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Abstract—Brain-computer interfaces (BCIs) based on elec-
troencephalography (EEG) allow users to control external in-
struments with brain signals and can be used to aid in the
rehabilitation of patients with loss of motor function. An online
application of such a system requires a robust classifier, but only
few studies focus on evaluating BCI systems for online use. This
paper proposes an end-to-end BCI pipeline for online application,
which encompasses extensive preprocessing and automatic label-
ing of EEG signals and either a state-of-the-art deep-learning
feature extraction method and classifier or a gradient-based
classifier. An online simulation suite is applied to evaluate the
system’s performance in an online setting. We collect 220 traces,
each consisting of 20 self-paced motor task executions, from
10 subjects for use in evaluations. We construct the pipeline
to make the process as hands-off as possible. The pipeline
automatically labels training data for the classifiers by cross-
referencing EEG and electromyography (EMG) data recorded
simultaneously. Our automatic labeling method shows that it can
contend well with noisy data compared to an earlier method. The
pipeline includes a ViTransformer deep-learning classifier and
XGBoost, a gradient-based classifier. We evaluate the classifiers
online by simulating the classifiers’ rate to receive input data. Our
experiments show that a well-performing offline classifier does
not necessarily translate to a well-performing online classifier.
From online simulation experiments, XGBoost achieves the best
results where it predicts 66.7% of the movements and achieves an
81.5% ± 4.2 precision, a 0.45 s ± 0.31 mean prediction latency,
and a 2.33 s ± 1.20 mean prediction latency false positives on a
single subject.

Index Terms—Brain-Computer Interface (BCI), Movement Re-
lated Cortical Potential (MRCP), Electroencephalogram (EEG),
Electromyography (EMG), Onset Detection, Automatic Labeling,
Machine Learning, Data Acquisition, Self-paced, Simulation,
Online Evaluation

I. INTRODUCTION

For some individuals who have lost motor function due to
neurological injuries or disease, the brain is the only place
where the intention of body movement can be detected. Thus,
many studies are invested in decoding motor intentions in
the human brain [1]. Brain-computer interfaces (BCI) aim to
translate brain activity into commands that capture movement
intentions, thereby enabling partial or complete control of
external devices. BCI systems can thus help patients suffering
from loss of motor abilities by, e.g., enabling control of a
wheelchair [2] or enabling the control of a robotic glove, thus
helping restore motor abilities [3]. The latter application was
the focus of our previous study [4].

Individuals’ motor intentions, being either imagery or exe-
cution, can be decoded using electroencephalography (EEG),
an inexpensive and non-invasive method of measuring brain
activity. The resulting electrograms capture voltage fluctua-
tions from the brain on the scalp’s surface and are obtained
from electrodes placed on the scalp. The brain’s motor cortex
is essential for planning and executing motor commands [1].

Traditionally, BCI studies adopt cue-based approaches,
where test subjects follow a timed auditory or visual cue from
an external device to execute a movement or motor imagery
(MI). This makes it possible to determine the time points
of the signals that signify movement or MI and label the
data accordingly. However, it can also lead to an association
between the afferent stimulus from a timed cue and the motor-
cortical activity [5], which does not map well to a real-world
online-BCI, where patients do not follow a visual or auditory
cue to initiate a movement. Also, patients with cognitive and
perceptual deficiencies that hinder their ability to attend to the
task and predict the cue occurrence may have difficulty with
the cue-based method [5], which requires initial training in
reacting to the cue. In contrast, a self-paced approach allows
subjects to execute movements at their own initiative and pace,
i.e., in a manner closer to a real-world scenario.

Different paradigms of self-paced motor-related signals
within EEG can be used for detecting motor intention, such
as sensorimotor rhythms (SMR) and movement-related cortical
potentials (MRCPs) [6]. MRCPs are naturally occurring pat-
terns in EEG signals that appear approximately two seconds
before the point of motor imagery or execution [7]. Unlike
SMR, no specific neurofeedback training of individuals is
required to elicit MRCPs [8], and MRCPs can be recorded
from both healthy and non-healthy individuals performing self-
paced movements.

In the self-paced approach, electromyography (EMG) sig-
nals can be recorded alongside EEG signals from a subject
to take over the role of timed cues when having to label
movements in EEG signals. EMG signals are recorded from
skeletal muscle activity using non-invasive electrodes placed
on the subject’s skin on top of the activated muscles during
movement execution. The resulting signals capture the muscle
activity during the subject’s movements. These signals can
then be cross-referenced with the EEG signals to distinguish
between rest and movement within EEG signals, thus enabling
labeling of the data to obtain a ground-truth labeled training set



Fig. 1: Diagram of our proposed pipeline. EEG and EMG signals are recorded and used in the pipeline’s offline and online simulation parts.
In the offline part, we use EMG signals to create labels before training samples, and features are extracted from the EEG signals and fed
to a classifier. The trained classifier is fed EEG data continuously in the online simulation part. A dwell heuristic assesses the predictions
before we execute a movement execution. Finally, we evaluate the movement executions.

for a movement intention classifier. This process is currently
done manually [3], [4], making it prone to human errors and
challenging to apply to a larger amount of data.

Online experimentation and evaluation are more labor-
intensive and challenging in terms of consistency between
online experiments and how to assess the outcome. It also
poses the challenge of processing signals in real-time [9].
These challenges are why few BCI studies focus on online pre-
dictions when evaluating system performance. Furthermore,
many studies are based on datasets from BCI Competitions,
which limits the ability to translate the results into a real-
world scenario [10]. In contrast to offline classification, where
the entirety of the training data is available for training
ahead of time, online classification implies that data must be
processed in real-time, i.e., only past and present data points
are available, not future data points. Validation metrics also
differ between offline and online studies. A BCI with high
accuracy in an offline study does not necessarily have high
performance or usability in real, online use cases. A well-
performing online BCI system must offer not only a high true
positive (TP) rate but also a low false positive (FP) rate. For
example, in the use case of a robotic soft glove, false positive
predictions can lead to undesired movements, which, in turn,
may cause unwanted and potentially dangerous situations.

The BCI literature features a variety of algorithms for
extracting features from EEG signals. A recent survey [11]
states that the common spatial pattern (CSP) algorithm is the
most used feature extraction algorithm for EEG-BCIs. The
combination of CSP and a support-vector machine (SVM)
is the most common approach to classification. In general,
machine learning is adopted widely for classification tasks in
EEG-BCIs. XGBoost is a machine learning algorithm based on
the gradient boosting framework that employs a linear model
solver and tree learning concepts. XGBoost is commonly
used to achieve state-of-the-art results on real-world scale
problems [12] but has yet to be applied widely in EEG-
BCIs. We propose an implementation of XGBoost for use in
the EEG-BCI field. Deep learning classifiers have achieved
state-of-the-art performance in various domains, including in

speech recognition, object detection, and beyond [13]. In
EEG-BCI, classifiers based on convolutional neural networks
(CNNs) are used most frequently [14], [15]. Transformers [16]
have recently shown high performance across a multitude of
tasks [17]–[19]. However, they have yet to see a widespread
application in EEG-BCI. Unlike XGBoost, a transformer relies
entirely on self-attention to compute its input and output
representations. We implement the ViTransformer (ViT) [17]
classifier, a version of the original transformer classifier that
works on images, and we compare it to existing EEG-BCI
deep-learning solutions.

This report presents an end-to-end pipeline for online pre-
diction of hand opening and closing movements, as shown
in Figure 1 for control of a robotic soft glove. The pipeline
involves four crucial steps: automatic labeling, feature extrac-
tion, classification, and online evaluation through simulation.
We evaluate the pipeline in a series of experiments to gain
insight into how well the XGBoost and ViT classifiers perform
in an online setting on self-paced data. We propose an online
simulation method to get closer to a standardized method of
evaluating BCIs that reflects their performance during online
use and can be applied to all classifiers.

All experiments are conducted on new self-paced EEG
and EMG data recorded from ten subjects in the BCI-lab
at Aalborg University in collaboration with the university’s
Health Science and Technology Department.

In summary, our study makes the following main contribu-
tions:

• We contribute a new dataset, recording EEG, EMG, and
electrooculography (EOG) data from ten healthy subjects
as they perform self-paced hand opening and closing
movements mimicking the control of a robotic soft glove.
Rather than following a specified cue, the subjects move
at their own pace and will. We record a large number of
movements from each subject during a single session.
From each subject, we have acquired 440 movement
executions.

• We propose a threshold-based clustering algorithm to
detect movement onsets within EMG signals and de-
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fine several proximity heuristics to cluster the detected
movement onsets automatically. We cross-reference the
detected movement onsets with the recorded EEG signals,
thus enabling automatic training sample labeling.

• We evaluate the classification performance for move-
ment detection of the XGBoost and ViT algorithms,
as these machine learning algorithms have shown great
performance in other fields and have yet to be applied
widely in the EEG-BCI field. We compare the feature
extraction and classification methods we propose with
already established methods.

• We propose an online simulation suite to conduct em-
pirical studies, which can be used on any classifier
configuration. We differentiate the evaluation of online
BCI-systems from the evaluation of offline systems by
utilizing different evaluation metrics that not only focus
on accuracy. Our online evaluation metrics include the
mean prediction latency (MPL), i.e., the time between a
prediction and its associated movement onset.

The remainder of the paper is organized as follows: Sec-
tion II presents existing related methods. Then, Section III in-
troduces the data acquisition process and the subjects involved.
Section IV describes our proposed automatic labeling method,
and Section V. In Section VI, we present our experimental
findings. Section VII encompasses discussion and future di-
rection. Lastly, Section VIII concludes on our findings.

II. RELATED WORK

This study’s main contributions cover different areas of
BCIs. Therefore, this section is twofold, where the first part
encompasses related work that proposes labeling self-paced
data using EMG signals and evaluating the feasibility of a BCI-
system’s use in real-time. The latter describes related studies
concerning machine learning applications for classifying var-
ious EEG events.

A. Labeling of Self-Paced Data & Online Evaluation

In a previous study [4], we focus on minimizing the manual
labor required of experimenters in the aforementioned proce-
dure [3]. Specifically, we propose a new procedure to label
EEG signals detected movement onsets from EMG signals
automatically. This includes a threshold-based clustering algo-
rithm that detects the individual points of movement in EMG
data using size and distance measures. However, the algorithm
is sensitive to noisy signals and has difficulty encapsulating
the critical parts of a movement, such as the onset and end
of a movement, resulting in issues in determining the correct
number of moments. We then use the movement onsets to find
peak negativity of MRCPs, which is a naive approach because
it is inconsistent on a sample-by-sample basis, which can lead
to poor labeling and hence can impair the final evaluation.
The evaluation phase includes an online simulation suite that
mimics a real-time procedure, which includes new metrics
for evaluating the performance of our BCI under real-time
constraints.

Rashid, U. et al. [20] study the feasibility of automatically
labeling MRCPs using only EEG signals. The proposed meth-
ods derive the onsets, amplitudes at the onsets, the slopes of
two distinct MRCP features, and the time and amplitude of a
third distinctive MRCP feature. They evaluated the method on
a dataset of simulated MRCPs and a dataset of EEG signals
and found that the performance of the proposed method was
comparable to that of manual labeling by domain experts.
They conclude that the method can be used to obtain robust
estimates for the MRCP features automatically.

Mondini et al. [21] propose a modular EEG-based BCI sys-
tem to train subjects to elicit MI in EEG signals for the control
of a virtual arm. They use CSP for feature extraction and an
SVM for classification. The system is tested on ten subjects but
an online evaluation is only performed on subjects that reach a
criterion level of 70% accuracy during earlier training phases,
which was 7. They report that the most significant limitation of
their system is EEG artifacts, particularly muscular artifacts.
A cue-based approach is applied when collecting data during
their training phases, and the system does not contain any
online artifact rejection method, but an experienced inspector
manually removes signals that exhibit systematically occurring
artifacts after each training session.

Savić et al. [3] collect data in self-paced experiments to
predict MRCPs for online control of an assistive active glove.
They utilize a manual threshold for EMG signals collected si-
multaneously with EEG signals to estimate movement onsets.
The movement onsets are manually annotated and used to label
training samples in the EEG signals, where an experimenter
manually inspects and selects which training samples to use in
classifier training. They evaluate the performance of an online
MRCP-based BCI by adopting a sliding window approach,
which simulates a real-time input feed. They utilize a com-
bination of metrics to evaluate online performance; however,
detection latency is not registered during their online simula-
tion assessment but is manually estimated by the experimenter
post-hoc.

Valenti et al. [22] present a novel combination of 3D-
convolutional and recurrent deep neural networks for multi-
class prediction in an online setting. They introduce an input
representation of EEG data that preserves the spatio-temporal
dependencies of the different channels, capturing more in-
formation. They use an efficient deep-learning method with
simpler input signal preprocessing to reduce the computational
overhead, making it better suited for real-time application.
Their model can perform classification at every time step of
an epoch, predicting a correct prediction 0.25 s before the
movement onset. They explain that this allows their model to
process a constant input stream in real-time, making it suited
for online application. However, the paper does not discuss a
method of online evaluation for their system.

Rashid, M. et al. [23] outline existing challenges and
limitations for online EEG-based BCI systems. Firstly, existing
EEG caps are non-standardized and contain anywhere from
3–64 electrodes. The increased number of electrodes causes
the user discomfort and introduces many sources of errors.
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They recommend standardizing EEG caps with the minimum
number of electrodes for a specific task. Another key challenge
is the need for cross-study evaluation metrics. They report
that current research uses different performance and often
task-specific metrics to evaluate their systems, making it
challenging to set uniform benchmarks.

In summary, current methods of labeling training samples
from self-paced data require a manual inspection from an
experimenter with domain knowledge. Additionally, the neces-
sity of standardized cross-study evaluation is to be considered.
In this study, we investigate improving the automatic labeling
of self-paced data to reduce manual labor and make online
evaluation more consistent and transparent by continuing and
improving our work from the previous semester.

B. Classifiers

Only few studies exist in the field of EEG-BCI involving
XGBoost for classification, and only very few are related to the
classification of movements. In one study [24], CSP features
are extracted from every non-overlapping 4 Hz band within the
4–40 Hz range and given to the XGBoost classifier, eliminating
the need for subject-specific frequency band selection. The
study achieves an average accuracy of 69.2% across nine
subjects of the BCI Competition 2008-Graz dataset A’s [25]
evaluation set.

Bressan et al. [26] use a CNN to classify fine hand move-
ments from EEG signals, specifically MRCP. They report sim-
ilar or better results than their baseline soft linear discriminant
analysis (sLDA) and random forest (RF) classifiers. Gao et al.
[27] report substantially improved accuracy when predicting
wide-range frequency EEG signals using a CNN-LSTM com-
pared to their baseline Fisher’s linear discriminant analysis
(FLDA) and SVM classifiers. Zhang et al. [28] present a deep
learning-based EEG decoding method to predict mental states.
Their novel 1D CNN combined with a residual neural network-
like structure to promote feature extraction achieves higher
accuracy than traditional classifiers. SessionNet [29] presents
a method for improving between-session generalization for
movement classification, using ensemble learning and feature
similarity. Schirrmeister et al. [15] explore the use of CNNs
for predicting imagined or executed tasks from EEG signals
and is the first study using deep learning to report better
performance than FBCSP [30]. They propose a shallow and
a deep CNN that we refer to as ShallowConv and DeepConv,
respectively. EEGNet [14] introduces a compact CNN for
EEG-based BCIs, using depthwise and separable convolutions
to establish an EEG-specific model encapsulating EEG-BCI
feature extraction concepts. They show that it can generalize
well across different BCI paradigms, even with limited data, by
comparing it to the state-of-the-art approach for MRCP, event-
related potential (ERP), and oscillatory-based BCIs across four
EEG datasets. In this study, we apply EEGNet, DeepConvNet,
and ShallowConvNet as our reference models on our self-
paced datasets.

In summary, deep learning methods display good overall
performance in the BCI-field, outperforming non-deep learn-

ing classifiers. However, most of the literature focuses on
CNNs, and all papers mentioned in this section are tested on
cue-based datasets and only perform an offline evaluation. In
contrast, we evaluate system performance in an online setting
on data collected in a self-paced manner.

III. DATA COLLECTION

This section describes the setup and procedure used to
collect data from subjects for classifier training and online
evaluation. Figure 2 gives an overview of the individual parts
of the procedure.

A. Instrumentation

We recorded EEG signals from nine electrode channels
using a g.USBamp (g.tec GmbH, Austria) amplifier and a
g.GAMMAbox (g.tec GmbH). We positioned each channel in
the g.GAMMAcap2 (g.tec GmbH) and placed the cap over
the subject’s scalp on locations T7, C5, C3, C1, Cz, C2, C4,
C6, and T8 following the international standard 10–20 system,
as seen in Figure 2(C). We placed the ground electrode at
AFz, and the reference electrode on the left earlobe at A1. We
used FP1 to record EOG signals for detecting eye-movement
artifacts. EMG activity was recorded alongside the EEG sig-
nals using an EMG electrode placed on the forearm with a
reference electrode on the wrist and a ground electrode on
the lateral epicondyle of the elbow on the subject’s dominant
arm, which is also shown in Figure 2(C). We connected the
EMG electrodes to the amplifier. We selected these positions
as they capture the movement of the activated muscles when
performing the motor tasks. All electrodes were filled with
conductive gel to ensure a connection between the skin and
the electrode. We recorded all signals with a sampling rate of
1200 Hz using no embedded filtering from the amplifier.

By placing electrodes on either side of the longitudinal
fissure, we can record signals from the opposite hemisphere of
the dominant part of the motor cortex. Our goal with this EEG
electrode layout is to increase the variance between the left and
right hemispheres, making them easier to distinguish [31]. The
symmetrical electrode placement along the mid-scalp allows
us to record from both left and right-handed subjects without
changing the layout.

B. Participants

We recorded data from 10 subjects (eight male, two female,
24 ± 1.25 years, nine right-handed, one left-handed). All
subjects were healthy and without any known neurological
disorders. None of the subjects were acquainted with BCI
systems or had experience with the data collection procedure
prior to the experiment. All subjects are in agreement with the
collection of data.

C. Data Recording

From each subject, we initially recorded 20 traces. A trace
consists of 20 movements of a single type, either closing or
opening of the hand. Additionally, we recorded two traces
of test data to validate our models and a rest trace with one
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Fig. 2: Overview of the experimental setup for data collection. A) The collected data’s flow. The signals from nine EEG channels, a single
EOG channel, and a single EMG channel are processed. We use the EMG data to label the EEG training samples, which we use for offline
classification training. We use the trained models for online simulation. B) Illustration of the hand’s open and close movement execution
while we record EMG, EEG, and EOG data. C) EEG electrode placement over the scalp following the international standard 10–20 system.
The nine EEG electrodes are marked with blue, the reference electrode with cyan, the EOG electrode with yellow, and the ground electrode
with red. EMG electrode layout is also shown with the ground electrode on the elbow, the main electrode on the forearm, and the reference
electrode on the wrist, following the same color scheme. D) Timeline of the execution of a single movement during data acquisition. E) We
record 20 traces of training data for each subject, which in total is 400 movements. Additionally, we record an online block consisting of
two traces of movements and one minute of rest.

minute of data recording while the subject was not performing
any movements. The test data traces consist of 20 movements,
but we instruct the subject to alternate between opening and
closing the hand. Thus, we recorded a total of 200 opening
and 200 closing movements plus 40 test movements from each
subject. We express the shape of a trace as: Ceeg × TraceT ,
where Ceeg denotes the number of EEG channels and TraceT
denotes the number of data points. We recorded data from
each subject during a single session in which the electrodes

remained on the subject for the duration of the session.

Each subject was positioned comfortably in a chair in front
of a table with the dominant arm resting on the table. This
position is referred to as the rest position and is shown in
Figure 2(B). The subject executed a motor task correctly if
the subject initialized the movement from the rest position and
then opened or closed the hand and returned to the resting
position. During data recording, no excess communication
with the subject was allowed, and all instructions were given
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prior to recording. We instructed the subjects to execute the
movements in a self-paced manner with a minimum of five
seconds between movement executions, but without making
a conscious effort to count the seconds or focus on main-
taining a constant pace. We monitored the pace and number
of movements executed by the subject and would indicate
verbally when the halfway mark was reached and when the
trace was completed. As explained in Section I, a self-paced
approach allows individuals to execute movements at their
own pace and initiative, in contrast to a cue-based approach.
The timeline of a single movement execution is depicted in
Figure 2(D). We also instructed the subjects not to blink,
swallow, or exercise other facial muscles to minimize artifacts
within the EEG signals while executing the movement. We
instead asked the subjects to perform such motions while
being in the rest position between motor task executions. The
subjects were allowed to hold a small break of 1–5 minutes
between each trace. An extended break is held after 12 traces
before continuing with the rest of the traces.

To sum up, the dataset includes three classes: opening
of the hand, the closing of the hand, and rest. However,
considering opening and closing as a single movement class
and performing binary classification between movement and
rest, it is suitable for a possible use-case, such as opening and
closing a robotic soft glove. This method can be considered a
brain switch that reflects opposing states of an external device,
like the robotic soft glove. The brain switch idea reflects the
same implementation of similar BCI studies [3], [7].

IV. AUTOMATIC LABELING

This section explains the steps to prepare the raw EMG
signals to detect muscle activity and label training samples
automatically. Our proposed clustering algorithm and move-
ment detection consist of four iteratively traversed steps. We
show the overall process for movement detection in Figure 3.
Following this, we illustrate how we use movements detected
in the EMG signals to label the EEG signals automatically.

A. EMG Preprocessing

The EMG signals are central in the labeling process of
our training samples. Cue-based studies utilize timed cues
to annotate the movements, enabling labeling of where in
the EEG signals movements are present. Data is labeled at
the cue’s position regardless of whether the individual has
executed the movement at the specified time cue, which can
lead to misalignment of the movement in training samples.
Our data acquisition technique does not include timed cues;
instead, the subjects initiate movements in a self-paced manner
as described in Section III. We record EMG signals from
skeletal muscle activity, which allows us to detect when the
movements are executed and align them with the EEG signals.

The movements are characterized as localized bursts in the
EMG signal. We use a threshold-based technique proposed
by Solnik et al. [32] to distinguish movement from rest.
We enhance the detection of movements by conditioning the
raw EMG signals before applying the threshold. We apply a

Fig. 3: Preprocessing and clustering of the EMG signal. Initially, the
raw EMG signal is bandpass filtered at 30–300 Hz using a sixth-
order Butterworth filter before being conditioned with TKEO. Then
the signal is rectified and lowpass filtered at 50 Hz before being
passed on to the clustering algorithm. The clustering algorithm takes
the processed EMG data and calculates a linear threshold to extract
the data points considered movements. We cluster each group of
movements based on proximity to each other. We iteratively detect
and remove outlier clusters with the first set of clusters, whereas we
apply normalization in the end. This process, denoted by the gray
dashed arrows, continues until it identifies 20 clusters.

sixth-order Butterworth bandpass filter at 30–300 Hz to the
raw EMG signals to eliminate baseline drift and movement
artifacts. Hereto, we use the FILTFILT and BUTTER imple-
mentation from SCIPY [33], [34]. Butterworth filtering, an
important component of our EMG and EEG preprocessing,
is a non-causal filtering method. This means it relies on
future input, i.e., the entire trace, thus we cannot apply it in
real-time [35]. We then apply Teager-Kaiser energy operator
(TKEO) conditioning to enhance the signal-to-noise ratio and
rectify the resulting signal. Finally, we apply a second-order
Butterworth lowpass filter at 50 Hz to reduce high-frequency
noise.

Solnik et al. [32] gives the equation for TKEO as:

Ψt = y2t − yt+1 · yt−1, (1)

where yt is the EMG amplitude at time t.
On the preprocessed EMG signal, we apply a dynamic

threshold from BIOSPPY’s onset detection package [36] called
thld, which it calculates as follows.

thld = 1.2 · 1
n

n∑
i=1

|emgi|+ 2 · σ(|emg|), (2)

where emg is the EMG signal, n is the number of data
points in emg, and σ is the standard deviation. We use this
threshold to determine which data points should be considered
a movement. For all the data points in the rectified EMG
signal, we check if the data point exceeds the threshold. If
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it does, we append it to the set of movement candidates. This
process is described by the formula:

∀ y ∈ emg(|y| > thld

⇒ movements← movements ∪ {y}), (3)

where emg is the EMG data, y is a data point in emg, thld
is the threshold, and movements is the resulting set of all y
larger than thld. The symbol ”←” denotes assignment.

We execute an iterative process with four steps to properly
group movement candidates that are in proximity. We define
sets of data points grouped together by this process as clusters.

Step 1: First, we apply our clustering algorithm. For every
data point in the set of movement candidates found in Equa-
tion 3, we check if the time difference to the previous data
point is less than a distance parameter distance, which we
seed with a low value relative to the data’s sampling rate. If
this is the case, we add the data point to the cluster currently
being formed. If it exceeds the distance parameter, we instead
consider the data point the first data point in a new cluster.
We capture this in the equation:

∀ movement ∈ movements

(movement−movementprev < distance

⇒ cluster ← cluster ∪ {movement}), (4)

where movements is the list of all movements, movement
and movementprev are data points in movements, distance
is the maximum allowed distance for adding a movement to
the cluster currently being formed, and cluster is a movement
cluster. Since we expect a trace to consist of 20 movements,
we iteratively increase the distance parameter until we detect
20 or fewer clusters. If there are fewer than 20, we decrease the
distance parameter in smaller steps until we detect 20 or more
clusters. However, the detected clusters are not necessarily
correct, so further processing is required, which is handled
by the following steps.

Step 2: We apply a proximity heuristic to refine the clusters
detected in the initial step. We merge clusters that are close to
each other but not close enough so that the clustering heuristic
in Step 1 creates a single cluster. The distance between the
end of a cluster and the start of the next is calculated for
every cluster in the trace. The process merges any two clusters
that are less than 50% of the median apart with regard to the
distance value. We determine this value by the data acquisition
settings and empirical testing. We define the equation for this
heuristic by:

∀ cluster ∈ cluster list

(|clusterend − clusternext.start| < MEDIAN(allDist) · 0.5
⇒ cluster ← cluster ∪ {clusternext}), (5)

where cluster and clusternext are clusters, cluster list is
the list of all clusters in the trace, MEDIAN is the function
that returns the median value of a list, and allDist is a list of
the distances between each cluster and its next cluster in the
trace.

Step 3: Outlier clusters are removed based on their size
relative to the rest of the trace. The process removes a cluster
with fewer data points than 10% of the median cluster size.
This value is determined empirically through testing and may
need tuning for other datasets. We convert the cluster list to
a cluster set. We show the outlier removal with the formula:

∀ cluster ∈ cluster set

(clustersize < MEDIAN(allSize) · 0.1
⇒ cluster list← cluster set \ cluster), (6)

where cluster is a cluster, cluster set is the set of all clusters
in the dataset, and allSize is a list of the sizes of each cluster
in the dataset.

Step 4: We then normalize the clusters by reducing any
cluster whose peak, the highest rectified data point in terms of
amplitude, is larger than the median value of the first quartile
(Q1) of all the clusters’ peaks. We do this until all the cluster’s
data points are less than Q1, as we capture in this equation:

∀ cluster ∈ cluster set

(clusterpeak > Q1

⇒ cluster ← cluster · 0.5), (7)

where cluster is a cluster, cluster set is the set of all clusters
in the dataset, and Q1 is the first quartile’s median calculated
from all the clusters’ peaks. We perform normalization to
reduce the amplitude discrepancy in the data. This is espe-
cially beneficial in the test traces, where opening and closing
movements are present in the same trace. These movements
present different amplitudes on the muscle from which we
record EMG signals. We then use the normalized EMG signals
to perform clustering again, but we skip outlier removal
and normalization in this iteration. This adjusts the threshold
calculated by Equation 2 and allows the clusters to encapsulate
more of a movement, usually more of the movement’s start and
end.

Algorithm 1 Movement Candidate Detection

Input: emg ▷ EMG signals

1: for i← 1, emg.length− 1 do
2: emg[i]← emg[i]2 − emg[i+ 1] · emg[i− 1] ▷ TKEO

3: end for
4: thld← 1.2 · 1

emg.length SUM(|emg|) + 2 · STD(|emg|) ▷

Threshold calculation

5: movements← [ ]
6: for y in emg do
7: if y > thld then
8: movements.insert(y) ▷ Find movement candidates

9: end if
10: end for
11: return movements

Algorithm 1 combines Equations 1, 2, and 3 in abstract
pseudocode. The variable names used are consistent with
those used in the individual equations, except for emg.length,
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which is n in Equation 2. Lines 1–3 encapsulate Equation 1,
line 4 corresponds to Equation 2, and lines 6–10 mirror
Equation 3.

Algorithm 2 Movement Candidate Clustering

Input: distance,movements ▷ distance value and movement candidates

1: cluster list← [ ]
2: cluster ← [ ]
3: for movement in movements do
4: if movement−movementprev < distance then
5: cluster.insert(movement) ▷ form cluster by proximity

6: else
7: cluster list.insert(cluster)
8: cluster.clear
9: cluster.insert(movement) ▷ start new cluster

10: end if
11: end for
12: median← 0.5 · MEDIAN(cluster list.distances)
13: size← 0.1 · MEDIAN(cluster list.lengths)
14: for cluster in cluster list do
15: if clusterstart − clusterprev.end < median then
16: cluster.append(clusterprev)
17: cluster list.delete(clusterprev) ▷ outlier detection by proximity

18: end if
19: if cluster.length < size then
20: cluster list.delete(cluster) ▷ outlier detection by size

21: end if
22: while clusterpeak > Q1 do ▷ Q1 = median value of first

quartile of all peaks

23: cluster.values← cluster.values · 0.5 ▷

normalization by first quartile

24: end while
25: end for
26: return cluster list ▷ set of clusters

Algorithm 2 combines Equations 4, 5, 6, and 7. All variable
names are as in the equations presented earlier in this section,
apart from cluster list, which we do not convert to a set.
Lines 2–10 represent Equation 4, and lines 11–24 cover
Equations 5,6, and 7.

B. EEG Preprocessing & Labeling

Now that we have found the movements in the EMG
signals, we can annotate and label the EEG signals to create
training samples with movement and rest otherwise. We use
the movement onset to denote a movement label, which
we define as the first data point in a cluster of movement
candidates. As described in Section I, MRCP appears naturally
related to movement, making the movement onset the desirable
annotating point. Shibasaki et al. [37] describe the signature of
an MRCP as a slow negative shift in the low frequencies (0–
5 Hz) of the EEG signal known as the bereitschaftspotential
(BP), a negative peak around 0.4 s prior to the movement
onset, followed by an amplitude increase (rebound phase)
lasting around 1 s after the negative peak. Our preprocessing
of the raw EEG signals includes segmentation, band-pass

filtering, and normalization, as depicted in the initial part of
Figure 4.

Instead of filtering the entire trace, we filter the signals
within a data buffer with a size of 20 s with a second-
order Butterworth band-pass filter at 0.5–4 Hz. This frequency
range corresponds to the Delta-band [38], where the dominant
frequency range of MRCP lies. Again, we utilize SCIPY’S
FILTFILT and BUTTER implementation [33], [34]. The data
buffer moves in steps of 100 ms across the trace of length
TraceT . The data buffer is required to meet the constraints of
our online simulation environment, where the entirety of the
data is unknown beforehand but arrives in real-time and can
potentially be infinite. In Section V-B, we go over the data
buffer in more detail.

For segmenting, we introduce a sliding window denoted
SWT , with a size of 2 s. This size ensures we can cover the
defining parts of MRCP at the movement onset. We always
retain the sliding window in the most recent part of the data
buffer, which means that the sliding window moves with
the data buffer. Subsequently, we apply z-score normalization
across all training samples.

Whenever the sliding window intersects with a movement
onset, we label the entire sliding window as a movement, as
opposed to rest, and consider it a training sample. Thus, we
create a total of 20 movement samples per detected movement.

V. ONLINE SIMULATION PIPELINE

As shown in the rightmost part of Figure 4 and explained
in further detail below, XGBoost and ViT require different
input. Thus, we first propose two separate pipelines for feature
extraction and classification: one for XGBoost and one for
ViT. Then, we present the overall online simulation test
suite depicted in Figure 5; and finally, we present the online
evaluation metrics utilized in post-analyses of each online
simulation.

A. Feature Extraction and Classification

As explained in Section I, MRCPs are patterns in EEG
signals that encapsulate movement intention and execution. In
Section IV-B, we presented the defining signature of MRCP,
which are the features we aim to extract. We present distinct
feature extraction and classification pipelines for XGBoost and
ViT below. Both feature extraction methods are applied to the
training samples.

1) XGBoost: We extract three statistical features and two
temporal features from each channel of the training samples.
The statistical features are the mean, kurtosis, and skewness.
The temporal features are the peak-to-peak time window and
peak-to-peak slope proposed by Kalatzis et al. [39]. We alter
these features to not only consider the P600 component, where
features are extracted in the 500ms ≤ t ≤ 800ms time interval,
but to use the entire sliding window instead. A movement
intention can be located anywhere in a sliding window in an
online environment, and the classifier will have to find and

8



Fig. 4: Preprocessing and feature extraction of EEG signals. We build a 20 s data buffer to continuously filter the EEG signals with a
second-order Butterworth band-pass filter at 0.5–4 Hz as it moves in 100 ms steps across each trace. The last 2 s of the buffer are considered
the sliding window from which we extract training samples. From each sample, we extract features by applying patch embedding for the
transformer and temporal feature extraction for our XGBoost model.

classify movements in various situations. We define the three
statistical features as:

SWmean =
1

n

n∑
i=i

SWi (8)

SWkurtosis =
1

n

∑n
i=1(SWi − SW )4

σ4
(9)

SWskewness =
1

n

∑n
i=1(SWi − SW )3

σ3
, (10)

where n the number of data points in a sliding window.
We define the first temporal feature as:

SWp2ptw = tmax(SW ) − tmin(SW ), (11)

where tmax(SW ) is the time point within in the sliding window
that has the highest amplitude value. The other temporal
feature is defined as a slope given by:

SWp2ps =
max(SW )−min(SW )

SWp2ptw
(12)

This results in an input feature vector of Ceeg ×
{mean, kurtosis, skewness, p2ptw, p2ps}. We select and
tune the parameters of XGBoost through a combination of
empirical tests and Bayesian optimization. As a result, we
find that the parameter settings depth = 13, subsample = 0.5,

learning rate = 0.015, gamma = 1, and column subsample by
tree = 0.9 to yield the best performance.

2) ViTransformer: We make the original ViT configura-
tion [17] adhere to the dimensions of the EEG data from
our data collection. ViT, in its original implementation, works
on two-dimensional images. Initially, ViT performs patch
embedding to divide the input into smaller patches. This allows
the ViT to identify the defining features within the image by
capturing similarities between patches. We can apply patch
embedding to our training samples since a sliding window
has two dimensions, as visualized in the right part of Figure 4.
Our purpose is to perform image recognition to identify the
defining signatures of MRCPs.

We first create the necessary patch embedding of a sliding
window. For each sliding window, we create patches of size
3×100 and flatten the sequence for the linear projection input
of the transformer. Formally, this means that we reshape input
x ∈ RCeeg×SWT×K , where K is 1, into a flattened sequence
of 2D patches xpatch ∈ RN×(PW×PH×K), where PW = 100
and PH = 3. The patch resolution PW ×PH is relative to the
data’s sampling rate of 1200 Hz. This results in N number of
patches, where N =

Ceeg·SWT

PW ·PH
, as there are no overlapping

patches, meaning that the stride is equal to the patch resolution.
To conclude, we extract features from 72 patches.

Using the self-attention mechanism of the transformer, we
expect the classifier to learn the EEG signal’s spatial and
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temporal dependencies. We add position embeddings to retain
positional information captured in the patches in the EEG
signal. This helps the classifier learn the defining signatures
of MRCPs. The multihead self-attention is implemented as
described by Dosovitskiy et al. [17]. The input is first linearly
transformed into vectors, queries (Q), keys (K), and values (V).
We map the parameters Q, K, V of our patch input sequence:

[Q,K, V ] = Xpatches ∈ RN×D, (13)

where we map the flattened patches to D dimensions of a
linear trainable projection.

The process of the attention mechanism is to compute a
weighted sum for all values in the input sequence. We base
the attention weights on the pairwise similarity of all elements
in the Q and K representations. We express this as:

Attention(Q,K, V ) = Softmax

(
QKT

dk

)
V (14)

For our implementation, this corresponds to calculating the
similarities between pairs of patches capturing varying parts
of the EEG signal. The extension to this approach is the
multihead self-attention, where we calculate additional scores
for each pair of patches. This results in the classifier having
multiple similarity scores to which it can compare. We express
the multihead self-attention as:

MSA(XQ, XK , XV ) = [head1, . . . , headn] (15)

headi = Attention(Qi,Ki, Vi) (16)

When training the transformer, we use a learning rate of
0.001, a weight decay of 0.0001, 4 multihead self-attention,
64 projected dimensions, and a number of hidden units that
is dependent on the input size. We use layer normalization
between each transformer layer and apply dropout to the
output.

B. Online Simulation

We propose a simulation suite that mimics a real-time pro-
cedure, where movement predictions are made on continuous
data to control an external device. The online simulation builds
upon our previous work [4]. Traditional online experiments
depend on subjects undergoing additional testing and require
more labor by the experimenters. Additionally, studies based
on publicly available datasets may not have access to the same
equipment used to collect the data; hence, they cannot evaluate
their BCI in an online setting. Our simulation suite can help
overcome such shortcomings. We show the steps of our online
simulation in Figure 5.

We give raw data to the classifier in increments of 100
ms, in the same manner as we acquire data from a subject.
We apply the same sliding window approach, as presented
in Section IV-B, with a sliding window SWT with a length
of 2 s. The increments help to determine whether real-time
inferencing is achievable, i.e., if processing a single sliding
window takes longer than 100 ms, the system cannot be used
in real-time environments and must be optimized. Because

of the incremental approach, there is no way to preprocess
the entire trace ahead of time. As in offline training, we must
preprocess the raw data during the simulation before extracting
features and supplying them to the classifier. We apply the
same preprocessing steps to the data buffer as presented in
Section IV-B. To meet these constraints, we implement a data
buffer to allow preprocessing on a segment of the input trace.
We can view the data buffer length as a trade-off between
filtering the signal uniformly and processing the signal within
our time constraint of 100 ms. A data buffer that is too short
may not capture enough of the signal to be representative
of the entire trace. A data buffer that is too long increases
the computational complexity, which can make the process
take longer than 100 ms at each step. Through empirical
evaluation, we found that the size of SWT · 10, which in
our implementation is 20 s, handles both sides of the trade-
off sufficiently. Input data is accumulated in the buffer until
it reaches its maximum capacity of 20 s. It is updated with
each increment like a queue as long as the simulation runs.
We start extracting features from the final two seconds of the
data buffer once we build it, which corresponds to the sliding
window.

Before we extract features and feed them to the classifier,
we check for two things: whether we detect a blink within
the sliding window and whether the system has executed a
movement. We utilize NEUROKIT’S EOG module [40] for
blink detection to clean our EOG signal. We use the built-in
cleaning method, as proposed by Agarwal et al. [41]. When
we detect a blink in the sliding window, we stop the feature
extraction and prediction process until the blink is no longer
in the sliding window. Blinks are known artifacts that distort
the EEG signals, making it challenging for the classifier to
detect MRCPs [42]. We also halt the prediction process for
the remaining duration of a sliding window once the system
executes a movement. This is referred to as the freeze time, a
period during which the system can reset.

1) Dwell Parameter: The classifier makes a movement
prediction at every 100 ms step, making the system too
sensitive if every movement prediction triggers a movement
execution. Therefore, we introduce a dwell heuristic, inspired
by Savić et al. [3], to reduce the number of FPs and determine
when the system should execute a movement. In a previous
study, our dwell heuristic was static and checked if four of the
five previous predictions were movement predictions before
the system executed a movement.

Our new dwell heuristic is more dynamic and considers
a prediction queue (PQ) of size SWT · 0.5

step , where step is
100 ms, which equates to ten. Hence, the PQ corresponds
to the ten most recent predictions made at each step, where a
single prediction is 0 for no movement and 1 for movement.
We calculate the sum of the predictions in the PQ, which
can be between 0 and 10, and apply a numeric threshold
called the dwell parameter to the sum to determine if the
system should execute a movement. However, as identifying
a subject-specific dwell parameter is non-trivial, we propose
an algorithmic solution. We refer to this process as dwell

10



Fig. 5: Simulation overview. We give signals from the two online test traces to the system in 100 ms increments. We build a data buffer
from the incoming data, similar to what we do in the offline EEG preprocessing steps. The last two seconds of the data buffer are considered
the sliding window for preprocessing the data before extracting features. For each sliding window, we perform blink detection. If we detect
a blink in a sliding window, we halt the process until the sliding window has moved past the blink. We append the classifier’s predictions to
our dwell heuristic that considers the last ten predictions from the previous sliding windows. We compare the sum of all predictions to the
dwell parameter determined by the dwell parameter calibration performed beforehand. If the sum exceeds the dwell parameter, the system
executes a movement, and we halt the process for the duration of a sliding window.

parameter calibration; a simulation step performed prior to the
actual online simulation. During dwell parameter calibration,
we run a short simulation on two unseen recorded training
traces from the specific subject, meaning that we omit the two
training traces from the offline training. We tune the dwell
parameter on two different traces to aggregate an average
performance. We disable the freeze time in the calibration to
map the behavior of the classifier throughout the entire trace.
For each PQ, we have an equivalent label queue (LQ), that
holds the ground truth labels for each step. The LQ will be
filled with movement labels when the sliding window crosses
a movement onset.

Algorithm 3 presents the dwell parameter calibration steps.
The input parameters Ŷ and Y correspond to the chronological
instances of the PQ and LQ, respectively, collected during each
simulated trace for a single subject. In line 2 of Algorithm 3,
we make a pairwise iteration of the PQs and LQs. In line
3 we check whether the sum of LQ is equal to ten, which
means the LQ is intersecting a movement onset. If that is the
case, we insert the corresponding PQ instance into dwell ŷ.
Subsequently, we sort dwell ŷ and find the median of all PQs’
sum. The function EVALUATE, used in line 9 and 13, returns
the number of movement onsets detected during a full traversal
of a trace with a given dwell parameter, i.e., the number of
triggered movement executions.

We see the introduction of the dwell parameter as a means
of adjusting the trade-off between sensitivity and specificity.

Algorithm 3 Dwell Parameter Calibration

Input: Ŷ , Y
1: dwell ŷ ← [ ]
2: for ŷ, y in zip(Ŷ , Y ) do ▷ iterate both lists pairwise

3: if SUM(y) = SWT · 0.5
step then ▷ find movement onset

4: dwell ŷ.insert(SUM(ŷ)) ▷ insert corresponding prediction

5: end if
6: end for
7: QUICKSORT(dwell ŷ)
8: dwell← MEDIAN(dwell ŷ)
9: initial clusters hit← EVALUATE(dwell)

10: clusters hit← initial clusters hit
11: while initial clusters hit = clusters hit do
12: clusters hit← EVALUATE(dwell + 1)
13: end while
14: return dwell − 1

A low dwell parameter triggers a movement execution more
frequently, which can increase the number of TP movement
executions at movement onsets but also makes the system
susceptible to a higher number of FPs. On the other hand,
a high dwell parameter may reduce the number of FPs but
will result in more missed movement onsets. We try to find
an attractive dwell parameter setting by increasing the dwell
parameter until we begin to trigger fewer total movements in
the trace. This retains the median performance of the classifier
while reducing the total false positives.
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C. Online Evaluation Metrics

In a previous study [4], we introduced an evaluation metric
for online simulation called mean time to nearest MRCP
(MTNM). Its purpose was to measure the mean time from a
movement execution to the nearest instance of MRCP, which
was labeled using the previous automatic clustering and shared
local minimum algorithms. However, we concluded that this
approach did not enable a robust evaluation metric with high
certainty, as it was difficult to correctly label MRCPs due to
the noise and artifacts of EEG signals. We also had to locate
the MRCP placement in all nine EEG channels to create the
final label, which was a non-trivial task. As a consequence,
we have taken a new approach in this study.

The new metric measures the mean prediction latency
(MPL) from a movement execution to the nearest movement
onset. As a result, we base our evaluation on the labels created
from the EMG signals instead of the EEG signals, as done
previously. EMG signals contain an explicit representation of
movement, as they are measured directly from the activated
muscle. Therefore, they make more accurate and concise
movement labels than EEG signals.

The MPL metric is beneficial for online evaluation, as
movement executions considered FP may still occur close to
a movement onset, either slightly before or after. In a real-
world application, we could use MPL as a measure to deem
FP’s as an approved movement execution if it is within an
acceptable, user-defined threshold. We adopt the same metric
for all our predictions as well as only FP predictions in our
online evaluation.

We define the mean prediction latency as:

MPL =
1

n

n∑
i=1

min
x∈X
|ŷi − yx| , (17)

where, for each prediction, ŷ, we find the minimum distance
in time to the nearest movement onset, y. Our clustering
algorithm provides the movement onset labels as described
in Section IV. X is the set of ground truth variables present
in the trial.

Combined with the MPL, we also use precision defined as
Precision = TP

TP+FP as an evaluation metric. The precision
metric lets us monitor the amount of FP predictions.

VI. EXPERIMENTS & RESULTS

We conduct a series of offline and online experiments on our
recorded dataset to evaluate the proposed clustering algorithm
and the XGBoost and ViT classifiers. We perform the online
experiments using our proposed online simulation test suite.
The experiments also cover the topic channel selection, where
we apply statistical t-tests to determine the significance of
using a different number of channels for classification.

A. Labeling

We compare our automatic labeling method to the method
used in our previous study [4]. In Table I, we show a
comparison between the previous and the proposed method.

TABLE I: The number of movement clusters detected for
each subject using the proposed and previous methods for
grouping movements. The expected result is 20 movements
per trace, of which there are 12. ”*” denotes a left handed
subject

New method Previous method Expected result

Sub 0 440 440 440
Sub 1 440 426 440
Sub 2 440 440 440
Sub 3 440 434 440
Sub 4* 440 436 440
Sub 5 440 428 440
Sub 6 440 439 440
Sub 7 440 440 440
Sub 8 440 438 440
Sub 9 440 440 440

We observe that the previous method can detect the expected
number of movements for Sub 0, 2, 7, and 9 but misses 1–14
clusters in the other cases. The proposed method achieves the
expected result for all subjects. Although a method detects the
expected number of clusters, this comparison does not reflect
the created clusters’ effectivity; in this case, that they each
fully encapsulate exactly one EMG burst.

(a) Automatic labeling method for the grouping of movements.

(b) Earlier method for the grouping of movements.

Fig. 6: Comparison between (a) the automatic labeling method
for movement detection and clustering, and (b) the method used
previously [4]. Both methods were applied to the same trace from
Sub 5.

Figure 6 compares the two methods’ movement detection
and clustering on a single trace. The specific example shows
that our new labeling method can detect 20 distinguishable
clusters, which is the desired result, whereas the previous
method can only detect 19 clusters where some clusters en-
compass multiple EMG bursts. The automatic labeling method
contends better with the noise in EMG signals due to the extra
steps taken to condition the signals, yielding better movement
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grouping. In other traces, the difference is less noticeable. The
previous method performs well in most cases and often comes
close to the total expected result in Table I, but fails when
the data is noisy. The new method’s preprocessing steps and
iterative process can abstract well over different artifacts in
EMG signals. This enables it to more accurately label noisy
data, making it increasingly automatic and hands-off.

B. Experiment Parameters

We compare the performance of our XGBoost and ViT
classifiers with the well-documented and established EEG-
BCI classifiers mentioned in Section II, namely EEGNet [14],
ShallowConvNet [15], DeepConvNet [15], and a default im-
plementation of CSP-SVM [43], [44]. We implement the
signal processing steps outlined by EEGNet [14], where the
signals are filtered using a 0.1–40 Hz bandpass filter and
downsampled to 256 Hz. In particular, since we record our
data at 1200 Hz, we downsample it to 240 Hz, mimicking
EEGNet’s setup as closely as possible. To train and fit the
deep learning and gradient boost trees, we utilize 5–fold
cross-validation and use the hold-out data to determine early
stopping. This helps us minimize the classifier’s overfitting.
The deep learning classifiers are all set to run for 300 epochs,
but due to the validation accuracy not increasing, they stop
early.

TABLE II: The number of trainable parameters for each given
deep learning classifier.

EEGNet DeepConv ShallowConv ViT

T Parameters 1,233 143,351 17,521 12,228,033

EEGNet, DeepConvNet, and ShallowConvNet all use the
same configuration for training. They use a batch size of 16
and the Adam optimizer [45] with a learning rate of 0.001.
We train ViT using a batch size of 128 and with the epoch and
early stopping configuration as the aforementioned classifiers
and show the number of trainable parameters for each classifier
in Table II. We use 159 as the seed for randomization in all
implementations. CSP-SVM follows a default implementation
from MNE [46] and SCIKIT-LEARN [47]. Lastly, XGBoost
has 10, 000 estimators with an early stopping patience of 10
epochs. Additional hyper-parameters for the XGBoost and ViT
are presented in Section V-A1 and Section V-A2, respectively.

C. Channel Selection

In an offline experiment, we evaluate the accuracy of using
all available channels versus using only the channels placed
over the primary movement hemisphere (PMH). For a right-
handed subject, the PMH is the left hemisphere (C5, C3, C1),
and for a left-handed subject, it is the right hemisphere (C2,
C4, C6). Studies show that channel selection is relevant to
consider [9], [23]. Reducing the number of channels makes the
setup process less time-consuming and reduces computational
complexity, hereby minimizing the system’s overhead, which
is important in a real-time system. We show results using 5-
fold cross validation for each subject in Table III.

We see that the accuracy of XGBoost that uses handcrafted
features is leading over all the deep learning approaches.
However, XGBoost tends to overfit, and with early stopping,
this is still a common occurrence. The accuracy achieved by
XGBoost is consistent across all subjects, which is not the
case for the other classifiers. We observe that classifiers with
more trainable parameters, such as DeepConv and ViT, provide
better results among deep learning classifiers. Referring to
Table II, we see DeepConv and ViT have the most trainable
parameters.

We also observe that the accuracy of the classifiers is
consistently lower when predicting using the PMH channels
compared to using all channels. We conduct a statistical t-test
to compare the results of each classifier with a significance
level set to p < 0.05. We present p-values in Table IV, where
DeepConv, ShallowConv, ViT, and XGBoost show a statistical
significant difference in accuracy. This means that in offline
training, most classifiers can achieve better performance when
predicting using data from all channels rather than from only
the PMH channels. We hypothesize that the classifiers benefit
from the increased information across the movement cortex
from all channels to get a slight advantage during offline
training. However, we are not certain whether these results
translate to equal online performance and whether the PMH
channels can capture sufficient information to achieve compa-
rable results. We will investigate this in the next experiment.

D. Online Experimentation

We present an example of an online simulation conducted on
the XGBoost classifier in Table V to explain each metric used
to estimate the performance of a BCI in an real-time setting.
We do so to show the intermediate results of a single classifier
before presenting the average results of multiple experiments
presented later in Table VII.

We have two test traces for each subject, as presented in
Section III-C. The movements category in Table V denotes
how often the system correctly triggered a movement execu-
tion, when the sliding window intersects a movement onset.
The reported number of movements is slightly lower than the
expected number of 40 because the data buffer is built from the
first 20 s of data, making the classifier unable to predict any
movements contained within that period. We also consider the
precision metric and our MPL metric presented in Section V-C.
We differentiate between two types of MPL: MPL(Total)
indicates the mean prediction latency, i.e., the mean distance of
all triggered movement executions to their nearest movement
onset, and MPL(FP) shows the mean prediction latency for
the FP movement executions. A low MPL indicates how far
the movement executions are from their associated movement
onsets, which can be either slightly before or after we expect
them to be. Dwell is the last presented value, obtained through
subject-specific offline calibration using Algorithm 3. In this
specific instance, we observe values ranging from 4 to 8, in the
dwell parameter between the subjects, indicating that subject-
specific dwell tuning is necessary. However, in other cases, we
observe dwell parameters ranging from 1 to 10.
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TABLE III: Offline comparison of accuracy based on the primary hemisphere for hand movement. For a right-handed individual, the primary hemisphere
is the left hemisphere, and for a left-handed individual, it is the right hemisphere. All numbers in the table are percentages, and we highlight the best results
in bold. ”*” denotes a left handed subject.

5× 5 Fold All Channels

Subjects Sub 0 Sub 1 Sub 2 Sub 3 Sub 4* Sub 5 Sub 6 Sub 7 Sub 8 Sub 9

CSP-SVM 59.2± 0.8 53.6± 1.5 55.7± 0.7 55.7± 0.7 59.4± 0.4 56.6± 0.1 55.7± 0.4 59.5± 0.1 57.1± 0.3 54.3± 0.7
DeepConv 61.1± 0.1 71.3± 0.3 74.2± 0.3 63.3± 0.3 66.7± 0.2 66.8± 0.2 56.3± 0.2 71.3± 0.1 74.4± 0.1 72.2± 0.1
ShallowConv 58.8± 0.3 56.0± 0.1 59.1± 0.1 52.0± 0.1 60.3± 0.1 56.3± 0.2 55.1± 0.2 63.3± 0.1 61.2± 0.2 56.0± 0.3
EEGNet 62.1± 0.9 62.1± 0.7 66.2± 0.9 63.3± 3.1 65.1± 0.7 64.1± 1.0 55.1± 2.9 68.8± 0.4 70.1± 0.5 69.4± 0.3

ViT 64.5± 0.1 58.4± 0.7 66.1± 1.0 58.5± 0.2 67.9± 0.9 63.6± 0.6 65.4± 0.7 69.8± 0.7 74.8± 1.1 63.4± 0.7
XGBoost 86.9± 0.1 85.9± 0.1 88.1± 0.8 86.3± 0.4 88.8± 0.5 84.1± 0.6 86.5± 0.1 87.1± 0.1 88.9± 0.6 86.4± 0.9

5× 5 Fold Primary Movement Hemisphere

CSP-SVM 58.8± 0.8 51.9± 0.1 55.1± 0.4 52.3± 0.6 58.1± 0.3 57.1± 0.2 55.6± 1.0 59.2± 0.8 57.1± 0.5 53.2± 0.9
DeepConv 59.7± 1.0 56.1± 0.8 64.1± 0.1 54.8± 2.0 61.8± 2.0 59.0± 6.4 55.0± 1.0 62.7± 1.0 64.9± 0.1 63.4± 0.7
ShallowConv 53.3± 1.2 50.9± 0.8 55.9± 2.0 49.0± 1.1 55.1± 1.0 54.2± 4.1 52.1± 2.0 56.3± 2.1 61.6± 2.5 51.9± 1.2
EEGNet 58.9± 0.1 61.3± 0.9 64.2± 0.7 58.4± 0.9 61.6± 0.5 64.1± 0.7 54.1± 1.8 62.2± 1.7 70.6± 1.4 63.6± 1.4

ViT 62.9± 1.1 53.1± 1.5 58.9± 0.6 52.1± 0.7 62.2± 0.8 57.7± 0.3 58.1± 0.6 67.7± 0.4 66.1± 1.3 59.4± 1.3
XGBoost 82.2± 0.4 78.3± 2.1 83.3± 0.3 80.7± 0.5 84.3± 0.6 76.7± 1.5 80.3± 1.3 83.8± 0.9 84.6± 0.7 80.1± 1.3

TABLE IV: A t-test with a significance level of 0.05, determining if
there is a statistical significance between using all channels or channels
located over the primary movement hemisphere. We highlight significant
p-values in bold.

Classifier CSP-SVM D-Conv S-Conv EEGNet ViT XGBoost

p-values 0.222 0.001 0.011 0.127 0.012 <0.001

We show a visual representation of the predictions of a
simulation of a single test trace in Figure 7. TP predictions
are shown as green rectangles when they intersect a movement
onset. The red rectangles denote FP predictions. We can
interpret the MPL as the distance between each prediction and
the nearest movement onset. We show detected blinks as small
squares above the predictions. As described in Section V-B,
we disallow predictions where blinks are detected and halt
subsequent predictions for 2 s, hence why no predictions
overlap with blinks.

TABLE V: Example of metrics used for online evaluation. We aggregate
the results of the XGBoost classifier on two test traces for each subject. ”*”
denotes a left handed subject.

XGBoost Primary Movement Hemisphere

Movement Precision(%) MPL(Total)(s) MPL(FP)(s) Dwell

Sub 0 21 / 33 43.75 0.84 1.50 5
Sub 1 28 / 34 40.57 0.96 1.62 4
Sub 2 18 / 33 30.51 1.27 1.82 7
Sub 3 17 / 34 30.91 1.14 1.66 6
Sub 4* 17 / 34 36.17 0.97 1.53 6
Sub 5 20 / 33 35.71 0.93 1.45 8
Sub 6 19 / 32 40.42 0.96 1.55 6
Sub 7 22 / 33 81.48 0.45 2.33 7
Sub 8 18 / 34 38.29 0.93 1.55 6
Sub 9 18 / 32 32.14 1.00 1.55 6

In the offline training of each classifier using all channels
versus a subset of electrodes over the PMH, we see a consistent
decrease in accuracy when using fewer channels. In Table VII,
we show the results of the online evaluation and investigate
if the advantage of using all channels in offline classification
also carries over to online performance. We refer to the metrics

aggregated from the evaluation as All channels and the PMH
channels. For most classifiers, we observe that fewer electrodes
result in a higher number of movements correctly detected
by an average of 1.1%. In Table VI, we present a t-test
that compares the outcome of using all channels versus the
PMH channels for the online results. We do not observe any
statistical significance across the movement or the precision
metric for any classifier apart from ViT’s MPL(FP), where the
PMH channels lower the metric, reducing the latency of FPs.
These results signify that similar or slightly better results are
achievable using a smaller amount of electrodes during online
use. Reducing the number of electrodes can also minimize the
sources of noise and failures. This is an important advantage
for practical use, as fewer electrodes make a BCI easier to
manage [9], [23].

In addition to the observations mentioned above, we also
observe that the difference in the dwell value between the two
approaches is minor on average but not uniform across the
same classifier, illustrating the need to tune a dwell-specific
parameter for each subject and classifier. We also note that the
performance gap between XGBoost and the other classifiers
diminishes in the online results.

TABLE VI: A t-test with a significance level of < 0.05 to
determine if any of the online results are significant. The values
are calculated for each classifier based on Appendix A. We
highlight significant p-values in bold.

Movement Precision MPL(Total) MPL(FP)

CSP-SVM 0.367 0.398 0.296 0.283
DeepConv 0.386 0.428 0.326 0.297
ShallowConv 0.475 0.287 0.433 0.361
EEGNet 0.329 0.348 0.091 0.099

ViT 0.343 0.450 0.131 0.031
XGBoost 0.119 0.316 0.367 0.168

Table VIII shows the average results of each subject across
all the classifiers’ performance. We observe a variance in
performance between the subjects. Data from subjects 0 and 6
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Fig. 7: Visualization of a simulation run on a single test trace from Sub 7, with a dwell value of 7, using the XGBoost classifier. We
show each movement cluster, where a dashed line denotes the movement onset. The opaque red field shows the data buffer, which we build
initially. The red and green rectangles denote predictions. Their size is relative to their respective sliding windows. We visualize the detected
blinks as small squares above the predictions.

TABLE VII: The average results of our online evaluation comparing all channels to using only the electrodes placed above the PMH. All
channels are referred to as A-* and the PMH test as P-*.

Channels All PMH All PMH All PMH All PMH All PMH
Metric Mov(%) Mov(%) Prec(%) Prec(%) MPL(Total)(s) MPL(Total)(s) MPL(FP)(s) MPL(FP)(s) Dwell Dwell

CSP-SVM 52.7 56.1 33.3 32.9 0.99± 0.28 0.94± 0.23 1.55± 0.42 1.47± 0.25 4.6± 3.5 6.7± 2.9
DeepConv 53.1 54.1 38.2 38.0 0.77± 0.28 0.82± 0.27 1.28± 0.38 1.37± 0.38 5.8± 2.6 7.1± 2.0
ShallowConv 53.6 49.4 35.4 32.4 0.90± 0.29 0.88± 0.33 1.46± 0.44 1.41± 0.51 5.8± 3.1 4.4± 2.9
EEGNet 48.4 51.5 39.4 36.8 0.75± 0.21 0.88± 0.20 1.28± 0.40 1.46± 0.39 8.2± 1.9 6.7± 3.2

ViT 51.5 50.0 34.7 33.8 0.95± 0.26 0.82± 0.27 1.50± 0.32 1.31± 0.31 6.3± 1.3 6.8± 1.6
XGBoost 54.5 59.6 35.9 38.7 0.91± 0.18 0.94± 0.24 1.55± 0.41 1.65± 0.42 6.3± 0.9 6.3± 1.2

TABLE VIII: Average online simulation results of each subject across
all classifiers for each online evaluation metric. ”*” denotes a left handed
subject.

Mov(%) Prec(%) MPL(Total)(s) MPL(FP)(s) Dwell

Sub 0 64.1 47.6 0.76± 0.13 1.46± 0.31 7.4± 1.9
Sub 1 52.2 30.7 0.94± 0.12 1.37± 0.20 5.8± 1.8
Sub 2 55.8 28.8 1.22± 0.14 1.73± 0.23 5.8± 2.3
Sub 3 48.6 27.4 1.02± 0.15 1.41± 0.21 6.1± 2.9
Sub 4* 49.5 42.8 0.80± 0.29 1.41± 0.42 4.7± 2.2
Sub 5 55.8 32.5 0.92± 0.13 1.39± 0.21 8.3± 1.8
Sub 6 60.9 38.4 0.85± 0.13 1.43± 0.30 4.2± 2.7
Sub 7 47.7 63.1 0.40± 0.20 1.19± 0.71 7.6± 1.3
Sub 8 49.5 36.2 0.95± 0.12 1.62± 0.51 6.5± 1.9
Sub 9 50.9 30.5 0.94± 0.21 1.39± 0.34 6.1± 3.2

achieve the highest number of correctly identified movements,
both above 60%. The most noteworthy is subject 7, achieving
the highest precision of 63.1%. A high precision metric is de-
sirable, and the value achieved approaches real-world usability.
We deem precision more important than the lower number of
movements. False negatives (FN) may inconvenience the user
by making the system unresponsive, but they have less severe
consequences than FPs that triggers unsolicited movements. A
subject requiring a high dwell across all classifiers can indicate
high certainty near the onset. However, a high dwell combined
with a low precision clearly indicates highly noisy data. We
show an extended table in Appendix A of all the results for

each classifier. The best results of each metric are highlighted
when comparing using all channels to those on the PMH.

Upon further investigation of subject 7, visualized in Fig-
ure 7, we discover that the subject blinked routinely 2–
3 times between each movement. This may indicate that a
subject can indirectly improve the system’s performance by
blinking, as a classifier might learn to expect blinking before
or between movements. Nonetheless, this could also be a
helpful observation in using the system, as long as it can detect
movements that have no blink prior to it. If the incorporation
of other movements can improve the detection of others, then
that should be considered.

To sum up, our clustering algorithm method improves the
performance of the previously used method on noisy EMG
data. Our offline experimental results show that using all
channels yields a performance increase, and the best per-
forming and most consistent classifier in terms of accuracy is
XGBoost. A noteworthy observation from the offline results is
that XGBoost is the only classifier using handcrafted feature
extraction. Our significance tests demonstrate a statistical
significance in accuracy between using all channels or the
PMH channels in our DeepConv, ShallowConv, ViT, and
XGBoost classifiers. The online experiments indicate that only
using the PMH channels improves performance on average and
that good offline performance does not guarantee good online
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performance. Our significance test on the online results further
confirms that the difference between using all channels and
the PMH channels is insignificant. Additionally, no recorded
simulation run has exceeded the 100 ms step size constraint,
confirming that real-time inferencing is achievable for all
classifiers in our BCI pipeline.

VII. DISCUSSION & FUTURE DIRECTION

We have proposed a new BCI pipeline focusing on MRCP
detection during opening and closing hand movements, and
we presented experimental results in the previous section. In
this section, we reflect upon the pipeline’s individual parts as
well as our study’s final outcome. We highlight certain aspects
that have influenced our decisions and share experiences and
observations that can guide future research.

A. Data Collection

In the initial part of this study, we collected self-paced
data from ten healthy subjects. We have shown that our data
and electrode layout can be used in a BCI pipeline and
allow for hand movement predictions on both left and right-
handed individuals. Furthermore, we managed to record a
substantial number of movements from each subject during
a single session without any significant fatigue reported from
the subjects. Comparably, well-known EEG-BCI datasets [25],
[48] available online have sessions on different days, which
requires more manual labor from the experimenters and more
time from the subjects.

We designed the data recording process with self-paced
movements to reflect online use, allowing subjects to initiate
movements at their own will, as opposed to based on a
timed cue, to generate data that is more realistic of an online
setting. Our only instruction to the subjects in terms of time
was a mandatory 5 s or longer rest before and after each
movement execution, without a conscious effort to count
the seconds or focus on maintaining a constant pace. Some
subjects, however, had difficulties following these instructions.
We observed that a subject occasionally would, despite our
best efforts of instructing them not to, fall into a pattern,
e.g., following a blinking routine or not blinking at all, when
executing movements. Figure 7 reflects this behavior, where
we observe very even spacing between movements in addition
to two or three blinks. We report this observation for future
studies to ensure a greater variance of pause lengths between
movements.

B. Automatic Labeling

The iterative process mentioned in Section IV, specifically
Step 1, takes advantage of the fact that we know the expected
number of movements in a trace. However, the process can
operate without this knowledge and performs well under this
condition. The process checks whether the previous iteration’s
movements are identical to the current iteration’s movements
and ends if it meets this condition. This method of grouping
movements is identical to the previously used method but
without the iterative process.

The automatic labeling process contains manually tuned
parameters, i.e., the outlier detection (Equations 5, 6). The
constants are tuned empirically for the data we use. However,
the parameter settings may not generalize well to other data
or to other types of data.

A shortcoming of self-paced datasets using EMG signals
to label ground truths, especially automatically, is that there
is no guarantee that labels are correct. A signal artifact, an
accidental movement, or an erroneous cluster made by the
method could be detected as a movement and labeled as
such. Therefore, we consider the automatic labeling method
to provide an estimate.

We believe that our labeling approach, where a 2 s sliding
window with a 100 ms step size dictates our training samples,
lets our classifiers learn very diverse features. This means that
we get 20 individual training samples from a single movement
onset. As a result, the classifiers can identify different parts of
the signal denoting movement, but also increases the risk of
false positives, as the classifier may become too sensitive. For
example, training samples that only capture the first or last
part of an MRCP, without the entire BP, negative peak, and
rebound phase, could be confused as a rest sample with minor
noise. However, there are other ways to dictate the sampling
process. A simpler approach, where we only create a single
training sample centered at each movement label, could reduce
the sensitivity because a classifier would then only recognize
a movement by the full signature of an MRCP. This, however,
would come at the cost of having fewer training samples. In
summary, we believe that our current labeling approach creates
a more robust classifier, especially when combined with our
dwell heuristic, which handles the sensitivity and specificity
trade-off.

In a different study, Savić et al. [3] stopped labeling data
for five seconds after annotating a movement in coherence
with the freeze time introduced in their online experiments.
This means they do not train their classifiers on the data
that occurs after a movement onset. If their classifiers miss
a movement, the subsequent input will be regarded as unseen
data with respect to the classifier, as the classifier is not trained
on data after a movement. In contrast, we do not consider
the freeze time during sampling and continuously label the
entire trace that we then use to train our classifier. Thus, if
our classifier misses a movement, it can potentially infer that
the next input succeeds a movement reducing the possibility
of a false positive.

C. Classification

In the offline evaluation, cf. Table III, we see classifiers
achieving accuracy scores in the range 52.0–88.9% using
all channels and in the range 49.0–84.6% using the PMH
channels, depending on the subject. We can compare our
results to similar studies with binary self-paced movement
intention recognition. Hernández et. al [49] have a data collec-
tion process similar to ours. They test binary classification of
a subject performing both rotating and pulling motions with
the same hand. They achieve 59–73% accuracy across seven
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subjects. A major difference between our study and theirs is
the electrode setup, which uses a 64-channel setup, compared
to our 9-channel setup. We also concluded that having more
channels is beneficial for offline evaluation. We can attribute
their marginally higher mean accuracy to their data sampling
approach. They only include samples of their two types of
movements. In contrast, our study includes samples of the
entire trace.

We decided not to apply direct artifact removal other than
band-pass filtering during offline labeling and training to make
our classifiers more robust to an online environment. We
could have achieved a higher offline accuracy if we applied
active artifact removal. However, it would be detrimental to
online classification. Like the freeze time approach, removing
artifacts would leave the classifier untrained on EEG artifacts,
much like not including training samples after a movement.

D. Online Simulation & Evaluation

Only few studies focus on online evaluation, and even fewer
consider MRCP detection. Our online simulation evaluation
method allows for estimating a BCI’s performance during
online use and reduces the overhead involved when conducting
online experiments. This is a step forward with respect to ad-
dressing the lack of online evaluation in BCI studies. However,
our simulation test suite cannot entirely replace real online
assessments. Instead, we should interpret the simulation results
as resembling real-use performance in future research. Real
online experiments introduce additional cognitive load, making
the task more complex for the subjects. This is known to cause
significant changes in MRCP signatures and thus to affect
movement prediction [50], [51]. Nonetheless, our simulation
test suite is especially beneficial for studies conducted on BCI
datasets available online, which may not have access to the
data recording equipment, and thus cannot conduct online
experiments.

We have shown that offline results do not map directly to
good online results. Our proposed pipeline implements the
data buffer, dwell heuristic, and freeze time, which heavily
influences how we should evaluate the BCI. As a result,
the accuracy score utilized in most offline studies cannot
adequately capture the performance of a BCI when used in an
online setting and may make it more challenging to achieve
high performance results. This is a compromise, which may
not be well-received by all from an offline-study perspec-
tive, but we deem it necessary to advance towards a more
common and realistic evaluation process, which is currently
non-existing. Current online evaluation methods often do not
provide sufficient details or make fair evaluations, e.g., using
offline evaluation for online use. The evaluation is affected
by the representation of the prediction labels and the data
handling. This aspect must also be taken into consideration
when evaluating the results.

E. Dwell Parameter & Freeze Time

As mentioned above, the online performance is heavily
influenced by the simulation’s dwell heuristic and freeze time.

However, we deem using a dwell parameter necessary since
working in an online or real-life environment requires ways to
reduce FPs, as they are detrimental to using a BCI. We argue
that our dwell parameter implementation is a good starting
point for future researchers who wish to capture the median
performance near a movement onset and use that as a threshold
for movement execution to reduce sensitivity. However, the
duration of the system’s freeze period is arbitrary and we
should adjust it according to the use case in which we deploy
the BCI system.

We terminate calibration of the dwell value once it finds
fewer movement onsets than the previous iteration. An alter-
native implementation is to increase the dwell value as long
as it finds fewer FPs than the previous iteration. However,
with this approach, the dwell value will often reach 10 and,
in turn, introduce a high level of specificity, resulting in
more FN movement executions. Our approach to calibration
differs from that of Savić et al. [3], as they adjust the dwell
manually by observing a subject. Instead, our algorithmic
implementation focuses on historical data and determines a
value using statistical observations, which we argue is not only
more consistent and robust but also reduces the manual labor
required.

F. Data Buffer

Real-time signal processing and artifact removal are rec-
ognized challenges in online studies [3], but existing studies
often fail to present the essential details of overcoming these
challenges. We use a data buffer to meet the challenges
of applying a non-causal Butterworth filter in a real-time
simulation. To the best of our knowledge, other studies do
not apply this approach. During preliminary offline testing, we
only observed a small decrease in performance from applying
filtering on the data buffer as opposed to the entire trace.
In Section V-B, we explain that 20 s of a trace is sufficient
to capture enough signal variance to represent the remaining
signal while still being able to process the data within our
100 ms step size constraint and get representative results.
When we increased the data buffer size, the time complexity
increased, and the computation failed to complete within 100
ms. However, we note that Butterworth filtering yields the
best results when applied to the entire trace. We leave this
observation open as a potential future direction on reducing
online computational complexity to allow for better filtering
and thus better performance. Another direction can be to
explore the possibilities of extracting features from raw data,
which would avoid this complication.

VIII. CONCLUSION

This study proposes an end-to-end brain-computer interface
(BCI) pipeline based on electroencephalography (EEG) signals
for online movement-intention classification. We collect EEG,
electrooculography (EOG), and electromyography (EMG) sig-
nals from 10 healthy people who perform hand movements in
a self-paced manner. We apply a proposed clustering algorithm
to the EMG signals. The algorithm iteratively detects and
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groups data points that exceed a threshold into movements that
are then automatically cross-referenced with the EEG signals
to label them as capturing movement or rest. Experiments
show that the proposed clustering algorithm for movement
onset detection in EMG signals performs better on noisy
signals than a previously used method. We also show that
our online simulation test suite allows for evaluation closer
to real-time usage, and we provide evidence that good offline
performance does not translate to good online performance in
some cases. The proposed pipeline enables any classification
method, but we propose two configurations using XGBoost
and ViTransformer. An empirical comparison with other deep-
learning baselines shows that XGBoost achieves the best
overall performance. We provide detailed explanations of the
designs of each of our proposed methods.

In summary, the pipeline composed of our methods, as well
as the individual methods, has good potential for use in future
studies of how to advance towards a more common evaluation
process for BCIs.
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N. Mrachacz-Kersting, and S. Došen, “Online control of an assistive
active glove by slow cortical signals in patients with amyotrophic lateral
sclerosis,” Journal of Neural Engineering, vol. 18, no. 4, p. 046085, jun
2021. [Online]. Available: https://doi.org/10.1088/1741-2552/ac0488

[4] C. Hansen, F. DeFrène, and S. P. Kærgaard, “Automatic label creation
of mrcp for online control of a robotic soft glove,” Jan. 2022. [Online].
Available: https://projekter.aau.dk/projekter/files/460346716/cs 21 mi
9 13.pdf

[5] M. Jochumsen, M. S. Navid, R. W. Nedergaard, N. Signal,
U. Rashid, A. Hassan, H. Haavik, D. Taylor, and I. K. Niazi,
“Self-paced online vs. cue-based offline brain-computer interfaces
for inducing neural plasticity,” Brain sciences, vol. 9, no. 6,
p. 127, Jun 2019, brainsci9060127[PII]. [Online]. Available: https:
//doi.org/10.3390/brainsci9060127

[6] R. Abiri, S. Borhani, E. Sellers, Y. Jiang, and X. Zhao, “A comprehensive
review of eeg-based brain-computer interface paradigms,” Journal of
Neural Engineering, vol. 16, 11 2018.

[7] S. Aliakbaryhosseinabadi, S. Dosen, A. M. Savic, J. Blicher, D. Fa-
rina, and N. Mrachacz-Kersting, “Participant-specific classifier tuning
increases the performance of hand movement detection from EEG in
patients with amyotrophic lateral sclerosis,” J Neural Eng, vol. 18, no. 5,
Sep. 2021.

[8] I. K. Niazi, N. Jiang, M. Jochumsen, J. F. Nielsen, K. Dremstrup,
and D. Farina, “Detection of movement-related cortical potentials based
on subject-independent training,” Medical & Biological Engineering &
Computing, vol. 51, no. 5, pp. 507–512, May 2013.

[9] T. Alotaiby, F. E. A. El-Samie, S. A. Alshebeili, and I. Ahmad, “A review
of channel selection algorithms for EEG signal processing,” EURASIP
Journal on Advances in Signal Processing, vol. 2015, no. 1, p. 66, Aug.
2015.

[10] P. Wierzgała, D. Zapała, G. M. Wojcik, and J. Masiak, “Most popular
signal processing methods in Motor-Imagery BCI: A review and Meta-
Analysis,” Frontiers in neuroinformatics, vol. 12, pp. 78–78, Nov. 2018.

[11] M. Saeidi, W. Karwowski, F. V. Farahani, K. Fiok, R. Taiar, P. A.
Hancock, and A. Al-Juaid, “Neural decoding of eeg signals with machine
learning: A systematic review,” Brain Sciences, vol. 11, no. 11, 2021.
[Online]. Available: https://www.mdpi.com/2076-3425/11/11/1525

[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” CoRR, vol. abs/1603.02754, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02754

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

[14] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P.
Hung, and B. J. Lance, “Eegnet: A compact convolutional network
for eeg-based brain-computer interfaces,” CoRR, vol. abs/1611.08024,
2016. [Online]. Available: http://arxiv.org/abs/1611.08024

[15] R. Schirrmeister, J. Springenberg, L. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for eeg decoding and
visualization: Convolutional neural networks in eeg analysis,” Human
Brain Mapping, vol. 38, 08 2017.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is
worth 16x16 words: Transformers for image recognition at
scale,” CoRR, vol. abs/2010.11929, 2020. [Online]. Available:
https://arxiv.org/abs/2010.11929

[18] Y. Song, X. Jia, L. Yang, and L. Xie, “Transformer-based spatial-
temporal feature learning for eeg decoding,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.11170

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[20] U. Rashid, I. K. Niazi, M. Jochumsen, L. R. Krol, N. Signal, and
D. Taylor, “Automated labeling of movement- related cortical potentials
using segmented regression,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 27, no. 6, pp. 1282–1291, 2019.

[21] V. Mondini, A. L. Mangia, and A. Cappello, “Eeg-based bci system
using adaptive features extraction and classification procedures,”
Computational Intelligence and Neuroscience, vol. 2016, p. 4562601,
Aug 2016. [Online]. Available: https://doi.org/10.1155/2016/4562601

[22] A. Valenti, M. Barsotti, D. Bacciu, and L. Ascari, “A deep
classifier for upper-limbs motor anticipation tasks in an online bci
setting,” Bioengineering, vol. 8, no. 2, 2021. [Online]. Available:
https://www.mdpi.com/2306-5354/8/2/21

[23] M. Rashid, N. Sulaiman, A. P. P. Abdul Majeed, R. M. Musa, A. F.
Ab. Nasir, B. S. Bari, and S. Khatun, “Current status, challenges,
and possible solutions of eeg-based brain-computer interface: A
comprehensive review,” Frontiers in Neurorobotics, vol. 14, 2020.
[Online]. Available: https://www.frontiersin.org/article/10.3389/fnbot.
2020.00025

[24] M. Vijay, A. Kashyap, A. Nagarkatti, S. Mohanty, R. Mohan, and
N. Krupa, “Extreme gradient boosting classification of motor imagery
using common spatial patterns,” in 2020 IEEE 17th India Council
International Conference (INDICON), 2020, pp. 1–5.

[25] C. Brunner and R. Leeb, “Bci competition 2008 – graz data set a,” 2008.
[26] G. Bressan, G. Cisotto, G. R. Müller-Putz, and S. C. Wriessnegger,

“Deep learning-based classification of fine hand movements from
low frequency eeg,” Future Internet, vol. 13, no. 5, 2021. [Online].
Available: https://www.mdpi.com/1999-5903/13/5/103

18

https://doi.org/10.1186/s42490-019-0022-z
https://doi.org/10.1088/1741-2552/ac0488
https://projekter.aau.dk/projekter/files/460346716/cs_21_mi_9_13.pdf
https://projekter.aau.dk/projekter/files/460346716/cs_21_mi_9_13.pdf
https://doi.org/10.3390/brainsci9060127
https://doi.org/10.3390/brainsci9060127
https://www.mdpi.com/2076-3425/11/11/1525
http://arxiv.org/abs/1603.02754
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1611.08024
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2106.11170
https://doi.org/10.1155/2016/4562601
https://www.mdpi.com/2306-5354/8/2/21
https://www.frontiersin.org/article/10.3389/fnbot.2020.00025
https://www.frontiersin.org/article/10.3389/fnbot.2020.00025
https://www.mdpi.com/1999-5903/13/5/103


[27] Z. Gao, T. Yuan, X. Zhou, C. Ma, K. Ma, and P. Hui, “A deep learning
method for improving the classification accuracy of ssmvep-based bci,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 12, pp. 3447–3451, 2020.

[28] D. Zhang, D. Cao, and H. Chen, “Deep learning decoding of mental
state in non-invasive brain computer interface,” in Proceedings of
the International Conference on Artificial Intelligence, Information
Processing and Cloud Computing, ser. AIIPCC ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3371425.3371441

[29] B.-H. Lee, J.-H. Jeong, and S.-W. Lee, “Sessionnet: Feature similarity-
based weighted ensemble learning for motor imagery classification,”
IEEE Access, vol. 8, pp. 134 524–134 535, 2020.

[30] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (fbcsp) in brain-computer interface,” in 2008 IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), 2008, pp. 2390–2397.

[31] E. Pitsik, N. Frolov, K. H. Kraemer, V. Grubov, V. Maksimenko,
J. Kurths, and A. Hramov, “Motor execution reduces eeg signals
complexity: Recurrence quantification analysis study,” Chaos: An In-
terdisciplinary Journal of Nonlinear Science, vol. 30, no. 2, 2020.

[32] S. Solnik, P. Rider, K. Steinweg, P. DeVita, and T. Hortobágyi,
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APPENDIX A

TABLE IX: The results of all the online tests. The metric across each test is compared, and the highest value is highlighted. ”*” denotes left handed subject.

Subjects Sub 0 Sub 1 Sub 2 Sub 3 Sub 4* Sub 5 Sub 6 Sub 7 Sub 8 Sub 9

All Channels - Movement

CSP-SVM 45.5 47.1 78.8 52.9 73.5 24.2 81.3 54.5 58.8 65.6
DeepConv 57.6 38.2 69.7 61.8 41.2 51.5 59.4 60.6 52.9 37.5
ShalConv 63.6 35.3 63.7 55.9 35.3 60.6 56.3 39.4 58.8 62.5
EEGNet 69.7 47.1 60.6 29.4 41.2 51.5 53.1 42.4 41.1 50.0

ViT 63.6 55.9 57.6 29.4 55.8 54.5 50.0 45.5 50.0 53.1
XGBoost 63.6 61.8 54.5 38.2 61.8 60.6 50.0 54.5 41.1 59.4

Primary Movement Hemisphere - Movement

CSP-SVM 60.6 58.8 45.4 52.9 58.8 69.7 71.9 45.5 50.0 46.9
DeepConv 69.7 41.2 63.7 58.8 44.1 63.6 53.1 48.5 44.1 28.1
ShalConv 69.7 55.9 27.3 85.3 29.4 63.6 62.5 33.3 50.0 50.0
EEGNet 72.7 47.1 51.5 23.5 50.0 60.6 87.5 33.3 50.0 40.6

ViT 66.7 55.9 39.4 50.0 50.0 48.5 46.9 45.5 44.1 53.1
XGBoost 63.6 82.4 54.5 50.0 50.0 60.6 59.4 66.7 52.9 56.3

All Channels - Precision

CSP-SVM 41.0± 8.5 31.9± 3.8 27.5± 2.7 27.7± 0.1 43.1± 0.3 15.8± 2.1 34.4± 6.2 61.5± 4.5 33.1± 7.8 30.1± 5.2
DeepConv 38.5± 5.3 36.9± 10.6 30.7± 0.7 33.8± 3.1 39.6± 4.5 30.8± 8.2 45.7± 12.5 70.7± 13.5 35.8± 14.1 42.8± 10.1
ShalConv 43.6± 6.4 28.9± 8.6 31.6± 2.3 25.0± 9.0 45.0± 7.0 36.1± 1.5 37.3± 12.4 65.0± 7.1 46.6± 18.8 28.3± 2.8
EEGNet 54.7± 0.3 33.0± 9.8 38.4± 0.4 29.4± 13.5 42.9± 13.6 31.9± 4.0 41.6± 11.8 55.7± 8.1 33.6± 26.4 40.3± 9.9

ViT 42.0± 2.8 27.3± 2.3 35.0± 6.0 20.3± 6.5 42.0± 2.8 29.1± 7.7 40.0± 21.1 60.2± 9.0 35.9± 5.7 34.0± 2.8
XGBoost 50.0± 10.1 33.4± 14.0 27.8± 3.0 27.8± 13.6 46.6± 1.6 32.8± 5.9 32.3± 8.7 67.0± 13.9 28.3± 27.7 33.6± 13.6

Primary Movement Hemisphere - Precision

CSP-SVM 48.9± 8.5 26.0± 1.4 20.5± 2.3 27.6± 0.1 42.7± 3.9 38.3± 5.6 40.6± 5.4 61.6± 11.7 30.9± 0.1 23.5± 3.2
DeepConv 52.3± 0.1 30.8± 17.9 34.5± 3.6 30.2± 9.1 46.4± 5.1 39.6± 1.6 41.9± 14.7 60.7± 15.1 37.0± 25.4 22.5± 10.6
ShalConv 50.0± 3.1 27.5± 1.4 19.8± 12.3 27.7± 7.9 45.0± 7.0 35.4± 4.3 35.4± 2.9 57.2± 18.1 35.3± 17.8 23.7± 7.9
EEGNet 54.4± 2.9 28.5± 2.1 33.7± 7.2 22.0± 0.9 44.7± 11.1 33.2± 8.8 34.7± 8.2 45.8± 0.4 54.3± 20.3 32.4± 1.2

ViT 48.1± 9.1 28.1± 8.7 20.1± 1.7 25.9± 2.3 38.7± 10.0 31.4± 0.5 46.0± 18.0 69.4± 27.5 31.9± 11.4 33.3± 3.6
XGBoost 43.7± 2.9 40.5± 0.5 30.1± 4.5 31.1± 3.0 36.1± 1.9 36.4± 7.3 40.1± 5.3 81.5± 4.2 38.1± 10.8 32.1± 3.4

All Channels - MPL (Total)

CSP-SVM 0.77± 0.04 1.01± 0.04 1.39± 0.18 1.11± 0.07 1.39± 0.00 0.97± 0.22 0.91± 0.05 0.52± 0.26 1.01± 0.07 0.96± 0.07
DeepConv 0.77± 0.16 0.85± 0.10 1.16± 0.04 0.92± 0.14 0.65± 0.40 0.80± 0.24 0.73± 0.02 0.20± 0.02 1.03± 0.14 0.58± 0.10
ShalConv 0.80± 0.05 1.07± 0.05 1.24± 0.02 1.11± 0.07 0.77± 0.11 0.91± 0.17 0.89± 0.08 0.20± 0.11 0.93± 0.18 1.15± 0.14
EEGNet 0.81± 0.21 0.90± 0.05 0.99± 0.08 0.67± 0.14 0.73± 0.02 0.89± 0.10 0.68± 0.02 0.25± 0.03 0.88± 0.15 0.73± 0.17

ViT 0.77± 0.26 1.03± 0.13 1.28± 0.19 1.15± 0.14 0.84± 0.24 0.97± 0.24 0.94± 0.01 0.48± 0.12 0.87± 0.16 1.16± 0.22
XGBoost 0.75± 0.14 0.92± 0.07 1.23± 0.00 0.90± 0.03 0.88± 0.00 0.97± 0.02 1.02± 0.22 0.61± 0.00 0.93± 0.07 0.92± 0.24

Primary Movement Hemisphere - MPL (Total)

CSP-SVM 0.86± 0.12 0.94± 0.14 1.22± 0.03 1.11± 0.07 1.06± 0.02 0.97± 0.08 0.86± 0.02 0.40± 0.19 1.09± 0.04 0.94± 0.17
DeepConv 0.61± 0.16 0.97± 0.17 1.01± 0.24 1.13± 0.04 0.55± 0.08 0.96± 0.04 0.77± 0.01 0.28± 0.03 0.98± 0.04 0.97± 0.26
ShalConv 0.69± 0.21 0.96± 0.18 1.38± 0.05 1.05± 0.04 0.41± 0.51 1.00± 0.06 0.86± 0.14 0.49± 0.26 1.07± 0.15 0.94± 0.21
EEGNet 0.66± 0.16 0.81± 0.09 1.32± 0.09 1.05± 0.09 0.70± 0.02 0.88± 0.12 0.96± 0.05 0.69± 0.09 0.80± 0.02 0.92± 0.17

ViT 0.75± 0.14 0.87± 0.25 1.12± 0.04 1.02± 0.02 0.65± 0.04 0.87± 0.12 0.69± 0.09 0.28± 0.25 0.97± 0.00 1.04± 0.03
XGBoost 0.84± 0.04 0.96± 0.07 1.27± 0.21 1.14± 0.08 0.97± 0.08 0.93± 0.25 0.91± 0.22 0.45± 0.31 0.93± 0.16 1.02± 0.09

All Channels - MPL (False Positive)

CSP-SVM 1.33± 0.26 1.49± 0.15 1.94± 0.14 1.54± 0.12 2.44± 0.01 1.15± 0.23 1.40± 0.22 1.34± 0.52 1.52± 0.29 1.39± 0.01
DeepConv 1.25± 0.14 1.36± 0.07 1.68± 0.09 1.38± 0.14 1.07± 0.57 1.18± 0.48 1.39± 0.36 0.79± 0.43 1.68± 0.60 1.05± 0.37
ShalConv 1.42± 0.07 1.51± 0.09 1.82± 0.03 1.48± 0.07 1.39± 0.02 1.42± 0.30 1.47± 0.42 0.55± 0.20 1.93± 1.02 1.58± 0.19
EEGNet 1.79± 0.45 1.37± 0.28 1.61± 0.14 0.95± 0.03 1.32± 0.28 1.31± 0.07 1.18± 0.19 0.58± 0.02 1.49± 0.82 1.22± 0.10

ViT 1.33± 0.38 1.42± 0.14 1.97± 0.12 1.44± 0.05 1.47± 0.51 1.36± 0.18 1.66± 0.56 1.22± 0.02 1.38± 0.37 1.76± 0.42
XGBoost 1.57± 0.60 1.41± 0.18 1.71± 0.08 1.27± 0.28 1.65± 0.04 1.45± 0.09 1.54± 0.53 2.02± 0.86 1.44± 0.66 1.46± 0.68

Primary Movement Hemisphere - MPL (False Positive)

CSP-SVM 1.65± 0.04 1.26± 0.16 1.57± 0.05 1.54± 0.12 1.85± 0.16 1.57± 0.00 1.46± 0.17 1.01± 0.21 1.58± 0.07 1.23± 0.18
DeepConv 1.29± 0.34 1.42± 0.11 1.56± 0.45 1.63± 0.14 1.04± 0.25 1.59± 0.11 1.37± 0.37 0.81± 0.41 1.65± 0.61 1.29± 0.51
ShalConv 1.41± 0.52 1.32± 0.27 1.75± 0.33 1.48± 0.07 0.82± 1.01 1.55± 0.00 1.33± 0.16 1.41± 1.22 1.76± 0.72 1.22± 0.14
EEGNet 1.45± 0.26 1.12± 0.09 2.01± 0.36 1.35± 0.10 1.30± 0.22 1.35± 0.36 1.49± 0.27 1.28± 0.16 1.95± 0.94 1.37± 0.22

ViT 1.49± 0.54 1.24± 0.49 1.41± 0.04 1.38± 0.07 1.08± 0.25 1.27± 0.16 1.32± 0.25 0.92± 0.00 1.45± 0.25 1.56± 0.65
XGBooost 1.50± 0.15 1.62± 0.11 1.81± 0.19 1.66± 0.19 1.53± 0.18 1.45± 0.23 1.55± 0.50 2.33± 1.20 1.55± 0.54 1.55± 0.00
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