

Phonetic transcription
Automatic transcription of vowels to IPA in real time

Marie Hildebrand Grevil

Electronic Engineering & IT

Aalborg University

June 2022

Department of Electronic Systems

Electronic Engineering & IT

Fredrik Bajers Vej 7

DK-9220 Aalborg Øst

https://www.es.aau.dk/

Title

Phonetic transcription

Subtitle

Automatic transcription of vowels to IPA in

real time

Project period

Spring 2022

Student

Marie Hildebrand Grevil

Supervisor

Flemming Christensen

Page count

Body: 22

Total: 37

Abstract

With the ultimate goal of automatically

transcribing speech phonetically in real time,

this report focuses on the ability to

automatically transcribe vowels in real time.

For the first part of the report, human speech

production was examined, including the

resulting acoustic signal, as well as how it

can be analyzed using signal processing

methods, such as zero-crossing rate and

linear predictive coding. With this

background, an algorithm was created for

automatically detecting vowel segments of

speech, as well as estimating which vowel

was spoken. The algorithm was programmed

and tested in MATLAB. The results did not

fulfill the requirements defined in the report.

Vowel detection may be difficult to improve

on with the goal of running the algorithm in

real time, however the vowel estimation had

an obvious flaw which may be solvable with

further development.

Resumé

Denne rapport er udarbejdet i forbindelse med et 4 måneder langt Elektronik og IT diplomingeniør

afgangsprojekt ved Aalborg Universitet. Det langsigtede formål med projektet har været at udvikle en

algoritme, der er i stand til automatisk at transskribere tale fonetisk i realtid. Kortsigtet er projektet

afgrænset til at transskribere vokaler i realtid. Som grundlag for udviklingen undersøges, hvordan

mennesker producerer tale, og hvordan denne tale kan analyseres ved hjælp af signalbehandling. I den

forbindelse undersøges sammenhængen mellem zero-crossing rate (ZCR) og stemt tale, herunder

vokaler, samt hvordan formanter i særligt vokaler kan estimeres ved hjælp af linear predictive coding

(LPC). Der opstilles en række krav, således at det kan undersøges, hvorvidt den udviklede algoritme er

i stand til at transskribere vokaler samt automatisk registrere, hvornår tale består af en vokal. Den

udviklede algoritme overholdt ikke kravene. Dog var det muligt at se ud fra testresultaterne, at

algoritmen er i stand til at nå noget af vejen. Det vurderes, at det ikke umiddelbart vil være muligt at

overholde vokalregistreringskravene, så længe algoritmen skal kunne køre i realtid. Til gengæld lader

det til, at vokalestimeringen kan optimeres ved også at inddrage den grundlæggende frekvens.

Preface

This report was written as a part of a 4-month final project in Electronic Engineering and IT at Aalborg

University.

Marie Hildebrand Grevil

mgrevi17@student.aau.dk

Contents

1 Introduction ... 1

2 Problem analysis ... 2

2.1 Orthography .. 2

2.1.1 The International Phonetic Alphabet (IPA) .. 3

2.2 Human speech production ... 3

2.2.1 Source ... 4

2.2.2 Filter 5

2.2.3 Formants ... 5

2.2.4 Phone transition... 6

2.3 Speech in signal processing .. 6

2.3.1 PCM storage .. 7

2.3.2 Short-time analysis and framing ... 7

2.3.3 Distinguishing voiced and unvoiced speech ... 7

2.3.4 Formant estimation ... 8

3 Requirements .. 11

3.1 Testing... 11

4 Algorithm .. 13

4.1 Preparation .. 13

4.1.1 Frame length and overlap .. 13

4.1.2 List of input audio files ... 13

4.2 File analysis .. 13

4.2.1 Audio import ... 13

4.2.2 Sample rate dependent variables ... 14

4.3 Frame analysis .. 14

4.3.1 Windowing .. 14

4.3.2 Fourier transform .. 14

4.3.3 Zero-crossing rate ... 14

4.3.4 Formants ... 15

4.3.5 Vowel detection .. 15

4.4 Vowel estimation .. 17

5 Test results .. 18

5.1 Vowel detection .. 18

5.2 Vowel estimation .. 19

6 Discussion ... 20

7 Conclusion .. 22

Bibliography .. i

A International Phonetic Alphabet ... iii

B Test data .. v

Figures

Figure 1: Human vocal tract with labels. Source: Tavin, CC BY 3.0 [2], via Wikimedia Commons. ... 4

Figure 2: The opening and closing of the vocal cords, and the resulting acoustic signal. Source: Gerazov,

CC BY-SA 4.0 [3], via Wikimedia Commons. ... 4

Figure 3: A selection of IPA vowels arranged in an ideal triangle according to their first two formants.

Source: Kwamikagami, CC BY-SA 3.0 [3], via Wikimedia Commons. .. 6

Figure 4: Close up of a speech waveform transitioning from unvoiced [s] to voiced [a]. 8

Figure 5: An audio frame's frequency spectrum with a sketched envelope. ... 9

Figure 6: The LPC estimated transfer function corresponding to Figure 5. ... 9

 1

1 Introduction

Automatic speech recognition (ASR) has made serious steps forward in the recent years, in large part

due to the incorporation of neural networks and artificial intelligence rather than humans having to build

a model. This is generally aimed towards machines being able to interpret what a person is saying and

responding to it in a meaningful manner. Just think of home and phone AI assistants like Alexa and

Siri, allowing you to check information or even schedule tasks or play music without having to touch

the machine. Another great example of ASR being useful is e.g. YouTube’s auto-generated closed

captions, allowing people with hearing impairments to better enjoy videos without anyone having to sit

down and do the work every time a new video is released.

ASR can also be used to interpret the acoustic characteristics of speech rather than the meaning of what

is said. This is especially the case when it comes to speech therapy for people with speech impairments,

but it could also be extended to people who wish to train their pronunciation in e.g. another language.

In the case of the latter, language learning applications such as Duolingo currently use ASR designed

to interpret meaning rather than the exact sounds that the user is articulating, meaning that it is

somewhat forgiving when it comes to the spoken exercises. This is no doubt useful for many people

whose goal is only to make themselves understood and not necessarily to perfect their pronunciation.

However there are also no doubt people who would appreciate the ability to train specific sounds.

A final case where this phonetic ASR would come in handy is with the phonetic transcription of speech.

For some linguists, transcribing speech samples is a time-consuming effort which simply has to be done

in order for them to analyze or present their work. It can also be useful for e.g. a language teacher or

hobby language creator who wants to write the way they say something phonetically without much

hassle.

In any case, there is a use and desire for such a tool. This project cannot encompass all aspects of

automatic phonetic transcription in the given time frame, however, it can take on a part of the challenge,

like being able to automatically transcribe vowels phonetically, before moving on to another.

 2

2 Problem analysis

With the goal of developing a phonetic transcription algorithm focused on vowels, a number of

questions are formulated:

1. How can human speech be represented phonetically in writing?

2. What are the below listed characteristics of human speech, and how are they formed in the

human vocal tract?

a. Unvoiced

b. Voiced

i. Fundamental frequency

ii. Formants

3. How can characteristics of human speech, in particular vowels, be extracted using signal

processing techniques?

Answering these questions throughout the rest of this chapter is expected to lay a solid foundation for

the development of a vowel transcriber.

2.1 Orthography
A language's orthography is essentially its use of the characters in its writing system. The writing system

can broadly speaking be logographic (e.g. Egyptian hieroglyphs and Chinese hanzi), syllabic (e.g.

Japanese hiragana and katakana), alphabetic (e.g. the Latin and Arabic alphabets), or a mix.

Alphabets are of particular interest when it comes to pronunciation, as there is a great if not full overlap

between its symbols and the phonemes used in the spoken language that it represents. As such, with

optimal use of an alphabet, it is possible to pronounce a written word despite having no prior knowledge

of it or its meaning. This contrasts with logographic systems, where each symbol conveys a meaning

rather than a pronunciation, so while a logographic symbol may retain its meaning over millenniums,

the speaker must know of it, and it could have represented a word with an entirely different

pronunciation in the past.

As implied, with optimal use of an alphabet there is no ambiguity regarding its pronunciation. However,

the pronunciation of individual languages is not static over time, and the official orthography of a single

language may have its origins in a specific region not representative of all speakers. In practicality this

means that a person may be using spelling that is more widely understood within their language, despite

it not matching their own pronunciation exactly.

Adding to the inaccuracy, a single alphabet can be used by different languages, with each language

having its own standard interpretation of how symbols or clusters of symbols are to be pronounced. For

example, the English word hi and the Danish word hej carry the same meaning and are pronounced

approximately the same by speakers of their respective languages. However, if asked to pronounce the

word exactly as it is written, an English speaker would pronounce hej vastly different from a Danish

speaker, and vice versa. Even within a single language, there is no guarantee that the same series of

symbols represents the exact same pronunciation, e.g. -ome in the individual words of the English

phrase come home.

 3

2.1.1 The International Phonetic Alphabet (IPA)

If the goal of writing is to accurately represent a pronunciation, a common option is using the

International Phonetic Alphabet (IPA) [1], which is intended to be universal for all listeners.

Continuing the example of English hi and Danish hej from the previous section, with IPA they are both

written as [haɪ]. The IPA is based on symbols available in the various versions of the Latin alphabet,

mainly supplemented by the Greek alphabet, as well as rotated or capitalized versions of individual

symbols. These symbols generally represent the purest version of each sound or phone, categorized by

how the vocal tract moves to produce said phone. These movements of the vocal tract will be covered

briefly later in the chapter. In addition to the base symbols, a variety of diacritics and punctuation is

available to describe features such as duration, stress, tone, nasalization, and many more.

The goal of this report is not to explain the meaning of every IPA symbol, and it would be difficult to

do so without first going into detail about the production of speech through the vocal tract. Likewise, it

would be difficult to go into detail about the latter in a written report without a visual reference for the

resulting sounds. For this reason, the official IPA chart is included in appendix A, and where relevant

to the report, individual symbols and notations are explained with reference to said chart.

2.2 Human speech production
Human speech is the result of pushing air out of your lungs while shaping your vocal tract (see Figure

1) in patterns changing over time [1]. This produces an acoustic signal that a listener's brain - if they

understand your language - can dissect into a meaning. To convey any information, this signal must

also differ depending on how the vocal tract was shaped. It is therefore common to describe speech

using the source-filter model, where a source sound is passed through the acoustic filter that is the

vocal tract.

 4

Figure 1: Human vocal tract with labels.

Source: Tavin, CC BY 3.0 [2], via Wikimedia Commons.

2.2.1 Source

The source sound of unvoiced speech is simply created by breathing out. For voiced speech, the air

flow is modified the vocal cord (which is located in the voice box in fig. 1) to create its source sound.

The vocal cord consists of two folds that vibrate by opening and closing periodically while in use. The

result is a source sound with a fundamental frequency (F0) corresponding to the frequency of the

vibrating folds, see Figure 2. F0 is not constant for a single person, though the length of the person’s

vocal cords generally defines their F0 range. Males, having longer vocal cords, are said to have a range

of 80 to 200 Hz, and females 150 to 350 Hz [3]. These exact values vary depending on source material

[2], and they are not a hard limit by any means.

Figure 2: The opening and closing of the vocal cords, and the resulting acoustic signal.

Source: Gerazov, CC BY-SA 4.0 [3], via Wikimedia Commons.

 5

2.2.2 Filter

All parts in Figure 1 other than the voice box are considered the filter in the source-filter model. By

constricting airflow between various parts or changing the shape of the oral cavity, the source sound is

modified. The former is the main component of pulmonic consonants, a table of which can be found in

appendix A. Here they are listed with three dimensions: the location where the obstruction happens, the

movement of the involved parts, and whether the consonant is voiced or unvoiced. As an example, both

[p] and [b] are bilabial plosives. This means that the phones are formed by closing the lips (bilabial),

which temporarily stops the airflow and lets pressure build up enough to break through the closure

(plosive) [1]. This can be compared with another set of plosives, [k] and [ɡ]. These two are velar instead

of bilabial, meaning that the closure takes place between the tongue and the back of the mouth instead

of between the lips, but the pattern of stopping and releasing the airflow remains the same. Similarly,

[p] and [b] can be compared with the bilabial nasal [m]. Here the airflow is blocked by the lips closing,

and the airflow is redirected through the nasal cavity as one continuous sound.

While continuous sounds are not exclusive to vowels, vowels do exclusively consist of continuous

sounds. Vowels are characterized by minimal obstruction in the vocal tract and are also typically voiced.

They are also listed with three dimensions: close/open, front/back, and rounded/unrounded. The vowel

being open or close refers to the height of the tongue, with close meaning the tongue is close to the roof

of the mouth, and open meaning it rests in the bottom of the mouth. Front and back again refer to the

tongue, but, as the terms suggest, whether the tongue is towards the front or the back of the mouth.

Finally rounded and unrounded refer to the shape of the lips [4]. Unlike what is the case for consonants,

the categorization of vowels has more to do with their resonant frequencies, formants, than it has to do

with a unique position and shape of the tongue and lips [4]. That is not to say that they do not matter,

but rather that these categories have been defined based on their influence on the formants.

2.2.3 Formants

As mentioned in section 2.2.2, a formant is a resonant frequency, typically in the context of music or

speech. Formants are, in other words, frequencies that have been amplified through resonance and

become dominant in the acoustic signal. For speech, it is generally considered that the two lowest

frequency formants, F1 and F2 are most important in distinguishing vowels [4] [3], corresponding

roughly to tongue height and tongue backness respectively. The third formant, F3, has been tied to lip

rounding. Formants F4 and above are not considered as important in the context of vowels [4]. Because

of this, vowels are often visualized according to their first two formants, see Figure 3.

 6

Figure 3: A selection of IPA vowels arranged in an ideal triangle according to their first two formants.

Source: Kwamikagami, CC BY-SA 3.0 [3], via Wikimedia Commons.

The exact formants of e.g. [a] vary from person to person, however they generally exist in the same

range. For human speech, it is a rule of thumb that a formant exists for every 1 kHz, meaning that F1 is

generally expected to be in the range of 0 to 1 kHz, F2 in the range of 1 to 2 kHz, and so on. However,

this is not a guarantee, as e.g. for some vowels F2 and F3 merge due to their proximity with each other.

2.2.4 Phone transition

It is easy to think of phones as discrete units. This is how they are represented with IPA and with

alphabets in general. However, for the acoustic signal that is speech, this is not the case, as the transition

from one vocal tract shape to another is not instant, and the speech continues while the change is taking

place, resulting in coarticulation [7] [8]. Even if attempting to speak slowly and transition sharply from

one phone to another, it is difficult to truly separate them from each other. In regular speech, this

becomes near impossible. One example is short vowels trending towards the neutral vowel [ə] (also

known as schwa) as the mouth quickly has to prepare for the next phone [4]. Another is with words of

Latin origin with the prefix in-, often being a negation to the word that follows. The word inpossible

has morphed into impossible, because in preparation for the bilabial [p], the [n] first has to transition

into [m], and over time it has been entirely replaced [4] [8].

2.3 Speech in signal processing
Speech is an analog signal, and in the modern world digital computers are by far dominant over their

analog counterparts. Because of this, using a computer for signal processing most often demands that

the speech is converted into a digital signal first, turning both time and amplitude discrete rather than

continuous. Speech travels through air forming pressure, which, when passed through a microphone, is

translated into voltage. For the time aspect, the microphone is sampled at a regular interval also known

as the sample rate. When the microphone is sampled, the analog voltage is run through an analog-to-

digital converter (ADC) and quantized into a discrete value, so that it can be stored and processed

digitally. This is known as pulse-code modulation (PCM), and it is the most straightforward method

of storing audio in digital form [1].

 7

2.3.1 PCM storage

A classic file format for PCM is WAVE, with the extension .wav. It is a variation of Microsoft’s

Resource Interchange File Format (RIFF), which is also the basis for the video format AVI among

others. A WAVE file consists of three chunks. The first chunk contains the letters RIFF, the remaining

size of the file in bytes, and the letters WAVE, which specifies which chunks the file is expected to contain.

Following that is a chunk containing the format information of the file. This includes specifying if the

data is stored as PCM or compressed, how many audio channels the data consists of, as well as bits per

sample, sample rate, and other information regarding how to interpret the data. The final chunk is for

data and includes the size of the data itself in bytes.

PCM, while it has the benefit of being lossless, i.e. the data stored is exactly what was recorded,

unsurprisingly requires a large amount of storage space. The data can be compressed in ways that e.g.

take advantage of repetitive data (lossless) or reduce the number of bits per sample (lossy). Ultimately,

in order to be played back through a speaker or analyzed, the data will have to be uncompressed and

restored to its waveform.

2.3.2 Short-time analysis and framing

Due to the waveform of speech changing over time, in other words being dynamic, analyzing an entire

speech recording at once will not yield much information about the characteristics of the speech.

Reducing the length of the audio to analyze makes the signal quasi stationary. This means that, while

the waveform is likely still changing from the beginning of the window to the end, the changes are

relatively small, and the data within the window is approximately stationary [4]. This allows for the

data to be split up into frames consisting of consecutive windows. A commonly recommended window

length for speech analysis is one corresponding to 20 [5] or 25 ms, with some sources going as far as

suggesting anywhere between 15 [4] and 40 ms. One thing to consider when choosing window length

is whether the fundamental frequency can fit within one frame. If analyzing a series of frames, having

some frames with F0 and some without may cause inconsistencies [4]. Going by the frequency ranges

listed in section 2.2.1, the period of F0 has a length of up to 12.5 ms, meaning that 20 ms windows

should be sufficient.

In speech analysis, the window function used when framing the data is typically Hamming [4] or Hann

[6]. They both cause the windowed data to slope towards the edges [5], and if the windows are placed

one after another, this means that the data in the transition between frames is attenuated and ultimately

lost. To counter this, it is recommended to use overlap between frames, such that a frame shares a

percentage of its data with the previous frame, and the next. A commonly suggested amount of overlap

is 50 % or 10 ms [5].

2.3.3 Distinguishing voiced and unvoiced speech

With the description of voiced sounds having a fundamental frequency, while unvoiced sounds do not,

it is not far-fetched that much of voiced speech’s energy is contained in the lower frequencies, compared

to unvoiced speech’s higher frequencies. This is even visible in the waveform, where the high energy

low frequency appears to carry the higher frequencies, so that the number of times the waveform crosses

0 more closely resembles the fundamental frequency, see Figure 4.

 8

Figure 4: Close up of a speech waveform transitioning from unvoiced [s] to voiced [a].

Because of this, the zero-crossing rate, i.e. the frequency of the waveform’s sign change, carries

information about whether the phone is voiced or unvoiced. By counting the number of changes N

within a frame, the zero-crossing rate can be calculated:

[9] Equation 1

𝑍𝐶𝑅 =
𝑁 ∙ 𝑓𝑠

2 ∙ 𝑊𝐿

Where 𝑓𝑠 is the sample rate, and 𝑊𝐿 is the window length.

If the calculated zero-crossing rate is sufficiently low to not be unvoiced, the energy at this frequency

can then be examined using a Fourier transform to ensure that the zero-crossing rate is not the result of

random noise in between voiced segments. If the energy is above a selected threshold, it can be assumed

that the frame contains voiced speech [9] [10] [1].

Nasal consonants are like vowels in that they also have a fundamental frequency and formants. Because

of that, this method will tend to lump nasals and vowels together, when it may be of interest to separate

vowels from consonants on top of voiced from unvoiced. Nasal consonants tend to have a lower zero-

crossing rate than vowels, and so instead of only setting an upper frequency boundary, a lower one can

be set as well.

2.3.4 Formant estimation

As a human, it is not unreasonable to look at a frequency spectrum containing formants and being able

to estimate them by the spectral envelope, see Figure 5. For a speech recognition algorithm analyzing

multiple frames per second, this would obviously not suffice, but thankfully there are ways to calculate

a formant estimate.

 9

Figure 5: An audio frame's frequency spectrum with a sketched envelope.

Continuing with the source-filter model covered in section 2.2, if the waveform being analyzed is the

result of an impulse train being passed through a filter, an inverse filter would instead be applied to the

waveform to obtain the source signal. If the coefficients of the inverse filter are approximated, it can

then be inversed to form as estimate of the original vocal tract filter. The transfer function of said filter

roughly corresponds to, but is not equal to, the spectral envelope [4], see Figure 6, and the peaks are the

result of the inverse filter’s complex conjugate roots. Such an inverse filter can be obtained through

linear predictive coding (LPC) [6] [9].

Figure 6: The LPC estimated transfer function corresponding to Figure 5.

2.3.4.1 Linear predictive coding (LPC)

LPC takes advantage of the waveform of speech being somewhat predictable based on a handful of

previous samples. This section will not go in-depth with the individual methods that exist for calculating

the LPC coefficients, but rather attempt to cover what the methods accomplish. With the assumption

that every sample is the result of a linear combination of p previous samples, it is possible to set up an

equation for every single sample in the frame. A rule of thumb is that each formant found between 0

Hz and the Nyquist frequency corresponds to one complex root pair. Expecting a formant for roughly

every 1 kHz [3] results in 𝑝 = 𝑓𝑠 1000⁄ , sometimes adding a few more to account for LPC picking up

 10

on e.g. the fundamental frequency [5]. The coefficients ak are then the solution to all these equations

that results in the smallest error, e, between the sampled value and the value predicted by the coefficients

[4]:

Equation 2

𝑥(𝑛) = ∑ 𝑎𝑘 ∙ 𝑥(𝑛 − 𝑘) + 𝑒(𝑛)

𝑝

𝑘=1

Where x(n) is the predicted sample.

What various methods of solving this system have in common is that they ultimately require multiplying

the inverse of a matrix with a vector to obtain the coefficients [9]. Once the set of coefficients has been

calculated, the prediction polynomial can be formed [2]:

Equation 3

𝑃(𝑧) = 1 − ∑ 𝑎𝑘 ∙ 𝑧−𝑘

𝑝

𝑘=1

Solving for complex roots results in a number of roots equal to the LPC order p. Only the complex

conjugate root pairs correspond to formants, with their frequencies being located between 0 Hz and the

Nyquist frequency. The frequencies and bandwidths of each complex root pair is calculated by:

[6] Equation 4

𝐹𝑖 =
𝑓𝑠

2𝜋
∙ 𝜃𝑖

Where 𝐹 is a formant, and 𝜃 is the angle of the root in radians.

[8] Equation 5

𝐵𝑖 = −
1

2
∙

𝑓𝑠

2𝜋
∙ ln 𝑟𝑖

Where B is the formant’s bandwidth, and r is the size of the root.

Formants with a frequency close to zero, e.g. below 90 Hz [9] [6], are discarded, as they should be

higher than the fundamental frequency [6]. Likewise, if the formant’s bandwidth is too large, e.g. above

400 Hz [4], it is a sign that the root is too spread out to represent the narrow peak of a formant [5]. The

remaining formants are sorted according to size, giving F1 the lowest frequency [1]. For the frame

presented in both Figure 5 and Figure 6, the first three estimated formants are 202, 1040 and 1590 Hz.

Comparing with the peaks in both figures, this appears to be a reasonable estimate, although F1 is low

enough that it could be F0.

 11

3 Requirements

To be able to judge whether the vowel transcriber performs well, it is a good idea to determine a set of

minimum requirements prior to testing. As there are no ISO standards for phonetic transcription, the

requirements are formulated with the intended use of the algorithm in mind.

Real time

For live feedback regarding the user’s pronunciation of a vowel, such as in speech therapy or language

training, it is necessary that the algorithm can run in real time. This means that the audio cannot be

enhanced or analyzed through preprocessing, and analysis should mainly rely on current and past

frames. To use future frames, the algorithm would need to delay the output to match the number of

future frames needed, up to a maximum of 0.1 seconds. For automated IPA transcription purposes, the

algorithm does not need to run in real time, however it is likely easier to change an algorithm away

from real time than it is to change it towards.

Platform

The intended distribution is as a standalone application on a personal computer, be it a desktop computer

or a smartphone. Proof of concept and testing should be done using a math tool such as MATLAB. It

should be programmed in such a way that it can be implemented in another coding language without

MATLAB’s specialized functions and tools.

Input noise

It is assumed that only one person is speaking at a time, and that the recording takes place under quiet

circumstances with no music and minimal background noise such as traffic.

Framing

The window length of each frame should be 20 ms, with a frame step of 10 ms. The algorithm should

be capable of fully analyzing a single frame before continuing to the next.

Formants

The algorithm should be able to estimate formants using LPC. The order of LPC should be equal to

𝑓𝑠 1000⁄ , rounded to an integer. A minimum of three formants should be kept for use in vowel

estimation.

Vowel detection

Using zero-crossing rate and energy, the algorithm should be able to determine if a frame contains a

vowel.

Vowel estimation

With formants and vowel detection, the algorithm should estimate which vowel was spoken during

vowel segments and provide the corresponding IPA symbol. The algorithm should be designed to

distinguish between at least five different vowels.

3.1 Testing
The test will be performed with the vowels [a], [ə], [i], [ɑ] and [u]. In contexts where IPA symbols are

not available, they will be written as a, e, i, o and u respectively.

 12

All speech clips will be selected from the linguistic resource Sound Comparisons [6], where a large

collection of sound clips is available for download along with their IPA transcriptions. For each vowel

to be tested, 20 clips will be selected where the vowel is present in the transcription, preferring long

vowels and discarding clips where the vowel to be tested is part of a diphthong (combined vowel).

For each speech clip, the vowel segments will be manually determined by listening. The first and last

frame of each vowel segment will be noted along with which vowel to test.

For the sake of uniformity in analysis and testing, each speech clip will be resampled to 16 kHz prior

to analysis.

Vowel detection

For each frame manually marked as containing a vowel, at least 90 % should be correctly detected.

For each frame not marked as containing a vowel, at least 90 % should be correctly detected.

The total number of vowel segments detected should match the number of manually determined vowel

segments by ±10 %.

Vowel estimation

For each vowel segment to be tested for vowel estimation, the correct vowel should be the highest match

for at least 90 % of the segments.

For each vowel segment to be tested for vowel estimation, the correct vowel should be in the top two

matches for at least 95 % of the segments.

 13

4 Algorithm

This chapter's purpose is to describe the vowel transcriber that has been developed based on the

knowledge presented in chapter 2, as well as the requirements defined in chapter 3. As a proof of

concept, the algorithm was coded in MATLAB, using several of the software's specialized functions to

analyze one or more audio files of variable length.

4.1 Preparation
File analysis is prepared by storing values that cannot be made discrete until the sample rate of the input

has been discovered, as well as the complete paths to the audio files that will be analyzed.

4.1.1 Frame length and overlap

The window length of each frame is stored, as well as the time overlap between consecutive frames.

1. FrameLengthMillis = 20
2. FrameStepMillis = 10

4.1.2 List of input audio files

To allow for bulk analysis of multiple files, an input directory is chosen, and each compatible audio file

contained within said directory, excluding subfolders, is added to a string array of input filenames. The

chosen input directory is the subfolder Input in the current work folder, and the audio file formats

provided on line 2 are the ones supported by MATLAB [6].

1. InputPath = pwd+"\Input"
2. InputFormats = ["*.aifc", "*.aiff", "*.aif", "*.au", "*.flac", "*.ogg", "*.opus",

"*.wav", "*.mp3", "*.m4a", "*.mp4"]
3. for FormatIndex = 1:length(InputFormats)
4. TempFiles = dir(fullfile(InputPath, InputFormats(FormatIndex)))
5. for FileIndex = 1:height(TempFiles)
6. InputFiles =

[InputFilesconvertCharsToStrings(TempFiles(FileIndex).name)]
7. end
8. end

4.2 File analysis
The file analysis takes place in a loop going through each filename stored in the InputFiles array. The

index of the file currently being analyzed is stored in the variable FileIndex. This variable is used for

accessing the appropriate filename in the array, as well as identifying the file in question when storing

test results.

4.2.1 Audio import

The contents of the audio file are first imported into a struct containing the uncompressed waveform

data and the file's sample rate. If the data consists of multiple channels, they are merged into one by

storing their mean. The sample rate in hertz, given by the file's metadata, is then stored as its own

variable, allowing the struct to be cleared from memory.

1. FileContent = importdata(fullfile(InputPath+'\'+InputFiles(FileIndex)))
2. RawAudio = zeros(height(FileContent.data), 1)
3. for SampleIndex = 1:height(FileContent.data)

 14

4. RawAudio(SampleIndex) = mean(FileContent.data(SampleIndex, :))
5. end
6. SampleRate = FileContent.fs

4.2.2 Sample rate dependent variables

The frame length and frame step provided in section 4.1.1 are continuous variables and will need to be

made discrete to apply them to the likewise discrete waveform. For this, the sample rate is used. The

same goes for the linear prediction order, which is covered in section 2.3.4.1. Since the number of

samples the data consists of is known, the number of frames that it can be divided into is calculated in

advance and used to establish the loop containing frame analysis. Lastly, the window function is

calculated for the given frame length.

1. FrameLength = floor(SampleRate*FrameLengthMillis/1000)
2. FrameStep = floor(SampleRate*FrameStepMillis/1000)
3. LinPredOrder = floor(SampleRate/1000)
4. NumFrames = floor((length(RawAudio)-FrameLength+FrameStep)/FrameStep)
5. Window = hamming(FrameLength)

4.3 Frame analysis
The frame analysis loop goes through every integer from 1 to the number of full frames possible, with

the index of the frame currently being analyzed stored in the variable FrameIndex. This index is used

to calculate the corresponding indexes in RawAudio, as well as for storing information about detected

vowels for future frames.

4.3.1 Windowing

First the RawAudio index to start reading from is calculated, compensating for the fact that MATLAB

arrays always begin with an index of 1 instead of 0. Then the window function is applied to the samples

starting at this index.

1. DataOffset = (FrameIndex-1)*FrameStep
2. RawFrame = RawAudio(DataOffset+1:DataOffset+FrameLength)
3. WinFrame = Window.*RawFrame

4.3.2 Fourier transform

The frequency components of the window are calculated and stored.

1. FreqFrame = fft(WinFrame)

4.3.3 Zero-crossing rate

The sign of each sample in WinFrame is stored in a new array, with 1 corresponding to a signed value,

and 0 to an unsigned value. Going through each sample, a counter is incremented every time a sample

differs from the previous one, meaning that a zero-crossing has taken place. Using the number of zero-

crossings as well as the number of samples and sample rate, the zero-crossing rate in hertz is calculated.

The amount of energy found at this frequency is then stored for use in vowel detection.

1. SignFrame = sign(WinFrame)
2. ZeroCrossingCount = 0
3. for SampleIndex = 2:FrameLength
4. if abs(SignFrame(SampleIndex)-SignFrame(SampleIndex-1))
5. ZeroCrossingCount = ZeroCrossingCount+1
6. end

 15

7. end
8. ZeroCrossingRate = SampleRate*ZeroCrossingCount/(2*FrameLength)
9. ZeroCrossingEnergy =

abs(FreqFrame(round(ZeroCrossingRate/(SampleRate/FrameLength))+1))

4.3.4 Formants

In order to estimate the formants of a frame, first the linear prediction coefficients are calculated. After

that, the complex roots of a polynomium containing said cofficients are estimated, and the roots are

translated to formants, as covered in section 2.3.4.1. Included is also protection against coefficients that

are not a number, as sometimes a solution does not exist.

1. LinPredCoeffs = lpc(WinFrame, LinPredOrder)
2. Formants = zeros(3, 1)
3. if sum(isnan(LinPredCoeffs)) == 0
4. Roots = roots(LinPredCoeffs)
5. Roots = Roots(imag(Roots) > 0)
6. Rads = atan2(imag(Roots), real(Roots))
7. Freqs = Rads.*(SampleRate/(2*pi))
8. Band = (-1/2*(SampleRate/(2*pi))).*log(abs(Roots))
9. FormantIndex = 0
10. Formants = zeros(NumFormants, 1)
11. for RootIndex = 1:length(Roots)
12. if Freqs(RootIndex) > 90 && Band(RootIndex) < 400
13. FormantIndex = FormantIndex+1
14. Formants(FormantIndex) = Freqs(RootIndex)
15. end
16. end
17. Formants = sort(Formants)
18. end

4.3.5 Vowel detection

To detect vowels, first the zero-crossing rate is examined, as covered in section 2.3.3. The zero-crossing

rate is divided into three possible states: high (1), medium (0), and low (-1). This state is initiated as

medium and stored between frames, and an uneven threshold has been put in place to ensure that small

fluctuations exceeding the boundary between each state do not cause the state to rapidly change back

and forth. If the state is medium, the energy level at the zero-crossing frequency is then checked, and if

it is sufficiently large, it is estimated that the frame contains a vowel.

1. if FrameIndex == 1
2. Vowel = zeros(1, NumFrames)
3. State = 0
4. end
5. if State < 1 && ZeroCrossingRate > 5000
6. State = 1
7. elseif State < 0 && ZeroCrossingRate > 400
8. State = 0
9. elseif State > -1 && ZeroCrossingRate < 350
10. State = -1
11. elseif State > 0 && ZeroCrossingRate < 4000
12. State = 1
13. end
14. if State == 0 && ZeroCrossingEnergy > 1
15. Vowel(FrameIndex) = 1
16. end

 16

4.3.5.1 Experimental smoothing of vowel detection

While developing the algorithm, it was found that spikes appear in the vowel detection. As an example,

a vowel consisting of 20 frames might have a single frame within it that, according to the set thresholds,

does not contain a vowel, and vice versa. To examine how this can be smoothed out, an extra algorithm

is executed after all frames have been processed. This algorithm goes through every frame of the Vowel

array to summarize where each vowel segments begins and ends. Following that, every transition

between vowel and non-vowel is examined, and if a sufficiently small gap is detected between the

current transition and the previous one, said gap is erased. As this algorithm only requires a set number

of previous frame outputs, it could run on a frame-to-frame basis, but for use in real time, it would

require either a delay or a running correction of previous vowel detection output.

1. VowelCount = 0
2. for FrameIndex = 1:NumFrames
3. Change = Vowel(FrameIndex)-Vowel(FrameIndex-1)
4. % Note start of a vowel segment (1st col):
5. if Change == 1
6. VowelCount = VowelCount+1
7. VowelSegments(VowelCount, 1) = FrameIndex
8. % Note end of a vowel segment (2nd col):
9. elseif Change == -1
10. VowelSegments(VowelCount, 2) = FrameIndex
11. end
12. % If final vowel segment is not closed off, close it:
13. if FrameIndex == NumFrames && VowelCount > 0
14. if VowelSegments(VowelCount, 2) == 0
15. VowelSegments(VowelCount, 2) = FrameIndex
16. end
17. end
18. end
19. % Smooth the gaps:
20. if VowelCount > 0
21. TempVowelCount = 0
22. for VowelIndex = 1:VowelCount
23. TempVowelCount = TempVowelCount+1
24. TempVowelSegments(TempVowelCount, :) = VowelSegments(VowelIndex, :)
25. if VowelIndex > 1
26. % Erase gaps of 1 frame between vowel segments:
27. if VowelSegments(VowelIndex, 1)-VowelSegments(VowelIndex-1, 2) < 2
28. Vowel(1, VowelSegments(VowelIndex-1,

2):VowelSegments(VowelIndex, 1)) = ones(1, VowelSegments(VowelIndex, 1)-
VowelSegments(VowelIndex-1, 2)+1)

29. TempVowelSegments(TempVowelCount-1, 2) =
TempVowelSegments(TempVowelCount, 2)

30. TempVowelSegments(TempVowelCount, :) = []
31. TempVowelCount = TempVowelCount-1
32. end
33. end
34. end
35. VowelCount = 0
36. VowelSegments = []
37. for VowelIndex = 1:TempVowelCount
38. % Only include vowel segments longer than 2 frames:
39. if TempVowelSegments(VowelIndex, 2)-TempVowelSegments(VowelIndex, 1) > 2
40. VowelCount = VowelCount+1
41. VowelSegments(VowelCount, :) = TempVowelSegments(VowelIndex, :)
42. % Otherwise erase the vowel segment from the array:
43. else
44. Vowel(1, TempVowelSegments(VowelIndex,

1):TempVowelSegments(VowelIndex, 2)) = zeros(1, TempVowelSegments(VowelIndex, 2)-
TempVowelSegments(VowelIndex, 1)+1)

45. end

 17

46. end
47. end

4.4 Vowel estimation
This part of the algorithm has not yet been integrated into the main code. First, a set of baseline F1 and

F2 values is stored for each vowel [a], [ə], [i], [ɑ] and [u]. The vowels are sorted in the order that they

are listed here, starting at [a] = 1 and ending with [u] = 5.

1. Ref = [690, 1500; 450, 1420; 270, 2320; 640, 1100; 310, 830]

For every frame of the vowel segment being analyzed, the calculated F1 and F2 values are stored as a

row in the matrix VowelData. Then, for each of the five possible vowels, a loop is initiated with the

index VowelIndex corresponding to their row in the Ref matrix. The mean and the 50th percentile of the

squared error between the data and the reference is stored, then square rooted, and their size relative to

the reference is calculated. What remains are four scalars, and the smaller each of them is, the more

said data matches the current vowel. Different combinations of these scalars were tried out before

deciding on what is shown below.

2. VowelEst = zeros(1, height(Ref))
3. for VowelIndex = 1:height(Ref)
4. ResF1 = (VowelData(:, 1)-Ref(VowelIndex, 1)).^2
5. ResF2 = (VowelData(:, 2)-Ref(VowelIndex, 2)).^2
6. PercF1 = sqrt(prctile(ResF1, 50))/Ref(VowelIndex, 1)
7. PercF2 = sqrt(prctile(ResF2, 50))/Ref(VowelIndex, 2)
8. MeanF1 = sqrt(mean(ResF1))/Ref(VowelIndex, 1)
9. MeanF2 = sqrt(mean(ResF2))/Ref(VowelIndex, 2)
10. VowelEst(VowelIndex) = PercF1*MeanF1+PercF2*MeanF2
11. if isnan(VowelEst(VowelIndex))
12. VowelEst(VowelIndex) = 10
13. end
14. end
15. [Value, Index] = sort(VowelEst)

With VowelEst being sorted from lowest to highest, the first element of Index is the index of the vowel

with the highest match, i.e. the best guess. Similarly the second element corresponds to the next best

guess.

 18

5 Test results

The results of the test described in section 3.1 are presented here. For the full data tables, see Appendix

B.

5.1 Vowel detection
Total number of frames: 10464

Vowel frames expected: 3232

Non-vowel frames expected: 7232

Vowel segments expected: 150

Without smoothing

 Detected vowel frame Detected non-vowel frame

Expected vowel frame 1513 (46.8 %) 1719 (53.2 %)

Expected non-vowel frame 374 (5.17 %) 6858 (94.83 %)

Vowel segments detected: 273 (182 %)

Number of clips with no vowel frames detected: 10 (10 %)

With smoothing

 Detected vowel frame Detected non-vowel frame

Expected vowel frame 1519 (47.0 %) 1713 (53.0 %)

Expected non-vowel frame 322 (4.5 %) 6910 (95.5 %)

Vowel segments detected: 129 (86 %)

Number of clips with no vowel frames detected: 18 (18 %)

 19

5.2 Vowel estimation
Number of speech clips for each vowel: 20

For each expected vowel, the columns count how many times each detected vowel appeared in the top

1 and top 2 respectively. For example, for all the clips expecting [a], [ə] appeared as the best guess

twice and as the next best guess 7 times, for a total of 9 appearances in the top 2.

Count

Detected a ə i ɑ u

Expected Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

a 9 10 2 9 0 0 1 4 8 8

ə 3 3 9 19 0 0 0 1 8 8

i 1 1 0 4 15 16 0 0 4 4

ɑ 4 4 0 2 0 0 14 18 2 2

u 0 0 1 1 0 1 0 0 19 19

Percent

Detected a ə i ɑ u

Expected Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

a 45 % 50 % 10 % 45 % 0 % 0 % 5 % 20 % 40 % 40 %

ə 15 % 15 % 45 % 95 % 0 % 0 % 0 % 5 % 40 % 40 %

i 5 % 5 % 0 % 20 % 75 % 80 % 0 % 0 % 20 % 20 %

ɑ 20 % 20 % 0 % 10 % 0 % 0 % 70 % 90 % 10 % 10 %

u 0 % 0 % 5 % 5 % 0 % 5 % 0 % 0 % 95 % 95 %

 20

6 Discussion

Vowel detection

The vowel detection aspect of the algorithm appears to be on the conservative side when it comes to

marking frames as vowels. This is not necessarily a bad thing, as it is possible that more frames were

manually marked as being vowels. This is because the vowel signal blends into the surrounding phones,

as covered in section 2.2.4. While manually marking the vowels, the intent was to include as much of

each vowel as possible, rather than settling for the halfway point between phones, but it is uncertain

whether that was the right call.

The number of frames marked as vowels does not change significantly with the smoothing. Instead the

substantial change comes with the number of individual vowel segments that are detected, which makes

sense, as the purpose of the smoothing is to bridge the gaps between nearby vowel segments that are

too close to be separate vowels. However, the downside with the smoothing appears to lie in the number

of speech clips with no vowels detected at all. Looking through the test data in Appendix B.3 shows

that the affected clips in some cases contained many vowel segments, but each very short and spread

out. A possible solution could be to only apply the smoothing in favor of vowel segments, so that short

vowel segments are not erased.

The verdict here is that the algorithm does not detect enough vowel frames, as the percentage is not

even close to exceeding 90 %. The algorithm does avoid marking many non-vowel frames as vowels,

as the value is around 95 % both before and after smoothing. Changing the thresholds for vowel

detection might help with detection of vowel frames, but in return it is likely to cause more false

positives as well, bringing the non-vowel frame success down.

Vowel estimation

The vowel estimation clearly works well in favor of [u], which is the vowel with the lowest F1 and F2

of the ones used. The estimation appears to be biased in direction of [u], which might explain why the

estimation of exactly this vowel is so successful. One possible explanation is something that was

mentioned in section 2.3.4.1: the frame that the formant calculations were based on contained the vowel

[a], which generally has F1 and F2 around 900 Hz and 1.6 kHz respectively. These values roughly

corresponded to the 2nd and 3rd estimated formants, leaving F1 at around 200 Hz. It is possible that this

is happening across many frames and many speech clips, which is supported by the fact that a majority

of the wrong-guessed vowels are estimated to be [u]. It would be necessary to manually adjust the

formant frequency threshold, or include an estimation of F0 in order to dynamically choose the

threshold.

The verdict is that top 2 guess for [ə] fulfills the requirement, and so does the top 1 guess for [u].

Unfortunately this is not necessarily a success. The reasoning behind [u] not being an obvious success

has been discussed in the paragraph above. As for [ə], it is considered the neutral vowel that other

vowels naturally trend towards. As such, these two vowels fulfill the requirement not necessarily

because the model is working well, but rather due to model bias. Ensuring that F0 is not unintentionally

included in the list of formants will be the first step towards bettering the model, as it may keep the

vowels from trending towards the lower frequencies.

 21

Real time

While the real time aspect was not included in the testing, it bears saying that the requirement for the

algorithm to work in real time might be detrimental to the goal of the algorithm. This is because it

excludes pre- and postprocessing, which could help provide a more precise analysis of the speech data.

It is not necessarily a lost cause, as speech therapy tools working in real time do exist, even if they are

not designed to cover a wide array of phones at once.

 22

7 Conclusion

Zero-crossing rate shows some potential in automatically determining the vowel segments of speech.

Linear predictive coding has proved useful in estimating the formants of a voiced segment of speech.

The developed algorithm utilizing both zero-crossing rate and linear predictive coding is able to detect

and estimate vowels to some extent, but it does not fulfill the requirements set forth in section 3.1. It is

highly likely that with some refinement, the algorithm will perform better in terms of estimating vowels,

though the vowel detection aspect might not improve much as long as the real time compatibility

requirement remains.

 i

Bibliography

[1] D. G. Childers, Speech processing and synthesis toolboxes, John Wiley & Sons, Inc., 2000.

[2] J. N. Holmes, Speech synthesis and recognition, Van Nostrand Reinhold (UK), 1988.

[3] Creative Commons, "Attribution 3.0 Unported (CC BY 3.0)," [Online]. Available:

https://creativecommons.org/licenses/by/3.0/. [Accessed 1 June 2022].

[4] N. Peleg, "Linear Prediction Coding," March 2009. [Online]. Available:

http://cs.haifa.ac.il/~nimrod/Compression/Speech/S4LinearPredictionCoding2009.pdf.

[Accessed 2 June 2022].

[5] Creative Commons, "Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)," [Online].

Available: https://creativecommons.org/licenses/by-sa/4.0/. [Accessed 1 June 2022].

[6] M. R. Schroeder, Computer speech: recognition, compression, synthesis, Springer, 1999.

[7] H.-S. Kim, "Linear Predictive Coding is," [Online]. Available:

https://ccrma.stanford.edu/~hskim08/lpc/. [Accessed 2 June 2022].

[8] Creative Commons, "Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)," Creative

Commons, [Online]. Available: https://creativecommons.org/licenses/by-sa/3.0/. [Accessed 1

June 2022].

[9] K. K. Paliwal, J. G. Lyons and K. K. Wojcicki, "Preference for 20-40 ms window duration in

speech analysis," 2010.

[10] K. Rao, V. R. Reddy and S. Maity, "Appendix," in Language Identification Using Spectral and

Prosodic Features, Springer, 2015, pp. 87-92.

[11] T. M. Bőhm and G. Németh, "Algorithm for formant tracking, modification and synthesis," BME

Department of Telecommunications and Media Informatics, 2007.

[12] S. Goswami, P. Deka, B. Bardoloi, D. Dutta and D. Sarma, "ZCR Based Identification of Voiced,

Unvoiced and Silent Parts of Speech Signal in Presence of Background Noise," in International

Conference on Computation and Communication Advancement, Kalyani, West Bengal, India,

2013.

[13] R. G. Bachu, S. Kopparthi, B. Adapa and B. D. Barkana, "Voiced/Unvoiced Decision for Speech

Signals Based on Zero-Crossing Rate and Energy," in Advanced Techniques in Computing

Sciences and Software Engineering, 2010.

[14] R. C. Snell and F. Milinazzo, "Formant Location From LPC Analysis Data," IEEE Transactions

on Speech and Audio Processing, April 1993.

[15] T. Bäckström, "Linear prediction," 10 April 2019. [Online]. Available:

https://wiki.aalto.fi/display/ITSP/Linear+prediction. [Accessed 2 June 2022].

[16] The MathWorks, Inc., "Formant Estimation with LPC Coefficients," MathWorks, [Online].

Available: https://www.mathworks.com/help/signal/ug/formant-estimation-with-lpc-

coefficients.html. [Accessed 1 June 2022].

[17] P. Heggarty, A. Shimelman, G. Abete, C. Anderson, S. Sadowsky, L. Paschen, W. Maguire, L.

Jocz, M. J. Aninao, L. Wägerle, D. Dërmaku-Appelganz, A. P. d. C. e. Silva, L. C. Lawyer, J.

Michalsky, A. S. A. C. Cabral, M. Walworth, E. Koile, J. Runge and H.-J. Bibiko, "Exploring

 ii

Diversity in Phonetics across Language Families," 2019. [Online]. Available:

https://soundcomparisons.com/. [Accessed 1 June 2022].

[18] The MathWorks, Inc., "Supported File Formats for Import and Export," [Online]. Available:

https://www.mathworks.com/help/matlab/import_export/supported-file-formats-for-import-and-

export.html. [Accessed 1 June 2022].

[19] L. Goldstein, "Formant Analysis using LPC," [Online]. Available:

https://sail.usc.edu/~lgoldste/Ling582/Week%209/LPC%20Analysis.pdf. [Accessed 2 June

2022].

[20] C. S. Sapp, "WAVE PCM soundfile format," [Online]. Available:

http://soundfile.sapp.org/doc/WaveFormat/. [Accessed 2 June 2022].

[21] J. D. Cook, "Don’t invert that matrix," 19 January 2010. [Online]. Available:

https://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/. [Accessed 2 June 2022].

 iii

A International Phonetic Alphabet

IPA Chart* available under a Creative Commons Attribution-Sharealike 3.0 Unported License.

Copyright © 2018 International Phonetic Association.

* http://www.internationalphoneticassociation.org/content/ipa-chart

 iv

 v

B Test data

B.1 Sound clips
All clips are available at Sound Comparisons [6].

Table 1: List of speech clips used for testing, along with the vowel to be tested.

vowel IPA language

1 a [ɡɹaːn] Canada: Iona

2 a [naːm] Dutch: Std in NL

3 a [vaːf] ‘Flemish’: Antwerp

4 a [saːlʦ] Franc. E.: Altersbach

5 a [ʦβ̥aː] Franc. E.: Nuremberg

6 a [saːm] Fris. W.: Hylpen

7 a [ɡɾaː] Gascon: Val d’Aran

8 a [naːn] Liverpool

9 a [aːχtə] ‘Low Saxon’: Veenkoloniën

10 a [ˈβaːɾə] ‘Low Saxon’: Veenkoloniën

11 a [ˈcçaːnə] Molise: Guglionesi

12 a [tʰɹaː] Molise: Guglionesi

13 a [ʃaː] Norman: Les Pieux

14 a [haː] Norman: Les Pieux

15 a [luŋˈɡaːtɕ] Romansh: Surmiran

16 a [ˈsaːɫɪ] Sicily E.: Catania

17 a [ɡaː] Suth.: Melness

18 a [ʦʰaːnə] Thur. E.: Altenburg

19 a [saːl] Trieste (city)

20 a [vaː] Welche: Labaroche

21 ə [ˈtsʰʊŋən] Austria: Vienna

22 ə [fʏnvə] Brandenburg: Berlin

23 ə [ˈtʃaŋkə] Canada: Inverness

24 ə [ʦʰa:nə] Erzgebirge W.: Aue

25 ə [ˈwettʰə] FrPrv: Aosta: Roisan

26 ə [ˈnɔːvə] Italy: N. in S.: Rivello

27 ə [siːvə] Lechrain: Heinrichshofen

28 ə [ˈɸo̟lə] Liecht.: Walser

29 ə [eːnə] ‘Low Saxon’: Achterhoek

30 ə [ˈtʃiˑnd̪ə] Lucano: Castelmezzano

31 ə [salˠən] Meath: Rathcarran

32 ə [ˈɔ̝ˑttə] Naples (city)

33 ə [dəː] Norman: Orglandes

34 ə [sɪvə] Penn. Ger: Hartville, OH

35 ə [ˈs̠eːz̠ə] Piedmont: Pianezza

36 ə [ˈlɜˑŋɡə] Provençal: Lagnes

37 ə [ˈtʃɛɡə] Ross: Opinan

38 ə [ˈnäːmə] Std. German (Ctl Germany acc.)

39 ə [ˈtsʊŋˑə] Switz.: Biel

40 ə [ˈz̥ɪvən] Translv.: Schäßburg

41 i [siː] Bologna (city)

42 i [ˈviːtɾə] Czech: Std (Plzeň)

43 i [θɾiː] ‘Doric’ Scots: Buckie

44 i [ziːbɛn] Eastphalian: Biere

45 i [z̥iːm] Franc. E.: Berching

46 i [ˈdiːvi̽] Latvian: Std (Cēsis)

47 i [tɾiːs] Latvian: Std

48 i [ˈfiːfə] ‘Low Saxon’: Achterhoek

 vi

vowel IPA language

49 i [tiːnə] ‘Low Saxon’: Achterhoek

50 i [fiːvə] Lower Saxony: Barterode

51 i [nˠiː] Meath: Rathcarran

52 i [ˈtʃiːndə] Molise: Guglionesi

53 i [ˈdiːtʃə] Molise: Guglionesi

54 i [iːn] Patagonia: Esquel

55 i [diːɕ] Romansh: Surmiran

56 i [tɕiː] Ross: Laide

57 i [niː] Stavanger

58 i [iːn] Sth-E: Fochriw

59 i [siːbə] Swabia: Dinkelscherben

60 i [diːç] Walloon: Clavier

61 ɑ [nɑːm] Afrikaans: Kroonstad

62 ɑ [nɑːmə̞] Bavarian N.: Hausen

63 ɑ [ˈsɑːle̞] Campania: Montella

64 ɑ [ɫɑːn] Canada: Inverness

65 ɑ [ɑːk] Canada: Iona

66 ɑ [ɡɹɑːn] C’mara N.: Cornamona

67 ɑ [dɑː] Dgl: Annagry

68 ɑ [dɑː] Dgl: Glencolumbkille

69 ɑ [ɑːɡ] Dgl: Glencolumbkille

70 ɑ [dɑː] Dgl: Tory Island

71 ɑ [vɑ̟ːɾts] Latvian: Std

72 ɑ [sɑː] Lombardy: Barlassina

73 ɑ [lɑːn] Mayo: Achill Island

74 ɑ [lɑːn] Mayo: Mullet Peninsula

75 ɑ [lˠɑːn] Meath: Rathcarran

76 ɑ [sɑːɫ] Port.: Std Lisbon acc.

77 ɑ [ˈpɑːt̪ɾʊ] Romanian: N.: Moldovenesc

78 ɑ [ˈsɑːɾɪ] Romanian: N.: Moldovenesc

79 ɑ [sɑːɫ] Romansh: Sursilvan

80 ɑ [drɑː] Translv.: Schäßburg

81 u [huːnətʰ] Bavarian Ctl: Thierhaupten

82 u [suːl] Czech: Std (Plzeň)

83 u [suːlˠ] Czech: Std

84 u [fuː] ‘Doric’ Scots: Buckie

85 u [duː] ‘Flemish’: France

86 u [ˈuːɾa] Franco-Provençal: Valaisan

87 u [huːnɛ̈tʰ] Hessen: Frankfurterisch

88 u [uːr] Istro-Romanian: Žejane

89 u [ˈuːnɜ] Italy: N. in S.: Rivello

90 u [ˈuːnö] Italy: N. in S.: Tito

91 u [nuː] Limousin: Hautefort

92 u [ˈzuːwen] Lombardy: Gardone

93 u [ˈʒuːne] Romanian: N.: Moldovenesc

94 u [duːs] Romansh: Surmiran

95 u [tɕuːn] Romansh: Tuatschin

96 u [kɐˈɾuːsʊ] Salento S.: Ruffano

97 u [ˈduːz̥ʊ] Sardinian CS: Gonnesa

98 u [ˈuːnʊ] Sardinian NW.: Nuoro

99 u [nuːf] Walloon: Clavier

100 u [huːnət] Wisc. Pom.: Green Bay

 vii

B.2 Vowel estimation
Table 2: Test data comparing the vowel to the tested with the two best matches according to the algorithm.

 ref. test

1st 2nd

1 a a ə

2 a ɑ ɑ

3 a u ə

4 a ə ɑ

5 a ɑ a

6 a u ɑ

7 a u ə

8 a u ə

9 a a ɑ

10 a a ɑ

11 a a ɑ

12 a a ɑ

13 a u ə

14 a u ə

15 a u ə

16 a a ɑ

17 a a ɑ

18 a a ɑ

19 a u ə

20 a ə ɑ

21 ə u ə

22 ə ə ɑ

23 ə a ə

24 ə ə u

25 ə u ə

26 ə ə ɑ

27 ə ə ɑ

28 ə ə ɑ

29 ə a ə

30 ə ə i

31 ə u ə

32 ə a ɑ

33 ə u ə

34 ə ə ɑ

35 ə ə i

36 ə u ə

37 ə ə a

38 ə u ə

39 ə u ə

40 ə u ə

41 i i ə

42 i i u

43 i i ə

44 i i ə

45 i u i

46 i i ə

47 i i ə

48 i i ə

49 i i ə

50 i i ə

51 i u ə

52 i i ə

 viii

 ref. test

1st 2nd

53 i a ə

54 i i ə

55 i i ə

56 i i ə

57 i u ə

58 i u ə

59 i i ə

60 i i ə

61 ɑ u ə

62 ɑ ɑ a

63 ɑ ɑ a

64 ɑ a ɑ

65 ɑ ɑ a

66 ɑ ɑ ə

67 ɑ ɑ ə

68 ɑ ɑ a

69 ɑ ɑ a

70 ɑ ɑ ə

71 ɑ ɑ u

72 ɑ a ɑ

73 ɑ u ə

74 ɑ ɑ ə

75 ɑ ɑ a

76 ɑ ɑ a

77 ɑ a ɑ

78 ɑ a ɑ

79 ɑ ɑ a

80 ɑ ɑ a

81 u u ə

82 u u ə

83 u u i

84 u u ə

85 u u ə

86 u u ə

87 u u ə

88 u u ə

89 u u ə

90 u u ə

91 u u ə

92 u ə i

93 u u ə

94 u u ə

95 u u ə

96 u u ə

97 u u ə

98 u u ə

99 u u ə

100 u u ə

 ix

B.3 Vowel detection
Table 3: Test data comparing the manually determined vowel segments (ref.) with the automated ones (test). The numbers

signify the first:last frame of a vowel segment.

 ref. test

w/o smoothing w/ smoothing

1 25:60 20:22 23:27 28:42 43:48 51:56 20:48 51:56

2 37:55 36:56 36:56

3 39:61 41:43 49:52 56:58 49:52

4 33:69 76:78

5 30:67 29:56 57:63 29:63

6 38:64 29:30 31:35 37:57 29:35 37:57

7 45:68 42:43 46:65 46:65

8 39:66 38:39 40:42 43:48 49:50 51:56 38:62 66:69

9 64:91 115:126 64:65 70:86 87:88 94:95 70:88

10 50:84 86:109 56:66 68:73 75:78 79:83 56:66 68:73 75:83

11 26:53 66:78 19:21 24:43 44:46 48:51 52:53 24:46 48:53

12 32:58 25:26 29:34 35:48 49:52 29:52

13 23:51 11:12 13:21 22:23 44:46 11:23

14 18:39 13:14 15:16 26:27 28:32 13:16 26:32

15 44:57 68:87 66:77 78:79 80:81 82:83 103:115 66:83 103:117

16 34:55 62:70 63:66 74:75 63:66

17 42:83 38:73 74:79 38:79

18 22:39 50:60 19:20 22:23 25:41 25:41

19 48:75 46:47 49:81 49:81

20 46:68 45:48 49:58 59:60 61:62 63:64 45:69

21 25:37 45:53 20:22 28:36 28:36

22 24:32 56:83 24:28 24:28

23 24:36 54:76 52:55 56:59 60:74 52:74

24 22:44 52:64

25 24:33 59:72 23:26 27:31 59:68 23:31 59:68

26 36:55 67:75 35:54 55:56 35:56

27 15:28 40:59 36:52 36:52

28 32:44 63:76 63:71 72:76 63:76

29 18:34 42:49 44:48 50:52 44:48

30 48:61 85:95

31 33:50 56:66 57:67 57:67

32 29:47 70:78 29:38 39:42 43:48 71:72 74:75 29:48

33 20:65 27:30 32:34 40:44 27:30 40:44

34 32:38 48:62 36:38 39:40 42:43 36:40

35 36:68 81:92 27:29 30:35 44:45 62:63 79:89 27:35

36 21:31 48:61 20:30 20:30

37 29:44 54:71 30:35 36:45 56:67 68:70 30:45 56:70

38 41:55 65:88 37:38 39:41 44:47 49:51 52:53 37:41 44:47 49:57 67:81

39 27:41 60:74

40 35:47 57:68 36:47 59:61 63:65 66:70 36:47 63:70

41 51:71 58:61 70:71 58:61

42 31:46 71:85 64:68 69:79 64:79

43 40:72 37:39

44 25:46 57:69 28:30 56:61 62:64 65:67 68:69 56:71

45 36:49

46 38:54 61:73 37:38 39:40 41:42 53:55 59:63 37:42 59:63

47 22:43 13:14 20:22 29:31 42:43 64:65

48 33:61 73:86 71:73 74:75 71:75

49 22:40 49:63 18:20 36:38 40:41 49:50 64:65

50 22:39 50:60

51 29:52 40:41 45:47 48:51 45:51

 x

 ref. test

w/o smoothing w/ smoothing

52 36:58 84:96 24:31 32:35 37:39 41:42 46:47 24:35 46:51 54:58 85:92

53 32:31 80:94 33:39 50:51 54:59 61:63 68:74 33:39 54:59 68:78 81:84 90:94

54 16:36 30:32 34:37 44:45 34:37

55 32:56 58:71 72:77 79:86 87:88 58:77 79:88

56 34:72 31:32

57 46:81 49:53 64:67 70:71 73:74 49:53 64:67

58 14:33 15:16 17:18 20:25 27:30 15:18 20:25 27:30

59 29:44 58:78 37:38 58:72 58:72

60 24:50 22:23 32:33 35:36 42:43 60:61

61 60:88 62:81 82:88 62:88

62 25:41 52:75 25:30 31:41 54:57 59:64 25:41 54:57 59:64

63 32:62 70:86 33:65 70:82 84:85 33:65 70:82

64 27:74 24:56 57:61 62:63 64:65 66:67 24:70 73:77

65 14:50 15:51 52:53 65:66 15:53

66 25:53 14:15 16:22 26:56 57:59 14:22 26:59

67 24:58 23:57 23:57

68 38:70 39:66 67:69 39:69

69 25:71 30:31 32:71 30:71

70 31:78 32:71 32:71

71 29:50 28:53 28:53

72 40:81

73 31:61 33:39 40:60 61:64 33:64

74 29:55 30:50 30:50

75 38:70 32:36 37:76 32:76

76 46:67

77 32:55 75:87 32:37 39:46 48:56 59:60 61:62 32:37 39:46 48:56 59:62 72:85

78 47:84 89:113 48:85 88:95 97:98 48:85 88:95

79 54:88 54:95 54:95

80 46:85 37:39 40:46 47:48 49:56 59:61 37:56 59:74 76:79

81 16:25 39:54 42:49 50:53 54:55 42:55

82 39:70 21:22 79:82 79:82

83 34:54 14:18 19:22 23:26 27:28 29:32 14:32

84 50:72

85 56:85

86 21:53 66:79 23:25

87 16:34 43:66 43:50 53:55 56:58 60:62 65:66 43:50 53:58

88 31:60 58:63 65:67 69:71 58:63

89 25:45 55:73 54:68 54:68

90 20:38 54:71 54:61 62:65 54:65

91 36:59 37:44 37:44

92 47:62 67:80 33:34 38:39 46:48 67:77 67:77

93 62:81 92:118 40:44 46:47 61:62 63:84 100:102 40:44 61:84 107:114

94 30:58 63:66 67:68 63:68

95 32:52 24:30 32:33 24:30

96 83:91 96:115 128:139 82:91 92:93 96:111 128:139 140:141 82:93 96:111 128:141

97 21:52 63:79 21:51 52:53 63:70 71:72 21:53 63:72

98 9:31 38:55 9:10

99 28:53

100 16:29 36:42 37:43 45:46 47:48 37:43 45:48

