Self-supervised Keyword Spotting

eW GR
o™ %,

SPA10 Master Thesis

Holger Severin Bovbjerg

MSc. in Signal Processing and Acoustics

with Specialisation in Signal Processing and Computing
Aalborg University

02-06-2022

Copyright ©Aalborg University 2022

This project report was typeset with the online BTEX editor Overleaf. The front page brain illustration
was found on iStock. Figures have been created using the python package Matplotlib and the online

flowchart and diagram maker draw.io.

AALBORG UNIVERSITY

STUDENT REPORT

Title:

Self-supervised Keyword Spotting

using Data2Vec Pretraining

Theme:

SPA10 Master Thesis

Project-period:

February 2022 - June 2022

Project-group:

Group 1071

Participant(s):

Holger Severin Bovbjerg

Supervisor(s):

Zheng-Hua Tan

No. of pages: 49
Appendix: 0
Date of completion 02-06-2022

Department of Electronic Systems

2nd year of study

M.Sc. in Signal Processing and Acoustics
Fredrik Bajers Vej 7B

9220 Aalborg @st

https://www.es.aau.dk/

Abstract:

In recent years, the development of accur-
ate deep keyword spotting (KWS) models has
resulted in keyword spotting technology be-
ing embedded in a number of technologies
such as voice assistants. Many of these mod-
els rely on large amounts of labelled data
to achieve good performance. As a result,
most models are restricted to applications
for which a large speech dataset can be ob-
tained. Self-supervised learning is a prom-
ising area of research which seeks to remove
the need for large labelled datasets by lever-
aging unlabelled data, which is easier to ob-
tain in large amounts. In this thesis, the use
of a newly proposed general self-supervised
learning framework called Data2Vec is in-
vestigated for increasing the performance of
KWS models when only a small amount of
labelled data is available. A transformer
based KWS system is implemented and ex-
periments are carried out on a reduced la-
belled setup of the Google Speech Commands
dataset, to test the benefit of Data2Vec pre-
training. It is found that models pretrained
using Data2Vec greatly outperform the mod-
els without Data2Vec pretraining. The res-
ults show that the Data2Vec pretraining can
be used to increase the performance of KWS
models when only a small amount of labelled
data is available for training.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

Aalborg University

Holger Severin Bovbjerg v

iv

Preface

This is a 10th semester master thesis project by Holger Severin Bovbjerg of Signal Processing
and Acoustics with Specialization in Signal Processing and Computing at Aalborg University.
period from July 2021 to December 2021.

Reading Guide

It is expected that the reader has general knowledge in the area of machine learning,
including common neural network model architectures, different layer types, loss functions
and optimization methods.

The report follows the rules established by the ISO/IEC 80000 standard. Consequently, SI units
are used. In this report, period (.) is used consistently as decimal separator. Citations are
made according to the IEEE citation method. All figures without citations are created by the
authors for the project. A list of acronyms used in the report and their meanings is found after
the table of contents. Figures, tables, equations, and algorithms are inserted and enumerated
according to chapter and order of insertion.

The report is structured as follows: First, an introduction to the problem is presented along
with a research question. In the next two chapters, the area of deep key word spotting and
self-supervised learning a described. Next, an implementation of a keyword spotting system
using Data2Vec pretraining is presented. This is followed by a chapter describing experiments
and results for Data2Vec pretraining, and finally a conclusion is found.

Acknowledgements

I would like to express my sincere thanks to my supervisor Zheng-Hua Tan, for his always
helpful suggestions whenever problems arose, and for many insightful discussions on the topic
of self-supervised learning, all of which have been a great help throughout the semester.

Contents

1 Introduction
1.1 ResearchQuestion i i i i i i it ittt e e
2 Keyword Spotting
2.1 Current State of Keyword Spotting systems
2.2 Speech Feature Extractiont enenn..
2.3 TheAcousticModel e e
2.4 Posterior Handling @ it
2.5 Evaluation of Keyword Spotting Systems
3 Self-supervised Learning
3.1 Introduction to Self-supervised Learning
3.2 Contrastive Learning« v v v v i it e e e e e e e e e e e
3.3 Non-contrastive Learning vt ittt e e e
3.4 CounteringModelCollapse e
3.5 TheData2Vecframework i
4 Implementation of Self-supervised Keyword Spotting system
4.1 Features extraction v v v v v v v v it e e e e e e e e e e e
4.2 Acousticmodel e
4.3 Data2Vec Module for Pretraining o v v vt v v vt
5 Experiments and Results
5.1 ComputingResources. o i i ittt e e
5.2 ExperimentTracking e
5.3 Dataset. L e e e e e e e
5.4 Experiments it e e e e e e e e e e e e e e e e e e
6 Conclusion
Bibliography

w

o N 1~ A

12
12
13
17
19
22

24
24
25
27

31
31
32
32
33

43

45

vi

Acronyms

APC Autoregressive Predictive Coding.
ASR Automatic Speech Recognition.
AUC Area Under Curve.

BYOL
Bootstrap Your Own Latent.

CNN
Convolutional Neural Network.

CRNN
Convolutional Recurrent Neural Network.

DCT Discrete Cosine Transform.

DNN
Deep Neural Network.

EMA
Exponetial Moving Average.

FPR False Positive Rate.

GELU
Gaussian Error Linear Unit.

GMM
Gaussian Mixture Model.

GPU Graphics Processing Unit.

GRU
Gated Recurrent Unit.

HMM
Hidden Markov Model.

vii

Acronyms

Aalborg University

HPC
High Performance Computing.

KWS

Keyword Spotting.
KWT

Keyword Transformer.

LSTM
Long Short-term Memory.

LVCSR

Large-vocabulary Continous Speech Recognition.

MFCC

Mel-frequency cepstral coefficient.
MLP

Multilayer Perceptron.
MoCo

Momentum Contrast.

MSE
mean squared error.

RAM
Random Access Memory.

RelU
Rectified Non-linear Unit.

RNN
Recurrent Neural Network.

ROC
Receiver Operating Characteristic.

TCL Time Contrastive Learning.
TPR True Positive Rate.

VICReg

Variation-Invariance-Covariance regularization.

WandB
Weights and Biases.

viii

CHAPTER

Introduction

In the last two decades, deep learning models has proven to be able to solve many advanced
tasks such as object recognition in images, reading and generation of text as well as Automatic
Speech Recognition (ASR). Historically, deep learning models have mostly been trained to
solve specific tasks, benefitting from vast amounts of labelled data used for supervision. As
data labelling is a labour intensive process, the need for labelled data has been a constraint
for further development in the area of deep learning [1]. Recently, a lot of effort has been put
towards the development of more general models which can be reused for multiple tasks, and
towards models which can be used when only a small amount of labelled data is available.
This movement is partly inspired by the fact that humans do not need to be shown thousands
of examples to learn meaningful patterns, and instead learn good representations of the world
from observation [2]. Additionally, it has been theorized that humans reuse parts of the brain
when learning new tasks [3].

The need for more general models and models which can be trained using small labelled data
sets arise in many areas of research. One prevalent example is speech processing, which
involves problems such as voice activity detection, speech generation and ASR. In the last
couple of years, personal assistants like Google Assistant, Amazon Alexa and Apple’s Siri have
become a commonplace in day-to-day life. Common for all is that they rely on advanced ASR
systems, which are activated by keywords in order to save computational resources when the
system is not needed [4]. Keyword activation is done through a so-called Keyword Spotting
(KWS) system, which is used to detect keywords in speech. KWS can be seen as a simpler sub-
problem of ASR and apart from voice assistants KWS also has a number of other use cases such
as speech data mining and phone call routing [5].

While KWS technology has become more and more popular, it is limited by the need for
large amounts of labelled training data. Collecting labelled speech data involves human
transcription of audio, which is very time-consuming. In order to train models which
generalize well, the collected speech data must include many variations of speech, due to the
varying nature of speech, such as pitch and dialects [2]. However, obtaining large labelled data
sets is not feasible in many cases, e.g. for small languages and local dialects. Therefore, many
use cases are restricted to languages where large labelled speech databases are available.

Aalborg University

In the search for more generalizable machine learning models that do not rely on large
amounts of labelled data, self-supervised learning has shown great promise. Self-supervised
learning describes methods in which the data itself is used for supervision, e.g., by removing
some part of the data and training the model to fill in the removed part [2]. As a result, self-
supervised learning can be used to leverage the vast amounts of available unlabelled data, in
contrast to supervised learning which requires labelled data. Self-supervised learning can be
utilized to extract good representations of the data, which can then be used for downstream
tasks such as classification, by training a smaller model which requires less labelled data to
train, using the extracted representations as input [2]. While supervised learning generally
achieves the best performance for many tasks, models which are ‘pretrained’ using a self-
supervised learning objective has been shown to achieve similar performance to models which
are trained in a purely supervised fashion, sometimes even outperforming them, without
needing large labelled data sets [6], [7].

While self-supervised learning is definitely an interesting lead in the search for more general
machine learning models, most self-supervised learning methods are modality specific, i.e,
the pretext tasks for audio feature encoding are generally not applicable for other modalities
such as vision or text [8]. Leading biological theories of human learning suggest that humans
use similar learning processes to understand visual inputs as they do for language [9].
Additionally, general model architectures have been shown to perform better than modality-
specific architectures [10]. Therefore, learning objectives common to multiple modalities
more closely resembles the human learning process, and they might also lead to better
performance.

Recently, a framework called Data2Vec was developed with the goal of unifying the self-
supervised learning objective for multiple modalities [8]. Data2Vec uses a teacher-student
paradigm, with a student model and a teacher model, where the teacher and student networks
are identical, and the teacher network weights are an Exponetial Moving Average (EMA) of the
student network weights. In the Data2Vec framework, the teacher model first encodes the full
input and the student model then encodes a masked input, i.e., a version of input the parts of it
have been removed. The learning objective is then for the student model to predict the latent
representations of the teacher network from the masked input. In this way, the student model
learns to predict the representations of the full input, using only a partial view of the input.
Using the Data2Vec framework, the authors were able to outperform previous state-of-the-art
self-supervised learning methods in speech, image and text processing.

1.1. Research Question Aalborg University

1.1 Research Question

Data2Vec and many other self-supervised methods have only been investigated for very large
models and with very large data sets. Consequently, training these models require numerous
high-end Graphics Processing Units (GPUs) as well as many days or even weeks of training.
This makes training these models infeasible in many cases, e.g. due to limited time or
restricted computing resources. Additionally, for many use cases, such as KWS for voice
assistants, it is desired that the models are small [4]. The smallest model used in the Data2Vec
study has over 90 million parameters, and is able to produce state-of-the-art results for ASR
using a large database for pretraining known as Librispeech [11]. However, many speech
processing problems are much simpler than general ASR, and might not require such extensive
pretraining nor such a large model, as is the case for KWS. This raises the question of whether
the same general learning objective of Data2Vec can successfully be used for simpler tasks
like KWS, using significantly smaller models and smaller data sets. Showing that Data2Vec is
applicable for small KWS models could potentially help to open the path for self-supervised
research using smaller models, making self-supervised learning more accessible for people
without access to huge amounts of computing resources. Additionally, it would be a step
towards more generally applicable KWS models which can also be used when only sparse
amounts of labelled data is available. Based on this, the research question of this master thesis
is defined as follows:

Can Data2Vec pretraining using unlabelled data improve the performance of
keyword spotting models, when only a small amount of labelled data is available?

In the following chapters of this master thesis, some background on KWS and self-supervised
learning is first presented. This is followed by a description of the implementation of a
KWS using Data2Vec pretraining. Next, the experiments for testing performance of the
implemented KWS system are described, and their results are presented. Finally, a conclusion
of the project is found.

CHAPTER

Keyword Spotting

One of the main features of intelligence is the ability to communicate through speech. With
the recent development of machine learning models for speech, speech models are now able
to process and understand speech, and can be utilized for a number of speech applications.
Voice assistants like Apple’s Siri and Google Assistant are examples of such applications which
have become a common technology in modern society [4]. Voice assistants incorporate speech
models to understand spoken words in order to carry out specific actions, such as turning
on the lights or setting up calendar appointments. This is done by running ASR systems
which translate audio into sentences, which are then further processed to carry out the
desired action. However, such systems are computationally expensive to run, therefore voice
assistants use a technology known as KWS to activate the ASR system [4]. KWS can be seen as a
sub-problem of ASR, and is the task of identifying specific keywords in audio. KWS systems are
significantly less computationally expensive than a full ASR system, and are thus used to limit
the use of computing resources for voice assistants, when the full ASR system is not needed.
Besides voice assistants, KWS can be used in a number of other applications such as phone call
routing and speech data mining [5]. In the following chapter a brief introduction to the state
of KWS is given followed by a description of the various elements of deep KWS systems. The
purpose of the chapter is to give a general overview of KWS systems.

2.1 Current State of Keyword Spotting systems

Early KWS systems were based on Large-vocabulary Continous Speech Recognition (LVCSR)
where a speech signal is decoded into a number of probable phonetic unit sequences and the
keyword is then searched in these sequences [4]. A disadvantage of such a system is the need
to search a large dictionary, leading to high computational complexity. The keyword/filler
Hidden Markov Model (HMM) is an example of a less computationally expensive approach [4].
Here, a keyword HMM is trained to model keywords and a filler HMM is trained to model non-
keyword audio segments. Viterbi decoding [12] is then used to find the most probable path in
the decoding graph. When the likelihood ratio between the keyword HMM and the filler HMM
reaches a predefined threshold, the KWS system is started [13]. The first kind of such models
used a Gaussian Mixture Model (GMM) to model acoustic features, whereas modern versions
utilize a Deep Neural Network (DNN) [4]. Although keyword/filler HMM approaches are more

4

2.2. Speech Feature Extraction Aalborg University

lightweight than LVCSR systems, the Viterbi decoding can be computationally expensive.

Recently, KWS systems using DNN outputs directly to determine the existence of keywords
in audio have become popular [4]. These systems are known as deep KWS systems and have
shown significant improvements in accuracy over keyword/filler HMM approaches. Moreover,
they do not need Viterbi decoding and can be scaled to match the available computational
resources [4]. A deep KWS system can usually be divided into three parts, namely a feature
extractor, a DNN acoustic model and posterior handling as illustrated in fig. 2.1.

Waveform
input

Speech L3>/ Acoustic Model || Keyword Posterior handling

Feature Extraction .
Features Posteriors

Keyword
Classification

Figure 2.1: Illustration of typical KWS system.

2.2 Speech Feature Extraction

The feature extractor in a KWS system is used to generate a compact representation of the
input signal. The purpose of the feature extractor is to reduce the computational complexity
of the KWS task, to discriminate the important features of the input, and to make the system
more robust to acoustic variations [4]. Typically, a speech sequence x is translated into a two-
dimensional feature representation X of size of T x K, with T denoting the time dimension and
K denoting the feature dimension. Thus, the feature representation X is composed of T feature
embeddings of length K. The speech features X can be based on a plethora of feature extraction
methods such as handcrafted features like spectral, cepstral or time-domain features, trained
feature extraction models using neural networks [2], [4] and learned filterbanks [14].

A widely used method for handcrafted speech features is based on log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [4]. These features closely mimic elements of
the human auditory system and have shown to be useful for a number of speech related tasks
[14]. MFCC features are found by first taking the log-Mel spectrogram of the input sequence
x, producing approximately decorrelated features that are suitable for acoustic models [4].
The Discrete Cosine Transform (DCT) transform is then applied to the log-Mel spectrogram
to obtain the MFCC features. A general pipeline for extracting Mel-scale features is seen in
fig. 2.2.

Neural networks such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have also been used for speech feature extraction by producing feature
embedding vectors. As opposed to handcrafted speech features, neural network approaches
learn to extract useful features from the raw input audio without the need for human
intervention. RNNs like Long Short-term Memory (LSTM) [15] and Gated Recurrent Unit (GRU)
[16] networks are known for their ability to model temporal information, and are useful for
summarizing variable-length sequences into fixed-length embeddings [4]. Both architectures

5

2.3. The Acoustic Model Aalborg University

Speech signal

Pre- Framing
—> emphasis —> and —>»| FFT [—>»| |2
Windowing
Discrete Mel-
cosine log | «<— frequency
transform warping

\ Mel-frequency cepstrum \

| Log-Mel spectrogram |

Figure 2.2: General pipeline for extraction of Mel-scale features [4].

have successfully been used for feature extraction in the context of KWS [17], [18]. Approaches
using CNNs includes the Wav2Vec model [2] developed by Facebook (now Meta) which makes
use of a multilayer CNN model to encode speech features.

Another approach is to use learnable filterbanks to extract useful speech features. The idea
behind learnable filterbanks is that the standard Mel-scale filters might not necessarily be
optimal for the task at hand. A recent study explored the use of learned filterbanks to extract
speech features for KWS and compared them to handcrafted Mel-scale features [14]. The study
investigated two learned filterbank approaches. The first approach used a similar method
as Mel-scale features, with the Mel-scale filters substituted with a learnable filterbank and
the second approach used a gammachirp filterbank with learnable parameters. In both
approaches, the filterbanks were trained jointly with a KWS DNN. The general result of the
study was that the learned filterbank approaches showed no statistically significant differences
compared to using standard Mel-scale features [14].

The overall conclusion is that while neural network based methods have proven to be able to
extract useful speech features directly from the raw audio input, handcrafted Mel-scale based
features such as MFCC are still widely used and have proven to be competitive with learned
feature embeddings [4].

2.3 The Acoustic Model

The following section describes various ways of implementing the acoustic model in a KWS
system. An emphasis is put on transformers and the Keyword Transformer (KWT) model, as
the KWT model is used in the implementation of chapter 4.

The core element of a KWS system is the acoustic model, which is responsible for modelling
keywords from the extracted speech features, and producing posterior probabilities of the
keyword being present. The goal of the acoustic model is to provide high accuracy and while
being computationally efficient [4]. The first acoustic models for deep KWS relied on fully-

2.3.1. Transformer models Aalborg University

connected neural networks and showed significant improvements over the at the time state-
of-the art keyword/filler HMM models [4]. Over time, more advanced approaches such as CNNs
and RNNs have substituted the fully-connected neural networks, due to the constant search for
increasingly accurate models [4].

Using CNNs for acoustic modelling made it possible to outperform fully connected neural
network approaches by efficiently modelling time-frequency correlations. Moreover, residual
learning techniques made is possible to make deeper CNNs, with the benefit of increasing
the accuracy of the acoustic models [4]. The most well-known example is the seminal Resnet
architecture originally proposed in 2015 [19], which has since then been adopted for a plethora
of applications.

One drawback of CNNs is their difficulties in modelling long time-dependencies. In contrast,
RNNs naturally model time dependencies of temporal sequences, therefore acoustic models
based on RNNs perform better for tasks involving long time dependencies. Both LSTM and
GRU networks have been explored for KWS acoustic models and have also shown significantly
improved performance compared to fully-connected networks [4]. In an effort to bring the
best of CNN and RNN models together, Convolutional Recurrent Neural Networks (CRNN5)
which combine CNNs and RNNs have been proposed, and have been shown to outperform
standalone CNNs and RNNs [4].

Attention mechanisms have also been applied to RNNs to improve performance [4]. The idea
behind the attention mechanism is to make the model learn what parts of the input it should
focus on, similar to how humans attend to various parts of sentences when communicating.
Generally, the attention mechanism in RNNs is implemented by applying some attention
function to its hidden state [4]. Given a sequence of hidden states {hy, ..., hr_1} obtained by
encoding the input sequence x = {xo, ..., x7_1}, a context relevant subset of the hidden state
sequence is attended to by applying an attention function Att(-) to the hidden state vectors in
order to produce an attended encoding A. This can be defined as in (2.1).

T-1

A= uh; (2.1)

t=0
where a; is the attention weight for time step ¢ found as Att(h;), T is the number of time steps,
and), a; = 1.

2.3.1 Transformer models

While the addition of attention mechanisms to RNN models have improved their performance
for KWS, compared to models without attention [4], RNNs have to process the input
sequentially, which becomes a limiting factor for long sequences [20]. Lately, a new neural
network architecture known as ‘transformer’ networks [20] has gained much popularity in the
machine learning community. Transformers are purely attention based models without any
convolutions or recurrence [20]. Instead, they make use of a self-attention mechanism, in
order to focus on various parts of the input. Contrary to RNNs, transformer models process the
full input sequence at once, making them much more efficient to train, as they allow for better
parallelization [20]. The transformer model was initially proposed for machine translation of
text, however, it has since been adapted for other modalities such as vision [21] and speech [2],
[22].

2.3.1. Transformer models Aalborg University

The self-attention mechanism in transformers works by applying a Scaled Dot Product
Attention to the input, making it possible for the model to attend to different parts of the input
[20]. The Scaled Dot-Product Attention takes a query q of dimension d;, a key k of dimension
dy and a value v of dimension d, as input. The query, key and value vectors are obtained by
matrix multiplication of the input with learned weight matrices W, Wy, W,.. The self-attention
weights are found by computing the dot product between the query and key vectors, dividing
by v/d\ and applying a softmax. The attended output is then found by multiplying the attention
weights and the value vector v. In practice, the set of queries, keys and values are all packed
into matrices Q, K and V yielding (2.2).

T
Att(Q, K, V) = softmax (%%) A" (2.2)

The main building blocks of the transformer model are multi-head attention blocks and
Multilayer Perceptron (MLP) blocks. A so-called multi-head attention is obtained stacking
multiple self-attention modules. Multi-head attention allows for models to attend to the input
in multiple ways, e.g. one attention head might attend to short-time dependencies and another
one might attend to long-term dependencies [23]. Given a multi-head attention block with N
attention heads, the output from each attention head is typically concatenated and linearly
projected to the expected transformer output dimension, as seen in (2.3).

MSA = [SA1;SAy; ... ; SAN]Wproj (2.3)

where SA;, denotes the output of the nth attention head and Wy, is a linear output projection
matrix.

Combining multi-head attention with an MLP results in a transformer encoder block. Both
the multi-head attention and MLP are followed by a layer normalization, and both have a
residual connection. Positional information is given to the model by adding a learnable cosine
positional embedding to the input. The full transformer encoder is depicted in fig. 2.3. The
attention ability of the transformer model can be scaled, by sequentially stacking multiple
transformer encoders or by adding more attention heads [23].

Transformer encoders combined with a small MLP prediction head have been investigated
for KWS. The KWT model, uses MFCC spectrogram as input, and achieves state-of-the-art
accuracy on the Google Speech Commands datasets [22]. Here, the input spectrogram is
divided into a number of patches, which are flattened and used as input tokens for a sequential
transformer model with 12 transformer encoders. Alearnable CLS embedding is concatenated
to the input, yielding an output which embeds the whole spectrogram. This CLS embedding is
used as an input for an MLP with a single linear layer, which is used to classify keywords. The
KWT uses a Cross-Entropy loss, which is a common choice of loss function for KWS models
[4], and the weights are optimized using the Adam optimizer [24]. The model is evaluated on
the Google Speech Commands V2 dataset [25] which is a popular benchmark for KWS systems.
Using this approach together with some data augmentation, the authors of the KWT paper
were able to achieve accuracies up to 98.54 % in 12 keyword setting, and up to 97.74 % in 35
keyword setting.

2.4. Posterior Handling Aalborg University

‘ Layer norm ’
A

‘ Layer norm ’
A

(Multi-head Attention]
17

Positional

Embedding

k%%?

Input embedding

Figure 2.3: Single transformer encoder.

2.4 Posterior Handling

The acoustic model typically outputs a sequence of posteriors Y = {y(o),y(l), o,y },

with each y() being the posteriors over N, classes, such that y(!) € RNe*1, The goal of posterior
handling is then to choose an appropriate classification from given the sequence of posteriors.
This task can be generally carried out in two modes, namely non-streaming and streaming
mode.

Posterior handling, in non-streaming mode, describes multi-class classification of input
segments, typically with a length of around 1s, each consisting of a single word [4]. Here,
the input segment XV is usually just associated with the highest posterior probability class in
the corresponding posterior y(). As the input segment X() only contains one word, the non-
streaming mode does not have to deal with inter-class segments. This means that the posteriors
are usually very peaked for one class, and therefore simply picking the highest probability
keyword class generally works well [4].

In a realistic scenario, a KWS system has to dynamically process incoming audio [4]. As
a result, non-streaming posterior handling does not suffice for real use cases, as the input
segments might not contain the whole keyword. Instead, more advanced methods are used
which, given a sequence of posteriors, seek to find the best keyword classification taking all
posteriors into account. First, it is common to smoothen the posteriors to generate a new

2.5. Evaluation of Keyword Spotting Systems Aalborg University

smoothed posterior), for example by using a moving average [4]. Using the smoothed
posterior, keyword classification can be done by using a sensitivity threshold on the posterior
probability, or simply by selecting the class with the highest posterior probability. However, in
the case that a keyword spans multiple segments, such methods might trigger multiple times
for the same keyword. This can be solved by disabling keyword triggering in the KWS system
for a short period after a keyword has been spotted [4].

More sophisticated methods for streaming KWS exist for more advanced cases, e.g. in the case
of multi-word keywords or when the keyword classification is done using multiple subword
units instead of one word. Such methods include lattice search, where the sequence of
subword units most similar to the keyword are searched in a lattice, and if the probability
of the searched sequence is higher than some threshold, the keyword is classified as present
[4].

2.5 Evaluation of Keyword Spotting Systems

As with many other systems, some means of measuring the performance of a KWS system
is necessary in order to compare it to other KWS systems. While this is rather obvious, the
choice of performance measure is not always obvious. The best performance measure would
be a test with relevant end-users, however, as performing such tests is both costly and time-
consuming, the use of objective evaluation metrics is most common [4]. Objective evaluation
metrics seek to measure the ‘goodness’ of the system, and should correlate with the subjective
end-user evaluation.

One of the simplest yet popular evaluation metrics is the accuracy measure. The accuracy
measure is simply the number of correct classifications divided by the total number of
classifications. For binary classification (keyword/no keyword) this can be calculated by the
sum of true positives and true negatives, divided by the total number of classifications, as seen
in (2.4). In the case of multiple keywords, the evaluation metric is commonly computed for
each keyword, and the results are averaged [4].

TP + TN

= 2.4
accuracy TP + TN + FP + EN (2.4)

While accuracy is a popular performance metric, one can easily see from (2.4) that many
negatives relative to positives, or vice versa, will lead to the performance on one class
dominating the accuracy score, which can lead to misleading conclusions. This can become a
problem for KWS systems, as the system will most likely hear non-keywords most of the time.
E.g., a system which purely outputs ‘no keyword’ would still get a high accuracy score, without
the model being able to spot keywords. However, under the circumstances that the data is
balanced between the different classes, accuracy can be a useful performance measure for
KWS systems.

Another popular performance measure is the use of Receiver Operating Characteristic (ROC)
scores, which is found from the True Positive Rates (TPRs) and False Positive Rates (FPRs) when
varying the decision threshold, i.e. the threshold for which a keyword is classified as detected
[4]. The TPR is found by dividing the number of false positives with the total number of

10

2.5. Evaluation of Keyword Spotting Systems Aalborg University

positives, as seen in (2.5). Likewise, the FPR is found by dividing the number of false positives
by the total number of negatives, as seen in (2.6).

TP

TPR = 5o 25)
FP

FPR = mp 1N (2.6)

By varying the decision threshold for which a keyword is classified as detected, a ROC curve can
be made. A number of different ROC curves are depicted in fig. 2.4. Here, a perfect classifier
has coordinates (0,1) and a random classifier will lie on the diagonal line. Taking the Area
Under Curve (AUC) of the ROC curve yields a performance metric which equals the probability
that a randomly chosen positive example is ranked higher than a randomly chosen negative
example [4]. The AUC of the ROC is a value between 0 and 1, where a higher value means a
better system. The AUC-ROC score can be used for unbalanced scenarios where the accuracy
measure is unsuitable [4].

Two other useful metrics are the precision-recall curve and the F;-score curve. The precision-
recall is build similarly as the ROC curve, by sweeping over a decision threshold replacing TPR
and FPR with precision defined by (2.7) and recall being the same as FPR [4].

TP

pl‘eCiSion - m

(2.7)
The F;-score is defined from the harmonic mean of the precision and recall, as seen in (2.8).

In fig. 2.5 the precision-recall and F — 1-score curves are illustrated. Like with the ROC curve
and AUC of 1 means a perfect classifier.

2
1= 1 . 1 (2.8)
Recall™* + Precision
Perfect
classifier ROC curve
1.0e | Precision-recall F-score
s ;
4 - -
Y e s ——— ol7 5
; 4 \ 0.8 é : 0.8 [...... g !
= ’ : 2
5 0.5 PN Worse 5062 2 06|t e g
3 £ g - :
P VP SR S S T\ WY & oal i/ S 0 A% S AW A
2 P N\ P i
[0.2 TN SRS e Lo 02 | e RNURT:
00 FSPS W SN S ¥ KNP) S SOV SO SO S
’ 0.0 05 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
’ False Oé't' e rate : Recall Sensitivity threshold
positive r
Figure 2.4: Illustration of different Figure 2.5: Illustration of precision-recall (left) and F;-score
roc curves [26]. curves [4].

11

CHAPTER

Self-supervised Learning

In the last couple of years, self-supervised learning has gained much popularity and is seen as
a key element in the search for more general Al algorithms. Self-supervised learning describes
methods which learn in a supervised fashion by extracting labels from the input. Such learning
methods have gained popularity since they do not require data with human annotated labels
to train. In a blog post, Yann LeCun, Chief Al Scientist at Meta and one of the leading people in
the machine learning field, describes self-supervised learning as being part of ‘the dark matter
of intelligence’, with dark matter being a metaphor for the notion of common sense [1].

In the following chapter, a short introduction to the fundamentals of self-supervised learning
is presented, followed by a description of some popular self-supervised learning methods and
some problems involved with self-supervised learning. Lastly, a description of the recently
proposed general self-supervised framework Data2Vec is found.

3.1 Introduction to Self-supervised Learning

In the early stages of life, babies learn from observing their environment and using these
observations to form general models of concepts like objects, gravity and sound [1]. In
contrast, many of the most successful machine learning algorithms rely on supervision to
learn about data. Supervised learning requires external supervision through data with human
annotated labels, which require a substantial amount of time and resources to collect. Self-
supervised learning provides a learning mechanism more similar to that of humans, by using
the data itself as supervision, thereby learning concepts inherent to the data without needing
external supervision [27].

Self-supervised methods are generally used to extract good representations of data, which can
then be used to train simple models for different downstream tasks in a supervised fashion
without the need for large amounts of labelled data [27]. Therefore, self-supervised methods
train models to solve ‘pretext’ tasks, in which the objective is to make the model learn a good
representation of the data, and the actual output of the model during pretraining is of little
interest. After pretraining, the model can be ‘fine-tuned’ to solve downstream tasks where the
model is trained to solve a specific task of interest, such as classification problems.

12

3.2. Contrastive Learning Aalborg University

The general idea of self-supervised learning methods is to predict unobserved or hidden parts
of the input from an observed or unhidden part of the input [1]. E.g. the input data sample can
be augmented in some way, e.g. by adding noise to the data or removing some part of it. The
self-supervised task could then be to associate the augmented input with the unaugmented
input, or to fill in the removed part [1]. In this way, self-supervised learning methods utilize
the data itself to provide supervision and in order for the model to learn a good representation
of the data. A number of such methods has been developed, which can generally be put into
two categories, namely contrastive and non-contrastive methods.

3.2 Contrastive Learning

The group of contrastive self-supervised methods make use of positive and negative pairs of
samples. Positive pairs are data samples which are similar, e.g., two augmented versions of
an input sample. Negative pairs are data samples which are not similar, such as two input
samples of different categories, e.g. a picture of a cat and a picture of a house. The objective in
contrastive learning is to minimize the difference between embeddings of positive pairs and
maximize embeddings of negative pairs. Therefore, the model learns to represent positive
pairs as similar, while negative pairs are represented dissimilar to each other [28]. A typical
contrastive learning pipeline is illustrated in fig. 3.1.

Data augmentation Encoder Pretext Task Contrastive Learning

Figure 3.1: Typical contrastive learning pipeline [29].

3.2.1 SimCLR and MoCo

Two common contrastive self-supervised learning methods are SimCLR [30] and Momentum
Contrast (MoCo) [28]. Methods like SimCLR and MoCo are so-called joint embedding architec-
tures, as they try to produce similar embeddings for different augmentations of the same data
[6]. Such architectures are prone to model collapse, i.e. finding a trivial solution such as con-
stant representation, if no mechanism for preventing collapse is used. However, using a con-
trastive loss can be used to prevent model collapse. Both SimCLR and MoCo use the InfoNCE
loss function as the contrastive objective. Here the positive pair is represented as a query and
a positive key and a negative pair as a query and a negative key. The InfoNCE loss function
supports multiple negative keys and is defined as in (3.1).

exp((q-k*)/7)
exp((q-k¥)/T) + Li-exexp((q-k7)/7)
where g is query representation, k™ is a positive sample key representation, k~ is a negative

sample key representation, K is the total set of keys, and 7 is a temperature parameter which
controls the confidence of the model prediction.

£(q,k", k") = —log (3.1)

13

3.2.1. SimCLR and MoCo Aalborg University

The query and keys in (3.1) can be formed in a number of ways. In SimCLR an input sample
X is transformed randomly into two similar samples x and x” using data augmentation. Doing
this for a batch of input samples yields two matrices X and X' as is illustrated in fig. 3.2.

X
—
/ .
- Augmentation
X H
Input \
xl
%,_J
XI

Figure 3.2: Illustration augmentation for generating positive query and key pairs in SimCLR.

After augmentation, two copies of an encoder network f are used to obtain a query
representation vector h and a key representation vector h’ for each sample in X and X'.
These representations are run through a linear projection head & with one hidden layer and a
Rectified Non-linear Unit (ReLU) to get representations Z and Z’ in the space where contrastive
loss is applied [30]. The projection is done as it was found to increase model performance
compared to using the latent representations directly. In a batch of N samples, a positive
query and key pair (z, z’) is generated for each sample. For each positive pair in a batch, the
key representations for the other N — 1 samples in Z’ are used as negative keys in the InfoNCE
loss. Using the InfoNCE loss, the weights of f and & are updated through back propagation.

In MoCo the input encodings are generated in the same way as in SimCLR, however the keys
are formed using a queuing system [28]. Like SimCLR, MoCo uses two networks of identical
architecture, where one used for generating query representations and the other for keys.
Initially a batch of N samples, is encoded into queries and keys and the InfoNCE loss is used to
update the weights of the query encoder through back-propagation. The keys are then added to
a queue of size K. The key encoder weights are an EMA of the query encoder weights in order
to achieve consistency in the keys between iterations. When the key encoder queue reaches
the maximum number of keys K, the oldest keys are simply popped from the queue. This
mechanism makes the available number of negative keys independent of batch size, whereas
SimCLR requires a large batch size in order to obtain many negative keys [28]. Figure 3.3 shows
a conceptual overview of the SImCLR and the MoCo architecture is seen.

SimCLR and MoCo were originally developed for vision tasks and achieve state-of-the-art
performance on a number of computer vision tasks. While both methods were developed for
learning of visual representations, some of the same concepts have been adapted for learning
speech representations. Jiang et al. [31] as well as Al-Tahan and Mohsenzadeh [32] use a similar
approach as SimCLR, replacing the image augmentations with time-domain and frequency
domain augmentations for audio, in order to learn good speech representation. Both methods

14

3.2.2. Wav2Vec Aalborg University

Queue
Z Z’ Z Zl
zl

h¢ h¢ h¢ —>» EMA —>» h¢,m
H H H H

fo fo fo \—> EMA [—>

| | |

X X, X_ X/

SimCLR MoCo

Figure 3.3: Illustration of SiImCLR and MoCo architectures. Here 6 is the encoder weights, ¢ is the
projection weights. 6, and ¢, specifies that the weights are an EMA of 6 and ¢, respectively.

are shown to be able to learn good representations of speech data, which can be used for
downstream tasks such as speech recognition.

3.2.2 Wav2Vec

Wav2Vec [2] is another popular contrastive method developed for learning speech represent-
ations. The Wav2Vec model competes with supervised models in speech recognition and has
shown significantly improved performance when only small amounts of labelled data is avail-
able, compared to previous state-of-the-art methods. The Wav2Vec network consists of a fea-
ture encoder, a transformer encoder and a quantization module. First, the input audio se-
quence is put through a CNN feature encoder, which outputs latent speech representations
Z = z,,...,zr yielding a sequence of T time steps. The number of time steps T is determined
by the stride of the CNN feature encoder.

The latent speech representations are used as input to both the quantization module and
the transformer encoder. The quantization module maps the feature encoder output z to a
finite set of speech representations, yielding the quantized representation q. The quantization
module thus builds speech representations from a fixed number of discrete speech units.
Before inputting the latent speech representations to the transformer, some time steps are
replaced by a learnable MASK token. This is done by sampling time steps with probability
pmask and masking spans of #n future time steps at each sampled time step [2].

The masked latent speech representations are input to a transformer encoder which produces
‘contextualized’ representations C of the latent representations, i.e., representation of specific
time steps in the context of the others. As the CNN encoders serves as a positional encoding,
the addition of a cosine positional encoding is not needed as is in the original transformer [2].

The contrastive task in Wav2Vec is to associate the contextualized representations of a
masked time step with the correct quantized representation among a number of candidate
representations q sampled from the other masked time steps. An illustration of the Wav2Vec

15

3.2.3. Other Methods Aalborg University

architecture is seen in fig. 3.4.

Contrastive Loss

______ Masked
o timestep
C
Transformer
MASK
Z Quantization
A q q q q q <t ’
CNN CNN CNN CNN CNN

|T|T|¢|TITI

Input windows

Figure 3.4: Illustration of Wav2Vec architecture.

3.2.3 Other Methods

Other contrastive approaches for speech include the use of a method known as Time
Contrastive Learning (TCL) for extraction of deep bottleneck features for speaker verification
[33]. The TCL method uniformly divides the audio sequence into N segments and assigns
each segment with a class label corresponding to the segment index, i.e., the position of the
segment in the audio sequence. A DNN is then used to predict the segment class. In this way,
the DNN learns to discriminate time segments of audio. This TCL concept is illustrated for
N = 8 segments in fig. 3.5. The trained DNN is used to extract bottleneck features for speaker
verification, and it has been shown that the resulting bottleneck features perform better than
the standard Mel-scale features.

16

3.3. Non-contrastive Learning Aalborg University

| Input sequence 1 |

| Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segent 8 |

| Input sequence 2 |

| Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segent 8 |

~

Sequence mapped to N = 8 segments

Output Layer

Classify segment

Deep number

Bottleneck features
From hidden layers

Input Layer

Input: Segment n

Figure 3.5: Illustration of TCL for extraction of deep bottleneck features.

3.3 Non-contrastive Learning

One problem with contrastive self-supervised learning methods is the need for negative
samples. Whereas contrastive learning methods make use of positive and negative examples
tolearn useful representations of the data, non-contrastive methods do not require contrastive
(positive and negative) examples.

3.3.1 Joint embedding methods

Some popular non-contrastive methods include joint embedding architectures like SimSiam
[34] and Bootstrap Your Own Latent (BYOL) [7]. Both SimSiam and BYOL where use a Siamese
network architecture where two ‘branches’ with identical networks are used to produce
representations from two augmented versions of an input. The objective is then to maximize
the similarity between the two representations. As there are no contrastive examples, one
might expect the model to simply learn a constant representation, known as model collapse.
However, this is can be prevented by the use of some clever tricks.

In the SimSiam model, the two networks have shared weights. Each branch has an encoder
and a projection block. On one of the branches, the output representation from the projection
network Z is put through a linear prediction network followed by layer normalization

17

3.3.2. Autoregressive Predictive Coding Aalborg University

yielding predicted representations P. On the other branch, Z’ is simply put through a layer
normalization and the mean squared error (MSE) loss is computed from P and Z'. In order to
prevent model collapse, SimSiam makes use of a stop-gradient operator on the branch without
prediction network, which prevents the gradients from propagating backwards through that
branch. An overview of the SimSiam architecture is seen in fig. 3.6.

Instead of sharing weights, BYOL makes use of another trick. Here, one of the encoders are an
EMA of the weights from the other branch. The branch with the EMA weights also use a stop-
gradient operator as SimSiam. The BYOL is illustrated beside SimSiam in fig. 3.6. The use of an
EMA encoder further prevents model collapse. While this has only been shown empirically, it
is hypothesized that the mechanism preventing collapse in BYOL, is due to weights of the EMA
encoder not being updated in the same direction as the loss gradient [7].

P MSE(P, VA) VA
(A
Feature Stop Feature Stop
Norm gradient Norm gradient
A A A A
SR SR
Predictor | gy Feature Predictor | Gy Feature
Norm Norm
z | z |
hg hg hg —>» EMA —>» h¢.m
H H, H H/
—>» EMA —>»
X X_/ X X/
SimSiam BYOL

Figure 3.6: Illustration of SimSiam and BYOL architectures.

Both SimSiam and BYOL are able to achieve competitive performance with SimCLR and MoCo,
while not needing negative examples. Again, while both methods were originally developed
for pretraining computer vision models, similar approaches have been adapted for speech
such as BYOL for Audio by Niizumi et al. [35]. The primary difference is the augmentation
used for generating X and X'.

3.3.2 Autoregressive Predictive Coding

Autoregressive Predictive Coding (APC) is a non-contrastive method for speech representation
learning with unlabelled data, developed by Chung et al. [36]. The APC architecture is inspired
by language models which predicts the probability of the next token. In APC the self-
supervised task is to predict the next n time frames in a spectrogram. More specifically, given
time steps t1,t2,. .., tx_1, APC seeks to predict the n future spectrogram frame at time steps

18

3.4. Countering Model Collapse Aalborg University

te, ..., tken. The objective is then to minimize the L;-loss between predictions yi,y»,...,yr
and input xq, Xy, . . ., xT following (3.2).

T—n
Y [Xisn —yily (3.2)
i=1

where T is the number of time steps in the input sequence x.

Although the APC method is rather simple, it has shown good results for a number of
downstream tasks, including speaker verification and phoneme classification [36].

3.4 Countering Model Collapse

A prevalent problem in self-supervised learning is when the model finds a trivial and undesired
solution to the self-supervised pretext task. One such situation is when the model learns
a constant representation, which is known as complete collapse [27]. Most self-supervised
methods make use of some regularization to prevent complete collapse, e.g. contrastive
methods rely on positive and negative pairs and SimSiam uses a stop-gradient. However, a
phenomenon known as dimensional collapse has been observed for both contrastive and non-
contrastive self-supervised methods [27]. The driving factors behind dimensional collapse
are less obvious and have been studied by Jing et al. [27]. In their study, they investigate
various causes of dimensional collapse for joint embedding contrastive learning methods, and
propose a new method called DirectCLR based on their findings. Dimensional collapse can be
seen as the model not utilizing the full embedding space to represent the input. An example
of complete collapse and dimensional collapse can be seen in fig. 3.7. In (a) a typical joint
embedding model using a contrastive InfoNCE loss is seen. The spheresin (b) and (c) represent
the embedding space of z in (a) in the case of complete and dimensional collapse, respectively.

Embeddings

X z
Input
X | Augmentation InfoNCE
\ loss
]

Encoder

(a) embedding space (b) complete collapse (c) dimensional collapse

Figure 3.7: Illustration of: Typical contrastive joint embedding setup (a), complete collapse in
embedding space (b), dimensional collapse in embedding space (c) [27].

Jing et al. state that there are two main causes of dimensional collapse. One is dimensional col-
lapse by strong augmentation, and another is dimensional collapse by implicit regularization.
In the former case, they show that using strong augmentation relative to the capacity of the
model leads to dimensional collapse. Using a simple linear model, they show that strong aug-
mentation leads to the embedding vectors falling into a low-dimensional subspace of the full
embedding space. Specifically, it is shown that a number of singular values of the embedding
covariance matrix fall to zero when increasing the amount of data augmentation [27].

19

3.4. Countering Model Collapse Aalborg University

In the case of implicit regularization, Jing et al. show that dimensional collapse also happens
in the opposite case, i.e., when the model is over-parameterized in comparison to the data
augmentation. Here, they empirically show using a two-layer linear model that the weights of
the two layers align with each other when only a small amount of data augmentation is used
[27].

Based on their findings, Jing et al. propose a new method, which applies a contrastive loss
directly to the embedding variables. In SimCLR the embedding variables z and z’ are found by
putting the encoder output representations h and h’ through projection layers as it was found
to improve performance. The projection is shown to help prevent dimensional collapse in the
SimCLR model [27]. However, Jing et al. propose that the weight matrix W of such a linear
projection only has to be diagonal and only has to be low-rank, and they therefore propose the
DirectCLR method which achieves this, by directly subsampling the embedding vector h. In
their DirectCLR method, they propose to remove the projection and instead use a normalized
subset of the embedding vector h in the InfoNCE loss such that the input embeddings for
computing the loss are found as 2 = h/|h|. Using this method, they show better performance
than SimCLR on ImageNet [27], without the need for an extra projection layer.

A different study by Bardes et al. seek to explicitly combat the model collapse problem by
adding regularization terms to the loss function, instead of relying on techniques such as
contrastive loss, EMA weight sharing and stop-gradient operators [6]. Their method which
they call Variation-Invariance-Covariance regularization (VICReg) uses a loss function of three
components, namely an invariance, a variance and a covariance component. VICReg uses a
joint embedding architecture, where a batch is augmented to yield X and X’ which are encoded
into representations H and H'. The encoded representations are then projected into output
representations Z and Z' as depicted in fig. 3.8.

X

—

—> —> H—> hy —> Z
/)
- Augmentation
X H
g > H—> hy — 7
/
X

%,_J

XI

Figure 3.8: Illustration of VICReg joint embedding architecture.

The loss in VICReg are defined as seen in (3.3). As is seen, the loss is made from three
components, which promote the following:

1. The invariance term promotes similarity in the output representations Z and Z'.

2. The variance term promotes variance of the embeddings to be above a certain threshold.

20

3.4. Countering Model Collapse Aalborg University

3. The covariance term promotes decorrelation of the embeddings in a batch, preventing
informational collapse where the embeddings all vary in the same way.

£(Z,Z')=2As(Z,Z) + u(v(Z) +v(Z")) + 51(c(Z) + ¢(Z")) (3.3)

where s is the invariance loss function, v is the variance loss function, c is the covariance loss
function and the scalars A, u and # are hyperparameters which scale the importance of each
term.

Given two sequences of d-dimensional embeddings Z = [zy,...,z,] and Z' = [z],...,z}], the
invariance loss s is simply defined as the squared euclidean distance between each embedding
vector pair, as seen in (3.4).

1
5(2,2) = Y|z -4l (3.4)
1

The variance loss is found by first finding the regularized standard deviation between each
embedding variable following (3.5). A threshold function T defined as is (3.6) is then used,
which takes on the value 0 when S(Z/, €) is above some threshold «. Here z/ denotes the vector
constructed by taking every jth element from all d-dimensional vectors of Z. Lastly, the mean
of the threshold function applied to all d dimensions makes up the full variance loss v, as seen
in (3.7). This loss essentially encourages the variance of the batch embeddings to be equal to

.

S(x,e) = y/Var(x) + € (3.5)

T(2/) = max(0,v — S(Z,€)) (3.6)
d

o(Z) = % Y T(x) (3.7)
=1

Finally, the covariance loss is found from the covariance matrix found as defined by (3.8). The
covariance loss is then found as the sum of squared off-diagonal components of the covariance
matrix scaled by the number of dimensions d, as seen in (3.9)

Cov(z) = 1 Zn:(zl —~7)(zi —Z)", where zZ= 1 Zn:zi (3.8)
n—145 nia
o(Z) = %ZCOV(Z)[Z’, ik (3.9)
i7

Bardes et al. test the VICReg model using a ResNet encoder and project the embeddings using
three linear layers. VICReg achieves performance comparable to state-of-the-art methods
in a number of downstream tasks, relying only on invariance, variance and covariance
regularization in the loss function to prevent model collapse. Additionally, the authors show
that VICReg regularization can also be incorporated into other methods in order to improve
performance.

21

3.5. The Data2Vec framework Aalborg University

3.5 The Data2Vec framework

In January 2022 Baevski et al. published the Data2Vec framework, which is a non-contrastive
method that uses a generalized self-supervised learning task. One of the most promising
aspects of the Data2Vec framework is the fact that the self-supervised task can be used for
multiple modalities, thereby, potentially opening up the field for more general self-supervised
learning. The Data2Vec framework makes use of a student teacher paradigm in which the
teacher model receives the full input and the student model receives a masked version of the
input, i.e., a version where some input is hidden. The student model then tries to predict the
hidden state representation of the teacher model using a linear regression head. This is similar
to the learning mechanism in BYOL, however, the targets here are hidden state representations
and the self-supervised task is masked prediction similarly to the Wav2Vec model. A general
overview of the Data2Vec framework is illustrated in fig. 3.9.

Teacher Hidden States

;L(Teacher encoder

A
1 EMA %/—J

Xy

weight
tracl%ing A Student predicts teacher
: hidden state
) representations of last K
Input Masking Student Encoder —>» Reiree:(sjlon —> transformer blocks

Prediction
Figure 3.9: Illustration of the Data2Vec framework.

In Data2Vec, the student and teacher networks are identical, with the teacher weights being
an EMA of the student weights. Specifically, the teacher weights are updated as seen in (3.10).

A=1A+(1-1)6 (3.10)
where A is the teacher weights, 7 is an exponential decay constant, and 0 is the student weights.

As T controls how often the teacher model is updated, a linear schedule is used which increases
7 from an initial value 7 to a target value 7.,q over n, updates. This is done to have the teacher
update more frequently in the beginning where the model is random and less frequently when
the model has learned a good representation of the data.

In the Data2Vec study [8], standard transformer encoders are used. The goal of the student is
then to predict the output representations from the top K transformer blocks of the teacher. It
was found that predicting the average of the normalized hidden state representations instead
of having individual predictions for each layer performed equally well, while the former is
more computationally efficient. As a result, the targets are formed as seen in (3.11).

1 & .
ye=z Y R (3.11)
I=L—K+1

22

3.5. The Data2Vec framework Aalborg University

where y; is the target at time t, L is the total number of transformer layers and k! is the
normalized hidden state representation of the layer / at time ¢.

Target normalization serves to prevent the model from model collapse, i.e. finding a trivial
solution such as a constant representation. While the authors also mention VICReg [6] as
a possible regularization measure to prevent model collapse, they found that normalization
performed well while not adding additional hyperparameters. In the Data2Vec study, layer
normalization is used for vision and text, while the speech model uses instance normalization.
The use of instance normalization for speech is motivated by the high correlation between
neighbouring representation [8].

The learning objective in the Data2Vec framework is to minimize the difference between the
student prediction f;(x) and the target y; given by (3.11). They use a smooth L, loss as defined
in (3.12) for vision and text, and a simple MSE loss for speech. The benefit of using an L; loss
is that it is less sensitive to outliers [8]. It should be noted that only the masked part is used for
computation of the loss.

1(y— filx))?
Sy, fix) =42 B’ lye — fi(x)] > B

lye — fi(x)], otherwise

(3.12)

where B is a hyperparameter which controls the transition between a squared loss and L; loss.

While the original Data2Vec study does not investigate KWS applications, they do fine-tune
the pretrained model for general ASR with low resource setups, i.e. with small amount of
labelled data. For all experiments they use two different model sizes, either a Base model with
12 transformer blocks and a hidden dimension of 768, or a Large model with 24 transformer
blocks and a hidden dimension of 1024. In their speech experiments, they use a Wav2Vec
feature extractor [2], to produce features that are downsampled from 16 kHz to 50 Hz. For
pretraining, the input features for the student model are masked in the time domain using the
same approach as the Wav2Vec model [2] where fixed length spans of time steps are masked
with some probability p.sk. The Librispeech speech dataset [11] containing 960 h of speech is
used for unlabelled pretraining. Labelled fine-tuning for ASR is done on the Libri-light dataset
[37] with different amounts of labelled data varying from 10 min to 960h. Using Data2Vec
pretraining, they achieve an increase in performance for all labelled setups in comparison
to two popular speech representation learning models, namely HuBERT [38] and Wav2Vec [2].

23

CHAPTER

Implementation of Self-supervised
Keyword Spotting system

The following chapter describes the design and implementation of a KWS system utilizing the
Data2Vec framework for self-supervised pretraining. The KWS system is based on the KWT
model by Berg et al. [22]. This model is chosen as it fits directly into the Data2Vec framework,
as it also uses a transformer encoder. The open-source machine learning framework PyTorch
[39] is used for implementing the system in Python. Most of the KWT model implementation
is based on a freely available PyTorch implementation [40]. The Data2Vec implementation
is based on the code published by the authors in Facebook’s Fairseq tool [41], which is a
PyTorch based tool for sequence modelling. As the Fairseq tool does not provide as much
customization freedom, compared to standard PyTorch, it has been chosen to implement the
Data2Vec framework from scratch using the Fairseq implementation as a guideline. The code
implementation can be found on https://github.com/HolgerBovbjerg/data2vec-KWS and
is freely available.

4.1 Features extraction

Asmentioned in chapter 2, the first part of a deep KWS system is commonly a feature extraction
block. For this part, it is chosen to follow the strategy of the KWT study [22] and use MFCC
features as input to the transformer. More specifically, the raw audio is first turned into a Mel-
spectrogram using time windows of 30 ms and a stride of 10 ms, after which the DCT transform
is applied to obtain the MFCC features. The first 40 MFCC features are used, resulting in an
input of T x 40, with T denoting the number of time steps. This feature extraction pipeline
is illustrated in fig. 4.1. Implementation of the feature extraction pipeline is done using the
open-source Python package librosa [42].

24

https://github.com/HolgerBovbjerg/data2vec-KWS

4.2. Acoustic model Aalborg University

Raw Audio Waveform » Mel-spectrogram > MFCC

Figure 4.1: Pipeline for turning raw audio into MFCC features

4.2 Acoustic model

The acoustic model architecture is also taken from the KWT model. Here, the input MFCC
features X are first divided into N patches of size p; x ps, with p; being the patch size in the
time domain and py the patch size in the frequency domain. The patches are flattened to yield
vectors of dimension p; - ps, which are all mapped to an embedding dimension d through a
linear projection matrix Wy € R(PrP)*d to obtain an input embedding matrix Xo. While the
patch size can be chosen to include both time and frequency domain features, the study by Berg
et al. found that using time-dimension attention, i.e. using patches of size p; x py = 1 x 40,
yielded the best results for KWS [22], thus, the same approach is used here. This effectively
means that each patch embedding represents a specific time steps tg, t1,...,tr—1.

After forming the patch embeddings Xy, a learnable class embedding X s used to learn global
features of the spectrogram is concatenated to Xp and a learnable positional embedding Xpos
is then added. These steps are summarized in (4.1).

Xo = [Xcrs; XWo] + Xpos (4.1)

The feature embeddings X, are fed as input to a sequential transformer consisting of 12
transformer blocks with embedding dimension d. Each transformer block is made up by a
multi-headed attention block and an MLP block, each followed by layer normalization, as
illustrated in fig. 4.2. The MLP blocks consist of a single linear layer followed by a Gaussian
Error Linear Unit (GELU) activation, commonly used in transformers [22], [43]. The multi-head
attention blocks are simply stacks of self-attention blocks which outputs are concatenated. The
concatenated outputs are then linearly projected to the dimension of the transformer block.
This is summarized in (4.2).

MSA(XI) == [SAl (Xl>;SA2<Xl),‘ e .;SAk(Xl)]WP (4.2)

where MSA denotes the multi-headed attention function, X; denotes the input of the I’'th
transformer block, SA is the scaled dot-product attention defined in (2.2) and Wp is a
linear projection matrix, which projects the concatenated self-attentions to the embedding
dimension d.

25

4.2. Acoustic model Aalborg University

The number of attention heads in the multi-head attention directly relate to the attention
capabilities of the model. Thus, scaling the number of attention heads can be seen as a scaling
of the model capabilities. Inthe KWT model the relationship between the number of attentions
heads k, and embedding dimension is kept such that d /k = 64 following Touvron et al. [44].

The output from the transformer blocks consists of T + 1 embeddings of the input sequence,
with T outputs encoding specific time steps and one CLS embedding encoding the global
features of the input. In order to produce keyword predictions, the CLS embedding is fed
into an MLP head consisting of a layer normalization and a single linear layer mapping from
the embedding dimension to a dimension equal to the number of classes. The full acoustic
model is illustrated in fig. 4.2.

T Classification

’ MLP

1

A 7y A x
‘ Layer norm ’ - ~
A
Transformer block
[Multi-head Attention J - Y,

13 2 \
- ~/

Transformer block

CLS MFCC patch
embedding embeddings

Figure 4.2: Illustration of KWT used for acoustic model.

In the study by Berg et al. [22], three different model sizes are created by varying the number
of attention heads from 1 to 3, yielding models of varying size as seen in table 4.1. The same
approach is adapted here, in order to test how Data2Vec pretraining performs for varying
model size.

26

4.3. Data2Vec Module for Pretraining Aalborg University

Table 4.1: KWT model variations.

Model name Transformer MLP dim. Encoder dim. Attn. Heads Blocks Parameters

KWT-1 256 64 1 12 607 x 103
KWT-2 512 128 2 12 2394 x 103
KWT-3 768 192 3 12 5361 x 103

4.3 Data2Vec Module for Pretraining

This section describes the implementation of a Data2Vec pretraining framework as described
in section 3.5 for the KWT model. The implementation of the Data2Vec framework for
pretraining of the KWT model can be summarized into the following tasks:

« Provide access to transformer hidden states
+ Remove MLP prediction head of KWT model

+ Add linear regression layer to last transformer layer output for prediction of teacher
hidden states

« Implement a masking strategy
+ Implement EMA tracking of student weights for teacher model

« Implement Data2Vec training loop
The above implementation of the above tasks are described in the following section.

The Data2Vec framework requires access to the hidden state representations, and it uses
the full transformer output representation instead of the CLS embedding for predictions.
Therefore, a slight modification to the KWT model is made for pretraining. First, instead
of only outputting the prediction, the hidden state representations are extracted from each
layer and added to a list which is given as an output as well. Secondly, the MLP prediction
head is removed and replaced by a linear regression head, which takes the full hidden state
representation of the last transformer block as an input. This modified model for pretraining
is depicted in fig. 4.3.

The masking strategy used in the Data2Vec framework is modality specific. Following the
choice for speech masking, a time-domain masking strategy identical to the one used in
Wav2Vec [2] is used. Specifically, patches of the input corresponding to time steps are sampled
with probability pmask, and the following Ny, time steps are replaced by a learnable MASK
token embedding. This approach fits well with the chosen patch embedding strategy, as each
patch corresponds to one time step. The implementation of the masking algorithm is taken
from the Hugging Face transformer library’s implementation of Wav2Vec [45]. In fig. 4.4, an
example of a patch embedding with six spans of 10 masked time steps is seen. Here, the
embedding dimension is 64 and the number of time steps is 98. It should be noted that while
the CLS input is kept as part of the model, it is never masked, thus, only the patch embeddings
are masked.

The student and teacher model in the Data2Vec framework have an identical architecture.
While the student network weights are updated using simple backpropagation, the teacher
network weights are an EMA of the student network weights. To implement this in PyTorch,
an EMA module has been implemented. This module can be used to make a EMA copy of a

27

4.3. Data2Vec Module for Pretraining Aalborg University

| Hidden states | | Prediction |
i t

[Regression head]

S huo 1)
a
i Transformer block
Transformer block
; ~ A g
DR b,] - x12
E e N
i Transformer block
N J
e by %

e N

Transformer block
(N J

CLS MFCC patch
embedding embeddings

Figure 4.3: Illustration modified KWT encoder for use in Data2Vec framework.

PyTorch model, and keep track of the EMA updates. The teacher model is thus implemented by
instantiating an EMA copy of the student model. The teacher model is updated by passing the
student model weights to the EMA module each time the student network weights are updated.

Having established a way to extract hidden state representations, masking input and updating
the teacher model, the pretraining training loop can be implemented. Before training, a
student model equivalent to fig. 4.3 is instantiated. An EMA copy of this model is then created
for the teacher model. During training, the inputs are first converted to patch embeddings and
a mask is generated for each patch embedding. Masked inputs are then generated by masking
the patch embeddings using the generated masks. The masked inputs are then encoded by the
student model, and the teacher model is used to encode the unmasked inputs.

After encoding the inputs, the hidden state representations of the transformer layers in the
student and teacher model are extracted. The hidden layer representations from the K last
transformer layers of the teacher model are normalized and averaged to from the targets. The
averaged representations are then normalized again, to yield the final targets. The hidden
state representation of the last transformer layer in the student model is put through a linear
regression head to generate the target predictions. The loss is then computed from the target

28

4.3. Data2Vec Module for Pretraining Aalborg University

Embedding dim.

0 20 40 60 80
Time dim.

Figure 4.4: Example of masked patch embeddings, with 98 time steps and an embedding dimension of
d = 64.

and prediction values, and the student model weights are updated through backpropagation.
After the student model weights have been updated, they are used to update the EMA teacher
model. A PyTorch pseudocode implementation of this training loop is seen in algorithm 1.

After Data2Vec pretraining, the pretrained weights from the modified Data2Vec KWT trans-
former encoder are loaded into an unmodified KWT model, as seen in fig. 4.2. This model is
then trained for keyword spotting using a Cross-Entropy loss as defined in (4.3).

N
Lce(py) = —)_vyilog(pi) (4.3)
i=1

where p is the KWS network classification output, y is the data labels and N is the number of

classes.

29

4.3. Data2Vec Module for Pretraining

Aalborg University

Algorithm 1: Pseudocode for PyTorch implementation of Data2Vec pretraining loop for a
single epoch.

student_model

KWT_encoder ()

teacher_model = EMA(student_model)
for batch in dataloader do

mask =
X_maske
student
states

target _
target
student
predict
target,
timest
loss =

optimiz
teacher

X = to_patch_embedding(batch)

generate_mask()
d = X[mask]
_hidden_states

student_model (X_masked) # list of student hidden

teacher_hidden_states = teacher_model(X) # list of teacher hidden states

list = [normalize(h) for h in teacher_hidden_states[-K:]]
= normalize(sum(target_list)/len(target_list))
_last_encoder_layer_out = student_hidden_states[-1]

ion = regression_head(student_last_encoder_layer_out)
prediction = target[mask], prediction[mask] # only masked
eps used for loss

criterion(prediction, target)

loss.backward()

er.step()
_model .ema_step(student_model)

30

CHAPTER

Experiments and Results

In order to evaluate the performance of the implemented self-supervised KWS system,
described in chapter 4, a number of experiments have been carried out. In the following
chapter, the setup for carrying out experiments is first described, followed by a description
of the experiments and the corresponding results. Lastly, an interpretation of the results is
given.

5.1 Computing Resources

Training machine learning algorithms require a substantial amount of operations to run.
Therefore, one of the main limitations to machine learning is the available computing
resources. While it might be feasible to train some smaller models on a modern laptop, most
work loads require access to GPUs resources, which can be used to accelerate most machine
learning work loads through heavy parallelization. Running PyTorch models on NVIDIA GPUs
resources is rather straight forward, as it supports CUDA [39], [46].

Aalborg University has a number of resources available for machine learning work loads. One
is the CLAAUDIA’s Al Cloud [47] High Performance Computing (HPC) cluster, which contains
two DGX-2 servers. These servers contain a total of 32 NVIDIA V100 GPUs with 32 GB Random
Access Memory (RAM) each. The NVIDIA V100 GPU are currently some of the most advanced
server GPUs available, and makes it possible to train very large work models. In order to
run experiments for this project, access has been granted to run work loads on CLAAUDIA.
However, as the CLAAUDIA resources are in very high demand, a score-based scheduling
system is used to achieve a fair distribution of resources among the users. While this makes
it great for running large machine learning pretested works loads with a known runtime, it
is not great for development and testing of code, as resources are often times not available.
Therefore, other available resources have been utilized, namely CLAAUDIA’s Strato Cloud [48].
Here, it is possible to create a virtual machine with some predefined specifications. Recently,
it has become possible to allocate GPU resources. The GPU resources available are NVIDIA
T40 GPUs which have 16 GB RAM. While the T40 GPUs is smaller and slower than the v100 on
CLAAUDIA AI Cloud, it is sufficient for the workloads of this project. Training the largest KWT
model on an Nvidia T40 takes approximately 10 h.

31

5.2. Experiment Tracking Aalborg University

5.2 Experiment Tracking

An important element of machine learning research is tracking of performance measures,
both in terms of model performance and in terms of resource utilization. Often times, multiple
‘runs’ of varying settings are carried out, and the metrics are then saved in arrays or lists. In
many cases, this is done manually, which can become cumbersome for many runs. Many runs
can also take several hours to complete. Additionally, the runs might take unnecessarily long
if the computing resources are not fully utilized. Therefore, many hours can be wasted if no
monitoring is in place.

To solve this problem, the Weights and Biases (WandB) service has been used. WandB is an
online service which provides a python package and a web service that makes it possible to
log metrics of runs in real-time. This includes information about model performance, time
per iteration, run summaries and utilization of computing resources. The use of WandB has
been a great help throughout the development phase in order to monitor potential errors in
the model, and to log and analyse experiment results. An overview of the WandB web interface
can be seen in fig. 5.1.

2
g
i
1]
(=]
g
s
3
il -
H

@ g e
Charts 11
 Name
test_acc_last test_acc_best loss

© @ kwt3_finetune_ablation4
® © kwt3_finetune_ablation3

datazvec_kwt3_ablation
® @ kwt3_finetune_ablation2

data2vec_kwt3_ablation3
© @ kwt3_finetune_ablation1

trai

data2vec_kwt3_ablation2
© @ kwt3_finetune
® @ kwt2_finetune_ablationa
© @ kwt2_finetune_ablation3
© @ kwt2_finetune_ablation2

@ data2vec_kwt3_ablation1 test_loss_best

© @ kwt2_finetune_ablation1

kwt2_finetune

@ datazvec_kwt2_ablation2 120~ of62

My Workspace

Figure 5.1: Screenshot of Weights and Biases web interface.

5.3 Dataset

The implemented KWS system is evaluated on the open Google Speech Commands V2 dataset
[25], which is also used in the original KWT study [22]. This dataset is chosen as it has become
a standard for evaluation of KWS systems, and because it has a more moderate size than some
alternatives, such as the enormous Librispeech and Libri-light databases used in the Data2Vec
study. The Speech Commands V2 dataset consist of 105829 labelled keyword sequences of
clean audio with a duration of 1s. Each keyword is sampled at 16 kHz and consist of a total
of 35 different keywords. The fact that all audio sequences are all approximately 1s long, also
makes data preprocessing simpler, compared to data sets with large variance in the sequence
lengths.

The full set of audio sequences in the Speech Commands V2 dataset are originally split into

32

5.4. Experiments Aalborg University

a training, validation and test set. As the goal is to investigate if Data2Vec pretraining on
unlabelled data can improve model performance when only a small amount of labelled data is
available, a reduced label version of the Speech Commands V2 dataset is created to simulate a
sparse labelled setup. This is done by further splitting the training set 80:20 into a pretraining
part used for Data2Vec pretraining set, and a training set used for baseline and fine-tuning.
The resulting splits and their number of examples are summarized in table 5.1.

Table 5.1: Reduced label Google Speech Commands V2 splits.

Split No. keyword examples
Pretrain 67731
Train 16932
Validation 10583
Test 10583

5.4 Experiments

The experiments are carried out for each of the KWT model variations, which are summarized
intable4.1. This is done to gain insight into the influence of model size on model performance.
First, all three KWT variations are trained on the reduced label Speech Command training set
to produce baselines. This is done following the same approach as the KWT study [22], with
the exception that time-dimension augmentations are removed for computational speedup, as
it was found that the computation of the MFCC increased training time significantly. Instead,
the MFCC spectrograms are precomputed and loaded into memory and only SpecAugment
augmentation [49] is applied during training. As data augmentation can be seen as a way of
synthetically adding more data, removing time-domain augmentation also serves to promote
data sparsity, potentially making the keyword spotting task more difficult to learn. The model
istrained for 140 epochs using a batch size of 512. The weights are optimized using the AdamW
optimizer [50] with a two-step learning schedule where the learning rate is initially ‘warmed
up’ by linearly increasing it from etag = #max / (batch size - nepochs) to #max OVer the first 10
epochs, after which it follows a cosine annealing schedule [51] for the remaining 130 epochs,
as seen in fig. 5.2.

le-3

Learning Rate

© o ©o ©

o N U |

S wu o w
1 1 1 1

0 1000 2000 3000 4000 5000
Step

Figure 5.2: Learning rate schedule for baseline.

A weight decay of A = 0.1 is also used, which serves to prevent overfitting by penalizing large

33

5.4.1. Data2Vec Pretraining Aalborg University

weight values [52]. Additionally, a label smoothing of € = 0.1 is applied to the targets. Label
smoothing adds noise to the labels to model the uncertainty of the labels [53]. This is done by
replacing the 0 and 1 labels with ¢ /N — 1 and 1 — ¢, respectively [53].

A simple classification accuracy metric is used as the KWS performance metric, for evaluation
of the KWS system. The accuracy metric has the downside that it can be deceiving for
imbalanced data sets, however, as the Speech Commands V2 dataset is rather balanced in
terms of different keywords, accuracy is a useful measure of system performance.

In fig. 5.3 the training curves for the three KWT model variations are seen. Here it is seen that
all three models achieve a final validation accuracy score just under 80 %. Interestingly, all
models perform very similar, although it might be expected that the larger models perform
worse for sparse labelled setups as larger transformers often need to be trained on large
amounts of data [22].

The baseline results on the test set for all three KWT variations are seen in table 5.2. All three
models achieve performance comparable to the training and validation set scores, indicating
that the models all generalize well. However, none of the baseline achieve anywhere close
to the accuracies achieved on the full training set in the original study, where the models all
scored over 96 % accuracy on the test set. Some loss in accuracy can be explained by the fact
that time-series augmentation is not used here, however, when training on the full training
set, a test set accuracy of 95 % was achieved for the KWT-1 model without using time-domain
augmentation. Thus, most of the drop in performance can be attributed to the reduced amount
of labelled data available in the reduced training set.

Table 5.2: Summary of baseline results for different KWT variations when trained on the reduced
training set of Google Speech Commands.

Model Test accuracy

KWT1-baseline 0.743
KWT2-baseline 0.7869
KWT3-baseline 0.7578

5.4.1 Data2Vec Pretraining

With the baseline results established, the next step is pretraining using Data2Vec. The goal
of Data2Vec pretraining is to learn good representations of the data without use of data
labels. The Data2Vec pretraining is done on the set aside pretraining set of the Google Speech
Commands V2 dataset, whereafter the pretrained model is trained on the reduced training
set used for the baseline results. Usually, pretraining for learning speech representations is
done on much larger datasets, with each sample containing full spoken sentences of multiple
words, as is the case in the original Data2Vec study [8]. In the Speech Commands dataset,
all the samples contain only one keyword and are approximately of the same length. As a
result, the learned representations will not be as ‘rich’ as those learned from pretraining on
larger datasets such as Librispeech, which means the learned representations probably won'’t
generalize as well for new data. However, this is deemed not to be a problem, as the main goal
is to test whether Data2Vec pretraining can increase the KWS performance when only a small
amount of labelled data is available, and due to the fact that fine-tuning is done on similar data
from the same dataset.

34

5.4.1. Data2Vec Pretraining Aalborg University

Train Validation

3.5 1 4

3.0 1 h

2.0 A .

Loss

1.5~ h

1.0 A 7

0.5 A 4

0.0

1.0

0.8 A h
0.7 A h
0.6 A h
0.5 A b
0.4 - h
0.3 A i
0.2 A i

Accuracy

0.0 T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Step Step

Figure 5.3: Baseline training graphs for all three KWT models.

In the Data2Vec framework, a number of pretraining hyperparameters have to chosen, such
as the EMA decay for the teacher model parameters and the masking strategy for masking the
student model input. Most of the hyperparameters for pretraining are chosen according to the
settings for used speech in the original Data2Vec study [8], with some slight alterations.

The EMA decay is initially set to 79 = 0.999 and then linearly annealed to 7. = 0.9999. In
the original study, the authors use a batch size equivalent to 63 min of audio, and go through
400000 updates. However, due to resource constraints and different data set up, a different
strategy is used for these experiments. First, the batch size is chosen to be 512 as this is
the largest value for which all models can be trained on a single Nvidia T4 GPUs. Secondly,
pretraining is done for 200 epochs, i.e., the pretraining set is gone through 200 times, yielding
a total of 26 580 updates. While the Data2Vec authors anneal the EMA decay over n, = 30000
updates, this value is reduced to 1000 to accommodate for the reduced number of updates.
For masking, approximately 65 % of the input patch embeddings are masked by randomly
sampling non-overlapping spans of N, = 10 patch embedding time steps. An average of the
top K = 8 transformer layer output representations are used to form training targets. The final
training target is obtained by applying instance normalization to the averaged representations
of the transformer output representations. Optimization is done using a simple MSE loss

35

5.4.1. Data2Vec Pretraining Aalborg University

as the objective function and using the Adam optimizer [24]. The learning rate follows a 1-
Cycle learning rate scheduler [54], where the learning rate is cosine annealed from a starting
value 70 = #max / 25 to a maximum learning rate 77max = 500 x 107, over the first 30 % of
updates. The learning rate is then reduced over the remaining updates, also following a cosine
annealing schedule. The 1-Cycle learning rate schedule is depicted in fig. 5.4. In addition
to the learning rate scheduler, a weight decay of 0.01 is used to mitigate overfitting. These
hyperparameter choices for Data2Vec pretraining are summarized in table 5.3.

le—4

S
I

Learning Rate
N

o
1

0 5000 10000 15000 20000 25000
Step

Figure 5.4: 1-Cycle

Table 5.3: Summary of settings used for Data2Vec pretraining.

To Tend nr Pmask N, mask K
0.999 0.9999 1000 0.65 10 8

Epochs Batch Size Optimizer Scheduler Weightdecay Loss
200 512 Adam 1-cycle 0.1 MSE

It can be difficult to measure the pretraining performance of self-supervised models like
Data2Vec using other measures than the loss. However, the loss converging to a low value
does not necessarily mean that the network has learned good representations of the data,
as is the case when model collapse happens. In order to get an idea of the richness in the
learned representations, it is useful to look at the variance of the outputs from the teacher
network (target) and student network (prediction). This can be used to spot model collapse,
as the variance of the target and prediction would become very low. Additionally, the target
and prediction variances can give a hint towards whether the model has converged, as the
variances should also converge to a steady state. Nevertheless, the best way to test how good
the learned representations are for KWS; is to fine-tune and evaluate the pretrained model on
the reduced training set.

In fig. 5.5 the Data2Vec pretraining curves for all three KWT variations are seen. All models
were trained for 200 epochs, with a batch size of 512 and using the hyperparameters seen
in table 5.3. It should also be noted that the SpecAugment augmentation is not used for
pretraining, and is thus only used for the baseline and fine-tuning of the KWT models. Due to
instance normalization of the target, the target variance is always close to 1. The pretraining
curves are very similar for all three KWT variations. As can be seen, the loss initially decreases
significantly, while the prediction variance also decreases. At some point, the prediction

36

5.4.2. Fine-tuning Pretrained Model Aalborg University

variance starts to increase towards the target variance, indicating that the model learns more
rich representations. The prediction variance and loss are both seen to converge to a steady
state value, whereafter they do not change much, indicating that the model does not further
improve from training.

Loss Target Variance vs. Prediction Var
400000
1.5
300000 A
=
=] 1.0 4
200000
S
100000 A
0.5 A
O T T T T T T T T T T T T
400000
1.5 A
300000 A
(o]
- 200000 - 1.0 —— Target. var.
g —— Pred. var.
100000 -
0.5 A
0 T T T T T T T T T T T T
400000
1.5
300000 -
0
s i 1.0 4
200000
S
100000 A
0.5 A
0 T T T T T T T T T T T T
0.0 05 1.0 15 20 25 0.0 05 1.0 15 2.0 25
Steps le4 Steps le4

Figure 5.5: Pretraining curves for Data2Vec pretraining of KWT models.

5.4.2 Fine-tuning Pretrained Model

After pretraining the models on the pretraining data set using Data2Vec, they are fine-tuned on
the reduced training set. Here, the prediction head used for Data2Vec pretraining is removed
and the original classification head of the KWT model is used instead. The training paradigm
is the same as that used for generating the baseline results. The resulting fine-tuning training
curves are seen in fig. 5.6 together with the corresponding baseline training curves.

As can be seen from the training curves, the pretrained models achieve good performance
in much fewer epochs than the baseline models. Moreover, they converge to a much higher
accuracy than the baseline without pretraining. This is also depicted in the test set scores,
which shows improvements in accuracy score ranging from 15.9% to 18.87 % as seen in
table 5.4.

37

5.4.3. Ablation studies Aalborg University

Train Validation

3.0 1 E
—— KWT-1 baseline

2.5 7 —— KWT-2 baseline
—— KWT-3 baseline
—— KWT-1 Data2Vec
1.5 A B KWT-2 Data2Vec
KWT-3 Data2Vec

2.0 A1 b

Loss

W
10 i WM. .""'VV‘“'V r— ‘.‘ : n

0.5 1 i

0.0

1.0
0.9 1 b
0.8 1 b
0.7 1 b
0.6 1 b
0.5 1 b
0.4 1 b
0.3 1 b
0.2 1 E
0.1 1 1

0.0 T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Step Step

Accuracy

Figure 5.6: Training curves for fine-tuning of KWT models pretrained using Data2Vec compared to
baselines.

Table 5.4: Summary of results for different KWT variations when pretrained using Data2Vec.

Model Test Accuracy Improvement over baseline
KWT1-data2vec 0.9286 0.1856
KWT2-data2vec 0.9448 0.1590
KWT3-data2vec 0.9465 0.1887

5.4.3 Ablation studies

The initial results show that Data2Vec pretraining on unlabelled data can significantly improve
the performance of the KWT model when only a small amount of labelled data is available.
However, it is also of interest to know how the performance changes, when varying the
hyperparameters of the Data2Vec framework. Therefore, four different variations, in the
Data2Vec pretraining setup has been tested, which are summarized in table 5.5. The base
setup is named B and the variations are named V1, V2, V3 and V4.

In the first variation, V1, the instance normalization is replaced by layer normalization,
keeping the other settings fixed. In the Data2Vec study, layer normalization is used for
vision and text pretraining, however, as the KWT is basically a vision transformer that takes
spectrogram patches as input instead of image patches, layer normalization might be equally

38

5.4.3. Ablation studies Aalborg University

Table 5.5: Summary of different variations of the Data2Vec pretraining settings used for ablations
studies.

Setting Masklength Mask probability [%] Normalization type

B 10 65 Instance
V1 10 65 Layer
V2 10 20 Layer
V3 10 20 Instance
V4 5 65 Instance

applicable. The second variation, V2, additionally reduces pp,asx from 65 % to 20 % in order to
test the influence of the amount of masking applied. Reducing the amount of masked time
steps should yield an easier prediction task, however, it might also mean that the learned
representations become less rich and therefore lead to worse fine-tuning performance. The
third variation, V3, also tests reducing the amount of masking when using the original instance
normalization. Finally, V4 uses a smaller span of masked time steps by reducing the mask
length from 10 time steps to 5 time steps, keeping a mask probability of 65 %. This is done
to test the influence of the mask length. For audio, a smaller mask length should make the
prediction task easier, as consecutive time step patches of the spectrogram are correlated The
resulting Data2Vec pretraining curves of the four variations compared to the base pretraining
settings are seen in fig. 5.7.

From fig. 5.7, it can be seen that the two layer normalized versions, V1 and V2, have
distinctively different pretraining variance curves. Instead of the target having a constant
variance of 1, it is initially some low value, which increases over time, with the student
variance following. This can be seen as the teacher and student both gradually learning better
representations. Additionally, it can be seen that the loss for V1 and V2 is significantly lower
than the other variations, however this does not necessarily mean they perform better for fine-
tuning.

While some distinctive differences can be seen in the pretraining curves for the different
variations, it is more interesting to see how the different changes affect the fine-tuning
performance. In fig. 5.8, the training curves when fine-tuning the different variations
compared to the results using the base settings are seen, and their results on the test set
are seen in table 5.6. Here it is seen that all the variations achieve a performance boost
compared to the baseline model without pretraining, although, not all variations achieve as
good performance as when using the base pretraining settings.

While varying the pretraining settings does not affect performance much in most cases, it
is seen in table 5.6 that V1 and V2 yield significantly worse performance for the KWT-3
model. As can be seen in the training curve they both initially follow a similar pattern as
the base settings, however at one point both of them suddenly decrease in performance and
fall somewhere between the baseline model and the other pretrained models. The sudden
decrease in accuracy makes it seem like the model forgets most of its learned representations,
which is a phenomenon known as catastrophic forgetting [55]. Interestingly, this happens
just before the learning rate reaches its highest value. This can indicate that the learning rate
caused a big step in a ‘bad’ direction when updating the weights, however, further experiments
would need to be carried out to verify this hypothesis.

39

5.4.4. Experiments Summary Aalborg University

KWT-1 KWT-2 KWT-3
400000 ‘ |
300000 - H H
™
9] A
2 200000 1, - |\ |
a Na
100000 1 I ;kwﬂ T !:
T
0 j&.—;n::m 1 |
1.5]]

=
o
1

—
\
,
\
|

0.0 T T T T T T T T T
1.5 - - |
S 1.0 1 1
2107 | | —
D ‘ ‘ \
£ 051 T T
0.0 T T T T T T T T T
0 1 2 0 1 2 0 1 2
Step le4d Step le4d Step le4d

Figure 5.7: Comparison of pretraining curves when varying Data2Vec pretraining settings according to
table 5.5.

5.4.4 Experiments Summary

From the experiments, it is clear that all three variations of the KWT model benefits from
Data2Vec pretraining in the reduced labelled data setup. Additionally, in the ablation
experiments, Data2Vec pretraining showed to perform almost equally well for all choices of
pretraining hyperparameters. A significant performance drop compared to the base Data2Vec
settings were seen when fine-tuning the KWT-3 model after pretraining using the V1 and V2
settings, with the KWT-3 model only achieving marginal improvements in accuracy in both
cases. Common for both V1 and V2 is that they use layer normalization instead of instance
normalization, however, the same pattern were not seen for KWT-1 and KWT-2.

The best accuracy score was achieved for the KWT-2 model when using the V4 settings, where
an accuracy of 94.91 % was achieved. However, for the other choices of Data2Vec settings, the
KWT-2 model generally achieved similar accuracies. In addition, the KWT-1 model performed
best when pretrained using the V3 settings, and the KWT-3 model performed best using the
base settings, thus the results do not point towards some ‘best’ choice of hyperparameters, but
rather towards the fact that many choices of settings can lead to similar results.

40

5.4.4. Experiments Summary Aalborg University

KWT-1 KWT-2 KWT-3

\&.kt Pmeas

A e
1 1 A AT e A E

SENTRER

Train Loss

Validation Loss
N

Train Accuracy

COO0O000000H 0000000000
oRNWRUINDLO oRNWRULINDLO

Validation Accuracy

0 1500 3000 4500 0 1500 3000 4500 0 1500 3000 4500
Step Step Step

Figure 5.8: Training curves for fine-tuning KWT models when varying Data2Vec pretraining settings
according to table 5.5

Generally, the use of Data2Vec pretraining significantly improved the performance of the KWT
models on the reduced labelled setup of the Google Speech Commands V2 data set. Besides
the KWT-3 pretrained with the V1 and V2 settings, all models achieved a performance boost in
range of 15.56 % to 18.87 %.

Interestingly, model collapse was not experienced at any point, even when the hyperparamet-
ers were changed from those used in the original study. Additionally, a different model and dif-
ferent input data was used. This indicates that the measures used to prevent model collapse,
namely target normalization and the use of EMA updates for the teacher model weight up-
dates, sufficiently prevents model collapse from occurring, without needing to carefully tune
hyperparameters to match the specific choice of model and input data. The fact that Data2Vec
pretraining works rather well for different choices of hyperparameters, could also indicate
that it can achieve good performance for a wide range of settings, although a more extensive
study on the influence of hyperparameter choices would have to be carried out to verify this
hypothesis.

41

5.4.4. Experiments Summary

Aalborg University

Table 5.6: Test set accuracy scores for different settings of Data2Vec pretraining. B denotes base settings,
V1 denotes Variation 1, V2 denotes Variation 2, V3 denotes Variation 3 and V4 denotes Variation 4

Model Settings Test Accuracy
B 0.9294
V1 0.8986
KWT-1 V2 0.9189
V3 0.9308
V4 0.9122
B 0.9449
V1 0.9352
KWT-2 V2 0.9386
V3 0.9398
V4 0.9491
B 0.9464
V1 0.7969
KWT-3 V2 0.8229
V3 0.9357
V4 0.9409

42

CHAPTER

Conclusion

This thesis aimed to investigate the use of the self-supervised learning framework Data2Vec
for improving the performance of keyword spotting systems when only sparse amounts of
labelled data is available. This was inspired by the fact that many KWS applications are limited
to languages with large available speech databases due to the fact that the current supervised
methods need large amounts of labelled data. Initially, the subject of self-supervised learning
and how it can be used for deep KWS in sparse labelled setups was presented, along with
a description of a recently published general self-supervised framework called Data2Vec. It
was identified that the Data2Vec framework had only been applied to very large models with
several million parameters, which raised the question if the Data2Vec framework can also be
used for pretraining of deep KWS models which are much smaller. As a result, it was decided
to investigate whether Data2Vec pretraining can increase the performance of KWS models,
when only a small amount of labelled data is available. The following research question was
then formulated:

Can Data2Vec pretraining using unlabelled data improve the performance of
keyword spotting models, when only a small amount of labelled data is available?

Following the above research question, an introduction to the current state of KWS and the
various parts of a KWS system was first presented. A general overview of the area of self-
supervised learning was then presented, along with a description of the newly proposed
Data2Vec framework. The implementation of a self-supervised KWS system using Data2Vec
pretraining was then described. Here, it was chosen to use the transformer based KWTmodel,
following the use of a transformer encoder in the original Data2Vec study. Three variations of
the KWTmodel were implemented, namely KWT-1, KWT-2 and KWT-3, each model increasing
in size, ranging from 607 x 10° to 5361 x 10® parameters. This was done to be able to test the
influence of model size on Data2Vec pretraining performance. The implemented system was
then tested on a reduced labelled setup of the Google Speech Commands V2 data set, created
to emulate a sparse labelled data setup.

In the experiments, a baseline for the KWTmodel without pretraining was first established
for the reduced labelled setup. The best performing of the three KWT variations was the

43

Aalborg University

KWT-2 model, which achieved a test set accuracy of 78.69 %, with the others scoring a few
percent point lower. With the baseline results established, the KWT models were pretrained
on a set aside pretraining set using Data2Vec, after which they were fine-tuned following
the same training procedure used to generate the baseline results. Here, all three models
showed significant improvements in accuracy. The best improvement was achieved for KWT-
3 with an improvement of 18.56 %, while the accuracy of KWT-1 and KWT-2 improved by
15.9 % and 18.87 %, respectively. Based on these results, it can be concluded that Data2Vec
successfully increases the performance of the implemented KWS system by a relatively large
margin compared to the baseline results without pretraining. Ablation studies furthermore
showed that the performance boost from Data2Vec pretraining was consistent for multiple
choices of Data2Vec pretraining hyperparameters, such as varying amounts of masking. The
results show that Data2Vec can successfully be used for relatively small KWS models, and is
thus not reserved for large models with tens of millions of parameters. Additionally, the results
show that Data2Vec can significantly improve KWS performance when only a small amount of
labelled data is available.

While the results show that Data2Vec pretraining can be used to improve KWS performance
in sparse labelled data setups, one question is whether these results translate to other choices
of model and different data setups. Further research is also needed to determine how
Data2Vec performs in noisy conditions, as the data used in this study only included clean
keyword segments. The choice of hyperparameter settings for the Data2Vec method are shown
not affect fine-tuning performance much, however, more extensive efforts to determine the
influence of Data2Vec hyperparameters are needed, in order to be able to make a general
conclusion on these findings.

In this thesis, experiments were carried out using a set aside pretraining dataset with data
similar to the training data. Alternatively, it would be interesting to replace the pretraining
set with a more general speech data set such as Librispeech, to test whether this can further
improve the learned representations. Using a more general pretraining set could also open up
for a more general study on the applicability of learned representations for multiple use cases,
other than KWS. Future studies might also address the general applicability of Data2Vec for
additional use cases where smaller models are desired.

Although, the Data2Vec framework has currently only been applied to transformer architec-
tures, it might be equally applicable to other architectures such as CNN-based or RNN-based
models. Therefore, investigation into whether Data2Vec can be adapted to other architectures
is also an interesting direction, which can potentially generalize the use of the Data2Vec frame-
work to a broader range of models, making it more generally applicable.

To summarize, it has been shown that pretraining using Data2Vec can significantly improve
KWS performance when only a small amount of labelled data is available. Moreover, the
Data2Vec method showed to be relatively invariant to the choice of method specific pretraining
hyperparameters. While these results are promising, more in-depth research into the impact
of model choice and data set have to be carried out, in order to generalize these findings.

44

(1]

(2]

(3]

(4]

(5]

6]

[7]

(8]

[9]

[10]

Bibliography

Y. LeCun and I. Misra. ‘Self-supervised learning: The dark matter of intelligence.’ (2021),
[Online]. Available: https://ai.facebook. com/blog/self -supervised-learning-
the-dark-matter-of-intelligence/ (visited on 18/05/2022).

S. Schneider, A. Baevski, R. Collobert and M. Auli, ‘Wav2vec: Unsupervised pre-training
for speech recognition,” CoRR, vol. abs/1904.05862, 2019. [Online]. Available: http: //
arxiv.org/abs/1904.05862.

M. L. Anderson, ‘Neural reuse: A fundamental organizational principle of the brain,’
Behavioral and Brain Sciences, vol. 33, no. 4, pp. 245-266, 2010. DOI: 10 . 1017 /
S0140525X10000853.

I. Lopez-Espejo, Z. Tan, J. H. L. Hansen and J. Jensen, ‘Deep spoken keyword spotting:
An overview,” CoRR, vol. abs/2111.10592, 2021. [Online]. Available: https://arxiv.org/
abs/2111.10592.

Y. Zhuang, X. Chang, Y. Qian and K. Yu, ‘Unrestricted vocabulary keyword spotting using
Istm-ctc,” Sep. 2016, pp. 938-942. DOI: 10.21437/Interspeech.2016-753.

A. Bardes, J. Ponce and Y. LeCun, ‘Vicreg: Variance-invariance-covariance regularization
for self-supervised learning,” CoRR, vol. abs/2105.04906, 2021. [Online]. Available: https:
//arxiv.org/abs/2105.04906.

J. Grill, F. Strub, F. Altché et al., ‘Bootstrap your own latent: A new approach to self-
supervised learning,” CoRR, vol. abs/2006.07733, 2020. [Online]. Available: https : / /
arxiv.org/abs/2006.07733.

A. Baevski, W. Hsu, Q. Xu, A. Babu, J. Gu and M. Auli, ‘Data2vec: A general framework
for self-supervised learning in speech, vision and language,” CoRR, vol. abs/2202.03555,
2022. [Online]. Available: https://arxiv.org/abs/2202.03555.

K. Friston and S. Kiebel, ‘Predictive coding under the free-energy principle,’ Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1521, pp. 1211-1221,
2009. DOI: 10.1098/rstb.2008.0300.

A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals and J. Carreira, ‘Perceiver:
General perception with iterative attention,” CoRR, vol. abs/2103.03206, 2021. [Online].
Available: https://arxiv.org/abs/2103.03206.

45

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
https://doi.org/10.1017/S0140525X10000853
https://doi.org/10.1017/S0140525X10000853
https://arxiv.org/abs/2111.10592
https://arxiv.org/abs/2111.10592
https://doi.org/10.21437/Interspeech.2016-753
https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2202.03555
https://doi.org/10.1098/rstb.2008.0300
https://arxiv.org/abs/2103.03206

Bibliography Aalborg University

[11] Open SLR. ‘Librispeech asr corpus.’ (2022), [Online]. Available: https://www.openslr.
org/12 (visited on 24/05/2022).

[12] A. Viterbi, ‘Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,’ IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260-269,
1967. DOI: 10.1109/TIT.1967.1054010.

[13] M. Sun, D. Snyder, Y. Gao et al., ‘Compressed time delay neural network for small-
footprint keyword spotting,” in Interspeech 2017, 2017. [Online]. Available: https://www.
amazon . science /publications / compressed-time -delay-neural -network-for -
small-footprint-keyword-spotting.

[14] I.Lépez-Espejo, Z.-H. Tan and J. Jensen, Exploring filterbank learning for keyword spotting,
2020.

[15] R. C. Staudemeyer and E. R. Morris, ‘Understanding LSTM - a tutorial into long short-
term memory recurrent neural networks,” CoRR, vol. abs/1909.09586, 2019. [Online].
Available: http://arxiv.org/abs/1909.09586.

[16] J. Chung, C. Giilcehre, K. Cho and Y. Bengio, ‘Empirical evaluation of gated recurrent
neural networks on sequence modeling,” CoRR, vol. abs/1412.3555, 2014. [Online].
Available: http://arxiv.org/abs/1412.3555.

[17] Y. Yuan, Z. Lv, S. Huang and L. Xie, ‘Verifying deep keyword spotting detection with
acoustic word embeddings,’ in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2019, pp. 613-620. DOI: 10.1109/ASRU46091.2019.9003781.

[18] N.Sacchi, A. Nanchen, M. Jaggi and M. Cernak, ‘Open-vocabulary keyword spotting with
audio and text embeddings,’ in INTERSPEECH, 2019.

[19] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385.

[20] A.Vaswani, N. Shazeer, N. Parmar et al., ‘Attention is all you need,” CoRR, vol. abs/1706.03762,
2017. [Online]. Available: http://arxiv.org/abs/1706.03762.

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., ‘An image is worth 16x16 words: Trans-
formers for image recognition at scale,” CoRR, vol. abs/2010.11929, 2020. [Online]. Avail-
able: https://arxiv.org/abs/2010.11929.

[22] A. Berg, M. O’Connor and M. T. Cruz, ‘Keyword transformer: A self-attention model for
keyword spotting,’ in Interspeech 2021, ISCA, Aug. 2021. DOI: 10.21437/interspeech.
2021-1286. [Online]. Available: https://doi.org/10.21437%5C%2Finterspeech.2021~
1286.

[23] L. Liu, J. Liu and J. Han, ‘Multi-head or single-head? an empirical comparison for
transformer training,” CoRR, vol. abs/2106.09650, 2021. [Online]. Available: https: //
arxiv.org/abs/2106.09650.

[24] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.

[25] P. Warden, ‘Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition,’
ArXiv e-prints, Apr. 2018. [Online]. Available: https://arxiv.org/abs/1804.03209.

[26] W. Commons. ‘Receiver operating curve.” File: Roc curve.svg. (2018), [Online]. Avail-
able: https://en.wikipedia.org/wiki/File:Roc_curve.svg#metadata.

46

https://www.openslr.org/12
https://www.openslr.org/12
https://doi.org/10.1109/TIT.1967.1054010
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1412.3555
https://doi.org/10.1109/ASRU46091.2019.9003781
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://doi.org/10.21437/interspeech.2021-1286
https://doi.org/10.21437/interspeech.2021-1286
https://doi.org/10.21437%5C%2Finterspeech.2021-1286
https://doi.org/10.21437%5C%2Finterspeech.2021-1286
https://arxiv.org/abs/2106.09650
https://arxiv.org/abs/2106.09650
https://arxiv.org/abs/1804.03209
https://en.wikipedia.org/wiki/File:Roc_curve.svg#metadata

Bibliography Aalborg University

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

L. Jing, P. Vincent, Y. LeCun and Y. Tian, ‘Understanding dimensional collapse in con-
trastive self-supervised learning,” CoRR, vol. abs/2110.09348, 2021. [Online]. Available:
https://arxiv.org/abs/2110.09348.

X. Chen, H. Fan, R. B. Girshick and K. He, ‘Improved baselines with momentum
contrastive learning,” CoRR, vol. abs/2003.04297, 2020. [Online]. Available: https : / /
arxiv.org/abs/2003.04297.

A.Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee and F. Makedon, ‘A survey on contrastive
self-supervised learning,” CoRR, vol. abs/2011.00362, 2020. [Online]. Available: https :
//arxiv.org/abs/2011.00362.

T. Chen, S. Kornblith, M. Norouzi and G. E. Hinton, ‘A simple framework for contrastive
learning of visual representations,” CoRR, vol. abs/2002.05709, 2020. [Online]. Available:
https://arxiv.org/abs/2002.05709.

D. Jiang, W. Li, M. Cao et al., ‘Speech SIMCLR: combining contrastive and reconstruction
objective for self-supervised speech representation learning,” CoRR, vol. abs/2010.13991,
2020. [Online]. Available: https://arxiv.org/abs/2010.13991.

H. Al-Tahan and Y. Mohsenzadeh, ‘CLAR: contrastive learning of auditory representa-
tions,” CoRR, vol. abs/2010.09542, 2020. [Online]. Available: https://arxiv.org/abs/
2010.09542.

A. K. Sarkar and Z. Tan, ‘Time-contrastive learning based unsupervised DNN feature
extraction for speaker verification,” CoRR, vol. abs/1704.02373, 2017. [Online]. Available:
http://arxiv.org/abs/1704.02373.

X. Chen and K. He, ‘Exploring simple siamese representation learning,” CoRR, vol. abs/2011.10566,
2020. [Online]. Available: https://arxiv.org/abs/2011.10566.

D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada and K. Kashino, Byol for audio: Self-
supervised learning for general-purpose audio representation. DOI: 10.48550/ARXIV.2103.
06695. [Online]. Available: https://arxiv.org/abs/2103.06695.

Y. Chung, W. Hsu, H. Tang and J. R. Glass, ‘An unsupervised autoregressive model for
speech representation learning,” CoRR, vol. abs/1904.03240, 2019. [Online]. Available:
http://arxiv.org/abs/1904.03240.

Facebook Al ‘Libri-light.’ (2022), [Online]. Available: https://ai.facebook.com/tools/
libri-light/ (visited on 24/05/2022).

W. Hsu, B. Bolte, Y. H. Tsai, K. Lakhotia, R. Salakhutdinovand A. Mohamed, ‘Hubert: Self-
supervised speech representation learning by masked prediction of hidden units,” CoRR,
vol. abs/2106.07447, 2021. [Online]. Available: https://arxiv.org/abs/2106.07447.

PyTorch. ‘An open source machine learning framework.” (2021), [Online]. Available:
https://pytorch.org/ (visited on 09/05/2022).

M. Morshed. ‘Torch kwt.” (2021), [Online]. Available: https://github.com/ID56/Torch-
KWT (visited on 24/05/2022).

Facebook Al ‘Fairseq.’ (2022), [Online]. Available: https://github.com/facebookresearch/
fairseq (visited on 24/05/2022).

B. McFee, C. Raffel, D. Liang et al., ‘Librosa: Audio and music signal analysis in python,’
Jan. 2015, pp. 18-24. DOI: 10.25080/Majora-7b98e3ed-003.

47

https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2010.13991
https://arxiv.org/abs/2010.09542
https://arxiv.org/abs/2010.09542
http://arxiv.org/abs/1704.02373
https://arxiv.org/abs/2011.10566
https://doi.org/10.48550/ARXIV.2103.06695
https://doi.org/10.48550/ARXIV.2103.06695
https://arxiv.org/abs/2103.06695
http://arxiv.org/abs/1904.03240
https://ai.facebook.com/tools/libri-light/
https://ai.facebook.com/tools/libri-light/
https://arxiv.org/abs/2106.07447
https://pytorch.org/
https://github.com/ID56/Torch-KWT
https://github.com/ID56/Torch-KWT
https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq
https://doi.org/10.25080/Majora-7b98e3ed-003

Bibliography Aalborg University

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Devlin, M. Chang, K. Lee and K. Toutanova, ‘BERT: pre-training of deep bidirectional
transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online].
Available: http://arxiv.org/abs/1810.04805.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles and H. Jégou, ‘Training data-
efficient image transformers & distillation through attention,” CoRR, vol. abs/2012.12877,
2020. [Online]. Available: https://arxiv.org/abs/2012.12877.

Hugging Face. ‘The ai community building the future.’ (2022), [Online]. Available: https:
//huggingface.co/ (visited on 24/05/2022).

NVIDIA. ‘Cuda toolkit.” (2022), [Online]. Available: https://developer .nvidia. com/
cuda-toolkit (visited on 24/05/2022).

CLAUUDIA, Aalborg University. ‘Ai cloud.” (2022), [Online]. Available: https : / / www .
claaudia.aau.dk/platforms-tools/compute/gpu-cloud-ai/ (visited on 24/05/2022).

——, ‘Strato compute cloud.” (2022), [Online]. Available: https://www . claaudia . aau.
dk/platforms-tools/compute/compute-cloud/ (visited on 24/05/2022).

D. S. Park, W. Chan, Y. Zhang et al., ‘SpecAugment: A Simple Data Augmentation Method
for Automatic Speech Recognition,’” in Proc. Interspeech 2019, 2019, pp. 2613-2617. DOI:
10.21437/Interspeech.2019-2680.

I. Loshchilov and F. Hutter, ‘Fixing weight decay regularization in adam,” CoRR,
vol. abs/1711.05101, 2017. [Online]. Available: http://arxiv.org/abs/1711.05101.

——, ‘SGDR: stochastic gradient descent with restarts,” CoRR, vol. abs/1608.03983, 2016.
[Online]. Available: http://arxiv.org/abs/1608.03983.

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, 1st ed. MIT Press, 2017, ISBN:
978-0262-03561-3.

R. Miiller, S. Kornblith and G. E. Hinton, ‘When does label smoothing help?’ CoRR,
vol. abs/1906.02629, 2019. [Online]. Available: http://arxiv.org/abs/1906.02629.

L. N. Smith and N. Topin, ‘Super-convergence: Very fast training of residual networks
using large learning rates,” CoRR, vol. abs/1708.07120, 2017. [Online]. Available: http :
//arxiv.org/abs/1708.07120.

P. Kaushik, A. Gain, A. Kortylewski and A. L. Yuille, ‘Understanding catastrophic
forgetting and remembering in continual learning with optimal relevance mapping,’
CoRR, vol. abs/2102.11343, 2021. [Online]. Available: https://arxiv.org/abs/2102.
11343.

48

http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2012.12877
https://huggingface.co/
https://huggingface.co/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.claaudia.aau.dk/platforms-tools/compute/gpu-cloud-ai/
https://www.claaudia.aau.dk/platforms-tools/compute/gpu-cloud-ai/
https://www.claaudia.aau.dk/platforms-tools/compute/compute-cloud/
https://www.claaudia.aau.dk/platforms-tools/compute/compute-cloud/
https://doi.org/10.21437/Interspeech.2019-2680
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1906.02629
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://arxiv.org/abs/2102.11343
https://arxiv.org/abs/2102.11343

	Front Page
	Title Page
	Table of Contents
	Introduction
	Keyword Spotting
	Self-supervised Learning
	Implementation of Self-supervised Keyword Spotting system
	Experiments and Results
	Conclusion
	Bibliography

