
,

Denoising Autoencoders for Biosignals

Rasmus Hjelm Rasmussen rhra17@student.aau.dk

Simon Anielski Barsøe Jensen sabj17@student.aau.dk

Abstract

This paper introduces a self-supervised framework for pre-training on EEG data. The goal is to
create a model that produces good features, such that the model can be used for transfer learning.
Our framework is based on a denoising autoencoder architecture. We have a model that receives
an input that is augmented using token masking, and tries to reconstruct the original input. The
pre-training is done using a subset of the Temple University Hospital EEG Data Corpus (TUEG)
datasets. Our model is a transformer based model, inspired by the likes of BERT. For our results
we ran benchmarks on the 3 different datasets we did fine tuning on. Here we compare to some
supervised methods. The results show that our model, though not the best, is comparable to the
supervised models. The benchmark proves that the model has learned transferable features.

1



1. Introduction

Brain-computer interfaces (BCIs) are devices that enable computers to read information from the
brain, and are generally used as a method of analyzing and understanding the brain. One of the
most commonly used BCIs is electroencephalography (EEG)(1). EEG is a method of measuring the
electrical activity from the brain. EEG is non-evasive, and works by recording voltage potential with
electrodes placed on the scalp of a subject (2). EEG is widely used due to of its ease of use and it’s
relatively low costs. The main advantage of EEG compared to other BCI systems is its relatively low
cost and ease of use, due to its non-invasive application. Furthermore, EEG can be recorded with
high temporal resolution in comparison with the temporal patterns of the brain, unlike most other
BCIs(2). EEG’s non-invasive nature also comes with some disadvantages. The spatial resolution
of EEGs is quite limited, since only the outer layers of the brain can be recorded(3). Moreover, In
comparison to the amount of neurons present in the brain, the number of electrodes is also very low,
and each electrode therefore records a single signal over a large number of neurons, but produces
only a single signal. The result is a signal full of artifacts and noise with a high noise-to-signal ratio.
(4)

EEG data has shown to be very helpful as a medical tool. EEG has been successfully applied to
classify a range of different mental disorders. Some examples of this are Epilepsy (5), Parkinson’s
Disease (6), Attention Deficit Hyperactivity Disorder (ADHD) (7), and Schizophrenia (8). It has
also been used to help people with disabilities and movement impairments(9)(10). Traditionally, to
analyze these signals, a lot of signal processing methods have been applied to extract useful features
from EEG waves, including Common Spatial Pattern and PCA. (11) Once feature extraction has
been done, you would use classifiers such as SVMs and Random Forests to classify the signal on
using those features.

In recent years a surge in popularity of deep learning, and in this field as well. Deep learning makes it
possible learn features that would previously have to be handcrafted. The promise of deep learning,
is that we create end-to-end systems that learn all features, making thorough preprocessing and
filtering unnecessary (12). Mainly convolutional networks (CNNs), and recurrent network (RNNs)
have dominated the space(3). Recently, the newer transformer models have also been adopted for
EEG decoding. Sarker et al.(13) suggests that deep learning outperforms more traditional machine
learning algorithms, however this only applies above a critical number of data points. This poses a
problem in the context of EEG decoding, since EEG datasets are hard to produce and are therefore
often small in comparison to datasets in other domains within machine learning. The studies are
also likely to have a limited amount of subjects, resulting in the data being highly biased. A review
of Deep learning studies in EEG(3) shows that half the 154 studies reviewed are conducted on less
than 13 subjects. As a result, the best performing models are most often those, that are trained for
each of the subjects in a study, in an intra-subject fashion (3). There is a great deal of inefficiency
with this method, since whenever a new subject is introduced, a lot more data must be collected
and a new model must be trained. It would be preferable, if only a small amount of data would
be required to calibrate a model to a new subject. Moreover, different EEG datasets are made to
tackle very different problems, and as suggested by Kostas et al. (14), the variability of the signals is
significant, both inter- and intra-personally, and for the same tasks at different sessions. They also
suggest that supervised learning is not likely to create latent features useful for other EEG tasks.

Creating latent features has been achieved in other machine learning domains already. For vision,
you can find a pre-trained model that can be fine-tuned to your particular task. Within the field of
EEG research, this has not been studied to the same degree. Within Computer Vision and Natural
language processing, there has been an effort to create models that produce good features that
can be used for a range of different problems(15)(16). This is the problem self-supervised learning
attempts to tackle.

2



In this paper we explore different architectures and setups of self-supervised training for EEG data,
inspired by Kostas et al. (14). We attempt to show that good latent representations can be created
with a smaller model compared to the BENDR model(14). The goal is to create a model that
produces good features of EEG signals which can transfer to work for different tasks.We present
a self-supervised framework for pre-training, which produces EEG features that can be transferred
on to other datasets. We argue that with more data and computation the framework has potential
given scaling of three factors. We compare our small scale model against popular supervised learning
models.

2. Related works

2.1 Self-supervised Learning

Self-supervised learning (SSL) is a machine learning approach that learns from unlabeled data,
similar to an unsupervised learning approach. However, the difference between these two approaches
is that SSL approaches still seek to minimize the distance between an output of a network and a
target, making them supervised in essence. However, in SSL, the targets are not created from hand-
labeling data, but are created directly from the data itself. The target is often the actual input itself,
where the model receives an augmented version of the input. Learning useful features of a dataset
is the main objective of self-supervised learning. It is particularly desirable to learn from unlabeled
data, since most data in the world is not labeled. Labeling would involve a considerable amount of
effort.

Traditionally, self-supervised learning has been accomplished using autoencoders. There are two
components to an autoencoder: an encoder and a decoder. The encoder creates a latent represen-
tation of the input, while the decoder recreates the input from that latent representation. After
the autoencoder has been trained, the encoder can be used to create a useful feature representation
over an input. A linear classifier can be trained on top of the encoder. There are also Denoising
autoencoders that accept an input with noise applied and have to reproduce the original input. A
popular type of autoencoder is a variational autoencoder, which predicts a distribution over the
latent space rather than the latent vector itself.

More recently, contrastive learning techniques such as MoCo and SimCLR have shown promising
results(15)(17). Contrastive learning is based on the idea of creating a representation space where
similar samples are close in representation and samples that are dissimilar are far away in repre-
sentation. This is achieved through the use of positive and negative samples. Positive samples
are samples with close similarities to the input, and negative samples are samples with little or
no similarities. By corrupting or augmenting your sample a bit, you can produce positive samples
with similar contents, but not identical. How you create negative samples varies according to the
approaches you employ in contrastive learning.

Work has been done exploring the efficacy of contrastive learning within the EEG domain, notably
Mohsenvand et al. demonstrates that a useable feature representation is achievable with an extension
of the SimCLR framework (18). They employ two different models specialized for EEG data, one of
them a CNN based model, the other a Bidirectional RNN. They demonstrate that by using a pre-
trained network, you can achieve better results than training from a random initialization. Further
more they show that the pre-trained model is much more label efficient, and in some cases perform
better when only trained on 50% of the labels compared to results using random initialization.

Another interesting article is from Joseph Y. Cheng et al., wherein they do contrastive learning, but
make use of the subject information as part of the pre-training task (19). They do this by trying to
predict the subject from the learned features. They demonstrate for smaller datasets, including the
subject as part of pre-training can lessen the impact of the subject variability on learning features.

3



They conclude, however, that for datasets with a larger amount of subjects (over 64), the subject
aware part of pre-training become redundant.

Building on the work of contrastive learning approaches, non-contrastive learning approaches have
recently shown positive results. Among them are BYOL and DINO (20)(21), which have demon-
strated promising results. Different from contrastive methods, non-contrastive methods avoid using
negative samples. The models would normally suffer from mode collapse as a result of this, however,
these methods avoid this problem by using some tricks. Most recently, Data2vec has shown promise
in creating a non-contrastive approach that works across different modalities. We are unaware of
any implementation of non-contrastive learning for EEG data.

Recently there is a trend moving towards transformer based self-supervised frameworks, introduced
by the paper ”Attention is all you need”(22). Some evidence of this is the recent publication from
Meta AI: Data2vec(23). In the paper they demonstrate how a non-constrative framework using
transformers can be applied successfully to multiple modalities namely: Vision, NLP, and Audio
processing.

Before this the Transformer had already become dominant throughout the field of Natural Language
Processing, having been incorporated into large language models such as BERT and OpenAI’s GPT
models (16)(24). Transformers have also been gaining traction across other fields of research, and
they are now applied across many modalities(25)(26).

Recently we are seeing transformers applied to EEG data as well, although research in this area is
still in its infancy. The efficacy of transformer based architectures are, among others, demonstrated
by Lee and Lee (27) and Tao et al.(28). Both these papers create an their on take on the transformer
model and demonstrate its effectiveness.

As for using the transformer model in a self-supervised context, the most notable contribution is the
BENDR model(14). They demonstrate both the efficacy of self-supervised training on EEG-data,
along with transferability. It shows promising results, however the BENDR model is significantly
larger than any other EEG we are aware of, and likewise requires a large amount of data. This brings
forth the concern that fine tuning the BENDR model for specific tasks is very resource demanding.

3. Method and Experimental setup

3.1 Proposed method

We propose a simple self-supervised method for pre-training on EEG signals. The method is a
BERT(16) inspired de-noising Autoencoder, which has been adapted to work for EEG signals. The
proposed setup is shown in figure 3. For the pre-training task, the model is trained to predict the
original EEG-input. With a de-noising autoencoder you apply noise/augmentation to the input
signals and letting the model reconstruct the original input. In our case we apply the augmentation
in the form of token masking as well as some EEG-specific augmentations. After the pre-training
task, we save the encoder. The pre-trained encoder is then used for transferring learning to new
tasks with a different dataset. This requires training a new embedding layer that fits the dimensions
of the dataset, along with a new head to perform classification.

The architecture for this system consists of three primary components: the embedding layer, trans-
former encoder, and projection head.

To create tokens from input, we utilized the approach that the Vision Trasformer(25) uses, which
involves splitting the input into non-overlapping patches. The patch has the shape of (number of
channels x patch size), where the patch size determines how many time steps are included in the
patch. Once the patches have been created, they are inserted into the embedding layer. With trans-

4



Figure 1: Architecture of our transformer model, both for pre-training (L), and transfer (R)

former models, it is common practice to tokenize the raw input and pass it through and embedding
layer before passing it through the encoder(22).

The original transformer paper(22) uses an embedding that maps tokens to learned vectors. This
works for domains with discrete inputs, such as NLP, but it is not applicable to domains with
continuous inputs. In continuous domains such as time series data, or in more complex discrete
domains, such as vision, it is commonplace to simply flatten the raw input and pass it through

5



a linear feedforward layer instead (25). The embedding of other types of data, such as audio,
is also sometimes carried out using successive convolutional layers(29). We do not consider the
dimensionality of EEG data to be high enough to justify the use of CNNs to compress the data
dimension, and in our initial tests, linear embeddings proved to be more effective.

We found that, rather than flattening the patches and passing through a linear layer, it is better
for fine tuning, to pass the patches through a channel-wise linear layer followed by flattening. A
channel-wise linear layer, being a linear layer applied over the channels for all time steps in the
patch. This simplifies the fine tuning steps, since channel-wise embedding effective functions as a
learned channel mapping, and also has a lot fewer parameters and is therefore easier to pre-train.
Following the embedding layer, we encode each of the tokens using a sinusoidal positional encoding
(22), rather than a learned positional encoding. The benefit of sinusoidal positional encoding is that
it is static and does not require retraining during transfer learning.

Our encoder resembles the default transformer encoder as presented by the ”Attention is all you
need” paper(22), consisting of n multihead attention layers, using a layernorm and the GELU
activation.

On top of the transformer encoder we have a projection head, which servers to reconstruct the
original raw EEG waves. The projection head consists of 2 consecutive blocks with a Linear layer,
a layer normalization, and the GELU activation function.

3.2 Pre-training

The pretraining setup is based around a selected part of the Temple University Hospital EEG Data
Corpus (TUEG) datasets(30). The TUEG dataset is a large assembly of EEG recordings going as far
back as 2002. The dataset consists mainly of recordings of patients, whom experience different types
of mental problems such as seizures, and has a binary target class on whether any abnormalities are
present in a sample.

We downloaded 204GB of the TUEG data, yielding 13380 datasubsets, which was further filtered by
a recording frequency of 250Hz and 30 channels, finally yielding 1490 datasubsets. This represents
833 subjects. The frequency was selected on basis of the recording frequency of the BCI dataset,
and selecting 30 channels yields the highest number of datasubsets. We narrowed down the TUEG
dataset based on these parameters to limit the otherwise excessive prepossessing steps required for
transfer learning.

For both pre-training and fine tuning all the datasets are re-sampled to a frequency of 250hz, match-
ing the subset of the TUEG dataset. For all datasets we use exponential moving standardization to
normalize the data (31). For pre-training we use no band-pass filtering.

Our augmentation strategy involves masking out tokens similar to the way likes of BERT(16).
During pre-training we employ a mix of two different masking approaches: random masking and
block masking. With random masking, each token is assigned a probability 0.4 of being masked,
meaning that on average 40% of the tokens will be masked out. With block masking a contiguous
block of 40% of the tokens are masked. We assign a 50% probability of using either random or block
masking for any given batch.

On top of masking we explore few different EEG based augmentations. We make use of the aug-
mentation library from the braindecode library (32).

In pretraining we make use of the AdamW optimizer with a learning rate of 1e-4, with the beta
values set to (0.5, 0.99). We also use a weight decay of 0.01 similar to the BERT paper(16).

6



3.2.1 Reconstruction loss

For the reconstruction loss we calculate a smoothed L1 distance between the predicted reconstruction
and the raw EEG signal input. In testing we found that a smooth L1 loss worked better than a
simple L1 or L2 loss, which are widely used for auto encoders. Figure 3.2.1 shows the smooth L1
loss.

Figure 2: Reconstruction loss

3.3 Finetuning

To test how successful the model is at learning features we fine-tune on 3 other datasets. These
datasets can be seen in table 1.

Dataset Type Subjects Channels Frequency Targets
BCIC 4(33) - dataset 2a Motor Imagery 9 22 250 4
P300 - dataset 1(34) ERP 8 8 256 2
P300 - dataset 2(35) ERP 10 16 256 2

Table 1: Datasets used for fine-tuning

After pre-training the encoder copied to be used for transfer learning. The encoder itself is the only
thing saved from pre-training. Since the shapes number of channels are different across the dataset,
we train a new embedding layer for each dataset.

For some of our experimentation we leave the encoder frozen, while only training the embedding
layer and the classification head of the model. This is the a good way to evaluate the usefulness of
the features output by the encoder. It is common in self-supervised learning to evaluate the quality
of representation by linear evaluation. In linear evaluation the encoder is left frozen and a linear
layer is trained on top of the encoder for a specific classification task.

For fine-tuning, the encoder is also initially also left frozen in order to bootstrap the new embedding
layer. For this part we use a relatively high learning rate of 0.01 or 0.001. After bootstraping for
certain number of steps, depending on the dataset, we unfreeze the encoder and train the whole
model again. This time we use a much lower learning rate of 1e-4, same as used in pre-training.

3.4 Training Setup

We train the models on Google Colab(36), using a Tesla 100 GPU, while we log the experiments
using WeightsAndBiases(WandB)(37). The models are saved to WandB throughout the training and
after training is complete. Our setup is based on Pytorch, and relies on the Pytorch Lightning(38)
library.

4. Experiments

The models we explored are all of a significant complexity, and in order to select and optimize the
right architecture, we have run several experiments to determine the efficacy of different approaches

7



and hyper-parameter settings. We examine different model architectures w.r.t loss types, different
data augmentations, size of the models and how scaling of the number of subjects affect the perfor-
mance. To get an accuracy estimate we make a few runs over a single subject of the BCI4-2a and
average the scores on the testing set.

4.1 Study of Frameworks

In the initial part testing, we experimented with different self-supervised approaches. With these
test we decided which approach would be worth exploring further. The test includes three types
of losses: a reconstruction loss, a contrastive loss and a non-contrastive loss. The testing is done
using a model of embedding dimension of 256 and a depth of 6. In this initial test of framework, we
evaluated performance by both pre-training and fine tuning on the BCI4-2a dataset and comparing
using the test accuracy.

4.1.1 Contrastive framework

The we apply the SimCLR framework(15) to the same transformer model we use. In the SimCLR
framework you create two version of the same input using augmentation. Those two versions are
then fed through a model, where the contrastive loss NT-Xent, is applied between the two outputs.

4.1.2 Non-contrastive framework

The non-contrastive loss is modeled after Data2Vec(23), which is basically a transformer based
version of BYOL(20). The setup here is having 2 models: a student model and a teacher model,
where the teacher is an exponential moving average of the student. The teacher receives the raw
input and the student gets a masked version. We then try to minimize the distance between the
student’s and teacher’s outputs. Data2Vec also uses a smooth L1 loss.

4.1.3 Autoencoder framework

The autoencoder is inspired by the BERT(16) family of models. With this setup, the input is
augmented, then passed through the model. The model then tries to reconstruct the original, non-
augmented input. Here we again use a smooth L1 loss.

Frameworks Linear evaluation - accuracy
Constrastive 0.684
Non-contrastive 0.7674
Autoencoder 0.8546

Table 2: Performance comparison of different frameworks

Table 2 shows the performance of different types of frameworks. The Autoencoder framework clearly
outperforms both the contrastive and non-contrastive frameworks, and as such we choose to focus
on the Autoencoder framework.

4.2 Augmentation

We set out the test different masking and augmentations methods. When using the braindecode
augmentation library with their AugmentedDataloader, individual datapoints are replaced by an
augmented version based on the given probability. We experimented with shuffling the channels,
and doing frequency shifts, time reversal, along with Gaussian noise. The experiments were con-
ducted with only one augmentation at a time, to see the effects in isolation. The effects on these
augmentations are all based on a given input probability. In the experiments with the braindecode

8



augmentations, we strived to use the same parameters for the model, as to isolate the effects of
each augmentation, and make comparing these different augmentations easier. Here, we also set the
masking probability to 0%, as masking has shown to have a notable impact on the loss. We trained
a model with no augmentation or masking to use as a baseline.

Augmentation 25% 33% 50% 80% 100%
Channel shuffle 0.6725 0.6591 0.6824 0.6406 0.6436
Frequency shift 0.7014 0.641 0.6122 0.5706 0.6458
Time reverse 0.6334 0.6064 0.6488 0.5657 0.5958
Gaussian noise 0.5517 0.5385 0.6181 0.6629 0.643
Baseline 0.6571

Table 3: Results from experiments with data augmentation

As seen in table 3, the different augmentation methods have very different ”optimal” probability-
values. Trends can be seen among Gaussian noise and Frequency shift, but for channel shuffle and
time reverse, the values seem more random. Pre-training the model with a combination of these
augmentations at their ”optimal” probabilities yielded poorer performance than the baseline, with
a maximum validation accuracy of 0.6011. Fine-tuning the model yielded an accuracy of 0.7618.
It is likely that the optimal probabilities for the augmentations when used in combination are very
different. Shuffling channels with a 50%, along with frequency shift with a 25% probability, yielded
better results than the baseline, suggesting that these augmentation techniques are effective w.r.t
pre-training.

Mask type Random Cut-out Mixed
Validation acc 0.7326 0.7244 0.724

Table 4: Results of different masking techniques

Earlier experiments suggested that generally a masking percentage of 40% yielded the best per-
formance. The experiments with masking techniques, seen in figure 4, shows a low discrepancy
between the performance of the different applied techniques. Random masking seems to perform
slightly better than cut-out and mixed.

4.3 Patch size

We set out to test for the most effective patch size for self-supervised training. The patch size
determines how many time steps are included for each token. The patch size also has an impact of
the embedding, because of the way the channel projection is done. Since the the number of values
has to add up to the embed size set for the model, whenever you increase the patch size, the number
of neurons in the channel projection has to be decreased as a result.

We test with a embedding dimension of 512 and a depth of 8 on the model. We test three different
patch sizes: 8, 16, and 32.

With a patch size of 8, 16 and 32, the channel projection size will be 64, 32, and 16 respectively.

patch size: 4 patch size: 8 patch size: 16 patch size: 32
0.6964 0.6976 0.6907 0.7146

Table 5: Results of experiments with patch size

9



We train a linear evaluate on all subjects of the BCI4-2a dataset with the metric being accuracy. The
results clearly show that a patch size of 8 is subpar. Interestingly we do not see a large discrepancy,
between the patch sizes of 16 and 32.

4.4 Model size

We test how the size of the model affects performance. The size of the model in our setup is mainly
determined by the embed size parameter

Train type Embed size: 128 Embed size: 256 Embed size: 512
Pre-train 0.6938 0.7306 0.7146
Fine tuning 0.6732 0.6338 0.7415

Table 6: Results of experiments with model size

Table 6 shows a trend with model size. There is some variation in the results, but overall the results
suggest that performance increases with the model size.

4.5 Scaling

For this experiment we evaluate the impact of having more samples to train on. The model em-
bed size is set to 512 with a patch size of 16. Our hypothesis is that training on a higher number of
subjects results in better performance.

10 50 100 300 500
0.6595 0.6692 0.7114 0.6932 0.7212

Table 7: Results of experiments with different amount of subjects

As seen in table 7, as the number of subjects increases, the model performs better. It is interesting
to note that the performance is lower with 300 subjects compared to both 100 and 500 subjects, but
we contribute this to random variations.

5. Results

We evaluate the capability of our pretraining framework by finetuning it on a number of EEG
datasets and comparing it against popular supervised learning models. We eavulate on the BCI4-
2a, P300-1 and P300-2 datasets from table 1.

BCI4- 2a S1 S2 S3 S4 S5 S6 S7 S8 S9
EEGResnet(39)(40) 0.7768 0.4506 0.7712 0.5027 0.4185 0.4295 0.7599 0.7198 0.6858
TCN(41)(42) 0.5258 0.4075 0.6836 0.3877 0.4243 0.4519 0.543 0.7141 0.6494
ShallowFBCSPNet(39)(43) 0.7292 0.434 0.7867 0.5908 0.5438 0.4899 0.7955 0.7126 0.7053
EEGNetv4(44)(45) 0.7069 0.4022 0.8918 0.4836 0.4671 0.4793 0.7507 0.6069 0.7702
Ours - Linear Eval 0.5864 0.348 0.6007 0.3649 0.3922 0.3819 0.5871 0.5101 0.5738
Ours - Finetune 0.7429 0.4363 0.8448 0.3926 0.4505 0.4298 0.7146 0.6309 0.7009

Table 8: Results of benchmarks using the BCI4 Test set

10



P300 - 1 S1 S2 S3 S4 S5 S6 S7 S8
EEGResnet(39)(40) 0.8067 0.8449 0.8362 0.7837 0.8338 0.8033 0.8495 0.859
TCN(41)(42) 0.8343 0.8362 0.8361 0.829 0.8357 0.8357 0.8333 0.8329
ShallowFBCSPNet(39)(43) 0.8484 0.8656 0.8813 0.8672 0.8516 0.8797 0.8766 0.9
EEGNetv4(44)(45) 0.8067 0.8633 0.8362 0.819 0.8552 0.8286 0.8776 0.8695
Ours - Linear Eval 0.8438 0.8271 0.8367 0.8367 0.8336 08219 0.839 0.8325
Ours - Finetune 0.8333 0.8524 0.84 0.8533 0.857 0.8533 0.86 0.8905

Table 9: Results of benchmarks using the p300-1 dataset

P300 -2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
EEGResnet 0.8426 0.86 0.8206 0.8148 0.8866 0.809 0.8067 0.8183 0.8993 0.912
TCN 0.8047 0.8229 0.8385 0.8099 0.8359 0.849 0.8724 0.8438 0.875 0.8963
ShallowFBCSPNet 0.838 0.8552 0.8229 0.8356 0.8704 0.8125 0.7882 0.8391 0.8669 0.8867
EEGNetv4 0.8889 0.9144 0.86 0.8854 0.9248 0.8588 0.8669 0.897 0.9109 0.9282
Ours - Linear Eval 0.8391 0.8519 0.8275 0.8738 0.9132 0.8519 0.8368 0.8414 0.853 0.8553
Ours - Finetune 0.8704 0.8634 0.8935 0.8935 0.919 0.8866 0.8206 0.8762 0.9005 0.9306

Table 10: Results of benchmarks using the p300-2 dataset

6. Discussion

The constraints of this project, both in time as well as computing resources, meant that we were
unable to scale the framework further. However, our experiments in sections 4.4 and 4.5 suggest
that the framework is able to scale further. It is clear from our scaling experiments, and it is also
our intuition from testing a variation of different models, that using samples from more subjects
yields better results. This of course is not surprising, deep learning tends to perform better with
more data. We also believe that there are gains to be had by increasing model size. The model size
experiments indicate that our biggest model of embed size 512 performs best out of those tested.
We would like to be able to train an even bigger model. Because of the time constraints, we have
also been limited in the length of the runs we could do. The performance graphs from the different
experiments suggest that better performance could have been achieved if we let the models pre-train
for longer. Fine-tuning on our proposed model at intermediary train-step intervals confirms that
more pre-training increases the performance.

Augmentation is usually quite important, but our experiments shows a limited impact of the aug-
mentation techniques we used. Further experiments are needed to verify whether it is simply the
techniques themselves, or whether we have not succeeded in finding the optimal values. Further
augmentation techniques should also be explored.

In the experiments we saw some variability, for instance with scaling the number of subjects during
pre-training. We attribute these variations to random factors. To confirm this, we would have to
re-run the respective experiments, however this has not been possible due to time constraints.

For the framework we utilize a channel-wise embedding, which we retrain in order to transfer to
other datasets. This has proven effective, though it would be interesting to test this against the
traditional way of channel mapping.

For the benchmark we ended up doing evaluation on a single subject. This was a measure to save
time and is clearly less than ideal. Evaluating in an intra-subject manner would have been preferable,
since that is how we conduct the benchmarks. Even doing inter-subject, where we train a classifier

11



over all subject could have been better in terms of evaluating how well our pre-trained encoder
produces features.

Considering our constraints, we still have managed to achieve performance comparable to supervised
methods, which given the comparatively small size of our model compared to the BENDR model,
we find promising.

7. Conclusion

In this paper we present a self-supervised framework for pre-training on EEG data. We pre-train
on the subset of the large TUEG dataset. We then evaluate the trained models on 4 different
datasets. We show that our framework is able to learn useful features from pre-training on the
TUEG dataset. We demonstrate that it is possible to transfer a pre-trained model to dataset it
has never seen before. The framework can produce comparable results to what supervised models
showcases. Our approach however, would not compare favourably to newer state-of-the-art models.
We argue, however that the framework should be able to scale with more data and potentially with
bigger models. Three factors can be scaled with more compute: model size, number of samples and
the length of pre-training.

12



Acknowledgements

Special thanks to Dalin Zhang for supervising this project, and providing feedback.

References

[1] Simanto Saha, Khondaker A. Mamun, Khawza Ahmed, Raqibul Mostafa, Ganesh R. Naik, Sam
Darvishi, Ahsan H. Khandoker, and Mathias Baumert. Progress in brain computer interface:
Challenges and opportunities. Frontiers in Systems Neuroscience, 15, 2021. https://www.

frontiersin.org/article/10.3389/fnsys.2021.578875.

[2] Andrea Biasiucci, Benedetta Franceschiello, and Micah M. Murray. Electroencephalography.
Current Biology, 29(3):R80–R85, 2019. https://www.sciencedirect.com/science/article/
pii/S0960982218315513.

[3] Yannick Roy, Hubert Banville, Isabela Albuquerque, Alexandre Gramfort, Tiago H Falk, and Jo-
celyn Faubert. Deep learning-based electroencephalography analysis: a systematic review. Jour-
nal of Neural Engineering, 16(5):051001, aug 2019. https://doi.org/10.1088/1741-2552/

ab260c.

[4] Neuromarketing Science Business Association. Signal to noise in eeg. https://nmsba.com/

neuromarketing-companies/neuromarketing-2021/signal-to-noise-in-eeg, 2021. Last
visited 16-06-2021.

[5] U. Rajendra Acharya, S. Vinitha Sree, G. Swapna, Roshan Joy Martis, and Jasjit S. Suri.
Automated eeg analysis of epilepsy: A review. Knowledge-Based Systems, 45:147–165, 2013.
https://www.sciencedirect.com/science/article/pii/S0950705113000798.

[6] B.T. Klassen, J.G. Hentz, H.A. Shill, E. Driver-Dunckley, V.G.H. Evidente, M.N. Sabbagh,
C.H. Adler, and J.N. Caviness. Quantitative eeg as a predictive biomarker for parkinson disease
dementia. Neurology, 77(2):118–124, 2011. https://n.neurology.org/content/77/2/118.

[7] M. M. Lansbergen, M. van Dongen-Boomsma, J. K. Buitelaar, and D. Slaats-Willemse. Adhd
and eeg-neurofeedback: a double-blind randomized placebo-controlled feasibility study. Jour-
nal of Neural Transmission, 118, 2011. https://link.springer.com/article/10.1007/

s00702-010-0524-2.

[8] Turan M. Itil. Qualitative and Quantitative EEG Findings in Schizophrenia. Schizophrenia
Bulletin, 3(1):61–79, 01 1977. https://doi.org/10.1093/schbul/3.1.61.

[9] Krupal Sureshbai Mistry, Pablo Pelayo, Divya Geethakumari Anil, and Kiran George. An
ssvep based brain computer interface system to control electric wheelchairs. pages 1–6, 2018.
https://ieeexplore.ieee.org/document/8409632.

[10] Dr. Rima E. Laibow MD, Albert N. Stubblebine MSc, Henry Sandground, and Michel Bounias
DSc. Eeg-neurobiofeedback treatment of patients with brain injury: Part 2: Changes in eeg
parameters versus rehabilitation. Journal of Neurotherapy, 5(4):45–71, 2002. https://doi.

org/10.1300/J184v05n04_04.

[11] William Yaputra Budiman, Handayani Tjandrasa, and Dini Adni Navastara. Classification of
eeg signals using common spatial pattern-principle component analysis and interval type-2 fuzzy
logic system. In 2016 International Conference on Information Communication Technology and
Systems (ICTS), pages 85–89, 2016. https://ieeexplore.ieee.org/document/7910278.

[12] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05 2015.
https://www.nature.com/articles/nature14539.

13

https://www.frontiersin.org/article/10.3389/fnsys.2021.578875
https://www.frontiersin.org/article/10.3389/fnsys.2021.578875
https://www.sciencedirect.com/science/article/pii/S0960982218315513
https://www.sciencedirect.com/science/article/pii/S0960982218315513
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1088/1741-2552/ab260c
https://nmsba.com/neuromarketing-companies/neuromarketing-2021/signal-to-noise-in-eeg
https://nmsba.com/neuromarketing-companies/neuromarketing-2021/signal-to-noise-in-eeg
https://www.sciencedirect.com/science/article/pii/S0950705113000798
https://n.neurology.org/content/77/2/118
https://link.springer.com/article/10.1007/s00702-010-0524-2
https://link.springer.com/article/10.1007/s00702-010-0524-2
https://doi.org/10.1093/schbul/3.1.61
https://ieeexplore.ieee.org/document/8409632
https://doi.org/10.1300/J184v05n04_04
https://doi.org/10.1300/J184v05n04_04
https://ieeexplore.ieee.org/document/7910278
https://www.nature.com/articles/nature14539


[13] Iqbal H. Sarker. Deep learning: A comprehensive overview on techniques, taxonomy, ap-
plications and research directions. SN Computer Science, 2(6):420, Aug 2021. https:

//doi.org/10.1007/s42979-021-00815-1.

[14] Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bendr: using transformers
and a contrastive self-supervised learning task to learn from massive amounts of eeg data.
https://arxiv.org/abs/2101.12037, 2021.

[15] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020. https://

arxiv.org/abs/2002.05709.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.
http://arxiv.org/abs/1810.04805.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. 2019. https://arxiv.org/abs/1911.05722.

[18] Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, and Pattie Maes. Contrastive represen-
tation learning for electroencephalogram classification. MLH4H, 2020. http://proceedings.

mlr.press/v136/mohsenvand20a/mohsenvand20a.pdf.

[19] Joseph Y. Cheng, Hanlin Goh, Kaan Dogrusoz, Oncel Tuzel, and Erdrin Azemi. Subject-aware
contrastive learning for biosignals. CoRR, abs/2007.04871, 2020. https://arxiv.org/abs/

2007.04871.

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your
own latent: A new approach to self-supervised learning. 2020. https://arxiv.org/abs/2006.
07733.

[21] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. 2021. https:

//arxiv.org/abs/2104.14294.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
http://arxiv.org/abs/1706.03762.

[23] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.
data2vec: A general framework for self-supervised learning in speech, vision and language.
CoRR, abs/2202.03555, 2022. https://arxiv.org/abs/2202.03555.

[24] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. https://arxiv.org/abs/2005.14165.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020. https://arxiv.org/abs/2010.11929.

14

https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://arxiv.org/abs/2101.12037
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1911.05722
http://proceedings.mlr.press/v136/mohsenvand20a/mohsenvand20a.pdf
http://proceedings.mlr.press/v136/mohsenvand20a/mohsenvand20a.pdf
https://arxiv.org/abs/2007.04871
https://arxiv.org/abs/2007.04871
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2202.03555
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2010.11929


[26] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and Jinyu Li. Developing real-time streaming
transformer transducer for speech recognition on large-scale dataset. CoRR, abs/2010.11395,
2020. https://arxiv.org/abs/2010.11395.

[27] Seo-Hyun Lee Young-Eun Lee. EEG-Transformer: Self-attention from Transformer Architec-
ture for Decoding EEG of Imagined Speech. https://arxiv.org/pdf/2112.09239.pdf.

[28] Yunzhe Tao, Tao Sun, Aashiq Muhamed, Sahika Genc, Dylan Jackson, Ali Arsanjani, Suri
Yaddanapudi, Liang Li, and Prachi Kumar. Gated transformer for decoding human brain eeg
signals. 2021:125–130, 11 2021. https://ieeexplore.ieee.org/document/9630210.

[29] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A
framework for self-supervised learning of speech representations. CoRR, abs/2006.11477, 2020.
https://dblp.org/rec/journals/corr/abs-2006-11477.

[30] Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers
in Neuroscience, 10, 2016. https://www.frontiersin.org/article/10.3389/fnins.2016.

00196.

[31] Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless C. Fowlkes, Zhuowen Tu,
and Stefano Soatto. Exponential moving average normalization for self-supervised and semi-
supervised learning. CoRR, abs/2101.08482, 2021. https://arxiv.org/abs/2101.08482.

[32] Braindecode. Augmentation. https://braindecode.org/api.html#augmentation.

[33] Bci competitions. https://bbci.de/competition/iv/.

[34] Angela Riccio, Luca Simione, Francesca Schettini, Alessia Pizzimenti, Maurizio Inghilleri, Marta
Olivetti Belardinelli, Donatella Mattia, and Febo Cincotti. Attention and p300-based bci per-
formance in people with amyotrophic lateral sclerosis. Frontiers in Human Neuroscience, 7,
2013. https://www.frontiersin.org/article/10.3389/fnhum.2013.00732.

[35] Aricò P, Aloise F, Schettini F, Salinari S, and Mattia Dand Cincotti F. Influence of p300 latency
jitter on event related potential-based brain-computer interface performance. Neural Eng, 2014.
https://pubmed.ncbi.nlm.nih.gov/24835331.

[36] Google. Colab. https://colab.research.google.com/.

[37] WandB. Wandb. https://wandb.ai.

[38] Pytorch Lightning. Pytorch lightning. https://www.pytorchlightning.ai/.

[39] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard,
and Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visu-
alization. Human Brain Mapping, 38(11):5391–5420, 2017. https://onlinelibrary.wiley.

com/doi/abs/10.1002/hbm.23730.

[40] Braindecode. Eegresnet. https://braindecode.org/generated/braindecode.models.

EEGResNet.html.

[41] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling. https://arxiv.org/abs/1803.01271,
2018.

[42] Braindecode. Temporal convolutional network (tcn). https://braindecode.org/generated/
braindecode.models.TCN.html.

15

https://arxiv.org/abs/2010.11395
https://arxiv.org/pdf/2112.09239.pdf
https://ieeexplore.ieee.org/document/9630210
https://dblp.org/rec/journals/corr/abs-2006-11477
https://www.frontiersin.org/article/10.3389/fnins.2016.00196
https://www.frontiersin.org/article/10.3389/fnins.2016.00196
https://arxiv.org/abs/2101.08482
https://braindecode.org/api.html#augmentation
https://bbci.de/competition/iv/
https://www.frontiersin.org/article/10.3389/fnhum.2013.00732
https://pubmed.ncbi.nlm.nih.gov/24835331
https://colab.research.google.com/
https://wandb.ai
https://www.pytorchlightning.ai/
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730
https://braindecode.org/generated/braindecode.models.EEGResNet.html
https://braindecode.org/generated/braindecode.models.EEGResNet.html
https://arxiv.org/abs/1803.01271
https://braindecode.org/generated/braindecode.models.TCN.html
https://braindecode.org/generated/braindecode.models.TCN.html


[43] Braindecode. Shallowfbcspnet. https://braindecode.org/generated/braindecode.

models.ShallowFBCSPNet.html.

[44] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P
Hung, and Brent J Lance. EEGNet: a compact convolutional neural network for EEG-
based brain–computer interfaces. Journal of Neural Engineering, 15(5):056013, jul 2018.
https://doi.org/10.1088%2F1741-2552%2Faace8c.

[45] Braindecode. Eegnetv4. https://braindecode.org/generated/braindecode.models.

EEGNetv4.html.

16

https://braindecode.org/generated/braindecode.models.ShallowFBCSPNet.html
https://braindecode.org/generated/braindecode.models.ShallowFBCSPNet.html
https://doi.org/10.1088%2F1741-2552%2Faace8c
https://braindecode.org/generated/braindecode.models.EEGNetv4.html
https://braindecode.org/generated/braindecode.models.EEGNetv4.html

	1 Introduction
	2 Related works
	2.1 Self-supervised Learning

	3 Method and Experimental setup
	3.1 Proposed method
	3.2 Pre-training
	3.2.1 Reconstruction loss

	3.3 Finetuning
	3.4 Training Setup

	4 Experiments
	4.1 Study of Frameworks
	4.1.1 Contrastive framework
	4.1.2 Non-contrastive framework
	4.1.3 Autoencoder framework

	4.2 Augmentation
	4.3 Patch size
	4.4 Model size
	4.5 Scaling

	5 Results
	6 Discussion
	7 Conclusion
	References

