however the actual cause is unknown.
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Table F.5: Table of different misalignment measurements of multi agents in different environments for
the car_urban case. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
LOS Heuristic 8.0 dB 6.1 dB 3.0 dB 10.7 dB

LOS Sarsa 7.9 dB 4.8 dB 1.6 dB 11.5 dB

NLOS Heuristic 23.6 dB 23.4 dB 14.8 dB 31.9 dB

NLOS Sarsa 12.7 dB 10.5 dB 4.0 dB 19.5 dB
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Figure F.13: Absolute misalignment of multi agents in different environments for the car_urban case

In Fig. F.13 the performance of the optimized Sarsa multi agents is shown, together with the
heuristic for comparison. This results is not unexpected based on the pedestrian multi agent and
car_urban single agent results. This performance closely mirrors that of the pedestrian case,
although slightly better, with the exception of the NLOS Sarsa which is significantly better.
The less challenging environment of the car_urban case is likely the cause.
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Figure F.14: Histogram of actions for multi agents
in different environments for the car_urban case for
UE

Figure F.15: Histogram of UE codewords chosen
for multi agents in different environments for the
car_urban case.

Figure F.16: Histogram of BS codewords chosen for multi agents in different environments for the
car_urban case.

The actions, in Fig. F.14, resemble those of the pedestrian case. The behavior for Sarsa in
car_urban NLOS posses the same preference for the edges of codepages, especially for the UE
in Fig. F.15. The behavior for the BS is slightly different as it also prefers a couple of codewords
somewhere between the edges and middle of the codepages. While previously unseen behavior
it’s evidently very efficient in the NLOS scenarios in comparison to both the heuristic and single
agents behavior.
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G.1 purpose

In this test report agent(s) with adjacent action scheme will be tested with differing amount of
noise added during the simulation. The performance will be tested by simulating agents and
recording performance metrics. Both the case of a single centralized agent, and of an agent
at each terminal will be simulated. Evaluation and comparison will be based on the recorded
metrics, and will focus on general performance. These tests are conducted to gain insight into
how well the agent(s) perform when influenced by differing levels of noise. In order to compare
the agents, the performance metrics are defined in the next section.

G.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
to be independent of the thermal noise in the equipment. It should be noted that this metric is
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only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

G.3 Test procedure

The test setup is generally the same as for tuning of state parameters. The general setup is as
follows:

Table G.1: Technical parameters used when running tests with different noise amounts.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
PTN -78 dBm Thermal noise power
PNF 9 dB Noise figure power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.
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• A history of the 2 previous beams at the UE
• A history of the 2 previous beams at the BS
• A distance between the UE and BS with a resolution of 4
• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. While this allows an agents performance to converge, an even better performance
measure would be an average over a statistically significant amount of agents. However, as
each simulation takes approximately four hours to run, this is sadly not viable because of time
and resource constraints. Thus the results presented in this chapter will be judged with this
uncertainty in mind.

G.3.1 Variables

The algorithm consisst of a number of variables, where every variable expect the noise level will
be kept constant throughout this test to ensure valid comparison. Two sets of variables will be
presented, the first for the case of a single centralized agent, and the next for an agent at each
terminal. The first set of constant variables are the following:

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
S : [−] State space S =′ 2− 2− 1− 8− 2− 32′

A : [−] Action space A = adjacent
case [−] The mobility case case = pedestrian
scenario [−] The LOS status scenario = LOS

γ is chosen as the best performing, from the tests described in Appendix C. α is chosen as
the best performing, from the tests described in Appendix C. ϵ adaptive is chosen as it is the
best performing ϵ method and it’s weight value is chosen as the best performing, from the tests
described in Appendix C. The state space is chosen as the best performing, from the tests
described in A.

The second set of variables for an agent at each terminal is:

γ : [−] Forgetting factor γ = 0.6
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
Sr : [−] State space of the UE Sr =′ 2− 0− 1− 8− 2− 32′

St : [−] State space of the BS St =′ 0− 2− 0− 0− 2− 32′

A : [−] Action space A = adjacent
case [−] The mobility case case = pedestrian
scenario [−] The LOS status scenario = LOS

Note here that the agents at both terminals have the same hyper parameters. γ is chosen as the
best performing, from the tests described in Appendix D. α is chosen as the best performing,
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from the tests described in Appendix D. ϵ adaptive is chosen as it is the best performing ϵ method
and it’s weight value is chosen as the best performing, from the tests described in Appendix D.
The state space is chosen as the best performing, from the tests described in B.

G.3.2 Noise levels to be tested

As mentioned in Chapter 4, only the thermal noise and the noise factor from the circuits at the
transceivers are considered. The noise is modelled as additive white circular Gaussian noise:

n ∼ CN (0, Pn) , (G.1)

where
Pn is the noise power. As the noise is considered to be thermal noise, the noise power can
calculated as:

Pn = kB · T ·B , (G.2)

where

kB : [J/K] Boltzmann constant
T : [K] Temperature
B : [Hz] Bandwidth

Under normal room temperature the temperature is 290K, and the bandwidth used for mmWave
systems is here assumed to be 400MHz, which results in a noise power of approximately
−88 dBm.

In addition to the thermal noise, which can’t be changed, it is also interesting to investigate the
performance if using less ideal equipment that add further noise due to its noise figure. The
noise figure is based on the assumptions made in the 3GPP channel model specifications, of 9 dB
[16]. However, as the previous tests were all performed with a transmission power of 40 dBm,
which is 10 dBm higher than in usual mmWave scenarios, an additional 10 dBm is added to the
noise in both cases.

G.4 Data processing

As mentioned in Appendix A.3 each test consists of 70.000.000 steps, however plotting the
relative misalignment for all steps would not result in a graph indicative of the general
performance of the state. To remove the variation within each episode, the misalignment is
calculated based on averages. First the linear misalignment is calculated, and transformed to
logarithmic scale.

MA = 10 · log10(R)− 10 · log10(Rmax)

This misalignment is then averaged across all steps within each episodes, resulting in a reduction
from 70.000.000 data points to 10.000.

RMpe =
1

7000
·
7000∑
i=1

RMi
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where

RMm [−] Average reward for a given episode
RMi [−] Reward for a the i’th step in a given episode

In order to remove the influence of a specific track/path on the performance multiple episodes
are averaged to get the final performance measure. The 10.000 episodes are averaged in ten
intervals of 1000 episodes each.

G.5 Results/Conclusion

In the following section the results of the simulations of agents in different environments given
in Appendix F.3.2 are presented.

Table G.2: Table of different misalignment measurements of multi agents with different update rules.
Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic: No noise 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Heuristic: Thermal noise 9.1 dB 6.6 dB 3.7 dB 10.7 dB

Heuristic: Noise factor 8.9 dB 6.5 dB 3.6 dB 10.7 dB

Sarsa: No noise 11.3 dB 7.7 dB 2.6 dB 17.6 dB

Sarsa: Thermal noise 10.2 dB 7.4 dB 3.5 dB 14.6 dB

Sarsa: Noise factor 9.9 dB 6.9 dB 3.2 dB 14.2 dB
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Figure G.1: Performance of a single centralized agent in a noisy environment, compared with a heuristic
algorithm

In Fig. G.1 curves for the performance of a single centralized agent in a noisy environment is
plotted. From this it’s clear that the heuristic algorithm suffers no degradation of performance
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in noisy environments, at least for the LOS scenario. The agents performance actually improves
when noise is added which unexpected. Noise would be likely to make the value estimates worse
which would normally result in worse performance. This difference could be because of the
variations within each test, however the fact that the two noise tests produce practically identical
results would imply otherwise. The exact reason is unknown. The fact that the performance is
equal between the two noise levels is unexpected. A possible explanation is that noise of this
level only meaningfully affect choice with already poor signal power. If the performance of the
agent in general results in high signal power then the noise would only affect the small amount
of actions in which the signal power is low, and as such would only result in a slight degradation
of performance.

Table G.3: Table of different misalignment measurements of multi agents with different update rules.
Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Heuristic: No noise 9.1 dB 6.5 dB 3.7 dB 10.8 dB

Heuristic: Thermal noise 9.1 dB 6.6 dB 3.7 dB 10.7 dB

Heuristic: Noise factor 8.9 dB 6.5 dB 3.6 dB 10.7 dB

Sarsa: No noise 10.6 dB 7.2 dB 2.5 dB 16.7 dB

Sarsa: Thermal noise 10.7 dB 7.4 dB 3.2 dB 16.3 dB

Sarsa: Noise factor 10.7 dB 7.7 dB 3.1 dB 16.2 dB
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Figure G.2: Performance of multi agents in a noisy environment, compared with a heuristic algorithm

In Fig. G.2 in can be seen the noise affects neither the heuristic algorithm nor the Sarsa agent.
While unexpected this is still more reasonable than for the single agent case where noise improved
performance. The step size could be so low to the point where the levels of noise added does
not matter, which would mean the agent is resilient to noise.
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H.1 Determining the parameters for adaptive epsilon algorithm

Following the algorithm in [25] we wanted to find values for the parameter δ and the inverse
sensitivity σ. In the paper they recommend a δ equal to the inverse of the number of actions
possible at a given state, which we approximate as 1/5 as 5 is the expected amount of choices
for the agent.

For the value of σ we have tried to base our analysis on investigation of a plot similar to the one
from the paper, seen below.

Figure H.1: ϵadj as a function of two consecutive Q values

In our case we thought it would make a bit more sense to just plot it in 2D with the x-axis
being the absolute value of the TD-error and the y-axis the value of equation (6) from [25].
We removed the state and action from the equation, by just looking at the TD-error and then
finding out how this is distributed in general, independent of state and action.

We thus ran a small test where we logged the TD-error for each step for 2000 episodes and then
looked at how it was distributed. Both in the beginning and in the final episodes, to see if the
values change a lot after some training.

In the plots below are some cut-outs of some KDE-plots showing the distribution of |TD−error|.
It should be noted that TD-errors of upwards of 0.3 are observed as well, but this is so rare that
we chose only to look in the intervals shown in the plots. We note as well, that the distribution
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of the TD-error seems to be a bit more flat after training, but we still see a definite peak at
0.0003.

Figure H.2: KDE-plot of |TD − error| for the first 50 episodes [0-50]

Figure H.3: KDE-plot of |TD − error| for the last 50 episodes [1950-2000]

From the first plot we see that most of the time the TD-error is around 0.0003 and very rarely
above 0.001. Thus we thought to look at the plot for f(TD_Error, σ), which we will call the
"exploration indicator" for now, in this region, with the goal of having high exploration when
above 0.001 and lower when closer to the mode.

The level of exploration we want, we base on our initial results from the test where we tried a
constant epsilon value and the test where we use a exponential decaying epsilon value. From
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these tests we found that a constant epsilon of around [0.001 − 0.01] gives faster learning and
better end results, than a decaying epsilon value. The results from these two tests are shown in
figures Fig. H.4 and Fig. H.5.

Figure H.4: constant epsilon values

Figure H.5: decaying epsilon values

Thus it seems like a too small epsilon value is not desired, but it might be possible to augment
the performance of the constant epsilon by exploring a bit more some times. We then think that
a good point of reference for our tests with adaptive epsilon would be to have f(TD_Error)
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be around 0.005 at the mode, as this should be similar to having our constant epsilon, when a
state has a good estimate and has been visited many times. We can then shift the σ value a bit
up and down and compare the results.

H.2 Developing our own version with a sigmoid function

Now, it has proven a bit hard to have an exploration indicator of 0.005 at a TD-error of 0.0003 but
also high at a TD-error of 0.001, by using the equation in [25]. An example of how f(TD_Error)

looks like at these regions is shown in Fig. H.6 and Fig. H.7 as the red line. We would like that
the exploration indicator is at least above 0.2 when it is to be deemed "high", although we have
no good argumentation for this.

Figure H.6: Plot of the exploration indicator in the range around the edge of the KDE-plot. Red plot
is function from [25], blue is Sigmoid.
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Figure H.7: Plot of the exploration indicator in the range around the mode. Red plot is function from
[25], blue is Sigmoid.

After tweaking the σ value for some time, we thought of something else that might get us closer
to what we want. Rather than using the function (H.1) from [25], we modify it to be a similar
sigmoid function as seen in (H.2). This new function has approximately fs(0.001) = 0.5 and
fs(0.0003) = 0.005 as wanted.

fs(TD_Error) =
1− exp(

−|α · TD_Error|
σ

)

1 + exp(
−|α · x|

σ
)

(H.1)

fs(TD_Error) =
1

1 + exp(
−0,01 · (|TD_Error| − 0,001)

σ
)

− 1

1 + exp(
−0,01 · (|0| − 0,001)

σ
)

(H.2)

Now, we would like to hear your thoughts about both our logic when finding a range for the
value of σ and also about using the other function that we don’t really have any citation for?
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Analysis of hyper parameters
with corrected validation

method I
I.1 Purpose

A series of test have been conducted to find the optimal values of the hyper-parameters. The tests
themselves are described in Appendix C and Appendix D, and the results are further analyzed
in Chapter 5. In that chapter and in Chapter 7 the shortcomings of the test methodology
was discussed. This test report employs a test methodology which produces results that more
accurately represents the intention behind the hyper-parameters analysis. In the interest of time
these tests will only be used with multiple distributed agents.

I.2 Test metric(s)

The performance metrics used in this report are all based on the misalignment between the
received signal power and the highest achievable signal power at each time step. This metric is
used instead of the received signal power alone, as this value is expected to vary significantly
as the agent moves around the environment, regardless of the choices made. This is due to
phenomena like free space loss and absorption, and thus a low received signal power might not
necessarily correspond to bad performance of the agent.

Thus the misalignment is used instead, which is calculated as the difference between the received
signal power and maximum achievable signal power in dB scale. The maximum signal power is
defined as the maximum found when looking at all possible combinations of codewords in the
entire codebook and not just those available to the agent at the current time step.

M = Sm − Smax

where

M : [dB] Misalignment RM ∈ R
Sm : [dB] Received signal power Sm ∈ R
Smax : [dB] Maximum achievable signal power Smax ∈ R

Both the received and maximum power used for calculating the misalignment are without added
noise, to better allow the metric to measure the quality of the choices made. This is based on
the notion that choices should be made based on the quality of the channel, which is assumed
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to be independent of the thermal noise in the equipment. It should be noted that this metric is
only obtainable because the test is simulated, as normally the maximum achievable signal power
is not directly available.

The metrics used to compare the different agent configurations are:

• Average misalignment

• Median misalignment

• 1st quartile misalignment

• 3rd quartile misalignment

I.3 Test procedure

The test setup is generally the same as for tuning of state parameters. The general setup is as
follows:

Table I.1: Technical parameters used when running tests with different noise amounts.

Parameter Value Description
B 400 MHz Total bandwidth
fc 28 GHz mmWave carrier frequency
PTX 40 dBm Transmission power
PTN -78 dBm Thermal noise power
PNF 9 dB Noise figure power
rc 200 m Cell radius
Nr 8 Number of receive antennas
Nt 16 Number of transmit antennas
M 10000 Number of episodes pr. simulation
N 7000 Number of steps pr. episode

A simulation consists of several episodes, with each episode consisting of one or more agents
following a path, taking an action at each step. A track is chosen at random from a collection
of 16 tracks at the beginning of each episode. Each track in the pedestrian collection is 20000
steps long, however the path used in each episode is only 7000 steps long. Thus a random
starting point on the track is chosen as well at the beginning of each episode. By keeping the
episodes shorter than the length of the tracks, it is possible to get more unique paths for the
agent to follow in different episodes, along with a lot of paths with differing amounts of overlap.
This means that it is not just the same 16 paths which are traversed over and over again in
the simulation. 7000 steps was chosen as a fitting trade-off between path length and number
of unique paths in total. The agent keeps the Q-table values between episodes, and thus learns
across all episodes.

In order to ensure that the test metrics are statistically accurate, and to give the agent a chance
to explore the entire state space, many episodes are simulated. Both the number of episodes
and number of steps in each episode, are derived based on an intermediately sized state space.
The total number of steps in the simulation should be enough for an agent to explore all state-
action pair, to give accurate value estimates. The state given below, based on a single agent
implementation, is assessed to be an intermediate state, and was used to derive the total number
of steps.
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• A history of the 2 previous beams at the UE

• A history of the 2 previous beams at the BS

• A distance between the UE and BS with a resolution of 4

• An angle between the UE and the BS with a resolution of 8

The size of the combined state-action space of this state was determined in Section 4.4.2 to be
6.05 · 106 state-action pairs. In order to allow proper exploration, the total number of steps
for a simulation is set such that each state-action pair can be visited approximately ten times,
resulting in a total step number of 70 · 106 steps. This gives a total of 10000 episodes in a
simulation. After initial simulation the agent will be transferred to a identically distributed but
independently drawn environment. A simulation of the same length will then be run again.
The agent keeps all value between the simulation. The second simulation is to ensure the
performance shown for a specific combination of hyper-parameters generalizes. This test period
is the validation period, while the first simulation is the training period. While this allows an
agents performance to converge, an even better performance measure would be an average over
a statistically significant amount of agents. However, as each simulation takes approximately
four hours to run, this is sadly not viable because of time and resource constraints. Thus the
results presented in this chapter will be judged with this uncertainty in mind.

I.3.1 Variables

The algorithm consisst of a number of variables, where every variable expect the noise level will
be kept constant throughout this test to ensure valid comparison. Two sets of variables will be
presented, the first for the case of a single centralized agent, and the next for an agent at each
terminal. The first set of constant variables are the following:

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
S : [−] State space S =′ 2− 2− 1− 8− 2− 32′

A : [−] Action space A = adjacent
case [−] The mobility case case = pedestrian
scenario [−] The LOS status scenario = LOS

γ is chosen as the best performing, from the tests described in Appendix C. α is chosen as
the best performing, from the tests described in Appendix C. ϵ adaptive is chosen as it is the
best performing ϵ method and it’s weight value is chosen as the best performing, from the tests
described in Appendix C. The state space is chosen as the best performing, from the tests
described in A.

The second set of variables for an agent at each terminal is:
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γ : [−] Forgetting factor γ = 0.6
α : [−] Action value adjustment amplitude α = 0.01
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A
Sr : [−] State space of the UE Sr =′ 2− 0− 1− 8− 2− 32′

St : [−] State space of the BS St =′ 0− 2− 0− 0− 2− 32′

A : [−] Action space A = adjacent
case [−] The mobility case case = pedestrian
scenario [−] The LOS status scenario = LOS

Note here that the agents at both terminals have the same hyper parameters. γ is chosen as the
best performing, from the tests described in Appendix D. α is chosen as the best performing,
from the tests described in Appendix D. ϵ adaptive is chosen as it is the best performing ϵ method
and it’s weight value is chosen as the best performing, from the tests described in Appendix D.
The state space is chosen as the best performing, from the tests described in B.

I.3.2 Hyper-parameters to be tested

It is infeasible to test every and all value combinations and therefore a subset of values will
be identified for testing. As resources are limited the search is conducted over each variable
separately. That is optimization will be performed with respect to a single variable at a time,
instead of over them jointly. Furthermore the values of the hyper parameters will be equal
for both agents. The optimization will be performed in the order given below. The value the
variable takes before being optimized is also given.

γ : [−] Forgetting factor γ = 0.7
α : [−] Action value adjustment amplitude α = 0.01
ϵ constant : [−] Exploration rate ϵ constant = 0.01
ϵ decaying : [−] Exploration rate ϵ decaying = N/A
ϵ adaptive : [−] Exploration rate ϵ adaptive = N/A

A thorough explanation of these variables can be found in Section 4.4.4. γ is chosen to be 0.7, as
it was found to be optimal in Appendix C and is therefore used as a starting point. α is chosen
to be 0.01, as it was found to be optimal in Appendix C and is therefore used as a starting
point. ϵ is chosen to be 1% or 1 out of 100 steps is an exploration step. This value was found
to be optimal in Appendix C and is therefore used as a starting point.

ϵdecaying is not directly chosen but calculated based on the equation given below

ϵdecaying = exp(− t

wd
) (I.1)

Where wd is a weight factor controlling the rate of decay of the logarithmic decreasing function.

ϵadaptive is not directly chosen but calculated based on a set of equations from [25]. A separate
ϵ belongs to each state which is adjusted based on the following equation

ϵ = δ · ϵ+ (δ − 1) · ϵadj (I.2)
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where δ is a value weighting how much ϵ should be influenced by the calculated ϵadj value. ϵadj
is a value calculated based on the TD-error as given below

ϵadj =
1− exp(

−abs(α · TD − error)

σ
)

1 + exp(
−abs(α · TD − error)

σ
)

(I.3)

where α is the step size and σ is a weight adjusting how sensitive ϵadj is to changes in the
TD-error.

These values are varied in a neighbourhood around their default values given above. The different
values being tested are given in Table I.2.

γ 0.6 0.7 0.8
α 0.005 0.01 0.05

ϵconstant 0.001 0.005 0.01
ϵ decaying weight 150 300 600 900
ϵ adaptive weight 0.3 1 10 15

Table I.2: Value of variables to be tested

The values of ϵ decaying and ϵ adaptive are unlike that of ϵ constant, in the sense that the
latter simply describes the value of ϵ while the two former describe a weight, which has different
impact depending on the method.
The values of ϵ decaying are that of wd in Eq. (I.1). They are chosen in a range around the
optimal value found in C, and is resat at the end of an episode.
The values of ϵ adaptive are that of σ · 103 in Eq. (I.3). They are chosen such that the average
TD-error obtained in the case of a ϵ constant results in an exploration rate in the neighborhood
of that same constant ϵ.

I.4 Training

In the following section the results of the simulations of multiple distributed agents with the
hyper-parameters given in Table I.2 are presented. The training period is examined in this
section, and the validation period in the next.

I.4.1 Forgetting factor

Table I.3: Table of different misalignment measurements of training of multi agents with different γ
values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
γ = 0.6 10.2 dB 7.3 dB 2.9 dB 15.6 dB

γ = 0.7 9.7 dB 6.6 dB 2.8 dB 14.8 dB

γ = 0.8 10.3 dB 7.2 dB 3.0 dB 15.8 dB
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Figure I.1: Absolute misalignment of training of multi agents with different γ values.

I.4.2 Step size

Table I.4: Table of different misalignment measurements of training of multi agents with different α
values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
α = 0.01 10.2 dB 7.3 dB 2.9 dB 15.6 dB

α = 0.005 9.8 dB 6.7 dB 2.8 dB 15.0 dB

α = 0.05 9.6 dB 5.9 dB 2.2 dB 15.0 dB
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Figure I.2: Absolute misalignment of training of multi agents with different α values.
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I.4.3 Exploration rate

Table I.5: Table of different misalignment measurements of training of multi agents with different
adaptive ϵ values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Adaptive: ϵ = 0.3 11.7 dB 8.8 dB 3.3 dB 18.1 dB

Adaptive: ϵ = 1 10.7 dB 7.5 dB 2.7 dB 16.6 dB

Adaptive: ϵ = 10 10.4 dB 7.3 dB 2.7 dB 15.9 dB

Adaptive: ϵ = 12 11.1 dB 8.4 dB 3.4 dB 17.0 dB
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Figure I.3: Absolute misalignment of training of multi agents with different adaptive ϵ values.

I.5 Validation

I.5.1 Forgetting factor

Table I.6: Table of different misalignment measurements of validation of multi agents with different γ
values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
γ = 0.6 8.0 dB 4.7 dB 1.1 dB 12.2 dB

γ = 0.7 8.2 dB 4.5 dB 1.2 dB 12.4 dB

γ = 0.8 8.5 dB 5.4 dB 2.0 dB 13.0 dB
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Figure I.4: Absolute misalignment of validation of multi agents with different γ values.

I.5.2 Step size

Table I.7: Table of different misalignment measurements of validation of multi agents with different α
values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
α = 0.01 8.0 dB 4.7 dB 1.1 dB 12.2 dB

α = 0.005 7.9 dB 4.5 dB 1.1 dB 11.7 dB

α = 0.05 5.9 dB 5.9 dB 2.0 dB 14.8 dB
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Figure I.5: Absolute misalignment of validation of multi agents with different α values.
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I.5.3 Exploration rate

Table I.8: Table of different misalignment measurements of validation of multi agents with different
adaptive ϵ values. Results are from the last 1000 episodes in each test.

Absolute Misalignment
Test config. Average Median 1st quartile 3rd quartile
Adaptive: ϵ = 0.3 8.7 dB 4.9 dB 1.2 dB 13.6 dB

Adaptive: ϵ = 1 8.4 dB 4.9 dB 1.4 dB 12.5 dB

Adaptive: ϵ = 10 8.2 dB 4.9 dB 1.6 dB 12.0 dB

Adaptive: ϵ = 12 9.5 dB 6.5 dB 2.7 dB 14.3 dB

(0, 1000)
(1000, 2000)

(2000, 3000)
(3000, 4000)

(4000, 5000)
(5000, 6000)

(6000, 7000)
(7000, 8000)

(8000, 9000)

(9000, 10000)

Episode range [-,-]

8.0

8.5

9.0

9.5

10.0

Av
er

ag
e 

ab
so

lu
te

 m
isa

lig
nm

en
t [

dB
]

Adaptive: w = 0.3
Adaptive: w = 1
Adaptive: w = 10
Adaptive: w = 15

Figure I.6: Absolute misalignment of validation of multi agents with different adaptive ϵ values.
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