
Summary 

In this study, the model Graph WaveNet was used to decode movement intention 

electroencephalography (EEG) or the method to record an electrogram from the brain's electrical 

activity as this is a step toward improving the performance of motor imagery brain-computer interface 

systems and could be used in aiding motor-impaired patients. 

The central focus of this project was adapting the spatial-temporal graph model Graph WaveNet to 

intake EEG motor movement data and classify it into one of four movement labels and one "no 

movement" label. 

 

The data set used consists of EEG data from 8 subjects, four different motor imagery tasks, namely the 

imagination of movement of the left hand, right hand, both feet, and tongue, and one "no movement". 

Two sessions on different days were recorded for each subject. The algorithm has been adapted to take 

the EEG data and output a motor imagery task classification that would be measured in terms of 

accuracy, Kappa coefficient, F1 score, Area under the ROC curve, and speed of prediction.  

 

To use a spatial-temporal model these two dimensions had to be imputed. The input for the spatial 

dimension was in the shape of an adjacency matrix where each electrode, that is placed in the 

international 10-20 system, had an adjacency value to one another and the input for the temporal 

dimension consisted of a window of movement intention EEG measurements. While comparing 

different configurations of the size of the window, two hundred ms or 50 EEG measurements at 250Hz 

sampling rate was the most eminent in all measured metrics. 

 

This adaptation was very successful, in the bellow described environment, for the movement categories, 

the overall accuracy over 4 categories being ~96%, and the accuracy for the "no movement" label 

planned to be future improved at ~60%. It is worth noting that the "no movement" labels kept in the 

experiments are the hardest, in terms of location in the timeframe, to label them being the border 

before and after the motor movement. 

 

Although the proposed method based on the GWN framework has achieved very excellent performance 

in the MI-EEG decoding task, there are still limitations of the method. Firstly, due to the great difference 

in MI-EEG signals among different subjects, the proposed method cannot realize cross-subject MI-EEG 

decoding and as can be seen in one of the configurations there is also a difference between the EEG 

signals among the same subjects but in different days. 
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Abstract—Electroencephalography (EEG) othwerwise known as the method to record an electrogram from the brain’s
electrical activity alongside a precise classification algorithm could be a powerful tool in aiding motor-impaired patients.
The central focus of this project has been the adaptation of the spatial-temporal graph model Graph WaveNet( [3]) to
intake motor movement EEG data and classify it into one of 4 movement labels and one ”no movement” label having as
a future application sending them as commands to an exoskeleton. Methods: The data set ( [11]) consists of EEG data
from 8 subjects, four different motor imagery tasks, namely the imagination of movement of the left hand (class 0), right
hand (class 1), both feet (class 2), and tongue (class 3) and one ”no movement” (class 4). Two sessions on different
days were recorded for each subject. The algorithm has been adapted to intake the EEG data and output a motor
imagery task classification that would be measured in terms of accuracy, Kappa coefficient, F1 score, Area under the
ROC curve, and speed of prediction. This adaptation was successful, in the environment which is discussed later on in
this paper, for the movement categories. The overall accuracy over 4 categories being 96% and the accuracy for the no
movement” label being 60% and aiming to be improved in the future. It is worth noting that the data labelled as ”no
movement” kept in the experiments are the most difficult to classify due to their location in the timeframe, them being the
border before and after the motor movement

Index Terms—EEG, Graph WaveNet, Movement intention, Cue based trial.

✦

1 INTRODUCTION

MULTIPLE reasons could cause an individual
to lose their motor skills. Stroke, spinal cord

injury or Parkinson’s disease often result in such
loss and therefore daily activities become difficult
to be performed. If physiotherapy fails, using an
exoskeleton could be the only possible solution to
provide a normal life to the individual or as close to
a normal life as possible.

Achieving reasonable control over the exoskele-
ton would be a challenge if the movement is pre-
dicted with high latency and low accuracy com-
pared to the movement intention. That is why being
time-wise as close to the subject’s movement inten-
tion as possible is desired. Being non-invasive, EEG
was used as the preferred brain-computer inter-
face (BCI) compared to Electrocorticography or Mi-
croelectrode arrays where surgical procedures are
required before their setup. Compared to Magne-
toencephalography for example, the physical equip-
ment of an EEG is compact, having the potential
to become mobile. The proposed MI-EEG decoding
method in this study has great promise to im-
prove the performance of the motor imagery brain-
computer interface system.

Deep learning has been used to handle large
amount of complex data, as it is known to increase
its performance with the increase of data quantity.
Data from eight subjects was available (4608 move-
ment intention events).

1.1 Background
1.1.1 EEG and BCI background
Electroencephalography (EEG) is an electrophysio-
logical monitoring technique for recording electrical
activity on the scalp, which has been proven to
correspond to the macroscopic activity of the brain’s
surface layer beneath. The electrodes are positioned
along the scalp, making the procedure non-invasive.

EEG measures voltage fluctuations resulting
from ionic current within the neurons of the brain.
Clinically, EEG refers to the recording of the brain’s
spontaneous electrical activity over a period, as
recorded from multiple electrodes placed on the
scalp. [1]

A brain-computer interface (BCI), is a direct
communication pathway between an enhanced or
wired brain and an external device. BCIs are often
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Fig. 1. The framework of the adapted Graph WaveNet

directed at researching, mapping, aiding, augment-
ing, or repairing human cognitive or sensory-motor
functions. [2]

Thus, EEG is a monitoring method for recording
electrical activity in the brain that is widely utilized
as an input to the BCI.

1.2 Graph WaveNet

Graph WaveNet [3] is a deep learning model that is
used to solve spatial-temporal data analysis prob-
lems. It is a CNN-based method that solves two
issues: how to capture spatial and temporal depen-
dencies at the same time, and how to improve the
spatial-temporal graph modeling’s ability to learn
temporal dependencies.

It employs a graph convolution layer in which
a self-adaptive adjacency matrix, that holds the ad-
jacency value between any two nodes, is improved
from the data via end-to-end supervised training
to retain hidden spatial connections. The graph’s
predecessor is the self-adaptive adjacency matrix,
which is used in its generation.

The framework of Graph WaveNet, which is
in figure 1, consists of K spatial-temporal layers
on the left and, on the right, an output layer. The
initial step of the model focuses solely on temporal
dependencies. The inputs are initially modified with
a linear layer before being copied three times. Two
copies are subjected to distinct temporal convolu-
tion layers, as well as tanh and sigmoid activation
functions. After which element-wise multiplication
is applied between the two. The sigmoid function
forces the elements to a value between 0 and 1
and this is used to potentially weaken some of the

outputs of the tanh layer. This method is known as
Gating. After the gated TCN module, each spatial-
temporal layer contains residual connections and is
skip-connected to the output layer.

2 METHOD

2.1 Data
The data used in this project comes from the 2a
dataset of the BCI Competition 2008 [10]. It contains
22 EEG channels, three EOG channels, a sampling
rate of 250Hz, four action classes (left hand, right
hand, feet, tongue), and two sets for each of the
eight subjects (one labeled and one unlabeled). Fig-
ure 3 illustrates the EEG montage. The EOG chan-
nels were discarded from use as it was considered
that in a real-life scenario a subject would not get
a visual cue as to when a movement had to be
executed.

The subjects were sitting in a comfortable arm-
chair in front of a computer screen. At the beginning
of a trial (t = 0 s), a fixation cross has appeared
on the black screen, and a short acoustic warning
tone was played. After two seconds (t = 2 s), a
cue in the form of an arrow pointing either to the
left, right, downwards, or upwards (corresponding
to one of the four classes left hand, right hand,
foot, or tongue) appeared and stayed on the screen
for 1.25 s. This prompted the subjects to perform
the desired motor imagery task. At this point, no
feedback was provided. The subjects were asked to
carry out the motor imagery task until the fixation
cross disappeared from the screen at t = 6 s. [11]
The timing scheme of the procedure can be seen in
figure 2.

Per subject, two sessions were recorded on dif-
ferent days for the 8 subjects. Each one of the 16
sessions is comprised of a total of 288 trials, 72
for each of the four potential classes, with the cues
being presented in a random order to ensure the
balance of the data. Thus, giving a total of 4608 peak
movement intentions.

There will be 2 different settings discussed fur-
ther in the experiments section: one where the
model is trained on one of the 2 sessions for each
subject and tested on the rest and one where it is
trained on a fraction combination of the 2 sessions
and tested on the whole 2 sessions.

Generating the data
To begin, because the data was sparsely labeled

(4608 timestamps out of around 12 million times-
tamps were tagged as the peak of the movement),
it was decided to cut windows around the labeled
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Fig. 2. Timing scheme of the procedure [11]

Fig. 3. Left: Electrode montage corresponding to the interna-
tional 10-20 system. Right: Electrode montage of the three
monopolar EOG channels. From the description of the 2a
dataset that can be found here: [11]

timestamps to level out the amount of data across
the different classes. In the end, the best windows
set-up would have a length of 50 time-frames.

It can be seen in figure 4 that the data set-up
of windows composed of 50 EEG measurements
- meaning that 50 EEG snapshots will be used
as temporal data and will be labeled one of the
4 movement labels or ”no movement”. This data
setup is the exact one used for testing the various

Fig. 4. Window of EEGs labeling pattern. The bracket represents
the window of EEGs (typically 200 ms long) that is sequentially
sent to the model for classifying. The red and blue rectangles
are one row of EEG data that are labeled as movement events.
The figure illustrate a perfect classification, whether a window
contains a movement (red or blue) or not (black).

configurations of the model. The window is rep-
resented by the curly bracket and its color depicts
the label of that window. If the window contains
a movement event (in the figure colored in red
and blue) it will be labeled as the movement event
(containing the event) and if it does not, it is colored
black and will be labeled as ”no movement”. With
the best algorithm setup, there are 12 ”no move-
ment” windows before the 50 movement labeled
windows and 12 ”no movement” labeled windows
after. Because of the limited time of the project, data
in between the 74-sized slices was discarded as as
it would have unbalanced the data without any
data augmentation (more about this topic will be
further detailed in the discussion section) and this
is why a separator was necessary depicted as the
grey colored rectangles. Without it there would be
”no movement” labeled windows with data from 2
distant slices.

The EEG measurements were recorded at a sam-
pling rate of 250Hz, meaning that 50 EEG measure-
ments would equate to 200 ms long windows. All
of the eight sets were used to generate the train
and test batches. Each electrode was given Carte-
sian coordinates, electrode 1 being given the (0,0)
coordinates and as it can be seen in 3, the electrodes
3 and 4 were given (-1,-1) and (0,-1) respectively.
The rest of the electrodes were assigned coordi-
nates that followed this pattern, with electrode 1
being the anchor point. As for the adjacency matrix,
Electrodes with a Euclidean distance greater than
2 to one another would get an adjacency value of
0 and the electrodes with a distance of 2 or less to
one another (e.g. 10 and 1) would get an adjacency
calculated by the formula: (2-Euclidean distance)/2,
while each electrode would get an adjacency value
of 1 to themselves (e.g. 10 and 10). This following
the example of the adjacency matrix from the Graph
WaveNet algorithm ( [3]).

2.2 Algorithm adaptation

The original version of the Graph WaveNet algo-
rithm [3] was designed to forecast a given number
of future data timestamps using past timestamps as
input. The method had to be modified, since the
goal of the project has not been to predict future
EEG measurements based on previous ones, but to
accurately classify historical data into one of four
movement classes and one ”no movement” class.

Model
The output of the model from figure 1 before

the two flatten layers is a tensor of shape: batch
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size * window length * the number of nodes *
value of a node. The desired output is batch size
* probability of action list where the batch size is
a hyper parameter, and the action list is a list of
probabilities for each class that sums up to 1 (e.g.
(0.14, 0.08, 0.1, 0.7, 0.08) where the fourth movement
has the highest probability). This was achieved by
taking the previously mentioned tensor, flattening
two of its dimensions, applying linear batchnorm2
and relu activation 3 times, dropout 2 times, and
followed by a softmax.The final shape would be
batch size * probability of action list.

3 EXPERIMENTS AND RESULTS

Part of the scope of this project was to find the best
configuration of the model. This search started with
the wnm (window and ”no movement” size) which
would dictate how much past data would be used
by the model for classifying the movement and how
many adjacent EEG measurements would be kept to
be used for the ”no movement” label.

The testing, except for the configurations 1,2 and
19, is done on a 12 - 50 - 12 (”no movement” - move-
ment - ”no movement”) windows set-up. Meaning
that 12 windows each containing 50 EEG measure-
ments that do not contain a movement intention
are saved before and after the 50 windows each
of 50 EEG measurements that contain a movement
intention. For configurations 1 and 2 the set-up is
similar but smaller in window size: 4 - 12 - 4 and 6
- 26 - 6 respectively.

To keep the data balanced without data aug-
mentation, as there are 4 movement labels, when
50 windows are labeled and saved for training, for
each movement, approximately 12 ”no movement”
windows had to be collected as well.

3 ways to approach the problem were compared,
and illustrated in figure 5, as collecting all of the
24 ”no movement” windows for each 50 movement
windows would unbalance the data (1:1:1:1:2):

• all the ”no movement” windows were col-
lected and then selected at random until they
match the size of one of the movement labels

• sequentially switching from collecting the 12
”no movement” windows before the move-
ment windows to the ”no movement” win-
dows after, thus using 50% of this label’s the
data to be split into training and testing data

• collect 6 ”no movement” windows before the
movement windows and 6 ”no movement”
windows after

Following with configuration experiments with
different train-test splits and different activation
functions for the last 3 sets of layers. The config-
urations 15 to 18 show that having the graph con-
volution layer adds an additional 8% and that the
adaptive adjacency matrix does not have significant
impact on the specific configuration.

Having 2 sessions on different days per subject,
for configuration 19 the data split was done so, one
of the sessions was used for training and one for
testing. For the rest of the configurations data from
both sessions was used for training in a proportion
indicated by the train/test column. As the results
were not satisfactory, configurations 20 to 23 were
used to check how little amount of data was needed
from both sessions to get adequate results.

The parameters that are common and un-
changed between the different configurations are:
dropout of 0.3, 20 epochs, the number of nodes 22,
the seed is 1, weight decay of 0.0001, adjtype set
as doubletransition, and nhid as 32. The speed of
prediction for all of the configurations was similar,
being approximately 1 millisecond for each window
of EEGs. Thus being able to keep pace with a live
data stream of EEGs, in the current configuration
being 250Hz or one EEG every 4 milliseconds.

The experiments were conducted under a com-
puter environment with one Intel(R) Core(TM) i7-
9750H CPU @ 2.60GHz and one NVIDIA GeForce
RTX 2060 Mobile GPU card.

4 DISCUSSION

It can be seen in table 2 that the ”no movement”
label has significantly worse accuracy than the other
labels. As it was mentioned earlier, without data
augmentation, keeping all of the ”no movement”
windows would greatly imbalance the data as it is
sparsely populated with the movement intentions.
The ”before or after” scenario worked the best in the
tested configurations giving the highest accuracy
of 62.3% for this label. Only 35% of the kept ”no
movement” windows have been used for training in
that configuration (70% of the train/test split * 50%,
being the second way of keeping the data balanced
mentioned in the previous section).

Augmenting the movement data in order to use
all of the ”no movement” data would be a first
future step toward improving the capabilities of
this model. This could be done in a similar manner
as shown in the article [9]: where parts of the
movement intention windows are combined until
the desired data balance is achieved.
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TABLE 1
Tested model configurations.

wnm Ratio of movement and no movement windows saved for training at each trial.
”no movement” How the ”no movement” windows are selected to be saved compared to the movement windows. An example

can be seen in figure 5

parameters model configurations
wnm ”no movement” train/test lr batch activation gcn addaptadj
12:4 before or after 70/30 0.001 32 relu TRUE TRUE config 1
24:6 before or after 70/30 0.001 32 relu TRUE TRUE config 2
50:12 before or after 70/30 0.001 32 relu TRUE TRUE config 3
50:12 random 70/30 0.001 32 relu TRUE TRUE config 4
50:12 before and after 70/30 0.001 32 relu TRUE TRUE config 5
50:12 before or after 60/40 0.001 32 relu TRUE TRUE config 6
50:12 before or after 80/20 0.001 32 relu TRUE TRUE config 7
50:12 before or after 70/30 0.001 32 tanh TRUE TRUE config 8
50:12 before or after 70/30 0.001 32 sigmoid TRUE TRUE config 9
50:12 before or after 70/30 0.01 32 relu TRUE TRUE config 10
50:12 before or after 70/30 0.0001 32 relu TRUE TRUE config 11
50:12 before or after 70/30 0.00001 32 relu TRUE TRUE config 12
50:12 before or after 70/30 0.0001 16 relu TRUE TRUE config 13
50:12 before or after 70/30 0.0001 64 relu TRUE TRUE config 14
50:12 before or after 70/30 0.0001 128 relu TRUE TRUE config 15
50:12 before or after 70/30 0.0001 128 relu FALSE FALSE config 16
50:12 before or after 70/30 0.0001 128 relu FALSE TRUE config 17
50:12 before or after 70/30 0.0001 128 relu TRUE FALSE config 18
50:12 before or after labeled/unlabeled 0.0001 128 relu TRUE TRUE config 19
50:12 before or after 60/40 0.0001 128 relu TRUE TRUE config 20
50:12 before or after 50/50 0.0001 128 relu TRUE TRUE config 21
50:12 before or after 40/60 0.0001 128 relu TRUE TRUE config 22
50:12 before or after 30/70 0.0001 128 relu TRUE TRUE config 23

TABLE 2
Results of configurations. Configurations: 1,2 and 19 had different testing environments detailed in the experiments and results

section

configurations 4 labels 5 labels average accuracy labels (%)
accuracy kappa F1 Auc accuracy kappa F1 Auc L1 L2 L3 L4 Lnm

config 1 39,14% 0,22 0,42 0,66 27,61% 0,12 0,30 0,62 26,20 44,21 41,54 44,59 10,26
config 2 26,52% 0,05 0,32 0,54 20,56% 0,03 0,23 0,53 13,11 52,59 10,50 29,55 10,48
config 3 80,1% 0,77 0,83 0,95 66,9% 0,59 0,68 0,9 80,07 78,05 81,04 81,23 41,53
config 4 76,2% 0,72 0,79 0,93 63,4% 0,54 0,65 0,88 80,24 71,90 78,14 74,56 38,63
config 5 75,8% 0,73 0,8 0,92 63,5% 0,55 0,65 0,88 75,65 75,21 74,53 77,86 39,80
config 6 72,7% 0,66 0,75 0,9 59,2% 0,5 0,61 0,86 71,10 72,08 76,39 71,16 33,40
config 7 75,1% 0,72 0,79 0,92 64,1% 0,55 0,65 0,87 74,18 71,90 79,09 75,32 43,03
config 8 29,0% 0,05 0,36 0,56 20,9% 0,05 0,27 0,58 0,27 43,45 8,17 63,82 5,46
config 9 23,5% 0,04 0,35 0,55 27,7% 0,09 0,31 0,59 2,33 4,72 76,85 10,41 35,79
config 10 19,0% 0 0,4 0,5 21,7% 0,01 0,28 0,51 0,00 75,72 0,00 0,00 27,00
config 11 97,0% 0,98 0,98 1 85,6% 0,82 0,87 0,98 98,29 97,59 98,12 98,01 61,81
config 12 95,9% 0,96 0,96 1 85,0% 0,81 0,86 0,99 95,92 97,13 97,16 97,22 62,31
config 13 96,1% 0,96 0,97 1 84,1% 0,8 0,85 0,98 97,03 96,50 97,85 96,93 59,01
config 14 97,0% 0,97 0,98 1 85,7% 0,82 0,87 0,98 98,09 98,08 98,22 97,76 62,09
config 15 97,4% 0,98 0,98 1 85,4% 0,82 0,86 0,99 98,64 98,66 98,20 97,89 60,58
config 16 89,3% 0,88 0,92 0,98 79,9% 0,75 0,8 0,96 87,46 91,89 88,84 90,00 61,21
config 17 90,2% 0,88 0,91 0,98 77,6% 0,72 0,79 0,95 91,00 91,15 88,52 90,14 53,27
config 18 97,9% 0,98 0,99 1 85,7% 0,82 0,87 0,98 97,95 97,73 97,88 98,13 62,06
config 19 20,84% 0,01 0,26 0,51 25,3% 0,06 0,24 0,54 24,03 21,22 17,66 20,44 33,89
config 20 94,3% 0,93 0,94 0,99 81,9% 0,78 0,81 0,98 94,10 96,16 93,72 92,18 56,57
config 21 91,1% 0,88 0,91 0,98 78,1% 0,72 0,79 0,96 91,23 91,33 88,86 90,20 53,3
config 22 83,77% 0,81 0,86 0,97 73,23% 0,66 0,74 0,94 83,84 84,13 84,30 82,79 52,95
config 23 70,33% 0,66 0,74 0,91 64,52% 0,55 0,65 0,88 73,05 70,44 71,5 66,31 53,36
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(a) before or after (b) before and after (c) random

Fig. 5. wnm and ”no movement” windows selection for training example. With a window size of 5 (5 EEG measurements) and wnm
of 5:2

TABLE 3
The 4-label accuracy comparison of my method and some state-of-the-art methods. In this table, S1–S9 denotes the eight

subjects in the experimental dataset, respectively.

Method S1 S2 S3 S5 S6 S7 S8 S9 Average accuracy (%) std
FBSF-TSCNN [7] 85,8 60,1 87,8 48,6 56,9 83 81,6 80,2 71,57 ± 14,71
C2CM [8] 87,5 65,28 90,28 62,5 45,49 89,85 83,33 79,51 75,47 ± 15,08
Multi-Branch 3D CNN [4] 77,4 60,14 82,93 75,84 68,99 76,04 76,85 84,66 75,36 ± 7,27
TSSM + LDA [6] 81,8 62,5 88,8 62,9 58,5 86,6 85,1 90 77,03 ± 12,45
Functional brain network [5] 82,8 65,5 87,9 72,4 70,7 82,8 87,9 89,7 79,96 ± 8,58
TB 3D CNN [9] 93,8 70,8 93,53 79,89 60,05 96,14 92,15 84,3 83,83 ± 12,07
My method (Addapted GWN) 97,24 97,04 97,42 97,75 97,44 97,49 96,99 96,48 97,23 ± 0,34

TABLE 4
The 4-label Kappa value of my method and some state-of-the-art methods. In this table, S1–S9 denotes the eight subjects in the

experimental dataset, respectively.

Method S1 S2 S3 S5 S6 S7 S8 S9 Average accuracy (%) std
FBSF-TSCNN [7] 0,77 0,33 0,77 0,35 0,36 0,71 0,72 0,83 0,61 ± 0,2
C2CM [8] 0,81 0,468 0,838 0,315 0,426 0,773 0,755 0,736 0,64 ± 0,19
Multi-branch 3D CNN [4] 0,7 0,459 0,788 0,647 0,538 0,653 0,702 0,713 0,65 ± 0,1
TSSM + LDA [6] 0,83 0,537 0,887 0,5 0,273 0,861 0,778 0,727 0,67 ± 0,2
Functional brain network [5] 0,77 0,54 0,84 0,63 0,61 0,77 0,84 0,86 0,73 ± 0,11
TB 3D CNN [9] 0,92 0,59 0,913 0,727 0,466 0,948 0,892 0,787 0,78 ± 0,16
My method (Addapted GWN) 0,98 0,98 0,98 0,98 0,98 0,98 0,97 0,97 0,98 ± 0,01

Due to time constraints finding the best model
configuration with the presented changes is incom-
plete, as it would require each parameter change
to be done in combination with others. As well as
having multiple rounds of running the experiments
to account for the entropy.

The Euclidean distance of 2, found in the adja-
cency matrix calculation, is an arbitrary threshold.
The model could yield better results with a different
threshold value, as there could be unaccounted for
spatial dependencies between further electrodes.

Although the proposed method based on the
GWN framework has achieved very excellent per-
formance in the MI-EEG decoding task, there are
still limitations of the method. Firstly, due to the
great difference in MI-EEG signals among different
subjects, the proposed method cannot realize cross-
subject MI-EEG decoding and as can be seen in

the 19th configuration there is a difference between
the EEG signals among the same subjects but on
different days.

5 CONCLUSION

In this study, Graph WaveNet is proposed as a mean
to predict movement intention from cue-based BCI
trials. First, the algorithm is adapted to intake data
from the BCI Competition, the adjacency matrix is
changed to include the logic from the international
10-20 system of the electrodes montage found in
figure 3, and to output classification of this data
into one of the four movements intentions and a no
movement. This adaptation was successful in the
presented environment, the overall best accuracy
over four categories being approximately 97% and
the one for the five labels being approximately 85%.
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