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1 | Introduction

Terahertz time-domain spectroscopy has shown good capabilities as a sensing tool, as it is non-
ionising, non-label, and non-contact. An avenue of interest in supplementing the method is
the use of metamaterials to create field enhancement, which increases the interaction of the
samples with terahertz radiation, and thereby improving the sensitivity of the method. The
metamaterials used for enhancement in this project are gold antennas on a silicon wafer. For
this project, the compounds examined are glucose and sucrose with absorption peaks at around
1.4 THz, with glucose having the significantly largest peak. [1]

Metamaterials are artificial structures designed to obtain properties that are distinct from the
properties of natural materials, for instance novel electromagnetic parameters. The differ-
ence allows the utilisation of compact super lenses, antennas, filters, field enhancement, and
frequency-agile metamaterials with the functionality of permitting the real time adjustment of
the electromagnetic response. [2, 3]

Machine learning, neural network, artificial intelligence, many names can be used to describe
the concept of pushing a machine to complete tasks that otherwise only an intelligent living
being could accomplish. In essence, a computer can be trained with large amounts of data
and complicated statistical models to ’learn’. Common examples are image recognition machine
learning, such as telling whether an image contains a dog or a cat, or to distinguish the road
from the pavement. [4]

While image recognition is exciting and has numerous applications, it is not the only machine
learning technique. Other types of data can also be used, such as text or spectra. Humans excel
at image recognition and at understanding text, but spectra can be difficult. As such, machine
learning research focused on spectra recognition is of interest, as the advanced algorithms can
already exceed human capabilities. [5, 6]

The first use of the term machine learning was by Arthur Samuel in 1959 [7]. He found that a
computer could be programmed to play the board game checkers better than the human who
wrote the program could do [7, 8]. Since then, several signification breakthroughs have been
made, and machine learning shifted from a knowledge based approach to a data based approach,
as computers become more powerful and able to better handle large amounts of data. Today,
machine learning can be applied with little knowledge about the data that is used. [9, 10, 11]

The focus of this project is to examine the viability of using machine learning and metamaterial
field enhancement to improve on the sensitivity of terahertz time-domain spectroscopy, where a
theoretical model will be established to determine the construction of the metamaterials.
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2 | Numerical Model

This chapter will describe the fundamental theory and modelling process behind the finite-
difference time-domain (FDTD) method in three spatial dimensions. First, a summary of
Maxwell’s equations is given. The standard FDTD method is then described, and the different
modifications to the standard method used in this project is thereafter described.

2.1 Maxwell’s Equations

This section will briefly outline and describe Maxwell’s equations and the field continuity con-
ditions, which are imperative for the understanding of the electromagnetic theory used in this
project. Readers already familiar with these may inconsequentially skip it.

Maxwell’s equations in their differential forms are given by

∇ × E = −∂B
∂t

, (2.1)

∇ × H = ∂D
∂t

+ J, (2.2)

∇ · D = ρ, (2.3)
∇ · B = 0, (2.4)

where E, D, H and B are the electric, displacement, magnetic, and magnetic induction fields,
respectively. J is the current density. They are related by the constitutive relations, which
describe the macroscopic properties of a material, given by

D = ϵE, (2.5)
B = µH, (2.6)
J = σE, (2.7)

where ϵ, µ, and σ are the permittivity, permeability, and conduction of the material, respectively.
In the time-harmonic case, these are constants for isotropic, homogeneous materials, scalar
functions of position for isotropic inhomogeneous materials, and tensors for anisotropic materials.
In the case of time-dependent fields, these parameters are time dependent, as well.

At the interface between two different materials, the fields are described by the so-called field
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Group 5.325 Chapter 2. Numerical Model

continuity conditions given by

n̂ × (E1 − E2) = 0, (2.8)
n̂ · (ϵ1E1 − ϵ2E2) = ρs, (2.9)

n̂ × (H1 − H2) = Js, (2.10)
n̂ · (µ1H1 − µ2H2) = 0, (2.11)

where n̂ is normal unit vector of the interface pointing from medium 1 to medium 2, ρs is the
surface charge density at the interface, and Js is the surface current density at the interface.
For a source free interface, both the surface charge and current densities are zero. These con-
ditions essentially describes that the electric field components tangential to the interface must
be continuous over an interface, whereas the components normal to an interface may be dis-
continuous over the interface. Likewise, the magnetic field components tangential to a source
free interface may be continuous over the interface, and the components normal to an interface
may be discontinuous over the interface. However, for an interface between dielectric materials,
the components of the magnetic field normal to the interface must also be continuous over the
interface.

2.2 Yee-Algorithm

The essence of the FDTD method is a discrete field updating scheme, i.e. each field component
is discretised in both time and space, and are updated using discrete formulations of Faraday’s
law and Ampère’s law. These laws are the two curl-Maxwell’s equations, eqs. (2.1) and (2.2).
Using the constitutive relations, eq. (2.5), Faraday’s and Ampére’s laws may be expressed as

∇ × E = −µ
∂H
∂t

, (2.12)

and

∇ × H = J + ϵ
∂E
∂t

, (2.13)

respectively. More explicitly, these are given as

x̂
(

∂Ez

∂y
− ∂Ey

∂z

)
+ ŷ

(
∂Ex

∂z
− ∂Ez

∂x

)
+ ẑ

(
∂Ey

∂x
− ∂Ex

∂z

)
= −x̂µ

∂Hx

∂t
− ŷµ

∂Hy

∂t
− ẑµ

∂Hz

∂t
,

(2.14)

and

x̂
(

∂Hz

∂y
− ∂Hy

∂z

)
+ ŷ

(
∂Hx

∂z
− ∂Hz

∂x

)
+ ẑ

(
∂Hy

∂x
− ∂Hx

∂z

)
= x̂ϵ

∂Ex

∂t
+ ŷϵ

∂Ey

∂t
+ ẑϵ

∂Ez

∂t
. (2.15)

From these, the temporal evolution of each component of the electric and magnetic fields can
easily be expressed through the spatial evolution of the other components of the magnetic and
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2.2. Yee-Algorithm Aalborg University

electric fields, respectively. As such

∂Ex

∂t
= 1

ϵ

(
∂Hy

∂z
− ∂Hz

∂y

)
, (2.16)

∂Ey

∂t
= 1

ϵ

(
∂Hz

∂x
− ∂Hx

∂z

)
, (2.17)

∂Ez

∂t
= 1

ϵ

(
∂Hx

∂y
− ∂Hy

∂x

)
, (2.18)

∂Hx

∂t
= 1

µ

(
∂Ez

∂y
− ∂Ey

∂z

)
, (2.19)

∂Hy

∂t
= 1

µ

(
∂Ex

∂z
− ∂Ez

∂x

)
, (2.20)

∂Hz

∂t
= 1

µ

(
∂Ey

∂x
− ∂Ex

∂y

)
. (2.21)

The derivatives are numerically approximated by so-called forward, backward, or central differ-
ence schemes. In the forward difference scheme, the derivative at a sampling point is approxi-
mated as the slope of the secant that intersects the sampling point as well as the next sampling
point, and in the backward difference scheme, it is approximated as the slope of the secant that
intersects the sampling point as well as the previous sampling point. In the central difference
scheme, the derivative at a sampling point is approximated as the slope of the secant that inter-
sects the previous and next sampling points. It can easily be shown that the central difference
scheme has a significantly higher accuracy with a comparable computational complexity rela-
tive to the forward and backward difference schemes. As such, the central difference scheme is
generally considered superior, and it is therefore preferred in the FDTD method.

In the central difference scheme, the first derivative of some function, f(x), is approximated as

∂f(x)
∂x

∣∣∣∣
x=xi

≈ f(xi+1) − f(xi−1)
xi+1 − xi−1

= δf(xi)
δxi

. (2.22)

However, when calculating the discrete temporal evolution of each field component, the spatial
derivatives needed are those of the other components of the other field. As such, all field
components may be spatially shifted in their discretisation relative to each other, i.e. the
electric field is sampled between sample points of the magnetic field. To this end, consider a
computational domain that is discretised into a (Nx×Ny×Nz)-mesh. This mesh has a total of
Nx, Ny, and Nz mesh points along the x-, y-, and z-directions, respectively. Instead of sampling
the electric and magnetic fields at these mesh points, let the electric field components be sampled
between the mesh points in the directions of the field components, and let the magnetic field be
sampled between the mesh points in the tangential directions to the field components. That is,
at the (i, j, k)’th mesh point, the fields are sampled at

Ex

∣∣n+1/2

i+1/2,j,k
= Ex(xi+1/2, yj , zk, tn+1/2), (2.23)

Ey

∣∣n+1/2

i,j+1/2,k
= Ey(xi, yj+1/2, zk, tn+1/2), (2.24)

Ez

∣∣n+1/2

i,j,k+1/2
= Ez(xi, yj , zk+1/2, tn+1/2), (2.25)
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Group 5.325 Chapter 2. Numerical Model

Hx

∣∣n
i,j+1/2,k+1/2

= Hx(xi, yj+1/2, zk+1/2, tn), (2.26)

Hy

∣∣n
i+1/2,j,k+1/2

= Hy(xi+1/2, yj , zk+1/2, tn), (2.27)

Hz

∣∣n
i+1/2,j+1/2,k

= Hz(xi+1/2, yj+1/2, zk, tn). (2.28)

These are illustrated in fig. 2.1. Such a staggered grid is called a Yee-mesh; named after the
creator of the FDTD method. It is thus clear that field components associated by eqs. (2.16)
to (2.21) lies directly adjacent to each other. As such, with the central difference scheme,
eq. (2.22), the partial time derivative of e.g. the x-component of the magnetic field is approxi-
mated through the discrete derivatives of the y- and z-components of the electric fields as

∂Ex

∂t

∣∣∣∣
i+1/2,j,k

≈ 1
ϵ
∣∣
i+1/2,j,k

Hy

∣∣
i+1/2,j,k+1/2

− Hy

∣∣
i+1/2,j,k−1/2

δzk
−

Hz

∣∣
i+1/2,j+1/2,k

− Hz

∣∣
i+1/2,j−1/2,k

δyj

 .

(2.29)
Furthermore, the partial time derivative may itself be approximated by the central difference
scheme, such that

∂Ex

∂t

∣∣∣∣n
i,j+1/2,k+1/2

≈
Ex

∣∣n+1/2

i+1/2,j,k
− Ex

∣∣n−1/2

i+1/2,j,k

δtn
. (2.30)

Note that, so far, the temporal and spatial discretisations have been considered variable through-
out the computational domain. While the temporal and spatial discretisation may indeed be
time and position dependent, but not interdependent, the Yee-mesh has an inherent stability
criteria that not only makes it highly impractical to implement variable discretisations, but also
decreases the accuracy of the method. This stability criteria shall be explained in further detail
later. Therefore, only constant temporal and spatial discretisations are generally used in the
FDTD method. Applying the central difference schemes to the spatial derivatives and temporal
derivatives, as in eqs. (2.29) and (2.30), respectively, on eqs. (2.16) to (2.21), results in the
update equations as

Ex

∣∣n+1/2

i+1/2,j,k
= Ex

∣∣n−1/2

i+1/2,j,k
+ δt

ϵ
∣∣
i+1/2,j,k

Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i+1/2,j−1/2,k

δy

−
Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i+1/2,j,k−1/2

δz

 ,

(2.31)

Ey

∣∣n+1/2

i,j+1/2,k
= Ey

∣∣n−1/2

i,j+1/2,k
+ δt

ϵ
∣∣
i,j+1/2,k

Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j+1/2,k−1/2

δz

−
Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i−1/2,j+1/2,k

δx

 ,

(2.32)

Ez

∣∣n+1/2

i,j,k+1/2
= Ez

∣∣n−1/2

i,j,k+1/2
+ δt

ϵ
∣∣
i,j,k+1/2

Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i−1/2,j,k+1/2

δx

−
Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j−1/2,k+1/2

δy

 ,

(2.33)

6



2.2. Yee-Algorithm Aalborg University

Hx

∣∣n+1
i,j+1/2,k+1/2

= Hx

∣∣n
i,j+1/2,k+1/2

+ δt

µ
∣∣
i,j+1/2,k+1/2

Ey

∣∣n+1/2

i,j+1/2,k+1 − Ey

∣∣n+1/2

i,j+1/2,k

δz

−
Ez

∣∣n+1/2

i,j+1,k+1/2
− Ez

∣∣n+1/2

i,j,k+1/2

δy

 ,

(2.34)

Hy

∣∣n+1
i+1/2,j,k+1/2

= Hy

∣∣n
i+1/2,j,k+1/2

+ δt

µ
∣∣
i+1/2,j,k+1/2

Ez

∣∣n+1/2

i+1,j,k+1/2
− Ez

∣∣n+1/2

i,j,k+1/2

δx

−
Ex

∣∣n+1/2

i+1/2,j,k+1 − Ex

∣∣n+1/2

i+1/2,j,k

δz

 ,

(2.35)

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ
∣∣
i+1/2,j+1/2,k

Ex

∣∣n+1/2

i+1/2,j+1,k
− Ex

∣∣n+1/2

i+1/2,j,k

δy

−
Ey

∣∣n+1/2

i+1,j+1/2,k
− Ey

∣∣n+1/2

i,j+1/2,k

δx

 .

(2.36)

Note that these are approximations, even though they are presented as equations. These update
equations are the workhorses of the FDTD method. The principle of the Yee-algorithm is to
take one step in time and subsequently update all field components using eqs. (2.31) to (2.36)
iteratively throughout the entire Yee-mesh.

7



Group 5.325 Chapter 2. Numerical Model

Figure 2.1: Illustration of a general three-dimensional Yee-mesh cell.

2.2.1 Numerical Dispersion and the Stability Criterion

As mentioned above, the grid-spacing and time-stepping are not inherently independent, and
the dependence between these will be explored in this section. The section is based on chapter
three of the book, Numerical Methods in Photonics by Andrei V. Lavrinenko et al. [12].

Firstly, consider the general solution to Maxwell’s equations on the form of a monochromatic
propagating wave as

E(r, t) = E0eik·re−iωt. (2.37)

Such a wave has a dispersion relation given as

ω2 = k2c0, (2.38)

where c0 is the free-space speed of light. In discrete space and time, a corresponding solution to
Maxwell’s equations will be on the form

E(a, b, c, n) = E0eikxaδxeikybδyeikzcδze−iωnδt, (2.39)

8



2.2. Yee-Algorithm Aalborg University

where a, b, c, and n are integers. A similar solution exists for the magnetic field. By applying
the central difference scheme, eq. (2.22), to eq. (2.39) and the corresponding equation for the
magnetic field, a homogeneous system of six scalar, linear equations are obtained. Solving this
will give

1
c2

0δt2 sin2
(

ωδt

2

)
= 1

δx2 sin2
(

kxδx

2

)
+ 1

δy2 sin2
(

kyδy

2

)
+ 1

δz2 sin2
(

kzδz

2

)
, (2.40)

which describes numerical dispersion. While eq. (2.38) predicts dispersion caused by material
parameters, eq. (2.40) also predicts dispersion caused by the discretisation of space and time.
Material and anisotropic dispersion, i.e. phase velocity dependence on material and direction,
respectively, are physically real phenomena, and these are indeed described by the numerical
dispersion, eq. (2.40). However, it is also noticed that a non-physical dispersion arises from this
equation due to the lattice parameters. This kind of dispersion is a numerical artefact, and
as these are non-physical phenomena, one would aim to minimise its effects in a simulation.
Furthermore, the time-step is of great interest to optimise, as time-steps too small results in
insurmountable computation times, and time-steps too large would break the causality between
the electric and magnetic fields. As such, an analysis on the stability to estimate restraints for
a reasonable time-step range is of interest.

First, a new variable, ξ, is introduced as

ξ = c0δt

√
1

δx2 sin2
(

kxδx

2

)
+ 1

δy2 sin2
(

kyδy

2

)
+ 1

δz2 sin2
(

kzδz

2

)
, (2.41)

such that the numerical dispersion, eq. (2.40), can be solved for the frequency as

ω = 2
δt

sin−1 (ξ). (2.42)

For a loss-less propagating wave solution, the frequency is required to be real, resulting in the
condition that |ξ| ≤ 1. By taking the supremum of the sines, it is found that

δt ≤ 1

c0

√
1

δx2 + 1
δy2 + 1

δz2

, (2.43)

which is called the Courant-Friedrichs-Lewy (CFL) condition. This condition connects the
spatial with the temporal discretisation, and if it is violated, massive stability errors will occur.
For illustratory purposes, consider a wave propagating in a one-dimensional space with a time-
step that violates the CFL condition such that |ξ| > 1, which in turn means that the frequency
becomes complex. Applying the identity for the inverse sine of some complex number, α, given
by

sin−1 α = −i ln
(
iα +

√
1 − α2

)
, (2.44)

to eq. (2.42) can be shown to give

ωδt = π − 2i ln
(

ξ +
√

ξ2 − 1
)

. (2.45)
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A propagating wave with time-dependence on the form e−iωt discretised in time as t = nδt will
thus have a time dependence that can be expressed as

e−iωnδt = e−iπn
(

ξ +
√

ξ2 − 1
)2n

, (2.46)

which indicate an infinite growth of the propagating fields. Thus, the CFL condition must
indeed be obeyed. In fact, one would usually choose a time-step that is 0.99 times that of the
maximum in eq. (2.43).

2.2.2 Boundary Conditions

So far, the fields inside the computational domain are simulated by the update equations of
the Yee-algorithm. However, at the boundaries of the computational domain, the fields cannot
simply be updated based on adjacent field components. Instead, they must be separately handled
using knowledge of said boundary. Three different boundary conditions are utilised for the
modelling in this project: PEC, absorbing, and periodic boundary conditions.

A perfect electric conductor (PEC) boundary requires the electric field components tangential
to the boundary to be zero on the boundary. This results in a perfect reflection of the wave
incident on the boundary. Implementation of this is to simply have the electric field at the
boundary set to zero initially and not to update the electric field at the boundary during the
simulation.

A periodic boundary requires that the fields at the boundary are identical to the fields at the
opposite boundary. As such, in principle, a wave that is incident on the boundary will continue
from the opposite boundary. Implementation of a periodic boundary condition is to update the
field at one boundary using the field components at the opposite boundary.

Numerous methods have been developed for absorbing boundary conditions. Most notable
are the Engquist-Majda absorbing boundary condition [13] and the perfectly matched layer
[14]. The Engquist-Majda absorbing boundary condition was originally developed for acoustic
waves, but it was later adapted to the FDTD method by G. Mur [15]. Several modifications
and improvements have since been developed [16, 17, 18, 19]. While, for certain problems,
these boundary conditions have sufficiently low reflection errors, for most scattering problems,
the boundary conditions must be extensively extended to avoid evanescent fields and grazing
angle incidence to overcome their limitations. However, in 1994, J. Berenger [14] pioneered the
perfectly matched layer (PML), which overcame several of the yet to be solved limitations of
absorbing boundary conditions, e.g. it absorbs both propagating and evanescent waves, and it
can be used in complex media such as anisotropic or lossy media.

2.3 Periodic Boundary Condition

This section will focus on the periodic boundary condition, and it is based on chapter two of
Scattering Analysis of Periodic Structures Using Finite-Difference Time-Domain Method by K.
ElMahgoub et al. [20].

10
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Consider the situation illustrated in fig. 2.2. The periodic boundary condition shall be enforced
at the boundaries of the staggered grid, i = 1 and i = Nx. The update equations for Ey

and Ez at i = 1 requires Hz and Hy at i = 1/2. Even though this is outside the computational
domain, the periodic boundary condition provides the necessary information. The computational
domain, which is considered to encapsulate a single period of the simulated periodic structure, is
artificially extended at i = 1, i.e. Hz and Hy at i = 1/2 are known, but not computed. From the
periodicity, it is required that Ey and Ez at i = 1 is equal to Ey and Ez at i = Nz, respectively,
and it immediately follows that Hz and Hy at i = 1/2 must be equal to Hz and Hy at i = Nx−1/2,
respectively.

Figure 2.2: Illustration of the implementation of a periodic boundary condition along x. The compu-
tational domain is artificially extended by copying the magnetic field components at i = Nx − 1/2 and
inserting them at i = 1/2. The electric field components at i = 1 are then updated and copied to replace
the electric field components at i = Nx.

By also enforcing the periodic boundary condition at j = 1 and j = Ny, the update equations
become

Ex

∣∣n+1/2

i+1/2,1,k
= Ex

∣∣n−1/2

i+1/2,1,k
+ δt

ϵ
∣∣
i+1/2,1,k

Hz

∣∣n
i+1/2,1+1/2,k

− Hz

∣∣n
i+1/2,Ny ,k

δy

−
Hy

∣∣n
i+1/2,1,k+1/2

− Hy

∣∣n
i+1/2,1,k−1/2

δz

 ,

(2.47)

Ey

∣∣n+1/2

1,j+1/2,k
= Ey

∣∣n−1/2

1,j+1/2,k
+ δt

ϵ
∣∣
1,j+1/2,k

Hx

∣∣n
1,j+1/2,k+1/2

− Hx

∣∣n
1,j+1/2,k−1/2

δz

−
Hz

∣∣n
1+1/2,j+1/2,k

− Hz

∣∣n
Nx,j+1/2,k

δx

 ,

(2.48)
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Ez

∣∣n+1/2

i,1,k+1/2
= Ez

∣∣n−1/2

i,1,k+1/2
+ δt

ϵ
∣∣
i,1,k+1/2

Hy

∣∣n
i+1/2,1,k+1/2

− Hy

∣∣n
i−1/2,1,k+1/2

δx

−
Hx

∣∣n
i,1+1/2,k+1/2

− Hx

∣∣n
i,Ny ,k+1/2

δy

 ,

(2.49)

Ez

∣∣n+1/2

1,j,k+1/2
= Ez

∣∣n−1/2

1,j,k+1/2
+ δt

ϵ
∣∣
1,j,k+1/2

Hy

∣∣n
1+1/2,j,k+1/2

− Hy

∣∣n
Nx,j,k+1/2

δx

−
Hx

∣∣n
1,j+1/2,k+1/2

− Hx

∣∣n
1,j−1/2,k+1/2

δy

 ,

(2.50)

Ez

∣∣n+1/2

1,1,k+1/2
= Ez

∣∣n−1/2

1,1,k+1/2
+ δt

ϵ
∣∣
1,1,k+1/2

Hy

∣∣n
1+1/2,1,k+1/2

− Hy

∣∣n
Nx,1,k+1/2

δx

−
Hx

∣∣n
1,1+1/2,k+1/2

− Hx

∣∣n
1,Ny ,k+1/2

δy

 ,

(2.51)

Ex

∣∣n+1/2

i+1/2,Ny ,k
= Ex

∣∣n+1/2

i+1/2,1,k
, (2.52)

Ey

∣∣n+1/2

Nx,j+1/2,k
= Ey

∣∣n+1/2

1,j+1/2,k
, (2.53)

Ez

∣∣n+1/2

Ny ,j,k+1/2
= Ez

∣∣n+1/2

1,j,k+1/2
, (2.54)

Ez

∣∣n+1/2

i,Nx,k+1/2
= Ez

∣∣n+1/2

i,1,k+1/2
, (2.55)

Ez

∣∣n+1/2

1,Ny ,k+1/2
= Ez

∣∣n+1/2

Nx,1,k+1/2
= Ez

∣∣n+1/2

Nx,Ny ,k+1/2
= Ez

∣∣n+1/2

1,1,k+1/2
. (2.56)

Since only fields at normal incidence on the structure is of interest in this project, these up-
date equations at the periodic boundaries are adequate. However, if the incident angle on the
structure is of interest, a good method for implementing the periodic boundary condition is the
so-called constant horizontal wave number approach [21].

2.4 Perfectly Matched Layer

In 1994, J. Berenger [14] first developed the PML by considering a splitting of the field com-
ponents into two subcomponents, e.g. Hx = Hxy + Hxz, and having the PML be a lossy
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medium with carefully selected electric and magnetic conductivities to decay outgoing radia-
tion. Shortly after, W. Chew and W. Weedon [22] developed a form of the PML based on a
coordinate stretching approach where the coordinates of the differential operators are stretched,
e.g. ∇e = x̂e−1

x ∂/∂x + ŷe−1
y ∂/∂y + ẑe−1

z ∂/∂z. Both of these approaches of constructing a
PML requires significant modifications to Maxwell’s equations. The following year, Z. Sacks et
al. [23] developed an approach for deriving the PML based on anisotropic material properties
such that no splitting of the field components is required. This approach does not increase the
reflection error [24], and it simplifies the implementation of the PML significantly as it does
not require modifications to Maxwell’s equations; making it the preferable option compared to
the split-field approach. Then, in 1996, M. Kuzuoglu and R. Mittra [25] examined the consti-
tutive parameters of the PML, i.e. conductivities, permittivity, and permeability, and derived
a strictly causal form of the PML that is now known as the complex-frequency shifted (CFS)
PML. The CFS-PML has since been broadly regarded as the superior of existing PML-forms
[26]. Several implementations of this form have since had success, e.g. the convolutional PML
[27] and the auxiliary differential equation (ADE) PML [28]. The latter of which will is used for
the numerical modelling in this project.

2.4.1 The Complex-Frequency Shifted Perfectly Matched Layer

The first step is to consider the coordinate stretching approach by W. Chew and W. Weedon
[22], in which the source free Maxwell’s equations are modified as

∇e × E = −µ
∂H
∂t

, (2.57)

∇h × H = ϵ
∂E
∂t

, (2.58)

∇e · ϵE = 0, (2.59)
∇h · µH = 0, (2.60)

with

∇e = x̂ 1
ex

∂

∂x
+ ŷ 1

ey

∂

∂y
+ ẑ 1

ez

∂

∂z
, (2.61)

∇h = x̂ 1
hx

∂

∂x
+ ŷ 1

hy

∂

∂y
+ ẑ 1

hz

∂

∂z
, (2.62)

where eν and hν for ν ∈ {x, y, z} are the coordinate-stretching variables. It turns out that
for a perfectly matched interface, i.e. for no reflection error, it is required that eν = hν = sν

for ν ∈ {x, y, z} and that the coordinate-stretching variables associated with the directions
tangential to the interface are equal, e.g. for an interface in the (x, y)-plane, a perfectly matched
interface would require that eν = hν = sν for ν ∈ {x, y, z} and that sx = sy. [22]

With this considered, x-projection of the stretched coordinate modified Maxwell’s equations,
eqs. (2.57) and (2.58), in the frequency domain may be expressed as

iωµH̃x = 1
sy

∂Ẽz

∂y
− 1

sz

∂Ẽy

∂z
, (2.63)

−iωϵẼx = 1
sy

∂H̃z

∂y
− 1

sz

∂H̃y

∂z
, (2.64)
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where tilde represents that it is in the frequency domain. The stretched-coordinate variables are
chosen in accordance with the CFS-PML parameters as

sν = κν + σν

aν + iωϵ0
, for ν = x, y, z, (2.65)

where aν , κν , and σν are positive real, and they may either be a one-dimensional function or a
constant. Auxiliary variables, Bν for ν ∈ {x, y, z}, shall now be introduced by

1
sν

= 1
κν

− 1
Bν

, for ν = x, y, z, (2.66)

such that
Bν = κν

σν
[κν (aν + iωϵ0) + σν ] , for ν = x, y, z. (2.67)

Applying eq. (2.66) to the the first derivative on the right hand side of eq. (2.63) gives
1
sy

∂Ẽz

∂y
= 1

κy

∂Ẽz

∂y
+ Q̃(E)

y,z , (2.68)

where the introduced auxiliary parameter, Q̃
(E)
y,z , must satisfy

Q̃(E)
y,z = − 1

By

∂Ẽz

∂y
. (2.69)

Applying eq. (2.67) to eq. (2.69) gives

iωϵ0κyQ̃(E)
y,z + (κyay + σy) Q̃(E)

y,z = −σy

κy

∂Ẽz

∂y
. (2.70)

Transforming this into the time domain finally gives the auxiliary differential equation as

−ϵ0κy
∂Q

(E)
y,z

∂t
+ (κyay + σy) Q(E)

y,z = −σy

κy

∂Ez

∂y
. (2.71)

As such, eqs. (2.63) and (2.64) can, respectively, be expressed in the time domain as

− ∂

∂t
µHx = 1

κy

∂Ez

∂y
− 1

κz

∂Ey

∂z
+ Q(E)

y,z + Q(E)
z,y , (2.72)

∂

∂t
ϵEx = 1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ Q(H)

y,z + Q(H)
z,y . (2.73)

By following the same approach for the y- and z-projections of the stretched coordinate modified
source free Maxwell’s equations, the Maxwell’s equations can be expressed as

− ∂

∂t
µH = ∇κ × E + Q(E), (2.74)

∂

∂t
ϵE = ∇κ × H + Q(H), (2.75)

where

∇κ = x̂ 1
κx

∂

∂x
+ ŷ 1

κy

∂

∂y
+ ẑ 1

κz

∂

∂z
, (2.76)

and Q(E) must satisfy the auxiliary differential equation given by

κνϵ0
∂Q(E)

∂t
+ (κνaν + σν) Q(E) = −σν

κν

∂

∂ν
(ν̂ × E) , for ν = x, y, z, (2.77)

and similarly for Q(H).
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CFS-PML in Finite-Difference Time-Domain

To implement the PML, the auxiliary fields, Q(E) and Q(H), are conveniently co-located with
their respective electric and magnetic fields in both space and time in accordance with the Yee-
algorithm. The auxiliary differential equation, eq. (2.77), may be solved at each time-step as a
unit-step response solution. Consider the scalar equation for the auxiliary variable in eq. (2.71):
It may be considered a first-order differential equation for Q

(E)
y,z that is driven by the forcing

function ∂Ez/∂y, which may be sufficiently approximated as a piece-wise constant function. The
solution is then on the form

Q(E)
y,z

∣∣∣n+1/2

i,j+1/2,k+1/2
= byQ(E)

y,z

∣∣∣n−1/2

i,j+1/2,k+1/2
− cy

∂Ez

∂y

∣∣∣∣n+1/2

i,j,k+1/2

, (2.78)

where

by = e− δt
τ , (2.79)

cy = σy

κy (κyay + σy) (1 − by) , (2.80)

and

τ = κyϵ0
κyay + σy

. (2.81)

By applying the finite-difference approximation to the partial derivative of Ez, the auxiliary
parameter may finally be expressed as

Q(E)
y,z

∣∣∣n+1/2

i,j+1/2,k+1/2
= byQ(E)

y,z

∣∣∣n−1/2

i,j+1/2,k+1/2
− cy

δy

(
Ez

∣∣∣n+1/2

i,j+1,k+1/2
− Ez

∣∣∣n+1/2

i,j,k+1/2

)
. (2.82)

As such the update equations in the Yee-algorithm inside the PML becomes

Ex

∣∣n+1/2

i+1/2,j,k
= Ex

∣∣n−1/2

i+1/2,j,k
+ δt

ϵ
∣∣
i+1/2,j,k

Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i+1/2,j−1/2,k

κyδy

−
Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i+1/2,j,k−1/2

κzδz


+ Q(H)

y,z

∣∣∣n
i+1/2,j,k

+ Q(H)
z,y

∣∣∣n
i+1/2,j,k

,

(2.83)

Ey

∣∣n+1/2

i,j+1/2,k
= Ey

∣∣n−1/2

i,j+1/2,k
+ δt

ϵ
∣∣
i,j+1/2,k

Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j+1/2,k−1/2

κzδz

−
Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i−1/2,j+1/2,k

κxδx


+ Q(H)

z,x

∣∣∣n
i,j+1/2,k

+ Q(H)
x,z

∣∣∣n
i+1/2,j,k

,

(2.84)
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Ez

∣∣n+1/2

i,j,k+1/2
= Ez

∣∣n−1/2

i,j,k+1/2
+ δt

ϵ
∣∣
i,j,k+1/2

Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i−1/2,j,k+1/2

κxδx

−
Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j−1/2,k+1/2

κyδy


+ Q(H)

x,y

∣∣∣n
i,j,k+1/2

+ Q(H)
y,x

∣∣∣n
i,j,k+1/2

,

(2.85)

Hx

∣∣n+1
i,j+1/2,k+1/2

= Hx

∣∣n
i,j+1/2,k+1/2

+ δt

µ
∣∣
i,j+1/2,k+1/2

Ey

∣∣n+1/2

i,j+1/2,k+1 − Ey

∣∣n+1/2

i,j+1/2,k

κzδz

−
Ez

∣∣n+1/2

i,j+1,k+1/2
− Ez

∣∣n+1/2

i,j,k+1/2

κyδy


− Q(E)

z,y

∣∣∣n+1/2

i,j+1/2,k+1/2
− Q(E)

y,z

∣∣∣n+1/2

i,j+1/2,k+1/2
,

(2.86)

Hy

∣∣n+1
i+1/2,j,k+1/2

= Hy

∣∣n
i+1/2,j,k+1/2

+ δt

µ
∣∣
i+1/2,j,k+1/2

Ez

∣∣n+1/2

i+1,j,k+1/2
− Ez

∣∣n+1/2

i,j,k+1/2

κxδx

−
Ex

∣∣n+1/2

i+1/2,j,k+1 − Ex

∣∣n+1/2

i+1/2,j,k

κzδz


− Q(E)

x,z

∣∣∣n+1/2

i+1/2,j,k+1/2
− Q(E)

z,x

∣∣∣n+1/2

i+1/2,j,k+1/2
,

(2.87)

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ
∣∣
i+1/2,j+1/2,k

Ex

∣∣n+1/2

i+1/2,j+1,k
− Ex

∣∣n+1/2

i+1/2,j,k

κyδy

−
Ey

∣∣n+1/2

i+1,j+1/2,k
− Ey

∣∣n+1/2

i,j+1/2,k

κxδx


− Q(E)

y,x

∣∣∣n+1/2

i+1/2,j+1/2,k
− Q(E)

x,y

∣∣∣n+1/2

i+1/2,j+1/2,k
,

(2.88)
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with

Q(H)
y,z

∣∣∣n
i+1/2,j,k

= byQ(H)
y,z

∣∣∣n−1

i+1/2,j,k
− cy

δy

(
Hz

∣∣∣n
i+1/2,j+1/2,k

− Hz

∣∣∣n
i+1/2,j−1/2,k

)
, (2.89)

Q(H)
z,y

∣∣∣n
i+1/2,j,k

= bzQ(H)
z,y

∣∣∣n−1

i+1/2,j,k
− cz

δz

(
Hy

∣∣∣n
i+1/2,j,k+1/2

− Hy

∣∣∣n
i+1/2,j,k−1/2

)
, (2.90)

Q(H)
z,x

∣∣∣n
i,j+1/2,k

= bzQ(H)
z,x

∣∣∣n−1

i,j+1/2,k
− cz

δz

(
Hx

∣∣∣n
i,j+1/2,k+1/2

− Hx

∣∣∣n
i,j+1/2,k−1/2

)
, (2.91)

Q(H)
x,z

∣∣∣n
i,j+1/2,k

= bxQ(H)
x,z

∣∣∣n−1

i,j+1/2,k
− cx

δx

(
Hz

∣∣∣n
i+1/2,j+1/2,k

− Hz

∣∣∣n
i−1/2,j+1/2,k

)
, (2.92)

Q(H)
x,y

∣∣∣n
i,j,k+1/2

= bxQ(H)
x,y

∣∣∣n−1

i,j,k+1/2
− cx

δx

(
Hy

∣∣∣n
i+1/2,j,k+1/2

− Hy

∣∣∣n
i−1/2,j,k+1/2

)
, (2.93)

Q(H)
y,x

∣∣∣n
i,j,k+1/2

= byQ(H)
y,x

∣∣∣n−1

i,j,k+1/2
− cy

δy

(
Hz

∣∣∣n
i,j+1/2,k+1/2

− Hz

∣∣∣n
i,j−1/2,k+1/2

)
, (2.94)

Q(E)
z,y

∣∣∣n+1/2

i,j+1/2,k+1/2
= bzQ(E)

z,y

∣∣∣n−1/2

i,j+1/2,k+1/2
− cz

δz

(
Ey

∣∣∣n+1/2

i,j+1/2,k+1
− Ey

∣∣∣n+1/2

i,j+1/2,k

)
, (2.95)

Q(E)
y,z

∣∣∣n+1/2

i,j+1/2,k+1/2
= byQ(E)

y,z

∣∣∣n−1/2

i,j+1/2,k+1/2
− cy

δy

(
Ez

∣∣∣n+1/2

i,j+1,k+1/2
− Ez

∣∣∣n+1/2

i,j,k+1/2

)
, (2.96)

Q(E)
x,z

∣∣∣n+1/2

i+1/2,j,k+1/2
= bxQ(E)

x,z

∣∣∣n−1/2

i+1/2,j,k+1/2
− cx

δx

(
Ez

∣∣∣n+1/2

i+1,j,k+1/2
− Ez

∣∣∣n+1/2

i,j,k+1/2

)
, (2.97)

Q(E)
z,x

∣∣∣n+1/2

i+1/2,j,k+1/2
= bzQ(E)

z,x

∣∣∣n−1/2

i+1/2,j,k+1/2
− cz

δz

(
Ex

∣∣∣n+1/2

i+1/2,j,k+1
− Ex

∣∣∣n+1/2

i+1/2,j,k

)
, (2.98)

Q(E)
y,x

∣∣∣n+1/2

i+1/2,j+1/2,k
= byQ(E)

y,x

∣∣∣n−1/2

i+1/2,j+1/2,k
− cy

δy

(
Ex

∣∣∣n+1/2

i+1/2,j+1,k
− Ex

∣∣∣n+1/2

i+1/2,j,k

)
, (2.99)

Q(E)
x,y

∣∣∣n+1/2

i+1/2,j+1/2,k
= bxQ(E)

x,y

∣∣∣n−1/2

i+1/2,j+1/2,k
− cx

δx

(
Ey

∣∣∣n+1/2

i+1,j+1/2,k
− Ey

∣∣∣n+1/2

i,j+1/2,k

)
, (2.100)

where

bν = e− δt
τν , for ν = x, y, z, (2.101)

cν = σν

κν (κνaν + σy) (1 − bν) , for ν = x, y, z, (2.102)

and

τν = κνϵ0
κνaν + σν

, for ν = x, y, z. (2.103)

Finally, it is noted that, for the CFL-condition to hold, it is required that

0 ≤ bν ≤ 1, for ν = x, y, z, (2.104)

and

0 ≤ cν ≤ 1
κν

, for ν = x, y, z. (2.105)

With the update equations now explicitly known for the field components inside the PML, all
that is left to determine are the PML-parameters: κν , aν , and σν .
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2.4.2 PML-Parameters and Reflection Errors

To illustrate the relevance of scaling the PML-parameters, κν , aν , and σν , consider an arbitrarily
polarised plane wave entering a PML in the (x, y)-plane with the interface at z = z0. The electric
and magnetic fields must satisfy the modified Maxwell’s equations given in the frequency domain
as

iωµH̃ = ∇s × Ẽ, (2.106)
−iωϵẼ = ∇∗

s × H̃, (2.107)

where

∇s = x̂ 1
sx

∂

∂x
+ ŷ 1

sy

∂

∂y
+ ẑ 1

sz

∂

∂z
, (2.108)

∇∗
s = x̂ 1

s∗
x

∂

∂x
+ ŷ 1

s∗
y

∂

∂y
+ ẑ 1

s∗
z

∂

∂z
. (2.109)

These versions of Maxwell’s equations are equivalent to eqs. (2.74) and (2.75). General plane-
wave solutions are on the forms

Ẽ = Ẽ0eik·re−iωt, (2.110)
H̃ = H̃0eik·re−iωt. (2.111)

Substituting eqs. (2.110) and (2.111) into eqs. (2.106) and (2.107), it is found that

ωµH̃ = ks × Ẽ, (2.112)
−ωϵẼ = k∗

s × H̃, (2.113)

where

ks = x̂kx

sx
+ ŷky

sy
+ ẑkz

sz
, (2.114)

k∗
s = x̂kx

s∗
x

+ ŷky

s∗
y

+ ẑkz

s∗
z

. (2.115)

Combining eqs. (2.112) and (2.113) gives a wave vector equation as

−ω2ϵµẼ = k∗
s ×

(
ks × Ẽ

)
. (2.116)

Applying the triple vector product identity,

A × (B × C) = B(C · A) − C(A · B), (2.117)

gives

−ω2ϵµẼ = ks

(
Ẽ · k∗

s

)
− Ẽ (k∗

s · ks) . (2.118)

From eq. (2.113), it is clear that Ẽ and k∗
s are orthogonal, and thus Ẽ · k∗

s = 0, such that the
dispersion relation is found to be

ω2ϵµ = ks · k∗
s, (2.119)
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or

k0
√

ϵrµr =

√√√√ k2
x

sxs∗
x

+
k2

y

sys∗
y

+ k2
z

szs∗
z

, (2.120)

where k0 = ω
√

ϵ0µ0 .

Consider now the case depicted in fig. 2.3. The electric field of the wave incident on the PML-
interface given by

Ẽi = Ẽ0,ie
iki·re−iωt, (2.121)

and the subsequent reflected and transmitted waves are given by

Ẽr = Ẽ0,te
ikr·re−iωt, (2.122)

Ẽt = Ẽ0,reikt·re−iωt. (2.123)

From eq. (2.112), the corresponding magnetic fields are found by

H̃i = ks,i × Ẽi

ωµ0µ1
, (2.124)

H̃r = ks,r × Ẽr

ωµ0µ1
, (2.125)

H̃t = ks,t × Ẽt

ωµ0µ2
, (2.126)

where

ks,i = x̂ kx,i

sx,1
+ ŷ ky,i

sy,1
+ ẑ kz,i

sz,1
, (2.127)

ks,r = x̂kx,r

sx,1
+ ŷky,r

sy,1
+ ẑkz,r

sz,1
, (2.128)

ks,t = x̂ kx,t

sx,2
+ ŷky,t

sy,2
+ ẑkz,t

sz,2
. (2.129)

Notice that the phase matching condition at the interface requires that

kx,i = kx,r = kx,t, (2.130)
ky,i = ky,r = ky,t. (2.131)

It also follows that

kz,1 = kz,i = −kz,r, (2.132)
kz,2 = kz,t. (2.133)

From eqs. (2.124) to (2.126) the magnetic fields in region 1 and 2 can, respectively, be found as

H̃1 = ks,i × Ẽi + ks,i × Ẽr

ωµ0µ1
, (2.134)

H̃2 = k2 × Ẽt

ωµ0µ2
. (2.135)
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Figure 2.3: Illustration of an incident wave on a PML.

The plane wave shall now be decomposed into transverse electric (TE) and transverse magnetic
(TM) waves. TE- and TM-waves will have no electric and magnetic field components in the
direction normal to the interface, respectively. Consider now a TE-wave. From the continuity
condition that requires the tangential electric field components to be continuous over an interface,
it is found that

Ẽ(TE)
0,i + Ẽ(TE)

0,r = Ẽ(TE)
0,t , for z = z0, (2.136)

for a TE-wave. Furthermore, from the phase matching condition, it can be inferred that the
incident, reflected, and transmitted fields must be oscillating in the same plane. Consequently,
they can be normalised with respect to the incident field as

Ẽ(TE)
0,i = Ẽ(TE)

0 , (2.137)

Ẽ(TE)
0,r = R(TE)Ẽ(TE)

0 , (2.138)

Ẽ(TE)
0,t = T (TE)Ẽ(TE)

0 , (2.139)

such that eq. (2.136) becomes

1 + R(TE) = T (TE), (2.140)

where R(TE) and T (TE) represent the reflection and transmission coefficients, respectively. By
also requiring no surface current on the interface, the tangential magnetic field components must
also be continuous over the interface, such that

n̂ × H̃(TE)
1 = n̂ × H̃(TE)

2 , for z = z0, (2.141)

where n̂ is the unit normal vector chosen to be pointing from region 2 into region 1. In this
particular case, n̂ = ẑ. Substituting eqs. (2.134) and (2.135) into eq. (2.141) and applying the
triple vector product identity, eq. (2.117), gives

1
µ1

k1
(
n̂ · Ẽ(TE)

i − n̂ · Ẽ(TE)
r

)
− 1

µ1

(
Ẽ(TE)

i − Ẽ(TE)
r

)
n̂ · k1

= 1
µ2

k2
(
n̂ · Ẽ(TE)

t

)
− 1

µ2
Ẽ(TE)

t (n̂ · k2) , for z = z0. (2.142)

Substituting eqs. (2.121) to (2.123) with eqs. (2.137) to (2.139) into eq. (2.142) gives
kz,1

µ1sz,1

(
eikz,1z0 − R(TE)e−ikz,1z0

)
= kz,2

µ2sz,2
T (TE)eikz,2z0 , (2.143)
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where it has been used that n̂ · Ẽ0 = 0. Since the choice of z0 should be inconsequential to the
reflection and transmission at the interface, it must hold that

kz,1
µ1sz,1

(
1 − R(TE)

)
= kz,2

µ2sz,2
T (TE). (2.144)

Now, eqs. (2.140) and (2.144) constitute a system of two equations with two unknowns, R(TE)

and T (TE), which may be solved to find that

R(TE) = µ2sz,2kz,1 − µ1sz,1kz,2
µ2sz,2kz,1 + µ1sz,1kz,2

, (2.145)

T (TE) = 2µ2sz,2kz,1
µ1sz,1kz,2 + µ2sz,2kz,1

. (2.146)

Following a similar procedure for the TM-component results in

R(TM) =
ϵ2s∗

z,2kz,1 − ϵ1s∗
z,1kz,2

ϵ2s∗
z,2kz,1 + ϵ1s∗

z,1kz,2
, (2.147)

T (TM) =
2ϵ2s∗

z,2kz,1

ϵ1s∗
z,1kz,2 + ϵ2s∗

z,2kz,1
. (2.148)

The wave vector components in each region may be expressed from the dispersion relation,
eq. (2.119), in terms of the incident and transmitted angles as

kx,1 =
√

sx,1s∗
x,1 k0

√
ϵ1µ1 sin θ1 cos ϕ1, (2.149)

ky,1 =
√

sy,1s∗
y,1 k0

√
ϵ1µ1 sin θ1 sin ϕ1, (2.150)

kz,1 =
√

sz,1s∗
z,1 k0

√
ϵ1µ1 cos θ1, (2.151)

kx,2 =
√

sx,2s∗
x,2 k0

√
ϵ2µ2 sin θ2 cos ϕ2, (2.152)

ky,2 =
√

sy,2s∗
y,2 k0

√
ϵ2µ2 sin θ2 sin ϕ2, (2.153)

kz,2 =
√

sz,2s∗
z,2 k0

√
ϵ2µ2 cos θ2. (2.154)

The phase matching condition, i.e. kx,1 = kx,2 and ky,1 = ky,2, requires that√
sx,1s∗

x,1 k0
√

ϵ1µ1 sin θ1 cos ϕ1 =
√

sx,2s∗
x,2 k0

√
ϵ2µ2 sin θ2 cos ϕ2, (2.155)√

sy,1s∗
y,1 k0

√
ϵ1µ1 sin θ1 sin ϕ1 =

√
sy,2s∗

y,2 k0
√

ϵ2µ2 sin θ2 sin ϕ2. (2.156)

By requiring the media of regions 1 and 2 to be perfectly matched, i.e. ϵ1 = ϵ2 and µ1 = µ2, as
well as requiring that sx,1 = sx,2 and sy,1 = sy,2, then the incident and transmitted angles must
be equal, i.e. θ1 = θ2 and ϕ1 = ϕ2. The reflection coefficients for TE- and TM-waves becomes

R(TE) =
1 −

√
sz,1s∗

z,2
sz,2s∗

z,1

1 +
√

sz,1s∗
z,2

sz,2s∗
z,1

, (2.157)

R(TM) =

√
sz,1s∗

z,2
sz,2s∗

z,1
− 1√

sz,1s∗
z,2

sz,2s∗
z,1

− 1
. (2.158)
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Thus, the reflection coefficients are independent of the incident angle. Furthermore, the coef-
ficients are equal in size but opposite in sign. Therefore, it is convenient to define a reflection
error from the interface between simulation domain and PML as

Γ0 ≡
∣∣∣R(TE)

∣∣∣ =
∣∣∣R(TM)

∣∣∣ . (2.159)

Choosing that sz = s∗
z in both regions will give Γ0 = 0, such that the perfectly matched layer

interface is indeed reflectionless.

Thus, it has been shown that a propagating wave will not be reflected on the interface of a
perfectly matched layer. However, since the PML is of finite thickness, the field will enter the
PML, propagate to, and be reflected on, the PEC boundary of the computational domain, and
finally propagate and reenter the simulation domain. Since the media are perfectly matched,
the transmission out of and into the PML will be complete, and for a PEC, the reflection will be
complete. As such, it is easily shown that the reflection coefficient for the entire PML is given
by

R(θ) = ±e−2isz,2ω
√

ϵµ d cos θ, (2.160)

where d is the thickness of the PML. The positive (+) solution is for TE-waves, and the negative
(−) solution is for TM-waves. The reflection error over the entire PML, Γ(θ) may thus be given
by the magnitude of the coefficients as

Γ(θ) = |R(θ)|. (2.161)

It is clear that, for a propagating wave to be attenuated in the PML, the stretched coordinate
variable, sz,2 must be either complex or imaginary. Furthermore, increasing the PML thickness
will decrease the reflection, and normal incidence will have the lowest reflection, while grazing
incidence will result in total reflection.

Consider now a wave with a complex wave number entering a PML. The complex wave number,
β, is on the form

βz = iαz + kz, (2.162)

such that the propagation term of the wave is on the form

eiβzz = eikzze−αzz, for z < z0. (2.163)

By assuming that sz,1 = 1, and choosing that sz = sz,2, the propagation term inside the PML
will then be on the form

eiβzz = eiszkzze−szαzz, for z > z0, (2.164)

where it has been used that the wave number inside the PML is given as the the wave number
of the wave entering the PML times the ratio of the respective stretched coordinate variable,
i.e. kz,2 = szkz,1. Substituting the stretched coordinate variable with that of the CFS-PML,
eq. (2.65), gives the propagation term as

eiβzz = eiκzkzze−κzαzze
i σz

az+iωϵ0
kzz

e
− σz

az+iωϵ0
αzz

, for z > z0. (2.165)
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From the above propagation term, it can be concluded that, if ω ≫ az/ϵ0, then the propagating
wave will not attenuate, and if ω ≪ az/ϵ0, then the attenuation of the evanescent wave might
become too high for the wave to be properly sampled and cause a reflection. As such, az should
be chosen with the simulated frequencies in mind.

While a perfectly matched layer is indeed theoretically reflectionless, numerical reflection arises
from the staggered grid of the FDTD method. This is a phenomenon caused by the spatial
spreading of the Electric and magnetic field components. At the interface between the simulation
domain and the PML, only one of the fields are being calculated, and therefore only one of the
stretched coordinate variables of the PML is being incorporated in the calculation of the fields.
[29]

Assuming the interface lies at the electric field sampling points, the reflection error from the
interface, eq. (2.159), becomes

Γ0 =
∣∣∣∣∣1 − √

sz,2

1 − √
sz,2

∣∣∣∣∣ , for z = z0, (2.166)

where it has been used that sz,1 = s∗
z,1 = s∗

z,2 = 1 for z = z0. Inserting the CFS-PML parameter,
the reflection error becomes

Γ0 =

∣∣∣∣∣∣
1 −

√
κz + σz

az+iωϵ0

1 +
√

κz + σz
az+iωϵ0

∣∣∣∣∣∣ , for z = z0. (2.167)

From eq. (2.165), it can be inferred that κz, σz, and az should all be nonzero and positive to
ensure a forward-propagating wave as well as to ensure that the evanescent terms do not become
exponentially increasing. As such, to achieve a low reflection error, the immediate idea would
be to choose κz = 1 and ω ≫ az/ϵ0, however, as mentioned previously, the latter choice would
result in the propagating wave to not be attenuated in the PML. To combat this issue, the
constitutive parameters may be scaled polynomially as one-dimensional functions as [30]

κz(z) =

1 +
(
κ

(max)
z − 1

) (
|z−z0|

d

)m
, z0 ≤ z ≤ z0 + d,

1, else,
(2.168)

σz(z) =

σ
(max)
z

(
|z−z0|

d

)m
, z0 ≤ z ≤ z0 + d,

0, else,
(2.169)

az(z) =

a
(max)
z

(
|d+z0−z|

d

)ma

, z0 ≤ z ≤ z0 + d,

0, else.
(2.170)

Thus, κz and σz are m’th polynomials going from unity and zero to κ
(max)
z and σ

(max)
z , respec-

tively. In contrast, az is an ma’th polynomial going from a
(max)
z to zero. This is important, as

az must be small to make sure low-frequency propagating waves are attenuated in the PML,
however, for a low reflection error at the interface, az must be large.

This scaling of the constitutive parameters, of course, changes how a wave propagates in the
PML and therefore also the reflection error. To examine this, assume that the PML is split into
N layers, each with constant constitutive parameters, such that for the k’th layer of the PML,
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the constitutive parameters are given by
κz

∣∣
k

= κz(zk), (2.171)
σz

∣∣
k

= σz(zk), (2.172)
az

∣∣
k

= az(zk), (2.173)
where zk is in the middle of the k’th layer. By assuming the interface reflection errors caused by
the staggered grid are negligible, the reflection coefficients over the entire PML may be found
similarly to eq. (2.160) as

R(θ) = ± exp
[
−2iω

√
ϵµ δz cos θ

N∑
k=1

κz

∣∣
k

+
σz

∣∣
k

az

∣∣
k

+ iωϵ0

]
. (2.174)

Separating complex and real exponentials gives

R(θ) = ± exp

−2iω
√

ϵµ cos θδz
N∑

k=1

κz

∣∣
k

+
σz

∣∣
k
az

∣∣
k(

az

∣∣
k

)2
+ ω2ϵ2

0




× exp

−2ω3ϵ0
√

ϵµ δz cos θ
N∑

k=1

σz

∣∣
k(

az

∣∣
k

)2
+ ω2ϵ2

0

,

(2.175)

the magnitude of which is given by the latter exponential as

Γ(θ) = exp

−2ω2ϵ0
√

ϵµ δz cos θ
N∑

k=1

σz

∣∣
k(

az

∣∣
k

)2
+ ω2ϵ2

0

, (2.176)

which is the reflection error over the entire PML. While numerical reflection will indeed occur
at each interface between the different PML-sections, these may be considered insignificant [30].

The choice of parameters should be made with the condition, ω ≪ az/ϵ0, in mind, while also
making sure that the fields are properly sampled. However, it has been empirically found that
the optimal σ

(max)
z is given by [30]

σ(opt)
z = 0.8(m + 1)

η0δz
√

ϵeffµeff
, (2.177)

where η0 is the vacuum impedance given by

η0 =
√

µ0
ϵ0

, (2.178)

and ϵeff and µeff are the effective relative permittivity and permeability given by

ϵeff = 1
VPML

∫
VPML

ϵr(x, y, z)d3r, (2.179)

µeff = 1
VPML

∫
VPML

µr(x, y, z)d3r, (2.180)

where VPML is the volume of the PML. The effective relative permittivity and permeability are
in other words given by the average permittivity and permeability, respectively, of the PML.
Finally, it is noted that the polynomial scaling, m, is often found to be optimal in the range
3 ≤ m ≤ 4. [30] As a final note: While this section has focused on a single PML in the
(x, y)-plane, all principles and equations are directly transferable to PMLs in the (x, z)- and
(y, z)-planes.
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2.5 Conforming to Curved Metallic Surfaces

The simplest way to model a curved conducting surface in the FDTD is to use the staircase
method, in which the conducting structure is conformed to the grid, such that the surface lies
directly on the staggered grid points. However, this of course means that the structure is not
accurately portrayed in the simulation and errors as well as spurious solutions may occur [31].
The alternative is to conform the grid to the structure instead. One such approach is the so-called
contour path method [32, 33]. The contour path method conforms the contours of Faraday’s
and Ampére’s laws, i.e. the path integrals of the integral forms of the Maxwell’s equations, to
the surface, and subsequently changes the update equations accordingly. A simpler method is
the so-called conformal method [34, 35]. This method has been shown to have better stability
when compared to the contour path method [36]. As such, the conformal method will be used
in this project, and the rest of this section will be based on [37].

Consider a staggered grid in which a curved PEC surface is placed, as illustrated in fig. 2.4.

Figure 2.4: Illustration of a grid cell the the curved surface of a PEC.

Faraday’s law states that ∮
∂S

Edl = −
∫

S

∂µH
∂t

dA, (2.181)

where ∂S is the path enclosing the surface S, l is parallel to the surface, and A is normal to the
surface. In the standard Yee-algorithm, the integral on the left-hand side follows a path along
the rectangular grid, and the integral on the right-hand side is over the entire area enclosed
by said path. In the conformal method, however, the path is shortened by following along the
surface rather than going into the PEC, as illustrated in fig. 2.5.

It is assumed that the electric field is constant along each line in the path, i.e. Ex is constant
along the path from (i, j, k) to (i + 1, j, k) and also constant along the path from (i, j + 1, k) to
(i + 1, j + 1, k), and Ey is constant along the path from (i, j, k) to (i + 1, j, k). Furthermore, it
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Figure 2.5: Illustration of how the grid is conformed to a curved PEC surface. ∂S is the path of the
traditional Yee-grid, and ∂SC is the path of the conformed grid.

is assumed that the magnetic field is constant in the enclosed area outside the PEC. Faraday’s
law then becomes

−∂µHz

∂t

∣∣∣∣
i+1/2,j+1/2,k

Az

∣∣
i+1/2,j+1/2,k

=Ex

∣∣
i+1/2,j,k

lx
∣∣
i+1/2,j,k

+ Ey

∣∣
i,j+1/2,k

ly
∣∣
i,j+1/2,k

− Ex

∣∣
i+1/2,j+1,k

lx
∣∣
i+1/2,j+1,k

− Ey

∣∣
i+1,j+1/2,k

ly
∣∣
i+1,j+1/2,k

.

(2.182)

Note that the integral along the PEC surface is zero as an electric field tangential to a PEC-
surface is zero at the interface. By applying the central difference approximation to the time-
derivative, the update equation for Hz becomes

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ
∣∣
i+1/2,j+1/2,k

Az

∣∣
i+1/2,j+1/2,k

×
(
Ex

∣∣n+1/2

i+1/2,j+1,k
lx
∣∣
i+1/2,j+1,k

− Ex

∣∣n+1/2

i+1/2,j,k
lx
∣∣
i+1/2,j,k

− Ey

∣∣n+1/2

i+1,j+1/2,k
ly
∣∣
i+1,j+1/2,k

− Ey

∣∣n+1/2

i,j+1/2,k
ly
∣∣
i,j+1/2,k

)
.

(2.183)

It is convenient to normalise the lengths and areas as

ℓx = lx
δx

, (2.184)

ℓy = ly
δy

, (2.185)

ℓz = lz
δz

, (2.186)

Sx = Ax

δyδz
, (2.187)

Sy = Ay

δxδz
, (2.188)

Sz = Az

δxδy
, (2.189)
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such that eq. (2.183) becomes

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ
∣∣
i+1/2,j+1/2,k

Sz

∣∣
i+1/2,j+1/2,k

×

Ex

∣∣n+1/2

i+1/2,j+1,k
ℓx

∣∣
i+1/2,j+1,k

− Ex

∣∣n+1/2

i+1/2,j,k
ℓx

∣∣
i+1/2,j,k

δy

−
Ey

∣∣n+1/2

i+1,j+1/2,k
ℓy

∣∣
i+1,j+1/2,k

− Ey

∣∣n+1/2

i,j+1/2,k
ℓy

∣∣
i,j+1/2,k

δx

 .

(2.190)

By scaling the electric field as

Ĕx = Exℓx, (2.191)
Ĕy = Eyℓy, (2.192)
Ĕz = Ezℓz, (2.193)

eq. (2.190) becomes

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ
∣∣
i+1/2,j+1/2,k

Sz

∣∣
i+1/2,j+1/2,k

Ĕx

∣∣n+1/2

i+1/2,j+1,k
− Ĕx

∣∣n+1/2

i+1/2,j,k

δy

−
Ĕy

∣∣n+1/2

i+1,j+1/2,k
− Ĕy

∣∣n+1/2

i,j+1/2,k

δx

 .

(2.194)

Similarly, update equations can be found for Hx and Hy. The scaling of the electric fields also
causes a change in the electric field update equation, e.g. Ex becomes

Ĕx

∣∣n+1/2

i+1/2,j,k
= Ĕx

∣∣n−1/2

i+1/2,j,k
+ δtℓx

ϵ
∣∣
i+1/2,j,k

Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i+1/2,j−1/2,k

δy

−
Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i+1/2,j,k−1/2

δz

 .

(2.195)

Finally, the permittivities and permeabilities are also scaled as

ϵ̆x = ϵ

ℓx
, (2.196)

ϵ̆y = ϵ

ℓy
, (2.197)

ϵ̆z = ϵ

ℓz
, (2.198)

µ̆x = µSx, (2.199)
µ̆y = µSy, (2.200)
µ̆z = µSz, (2.201)
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such that the field update equations become

Ĕx

∣∣n+1/2

i+1/2,j,k
= Ĕx

∣∣n−1/2

i+1/2,j,k
+ δt

ϵ̆
∣∣
i+1/2,j,k

Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i+1/2,j−1/2,k

δy

−
Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i+1/2,j,k−1/2

δz

 ,

(2.202)

Ĕy

∣∣n+1/2

i,j+1/2,k
= Ĕy

∣∣n−1/2

i,j+1/2,k
+ δt

ϵ̆
∣∣
i,j+1/2,k

Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j+1/2,k−1/2

δz

−
Hz

∣∣n
i+1/2,j+1/2,k

− Hz

∣∣n
i−1/2,j+1/2,k

δx

 ,

(2.203)

Ĕz

∣∣n+1/2

i,j,k+1/2
= Ĕz

∣∣n−1/2

i,j,k+1/2
+ δt

ϵ̆
∣∣
i,j,k+1/2

Hy

∣∣n
i+1/2,j,k+1/2

− Hy

∣∣n
i−1/2,j,k+1/2

δx

−
Hx

∣∣n
i,j+1/2,k+1/2

− Hx

∣∣n
i,j−1/2,k+1/2

δy

 ,

(2.204)

Hx

∣∣n+1
i,j+1/2,k+1/2

= Hx

∣∣n
i,j+1/2,k+1/2

+ δt

µ̆
∣∣
i,j+1/2,k+1/2

Ĕy

∣∣n+1/2

i,j+1/2,k+1 − Ĕy

∣∣n+1/2

i,j+1/2,k

δz

−
Ĕz

∣∣n+1/2

i,j+1,k+1/2
− Ĕz

∣∣n+1/2

i,j,k+1/2

δy

 ,

(2.205)

Hy

∣∣n+1
i+1/2,j,k+1/2

= Hy

∣∣n
i+1/2,j,k+1/2

+ δt

µ̆
∣∣
i+1/2,j,k+1/2

Ĕz

∣∣n+1/2

i+1,j,k+1/2
− Ĕz

∣∣n+1/2

i,j,k+1/2

δx

−
Ĕx

∣∣n+1/2

i+1/2,j,k+1 − Ĕx

∣∣n+1/2

i+1/2,j,k

δz

 ,

(2.206)

Hz

∣∣n+1
i+1/2,j+1/2,k

= Hz

∣∣n
i+1/2,j+1/2,k

+ δt

µ̆
∣∣
i+1/2,j+1/2,k

Ĕx

∣∣n+1/2

i+1/2,j+1,k
− Ĕx

∣∣n+1/2

i+1/2,j,k

δy

−
Ĕy

∣∣n+1/2

i+1,j+1/2,k
− Ĕy

∣∣n+1/2

i,j+1/2,k

δx

 .

(2.207)

Thus, to implement the conformal FDTD method, only the material parameters need to be
scaled to take the PEC surface into account during time-stepping. However, this scaling of
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parameters has implications on stability so that the CFL condition becomes

δt ≤ 1

c̆max

√
1

δx2 + 1
δy2 + 1

δz2

, (2.208)

where

c̆max = max
( 1√

ϵ̆µ̆

)
. (2.209)

2.6 Source Excitation and Field Detection

Several excitation schemes exist for the FDTD method. It is common to excite the electric field
by injecting a current source or a voltage source. For scattering problems where a plane-wave
excitation is necessary, one would typically choose to utilise the so-called total-field/scattered-
field formulation. [37]

2.6.1 Plane-Wave Injector

In this project, a plane-wave is injected into the simulation using the same injection scheme used
in the total-field/scattered-field formulation. In this formulation, each field is decomposed into
a scattered field and an incident field as [37]

Etot = Escat + Einc, (2.210)
Htot = Hscat + Hinc. (2.211)

The entire computation domain is separated into two virtual regions: The total-field region and
the scattered-field region denoted by Ωtot and Ωscat, respectively. The total fields are considered
in the total-field region, and the scattered fields are considered in the scattered-field region. In
the general total-field/scattered-field formulation, the total-field region is encapsulated by the
scattered-field region, however, in this project, the scattered-field region is of little to no interest,
and the scattered-field region is consequently chosen to overlap the PML-region on the side from
which the plane-wave is injected. This is illustrated in fig. 2.6.

Figure 2.6: Illustration of the total-field/scattered-field setup. Ωtot and Ωscat are the total-field and
scattered-field regions, respectively. ∂Ωtot/scat is the interface between the regions.
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The interface between the total field and the scattered field, ∂Ωtot/scat, is assumed to lie directly
on k = ksrc, and field components that lie on this interface are assumed to belong to the total-
field region. Consider now Ex at k = ksrc and Hy at k = ksrc + 1/2 as illustrated in fig. 2.7.

Figure 2.7: Illustration of field component placements near the total-field/scattered-field interface,
∂Ωtot/scat.

Following the procedure for deriving the field update equations in the Yee-algorithm gives

Etot
x

∣∣n+1/2

i+1/2,j,ksrc = Etot
x

∣∣n−1/2

i+1/2,j,ksrc + δt

ϵ
∣∣
i+1/2,j,ksrc

Htot
z

∣∣n
i+1/2,j+1/2,ksrc − Htot

z

∣∣n
i+1/2,j−1/2,ksrc

δy

−
Htot

y

∣∣n
i+1/2,j,ksrc+1/2

− Htot
y

∣∣n
i,j+1/2,ksrc−1/2

δz

 ,

(2.212)

and

Hscat
y

∣∣n+1
i+1/2,j,ksrc+1/2

= Hscat
y

∣∣n
i+1/2,j,ksrc+1/2

+ δt

µ
∣∣
i+1/2,j,ksrc+1/2

Escat
z

∣∣n+1/2

i+1,j,ksrc+1/2
− Escat

z

∣∣n+1/2

i,j,ksrc+1/2

δx

−
Escat

x

∣∣n+1/2

i+1/2,j,ksrc+1 − Escat
x

∣∣n+1/2

i+1/2,j,ksrc

δz

 .

(2.213)
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Recall that the total fields are considered when k ≤ ksrc, and the scattered fields are considered
when k > ksrc, such that

Htot
y

∣∣n
i+1/2,j,ksrc+1/2

= Hscat
y

∣∣n
i+1/2,j,ksrc+1/2

+ H inc
y

∣∣n
i+1/2,j,ksrc+1/2

, (2.214)

and

Escat
x

∣∣n+1/2

i+1/2,j,ksrc = Etot
x

∣∣n+1/2

i+1/2,j,ksrc − Einc
x

∣∣n+1/2

i+1/2,j,ksrc , (2.215)

which follows from eqs. (2.210) and (2.211). Substituting eqs. (2.214) and (2.215) into eqs. (2.212)
and (2.213), respectively, gives

Etot
x

∣∣n+1/2

i+1/2,j,ksrc = Etot
x

∣∣n−1/2

i+1/2,j,ksrc + δt

ϵ
∣∣
i+1/2,j,ksrc

Htot
z

∣∣n
i+1/2,j+1/2,ksrc − Htot

z

∣∣n
i+1/2,j−1/2,ksrc

δy

−
Hscat

y

∣∣n
i+1/2,j,ksrc+1/2

+ H inc
y

∣∣n
i+1/2,j,ksrc+1/2

− Htot
y

∣∣n
i+1/2,j,ksrc−1/2

δz

 ,

(2.216)

and

Hscat
y

∣∣n+1
i+1/2,j,ksrc+1/2

= Hscat
y

∣∣n
i+1/2,j,ksrc+1/2

+ δt

µ
∣∣
i+1/2,j,ksrc+1/2

Escat
z

∣∣n+1/2

i+1,j,ksrc+1/2
− Escat

z

∣∣n+1/2

i,j,ksrc+1/2

δx

−
Escat

x

∣∣n+1/2

i+1/2,j,ksrc+1 − Etot
x

∣∣n+1/2

i+1/2,j,ksrc + Einc
x

∣∣n+1/2

i+1/2,j,ksrc

δz

 .

(2.217)

By following the same procedure for Ey at k = ksrc and Hx at k = ksrc+1/2, the update equations
become

Ex

∣∣n+1/2

i+1/2,j,ksrc = Ex

∣∣n−1/2

i+1/2,j,ksrc + δt

ϵ
∣∣
i+1/2,j,ksrc

Hz

∣∣n
i+1/2,j+1/2,ksrc − Hz

∣∣n
i+1/2,j−1/2,ksrc

δy

−
Hy

∣∣n
i+1/2,j,ksrc+1/2

− Hy

∣∣n
i+1/2,j,ksrc−1/2

δz

+ δt

δzϵ
∣∣
i+1/2,j,ksrc

H inc
y

∣∣n
i+1/2,j,ksrc+1/2

,

(2.218)

Ey

∣∣n+1/2

i,j+1/2,ksrc = Ey

∣∣n−1/2

i,j+1/2,ksrc + δt

ϵ
∣∣
i,j+1/2,ksrc

Hx

∣∣n
i,j+1/2,ksrc+1/2

− Hx

∣∣n
i,j+1/2,ksrc−1/2

δz

−
Hz

∣∣n
i+1/2,j+1/2,ksrc − Hz

∣∣n
i−1/2,j+1/2,ksrc

δx

− δt

δzϵ
∣∣
i,j+1/2,ksrc

H inc
x

∣∣n
i,j+1/2,ksrc+1/2

,

(2.219)

Hx

∣∣n+1
i,j+1/2,ksrc+1/2

= Hx

∣∣n
i,j+1/2,ksrc+1/2

+ δt

µ
∣∣
i,j+1/2,ksrc+1/2

Ey

∣∣n+1/2

i,j+1/2,ksrc+1 − Ey

∣∣n+1/2

i,j+1/2,ksrc

δz

−
Ez

∣∣n+1/2

i,j+1,ksrc+1/2
− Ez

∣∣n+1/2

i,j,ksrc+1/2

δy

+ δt

δzµ
∣∣
i,j+1/2,ksrc+1/2

Einc
y

∣∣n+1/2

i,j+1/2,ksrc+1,

(2.220)
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Hy

∣∣n+1
i+1/2,j,ksrc+1/2

= Hy

∣∣n
i+1/2,j,ksrc+1/2

+ δt

µ
∣∣
i+1/2,j,ksrc+1/2

Ez

∣∣n+1/2

i+1,j,ksrc+1/2
− Ez

∣∣n+1/2

i,j,ksrc+1/2

δx

−
Ex

∣∣n+1/2

i+1/2,j,ksrc+1 − Ex

∣∣n+1/2

i+1/2,j,ksrc

δz

− δt

δzµ
∣∣
i+1/2,j,ksrc+1/2

Einc
x

∣∣n+1/2

i+1/2,j,ksrc ,

(2.221)

where it has been used that

E =
{

Etot, k ≤ ksrc,

Escat, k > ksrc,
(2.222)

H =
{

Htot, k ≤ ksrc,

Hscat, k > ksrc.
(2.223)

2.6.2 Source Signature

The plane-wave injector of the previous section describes the spatial distribution of the incident
field as a plane-wave that is constant along x and y, and that propagates along z. However,
since the FDTD method is also a temporally resolved simulation, the temporal distribution, or
time signature, of the incident field must also be determined. [37]

The most common time signature is the Gaussian pulse. However, the Blackman-Harris window
is also broadly used due to its high-frequency behaviour. Furthermore, depending on the appli-
cation, these may be modified either by using their respective derivatives or by modulating the
amplitude with a sinusoidal function. This project mainly utilises a modulated Gaussian pulse.
The Gaussian pule is given by

g(t) = e− (t−t0)2

τ2 , (2.224)

where t0 is the centre of the pulse, also called the time delay, and τ is the half-width of the
pulse. The amplitude is then modulated to give

mg(t) = sin (2πfmt)g(t), (2.225)

where fm is the modulating frequency, which determines the centre-frequency.

If a single frequency is desired to be simulated a sinusoidal steady-state source is used. However,
a sinusoidal source cannot simply be directly applied, since instantaneously turning on the
sinusoidal source would cause a slope discontinuity. This, in turn, causes the frequency spectrum
to become unbounded which cannot be accurately simulated using a discrete simulated scheme.
The problem can, however, easily be solved by slowly turning on the sinusoidal source using a
Gaussian function

sg(t) =


0, t < 0,

g(t) sin (2πfst), 0 ≤ t ≤ t0,

sin (2πfst), t0 < t,

(2.226)

where fs is the steady-state frequency.
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As mentioned above, the choice of source signature in this project is mainly the modulated
Gaussian pulse. The general goal of these simulations is to provide transmittance spectra of the
examined structures in order to determine resonance frequencies, and the examined spectrum
is limited to the terahertz regime. As such, a modulated pulse is preferred to limit the number
of low-frequency components. Another argument for this choice is made by referring back to
the PML: The interaction time of a propagating wave and the PML is inversely proportional
to the wavelength, or proportional to the frequency, i.e. a propagating wave with a lower
frequency will be less attenuated throughout the PML relative to a propagating wave with a
higher frequency. Consequently, the reflection error will be lowered by limiting the number of
low-frequency components.

2.6.3 Field Detection

This section will describe how data is extracted from the FDTD simulations performed in this
project. The first thing to consider is what information is desired. The needed information
for creating transmission spectra is the incident power on the structures and the transmitted
power through the structure. This section will go back and forth between the time-domain and
the frequency-domain, so to avoid confusion, functions are explicitly expressed in terms of their
dependence, e.g. E = E(r, t).

The time-averaged power flow, Pm, through a surface, S, is given by

Pm(ω) =
∫

S
Sm(r, ω)dA, (2.227)

where A is normal on the surface, and S is the Poynting vector given by [12]

Sm(r, ω) = 1
2Re

{
Ẽ(r, ω) × H̃∗(r, ω)

}
, (2.228)

where ∗ denotes the complex conjugate. The surface, through which the power flow is measured,
lies in the (x, y) plane. Therefore, the outgoing time-averaged power flow is given by

P out
m (ω) =

Λy∫
0

Λx∫
0

Sm(r, ω) · ẑdxdy. (2.229)

The time-harmonic electric and magnetic fields are given by the inverse Fourier transforms

Ẽ(r, ω) = 1
2π

∞∫
−∞

E(r, t)eiωtdω, (2.230)

H̃(r, ω) = 1
2π

∞∫
−∞

H(r, t)eiωtdω. (2.231)

The transmittance is found by the ratio of the outgoing power and the incident power as

T (ω) = P out
m (ω)

P inc
m (ω) , (2.232)

33



Group 5.325 Chapter 2. Numerical Model

where P inc
m is the time-averaged power flow that is incident on the structure, and P out

m is the
time-averaged power flow on the other side of the structure. While P inc

m is easily found, as the
incident fields are predetermined, P out

m would, so far, require that E and H are stored for all
time steps of the simulation so that they can be Fourier transformed post simulation. If the
transmittance through a small area was required, this would be a satisfactory method, however,
since the the transmittance through an entire period is needed, the amount of information
required to be stored becomes unmanageable. Instead, the spectral information of the fields will
be stored using a concept borrowed from the Fourier modal method.

Because the structure is periodic ad infinitum, the fields can be expanded into Bloch modes as
[12]

Ẽ(r, ω) =
∑
p,q

Ẽp,q(ω)eipGxxeiqGyye−ikz,p,q(ω)z, (2.233)

where Ẽp,q are periodic functions with the same periodicity as the structure, Gx and Gy are
given by

Gx = 2π

Λx
, Gy = 2π

Λy
, (2.234)

where Λx and Λy are the periods along x and y, respectively, and kz,p,q are the propagation
constants given by

kz,p,q(ω) =
√

ω2µϵ − (pGx)2 − (qGy)2 . (2.235)

Consider now eq. (2.233) expressed as

Ẽ(r, ω) =
∑
p,q

f̃p,q(ω)eipGxxeiqGyy, (2.236)

where

f̃p,q(ω) = Ẽp,q(ω)e−ikz,p,q(ω)z. (2.237)

Fourier transforming both of these gives

E(r, t) =
∑
p,q

fp,q(t)eipGxxeiqGyy, (2.238)

where

fp,q(t) =
∞∫

−∞

f̃p,q(ω)e−iωtdt, (2.239)

and

f̃p,q(ω) = 1
2π

∞∫
−∞

fp,q(t)eiωtdω. (2.240)
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As such, the electric field, E(r, t), is spatially described as a Fourier series with Fourier coeffi-
cients, fp,q(t). It is therefore inferable from Fourier analysis that

fp,q(t) = 1
ΛxΛy

Λy∫
0

Λx∫
0

E(r, t)e−ipGxxe−iqGyydxdy. (2.241)

From the source free Maxwell’s equations, the magnetic field is given by

H̃(r, ω) = 1
iωµ

∇ × Ẽ(r, ω). (2.242)

Substituting eq. (2.236) into eq. (2.242) gives

H̃(r, ω) = 1
ωµ

∑
p,q

(x̂pGx + ŷqGy − ẑkz,p,q(ω)) × f̃p,q(ω)eipGxxeiqGyy. (2.243)

The time-averaged Poynting vector is then found by substituting eqs. (2.236) and (2.243) into
eq. (2.228) as

Sm(r, ω) = Re
{

1
2ωµ

∑
p,q

f̃p,q(ω) ×
[(

x̂pGx + ŷqGy − ẑk∗
z,p,q(ω)

)
× f̃∗

p,q(ω)
]}

. (2.244)

Substituting eq. (2.244) into eq. (2.229) then becomes

P out
m (ω) =

Λy∫
0

Λx∫
0

−1
2ωµ

∑
p,q

∣∣∣f̃p,q(ω)
∣∣∣2 Re

{
k∗

z,p,q(ω)
}

dxdy. (2.245)

Notice how the integrand is independent of position, such that

P out
m (ω) = −ΛxΛy

2ωµ

∑
p,q

∣∣∣f̃p,q(ω)
∣∣∣2 Re

{
k∗

z,p,q(ω)
}

. (2.246)

Thus, all field components at all time steps do not need to be stored. Instead, what is needed to
be stored is f̃p,q(t) at all time steps, and only for the relevant diffraction orders, p and q. Since
evanescent waves are excluded by taking the real part of the propagation constant, the number
of relevant diffraction orders may be limited by some maximum considered frequency, fmax, of
the incident spectrum, such that

fmax <

√
(pGx)2 + (qGy)2

2π
√

ϵµ
. (2.247)

Thus, only combinations of p and q that satisfies this condition needs to be considered. Good
choices of fmax for an incident modulated Gaussian pulse include fmax = fm + FWTM and
fmax = fm + τ−1/2, where FWTM is the full width at a tenth of maximum. The latter will
contain ∼98.7% of the signal, which in some cases might be excessive.

In practice, at each time step, fp,q(t) is calculated according to eq. (2.241). Then, when the
simulation has run all time steps, f̃p,q(ω), is calculated by performing a discrete Fourier trans-
formation on fp,q(t). With this, P out

m (ω) is finally calculated according to eq. (2.246).
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3.1 Ultraviolet Direct Write Lithography

The antenna and split-ring resonator arrays were made with UV lithography. Silicon wafers of
size 1×1 cm2 were cleaned with acetone in an ultrasound bath, spin coated with MICROPOSIT™
S1813™ photoresist, and then baked for one minute at 120 ◦C. After baking, the samples were
placed in the UV direct write setup sketched in fig. 3.1. The setup uses a 633 nm HeNe laser
to align the tilt, as well as x-, y-, and z-coordinates of the sample stage, as to focus the beam
on the sample surface. This is done by comparing the beam waist of the incoming beam from
the laser and the reflected beam from the sample. The goal is to make them equal in size on
the beam blocker, as the objective lens is infinity corrected, meaning for the sample to be in
focus the returning beam must be collimated. Once the sample is in focus the mirrors and the
glass slide are removed from the beam path of the 400 nm laser. A computer controls the x-
and y-axis of the sample stage, while turning on and off the 400 nm laser, in order to manage
which areas of the sample are being exposed. The samples were developed in a MICROPOSIT™
developer for two minutes and then cleaned in Milli-Q water. A 120 nm layer of gold, with a
2 nm layer of titanium below for better adhesion, was deposited by sputtering in a Scientific
Vacuum Systems V2400. After which, lift-off was performed by letting the samples soak in
acetone for two minutes, and lastly giving them an ultrasound bath for a short time at low
intensity.

Carefully measured amounts of sucrose and glucose was deposited on the samples by first creating
aqueous solutions of the sugars. The wafers were placed on a hot plate at 50 ◦C and an amount
of the aqueous solution containing the desired mass of sucrose and/or glucose was pipetted onto
the wafer. The samples were removed from the hotplate once evaporation of the water was
complete.
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Figure 3.1: Sketch of the UV direct write setup. P: Thin film linear polariser. L1: DCX +125 mm lens.
L2: PCX +100 mm lens. Pinhole: 20 µm. M: Mirror. MO: M plan Apo 100x / NA 0.70 ∞/0 f=200
microscope lens. Bs: Glass slide.
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3.2 Terahertz Spectroscopy

A MenloSystems TeraSmart Terahertz Time-Domain Spectrometer, modified with an enclosure
to add water vapour purging capabilities, was used to measure the terahertz spectra of the
samples. The TeraSmart has a spectral range of >5 THz and a dynamic range of >90dB. A
sketch of the measurement setup can be seen in fig. 3.2.

Figure 3.2: Sketch of TeraSmart Terahertz Time-Domain Spectrometer setup, modified with an enclo-
sure around the sample to allow purging of water vapour with nitrogen.

The principle of operation for the TeraSmart is to first create a femtosecond laser pulse and
splitting it in two, with one part going to an antenna called the emitter and the other going
to an antenna called the detector. The emitter is a semiconductor structure with a low carrier
lifetime and a bias over it. When excited, the structure becomes conductive so a pulse generating
carriers will have those carriers be accelerated by the bias. This acceleration causes radiation
and because of the low carrier lifetime of the structure, the radiation emitted is in the terahertz
regime. The terahertz pulse then goes to the detector through a series of lenses and the sample
of interest. The lenses are to collect and focus the pulse first onto the sample then the detector.
The detector is similar to the emitter in that it has a dipole shape with a gap. When excited
by the femtosecond laser pulse the detector will act like a dipole and a current is induced when
the terahertz pulse from the emitter is incident. As the detector is blind when not influenced
by the laser pulse it can act as a stroboscopic sampling scheme. By controlling the relative
travel length of the laser pulse and the terahertz pulse, the detector can be used to sample the
terahertz pulse in the time-domain.

For ease of interpretation, the time-domain measurements are transformed into the frequency-
domain utilising a fast Fourier algorithm. The frequency-domain spectrum will have an oscil-
lation that is caused by an echo of the terahertz pulse from the raw time-domain data, that in
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turn is caused by the internal reflection in the silicon wafer. To avoid this oscillation a Tukey
window is used to remove the echo, while keeping the data continuous to avoid an unbounded
frequency spectrum.

The spectra achieved with the TeraSmart are constructed by averaging a number of measure-
ments in order to reduce the noise in the final spectrum. Since signal noise gets more pronounced
at higher frequencies, a higher number of measurements to average is required to depict them
accurately. A different parameter that affects the measurements is the delay interval that is
measured over. A large interval gives the best discretisation of the frequency domain. The
measurement time scales with both the number of measurements to average over, and with the
interval size. In this project, all terahertz spectra are measured with a pulse interval of 200 ps,
and the number of measurements to average depends on whether the spectra are to be used
for direct comparison or to be used for machine learning. For direct comparison, the numbers
of measurements to average are from 100 to 300, and for machine learning the number varies
between 1 and 100.
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A successful implementation of machine learning can remove the need for human supervision in
many cases of data processing. In order to teach a machine, data is necessary. The more data
available, the more accurate the resulting model, at the cost of initial computational power.
There are several machine learning methods, which can be used depending on the purpose.

The type of machine learning to use depends on the type of input data and output data. The
data can be either numerical or categorical (such as car brands or antenna shapes). This project
works with numerical input data and categorical output data, and thus classification machine
learning algorithms will be used.

The data is stored in a matrix of size M × F , where M is the number of measurements and F
is the number of features, with features being a specific variable. To accompany this, a vector
of length M with a label to classify each measurement is created, which are called classification
labels, or simply labels.

4.1 Dimensionality Reduction

The dimensionality of data refers to the number of features contained in the data, where a
feature can be anything from something generic, such as hair colour, to something specific, such
as the amplitude of a THz pulse at 42.33 ps delay.

Often, when working with numerical input data, the dimensionality can be large and therefore
computationally intensive. To overcome this complication, dimensionality reduction (DR) can
be performed. There are multiple ways to perform this. One way is to perform feature selection
on the data, where the most distinct features are kept, and the remaining features are ignored.

4.1.1 Feature Selection

Two methods of feature selection are used in this project: One using chi-square tests and one
using a minimum redundancy maximum relevance (MRMR) algorithm. The feature selection
method using chi-square tests ranks each feature based on its p-value. The chi-squared test is
a statistical hypothesis test - a null hypothesis, which assumes that two variables are indepen-
dent of each other, with the resulting p-value being the probability of the two variables being
independent.
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For ease of use, the p-value is converted into a score as − ln(p), so the smaller the p-value, the
higher the score of said feature. Due to a MATLAB limitation, − ln(p) = ∞ for p-values smaller
than 2−1074 ≈ 4.941 · 10−324, which is the smallest positive nonzero floating-point number for
double-precision floating-point values. An example plot showing the distribution of predictor
scores for a given machine learning setting can be seen in fig. 4.1. Predictor is another word
for feature, which can be used when considering the predictive properties of a feature in regard
to the classification. Once the features have been ranked, the most important features can be
selected. The number of features to select can vary depending on the circumstances. This
feature selection method is performed in MATLAB by using the fscchi2 function.

Figure 4.1: Example of ranking of predictors from the chi-square feature selection method. Scores equal
to ∞ have been changed to the largest finite score.

The second feature selection method uses the MRMR algorithm to determine the importance of
a feature. In order to best represent the classification labels, the algorithm finds a set of features
that are maximally and mutually distinguishable. To do this, the algorithm uses the pairwise
mutual information of features and the mutual information of a feature and the classification
label. [38]

Mutual information is a measure between two variables. It quantifies the amount of uncertainty
that can be removed by knowing the other variable. The mutual information, I, is defined as
[39]

I(X, Z) =
∑
i,j

P (X = xi, Z = zj) ln
(

P (X = xi, Z = zj)
P (X = xi)P (Z = zj)

)
, (4.1)

where X and Z are two random variables. I is equal to 0 if X and Z are independent, and I is
equal to the information entropy of X if X and Z are the same.
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To find an optimal set of features, S, the relevance of S with respect to label y and the redun-
dancy of S must be found. These are defined through I as [38]

VS = 1
|S|

∑
x∈S

I(x, y), (4.2)

WS = 1
|S|2

∑
x,z∈S

I(x, z), (4.3)

where VS is the relevance of S with respect to label y, WS is the redundancy of S, and |S| is the
number of features in S. To find S all 2|Ω| combinations must be considered, with Ω being the
entire feature set. Alternatively, the MRMR algorithm uses the forward addition scheme to rank
features [40], requiring just |Ω||S| computations. This is done by using the mutual information
quotient MIQ, written as [38]

MIQx = Vx

Wx
, (4.4)

where Vx is the relevance of a feature and Wx is the redundancy of a feature. Vx and Wx are
written as [38]

Vx = I(x, y), (4.5)

Wx = 1
|S|

∑
z∈S

I(x, z). (4.6)

To use the algorithm, the MATLAB function fscmrmr is used, which ranks all features in Ω
and quantifies their importance using a heuristic algorithm, which returns a score. An example
plot showing the predictor rankings for a given setting can be seen in fig. 4.2. The rank 1
feature is the feature with the largest relevance, next are the features with nonzero relevance
and zero redundancy, then features with nonzero relevance and nonzero redundancy, and lastly
the features with zero relevance in random order. [38]

4.1.2 Feature Transformation

Another type of dimensionality reduction is feature transformation, where existing features are
transformed into new arbitrary features, while lowering the overall number of features. This
is a very effective way of reducing the dimensionality. There are two sub-categories to feature
transformation: Supervised and unsupervised. In this project one of each type will be used.

Principal Component Analysis

Principal component analysis (PCA) is an unsupervised feature transformation method. Un-
supervised refers to PCA not using the classification labels of the data, even when available.
Commonly, when working with experimental data of high dimensionality, most of the dimensions
are dependent on each other. In order to greatly reduce the redundancy of the data, PCA can be
performed. PCA analyses the data and returns the so-called principal components; returning as
many as there were dimensions originally. However, only a handful of the principal components
are necessary to explain the vast majority of the variance in the data. PCA can often reduce
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Figure 4.2: Example of ranking of predictors from the MRMR feature selection method.

the dimensionality from several thousands of features to merely a single digit number of features
while still retaining over 95% of the data variance.

The principal components of a numerical data set are a set of orthogonal vectors. The principal
components are used to change the basis of the data set, where the first axis is the principal
component that explains the largest variance. The second principal component explains the
most variance when the explained part of the first principal component is ignored. This goes
on until as many principal components as original dimensions have been created. Figure 4.3
helps give a simplified understanding of this. The figure shows the plot of an example data
set, with just three features; meaning it can be plotted in its entirety in three dimensions. The
first principal component seeks out the direction with the most variance, which is along the z-
axis. For the second principal component, the z-axis is then removed, ensuring that any chosen
principal component will be orthogonal to the first one, and as seen in fig. 4.3b, the largest
remaining variance is in y-direction, so the second principal component will be along the y-axis.

Mathematically, PCA finds the principal components by performing eigendecomposition on the
covariance matrix of the data [41]. This is done in MATLAB with the function eig. The
returned eigenvectors are sorted by their eigenvalues, as their eigenvalues are proportional to
the amount of variance explained by each principal component. An example of the cumulative
fraction of variance explained based on the number of principal components selected to be kept
can be seen in fig. 4.4. Starting with 3000 features, PCA returns principal components where
keeping three of them are enough to explain over 95% of the original data.
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(a)
(b)

Figure 4.3: Plot of a data set, viewed in both three and two dimensions.

Figure 4.4: Example of cumulative variance fraction based on number of principal components. The
dimensionality of the data used is 3000 features.
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Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised feature transformation method. Contrary
to PCA, LDA uses the classification labels in its calculation by being ’supervised’ in what the
correct answer to each measurement is. Similar to PCA, LDA finds linear combinations of
variables that best explain the data. However, LDA works based on two parameters like the
MRMR algorithm does. LDA transforms the feature space in a way that maximises the distance
between classes and minimises the spread in each group of classes, called a cluster. [41]

To perform LDA the between-class and within-class scatter matrices, Sb and Sw, respectively,
must be calculated. They are defined as [41]

Sb = 1
n

m∑
j=1

nj

(
c(j) − c

) (
c(j) − c

)T
, (4.7)

Sw = 1
n

m∑
j=1

∑
x=Xj

(
x − c(j)

) (
x − c(j)

)T
, (4.8)

where T denotes transposition, c is a global centroid (the centre of all data points), c(j) is a
centroid of class j, x is a vector associated with a specific observation, n is the number of
observations, and m is the number of classes [41]. Instead of Sw, a total scatter matrix St can
be used. It is defined as [41]

St = 1
n

n∑
i=1

(xi − c) (xi − c)T = Sb + Sw. (4.9)

The LDA task can be simplified to the eigendecomposition of S−1
t Sb or S−1

w Sb, depending on
the preferred choice of scatter matrices. Since Sb is the sum of m matrices of rank 1, the rank
of Sb is limited to m − 1. As such, the LDA result contains a maximum of m − 1 independent
eigenvectors that are associated with nonzero eigenvalues [41]. This is often a restriction on
the dimensionality, as the number of classes typically are smaller than the number of features.
Though, the dimensionality can be reduced below m − 1 by simply choosing to select fewer
features from the feature transformation method.

A perk of the significant reduction of dimensionality possible with feature transformation meth-
ods is the option to visualise the data in two or three dimensions. Figure 4.5 is one such
visualisation where an example of high-dimensionality data transformed with PCA and LDA is
plotted. The filled markers are the measurements used to train the algorithms and the hollow
markers are the test measurements. The axes are arbitrary linear combinations of original fea-
tures, and the feature transformation methods themselves are not models that predict the class
of an unknown measurement, however it can be used to better understand patterns in the data
and similarities between classes.

46



4.2. Machine Learning Classification Algorithms Aalborg University

(a) (b)

Figure 4.5: Example of the feature space after using principal component analysis and linear discrimi-
nation analysis as a means of dimensionality reduction. The filled markers is training data and the empty
markers is testing data.

4.2 Machine Learning Classification Algorithms

After the data has been appropriately prepared, next step is to use a machine learning algorithm,
called a classifier, to see if a model with a decent accuracy can be created. Several classifiers
exist, and which one to use depends on a variety of things. In this project, the three different
classifiers used are naive Bayes, discriminant analysis, and k-nearest neighbour.

Naive Bayes

The naive Bayes (NB) classifier is a probabilistic model based on Bayes rule, which can be
written as

P (C|x) = P (x|C)P (C)
P (x) , (4.10)

where x are the feature vectors and C are the class labels. The naive Bayes classifier is trained
with a labelled training set, from which it can calculate the right-hand side of eq. (4.10). Con-
sidering just a single feature vector xi and a single class Cj ; P (xi|Cj) is the probabilities of class
Cj having the values in xi, P (Cj) is the probability of a random measurement being of class Cj ,
and P (xi) is the probability of a random feature vector being equal to feature vector xi. The
left-hand side of eq. (4.10), P (Cj |xi), is the probability that xi belongs to class Cj . P (x) can
be expanded to be a sum,

P (x) =
∑
C

P (x|C)P (C), (4.11)

it is often insignificant and is instead used as a normalisation factor. [41, 42]

The naive Bayes classifier is ’naive’ because it assumes all features to be independent of each
other. The classifier also uses an estimation for the distribution of the data. The MATLAB
function used for the naive Bayes classifier is fitcnb, and it has an option to specify the data
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distribution estimation method. The simplest data distribution is to assume a normal distribu-
tion, but a more accurate approach is to use a kernel density estimation, however, this comes
at a significant increase in computational time when working with large data sets and high
dimensionality. As such, a normal density distribution will be used unless otherwise stated. [43]

Discriminant Analysis

Besides being used for feature transformation, discriminant analysis (DA) can also be used
as a machine learning classifier. In MATLAB, this is done using the fitcdiscr function.
The discriminant analysis can be specified to be either linear, as in the feature transformation
method, or to be quadratic. The main difference between the two is that in LDA the covariance
matrix is based on all classes and in quadratic discriminant analysis (QDA) each class has its
own covariance matrix. QDA will be the standard discriminant analysis classifier used, unless
otherwise stated. [44]

K-Nearest Neighbour

The k-nearest neighbour (kNN) classifier is a simple, yet fundamental classifier. The major
advantage is that little to no knowledge about the data distribution is necessary. While being a
machine learning algorithm, kNN has no ’training-phase’; it simply stores the training data for
when kNN is being used to predict the class of some data. For each measurement, kNN finds the
distance to the nearest k neighbouring measurements and classifies the input data based on which
class is the most abundant in the k nearest neighbours. The k-value is specified by the user, where
k is an integer between 1 and the number of measurements used in the training data. For a small
k, the classifier is prone to misclassification due to outliers, but is flexible. For a large k, kNN
is robust, but with an uneven number of measurements per class in the training set, the classes
with fewer measurements will be harder to correctly predict. At k = number of measurements,
kNN will predict the class with the highest number of measurements, no matter what the input
data is. [41, 45]

The point of kNN is to be able to find the distance between measurements regardless of how
the data is distributed. However, the distance between two measurements can be defined in
a multitude of ways, examples include city block distance, Chebychev distance, and Euclidean
distance. The function for kNN classification in MATLAB is fitcknn, which takes an optional
input for which distance metric to use. In this project, the standard distance metric is Euclidean,
and the standard k-value is 47.
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5.1 Numerical Model Results

This section will examine the validity of the model developed in chapter 2, and the model is used
to examine periodic arrays of antennas to find their resonance frequencies. Since the extinction
efficiency is proportional to the transmittance [46], the frequency at minimum transmittance will
directly correspond to the frequency at maximum extinction efficiency, which is the resonance
frequency. Therefore, only transmittance spectra are required for determining the resonance
frequencies, and as such, only these will be examined for that purpose. Furthermore, note that,
in the transmittance spectrum, the resonance frequency will be a dip, or a valley, however,
since these correspond to a peak in the extinction efficiency spectrum, all resonance dips will be
referred to as resonance peaks.

Unless explicitly stated otherwise, FDTD-simulations for determining transmittance spectra,
were made in a simulation space as shown in fig. 5.1. The structure of interest is placed on a 50
µm silicon-layer with a 50 µm air-layer above it. The PML at the air-layer was chosen to be 10
cells thick, and the PML at the silicon-layer was chosen to be 40 cells thick, as these were found
to be adequate. Furthermore, the source signature was on the form of the modulated Gaussian
pulse shown in fig. 5.2. All antennas will be constructed in such a way that they lie lengthwise
along the x-direction. Therefore, the excitation direction is also along x, and all incident fields
are consequently polarised along x. Finally, it is noted that the time-step is always chosen as
99% of the limit of the CFL condition, eq. (2.208).

Figure 5.1: Sketch of the simulation space.
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Figure 5.2: The time and frequency domains of the modulated Gaussian source signature used for
obtaining transmittance spectra of antenna structures. The pulse has a time-delay of t0 = 1.5 ps, a width
of τ = 0.35 ps, and a modulation frequency of fm = 1.5 THz.

5.1.1 Infinitely Thin Antennas

The structures examined in this project are typically ∼0.12 µmthick, and the shortest wavelength
in the THz-regime is typically considered to be ∼100 µm at a frequency of 3 THz. Though, in
many practical situations, the high-end frequency lies ∼5 THz with a wavelength of ∼60 µm,
which is still considerably larger than the structure thickness. Therefore, the structures could be
considered infinitely thin from the perspective of the incident field. This assumption is tested by
simulating periodic arrays of antennas with finite thickness and infinitely thin antennas, referred
to as 3D and 2D antennas, respectively.

The 2D structures are simulated by projecting the actual (3D) structure onto the air-Si-interface.
Due to the staggered grid, all field components cannot be sampled exactly at this interface. From
the continuity conditions, eqs. (2.8) to (2.11), the immediate choice of placement of the interface
is along the grid points where Ex and Ey are sampled, as this prevents the need for special
treatment to handle the discontinuity of Ez. However, the strongest argument for this choice of
interface placement is that the 2D structure is a PEC, and, as such, Ex and Ey must be zero
within it. Thus, by placing the interface, and therefore the 2D structure, along the same grid
points where Ex and Ey are sampled, these field components may simply be set to zero inside
the structure at every time step, and Ez does not need be considered.

The simulated structure is a periodic array of 45 µm long and 5 µm wide antennas separated
by 5 µm along the length and 10 µm along the width of the antenna, such that the periods are
Λx = 50 µm and Λx = 15 µm.

The 3D antennas have a thickness of 1.00 µm. While this is thickness is several factors higher
compared to the rest of the antennas examined in this project, it is still significantly lower than
the wavelengths in the THz-regime. A 1.00 µm thickness was chosen to speed up the simulation,
as a small discretisation not only requires more calculations per time step, but also requires more
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time steps as the time step will change with the spatial discretisation. The simulation was made
in a domain of 100 × 30 × 350 cells with discretisations of δx = 0.50 µm, δy = 0.50 µm, and
δz = 0.33 µm. The simulation was run over 12000 time steps with a discretisation of δt = 0.81
fs.

Four different simulations were made of 2D antennas in comparison with the simulation of
3D antennas to not only test the validity of the 2D approximation, but also to see, if the
discretisation along z is of significant importance. The simulations of 2D antennas were made
in domains of 100 × 30 × 450 (/350/250/150) cells with discretisations of δx = 0.50 µm, δy =
0.50 µm, and δz = 0.25 (/0.33/0.50/1.00) µm, respectively. The simulations were run over
15000 (/12000/10000/9000) time steps with a discretisations of δt = 0.68 (/0.81/0.97/1.12) fs,
respectively.

The transmittance spectra from these simulations are plotted together in fig. 5.3. The overall
signatures of the transmittance spectra seem to agree, and most importantly: All simulations
show a resonance frequency of 1.65 THz. This is a good indication that the 2D approximation
does indeed hold for the structures examined in this project, and, as such, it shall be used for
simulations henceforth.

Figure 5.3: FDTD simulation results of 1 µm thick (3D) antennas and infinitely thin (2D) antennas.
All antennas have the parameters: L = 45 µm, W = 5 µm, Gx = 5 µm, and Gy = 10 µm.

5.1.2 Slit Array

The Fourier modal method is a mode expansion technique that separates the structure into
layers, solves the eigenmodes in each layer, and matches the modes. A good description of the
method can be found in Numerical Methods in Photonics by Lavrinenko et al. [12].

The structure considered is a periodic array of 40 µm long and 1.5 µm wide slits in a 75 nm
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Figure 5.4: FDTD simulation results of an array of slits compared to the results of the Fourier modal
method (FMM).

thick PEC layer. The period is 50 µm in both directions. The layers above and below the
PEC/slit-layer is air, and the filling in the slits is air as well. Slits are chosen because analytic
solutions exist for all three layers, so that the numerical simulations are held up against analytical
simulations. It is noted that, oppositely to antennas, the excitation direction of slits is along
the width of the slit, and the incident fields are polarised along the excitation direction.

The FDTD simulation had a domain of 100 × 100 × 170 cells with discretisations of δx = 0.50
µm, δy = 0.50 µm, and δz = 0.33 µm. The simulation was run over 22000 time steps with a
discretisation of δt = 0.44 fs. The pulse has a time-delay of t0 = 0.5 ps, a width of τ = 0.12 ps,
and a modulation frequency of fm = 5 THz. The results are shown in fig. 5.4.

Notice that at ∼6 THz and ∼8.4 THz, the transmittance reaches zero. These frequencies are
characterised as the cut-off frequencies of the first and second diffraction orders. At these fre-
quencies, the propagation constant is zero, and all scattered waves are consequently propagating
along the structure. Thus, besides predicting the main resonance frequency at ∼3.6 THz, the
FDTD simulation also accurately predicts the cut-off frequencies of at least the first and second
diffraction orders.

5.1.3 Antenna Arrays

Arrays of antennas are the main focus in this project, and it is therefore of interest to examine
the transmittance spectra when different parameters are varied. The parameters include the
length, L, the width, W , and the gaps between antennas, Gx and Gy. These parameters are
illustrated in fig. 5.5.
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Figure 5.5: Illustration of the antennas simulated. L and W are the length and width of the antennas.
Gx and Gy are the gaps between antennas along the length and width of the antennas, respectively.

Figure 5.6 shows the transmittance spectra from FDTD-simulations of antennas with parame-
ters: L = 30 (/35/40/50/60) µm, W = 1 µm, Gx = 10 µm, and Gy = 20 µm. The resonance
frequencies appear at 1.90 (/1.67/1.49/1.24/1.06) THz. It is observed that the transmittance
spectrum is redshifted, but keeping its form, when the length of the antenna is increased.

Figure 5.7 shows the transmittance spectra from FDTD-simulations of antennas with parame-
ters: L = 50 µm, W = 0.2 (/0.5/1.0/2.0/5.0) µm, Gx = 10 µm, and Gy = 20 µm. The resonance
frequency appears at 1.83 (/1.85/1.90/1.92/1.95) THz. It is observed that the resonance peak
is blueshifted and broadened, when the width of the antenna is increased.

Figure 5.8 shows the transmittance spectra from FDTD-simulations of antennas with parame-
ters: L = 30 µm, W = 1 µm, Gx = 5 (/10/15/20/25) µm, and Gy = 20 µm. The resonance
frequency appears at 1.24 (/1.24/1.22/1.19/1.15) THz. It is observed that the resonance peak
is redshifted, and broadened, when the gap along the length of the antenna is increased.

Figure 5.9 shows the transmittance spectra from FDTD-simulations of antennas with parame-
ters: L = 30 µm, W = 1 µm, Gx = 10 µm, and Gy = 10 (/20/30/40/50) µm. The resonance
frequency appears at 1.41 (/1.24/1.16/1.11/1.07) THz. The resonance frequency appears at 1.24
(/1.24/1.22/1.19/1.15) THz. It is observed that the resonance peak is redshifted, and broadened,
when the gap along the width of the antenna is increased.

Razzari et al. [46] produced and examined arrays of gold antennas of various lengths deposited
on silicon. The antennas had a thickness of 60 nm, a width of 200 nm, and the gap between
antennas was 20 µm in both directions. The antennas had lengths L = 30 (/35/40/50/60)
µm with resonance frequencies at around 1.75 (/1.60/1.41/1.16/0.98) THz, respectively [46].

Similar structures were simulated with the FDTD method. However, because a width of 200
nm in 20.2 µm domain requires a relatively high discretisation, a width of 1.00 µm in a 21
µm domain was chosen instead to increase computation speed. The transmittance spectra are
plotted in fig. 5.10. The resonance frequencies lie at NaN (/1.57/1.42/1.19/1.03) THz. The
resonance frequency for L = 30 lies beyond the cut-off frequency of the first diffraction order,
and it is therefore not possible to extract it from the results. These numerical results deviate
from the experimental results of Razzari et al. [46] by < 5%, which is a good validation of the
numerical model.
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Figure 5.6: FDTD simulation results of antennas with parameters: L = 30 (/35/40/50/60) µm, W = 1
µm, Gx = 10 µm, and Gy = 20 µm. The simulations were made in domains of 80(/90/100/120/140) ×
42 × 200 cells.

Figure 5.7: FDTD simulation results of antennas with parameters: L = 50 µm, W = 0.2
(/0.5/1.0/2.0/5.0) µm, Gx = 10 µm, and Gy = 20 µm. The simulations were made in domains of
80 × 200(/53/42/44/50) × 200 cells. The simulations were run over 31000 (/11000/10000/14000/10000)
time steps with time discretisations of δt = 0.32 (/0.87/0.97/0.74/0.97) fs.
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Figure 5.8: FDTD simulation results of antennas with parameters: L = 30 µm, W = 1 µm, Gx = 5
(/10/15/20/25) µm, and Gy = 20 µm. The simulations were made in domains of 70(/80/90/100/110) ×
42 × 200 cells. All simulations were run over 10000 time steps with a time discretisation of δt = 0.97 fs.

Figure 5.9: FDTD simulation results of antennas with parameters: L = 30 µm, W = 1 µm, Gx = 10 µm,
and Gy = 10 (/20/30/40/50) µm. The simulations were made in domains of 70×24(/42/62/82/102)×200
cells. All simulations were run over 10000 time steps with a time discretisation of δt = 0.96 fs.
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Figure 5.10: Transmittance spectra results from FDTD-simulations of periodic arrays of antennas with
different lengths, L, a width of 1.00 µm, and a gap between antennas of 20 µm in both directions.

To summarise, it has been found that adjusting the length of the antennas will greatly affect
the resonance frequency, but not the width of the peak. On the other hand, changing the
width and the gaps will only affect resonance frequency slightly, but are important factors in
defining the width of the peak. Thus, to obtain a narrow peak at a desired frequency, the
width of the antenna should be minimised, and the gaps should be maximised. Then, the length
of the antennas should be determined to obtain the desired resonance frequency. However, a
well-defined resonance peak is not the only desired characteristic of the structures. Since the
main intend of the structures is to create field enhancement effects for the purpose of sensing
substances, another important characteristic is the fraction of the total area, where the field
is enhanced. As will be explained in the next section, the field is mainly enhanced closely
to the structures. Therefore, one would wish to fit as many structures into as small an area
as possible, to increase the total area of field enhancement. As such, compromises must be
made: The antennas must be sufficiently separated to have an acceptable peak width, while also
making sure that a satisfactory fraction of the total area will have field enhancement. A similar
compromise must also be made for the width of the antennas.

5.1.4 Antenna Shapes and Field Enhancement

So far, only perfectly rectangular antennas have been considered. However, from a production
side of things, the shape of the ends of the antennas will typically deviate from being perfectly
flat. Therefore, two alternative shapes for the ends of the antennas are examined in this section,
see fig. 5.11. The gaps between antennas are Gx = 8 µm and Gy = 25 µm. Furthermore,
the purpose of the antennas produced in this project is for sensing applications. As such, the
field enhancement of the antennas at the resonance frequency is an important characteristic to
examine.
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(a) Flat ends.

(b) Circular ends. (c) Elliptical ends.

Figure 5.11: Schematic of the different antenna designs used for examining the effects of different end
shapes.

Figure 5.12 shows the transmittance spectra from FDTD-simulations of arrays of antennas
with flat, circular, and elliptical ends with resonance frequencies at 1.46, 1.49, and 1.52 THz,
respectively. Besides a slight shift in the resonance frequency, the overall transmittance spectrum
does not appear to change when the ends are rounded.

Figure 5.12: Transmittance spectra results from FDTD-simulations of periodic arrays of antennas with
different end shapes.

Figure 5.13 shows the spatial distributions of the field enhancement for the transient state at the
resonance frequencies. These were found by using a sinusoidal source with a frequency equal to
the resonance frequency of the given structure. The expression for this source signature is given
in eq. (2.226). The simulation was run until the steady-state was reached, and then the time-
averaged field in the same plane as the structure was saved and divided by the time-averaged
incident field. The simulation was made with a simulation domain of 200 × 120 × 250 cells.
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The flat-ended antennas appear to localise the field around the sharp corners, while the rounded
antennas seem to distribute the fields more evenly at the ends. However, all antennas localise
the field strongly along the ends of the antennas. Figure 5.14 shows similar antennas, but
with a gap of Gx = 1 µm. A stronger field enhancement is observed, and the fields are better
contained between the antennas. fig. 5.15 shows antennas with a width of W = 1 µm, and
a similar behaviour is seen when the gap is shortened, however, it is also seen that the field
enhancement is stronger. Note that all field enhancement plots are at the resonance frequency
of their respective structure, however, since the transmittance spectra are all similar, they are
not plotted.

In order to get the strongest field enhancement, the antennas should thus be as thin and close as
possible. However, as discussed in the previous section, this will affect the width of the resonance
peak, and the area in which the field is contained. Even though a round-ended antenna and a
thin antenna gives stronger field enhancements, the effect is so well-contained, that the flat-ended
antenna gives a better field enhancement-to-area ratio and is therefore the preferred option of
the examined structures.

(a) Flat ends.

(b) Circular ends. (c) Elliptical ends.

Figure 5.13: Plots of the field enhancements of a single period for arrays of antennas with flat, circular,
and elliptical ends, and with parameters: L = 42 µm, W = 5 µm, Gx = 8 µm, and Gy = 25 µm.
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(a) Flat ends.

(b) Circular ends.

Figure 5.14: Plots of the field enhancements of arrays of antennas with flat and circular end, and with
parameters: L = 42 µm, W = 5 µm, Gx = 1 µm, and Gy = 25 µm.

(a) Gx = 8 µm.

(b) Gx = 1 µm.

Figure 5.15: Plots of the field enhancements of arrays of antennas with parameters: L = 42 µm, W = 1
µm, Gx = 8(/1) µm, and Gy = 29 µm.
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5.2 Experimental Results

This section will characterise and analyse the antenna and split-ring resonator arrays produced.
Scanning electron microscopy (SEM) with a Zeiss Evo 60 was used to ascertain the characteristics
and dimensions of the antenna and split-ring resonator arrays. Mean values with standard
deviation of antenna and resonator dimensions, as measured in the SEM, can be seen in table 5.2.

Antenna sample Length [µm] Width [µm] X gap [µm] Y gap [µm]
L24 24.06±1.81 5.10±1.10 16.98±1.48 26.02±1.09
L34 34.77±0.70 5.33±0.54 16.43±0.92 26.08±0.70

L39C 39.30±2.03 5.73±0.55 2.93±1.17 20.21±0.82
L39D 39.08±1.52 5.78±0.52 13.44±1.77 20.26±1.14
L40 40.19±1.49 5.47±0.32 12.37±1.34 20.67±0.76
L42 41.73±1.22 5.80±0.79 30.69±1.49 25.93±0.94
L45 44.93±1.57 6.40±0.80 28.14±1.96 24.90±0.62
L66 65.91±1.26 6.49±0.66 17.18±1.24 24.81±0.75

L86A 85.82±1.09 6.12±0.87 30.00±1.55 25.14±0.64
L86B 86.30±1.13 6.40±0.41 12.53±1.19 24.96±0.68
L87 87.45±0.88 6.00±0.68 27.26±1.34 25.93±0.85
L108 108.1±1.61 6.15±0.34 26.49±0.58 25.42±0.68

Table 5.1: Mean and standard deviation of antennas measured by SEM.

Split-ring sample Side length [µm] Width [µm] X gap [µm] Y gap [µm] gap [µm]
S36 35.60±0.86 4.80±0.54 27.37±0.93 27.56±1.00 6.87±3.45
S68 68.03±1.34 5.85±0.93 25.42±1.46 27.03±1.04 2.65±0.83

Table 5.2: Mean and standard deviation of split-ring resonators measured by SEM.

The goal was to produce well-defined resonance peaks, and it was found that a small width will
contribute to this. Using the Rayleigh resolution limit and multiplying it by two gives an idea
of the theoretical minimum spot size of the laser in the UV direct write setup, found as

d0 ≈ 2 · 0.61λ

NA , (5.1)

where d0 is the spot size, λ is the wavelength of the light, and NA is the numerical aperture.
The spot size is found to be approximately 700 nm. Even when accounting for the inaccuracies
involved in replicating this in a laboratory setting, the widths attained in this project have been
unexpectedly large. The structures have also exhibited some other interesting features. One
such feature, which is seen on all antenna array samples, is a noticeable change in width of the
antennas as one moves from one side to another on the sample, as can be seen in fig. 5.17. This
occurrence indicates that spot size changes when moving over the sample during the direct write
process. The feature is making the antenna array less uniform, which is unwanted as it widens
the resonance peak. This problem likely arose from difficulties when trying to keep the laser
focused on the sample as it moves.
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Figure 5.16: Sketch of the a split-ring resonator. L is the side length, W is the width, and G is the
gap.

(a) (b)

Figure 5.17: SEM pictures showing sample L24 at two different ends of the antenna array.

(a) (b)

Figure 5.18: SEM pictures showing sample S36.
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Two other features that are seen on some samples are the shortening of an antenna by omission or
breakdown of the end and the lengthening of the antennas by the addition of a ’tail’. An example
is given in fig. 5.18. The unpredictability and inconsistency of these phenomena causes difficulties
in the production of samples with small gaps, as fusing structures causes new resonances and
lessens the desired resonance. A possible way of stabilising the lengths of the antennas could be to
deposit thinner gold layers to reduce stress during lift-off. However, this could be problematic,
as the thickness of the gold layer currently in use is nearing the skin-depth of the terahertz
regime.

Most of the structures produced exhibit a wavelike pattern on the edges, as seen in fig. 5.19.
For some samples, these are so significant that a percentage of the antennas are split in two.

(a) (b)

(c) (d)

Figure 5.19: SEM pictures showing examples of the wave pattern on produced antennas.

The relative transmission of the produced antennas, with a reference produced by rotating the
sample by 90◦ , can be seen in fig. 5.20. The experimental data is seen to mirror the model to
an adequate degree. Though, there are some outliers like L39C and L39D. L39C can be explained
by antennas fusing together, while L39D can be explained be the antennas breaking into smaller
antennas.
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(a) (b)

(c)

Figure 5.20: (a) and (b) are the relative transmission of the produced antennas in relation to the
reference found by rotating the wafer by 90◦. Measurements were taken with a delay interval of 0 to
200 ps and 100 measurements for averaging. (c) is a comparison of the measured resonance peaks of the
sample with their FDTD modelled counterpart.

The relative transmission of split-ring resonator with the reference of an empty Si wafer can be
seen in fig. 5.21. The spectra with the two peaks are the ones of interest as the field enhancement
is found in the split-ring gap. This data fits the model to the same degree the antennas did.

In fig. 5.22, relative transmission of sample L42 with glucose deposited, with a clean L42 as
reference. Looking at the spectra it is very difficult to perceive a pattern between the graphs
and the amount of glucose on the sample.

The numerical model results were made for ideal antennas. However, it is evident that the
antennas produced in this project are not ideal. As such, an antenna design that somewhat
resembles the produced antennas have been modelled, as shown in fig. 5.23. The FDTD simu-
lated transmittance spectra of these antennas are shown in fig. 5.24, and the field enhancement
of the non-ideal antenna array is plotted in fig. 5.25. These simulations are made with identical
parameters to those used when examining antenna end shapes in section 5.1.4. The resonance
frequencies of the ideal and non-ideal antennas are 1.49 and 1.52 THz, respectively. The non-
ideal antenna is very similar to the circular-ended antenna in both transmittance spectrum and
field enhancement, however, the field enhancement is slightly weaker and less confined to the
ends. The antennas are thus considered acceptable.
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(a)

(b)

Figure 5.21: (a) is the relative transmission of split-ring resonators with the reference of an empty
Si wafer. Measurements were taken with a delay interval of 0 to 200 ps and 100 measurements for
averaging. The plots of same name are a 90◦rotation of the same sample. (b) is a comparison of the
measured resonance peaks of the sample with their FDTD modelled counterpart. (X) and (Y) represent
the polarisation of the incident light with respect to the orientation shown in fig. 5.16.

Figure 5.22: Relative transmission of L42 with glucose deposited, compared to a clean L42. Measure-
ments were taken with a delay interval of 0 to 200 ps and 100 measurements for averaging.
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(a) Ideal antenna. (b) Non-ideal antenna.

Figure 5.23: Schematic of the ideal and non-ideal antenna designs.

Figure 5.24: Transmittance spectra of the ideal and non-ideal antenna arrays.

Figure 5.25: Field enhancement plot of the non-ideal antenna array.
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5.3 Machine Learning Results

The MATLAB code used to perform machine learning in this project has been inspired by the
code written by Paweł Piotr for the article "Analysis and Classification of Frequency-Domain
Terahertz Reflection Spectra Using Supervised and Unsupervised Dimensionality Reduction Meth-
ods" [41].

For machine learning, a lot of data has been gathered: In total 17972 measurements were taken
and have been used. All measurements share the same 6000 features, where the features are a
linear discretisation of time delays from 0 to 199.9667 ps. Performing machine learning on all
of this raw data at once will cause any normal computer to run out of memory and halt the
process. Before even starting the machine learning process, the measurements of interest should
be selected. There are 162 different types of measurements, and, unless stated otherwise, each
type of measurement has 100 repeated measurements contained in it. The full extent of the data
used in this project can be seen in Appendix A.

5.3.1 Feature Selection Results

For this section, 2800 measurements are used. The next step is dimensionality reduction: The
simple form of which is feature selection. For the comparison of feature selection methods, the
accuracy of the three machine learning algorithms in section 4.2 will be used for three different
cases. The three cases are: Only feature selection, feature selection and PCA, and feature
selection and LDA, all followed by classifiers. The accuracy of a classifier in this project is given
by the fraction,

accuracy = correct predictions
total predictions . (5.2)

Table 5.3 shows the accuracies of when feature selection is skipped, so the raw data is used for
the classifiers, though, with feature transformation in column 3 and 4. This table serves as a
reference for tables 5.4 to 5.6.

In tables 5.5 and 5.6, chi-squared and MRMR are used to select the 100 features with the
highest score rated by the respective methods. To compare with this, 100 random features were
selected 10 times over, and the average accuracies are shown in table 5.4. Table 5.4 shows a clear
loss in accuracy compared to table 5.3, with the exception of the DA classifier, which performs
significantly better. However, this is no surprise as discriminant analysis works best when the
number of measurements exceeds the number of features. Tables 5.5 and 5.6 both show better
accuracies than when performing no feature selection and when selecting 100 features at random,
but with the caveat that the LDA accuracy in table 5.3 is the highest of all four tables.

However, when looking at fig. 5.26 a less than ideal result can be seen. Unlike the compact
clusters in fig. 4.5, fig. 5.26 shows a large spread in the testing measurements - even overlapping
with neighbouring clusters. It also appears as if there is only a single filled dot for each cluster,
which is not the case, as each training measurement is simply plotted so tightly on top of
each other that they appear as one. This is called overfitting, which is prone to happen with
discriminant analysis when the number of features exceeds the number of measurements - both
when used as a feature transformation method and when used as a classifier. In this case, the
training set had 6000 features and 2240 measurements (80% of the 2800 measurements are used
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for training and 20% for testing).

Algorithm Raw Data PCA LDA
NB Train 0.5380 0.6982 1.0000
NB Test 0.5304 0.6661 0.8304
DA Train 0.2848 0.6763 1.0000
DA Test 0.3571 0.6554 0.8286
kNN Train 0.8835 0.8223 1.0000
kNN Test 0.8429 0.8018 0.8429

Table 5.3: Reference table where no feature selec-
tion is performed, at the cost of increased computa-
tional time, the full 6000 features are used.

Algorithm Selection PCA LDA
NB Train 0.5066 0.5477 0.7702
NB Test 0.5013 0.5204 0.7129
DA Train 0.9829 0.5458 0.7713
DA Test 0.6834 0.5157 0.7123
kNN Train 0.7931 0.7109 0.7766
kNN Test 0.7638 0.6736 0.7107

Table 5.4: Feature selection where 100 features out
of 6000 are chosen at random. This was repeated 10
times and the average accuracy is in the table.

Algorithm Selection PCA LDA
NB Train 0.6513 0.7170 0.8067
NB Test 0.6357 0.6839 0.7589
DA Train 0.9906 0.6826 0.8125
DA Test 0.8214 0.6661 0.7661
kNN Train 0.9219 0.8406 0.8272
kNN Test 0.9036 0.8018 0.7750

Table 5.5: Feature selection where 100 features out
of 6000 are chosen with the chi-squared feature se-
lection method.

Algorithm Selection PCA LDA
NB Train 0.6969 0.7348 0.8580
NB Test 0.6625 0.7054 0.8196
DA Train 0.9924 0.7321 0.8661
DA Test 0.8464 0.7018 0.8196
kNN Train 0.9263 0.8424 0.8710
kNN Test 0.9000 0.8107 0.8268

Table 5.6: Feature selection where 100 features out
of 6000 are chosen with the MRMR feature selection
method.

Table 5.5 and table 5.6 are not identical, even though both methods used the top 100 ranked
features by the respective methods, which means the two feature selection methods do not value
the same features in the same order. This could in turn indicate that the chi-squared method
should be ignored, since the MRMR gives a better result. However, a disadvantage to MRMR
is the time required. For the case of 2800 measurements and 6000 features, performing MRMR
requires in the neighbourhood of half an hour. On the other hand, the chi-squared feature
selection for the same data is completed in a fraction of a second. It would be ideal to keep the
precision of MRMR while having the low computational cost of the chi-squared method. The
computational cost of the MRMR method is proportional to the amount of features squared,
so if chi-squared can be used first to lower the amount of features, while keeping most if not
all of the features MRMR would select, then the two feature selection methods can be used in
series to reach the same result at a much lower computational cost. As an example, if chi-square
is specified to select the 1000 features out of 6000 that it itself ranks the highest, and MRMR
is then specified to select the top 100 features out of those remaining 1000 features, the same
result as in table 5.6 was obtained. This time, the amount of features the MRMR method was
given had been reduced sixfold, so the calculation time went from half an hour to less than a
minute.

In fig. 5.27, the differences in score based on the rank of the feature can be seen. The grey areas
indicate the cut-off for which features are selected, and fig. 5.27a uses two shades of grey to
differentiate the 100 and 1000 feature marks. The scores for the rank 1 and rank 100 feature in
fig. 5.27a are of comparable value, which would indicate that relevant data is being forgotten by
choosing the cut-off at 100 features. On the other hand, fig. 5.27b shows a significant difference
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Figure 5.26: Visual representation of the training and testing measurements plotted after LDA has
been performed with the settings used in table 5.3. The filled dots have been enlarged in order to be
identified more easily.

in the scores of rank 1 and rank 100 features; indicating that, by selecting 100 features with
the MRMR method, the important data is well covered. If instead chi-squared is being used to
select the top 1000 features, a major difference between the new maximum and minimum scores
is observed.

The overall highest feature selection-based accuracy is found when chi-squared and MRMR are
performed in series. First chi-squared is used to select the best 1000 features out of the original
6000 features, then MRMR is used to select the best 400 features out of the selected 1000
features. The accuracies from these selections can be seen in table 5.7.

Algorithm Selection PCA LDA
NB Train 0.6661 0.7156 0.9241
NB Test 0.6393 0.6839 0.8232
DA Train 1.0000 0.6839 0.9268
DA Test 0.6482 0.6643 0.8464
kNN Train 0.9179 0.8433 0.9281
kNN Test 0.8893 0.8161 0.8500

Table 5.7: Feature selection where first 1000 features are selected with chi-squared, then 400 features
are selected with MRMR.
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(a) (b)

Figure 5.27: Plots showing the scores for the features kept (grey background) and showing the score
difference for the features removed in tables 5.5 and 5.6. The graphs have a limited x-axis for better
visibility.

5.3.2 Feature Transformation Results

A 2D visual representation of the feature transformation results by PCA and LDA based on
the settings in table 5.7 can be seen in fig. 5.28. For this, 28 different samples were measured,
each with the standard 100 repetitions. The 28 samples have been classified as SiGluXng where
X is the amount of glucose that has been deposited on a clean silicon wafer in nanograms. In
this case, the 28 samples have been grouped in three classes. The 20 ng and 100 ng classes
each contain 10 samples while the 60 ng class contain 8 samples. The difference between the
samples of the same class are the conditions for which the measurements were taken. Conditions
include whether or not the measurement chamber was purged of water vapour, if the sample
was rotated, or if it was moved slightly between samplings.

For fig. 5.28a, the testing measurements hardly have any variation from the training data,
while in fig. 5.28b, outliers for both training and testing measurements can be seen. However,
with PCA being unsupervised several more clusters are created, as moving the sample, or adding
water vapour can be seen in the measured data. On the other hand, since LDA is supervised, the
different samples that lie within the same class are ’forced’ together into a single cluster, as seen
in fig. 5.28b. Since nanograms of glucose distributed on a silicon wafer is a low concentration,
noise and other factors can impact the ability for LDA to make compact clusters, hence the
larger spread seen in fig. 5.28b compared to the LDA example in fig. 4.5b.

PCA and LDA can also give very similar results, as seen in fig. 5.29. Here, four samples of
different structures and sizes are compared. The two antennas are very similar in size, yet both
feature transformation methods are able to distinguish between all four with 100% accuracy
from the classifiers.

While, as a feature transformation method, PCA might be less accurate than LDA when it
comes to classification, PCA can still prove useful to the user. In fig. 5.30, PCA and LDA are
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(a) (b)

Figure 5.28: Feature transformation by PCA and LDA for silicon wafer samples with glucose deposited
on them. The filled markers represent training data, and the empty markers represent testing data.

used to perform the same task, and the results are noticeably different. Figure 5.30b shows
four clusters; some located closer to each other than others. PCA in fig. 5.30a shows a larger
spread in the data, which indicates that it has a hard time finding significant patterns, however,
SiGlu20ng and Sifresh are clearly split in two. The reasons could be several; noise could be
of significant magnitude compared to the measurement differences, a sample could have been
labelled incorrectly, or it could be an indication of the measurement setup being slightly different,
such as the THz beam not hitting the centre of the sample. Thus, an advantage of PCA being
unsupervised is its ability to show the user differences that LDA hides away in its clusters.

Even though the accuracy of PCA is lower than that of LDA when it comes to a means of
dimensionality reduction, PCA does have a use in improving the overall accuracy for the classi-
fiers. Table 5.8 shows five different approaches to DR and the accuracies associated with each
approach. The numbers in the parentheses are the number of features after the DR method has
been used. The columns are sorted in order of increasing accuracy; showing how using PCA and
LDA in series as a means of DR is effective, and that using chi-squared before PCA has some,
but smaller, effect. Though, performing chi-squared feature selection prior to PCA does lower
the computational time needed.

5.3.3 Classifier Results

The naive Bayes classifier can be used with various types of density distributions. To compare
two types of distribution, table 5.9 was created. This table contains the accuracies for the NB
classifier under the same settings seen previously, except with the kernel density distribution
used. It can be seen that the accuracies do increase with the kernel setting, though, not in a
significant manner.

Table 5.10 shows the difference in the type of discriminant analysis classifier used. For the most
part, QDA and LDA are similar in accuracy, and the most significant difference is in the second
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(a) (b)

Figure 5.29: Feature transformation by PCA and LDA for silicon wafers with gold nanostructures of
different shapes and sizes.

Algorithm Chi2 (400) Chi2 (1000)
MRMR (400)

Chi2 (1000)
PCA (200) PCA (200) Chi2 (3000)

PCA (200)
NB Train 0.9268 0.9241 0.9232 0.9420 0.9438
NB Test 0.8321 0.8232 0.8929 0.9143 0.9232
DA Train 0.9308 0.9268 0.9223 0.9451 0.9446
DA Test 0.8268 0.8464 0.9000 0.9143 0.9196
kNN Train 0.9317 0.9281 0.9277 0.9491 0.9482
kNN Test 0.8321 0.8500 0.9036 0.9143 0.9214

Table 5.8: Accuracies of the different classifiers when DR is performed in series. The five last columns
are five different DR approaches followed up by LDA. The numbers in the parentheses are the number
of features after the DR method has been used.

column, where it appears that QDA has overfitted the data and LDA did not. The last two
columns show a slight advantage to QDA and are the two columns with highest overall accuracy.

With the k-nearest neighbour classifier, the k refers to the number of nearest neighbours that are
in consideration. To compare different k-values, table 5.11 was created. In this table, columns
two and three show a noticeable drop in accuracy as the k-value increases, while the last two
columns are much less affected. The data used is presented in fig. 5.28, where data is overlapping.
It appears being flexible, as with a low k-value, gives an advantage.

In order to visualise the decisions made by a classifier, decision maps can be created, and
figs. 5.31 to 5.33 contain such decision maps. They are created by using the classifiers to predict
the class of every coordinate within the relevant feature space. In fig. 5.31, the decision maps for
the standard settings used in this project are shown. Here, similarities and differences between
the classifiers can be seen. Figure 5.31b shows the three classifiers to be rather similar, where
the biggest difference is that kNN does not have smooth lines between the decision areas. In
fig. 5.31a, the decision maps are less similar. The NB decision map consists of just three regions,
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(a) (b)

Figure 5.30: Feature transformation by PCA and LDA for silicon wafers with glucose in nanograms,
or no glucose at all.

Algorithm Chi2 (1000)
MRMR (400)

Chi2 (1000)
MRMR (400)

PCA

Chi2 (1000)
MRMR (400)

LDA

Chi2 (1000)
PCA (200)

LDA
NB-Normal Train 0.6661 0.7156 0.9241 0.9232
NB-Normal Test 0.6393 0.6839 0.8232 0.8929
NB-Kernel Train 0.7643 0.7705 0.9304 0.9259
NB-Kernel Test 0.7179 0.7607 0.8357 0.9000

Table 5.9: Naive Bayes classifier used with kernel density distribution, compared to the naive Bayes
classifier with normal density distribution.

which are fitted to best match the principal components from PCA. The DA decision map has
four regions; adapting slightly to how the data visualised in the upper left corner is split. Lastly,
the kNN decision map appears to be much more adaptive to the split data of the PCA method,
creating several small decision areas.

Tables 5.9 to 5.11 show the differences in accuracies when using alternative settings. The
differences in decision maps for these alternative settings can be seen in figs. 5.32 and 5.33. The
NB decision maps in fig. 5.32 are much more flexible compared to the ones in fig. 5.31. For
LDA, the lines are less smooth, but the overall shape is mostly the same, and for PCA, it is

Algorithm Chi2 (1000)
MRMR (400)

Chi2 (1000)
MRMR (400)

PCA

Chi2 (1000)
MRMR (400)

LDA

Chi2 (1000)
PCA (200)

LDA
QDA Train 1.0000 0.6839 0.9268 0.9223
QDA Test 0.6482 0.6643 0.8464 0.9000
LDA Train 0.9259 0.6920 0.9259 0.9223
LDA Test 0.8125 0.6768 0.8125 0.8875

Table 5.10: Discriminant analysis classifier with linear and quadratic discriminant types.
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Algorithm Chi2 (1000)
MRMR (400)

Chi2 (1000)
MRMR (400)

PCA

Chi2 (1000)
MRMR (400)

LDA

Chi2 (1000)
PCA (200)

LDA
3-NN Train 0.9638 0.9259 0.9549 0.9438
3-NN Test 0.9268 0.8804 0.8893 0.8964
17-NN Train 0.9451 0.8924 0.9321 0.9295
17-NN Test 0.9250 0.8607 0.8500 0.9054
47-NN Train 0.9179 0.8433 0.9281 0.9277
47-NN Test 0.8893 0.8161 0.8500 0.9000
149-NN Train 0.8487 0.7795 0.9263 0.9277
149-NN Test 0.8411 0.7607 0.8554 0.8982
301-NN Train 0.7451 0.7255 0.9250 0.9277
301-NN Test 0.7179 0.6964 0.8554 0.8982

Table 5.11: The k-nearest neighbour classifier for five different values of k.

(a) (b)

Figure 5.31: Decision maps under standard settings with Chi2(1000) and MRMR(400).

more significant. The NB decision map in fig. 5.32a is sporadic in order to best match the split
PCA data, and table 5.9 also shows a larger increase in accuracy for PCA than for LDA, which
makes sense looking at how the decision map has adapted with the kernel setting.

The decision maps made with a linear discriminant in the DA classifier in fig. 5.32 show straight
lines, whereas the quadratic discriminant in fig. 5.31 show curved lines. Intuitively, straight lines
are worse at representing clusters, which also matches the finds in table 5.10.

The kNN decision maps for PCA in figs. 5.31 to 5.33 show how an increase in k-value makes the
kNN classifier lose its flexibility, as fewer regions in the plot are present and accuracy is lost.
Table 5.11 agrees with this, showing a large increase in accuracy for small k-values when using
PCA. For the kNN decision maps for LDA in figs. 5.31 to 5.33, the differences are less significant.
In all five cases, only three regions are present, with only a small number of outlying dots at
small k-values. The borders between the decision areas are the most noticeable difference, where
a large k-value straightens out the borders, and a low k-value curves and bends the borders.
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(a) (b)

Figure 5.32: Decision maps for PCA and LDA where NB uses kernel density distribution, DA uses
linear discriminant type, and kNN uses a k-value of 3 with Chi2(1000) and MRMR(400).

(a) (b)

Figure 5.33: Decision maps for PCA and LDA with triple kNN, with k-values of 17, 149, and 301 with
Chi2(1000) and MRMR(400).
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5.4 Experimentally Based Machine Learning

Based on the results in section 5.3, the standard machine learning program will use three cate-
gories, selection, PCA, and LDA. The algorithm order in the three categories are: Chi2(1000),
Chi2(1000) → PCA, and Chi2(1000) → PCA(200) → LDA, respectively. Several samples of
different shapes and dimensions were created. The first thing to test with machine learning is
whether the program is able to distinguish between the different samples when they are being
measured under the same conditions in the THz spectrometer setup. Figure 5.34 shows the
visual part of a machine learning calculation, where both PCA and LDA are able to distin-
guish between all samples to a high degree. The classifier accuracies can be seen in table 5.12;
showing perfect predictions for LDA. To indicate that the results shown by PCA and LDA are
not random, consider how antennas of similar size are plotted within close distance, especially
Antenna86 and Antenna87. Both Splitring36 and Splitring68 are plotted far from the other
samples, indicating that the shape of the structure of the sample is significant.

(a) (b)

Figure 5.34: PCA and LDA plots of feature transformation for nanostructures with different shape and
size.

The samples plotted in fig. 5.35 are made to differentiate between samples with antennas res-
onating with the THz waves and antennas rotated 90◦ in order to not have a resonance with
the THz waves. In the naming scheme, the number refers to the length of the antennas on
the sample, refbase refers to samples rotated 90◦, and base refers to samples measured under
standard conditions. In both fig. 5.35a and fig. 5.35b, the 86base and 87base samples are near
each other; suggesting that similar data will be plotted closely. In fig. 5.35a, 20refbase and
38refbase are in the same region of the graph, but not as closely plotted. The same applies
to fig. 5.35b, where 20refbase and 38refbase are near each other; indicating a similarity. Ad-
ditionally, they are generally further away from the rest of the samples than the base samples
are from each other. The accuracies in table 5.13 again show a perfect accuracy for LDA, and,
when using the kNN classifier, a near perfect accuracy for only feature selection and PCA.
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(a) (b)

Figure 5.35: PCA and LDA plots for antennas with various lengths, where some samples are rotated
by 90◦ as a reference.

Algorithm Selection PCA LDA
NB Train 1.0000 0.9100 1
NB Test 1.0000 0.9150 1
DA Train 0.8000 1.0000 1
DA Test 0.8000 1.0000 1
kNN Train 0.9750 0.9800 1
kNN Test 0.9850 0.9900 1

Table 5.12: Table of accuracies for nanostructures
with different shapes and sizes.

Algorithm Selection PCA LDA
NB Train 1.0000 0.9167 1
NB Test 1.0000 0.9222 1
DA Train 0.8889 1.0000 1
DA Test 1.0000 1.0000 1
kNN Train 0.9861 0.9236 1
kNN Test 0.9967 0.9222 1

Table 5.13: Table of accuracies for antennas with
various length, with some of them being rotated by
90◦.

(a) (b)

Figure 5.36: PCA and LDA plots for antennas of different lengths, denoted as Antenna, with some
being rotated by 90◦, labelled as Gold.
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The classes in fig. 5.35 can be simplified to Antenna and Gold, where Gold are antennas that
have been rotated 90◦. This have been done in fig. 5.36, where fig. 5.36a is the same graph as
in fig. 5.35a, just with different colouring. Though, the LDA plot in fig. 5.36b is much different.
It should be noted that, since there are only two classes, the LDA plot should be limited to a
single dimension, for which the y-axis limits have been adjusted to make it appear as in 1D only.
The figure shows that LDA creates a large between-class distance, and the perfect accuracies in
table 5.14 reaffirm this.

In fig. 5.37, another class has been added, such that the Antenna and Gold classes are now being
compared to an empty silicon wafer labelled Wafer. PCA shows the empty wafer measurements
as being in the same area of the plot as the Gold measurements, indicating a larger difference
between Wafer and Antenna than between Wafer and Gold, as expected. In the LDA plot, it
seems that the three classes are roughly equally spaced from each other, however, LDA features
(and principal components) are sorted in decreasing order of importance, so LDA feature 1 is
more significant than LDA feature 2. Gold and Wafer have similar LDA feature 1 position, and
have a large spacing between them and Antenna, suggesting that the resonance of the antennas
is clearly noticeable in the data. The associated accuracies in table 5.15 show a perfect accuracy
for LDA, and again a near perfect accuracy for the kNN classifier for all three cases.

(a) (b)

Figure 5.37: PCA and LDA plots for antennas, compared to references rotated by 90◦, and to empty
silicon wafers.

Algorithm Selection PCA LDA
NB Train 1.0000 0.9175 1
NB Test 0.9967 0.9300 1
DA Train 1.0000 0.9333 1
DA Test 0.7600 0.9333 1
kNN Train 0.9983 0.9992 1
kNN Test 1.0000 0.9967 1

Table 5.14: Table of accuracies for machine learn-
ing classification of Antenna and Gold, as per
fig. 5.36.

Algorithm Selection PCA LDA
NB Train 0.9644 0.7289 1
NB Test 0.9673 0.7423 1
DA Train 1.0000 0.7851 1
DA Test 0.5808 0.7865 1
kNN Train 0.9990 0.9986 1
kNN Test 1.0000 0.9962 1

Table 5.15: Table of accuracies for machine learn-
ing classification of Antenna, Gold, and Wafer, as
per fig. 5.37.
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Figure 5.38 shows an additional class being added, namely Air, which is a set of measurements
taken with no sample - just air. Adding Air appears to have a larger effect than adding Wafer;
now Air is the class that is different from the others along the x-axis. In fact, they are so far
away on the x-axis that the volume of the clusters has been compacted into just a line. It has
thus gotten harder to differentiate between Gold and Wafer, even in the LDA plot, and when
looking at the accuracies in table 5.16 LDA no longer have perfect predictions, albeit they are
close to perfect.

(a) (b)

Figure 5.38: PCA and LDA plots for antennas, rotated antennas, silicon wafers, and air.

To improve upon the plots in fig. 5.38, the dimensionality can be increased to 3D. When doing
this, the same information as in fig. 5.37 can be seen when considering the y- and z-axis of
the plots in fig. 5.38. The accuracies as per table 5.17 improve, putting LDA back at a perfect
accuracy.

(a) (b)

Figure 5.39: PCA and LDA plots for antennas, rotated antennas, silicon wafers, and air, plotted in 3D
to increase the accuracy.
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Algorithm Selection PCA LDA
NB Train 0.9353 0.7679 0.9951
NB Test 0.9464 0.7464 0.9946
DA Train 0.6433 0.8174 0.9946
DA Test 0.6661 0.8089 0.9946
kNN Train 0.9991 0.9978 0.9951
kNN Test 0.9982 0.9929 0.9946

Table 5.16: Table of accuracies for classification of
Antenna, Gold, Wafer, and Air, related to fig. 5.38.

Algorithm Selection PCA LDA
NB Train 0.9353 0.8201 1
NB Test 0.9464 0.8161 1
DA Train 0.6433 0.9545 1
DA Test 0.6661 0.9589 1
kNN Train 0.9991 0.9991 1
kNN Test 0.9982 0.9964 1

Table 5.17: Table of accuracies for classification
of Antenna, Gold, Wafer, and Air in 3D, related to
fig. 5.39.

When a sample is being mounted in the measurement setup, removed, and then mounted again,
there will be minor differences in the position of the sample. In fig. 5.40, this is being tested with
a clean silicon wafer. Here, the wafer was flipped so its backside faced the beam, it was moved
so the beam hit its edge, and it was rotated by various degrees. PCA shows that measurements
made when the wafer is moved laterally with respect to the beam gives the most significant
difference. LDA agrees that moving the wafer results in the most significant change, where
rotating the wafer by 135◦ is the next most noticeable.

(a) (b)

Figure 5.40: PCA and LDA plots of a silicon wafer for various positional differences.

To compare how the signal artefacts from the placement of the sample compares to other types
of noise, see fig. 5.41. Here the same placement conditions are tested and repeated, but this time
they are tested in the presence of water vapour. The standard measurement procedure includes
purging the sample area with nitrogen gas in order to remove water vapour, as water absorbs
THz waves quite well. There are a lot of classes in fig. 5.41, but a few patterns are easily noticed.
For both PCA and LDA, the measurements taken with water vapour present (denoted with W
in the label) are on the left-hand side of the plots. The water vapour versus purged difference
is mainly on the x-axis; suggesting it is more meaningful than moving the sample.
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(a) (b)

Figure 5.41: PCA and LDA plots for a silicon wafer for various positional differences, with and without
water vapour present.

To test the field enhancement properties of the nanostructures on the samples, two sugars,
glucose and sucrose, have been deposited on some of the samples. In fig. 5.42, various amounts
of glucose have been deposited on the L40 sample, which is a sample with antennas of length 40
µm. The figure also shows the measurements taken for L40 without any sugars deposited on it.
While the clusters are spread, they do not seem to follow a pattern, and some clusters are hard
to distinguish between, even though they are expected not to be.

(a) (b)

Figure 5.42: PCA and LDA plots of antennas with length 40 µm at various amounts of glucose deposited.

Glucose was also deposited on the L39C sample, the results of which is plotted in fig. 5.43. This
time, the samples are measured with and without water vapour present, and at two different
amounts of glucose deposited. In both plots, the measurements with and without water vapour
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are split, however, in the PCA plot, the two water vapour measurements overlap somewhat,
while LDA has no issue spreading out all four clusters.

(a) (b)

Figure 5.43: PCA and LDA plots for antennas of length 39 µm at two different amounts of glucose
deposited, with and without water vapour present.

To challenge the machine learning program and test its capabilities, a larger portion of the
database was used for fig. 5.44, namely all antenna samples with only glucose deposited on
the sample. Included herein are samples with and without water vapour, samples with different
antenna lengths, and all the antennas without any glucose as well - totalling 37 different samples
corresponding to 3700 measurements. The glucose deposits on the samples range from 10 ng to
1000 µg, and the same weight have been deposited on samples with antennas of different length.
In 2D, the LDA accuracies for the test data are 0.8716, 0.8811, and 0.8743 for NB, DA, and
kNN, respectively. In 3D, the LDA accuracies for the same classifiers are 0.9095, 0.9068, and
0.8987, so fitting all this data into the 10 different classes does prove difficult. However, since
10 classes are at play, the maximum number of dimensions LDA can utilise has increased to 9D
where the accuracy for all three classifiers is 0.9987 for the test data. The calculation time is
practically the same, so the most noticeable disadvantage is that when going beyond 3D, the
visual aspect is lost.
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(a)
(b)

Figure 5.44: LDA plots in 2D and 3D for antennas with different length, at various amounts of glucose
deposited, labelled by the amount of glucose deposited.

The second type of sugar used was sucrose, less samples were created with sucrose alone, but two
different amounts of sucrose, with and without water vapour present, as well as a comparison
with the sample without sucrose, can be seen in fig. 5.45. Here, it appears that the presence of
water vapour has a smaller effect compared to the effect of differing sucrose amounts. This was
done on the L40 sample.

(a) (b)

Figure 5.45: PCA and LDA plots of sucrose on antennas of length 40 µm at two different amounts of
sucrose deposited, with and without water vapour present.

To again challenge the machine learning program, though this time in a different manner, mea-
surements on the L40 sample with glucose, sucrose, a mix of the two, and no sugar are compared.
Samples with water vapour present are included, but they are labelled in the same class as their
purged counterpart. The result of this large comparison can be seen in fig. 5.46, where fig. 5.46a
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shows LDA in 2D. The clusters are compact and, for the most part, nicely spread around
the plot. There is a slight overlap between Glu500ug and Glu1000ug, and Glu375Suc125 and
Glu250Suc250 are very close, but do not touch. The accuracy for the test set for NB, DA, and
kNN are 0.9870, 0.9891, and 0.9870, respectively; showing a high accuracy even in just 2D. Fig-
ure 5.46b contains the decision maps for the three classifiers, the NB and DA decision maps show
very similar results. The kNN decision map is different in the Glu1000ug and Glu125Suc375
regions, but otherwise quite similar as well.

(a) (b)

Figure 5.46: LDA plot and decision maps for the three classifiers for antennas of length 40 µm at various
amounts of glucose and sucrose deposited on the sample. The legend in (a) applies to (b) as well.

The classes in fig. 5.46 can be grouped into four general classes: Glucose, Sucrose, Mixture,
and Empty. This have been done in fig. 5.47, where LDA now has no trouble distinguishing
between the four clusters. In both the PCA and the LDA plot, Sucrose and Mixture are closer
to each other compared to Glucose and Mixture, this could be due to the way the samples
were handled, or, unexpectedly, it suggests that the signal from sucrose dominates the signal of
glucose when mixed on the same sample.
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(a) (b)

Figure 5.47: PCA and LDA plots of antennas with length 40 µm at different amounts of glucose and
sucrose deposited, grouped into four classes.

The four-class category can be expanded to include all antenna lengths measured, with and
without sugar, which is the case in fig. 5.48. Here, 50 different samplings for a total of 5000
measurements are compared. PCA shows that Sucrose and Mixture are similar in data, while
Glucose and Empty vary a lot. LDA shows slight overlap between Sucrose and Mixture, but
otherwise reaches an accuracy for 0.9980 for all three classifiers.

(a) (b)

Figure 5.48: PCA and LDA plots of antennas with various lengths at various amounts of glucose and
sucrose deposited on the samples, grouped into four classes.

To visualise what the machine learning program is working with, see fig. 5.49. The two figures
are the THz pulses in the time-domain, coloured by each class. In fig. 5.49a each class is offset
in the y-axis, and in fig. 5.49b they are not. Humans are great at image recognition, which
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is a stereotypical form of machine learning. However, in the case of spectra related machine
learning, humans will need assistance in order to classify measurements at the same level as
machine learning algorithms do.

(a) (b)

Figure 5.49: Plots of pulses for each class, (a) is offset along the y-axis for visibility while (b) is not.

Finally, to examine the field enhancement effect, see fig. 5.50. In fig. 5.50a tiny amounts of
glucose have been deposited on an empty silicon wafer. The deposits are deposited via an
aqueous solution, thus the reference, denoted with Clean, pure Milli-Q water was put on the
wafer and dried off. The clean cluster lies alone, but the three clusters with nanograms of glucose
deposited overlap somewhat, the accuracies of the test data for NB, DA, and kNN are 0.8516,
0.8484, and 0.8516, respectively. On the other hand in fig. 5.50b, tiny amounts of glucose were
deposited on L39 samples with the same approach. This time all three classifiers have a perfect
accuracy, the four clusters are nicely spread, and they follow an intuitive pattern of smallest
glucose deposit being the closest to the Clean class, suggesting the antennas do indeed enhance
the field.

(a) (b)

Figure 5.50: LDA plots of nanogram amounts of glucose deposited on samples, with (a) being on a
empty silicon wafer and (b) being on antennas of length 39 µm.
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A finite-difference time-domain (FDTD) model was developed for modelling metamaterials. Pe-
riodic arrays of slits were modelled and compared to results from the Fourier modal method.
The FDTD model was in good agreement with the Fourier model method. Periodic arrays of an-
tennas were modelled and examined to optimise the antenna dimensions. The numerical results
were found to agree with experimental results found in literature. Different shapes of antennas
were examined, and it was found that, while the resonance frequency only changes slightly, the
field enhancement changes significantly when modelling structures deviating from an ideal an-
tenna, in this case a rectangular antenna. The field enhancement was found to be very localised
to the surface at the ends of the antennas, and rapidly decreasing when moving away from the
antenna. From the numerical results, it was found that decreasing the gap between antennas
would not only increase the field enhancement, but also create a more evenly distributed field
between the antennas.

The metamaterial samples used in this project were created using a lift-off technique with UV
direct write and deposition using magnetron sputtering, creating arrays of gold antennas. The
antennas were designed to match desired terahertz resonance frequencies, matching the absorp-
tion peaks of glucose and sucrose in the terahertz spectrum. To characterise the dimensions
of the antennas a scanning electron microscope was utilised, which showed notable differences
between the produced and ideal antennas. To account for the imperfect antennas, the model was
successfully adapted to handle rounded and wavy antennas. The transmittance of the samples
was measured with terahertz time-domain spectroscopy. The procedure was replicated to create
and characterise split-ring resonators, thereafter the split-ring spectra were compared with the
model. The produced resonators complied with the model further advocating for its efficacy.

To work with, analyse, and understand the terahertz spectroscopy data, a machine learning
program was developed. The program makes use of several existing algorithms to use for di-
mensionality reduction, classification, and prediction of data. The parameters of the machine
learning algorithms have been optimised to find which settings to use in order to get high-
accuracy predictions.

The highest accuracy was found when using a four-step process; first the chi-squared feature
selection method was used to select the most relevant data. Next, principal component anal-
ysis was used to transform the remaining features into a small number of high-information
features, then linear discriminant analysis was used as a supervised method to transform the
high-information features into even more compact features in 2D and 3D, giving a highly valu-
able visual insight into the process, and lastly machine learning algorithms were trained with
training data and used to predict the classifications of test data.
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Machine learning was successfully utilised to differentiate between data stemming from different
nanostructures for various conditions. Two sugars, glucose and sucrose, were deposited on
metamaterial samples to test the field enhancement effect. When compared to a reference,
machine learning correctly predicted which sugars were used when. Nanogram amounts of
glucose was deposited on a non-metamaterial sample to test the difficulty in accurately predicting
the sample, and it was compared to the same nanogram amounts of glucose deposited on a sample
with arrays of antennas, where the machine learning program could predict the classification of
the measurements to a perfect degree.
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A | Database Information

Information about all the measurements taken in this project can be found in table A.1, the
table contains information about the sample that was measured, and how many repetitive mea-
surements of said sample were taken. The first letter in each name describes the ’shape’ of the
sample, with A being air, D being double dipoles, L being antennas (straight lines), S being
split rings, and N being none, which is just a silica wafer. The next two characters describe the
size of the nanostructure, where the size for air and silica wafers are Na for not applicable, the
rest of the name contains information about special conditions, such as whether it is a reference,
standard conditions, sugar deposited, a second measurement taken another day, and whether
water vapour is present or not.

Name Measurements Name Measurements
ANaAir 100 L99base 100
ANaAirFlipHolder 100 NNaSi 100
ANaAirFlipHolderW 100 NNaSiFlip 100
ANaAirW 100 NNaSiFlipHolder 100
ANaNoholder 100 NNaSiFlipHolderW 100
ANaNoholderW 100 NNaSiFlipW 100
D40base 101 NNaSiGlu100ng 100
L24refbase 100 NNaSiGlu100ng1-1 100
L24refbaseR 100 NNaSiGlu100ng1-2 100
L35Glu10ngW 100 NNaSiGlu100ng1-3 100
L39Glu10ug 100 NNaSiGlu100ng2 100
L39Glu10ug2 100 NNaSiGlu100ng2-1 100
L39Glu10ug2W 100 NNaSiGlu100ng2-2 100
L39Glu10ugW 100 NNaSiGlu100ng2-3 100
L39Glu300ug2 100 NNaSiGlu100ng3 100
L39Glu50ug 100 NNaSiGlu100ngW 100
L39Glu50ug2 100 NNaSiGlu100ug 100
L39Glu50ugW 100 NNaSiGlu100ug2 100
L39Glu50ugWref 100 NNaSiGlu100ug3 100
L39Glu50ugref 100 NNaSiGlu100ugW 100
L39acGlu100ng-1 100 NNaSiGlu20ng 100
L39acGlu100ng-2 100 NNaSiGlu20ng1-1 100
L39acGlu100ng-3 100 NNaSiGlu20ng1-2 100
L39acGlu100ng-4 100 NNaSiGlu20ng1-3 100
L39acGlu20ng-1 100 NNaSiGlu20ng1-4 100
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Table A.1 continued from previous page
L39acGlu20ng-2 100 NNaSiGlu20ng2 100
L39acGlu20ng-3 100 NNaSiGlu20ng2-1 100
L39acGlu20ng-4 100 NNaSiGlu20ng2-2 100
L39acGlu60ng-1 100 NNaSiGlu20ng3 100
L39acGlu60ng-2 100 NNaSiGlu20ngW 100
L39acGlu60ng-3 100 NNaSiGlu20ug 100
L39acGlu60ng-4 100 NNaSiGlu20ug2 100
L39acbase-1 100 NNaSiGlu20ug3 100
L39acbase-2 100 NNaSiGlu20ugW 100
L39refbase 100 NNaSiGlu300ug 100
L39refbaseR 100 NNaSiGlu300ug2 100
L40Glu1000ug 100 NNaSiGlu300ug3 100
L40Glu100ug 100 NNaSiGlu300ugW 100
L40Glu125Suc375 100 NNaSiGlu500ug 100
L40Glu125Suc375W 100 NNaSiGlu500ug2 100
L40Glu2000ug 100 NNaSiGlu500ug3 100
L40Glu200ug 100 NNaSiGlu500ugW 100
L40Glu250Suc250 100 NNaSiGlu60ng 100
L40Glu250Suc250W 100 NNaSiGlu60ng1-1 100
L40Glu300ug 100 NNaSiGlu60ng1-2 100
L40Glu375Suc125 100 NNaSiGlu60ng2 100
L40Glu375Suc125W 100 NNaSiGlu60ng2-1 100
L40Glu400ug 100 NNaSiGlu60ng2-2 100
L40Glu500ug 100 NNaSiGlu60ng3 100
L40Glu500ug2 100 NNaSiGlu60ngW 100
L40Glu500ug2W 100 NNaSiGlu60ug 100
L40Glu500ugMove 100 NNaSiGlu60ug2 100
L40Glu500ugNew 100 NNaSiGlu60ug3 100
L40Glu500ugRot 100 NNaSiGlu60ugW 100
L40Glu50ug 100 NNaSiMove 100
L40Suc1000ug 100 NNaSiMoveW 100
L40Suc1000ugW 100 NNaSiR135 100
L40Suc250Glu250 100 NNaSiR135W 100
L40Suc250Glu250W 100 NNaSiR180 100
L40Suc500ug 100 NNaSiR180W 100
L40Suc500ugW 100 NNaSiR90 100
L40base 100 NNaSiR90W 100
L40base2 100 NNaSiSuc1000ug 100
L40base3 100 NNaSiW 100
L42base 101 NNaSidriedmiliq 100
L42base2 100 NNaSidriedmiliq1-1 100
L42base2W 100 NNaSidriedmiliq1-2 100
L45Glu10ng 100 NNaSidriedmiliq2 100
L45base 101 NNaSidriedmiliq2-1 100
L66base 101 NNaSifresh 100
L86Glu1000ug 100 NNaSifresh1-1 100
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Table A.1 continued from previous page
L86Glu100ug 100 NNaSifresh1-2 100
L86Glu200ug 100 NNaSifresh2 100
L86Glu500ug 100 NNaSifresh2-1 100
L86base 101 NNaSifresh2-2 100
L86base2 100 NNaSifreshW 100
L86fast 500 NNaSifreshW2 100
L87base 100 S36base 100
L87fast 500 S36fast 667
L99Glu100ug 100 S68base 100
L99Glu300ug 100 S68fast 500

Table A.1: A table of all the data
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