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Abstract 

With the ultimate goal of automatically 

transcribing speech phonetically in real time, 

this report focuses on the ability to 

automatically transcribe vowels in real time. 

For the first part of the report, human speech 

production was examined, including the 

resulting acoustic signal, as well as how it 

can be analyzed using signal processing 

methods, such as zero-crossing rate and 

linear predictive coding.  With this 

background, an algorithm was created for 

automatically detecting vowel segments of 

speech, as well as estimating which vowel 

was spoken. The algorithm was programmed 

and tested in MATLAB. The results did not 

fulfill the requirements defined in the report. 

Vowel detection may be difficult to improve 

on with the goal of running the algorithm in 

real time, however the vowel estimation had 

an obvious flaw which may be solvable with 

further development. 

 

 

 

 

 



  

Resumé 

Denne rapport er udarbejdet i forbindelse med et 4 måneder langt Elektronik og IT diplomingeniør 

afgangsprojekt ved Aalborg Universitet. Det langsigtede formål med projektet har været at udvikle en 

algoritme, der er i stand til automatisk at transskribere tale fonetisk i realtid. Kortsigtet er projektet 

afgrænset til at transskribere vokaler i realtid. Som grundlag for udviklingen undersøges, hvordan 

mennesker producerer tale, og hvordan denne tale kan analyseres ved hjælp af signalbehandling. I den 

forbindelse undersøges sammenhængen mellem zero-crossing rate (ZCR) og stemt tale, herunder 

vokaler, samt hvordan formanter i særligt vokaler kan estimeres ved hjælp af linear predictive coding 

(LPC). Der opstilles en række krav, således at det kan undersøges, hvorvidt den udviklede algoritme er 

i stand til at transskribere vokaler samt automatisk registrere, hvornår tale består af en vokal. Den 

udviklede algoritme overholdt ikke kravene. Dog var det muligt at se ud fra testresultaterne, at 

algoritmen er i stand til at nå noget af vejen. Det vurderes, at det ikke umiddelbart vil være muligt at 

overholde vokalregistreringskravene, så længe algoritmen skal kunne køre i realtid. Til gengæld lader 

det til, at vokalestimeringen kan optimeres ved også at inddrage den grundlæggende frekvens. 
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1 Introduction 

Automatic speech recognition (ASR) has made serious steps forward in the recent years, in large part 

due to the incorporation of neural networks and artificial intelligence rather than humans having to build 

a model. This is generally aimed towards machines being able to interpret what a person is saying and 

responding to it in a meaningful manner. Just think of home and phone AI assistants like Alexa and 

Siri, allowing you to check information or even schedule tasks or play music without having to touch 

the machine. Another great example of ASR being useful is e.g. YouTube’s auto-generated closed 

captions, allowing people with hearing impairments to better enjoy videos without anyone having to sit 

down and do the work every time a new video is released. 

ASR can also be used to interpret the acoustic characteristics of speech rather than the meaning of what 

is said. This is especially the case when it comes to speech therapy for people with speech impairments, 

but it could also be extended to people who wish to train their pronunciation in e.g. another language. 

In the case of the latter, language learning applications such as Duolingo currently use ASR designed 

to interpret meaning rather than the exact sounds that the user is articulating, meaning that it is 

somewhat forgiving when it comes to the spoken exercises. This is no doubt useful for many people 

whose goal is only to make themselves understood and not necessarily to perfect their pronunciation. 

However there are also no doubt people who would appreciate the ability to train specific sounds. 

A final case where this phonetic ASR would come in handy is with the phonetic transcription of speech. 

For some linguists, transcribing speech samples is a time-consuming effort which simply has to be done 

in order for them to analyze or present their work. It can also be useful for e.g. a language teacher or 

hobby language creator who wants to write the way they say something phonetically without much 

hassle. 

In any case, there is a use and desire for such a tool. This project cannot encompass all aspects of 

automatic phonetic transcription in the given time frame, however, it can take on a part of the challenge, 

like being able to automatically transcribe vowels phonetically, before moving on to another. 
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2 Problem analysis 

With the goal of developing a phonetic transcription algorithm focused on vowels, a number of 

questions are formulated: 

1. How can human speech be represented phonetically in writing? 

2. What are the below listed characteristics of human speech, and how are they formed in the 

human vocal tract? 

a. Unvoiced 

b. Voiced 

i. Fundamental frequency 

ii. Formants 

3. How can characteristics of human speech, in particular vowels, be extracted using signal 

processing techniques? 

Answering these questions throughout the rest of this chapter is expected to lay a solid foundation for 

the development of a vowel transcriber. 

2.1 Orthography 
A language's orthography is essentially its use of the characters in its writing system. The writing system 

can broadly speaking be logographic (e.g. Egyptian hieroglyphs and Chinese hanzi), syllabic (e.g. 

Japanese hiragana and katakana), alphabetic (e.g. the Latin and Arabic alphabets), or a mix. 

Alphabets are of particular interest when it comes to pronunciation, as there is a great if not full overlap 

between its symbols and the phonemes used in the spoken language that it represents. As such, with 

optimal use of an alphabet, it is possible to pronounce a written word despite having no prior knowledge 

of it or its meaning. This contrasts with logographic systems, where each symbol conveys a meaning 

rather than a pronunciation, so while a logographic symbol may retain its meaning over millenniums, 

the speaker must know of it, and it could have represented a word with an entirely different 

pronunciation in the past. 

As implied, with optimal use of an alphabet there is no ambiguity regarding its pronunciation. However, 

the pronunciation of individual languages is not static over time, and the official orthography of a single 

language may have its origins in a specific region not representative of all speakers. In practicality this 

means that a person may be using spelling that is more widely understood within their language, despite 

it not matching their own pronunciation exactly. 

Adding to the inaccuracy, a single alphabet can be used by different languages, with each language 

having its own standard interpretation of how symbols or clusters of symbols are to be pronounced. For 

example, the English word hi and the Danish word hej carry the same meaning and are pronounced 

approximately the same by speakers of their respective languages. However, if asked to pronounce the 

word exactly as it is written, an English speaker would pronounce hej vastly different from a Danish 

speaker, and vice versa. Even within a single language, there is no guarantee that the same series of 

symbols represents the exact same pronunciation, e.g. -ome in the individual words of the English 

phrase come home. 
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2.1.1 The International Phonetic Alphabet (IPA) 

If the goal of writing is to accurately represent a pronunciation, a common option is using the 

International Phonetic Alphabet (IPA) [1], which is intended to be universal for all listeners. 

Continuing the example of English hi and Danish hej from the previous section, with IPA they are both 

written as [haɪ]. The IPA is based on symbols available in the various versions of the Latin alphabet, 

mainly supplemented by the Greek alphabet, as well as rotated or capitalized versions of individual 

symbols. These symbols generally represent the purest version of each sound or phone, categorized by 

how the vocal tract moves to produce said phone. These movements of the vocal tract will be covered 

briefly later in the chapter. In addition to the base symbols, a variety of diacritics and punctuation is 

available to describe features such as duration, stress, tone, nasalization, and many more. 

The goal of this report is not to explain the meaning of every IPA symbol, and it would be difficult to 

do so without first going into detail about the production of speech through the vocal tract. Likewise, it 

would be difficult to go into detail about the latter in a written report without a visual reference for the 

resulting sounds. For this reason, the official IPA chart is included in appendix A, and where relevant 

to the report, individual symbols and notations are explained with reference to said chart. 

2.2 Human speech production 
Human speech is the result of pushing air out of your lungs while shaping your vocal tract (see Figure 

1) in patterns changing over time [1]. This produces an acoustic signal that a listener's brain - if they 

understand your language - can dissect into a meaning. To convey any information, this signal must 

also differ depending on how the vocal tract was shaped. It is therefore common to describe speech 

using the source-filter model, where a source sound is passed through the acoustic filter that is the 

vocal tract. 
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Figure 1: Human vocal tract with labels. 

Source: Tavin, CC BY 3.0 [2], via Wikimedia Commons. 

2.2.1 Source 

The source sound of unvoiced speech is simply created by breathing out. For voiced speech, the air 

flow is modified the vocal cord (which is located in the voice box in fig. 1) to create its source sound. 

The vocal cord consists of two folds that vibrate by opening and closing periodically while in use. The 

result is a source sound with a fundamental frequency (F0) corresponding to the frequency of the 

vibrating folds, see Figure 2. F0 is not constant for a single person, though the length of the person’s 

vocal cords generally defines their F0 range. Males, having longer vocal cords, are said to have a range 

of 80 to 200 Hz, and females 150 to 350 Hz [3]. These exact values vary depending on source material 

[2], and they are not a hard limit by any means. 

 

Figure 2: The opening and closing of the vocal cords, and the resulting acoustic signal. 

Source: Gerazov, CC BY-SA 4.0 [3], via Wikimedia Commons. 
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2.2.2 Filter 

All parts in Figure 1 other than the voice box are considered the filter in the source-filter model. By 

constricting airflow between various parts or changing the shape of the oral cavity, the source sound is 

modified. The former is the main component of pulmonic consonants, a table of which can be found in 

appendix A. Here they are listed with three dimensions: the location where the obstruction happens, the 

movement of the involved parts, and whether the consonant is voiced or unvoiced. As an example, both 

[p] and [b] are bilabial plosives. This means that the phones are formed by closing the lips (bilabial), 

which temporarily stops the airflow and lets pressure build up enough to break through the closure 

(plosive) [1]. This can be compared with another set of plosives, [k] and [ɡ]. These two are velar instead 

of bilabial, meaning that the closure takes place between the tongue and the back of the mouth instead 

of between the lips, but the pattern of stopping and releasing the airflow remains the same. Similarly, 

[p] and [b] can be compared with the bilabial nasal [m]. Here the airflow is blocked by the lips closing, 

and the airflow is redirected through the nasal cavity as one continuous sound. 

While continuous sounds are not exclusive to vowels, vowels do exclusively consist of continuous 

sounds. Vowels are characterized by minimal obstruction in the vocal tract and are also typically voiced. 

They are also listed with three dimensions: close/open, front/back, and rounded/unrounded. The vowel 

being open or close refers to the height of the tongue, with close meaning the tongue is close to the roof 

of the mouth, and open meaning it rests in the bottom of the mouth. Front and back again refer to the 

tongue, but, as the terms suggest, whether the tongue is towards the front or the back of the mouth. 

Finally rounded and unrounded refer to the shape of the lips [4]. Unlike what is the case for consonants, 

the categorization of vowels has more to do with their resonant frequencies, formants, than it has to do 

with a unique position and shape of the tongue and lips [4]. That is not to say that they do not matter, 

but rather that these categories have been defined based on their influence on the formants. 

2.2.3 Formants 

As mentioned in section 2.2.2, a formant is a resonant frequency, typically in the context of music or 

speech. Formants are, in other words, frequencies that have been amplified through resonance and 

become dominant in the acoustic signal. For speech, it is generally considered that the two lowest 

frequency formants, F1 and F2 are most important in distinguishing vowels [4] [3], corresponding 

roughly to tongue height and tongue backness respectively. The third formant, F3, has been tied to lip 

rounding. Formants F4 and above are not considered as important in the context of vowels [4]. Because 

of this, vowels are often visualized according to their first two formants, see Figure 3. 



 6 

 

Figure 3: A selection of IPA vowels arranged in an ideal triangle according to their first two formants. 

Source: Kwamikagami, CC BY-SA 3.0 [3], via Wikimedia Commons. 

The exact formants of e.g. [a] vary from person to person, however they generally exist in the same 

range. For human speech, it is a rule of thumb that a formant exists for every 1 kHz, meaning that F1 is 

generally expected to be in the range of 0 to 1 kHz, F2 in the range of 1 to 2 kHz, and so on. However, 

this is not a guarantee, as e.g. for some vowels F2 and F3 merge due to their proximity with each other. 

2.2.4 Phone transition 

It is easy to think of phones as discrete units. This is how they are represented with IPA and with 

alphabets in general. However, for the acoustic signal that is speech, this is not the case, as the transition 

from one vocal tract shape to another is not instant, and the speech continues while the change is taking 

place, resulting in coarticulation [7] [8]. Even if attempting to speak slowly and transition sharply from 

one phone to another, it is difficult to truly separate them from each other. In regular speech, this 

becomes near impossible. One example is short vowels trending towards the neutral vowel [ə] (also 

known as schwa) as the mouth quickly has to prepare for the next phone [4]. Another is with words of 

Latin origin with the prefix in-, often being a negation to the word that follows. The word inpossible 

has morphed into impossible, because in preparation for the bilabial [p], the [n] first has to transition 

into [m], and over time it has been entirely replaced [4] [8]. 

2.3 Speech in signal processing 
Speech is an analog signal, and in the modern world digital computers are by far dominant over their 

analog counterparts. Because of this, using a computer for signal processing most often demands that 

the speech is converted into a digital signal first, turning both time and amplitude discrete rather than 

continuous. Speech travels through air forming pressure, which, when passed through a microphone, is 

translated into voltage. For the time aspect, the microphone is sampled at a regular interval also known 

as the sample rate. When the microphone is sampled, the analog voltage is run through an analog-to-

digital converter (ADC) and quantized into a discrete value, so that it can be stored and processed 

digitally. This is known as pulse-code modulation (PCM), and it is the most straightforward method 

of storing audio in digital form [1]. 



 7 

2.3.1 PCM storage 

A classic file format for PCM is WAVE, with the extension .wav. It is a variation of Microsoft’s 

Resource Interchange File Format (RIFF), which is also the basis for the video format AVI among 

others. A WAVE file consists of three chunks. The first chunk contains the letters RIFF, the remaining 

size of the file in bytes, and the letters WAVE, which specifies which chunks the file is expected to contain. 

Following that is a chunk containing the format information of the file. This includes specifying if the 

data is stored as PCM or compressed, how many audio channels the data consists of, as well as bits per 

sample, sample rate, and other information regarding how to interpret the data. The final chunk is for 

data and includes the size of the data itself in bytes. 

PCM, while it has the benefit of being lossless, i.e. the data stored is exactly what was recorded, 

unsurprisingly requires a large amount of storage space. The data can be compressed in ways that e.g. 

take advantage of repetitive data (lossless) or reduce the number of bits per sample (lossy). Ultimately, 

in order to be played back through a speaker or analyzed, the data will have to be uncompressed and 

restored to its waveform. 

2.3.2 Short-time analysis and framing 

Due to the waveform of speech changing over time, in other words being dynamic, analyzing an entire 

speech recording at once will not yield much information about the characteristics of the speech. 

Reducing the length of the audio to analyze makes the signal quasi stationary. This means that, while 

the waveform is likely still changing from the beginning of the window to the end, the changes are 

relatively small, and the data within the window is approximately stationary [4]. This allows for the 

data to be split up into frames consisting of consecutive windows. A commonly recommended window 

length for speech analysis is one corresponding to 20 [5] or 25 ms, with some sources going as far as 

suggesting anywhere between 15 [4] and 40 ms. One thing to consider when choosing window length 

is whether the fundamental frequency can fit within one frame. If analyzing a series of frames, having 

some frames with F0 and some without may cause inconsistencies [4]. Going by the frequency ranges 

listed in section 2.2.1, the period of F0 has a length of up to 12.5 ms, meaning that 20 ms windows 

should be sufficient. 

In speech analysis, the window function used when framing the data is typically Hamming [4] or Hann 

[6]. They both cause the windowed data to slope towards the edges [5], and if the windows are placed 

one after another, this means that the data in the transition between frames is attenuated and ultimately 

lost. To counter this, it is recommended to use overlap between frames, such that a frame shares a 

percentage of its data with the previous frame, and the next. A commonly suggested amount of overlap 

is 50 % or 10 ms [5]. 

2.3.3 Distinguishing voiced and unvoiced speech 

With the description of voiced sounds having a fundamental frequency, while unvoiced sounds do not, 

it is not far-fetched that much of voiced speech’s energy is contained in the lower frequencies, compared 

to unvoiced speech’s higher frequencies. This is even visible in the waveform, where the high energy 

low frequency appears to carry the higher frequencies, so that the number of times the waveform crosses 

0 more closely resembles the fundamental frequency, see Figure 4. 
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Figure 4: Close up of a speech waveform transitioning from unvoiced [s] to voiced [a]. 

Because of this, the zero-crossing rate, i.e. the frequency of the waveform’s sign change, carries 

information about whether the phone is voiced or unvoiced. By counting the number of changes N 

within a frame, the zero-crossing rate can be calculated: 

[9] Equation 1 

𝑍𝐶𝑅 =
𝑁 ∙ 𝑓𝑠

2 ∙ 𝑊𝐿
 

Where 𝑓𝑠 is the sample rate, and 𝑊𝐿 is the window length. 

If the calculated zero-crossing rate is sufficiently low to not be unvoiced, the energy at this frequency 

can then be examined using a Fourier transform to ensure that the zero-crossing rate is not the result of 

random noise in between voiced segments. If the energy is above a selected threshold, it can be assumed 

that the frame contains voiced speech [9] [10] [1]. 

Nasal consonants are like vowels in that they also have a fundamental frequency and formants. Because 

of that, this method will tend to lump nasals and vowels together, when it may be of interest to separate 

vowels from consonants on top of voiced from unvoiced. Nasal consonants tend to have a lower zero-

crossing rate than vowels, and so instead of only setting an upper frequency boundary, a lower one can 

be set as well. 

2.3.4 Formant estimation 

As a human, it is not unreasonable to look at a frequency spectrum containing formants and being able 

to estimate them by the spectral envelope, see Figure 5. For a speech recognition algorithm analyzing 

multiple frames per second, this would obviously not suffice, but thankfully there are ways to calculate 

a formant estimate. 
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Figure 5: An audio frame's frequency spectrum with a sketched envelope. 

Continuing with the source-filter model covered in section 2.2, if the waveform being analyzed is the 

result of an impulse train being passed through a filter, an inverse filter would instead be applied to the 

waveform to obtain the source signal. If the coefficients of the inverse filter are approximated, it can 

then be inversed to form as estimate of the original vocal tract filter. The transfer function of said filter 

roughly corresponds to, but is not equal to, the spectral envelope [4], see Figure 6, and the peaks are the 

result of the inverse filter’s complex conjugate roots. Such an inverse filter can be obtained through 

linear predictive coding (LPC) [6] [9]. 

 

Figure 6: The LPC estimated transfer function corresponding to Figure 5. 

2.3.4.1 Linear predictive coding (LPC) 

LPC takes advantage of the waveform of speech being somewhat predictable based on a handful of 

previous samples. This section will not go in-depth with the individual methods that exist for calculating 

the LPC coefficients, but rather attempt to cover what the methods accomplish. With the assumption 

that every sample is the result of a linear combination of p previous samples, it is possible to set up an 

equation for every single sample in the frame. A rule of thumb is that each formant found between 0 

Hz and the Nyquist frequency corresponds to one complex root pair. Expecting a formant for roughly 

every 1 kHz [3] results in 𝑝 = 𝑓𝑠 1000⁄ , sometimes adding a few more to account for LPC picking up 
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on e.g. the fundamental frequency [5]. The coefficients ak are then the solution to all these equations 

that results in the smallest error, e, between the sampled value and the value predicted by the coefficients 

[4]: 

Equation 2 

𝑥(𝑛) =  ∑ 𝑎𝑘 ∙ 𝑥(𝑛 − 𝑘) + 𝑒(𝑛)

𝑝

𝑘=1

 

Where x(n) is the predicted sample. 

What various methods of solving this system have in common is that they ultimately require multiplying 

the inverse of a matrix with a vector to obtain the coefficients [9]. Once the set of coefficients has been 

calculated, the prediction polynomial can be formed [2]: 

Equation 3 

𝑃(𝑧) = 1 − ∑ 𝑎𝑘 ∙ 𝑧−𝑘

𝑝

𝑘=1

 

Solving for complex roots results in a number of roots equal to the LPC order p. Only the complex 

conjugate root pairs correspond to formants, with their frequencies being located between 0 Hz and the 

Nyquist frequency. The frequencies and bandwidths of each complex root pair is calculated by: 

 

[6] Equation 4 

𝐹𝑖 =
𝑓𝑠

2𝜋
∙ 𝜃𝑖 

Where 𝐹 is a formant, and 𝜃 is the angle of the root in radians. 

[8] Equation 5 

𝐵𝑖 = −
1

2
∙

𝑓𝑠

2𝜋
∙ ln 𝑟𝑖 

Where B is the formant’s bandwidth, and r is the size of the root. 

Formants with a frequency close to zero, e.g. below 90 Hz [9] [6], are discarded, as they should be 

higher than the fundamental frequency [6]. Likewise, if the formant’s bandwidth is too large, e.g. above 

400 Hz [4], it is a sign that the root is too spread out to represent the narrow peak of a formant [5]. The 

remaining formants are sorted according to size, giving F1 the lowest frequency [1]. For the frame 

presented in both Figure 5 and Figure 6, the first three estimated formants are 202, 1040 and 1590 Hz. 

Comparing with the peaks in both figures, this appears to be a reasonable estimate, although F1 is low 

enough that it could be F0. 
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3 Requirements 

To be able to judge whether the vowel transcriber performs well, it is a good idea to determine a set of 

minimum requirements prior to testing. As there are no ISO standards for phonetic transcription, the 

requirements are formulated with the intended use of the algorithm in mind. 

Real time 

For live feedback regarding the user’s pronunciation of a vowel, such as in speech therapy or language 

training, it is necessary that the algorithm can run in real time. This means that the audio cannot be 

enhanced or analyzed through preprocessing, and analysis should mainly rely on current and past 

frames. To use future frames, the algorithm would need to delay the output to match the number of 

future frames needed, up to a maximum of 0.1 seconds. For automated IPA transcription purposes, the 

algorithm does not need to run in real time, however it is likely easier to change an algorithm away 

from real time than it is to change it towards. 

Platform 

The intended distribution is as a standalone application on a personal computer, be it a desktop computer 

or a smartphone. Proof of concept and testing should be done using a math tool such as MATLAB. It 

should be programmed in such a way that it can be implemented in another coding language without 

MATLAB’s specialized functions and tools. 

Input noise 

It is assumed that only one person is speaking at a time, and that the recording takes place under quiet 

circumstances with no music and minimal background noise such as traffic. 

Framing 

The window length of each frame should be 20 ms, with a frame step of 10 ms. The algorithm should 

be capable of fully analyzing a single frame before continuing to the next. 

Formants 

The algorithm should be able to estimate formants using LPC. The order of LPC should be equal to 

𝑓𝑠 1000⁄ , rounded to an integer. A minimum of three formants should be kept for use in vowel 

estimation. 

Vowel detection 

Using zero-crossing rate and energy, the algorithm should be able to determine if a frame contains a 

vowel. 

Vowel estimation 

With formants and vowel detection, the algorithm should estimate which vowel was spoken during 

vowel segments and provide the corresponding IPA symbol. The algorithm should be designed to 

distinguish between at least five different vowels. 

3.1 Testing 
The test will be performed with the vowels [a], [ə], [i], [ɑ] and [u]. In contexts where IPA symbols are 

not available, they will be written as a, e, i, o and u respectively. 



 12 

All speech clips will be selected from the linguistic resource Sound Comparisons [6], where a large 

collection of sound clips is available for download along with their IPA transcriptions. For each vowel 

to be tested, 20 clips will be selected where the vowel is present in the transcription, preferring long 

vowels and discarding clips where the vowel to be tested is part of a diphthong (combined vowel). 

For each speech clip, the vowel segments will be manually determined by listening. The first and last 

frame of each vowel segment will be noted along with which vowel to test. 

For the sake of uniformity in analysis and testing, each speech clip will be resampled to 16 kHz prior 

to analysis. 

Vowel detection 

For each frame manually marked as containing a vowel, at least 90 % should be correctly detected. 

For each frame not marked as containing a vowel, at least 90 % should be correctly detected. 

The total number of vowel segments detected should match the number of manually determined vowel 

segments by ±10 %. 

Vowel estimation 

For each vowel segment to be tested for vowel estimation, the correct vowel should be the highest match 

for at least 90 % of the segments. 

For each vowel segment to be tested for vowel estimation, the correct vowel should be in the top two 

matches for at least 95 % of the segments. 
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4 Algorithm 

This chapter's purpose is to describe the vowel transcriber that has been developed based on the 

knowledge presented in chapter 2, as well as the requirements defined in chapter 3. As a proof of 

concept, the algorithm was coded in MATLAB, using several of the software's specialized functions to 

analyze one or more audio files of variable length. 

4.1 Preparation 
File analysis is prepared by storing values that cannot be made discrete until the sample rate of the input 

has been discovered, as well as the complete paths to the audio files that will be analyzed. 

4.1.1 Frame length and overlap 

The window length of each frame is stored, as well as the time overlap between consecutive frames.  

1. FrameLengthMillis = 20 
2. FrameStepMillis = 10 

4.1.2 List of input audio files 

To allow for bulk analysis of multiple files, an input directory is chosen, and each compatible audio file 

contained within said directory, excluding subfolders, is added to a string array of input filenames. The 

chosen input directory is the subfolder Input in the current work folder, and the audio file formats 

provided on line 2 are the ones supported by MATLAB [6]. 

1. InputPath = pwd+"\Input" 
2. InputFormats = ["*.aifc", "*.aiff", "*.aif", "*.au", "*.flac", "*.ogg", "*.opus", 

"*.wav", "*.mp3", "*.m4a", "*.mp4"] 
3. for FormatIndex = 1:length(InputFormats) 
4.     TempFiles = dir(fullfile(InputPath, InputFormats(FormatIndex))) 
5.     for FileIndex = 1:height(TempFiles) 
6.         InputFiles = 

[InputFilesconvertCharsToStrings(TempFiles(FileIndex).name)] 
7.     end 
8. end 

4.2 File analysis 
The file analysis takes place in a loop going through each filename stored in the InputFiles array. The 

index of the file currently being analyzed is stored in the variable FileIndex. This variable is used for 

accessing the appropriate filename in the array, as well as identifying the file in question when storing 

test results. 

4.2.1 Audio import 

The contents of the audio file are first imported into a struct containing the uncompressed waveform 

data and the file's sample rate. If the data consists of multiple channels, they are merged into one by 

storing their mean. The sample rate in hertz, given by the file's metadata, is then stored as its own 

variable, allowing the struct to be cleared from memory. 

1. FileContent = importdata(fullfile(InputPath+'\'+InputFiles(FileIndex))) 
2. RawAudio = zeros(height(FileContent.data), 1) 
3. for SampleIndex = 1:height(FileContent.data) 
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4.     RawAudio(SampleIndex) = mean(FileContent.data(SampleIndex, :)) 
5. end 
6. SampleRate = FileContent.fs 

4.2.2 Sample rate dependent variables 

The frame length and frame step provided in section 4.1.1 are continuous variables and will need to be 

made discrete to apply them to the likewise discrete waveform. For this, the sample rate is used. The 

same goes for the linear prediction order, which is covered in section 2.3.4.1. Since the number of 

samples the data consists of is known, the number of frames that it can be divided into is calculated in 

advance and used to establish the loop containing frame analysis. Lastly, the window function is 

calculated for the given frame length. 

1. FrameLength = floor(SampleRate*FrameLengthMillis/1000) 
2. FrameStep = floor(SampleRate*FrameStepMillis/1000) 
3. LinPredOrder = floor(SampleRate/1000) 
4. NumFrames = floor((length(RawAudio)-FrameLength+FrameStep)/FrameStep) 
5. Window = hamming(FrameLength) 

4.3 Frame analysis 
The frame analysis loop goes through every integer from 1 to the number of full frames possible, with 

the index of the frame currently being analyzed stored in the variable FrameIndex. This index is used 

to calculate the corresponding indexes in RawAudio, as well as for storing information about detected 

vowels for future frames. 

4.3.1 Windowing 

First the RawAudio index to start reading from is calculated, compensating for the fact that MATLAB 

arrays always begin with an index of 1 instead of 0. Then the window function is applied to the samples 

starting at this index. 

1. DataOffset = (FrameIndex-1)*FrameStep 
2. RawFrame = RawAudio(DataOffset+1:DataOffset+FrameLength) 
3. WinFrame = Window.*RawFrame 

4.3.2 Fourier transform 

The frequency components of the window are calculated and stored. 

1. FreqFrame = fft(WinFrame) 

4.3.3 Zero-crossing rate 

The sign of each sample in WinFrame is stored in a new array, with 1 corresponding to a signed value, 

and 0 to an unsigned value. Going through each sample, a counter is incremented every time a sample 

differs from the previous one, meaning that a zero-crossing has taken place. Using the number of zero-

crossings as well as the number of samples and sample rate, the zero-crossing rate in hertz is calculated. 

The amount of energy found at this frequency is then stored for use in vowel detection. 

1. SignFrame = sign(WinFrame) 
2. ZeroCrossingCount = 0 
3. for SampleIndex = 2:FrameLength 
4.     if abs(SignFrame(SampleIndex)-SignFrame(SampleIndex-1)) 
5.         ZeroCrossingCount = ZeroCrossingCount+1 
6.     end 
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7. end 
8. ZeroCrossingRate = SampleRate*ZeroCrossingCount/(2*FrameLength) 
9. ZeroCrossingEnergy = 

abs(FreqFrame(round(ZeroCrossingRate/(SampleRate/FrameLength))+1)) 

4.3.4 Formants 

In order to estimate the formants of a frame, first the linear prediction coefficients are calculated. After 

that, the complex roots of a polynomium containing said cofficients are estimated, and the roots are 

translated to formants, as covered in section 2.3.4.1. Included is also protection against coefficients that 

are not a number, as sometimes a solution does not exist. 

1. LinPredCoeffs = lpc(WinFrame, LinPredOrder) 
2. Formants = zeros(3, 1) 
3. if sum(isnan(LinPredCoeffs)) == 0 
4.     Roots = roots(LinPredCoeffs) 
5.     Roots = Roots(imag(Roots) > 0) 
6.     Rads = atan2(imag(Roots), real(Roots)) 
7.     Freqs = Rads.*(SampleRate/(2*pi)) 
8.     Band = (-1/2*(SampleRate/(2*pi))).*log(abs(Roots)) 
9.     FormantIndex = 0 
10.     Formants = zeros(NumFormants, 1) 
11.     for RootIndex = 1:length(Roots) 
12.         if Freqs(RootIndex) > 90 && Band(RootIndex) < 400 
13.             FormantIndex = FormantIndex+1 
14.             Formants(FormantIndex) = Freqs(RootIndex) 
15.         end 
16.     end 
17.     Formants = sort(Formants) 
18. end 

4.3.5 Vowel detection 

To detect vowels, first the zero-crossing rate is examined, as covered in section 2.3.3. The zero-crossing 

rate is divided into three possible states: high (1), medium (0), and low (-1). This state is initiated as 

medium and stored between frames, and an uneven threshold has been put in place to ensure that small 

fluctuations exceeding the boundary between each state do not cause the state to rapidly change back 

and forth. If the state is medium, the energy level at the zero-crossing frequency is then checked, and if 

it is sufficiently large, it is estimated that the frame contains a vowel. 

1. if FrameIndex == 1 
2.     Vowel = zeros(1, NumFrames) 
3.     State = 0 
4. end 
5. if State < 1 && ZeroCrossingRate > 5000 
6.     State = 1 
7. elseif State < 0 && ZeroCrossingRate > 400 
8.     State = 0 
9. elseif State > -1 && ZeroCrossingRate < 350 
10.     State = -1 
11. elseif State > 0 && ZeroCrossingRate < 4000 
12.     State = 1 
13. end 
14. if State == 0 && ZeroCrossingEnergy > 1 
15.     Vowel(FrameIndex) = 1 
16. end 
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4.3.5.1 Experimental smoothing of vowel detection 

While developing the algorithm, it was found that spikes appear in the vowel detection. As an example, 

a vowel consisting of 20 frames might have a single frame within it that, according to the set thresholds, 

does not contain a vowel, and vice versa. To examine how this can be smoothed out, an extra algorithm 

is executed after all frames have been processed. This algorithm goes through every frame of the Vowel 

array to summarize where each vowel segments begins and ends. Following that, every transition 

between vowel and non-vowel is examined, and if a sufficiently small gap is detected between the 

current transition and the previous one, said gap is erased. As this algorithm only requires a set number 

of previous frame outputs, it could run on a frame-to-frame basis, but for use in real time, it would 

require either a delay or a running correction of previous vowel detection output. 

1. VowelCount = 0 
2. for FrameIndex = 1:NumFrames 
3.     Change = Vowel(FrameIndex)-Vowel(FrameIndex-1) 
4.     % Note start of a vowel segment (1st col): 
5.     if Change == 1 
6.         VowelCount = VowelCount+1 
7.         VowelSegments(VowelCount, 1) = FrameIndex 
8.     % Note end of a vowel segment (2nd col): 
9.     elseif Change == -1 
10.         VowelSegments(VowelCount, 2) = FrameIndex 
11.     end 
12.     % If final vowel segment is not closed off, close it: 
13.     if FrameIndex == NumFrames && VowelCount > 0 
14.         if VowelSegments(VowelCount, 2) == 0 
15.             VowelSegments(VowelCount, 2) = FrameIndex 
16.         end 
17.     end 
18. end 
19. % Smooth the gaps: 
20. if VowelCount > 0 
21.     TempVowelCount = 0 
22.     for VowelIndex = 1:VowelCount 
23.         TempVowelCount = TempVowelCount+1 
24.         TempVowelSegments(TempVowelCount, :) = VowelSegments(VowelIndex, :) 
25.         if VowelIndex > 1 
26.             % Erase gaps of 1 frame between vowel segments: 
27.             if VowelSegments(VowelIndex, 1)-VowelSegments(VowelIndex-1, 2) < 2 
28.                 Vowel(1, VowelSegments(VowelIndex-1, 

2):VowelSegments(VowelIndex, 1)) = ones(1, VowelSegments(VowelIndex, 1)-
VowelSegments(VowelIndex-1, 2)+1) 

29.                 TempVowelSegments(TempVowelCount-1, 2) = 
TempVowelSegments(TempVowelCount, 2) 

30.                 TempVowelSegments(TempVowelCount, :) = [] 
31.                 TempVowelCount = TempVowelCount-1 
32.             end 
33.         end 
34.     end 
35.     VowelCount = 0 
36.     VowelSegments = [] 
37.     for VowelIndex = 1:TempVowelCount 
38.         % Only include vowel segments longer than 2 frames: 
39.         if TempVowelSegments(VowelIndex, 2)-TempVowelSegments(VowelIndex, 1) > 2 
40.             VowelCount = VowelCount+1 
41.             VowelSegments(VowelCount, :) = TempVowelSegments(VowelIndex, :) 
42.         % Otherwise erase the vowel segment from the array: 
43.         else 
44.             Vowel(1, TempVowelSegments(VowelIndex, 

1):TempVowelSegments(VowelIndex, 2)) = zeros(1, TempVowelSegments(VowelIndex, 2)-
TempVowelSegments(VowelIndex, 1)+1) 

45.         end 
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46.     end 
47. end 

4.4 Vowel estimation 
This part of the algorithm has not yet been integrated into the main code. First, a set of baseline F1 and 

F2 values is stored for each vowel [a], [ə], [i], [ɑ] and [u]. The vowels are sorted in the order that they 

are listed here, starting at [a] = 1 and ending with [u] = 5. 

1. Ref = [690, 1500; 450, 1420; 270, 2320; 640, 1100; 310, 830] 
 

For every frame of the vowel segment being analyzed, the calculated F1 and F2 values are stored as a 

row in the matrix VowelData. Then, for each of the five possible vowels, a loop is initiated with the 

index VowelIndex corresponding to their row in the Ref matrix. The mean and the 50th percentile of the 

squared error between the data and the reference is stored, then square rooted, and their size relative to 

the reference is calculated. What remains are four scalars, and the smaller each of them is, the more 

said data matches the current vowel. Different combinations of these scalars were tried out before 

deciding on what is shown below. 

2. VowelEst = zeros(1, height(Ref)) 
3. for VowelIndex = 1:height(Ref) 
4.     ResF1 = (VowelData(:, 1)-Ref(VowelIndex, 1)).^2 
5.     ResF2 = (VowelData(:, 2)-Ref(VowelIndex, 2)).^2 
6.     PercF1 = sqrt(prctile(ResF1, 50))/Ref(VowelIndex, 1) 
7.     PercF2 = sqrt(prctile(ResF2, 50))/Ref(VowelIndex, 2) 
8.     MeanF1 = sqrt(mean(ResF1))/Ref(VowelIndex, 1) 
9.     MeanF2 = sqrt(mean(ResF2))/Ref(VowelIndex, 2) 
10.     VowelEst(VowelIndex) = PercF1*MeanF1+PercF2*MeanF2 
11.     if isnan(VowelEst(VowelIndex)) 
12.         VowelEst(VowelIndex) = 10 
13.     end 
14. end 
15. [Value, Index] = sort(VowelEst) 
 

With VowelEst  being sorted from lowest to highest, the first element of Index is the index of the vowel 

with the highest match, i.e. the best guess. Similarly the second element corresponds to the next best 

guess. 
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5 Test results 

The results of the test described in section 3.1 are presented here. For the full data tables, see Appendix 

B. 

5.1 Vowel detection 
Total number of frames: 10464 

Vowel frames expected: 3232 

Non-vowel frames expected: 7232 

Vowel segments expected: 150 

Without smoothing 

 Detected vowel frame Detected non-vowel frame 

Expected vowel frame 1513 (46.8 %) 1719 (53.2 %) 

Expected non-vowel frame 374 (5.17 %) 6858 (94.83 %) 

Vowel segments detected: 273 (182 %) 

Number of clips with no vowel frames detected: 10 (10 %) 

With smoothing 

 Detected vowel frame Detected non-vowel frame 

Expected vowel frame 1519 (47.0 %) 1713 (53.0 %) 

Expected non-vowel frame 322 (4.5 %) 6910 (95.5 %) 

Vowel segments detected: 129 (86 %) 

Number of clips with no vowel frames detected: 18 (18 %) 
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5.2 Vowel estimation 
Number of speech clips for each vowel: 20 

For each expected vowel, the columns count how many times each detected vowel appeared in the top 

1 and top 2 respectively. For example, for all the clips expecting [a], [ə] appeared as the best guess 

twice and as the next best guess 7 times, for a total of 9 appearances in the top 2. 

Count 

Detected a ə i ɑ u 

Expected Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 

a 9 10 2 9 0 0 1 4 8 8 

ə 3 3 9 19 0 0 0 1 8 8 

i 1 1 0 4 15 16 0 0 4 4 

ɑ 4 4 0 2 0 0 14 18 2 2 

u 0 0 1 1 0 1 0 0 19 19 

Percent 

Detected a ə i ɑ u 

Expected Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 

a 45 % 50 % 10 % 45 % 0 % 0 % 5 % 20 % 40 % 40 % 

ə 15 % 15 % 45 % 95 % 0 % 0 % 0 % 5 % 40 % 40 % 

i 5 % 5  % 0 % 20 % 75 % 80 % 0 % 0 % 20 % 20 % 

ɑ 20 % 20 % 0 % 10 % 0 % 0 % 70 % 90 % 10 % 10 % 

u 0 % 0 % 5 % 5 % 0 % 5 % 0 % 0 % 95 % 95 % 
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6 Discussion 

Vowel detection 

The vowel detection aspect of the algorithm appears to be on the conservative side when it comes to 

marking frames as vowels. This is not necessarily a bad thing, as it is possible that more frames were 

manually marked as being vowels. This is because the vowel signal blends into the surrounding phones, 

as covered in section 2.2.4. While manually marking the vowels, the intent was to include as much of 

each vowel as possible, rather than settling for the halfway point between phones, but it is uncertain 

whether that was the right call. 

The number of frames marked as vowels does not change significantly with the smoothing. Instead the 

substantial change comes with the number of individual vowel segments that are detected, which makes 

sense, as the purpose of the smoothing is to bridge the gaps between nearby vowel segments that are 

too close to be separate vowels. However, the downside with the smoothing appears to lie in the number 

of speech clips with no vowels detected at all. Looking through the test data in Appendix B.3 shows 

that the affected clips in some cases contained many vowel segments, but each very short and spread 

out. A possible solution could be to only apply the smoothing in favor of vowel segments, so that short 

vowel segments are not erased. 

The verdict here is that the algorithm does not detect enough vowel frames, as the percentage is not 

even close to exceeding 90 %. The algorithm does avoid marking many non-vowel frames as vowels, 

as the value is around 95 % both before and after smoothing. Changing the thresholds for vowel 

detection might help with detection of vowel frames, but in return it is likely to cause more false 

positives as well, bringing the non-vowel frame success down. 

Vowel estimation 

The vowel estimation clearly works well in favor of [u], which is the vowel with the lowest F1 and F2 

of the ones used. The estimation appears to be biased in direction of [u], which might explain why the 

estimation of exactly this vowel is so successful. One possible explanation is something that was 

mentioned in section 2.3.4.1: the frame that the formant calculations were based on contained the vowel 

[a], which generally has F1 and F2 around 900 Hz and 1.6 kHz respectively. These values roughly 

corresponded to the 2nd and 3rd estimated formants, leaving F1 at around 200 Hz. It is possible that this 

is happening across many frames and many speech clips, which is supported by the fact that a majority 

of the wrong-guessed vowels are estimated to be [u]. It would be necessary to manually adjust the 

formant frequency threshold, or include an estimation of F0 in order to dynamically choose the 

threshold. 

The verdict is that top 2 guess for [ə] fulfills the requirement, and so does the top 1 guess for [u]. 

Unfortunately this is not necessarily a success. The reasoning behind [u] not being an obvious success 

has been discussed in the paragraph above. As for [ə], it is considered the neutral vowel that other 

vowels naturally trend towards. As such, these two vowels fulfill the requirement not necessarily 

because the model is working well, but rather due to model bias. Ensuring that F0 is not unintentionally 

included in the list of formants will be the first step towards bettering the model, as it may keep the 

vowels from trending towards the lower frequencies. 
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Real time 

While the real time aspect was not included in the testing, it bears saying that the requirement for the 

algorithm to work in real time might be detrimental to the goal of the algorithm. This is because it 

excludes pre- and postprocessing, which could help provide a more precise analysis of the speech data. 

It is not necessarily a lost cause, as speech therapy tools working in real time do exist, even if they are 

not designed to cover a wide array of phones at once. 
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7 Conclusion 

Zero-crossing rate shows some potential in automatically determining the vowel segments of speech. 

Linear predictive coding has proved useful in estimating the formants of a voiced segment of speech. 

The developed algorithm utilizing both zero-crossing rate and linear predictive coding is able to detect 

and estimate vowels to some extent, but it does not fulfill the requirements set forth in section 3.1. It is 

highly likely that with some refinement, the algorithm will perform better in terms of estimating vowels, 

though the vowel detection aspect might not improve much as long as the real time compatibility 

requirement remains. 
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B Test data 

B.1 Sound clips 
All clips are available at Sound Comparisons [6]. 

Table 1: List of speech clips used for testing, along with the vowel to be tested. 

# vowel IPA language 

1 a [ɡɹaːn] Canada: Iona 

2 a [naːm] Dutch: Std in NL 

3 a [vaːf] ‘Flemish’: Antwerp 

4 a [saːlʦ] Franc. E.: Altersbach 

5 a [ʦβ̥aː] Franc. E.: Nuremberg 

6 a [saːm] Fris. W.: Hylpen 

7 a [ɡɾaː] Gascon: Val d’Aran 

8 a [naːn] Liverpool 

9 a [aːχtə] ‘Low Saxon’: Veenkoloniën 

10 a [ˈβaːɾə] ‘Low Saxon’: Veenkoloniën 

11 a [ˈcçaːnə] Molise: Guglionesi 

12 a [tʰɹaː] Molise: Guglionesi 

13 a [ʃaː] Norman: Les Pieux 

14 a [haː] Norman: Les Pieux 

15 a [luŋˈɡaːtɕ] Romansh: Surmiran 

16 a [ˈsaːɫɪ] Sicily E.: Catania 

17 a [ɡaː] Suth.: Melness 

18 a [ʦʰaːnə] Thur. E.: Altenburg 

19 a [saːl] Trieste (city) 

20 a [vaː] Welche: Labaroche 

21 ə [ˈtsʰʊŋən] Austria: Vienna 

22 ə [fʏnvə] Brandenburg: Berlin 

23 ə [ˈtʃaŋkə] Canada: Inverness 

24 ə [ʦʰa:nə] Erzgebirge W.: Aue 

25 ə [ˈwettʰə] FrPrv: Aosta: Roisan 

26 ə [ˈnɔːvə] Italy: N. in S.: Rivello 

27 ə [siːvə] Lechrain: Heinrichshofen 

28 ə [ˈɸo̟lə] Liecht.: Walser 

29 ə [eːnə] ‘Low Saxon’: Achterhoek 

30 ə [ˈtʃiˑnd̪ə] Lucano: Castelmezzano 

31 ə [salˠən] Meath: Rathcarran 

32 ə [ˈɔ̝ˑttə] Naples (city) 

33 ə [dəː] Norman: Orglandes 

34 ə [sɪvə] Penn. Ger: Hartville, OH 

35 ə [ˈs̠eːz̠ə] Piedmont: Pianezza 

36 ə [ˈlɜˑŋɡə] Provençal: Lagnes 

37 ə [ˈtʃɛɡə] Ross: Opinan 

38 ə [ˈnäːmə] Std. German (Ctl Germany acc.) 

39 ə [ˈtsʊŋˑə] Switz.: Biel 

40 ə [ˈz̥ɪvən] Translv.: Schäßburg 

41 i [siː] Bologna (city) 

42 i [ˈviːtɾə] Czech: Std (Plzeň) 

43 i [θɾiː] ‘Doric’ Scots: Buckie 

44 i [ziːbɛn] Eastphalian: Biere 

45 i [z̥iːm] Franc. E.: Berching 

46 i [ˈdiːvi̽] Latvian: Std (Cēsis) 

47 i [tɾiːs] Latvian: Std 

48 i [ˈfiːfə] ‘Low Saxon’: Achterhoek 
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# vowel IPA language 

49 i [tiːnə] ‘Low Saxon’: Achterhoek 

50 i [fiːvə] Lower Saxony: Barterode 

51 i [nˠiː] Meath: Rathcarran 

52 i [ˈtʃiːndə] Molise: Guglionesi 

53 i [ˈdiːtʃə] Molise: Guglionesi 

54 i [iːn] Patagonia: Esquel 

55 i [diːɕ] Romansh: Surmiran 

56 i [tɕiː] Ross: Laide 

57 i [niː] Stavanger 

58 i [iːn] Sth-E: Fochriw 

59 i [siːbə] Swabia: Dinkelscherben 

60 i [diːç] Walloon: Clavier 

61 ɑ [nɑːm] Afrikaans: Kroonstad 

62 ɑ [nɑːmə̞] Bavarian N.: Hausen 

63 ɑ [ˈsɑːle̞] Campania: Montella 

64 ɑ [ɫɑːn] Canada: Inverness 

65 ɑ [ɑːk] Canada: Iona 

66 ɑ [ɡɹɑːn] C’mara N.: Cornamona 

67 ɑ [dɑː] Dgl: Annagry 

68 ɑ [dɑː] Dgl: Glencolumbkille 

69 ɑ [ɑːɡ] Dgl: Glencolumbkille 

70 ɑ [dɑː] Dgl: Tory Island 

71 ɑ [vɑ̟ːɾts] Latvian: Std 

72 ɑ [sɑː] Lombardy: Barlassina 

73 ɑ [lɑːn] Mayo: Achill Island 

74 ɑ [lɑːn] Mayo: Mullet Peninsula 

75 ɑ [lˠɑːn] Meath: Rathcarran 

76 ɑ [sɑːɫ] Port.: Std Lisbon acc. 

77 ɑ [ˈpɑːt̪ɾʊ] Romanian: N.: Moldovenesc 

78 ɑ [ˈsɑːɾɪ] Romanian: N.: Moldovenesc 

79 ɑ [sɑːɫ] Romansh: Sursilvan 

80 ɑ [drɑː] Translv.: Schäßburg 

81 u [huːnətʰ] Bavarian Ctl: Thierhaupten 

82 u [suːl] Czech: Std (Plzeň) 

83 u [suːlˠ] Czech: Std 

84 u [fuː] ‘Doric’ Scots: Buckie 

85 u [duː] ‘Flemish’: France 

86 u [ˈuːɾa] Franco-Provençal: Valaisan 

87 u [huːnɛ̈tʰ] Hessen: Frankfurterisch 

88 u [uːr] Istro-Romanian: Žejane 

89 u [ˈuːnɜ] Italy: N. in S.: Rivello 

90 u [ˈuːnö] Italy: N. in S.: Tito 

91 u [nuː] Limousin: Hautefort 

92 u [ˈzuːwen] Lombardy: Gardone 

93 u [ˈʒuːne] Romanian: N.: Moldovenesc 

94 u [duːs] Romansh: Surmiran 

95 u [tɕuːn] Romansh: Tuatschin 

96 u [kɐˈɾuːsʊ] Salento S.: Ruffano 

97 u [ˈduːz̥ʊ] Sardinian CS: Gonnesa 

98 u [ˈuːnʊ] Sardinian NW.: Nuoro 

99 u [nuːf] Walloon: Clavier 

100 u [huːnət] Wisc. Pom.: Green Bay 
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B.2 Vowel estimation 
Table 2: Test data comparing the vowel to the tested with the two best matches according to the algorithm. 

 ref. test 

#  1st 2nd 

1 a a ə 

2 a ɑ ɑ 

3 a u ə 

4 a ə ɑ 

5 a ɑ a 

6 a u ɑ 

7 a u ə 

8 a u ə 

9 a a ɑ 

10 a a ɑ 

11 a a ɑ 

12 a a ɑ 

13 a u ə 

14 a u ə 

15 a u ə 

16 a a ɑ 

17 a a ɑ 

18 a a ɑ 

19 a u ə 

20 a ə ɑ 

21 ə u ə 

22 ə ə ɑ 

23 ə a ə 

24 ə ə u 

25 ə u ə 

26 ə ə ɑ 

27 ə ə ɑ 

28 ə ə ɑ 

29 ə a ə 

30 ə ə i 

31 ə u ə 

32 ə a ɑ 

33 ə u ə 

34 ə ə ɑ 

35 ə ə i 

36 ə u ə 

37 ə ə a 

38 ə u ə 

39 ə u ə 

40 ə u ə 

41 i i ə 

42 i i u 

43 i i ə 

44 i i ə 

45 i u i 

46 i i ə 

47 i i ə 

48 i i ə 

49 i i ə 

50 i i ə 

51 i u ə 

52 i i ə 
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 ref. test 

#  1st 2nd 

53 i a ə 

54 i i ə 

55 i i ə 

56 i i ə 

57 i u ə 

58 i u ə 

59 i i ə 

60 i i ə 

61 ɑ u ə 

62 ɑ ɑ a 

63 ɑ ɑ a 

64 ɑ a ɑ 

65 ɑ ɑ a 

66 ɑ ɑ ə 

67 ɑ ɑ ə 

68 ɑ ɑ a 

69 ɑ ɑ a 

70 ɑ ɑ ə 

71 ɑ ɑ u 

72 ɑ a ɑ 

73 ɑ u ə 

74 ɑ ɑ ə 

75 ɑ ɑ a 

76 ɑ ɑ a 

77 ɑ a ɑ 

78 ɑ a ɑ 

79 ɑ ɑ a 

80 ɑ ɑ a 

81 u u ə 

82 u u ə 

83 u u i 

84 u u ə 

85 u u ə 

86 u u ə 

87 u u ə 

88 u u ə 

89 u u ə 

90 u u ə 

91 u u ə 

92 u ə i 

93 u u ə 

94 u u ə 

95 u u ə 

96 u u ə 

97 u u ə 

98 u u ə 

99 u u ə 

100 u u ə 
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B.3 Vowel detection 
Table 3: Test data comparing the manually determined vowel segments (ref.) with the automated ones (test). The numbers 

signify the first:last frame of a vowel segment. 

 ref. test 

#    w/o smoothing w/ smoothing 

1 25:60   20:22 23:27 28:42 43:48 51:56 20:48 51:56    

2 37:55   36:56     36:56     

3 39:61   41:43 49:52 56:58   49:52     

4 33:69   76:78          

5 30:67   29:56 57:63    29:63     

6 38:64   29:30 31:35 37:57   29:35 37:57    

7 45:68   42:43 46:65    46:65     

8 39:66   38:39 40:42 43:48 49:50 51:56 38:62 66:69    

9 64:91 115:126  64:65 70:86 87:88 94:95  70:88     

10 50:84 86:109  56:66 68:73 75:78 79:83  56:66 68:73 75:83   

11 26:53 66:78  19:21 24:43 44:46 48:51 52:53 24:46 48:53    

12 32:58   25:26 29:34 35:48 49:52  29:52     

13 23:51   11:12 13:21 22:23 44:46  11:23     

14 18:39   13:14 15:16 26:27 28:32  13:16 26:32    

15 44:57 68:87  66:77 78:79 80:81 82:83 103:115 66:83 103:117    

16 34:55 62:70  63:66 74:75    63:66     

17 42:83   38:73 74:79    38:79     

18 22:39 50:60  19:20 22:23 25:41   25:41     

19 48:75   46:47 49:81    49:81     

20 46:68   45:48 49:58 59:60 61:62 63:64 45:69     

21 25:37 45:53  20:22 28:36    28:36     

22 24:32 56:83  24:28     24:28     

23 24:36 54:76  52:55 56:59 60:74   52:74     

24 22:44 52:64            

25 24:33 59:72  23:26 27:31 59:68   23:31 59:68    

26 36:55 67:75  35:54 55:56    35:56     

27 15:28 40:59  36:52     36:52     

28 32:44 63:76  63:71 72:76    63:76     

29 18:34 42:49  44:48 50:52    44:48     

30 48:61 85:95            

31 33:50 56:66  57:67     57:67     

32 29:47 70:78  29:38 39:42 43:48 71:72 74:75 29:48     

33 20:65   27:30 32:34 40:44   27:30 40:44    

34 32:38 48:62  36:38 39:40 42:43   36:40     

35 36:68 81:92  27:29 30:35 44:45 62:63 79:89 27:35     

36 21:31 48:61  20:30     20:30     

37 29:44 54:71  30:35 36:45 56:67 68:70  30:45 56:70    

38 41:55 65:88  37:38 39:41 44:47 49:51 52:53 37:41 44:47 49:57 67:81  

39 27:41 60:74            

40 35:47 57:68  36:47 59:61 63:65 66:70  36:47 63:70    

41 51:71   58:61 70:71    58:61     

42 31:46 71:85  64:68 69:79    64:79     

43 40:72   37:39          

44 25:46 57:69  28:30 56:61 62:64 65:67 68:69 56:71     

45 36:49             

46 38:54 61:73  37:38 39:40 41:42 53:55 59:63 37:42 59:63    

47 22:43   13:14 20:22 29:31 42:43 64:65      

48 33:61 73:86  71:73 74:75    71:75     

49 22:40 49:63  18:20 36:38 40:41 49:50 64:65      

50 22:39 50:60            

51 29:52   40:41 45:47 48:51   45:51     



 x 

 ref. test 

#    w/o smoothing w/ smoothing 

52 36:58 84:96  24:31 32:35 37:39 41:42 46:47 24:35 46:51 54:58 85:92  

53 32:31 80:94  33:39 50:51 54:59 61:63 68:74 33:39 54:59 68:78 81:84 90:94 

54 16:36   30:32 34:37 44:45   34:37     

55 32:56   58:71 72:77 79:86 87:88  58:77 79:88    

56 34:72   31:32          

57 46:81   49:53 64:67 70:71 73:74  49:53 64:67    

58 14:33   15:16 17:18 20:25 27:30  15:18 20:25 27:30   

59 29:44 58:78  37:38 58:72    58:72     

60 24:50   22:23 32:33 35:36 42:43 60:61      

61 60:88   62:81 82:88    62:88     

62 25:41 52:75  25:30 31:41 54:57 59:64  25:41 54:57 59:64   

63 32:62 70:86  33:65 70:82 84:85   33:65 70:82    

64 27:74   24:56 57:61 62:63 64:65 66:67 24:70 73:77    

65 14:50   15:51 52:53 65:66   15:53     

66 25:53   14:15 16:22 26:56 57:59  14:22 26:59    

67 24:58   23:57     23:57     

68 38:70   39:66 67:69    39:69     

69 25:71   30:31 32:71    30:71     

70 31:78   32:71     32:71     

71 29:50   28:53     28:53     

72 40:81             

73 31:61   33:39 40:60 61:64   33:64     

74 29:55   30:50     30:50     

75 38:70   32:36 37:76    32:76     

76 46:67             

77 32:55 75:87  32:37 39:46 48:56 59:60 61:62 32:37 39:46 48:56 59:62 72:85 

78 47:84 89:113  48:85 88:95 97:98   48:85 88:95    

79 54:88   54:95     54:95     

80 46:85   37:39 40:46 47:48 49:56 59:61 37:56 59:74 76:79   

81 16:25 39:54  42:49 50:53 54:55   42:55     

82 39:70   21:22 79:82    79:82     

83 34:54   14:18 19:22 23:26 27:28 29:32 14:32     

84 50:72             

85 56:85             

86 21:53 66:79  23:25          

87 16:34 43:66  43:50 53:55 56:58 60:62 65:66 43:50 53:58    

88 31:60   58:63 65:67 69:71   58:63     

89 25:45 55:73  54:68     54:68     

90 20:38 54:71  54:61 62:65    54:65     

91 36:59   37:44     37:44     

92 47:62 67:80  33:34 38:39 46:48 67:77  67:77     

93 62:81 92:118  40:44 46:47 61:62 63:84 100:102 40:44 61:84 107:114   

94 30:58   63:66 67:68    63:68     

95 32:52   24:30 32:33    24:30     

96 83:91 96:115 128:139 82:91 92:93 96:111 128:139 140:141 82:93 96:111 128:141   

97 21:52 63:79  21:51 52:53 63:70 71:72  21:53 63:72    

98 9:31 38:55  9:10          

99 28:53             

100 16:29 36:42  37:43 45:46 47:48   37:43 45:48    

 

 


