
Improving C# Programs for
Energy Efficiency

Helping Developers write Energy Efficient Code

Specialization in Software

Project Report

CS-22-PT-10-06

Aalborg University
Software

Software
Aalborg University

https://www.aau.dk

Title:
Improving C# Programs for Energy
Efficiency

Theme:
Energy Aware Programming

Project Period:
Spring Semester 2022

Project Group:
CS-22-PT-10-06

Participant(s):
Lasse Stig Emil Rasmussen
Milton Kristian Lindof
Søren Bech Christensen

Supervisor(s):
Bent Thomsen, Lone Leth Thomsen

Copies: 1

Page Numbers: 157

Date of Completion:
June 8, 2022

Abstract:

This project builds upon our re-
search into the energy consump-
tion of language constructs in C#
to create a linter called Energy An-
alyzer. First, we create microbench-
marks, we use the results from
these microbenchmarks and the
microbenchmarks from our previ-
ous research, and apply them to
larger benchmarks to see if the re-
sults can be generalized into larger
programs. We use the results from
the larger benchmarks to create En-
ergy Analyzer, which is a NuGet
package that aims to help devel-
opers write more energy efficient
C# code. Energy Analyzer con-
sists of two parts, a suggestion part,
which finds C# constructs with en-
ergy efficient alternatives and gives
the suggestion to change the con-
struct to the energy efficient alter-
native. The second part is the code
fix part, which, if chosen by the
developer, automatically changes
the construct to a more energy ef-
ficient one. We evaluate Energy
Analyzer in both performance and
usability, where we find 15,05% en-
ergy consumption can be saved in
one benchmark, while no signifi-
cant difference can be found in an-
other benchmark, while the usabil-
ity was satisfying for the tested de-
velopers.

https://www.aau.dk

iii

Preface

This project has been created by 3 software students in the 10th semester,
at Aalborg University, under the theme Energy Aware Programming in the
period 1st of February 2022 to the 10th of June 2022. We want to thank
our supervisors Bent Thomsen and Lone Leth Thomsen for their guidance
throughout this project.
The code created during this project is freely available at [1] and [2], with
the CSharpRAPL framework created in [3] being freely available at [4].
The NuGet package with the linter created in this project, is available at [5],
and the NuGet package with the CSharpRAPL framework created in [3], is
available at [6].

iv

Summary

This project involves researching language constructs in C# and how they
affect the energy usage of programs. We use this knowledge to create a lin-
ter called Energy Analyzer. Energy Analyzer is a Roslyn analyzer that utilizes
the research done in this project, as well as our previous project [3], to give
suggestions and code fixes to developers that may help decrease the energy
usage of their software.

Researching and understanding the results of the language constructs is
sometimes a challenge as there is uncertainty when measuring the energy
consumption of software. To figure out why there is a lot of variance in
some of our results we go through steps including reading the documenta-
tion behind the language constructs, reading the library implementations,
etc. Getting an understanding of the results help us create more accurate
suggestions for developers to save energy, and therefore better suggestions
for Energy Analyzer.

Besides this, we generalize the results of the microbenchmarks to larger
benchmarks making it possible for us to figure out in what circumstances
the language constructs may be the most efficient, and when they might not
be as efficient as our microbenchmarks showed. Here we found interesting
results, among these, that string interpolation is the most efficient type of
concatenation when only two strings are concatenated, that for loops are
more efficient than foreach loops when the index of an array is needed etc.

Following the results from generalizing microbenchmarks to larger bench-
marks, we create formal suggestions that is implemented in Energy Analyzer.
The formal suggestions are the ones shown to developers when using En-
ergy Analyzer and is used to save energy consumption when programming.

Creating Energy Analyzer is a learning experience, as we have no pre-
vious experience creating Roslyn analyzers. We overcome this obstacle by
implementing a small part of Energy Analyzer, ensuring it works and then
going to the next part of it, making us able to understand how they are
built so we can create Energy Analyzer properly.

Despite following this path, there is a lot of challenges with regards to
bugs where Energy Analyzer finds wrong places to create suggestions, not
creating suggestions at all, or creating incorrect code fixes.

Most of these issues are resolved and we have a linter that is ready to be
utilized by developers, however, according to our evaluation, there may be
cases where the developer should be careful blindly following Energy Ana-

v

lyzer as the efficiency improvements are not large enough to justify making
the code less readable.

The usability tests done with Energy Analyzer suggests that the linter is
easy to use, therefore no changes need to be made to make it possible for
other people to utilize Energy Analyzer.

There are improvements that can be made to Energy Analyzer in the fu-
ture, such as creating more suggestions, creating code fixes for the rest of
the suggestions, and generalizing more of the language constructs to larger
benchmarks, and to a higher variety of benchmarks, so that more use cases
are covered in the research.

Besides this, Energy Analyzer could be extended to work as an Integrated
Development Environment (IDE) extension instead of mainly a NuGet pack-
age, as that would create further opportunities to decrease energy consump-
tion.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Work Process . 5
1.3 Related Work . 5

1.3.1 Language Constructs . 6
1.3.2 Tools . 6

2 Benchmark Design 9
2.1 Goals . 10
2.2 Microbenchmarks vs Macrobenchmarks 11
2.3 Choice of Benchmarks . 11
2.4 Measurement Approach . 12
2.5 Experiment Guidelines . 12
2.6 Threats to Validity . 13

2.6.1 Construct validity . 13
2.6.2 Internal Validity, . 14
2.6.3 External Validity . 14
2.6.4 Reliability . 14

2.7 Summary . 15

3 Benchmark Results 16
3.1 Microbenchmarks . 16

3.1.1 Lambda Expressions . 18
3.1.2 Exceptions . 24

3.2 Larger benchmarks . 33
3.2.1 Benchmark Overview and Choices 34
3.2.2 2048 . 35
3.2.3 21 Game . 41
3.2.4 4-Rings or 4-Squares Puzzle 44

vi

Contents vii

3.2.5 99 Bottles of Beer . 47
3.2.6 Determine if a String has All the Same Characters . . . 50
3.2.7 Dijkstra’s Algorithm . 52
3.2.8 Happy Numbers . 55
3.2.9 Introspection . 57
3.2.10 World Cup Group Stage 61
3.2.11 Summary . 63

4 Benchmark Analysis 66
4.1 Microbenchmark Analysis . 66

4.1.1 Lambda Expressions Outside Loop Analysis 67
4.1.2 Lambda Expressions Inside Loop Analysis 71
4.1.3 Exception Creation Analysis 71
4.1.4 Throwing and Catching Exceptions Analysis 75

4.2 Larger benchmark Analysis . 76
4.2.1 2048 Analysis . 76
4.2.2 21 Analysis . 81
4.2.3 99 Bottles of Beer . 84
4.2.4 Determine if a String has All the Same Characters

Analysis . 88
4.2.5 Happy Numbers Analysis 88
4.2.6 Introspection Analysis 90
4.2.7 World Cup Group Stage Analysis 91
4.2.8 Summary . 93

5 Energy Analyzer 95
5.1 Design . 95

5.1.1 Analyzer type . 95
5.1.2 Requirements . 97

5.2 Implementation . 97
5.2.1 Suggestions . 99
5.2.2 Code Fixes . 109

5.3 Evaluation . 117
5.3.1 Energy Evaluation . 117
5.3.2 Usability Test . 118

6 Reflections 121
6.1 Benchmarks . 121
6.2 Energy Analyzer . 122

Contents viii

6.3 Work Process . 122

7 Conclusion 124

8 Future Work 126
8.1 Benchmarks . 126

8.1.1 Categories . 126
8.1.2 Analysis . 127

8.2 Energy Analyzer . 127
8.2.1 Suggestions . 127
8.2.2 Code Fixes . 128
8.2.3 IDE Extension . 128
8.2.4 Semantic Analysis . 128

8.3 More Tools . 129

Bibliography 130

A Appendix 137
A.1 P-values for Microbenchmarks 137

A.1.1 Lambda Expressions Outside Loop 137
A.1.2 Lambda Expressions Inside Loop 138
A.1.3 Throwing and Catching Exceptions 138
A.1.4 Exception Creation . 139

A.2 Larger Benchmark Changes . 140
A.2.1 Batches . 141

A.3 P-values for the larger benchmarks 144
A.3.1 2048 . 144
A.3.2 21 . 145
A.3.3 4-Rings or 4-Squares Puzzle 146
A.3.4 99 Bottles of Beer . 146
A.3.5 Determine if a String has All the Same Characters . . . 147
A.3.6 Dijkstra’s Algorithm . 148
A.3.7 Happy Numbers . 148
A.3.8 Introspection . 149
A.3.9 World Cup Group Stage 150
A.3.10 Overview of Changes to the larger benchmarks 150

A.4 Formal Suggestions for Energy Analyzer 151
A.5 P-values for Evaluation . 154

A.5.1 CUP . 154

Contents ix

A.5.2 Sly . 155
A.6 Usability Test Tasks . 156

Chapter 1

Introduction

Energy Consumption from Information and Communications Technology
(ICT) systems have increased in recent years. In [7] it is reported that the
energy consumption of data centers has grown by about 6% from 2010 to
2018, despite significant energy efficiency increases in processing units. The
amount of energy the data centers consume is expected to increase in the
coming years, with one of the most worrying forecasts showing an increase
of ICT energy consumption from around 2% of global energy consumption
to somewhere around 20% within the next 15 years [8]. This includes data
centers which alone may account for 8% of global energy consumption by
2030 [8]. This means further improvements in energy efficiency within ICT
are needed.

Such improvements in energy efficiency within ICT can be achieved in
different ways, one of these ways is writing energy efficient software. Re-
search within this has shown that there are a lot of different ways of improv-
ing software, such as choosing the right programming language, choosing
the right language constructs, using the right algorithms, using the right
coding style etc. [9, 10, 11, 12, 3, 13]

When looking within the research of energy efficiency in software, there
is a distinct lack of tools that can help developers write energy-efficient
code, with the most notable tools being for Java or being for measuring
energy consumption instead of helping developers choose the right con-
structs [3, 14, 15, 16, 17].

Previous work is focused mainly on Java, and as we seek to expand
the field to help developers outside of the Java community, we focus on
another language. According to [18], C# is the second most used Object-
Oriented Programming (OOP) language and is on the rise in popularity.

1

1.1. Problem Statement 2

This, combined with our previous work [3] being for C#, means we choose
to focus on C#.

Furthermore, despite the research and our previous work [3] within en-
ergy consumption in software, and especially C#, the information is sparse
when considering how the code should be written. In addition, most pre-
vious research focuses on microbenchmarks and does not look further into
if these findings generalized to larger benchmarks.

Given that there still are a lot of language constructs that have not been
measured with regards to energy efficiency, for example within the group
of invocation there is a lack of research with a focus on lambda expressions
done in [3], this is an area for further research. The same group of language
constructs is defined so that the outcome of the code that uses a language
construct from a group should be equivalent if possible, however, this is
not always possible, in which case the output should be similar [3]. Fur-
thermore, the area of Exceptions can be expanded upon, as we can split
the benchmarks in [3] into multiple benchmarks to get better insight into
which part of creating, throwing, and catching Exceptions has the most
significant energy cost.

Besides the area of individual language constructs, there is a lack of
research into generalizing energy efficiency of language constructs to larger
programs, and a lack of tools for C# that can help developers choose the
right constructs.

Getting more knowledge of individual language constructs and how
these can be generalized to a larger program can be used to create a tool
that can help developers write energy-efficient code.

When using the knowledge of specific language constructs, it is natural
to analyze the patterns of code that are written to find sub-optimal language
construct usage. When creating a tool that analyzes patterns of code, a linter
is a natural choice as it lends itself well to recognizing patterns from the
program’s abstract syntax tree. Linters are also design-time tools, meaning
they are meant to help guide the developer when writing the code. A linter
can utilize the knowledge we gather to improve code [19], therefore this is
the focus of our research.

1.1 Problem Statement

This section presents the problem statement and research questions for the
project and the motivation behind it.

1.1. Problem Statement 3

How can developers write more energy efficient code using C# with
knowledge of the energy consumption of language constructs?

1. How can we extend upon the microbenchmarks from previous language con-
structs energy efficiency research?

2. How can the results from the microbenchmarks be generalized to larger bench-
marks?

3. How can these results be used to create a linter to help developers improve
the energy efficiency of their programs?

The problem statement and research questions are motivated by a lack
of research with regards to language constructs in C#, and how microbench-
marks created and measured in previous work affect larger programs. Fur-
thermore, the problem statement and research questions are motivated by
a lack of tools, that can help developers write energy-efficient code in C#.
A need for tools that help developers write energy efficient code is needed
according to [20, 21], therefore the main contribution of this project is a lin-
ter that can help developers write energy efficient code by hinting towards
more energy efficient language constructs.

As the main reasons behind the need for increased energy awareness
are the popularity of mobile devices, cloud computing, embedded systems,
and data center-based services [20, 21], we choose to focus on making it easy
for all the developers working on specific applications for these systems to
create energy efficient code. We choose to focus on applications instead
of the developers, as we believe that focusing on applications can have a
greater impact compared to individual developers having to install a linter.
We believe this is the case because large projects could be looked through
by multiple developers, who would all have to install the linter. However, if
the linter is project-specific, only the project would need the linter and the
developers do not need to install anything to their Integrated Development
Environment (IDE).

The research conducted in [3] shows that different language constructs
and collections have different amounts of energy consumption. As we want
to create a linter, we need to extend our knowledge base of language con-
structs, so we can have accurate suggestions for developers. Furthermore,
we need to ensure that the results can be generalized, because otherwise,
the linter may not be able to give accurate suggestions.

Following the research questions, we split the work into three subjects:

1.1. Problem Statement 4

1. Extend the previous work of language constructs with lambda expres-
sions and more exception analysis,

2. Get an understanding of how research regarding language constructs
can be generalized into larger programs, and

3. Create a linter that can help developers write energy-efficient code.

The linter will serve to help developers write more efficient code during
the writing process. Furthermore, the linter will be able to analyze an ex-
isting set of code and give insight into where there could be improvements
to be made, based on the research done in [3] and in this project. The linter
will be evaluated by how easy it is to use and how much the changes made
with the linter affect the energy consumption of different software.

When creating a linter for C#, a Roslyn Analyzer is a natural choice,
as the .NET compiler platform uses this to inspect the C# code [22], and
Microsoft has a guide on how to make a Roslyn analyzer [23]. The linter
will be giving suggestions and code fixes for developers’ code with regards
to energy consumption, based on the research done previously regarding
energy consumption, therefore we call the linter Energy Analyzer.

The specifics of how to implement a Roslyn Analyzer is explained in Sec-
tion 5.2.

We examine related work in Section 1.3, to get an overview of what al-
ready exists within this field. After this, we describe the design choices of
our benchmarks in Chapter 2, which brings us to the results of our bench-
marks in Chapter 3, which serves to get a starting point with regards to
suggestions for Energy Analyzer. After presenting the results of our bench-
marks, we analyze them to figure out why they occur in the way they do
in Chapter 4, this also serves to create formal suggestions for Energy An-
alyzer. Energy Analyzer is designed, implemented, and evaluated in Chap-
ter 5, using the formal suggestions gathered from the benchmark analysis.
Once Energy Analyzer is evaluated, we reflect over the project in Chapter 6,
to get an understanding of what went right and what could have been bet-
ter throughout the project. The reflections lead us to the conclusion of the
project in Chapter 7, after which we end off by presenting what future work
could be done within this field in Chapter 8.

1.2. Work Process 5

1.2 Work Process

In this section, we discuss our work process. We use a hybrid development
process between a plan-driven and an agile process [24]. We describe it as
a hybrid because we first create a plan for the three subjects we want to
research, for each subject we iterate through it until we have satisfactory
results, and we then proceed to the next subject of our study.

This hybrid process allows us to adapt to unforeseen challenges or in-
spiration that may show up throughout the project. This project spans ap-
proximately a four-month duration. Because of this, we can not make many
iterations over our product.

We do not use a purely plan-driven process, as we can not plan the
entire project from the start, because a lot of variables can change during
the project, such as which subjects are needed to study during the project,
or how in-depth different subjects needs to be studied, therefore changing
the direction of the project. Therefore, a similar process to the agile process
is used, where we plan the near future and have ideas for what comes
later in the project. We have deadlines to make sure that we meet the hard
deadline for the project.

The report is iterated over multiple times as we review our work and
when we get feedback from our supervisors. We have daily stand-up meet-
ings to keep an overview of the status of the project, share information, and
to keep track of what each other are working on. The overview is done to
maintain an outline of what must be done in the project for the next days
and to keep track of the timeline for the project. We discuss if anyone is
having problems that the other two members can help solve.

We use Notion as a tool to keep track of what each other is doing [25].
The board contains four columns with cards with the tasks required for the
project, to which one or more group members can be assigned to. The cards
can be moved between the four columns depending on the state of the task.
The four columns are To Do, Doing, Review, and Done. We use Gitlab [26]
to keep track of our code repository, to be able to share and keep track of
changes of the code written doing the project.

1.3 Related Work

In this section, we discuss related works to this project. We start by describ-
ing works that benchmark language constructs. Then we examine existing

1.3. Related Work 6

tools that can help developers write more energy aware code.
An overview of related work has been created in our previous work [3],

where we show research that has been done within the field of software
energy efficiency. Because of this, we only highlight some papers from
previous work and add a few papers that were not relevant in previous
work.

1.3.1 Language Constructs

In [3], we present a framework that can be used for measuring C# code with
regards to elapsed time and energy consumption, together with 316 mi-
crobenchmarks that gives an overview of a part of the language constructs
that can be used in C#. Furthermore, we present the results of measuring
these microbenchmarks, making it possible to use these results for further
research, for example in generalizing these results for larger programs or
for tools that can be used to help developers write more energy efficient
code. We show that there are cases where there is a significant difference in
energy consumption between language constructs that are similar, for ex-
ample that array is the most efficient type of list datatype, with List being
the second most efficient, and Dictionary being the most efficient type of
table datatype among other results.

Another paper that looks at microbenchmarks is [10]. In this paper, a
number of microbenchmarks and results from measuring these microbench-
marks in Java are presented. These results show that there are differences
in the energy efficiency of language constructs that can be used for similar
purposes, meaning that there is potential in this area.

The paper [27] extends the work of [10]. The paper presents more mi-
crobenchmarks and results from Java, further showing that there are poten-
tial improvements to be found within this area.

1.3.2 Tools

Several tools have been created to assist developers reason or optimize their
programs for energy consumption. In [14] a tool capable of recommending
Java collections to improve the energy consumption of the program is pre-
sented. They achieved this by creating an Eclipse plugin. The authors
conclude that the plugin can optimize energy consumption by 2%-17% and
the execution time by 2%-13%.

1.3. Related Work 7

In [16] a framework called SEEDS, which aims to optimize the use of
Java collections is presented. The framework takes a Java program as input
and creates a new version of that program with suggested changes auto-
matically. The authors conclude that their framework can optimize Java
programs’ energy consumption by 2%-17%.

Another tool is presented in [28]. A function-level profiling tool that
measures the energy consumption, by performing program analysis during
the program’s run-time. The authors conclude that their tool can be used
to profile the energy consumption of a program without modifying the
program, therefore they conclude that it should be possible for the program
to find energy hot spots. Besides this, they also show that the tool has a
small amount of overhead.

The tool presented in [29] is an Eclipse plugin that estimates the energy
consumption at program, function, and line level. The tool uses both pro-
gram analysis and instruction energy modeling to achieve this estimation.
The authors conclude that the tool can estimate the energy consumption to
within 10% of the ground truth.

In [30] a tool for Android applications that is capable of detecting and
refactoring energy-inefficient code is presented. They find that individual
refactoring produces consistent gains but with varying amounts of effect.
Furthermore, they find that combining refactorings, in general, reduces the
energy consumption but not always, along with a few combinations that
are harmful to reducing the energy consumption.

Another plugin is presented in [17] which can be used to measure pro-
grams written in Java in the Eclipse IDE. This plugin can also be used to
help developers choose energy-efficient language constructs based on the
research done in [10, 27]. The authors conclude that using their plugin can
achieve up to 14,46% improvement in energy efficiency with up to 0,48%
loss inaccuracy on the machine learning software "WEKA".

An IDE extension for Visual Studio Code is presented in [15], which is
capable of giving the developers the estimated amount of energy their code
would consume. The extension uses both static and dynamic analysis to es-
timate the energy consumption of the code. The authors conclude that non-
linear machine learning estimates deviate less from the ground truth than
both the energy model they look at and the linear machine learning models.
The estimation approach with the least error was the random forest ma-
chine learning model which estimated between 7,49% below ground truth
to 9,19% above ground truth, with a median of 1,06% above the ground
truth, indicating a slight overestimation.

1.3. Related Work 8

As we have looked at related work, we now look into how we should
design our benchmarks to create further knowledge that is necessary for
our linter.

Chapter 2

Benchmark Design

To get extra insight into language constructs within C#, and to improve
upon the methodology presented in [3], we choose to create extra mi-
crobenchmarks for the categories Exception and Invocation. The reason be-
hind improving the methodology is that there are small shortcomings of
the methodology used in the previous project. These shortcomings are not
enough to dismiss earlier results, however, they exist and could have an
impact on future research within this area, therefore we create an improved
formal methodology.

Specifically, we extend the Exception category by splitting Exception bench-
marks into two: Creating an Exception, and throwing and catching an Ex-
ception and we extend the Invocation category by creating benchmarks for
anonymous functions. We choose these categories to get insight into missed
information regarding previously made microbenchmarks. The missed in-
formation is which part of Exceptions cost the most and if there are specifics
when using lambda expressions in the Invocation category that should be
taken note of.

We follow the same overall design and methodology as presented in [3],
however, there are a few changes that improve the quality of the results
and analysis. Specifically, we add a new step in the procedure [3, p.60]
for presenting the results. The new step we add is doing a sanity check,
meaning we check if the results are realistic. We also add a new step in the
analysis process presented in [3, p.111] where we check if the construct we
are testing is a library construct, in which case we check the implementation
of the construct.

As mentioned, the design of microbenchmarks follows the design of our
previous project [3], the design chapter can be found in Chapter 4 in [3],

9

2.1. Goals 10

therefore we only summarize each part of the design process. The de-
sign chapter is divided into seven parts, Goals, Microbenchmarks vs Mac-
robenchmarks, Choice of benchmarks, Measurement approach, Experiment
Guidelines, Threats to Validity, and Summary.

2.1 Goals

The goal of the benchmarks is to determine the difference in energy con-
sumption for language constructs in C#, whether they use more, the same,
or less energy than other language constructs that are in the same group.
This is done to give developers knowledge regarding the language con-
structs, so they can write code that is more energy-efficient.

For example, you can exchange a for loop with a while loop without
changing the outcome of the code. In general, we aim to have equivalent
outcomes when possible, but there are cases where this is not possible.
For example, if we try to compare an if statement with an exception,
it may not always be possible to switch one for the other. However, all
the benchmarks in the same group will have similar functionality, meaning
they can be switched for each other in some way.

When comparing these language constructs, various considerations must
be made. To make benchmarks we follow five criteria from [31]:

1. Relevance, it is important to design the benchmark so it is relevant for
its intended use.

2. Reproducibility, it is important to describe the test environment so the
results are consistent between different testers.

3. Fairness, it is important the benchmarks compete without any unnec-
essary artificial constraints.

4. Verifiability, it is important to be able to verify the results are correct.

5. Usability, it is important to be able to use the benchmarks.

To follow these five criteria, we follow the setup and guidelines pre-
sented in [3, p.43-45] when writing benchmarks. We peer review the bench-
marks to make sure the benchmarks have relevance, we run the benchmarks
on a single computer sequentially to create reproducibility and fairness, we
use the framework presented in [3] to have verifiability and usability in our

2.2. Microbenchmarks vs Macrobenchmarks 11

benchmarks. In addition to this, we calculate sanity checks in Chapter 3 to
further verify our results.

2.2 Microbenchmarks vs Macrobenchmarks

To make benchmarks that are relevant for each part of the project, we
first give a short definition of the concept of micro-and macro-benchmarks.
A microbenchmark tests a little code, sometimes just a single operation.
A macrobenchmark tests larger amounts of code, sometimes entire pro-
grams [32]. In [3] we created microbenchmarks for 316 different language
constructs. An advantage of our microbenchmarks is that we test one spe-
cific language construct, keeping other variables constant. This gives a pos-
sibility to figure out what language constructs consume the least amount of
energy compared to other language constructs which accomplish the same,
or similar goals. A disadvantage of the microbenchmarks is that they may
not be representative of an entire program, as a single language construct
is a very small part of an entire program. An advantage of macrobench-
marks is that they can represent an entire program, they can therefore be
used to measure the energy consumption of entire programs. A disadvan-
tage of macrobenchmarks is that small changes such as a change in a single
language construct are hard to measure.

2.3 Choice of Benchmarks

As mentioned, we continue with microbenchmarks from our previous project [3].
We do so because we have an improvement to our method for verifying our
results by doing sanity checks. Furthermore, we show an improvement
to our analysis of the results from our microbenchmarks. As the purpose
is to improve the method for verifying and analyzing the results of mi-
crobenchmarks, we only need enough microbenchmarks to show the im-
proved method. Therefore we take a step further with our research and
look into larger benchmarks, where we use the results from the current mi-
crobenchmarks together with the results from our previous project, to test if
the results from our microbenchmarks can be generalized to larger bench-
marks. The larger benchmarks could be considered macrobenchmarks,
however we will refer to them as larger benchmarks because macrobench-
marks often are considerably larger. We choose to use larger benchmarks

2.4. Measurement Approach 12

as opposed to macrobenchmarks, as it would take too much of our limited
time to make all the changes needed in a macrobenchmark.

2.4 Measurement Approach

We choose to measure energy consumption and elapsed time for each of
the benchmarks, so a developer can use the results no matter if the devel-
oper focuses on elapsed time or energy consumption, or a combination of
the two. Furthermore, having both elapsed time and energy consumption,
makes it possible to see if, and how, these correlate.

In [3] we found that Running Average Power Limit (RAPL) is an ac-
curate measuring tool and has a finer granularity with regards to energy
consumption compared to wall-socket/hardware measuring, therefore we
will continue using the framework that was developed in [3].

2.5 Experiment Guidelines

We use guidelines to set up our benchmarks so it is possible to be consistent
between benchmark developers.

In [3, p.37-39] we create guidelines for microbenchmarks on the basis of
tips from [33], these tips being:

• use a large number of iterations,

• use a number of iterations large enough to run for at least 0,25 sec-
onds,

• save the results inside the benchmark to a dummy variable so a com-
piler does not optimize it away, and

• run the entire benchmark at least 10 times so we can compute the
standard deviation.

We follow these tips with the only difference being that instead of run-
ning the entire benchmark 10 times, we utilize a formula presented in [34]
to calculate how many times we need to run the benchmark to get a signif-
icant result.

As we use the framework presented in [3], we use these guidelines au-
tomatically, except for saving the results inside the benchmark to a dummy
variable.

2.6. Threats to Validity 13

Furthermore, with regards to the code setup, the same approach as in [3,
p.38-39] is utilized.

In [3, p.38-39] we utilize a for loop around the measurements to create
multiple iterations within the benchmark to make it run for longer. The
framework created takes care of the other parts of the code setup for us,
including initializing energy and time measurement, ending energy and
time measurement, and normalizing the results.

The tip regarding saving results inside the benchmark to a dummy vari-
able is not necessary for larger benchmarks, as large benchmarks not opti-
mized away by the compiler. However, we still need to calculate the number
of times the entire benchmark should be run to get a significant result.

2.6 Threats to Validity

We look into what threats to the validity of the results from our experi-
ments have to be able to reflect on the results. We have divided the threats
to validity into four categories. The categories are Construct validity, Inter-
nal Validity, External Validity, and Reliability. The categories are inspired
from [35].

2.6.1 Construct validity

Construct validity refers to if we measure what we expect to be measur-
ing, which in our case is the energy consumption and time elapsed for
language constructs in our benchmarks. To ensure we measure this, we fol-
low the tips in Section 2.5. Specifically, for the microbenchmarks we follow
the tip to save the result inside the benchmarks so that the compiler does
not compile the benchmarks away. Furthermore, we compare the results of
the microbenchmarks to the result of running a microbenchmark with an
empty loop, as if these are the same, we assume that the compiler has opti-
mized the code in some way. We can do this because we found that empty
loops are not optimized away by the compiler in [3]. If the benchmark is
optimized away by the compiler we rewrite the benchmark until it is no
longer optimized away by the compiler. For larger benchmarks, we do not
need to consider these issues, as the larger benchmarks are large enough
that the compiler can not optimize it away as that would alter the behavior
of the benchmark. For the larger benchmarks, we only need to ensure that

2.6. Threats to Validity 14

the behavior stays the same after making the changes from the suggestions
gathered by the microbenchmarks.

2.6.2 Internal Validity,

Internal validity refers to whether other factors than the variables used in
the experiments influence the results. These threats include the tempera-
ture of the testing environment, System daemons, CPU frequency scaling,
OS context-switching, and garbage collection. To mitigate the temperature
being a factor, we monitor the temperature of the CPU during the experi-
ments and only perform experiments when the CPU temperature is within
the same temperature range or an established temperature interval. To miti-
gate OS context-switching we perform enough measurements to get signifi-
cant results and shield the cores used for benchmark execution as described
in [36].

2.6.3 External Validity

External validity refers to whether the results can be generalized. The main
threat to validity here is whether the results from the microbenchmarks
can be generalized to larger benchmarks. As one of the purposes of this
project is to figure out whether the results found in [3] and from a few
extra microbenchmarks can be generalized to larger benchmarks, we look
into whether this threat to validity is of concern.

Furthermore, only testing a single large benchmark is not enough to fig-
ure out whether results can be generalized, which means we test multiple.

2.6.4 Reliability

Reliability refers to if the benchmarks are reproducible if you use the same
methodology. There are a lot of areas that can affect reliability, such as
random context switching, clock speed, and randomness with regards to the
hardware states. We follow the same methodology as in [3] which includes
the tips from [36] to mitigate reliability issues.

These tips include:

• shielding CPUs from uninvited threads, to make sure the CPU is not
being used by something else while running an experiment,

2.7. Summary 15

• changing the swappiness parameter, so the Linux distribution does
not swap as aggressively,

• turning off or creating an Address Space Layout Randomization (ASLR)-
disabled shell to not create variations in-memory layout,

• making the clock rate effectively static by using the "performance"
governor on all CPUs and turning off boosting on all CPUs,

• disabling hyperthreading to make it easier to manage CPU resources,
and

• sending interrupt requests to unshielded processors instead of the
processors used for testing.

2.7 Summary

The goal of this section is to determine the difference in energy consump-
tion between language constructs that achieve the same or similar results
in C#. To achieve this goal we add a few microbenchmarks to our list from
our last project [3], where we examine the language constructs’ energy con-
sumption itself. With the results from the microbenchmarks we make larger
benchmarks to examine the language constructs’ effect on energy consump-
tion for bigger programs. We measure both energy consumption and time
elapsed, however, we focus on the energy consumption during this project.
We choose to use RAPL as we have previous experience with it and we
found that it is an accurate measurement tool. To make consistent, reliable,
and reproducible results we create guidelines for our experiments, we fol-
low the approach recommended in [33], however, we calculate how many
times a benchmark should be run instead of following the recommended
in [33]. We describe the different threats to validity that affect our bench-
marks. These are divided into construct validity, internal validity, external
validity, and reliability. In each category, we describe the threats and how
to mitigate them.

Following the design, we create benchmarks and present the results in
the following chapter.

Chapter 3

Benchmark Results

In this chapter, we look at the results from the benchmarks. All the bench-
marks can be seen in our git repository [1]. We do this to gather knowledge
that can be used to create suggestions that are used in Energy Analyzer.

Processor Intel Xeon W-1250P @ 4.1 GHz
Storage 512 GB NVMe SSD
Memory 16 GB
Operating System Ubuntu Server 20.04.03 LTS
.NET SDK .NET 6.0.101

Table 3.1: Specifications for the computer used in testing.

We use a server with the setup seen in Table 3.1, this is done to have
consistency with regards to the results. This is the same server that was
utilized in [3], meaning the results are directly comparable to the results
from [3]. However, as computers are somewhat indeterministic, comparing
results directly from this project to [3] should be done with care, and is not
the sole reason for conclusive evidence.

Important to note is that the results are normalized to 1.000.000 itera-
tions, i.e. the same as running the relevant benchmark 1.000.000 times like
in [3].

3.1 Microbenchmarks

We start by creating and presenting microbenchmarks, as we want to use
these results, together with the results from [3], for our larger benchmarks.

16

3.1. Microbenchmarks 17

The procedure presenting our results for microbenchmarks mostly fol-
lows the same procedure we used in [3], however, we add an extra step
with a sanity check to make sure our results are plausible.

Furthermore, we define a significant difference between two results as
having a p-value of less than 0,05 [37] and having a difference of more than
2%, as previous work has found that the results can vary by up to around
1% [3, p.131-132]. If there is no significant difference, we can not say if there
is an actual difference between the two results.

Procedure

The procedure for each section in microbenchmarks is:

1. Describe the benchmarks, what are the constructs used, and why are
we testing them.

2. Show code for all of the benchmarks.

3. Show one or more plots of the results to give an overview of the re-
sults. In the plots, the dashed line shows the average, the solid line the
median, the boxes contain the 95% interval within the results found,
and the outer lines show the furthest outliers. In some cases, the av-
erage and median are on top of each other, and therefore hard to see.
Furthermore, outliers in some cases do not happen so they are within
the 95%.

4. Show tables with the numeric results for more detailed results.

5. Sanity check by taking the approximate power usage for a single core
of the CPU and multiplying it with the elapsed time measured. The
CPU has 6 cores and 12 threads and its Thermal Design Power (TDP)
is 125 Watts [38]. We estimate the power consumption of a single core
to be somewhere around 20 Watts, as 125 watts divided by 6 cores is
around 20 watts per core. As our elapsed time is in milliseconds and
our package energy is in microjoule, we multiply our elapsed time by
1000 to get to microseconds, and then multiply by 20 to get the power
consumption in microjoule. We consider there to be no obvious errors,
if the actual results show a deviation of less than a factor of 2 from the
expected results.

3.1. Microbenchmarks 18

3.1.1 Lambda Expressions

In this section, we look at the efficiency of different ways of creating lambda
expressions. We do this to get insight into a part of Invocation that was
partly overlooked in [3], and to show our improved methodology. Fur-
thermore, this gives information that can be used to create suggestions for
Energy Analyzer.

We create two groups for lambda expressions: Having the lambda ex-
pression outside the loop, meaning it is initialized before the main part of
the benchmark is run, and having the lambda expression inside the loop,
meaning it is initialized during every loop cycle.

This is done to get an understanding of the impact of moving an expres-
sion like that outside of a loop.

For each of these groups we create five benchmarks:

• Lambda,

• LambdaAction,

• LambdaClosure,

• LambdaDelegate, and

• LambdaParameter.

These five benchmarks give insight into several ways of creating lambda
expressions.

Lambda Expressions Outside Loop

We start with the group of lambda expressions that are initialized outside
the loop.

For this group, we look at the Lambda benchmark.

1 public class LambdaBenchmarks {
2 ...
3 [Benchmark("Lambda Expression", "Tests if using a func is

better")]ãÑ

4 public static ulong Lambda() {
5 ulong result = 0;
6 Func<ulong> test = () => 25;

3.1. Microbenchmarks 19

7 for (ulong i = 0; i < LoopIterations; i++) {
8 result = test() + result + i;
9 }

10 return result;
11 }
12 ...
13 }

Listing 1: The Lambda method which tests a Lambda expression in the LambdaBenchmarks
class.

In Listing 1 we can see the Lambda benchmark, in this benchmark we
create a lambda expression that is assigned to a Func, meaning it has a
return value. We call this lambda expression, add the return value to the
result and add i to ensure that the benchmark is not compiled away.

The rest of the lambda expression benchmarks follow the same struc-
ture. In the LambdaAction we use Action instead of Func, in LambdaClosure
we access a variable outside the lambda expression, in LambdaDelegate we
use a delegate instead of Func, and in LambdaParameter we use a parameter
instead of directly accessing a variable outside of the lambda expression.

3.1. Microbenchmarks 20

Figure 3.1: Energy Consumption for Lambda Expressions that are initialized outside the
for loop.

In Figure 3.1 we can see the energy consumption for the benchmarks
where the lambda expression is initialized outside the for loop in numeric
form.

The y-axis does not start from zero to show a better view of the differ-
ences, and the span is around 7000µJ.

We can see that using a delegate is the most efficient while using an
ordinary Func is the least efficient when looking at the energy efficiency.
This is misleading, as the results differ a large amount from run to run for
this group of benchmarks, which we will explore in Section 4.1.1.

3.1. Microbenchmarks 21

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Lambda 2,030996 24.740,375 1.139,994
Lambda Action 1,713301 22.352,621 962,034
Lambda Closure 1,713354 22.196,119 961,825
Lambda Delegate 1,468088 18.379,279 824,106
Lambda Parameter 1,713181 20.954,340 961,552

Table 3.2: Table showing the elapsed time and energy measurement for each Lambda
Expression.

In Table 3.2 we can see the numeric results for each of the Lambda
Expression benchmarks. As mentioned, the results are misleading, as the
results differ a large amount from run to run.

We do a sanity check for all of them to see if the elapsed time fits with
the amount of energy used, however, we only show the first one as they all
show the same story.

1,713181ms ∗ 1000 ∗ 20W = 34.263,62µJ (3.1)

In Equation 3.1 we can see the sanity check for the Lambda Parameter
benchmark, we can see that the energy consumption calculated is within
a factor of 2 of the measured energy consumption, meaning there are no
obvious errors in our measurements. The same is the case for all the other
benchmark results.

The p-values for all of the results for this benchmark can be seen in Sec-
tion A.1.1, however, because of the result variance, these are not conclusive.

Lambda Expressions Inside Loop

Next, we look at the group of lambda expressions that are initialized inside
the loop.

For this group we look at the InsideLoopLambda benchmark.

1 public class LambdaBenchmarks {
2 ...
3 [Benchmark("Lambda Expression Inside Loop", "Tests if using

a func is better inside the loop")]ãÑ

4 public static ulong InsideLoopLambda() {
5 ulong result = 0;
6 for (ulong i = 0; i < LoopIterations; i++) {

3.1. Microbenchmarks 22

7 ulong i1 = i;
8 Func<ulong> test = () => 25 + i1;
9 result = test() + result;

10 }
11 return result;
12 }
13 ...
14 }

Listing 2: The InsideLoopLambda method which tests a Lambda expression initilized inside
the for loop in the LambdaBenchmarks class.

In Listing 2 we can see the InsideLoopLambda benchmark, this works
in the same way as the Lambda benchmark shown in Listing 1, with the
exception that the lambda expression is created inside the loop and the
index variable is used inside the lambda expression. The same is the case
for the rest of the LambdaExpressionsInsideLoop benchmarks, where they
follow the same structure as the previous benchmarks, but with the lambda
expressions defined inside the loop.

3.1. Microbenchmarks 23

Figure 3.2: Energy Consumption for Lambda Expressions that are initialized inside the for
loop

In Figure 3.2 we can see the energy consumption for the benchmarks
where the lambda expression is initialized inside the for loop.

The y-axis does not start from zero to show a better view of the differ-
ences, and the span is around 180.000µJ.

We can see that using a delegate, ordinary Func, and Func with a pa-
rameter is the most efficient, while using an Action and Func with a sur-
rounding variable is the least efficient when looking at the energy efficiency.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Inside Loop Lambda 12,232522 173.364,917 6.906,148
Inside Loop Lambda Action 14,114181 198.414,855 8.267,849
Inside Loop Lambda Closure 14,204120 200.548,161 8.286,308
Inside Loop Lambda Delegate 12,586698 177.045,568 7.428,007
Inside Loop Lambda Parameter 12,322410 173.911,275 7.251,037

Table 3.3: Table showing the elapsed time and energy measurement for each Lambda
Expression Inside Loop.

3.1. Microbenchmarks 24

In Table 3.2 we can see the numeric results for each of the Lambda
Expression benchmarks. These results confirm what we concluded from
the plot.

We do a sanity check for all of them to see if the elapsed time fits with
the amount of energy used, however, we only show the first one as they all
show the same story.

14,204120ms ∗ 1000 ∗ 20W = 284.082,4µJ (3.2)

In Equation 3.1 we can see the sanity check for the Inside Loop Lambda
Parameter benchmark, we can see that the energy consumption calculated
and the one measured are within a factor of 2 of each other, meaning there
are no obvious errors in our measurements. The same is the case for all the
other benchmark results.

The p-values for all of the results for this benchmark can be seen in
Section A.1.2.

Findings

The findings in this section can be used to create suggestions that are used
in Energy Analyzer, so developers can improve their programs with regards
to energy consumption. Seeing if some of these results can be generalized
to a larger benchmark makes it possible to create more precise suggestions
for Energy Analyzer. To summarize, the results are as follows:

• The energy consumption of lambda expressions is inconsistent when
initializing the lambda expressions outside the for loop.

• Using the Action construct and using closure with a lambda expres-
sion is less efficient than not doing that when initializing the lambda
expressions inside the for loop.

3.1.2 Exceptions

We have created two groups for exceptions: Creating an exception and
throwing/catching an exception. We have done this to get an understand-
ing of the individual parts of exceptions, which is unlike what we did in [3].
This can also give more information that can be used to create more precise
suggestions for Energy Analyzer.

3.1. Microbenchmarks 25

Creating Exceptions

First we look at the group that creates exceptions, which contains three
benchmarks.

• CreateArgumentException,

• CreateDivideByZeroException, and

• CreateException.

We create these to get an understanding of how much energy is consumed
to create different types of exceptions.

We start by looking at the benchmark Create Argument Exception.

1 public class ExceptionBenchmarks {
2 ...
3 [Benchmark("Exception Creation", "Tests how much it costs to

create an ArgumentException")]ãÑ

4 public static Exception CreateArgumentException() {
5 Exception result = new Exception();
6 for (ulong i = 0; i < LoopIterations; i++) {
7 result = new ArgumentException();
8 }
9 return result;

10 }
11 ...
12 }

Listing 3: The Create Argument Exception method which create arguments exceptions
in the ExceptionBenchmarks class.

In Listing 3 we see how we have created the benchmarks for creating
Argument Exceptions. We create a new Argument Exception for as many
times as the variable LoopIterations has been set to, after which the results
are returned. The same is the case for the other benchmarks in this group,
with the only difference being what type of exception is created.

3.1. Microbenchmarks 26

Figure 3.3: Energy Consumption for creating exceptions of different types.

In Figure 3.3 we can see the energy consumption for creating exceptions
of types: ArgumentException, DivideByZeroException, and Exception. The
y-axis does not start from 0 and spans around 15.000.000µJ. We see that
creating an Exception consumes less energy than creating Create Argument
Exceptions and Divide By Zero Exceptions.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Create Argument Exception 106,050686 1.418.835,983 77.073,708

Create Divide by Zero Exception 102,413879 1.383.990,746 73.907,242
Create Exception 11,594180 165.185,133 22.430,923

Table 3.4: Table showing the elapsed time and energy measurement for each Exception
Creation.

In Table 3.4 we see the results for creating Exceptions in numeric form.
We can see the average results for our three result types, Time Elapsed,
Package Energy Consumption, and DRAM Energy Consumption. To verify

3.1. Microbenchmarks 27

the results are plausible we make a sanity check on our package energy
results.

11,59418ms ∗ 1000 ∗ 20W = 231.883,6µJ (3.3)

In Equation 3.3 we see the result for our sanity check for Create Exception,
which is within a factor of 2 to our measured result, therefore we conclude
that there are no obvious errors in our measurement. The rest of the bench-
marks show the same.

In Table 3.4 we see that creating an Exception is more than 9 times faster
on average than creating an ArgumentException or a DivideByZeroException.
We can also see that creating an Exception consumes 8 times less package
energy than creating an ArgumentException or a DivideByZeroException.
The p-values for all the results are less than 0,05, meaning that the differ-
ence between all the exceptions are significant.

Throwing and Catching Exceptions

In this section we look at the group that throws and catches exceptions,
which contains 12 benchmarks.

• CachedArgumentException,

• CachedDivideByZeroException,

• CachedException,

• NewArgumentException,

• NewDivideByZeroException,

• NewException,

• ThrowCachedArgumentException,

• ThrowCachedDivideByZeroException,

• ThrowCachedException,

• ThrowNewArgumentException,

• ThrowNewDivideByZeroException, and

• ThrowNewException.

3.1. Microbenchmarks 28

The difference between the benchmarks that does not have Throw in their
name compared with those that have Throw in their name, is that the ones
that have Throw in their name have an addition occurring in the catch block.
The benchmarks that have New in their name, creates a new exception each
time an exception is thrown, while the ones without New in their name,
uses an exception created outside the loop, i.e. a cached exception. We
create and test these benchmarks to get an understanding of how much
energy is consumed throwing and catching different types of exceptions.
We start by looking at the benchmark Cached Exception.

1 public class ExceptionBenchmarks {
2 ...
3 [Benchmark("Exception", "Tests try-catch where a cached

CachedArgumentException is thrown")]ãÑ

4 public static ulong CachedArgumentException() {
5 ArgumentException argumentException = new

ArgumentException();ãÑ

6 for (ulong i = 0; i < LoopIterations; i++) {
7 try {
8 throw argumentException;
9 }

10 catch { }
11 }
12 return LoopIterations;
13 }
14 ...
15 }

Listing 4: The CachedArgumentException method which tests a try catch throwing a
cached exception in the ExceptionBenchmarks class.

In Listing 4 we see how we have created the benchmark for throw-
ing and catching a cached ArgumentException. We throw and catch an
ArgumentException as many times as the variable LoopIterations has been
set to, after which the LoopIterations is returned. The CachedDivideByZeroException
and CachedException benchmarks are almost similar, except they use a
DivideByZeroException and an Exception respectively.

3.1. Microbenchmarks 29

1 public class ExceptionBenchmarks {
2 ...
3 [Benchmark("Exception", "Tests try-catch with a new

exception thrown")]ãÑ

4 public static ulong NewArgumentException() {
5 for (ulong i = 0; i < LoopIterations; i++) {
6 try {
7 throw new ArgumentException();
8 }
9 catch { }

10 }
11 return LoopIterations;
12 }
13 ...
14 }

Listing 5: The NewArgumentException method which tests a try catch throwing a new
ArgumentException in the ExceptionBenchmarks class.

In Listing 5 we see the benchmark for throwing and catching a new
ArgumentException. It is similar to the CachedArgumentException bench-
mark, but instead of throwing the same ArgumentException, we create a
new in each iteration of the for loop. The NewDivideByZeroException and
NewException benchmarks are almost similar, except they use a DivideByZeroException
and an Exception respectively.

1 public class ExceptionBenchmarks {
2 ...
3 [Benchmark("Exception", "Tests try-catch a cached exception

is thrown and addition occurs")]ãÑ

4 public static ulong ThrowCachedArgumentException() {
5 ArgumentException argumentException = new

ArgumentException();ãÑ

6 ulong result = 0;
7 for (ulong i = 0; i < LoopIterations; i++) {
8 try {
9 throw argumentException;

3.1. Microbenchmarks 30

10 }
11 catch {
12 result += i;
13 }
14 }
15 return result;
16 }
17 ...
18 }

Listing 6: The ThrowCachedArgumentException method, which tests a try catch throw-
ing a cached exception and an addition is made when the exception is caught, in the
ExceptionBenchmarks class.

In Listing 6 we see the benchmark for throwing and catching a cached
ArgumentException, and then making an addition when the exception is
caught. It is very similar to the CachedArgumentException benchmark, how-
ever, we make an addition in the catch block. The ThrowCachedDivideByZeroException
and ThrowCachedException benchmarks are almost similar, except they use
a DivideByZeroException and an Exception respectively.

1 public class ExceptionBenchmarks {
2 ...
3 [Benchmark("Exception", "Tests try-catch with a new

exception thrown and addition occurs")]ãÑ

4 public static ulong ThrowNewArgumentException() {
5 ulong result = 0;
6 for (ulong i = 0; i < LoopIterations; i++) {
7 try {
8 throw new ArgumentException();
9 }

10 catch {
11 result += i;
12 }
13 }
14 return result;
15 }
16 ...
17 }

3.1. Microbenchmarks 31

Listing 7: The ThrowNewArgumentException method, which tests a try catch throw-
ing a new exception and an addition is made when the exception is caught, in the
ExceptionBenchmarks class.

In Listing 7 we see the benchmark for throwing and catching a new
ArgumentException, and then making an addition when the exception is
caught. It is similar to the other benchmarks, as it throws a new ArgumentException
like the NewArgumentException benchmark, while making an addition in
the catch block like the ThrowCachedArgumentException benchmark. The
ThrowNewDivideByZeroException and ThrownewException benchmarks are
almost similar, except they use a DivideByZeroException and an Exception
respectively.

Figure 3.4: Energy Consumption for throwing and catching exceptions.

In Figure 3.4 we can see the energy consumption for throwing and catch-
ing exceptions that are created during the throwing or created before the

3.1. Microbenchmarks 32

main part of the benchmark. The y-axis does not start from 0 and spans
around 10.000.000µJ. We see that there is a lot of uncertainty with the results
as they vary a lot. However, we see that the benchmarks using a cached ex-
ception consistently consumes less energy than the benchmarks creating
new exceptions and that using an Exception is more energy-efficient than
using either an ArgumentException or a DivideByZeroException.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Cached Argument Exception 8.398,393333 113.597.356,623 4.732.055,664
Cached Divide by Zero Exception 8.396,791178 112.520.737,712 4.721.295,166
Cached Exception 8.302,432658 111.814.550,781 4.667.028,809
New Argument Exception 8.737,015381 116.530.510,254 4.909.177,246
New Divide by Zero Exception 8.751,158203 117.557.790,527 4.926.459,961
New Exception 8.409,609222 114.159.925,842 4.729.153,442
Throw Cached Argument Exception 8.350,120117 112.799.786,377 4.689.979,248
Throw Cached Divide by Zero Exception 8.370,584961 112.777.062,988 4.705.329,590
Throw Cached Exception 8.279,091797 111.499.955,611 4.651.859,908
Throw New Argument Exception 8.765,054687 117.695.327,148 4.927.653,809
Throw New Divide by Zero Exception 8.765,690918 117.252.763,672 4.928.398,438
Throw New Exception 8.412,026855 113.348.371,582 4.729.018,555

Table 3.5: Table showing the elapsed time and energy measurement for each Exception.

In Table 3.5 we see the results for throwing and catching exceptions in
numeric form. We see the result for Time Elapsed, Package Energy Con-
sumption, and DRAM Energy Consumption. To verify the results are plau-
sible we make a sanity check on our package energy.

8406,333984ms ∗ 1000 ∗ 20W = 168.126.679,68µJ (3.4)

Equation 3.4 shows the result for our sanity check for the Throw Cached
Exception benchmark. The calculated energy consumption and the mea-
sured energy consumption are within a factor of 2, this result shows that
our measurement does not have obvious errors. The same has been done
for the rest of the results, showing the same. The p-values which can be
seen in A.1.3, are all less than 0,05 between the cached exceptions and
the new exceptions benchmarks, and between Exception benchmark and
the ArgumentException or the DivideByZeroException benchmarks. The
benchmarks which uses a cached exception differ more than 2% from the
same type of benchmarks using a new exception, except for Throw Cached
Exception and Throw New Exception. Moreover the benchmarks which
are not cached and uses Exceptions differs in package energy with more
than 2% from the similar benchmarks using an ArgumentException or a

3.2. Larger benchmarks 33

DivideByZeroException. We conclude that the benchmarks which have a
p-value less than 0,05 between them and differ with more than 2% in pack-
age energy consume different amounts of energy.

Findings

The findings in this section can be used as a starting point for creating sug-
gestions that can be used in Energy Analyzer that will make it possible for
developers to improve their programs with regards to energy consumption
without much work. Seeing if some of these results can be generalized is
another step in making formal suggestions for Energy Analyzer. To summa-
rize, the results are as follows:

• Creating an Exception consumes 8 times less package energy than
creating an ArgumentException or a DivideByZeroException.

• Throwing and catching an Exception is more energy efficient than
using an ArgumentException or a DivideByZeroException.

• Throwing and catching a cached exception consumes less energy than
throwing and catching a newly created exception when using ArgumentException
or DivideByZeroException.

3.2 Larger benchmarks

We now create and present the larger benchmark results, as this shows how
well the results from the microbenchmarks can be generalized. The results
from the larger benchmarks, together with the analysis in Chapter 4 serve
to create formal suggestions for Energy Analyzer. The procedure for pre-
senting our larger benchmarks takes inspiration from the way we present
microbenchmarks in Section 3.1.

Procedure

The procedure for each benchmark is:

1. Describe the benchmark, and what language constructs have been
used.

2. Show parts of the code that changed.

3.2. Larger benchmarks 34

3. Show one or more plots of the results to give an overview of the re-
sults.

4. Show tables with the numeric results for more detailed results.

5. Sanity check by taking the approximate power usage for a single core
of the CPU and multiplying it with the elapsed time measured, like
for the microbenchmarks.

3.2.1 Benchmark Overview and Choices

To get an overview of the changes made to the larger benchmarks, we create
a list of changes, seen in Section A.2. This list is used as a guideline for the
changes done in all of the large benchmarks tested, the list is based upon
research and reflections from [3] and the results from the microbenchmarks
from Section 3.1.

Furthermore, it is important to know which benchmarks we use, to be
able to replicate the results.

To select our benchmarks we look at using the publicly available bench-
marks from RosettaCode [39] and the Computer Language Benchmarks Game[40].

We find RosettaCode focus more on having a wide selection of bench-
marks whereas the Computer Language Benchmarks Game focus more on sin-
gular algorithms and on creating different variations of these algorithms.

We decide to use various benchmarks from RosettaCode as this allows for
a wide selection of benchmarks to cover more areas like reflection, lambda
expressions, string concatenation, etc. This serves to better reflect our mi-
crobenchmarks in the more general setting of the large benchmarks.

We choose the following nine benchmarks:

• 2048

• 21 game

• 4 rings or 4 squares puzzle

• 99 bottles of beer

• Determine if a string has all the same characters

• Dijkstra’s algorithm

• Happy numbers

3.2. Larger benchmarks 35

• Introspection

• World Cup group stage

We choose these benchmarks to get a comprehensive suite of bench-
marks that can test all of the groups of changes seen in Section A.2. Im-
portant to note is that some individual suggestions within each group are
not used, as benchmarks, where these would be applicable, could not be
found without the benchmark being specific for that individual suggestion.
As we want general benchmarks, we choose not to use benchmarks where
only one specific suggestion is used. The specifics with regards to what
groups of changes have been made to each benchmark can be seen in their
respective section.

Furthermore, instead of doing all of the changes every time, we do
batches of changes to figure out which changes have the most impact on
every benchmark. These batches can be seen in Section A.2.1.

This also serves to show if any of the changes affect the benchmarks in
a way that is contrary to what we expect.

We compare the results of each of these to a benchmark where no
changes have been made and to a benchmark where all of the changes have
been made. In cases where changes overlap, we make changes that would
have the largest impact according to the microbenchmark results.

The p-values for all of these benchmarks can be seen in Section A.3.

3.2.2 2048

The benchmark [41] is an implementation of the game 2048, which is a
sliding puzzle game where blocks with the same numbers are combined to
grow the value of a block. There are several rules to this game which can
be seen in [41].

The 2048 benchmark is used to show whether the batches from Sec-
tion A.2.1, with regards to Datatypes, Selection, Loops, and Objects, have
the desired effect when generalizing to larger benchmarks.

The change with regards to Datatypes is changing the int variables to
uint. Furthermore, we change the method of string concatenation from
using the concatenation operator (+) to using StringBuilder.

The change with regards to Selection is changing if statements to
switch statements where possible.

The change with regards to Loops is changing iterating through an array
from a for loop to a foreach loop.

3.2. Larger benchmarks 36

Lastly, the change with regards to Objects, is changing class to struct.

Code Changes

To make it possible to run the benchmark as part of our framework [3], it
is necessary to make changes besides the ones needed to test the language
constructs.

Specifically, we move the contents of the constructor to the InitializeBoard
method, to make it possible to reset the board between each iteration.

1 public class Default {
2 internal class G2048 {
3 public void InitializeBoard() {
4 _isDone = false;
5 _isWon = false;
6 _isMoved = true;
7 _inputs = new Queue<char>(Enumerable.Repeat('w',

100));ãÑ

8 _score = 0;
9 for (int y = 0; y < 4; y++) {

10 for (int x = 0; x < 4; x++) {
11 _board[x, y] = new Tile();
12 }
13 }
14 }
15 }
16 }

Listing 8: Change to Default implementation of 2048, InitializeBoard method.

In Listing 8 we can see how the InitializeBoard method looks after the
change. Important to note is that another change made is that a field called
_inputs is initialized so that we do not need to manually make inputs to the
game when running the benchmark. This is used in the WaitKey method.

1 public class Default {
2 internal class G2048 {
3 private void WaitKey() {

3.2. Larger benchmarks 37

4 _isMoved = false;
5 if (_inputs.Count == 0) {
6 _isDone = true;
7 return;
8 }
9 switch (_inputs.Dequeue()) {

10 case 'W':
11 Move(MoveDirection.Up);
12 break;
13 case 'A':
14 Move(MoveDirection.Left);
15 break;
16 ...
17 }
18 ...
19 }
20 }
21 }

Listing 9: Change to Default implementation of 2048, WaitKey method.

In Listing 9 we can see that the WaitKey method dequeues the _inputs
field to simulate moving the blocks in 2048.

With regards to the changes to datatypes, we naively change all occur-
rences of int to uint. In cases where int is necessary, we cast from uint to
int. We also naively change occurrences of the string concatenation opera-
tor (+) to StringBuilder, which is then used together with a .ToString()
call when necessary.

1 public class DataType {
2 internal class G2048 {
3 private void DrawBoard() {
4 Console.Clear();
5 StringBuilder sb = new StringBuilder("Score: ");
6 sb.Append(_score);
7 sb.Append("\n");
8 Console.WriteLine(sb.ToString());
9 for (uint y = 0; y < 4; y++) {

3.2. Larger benchmarks 38

10 ...
11 }
12 ...
13 }
14 }
15 }

Listing 10: Example of datatype change to 2048, DrawBoard method.

In Listing 10 we can see an example of datatype changes to 2048. On line
5 to 8 we can see how a StringBuilder is created and written to Console.
On line 9 we can see that uint is used instead of int in the for loop.

With regards to the changes to selection, the approach is the same, where
we naively change if/else occurrences with switch if possible.

1 public class Selection {
2 internal class G2048 {
3 private void MoveVertically(int x, int y, int d) {
4 ...
5 switch (d) {
6 case > 0: {
7 if (y + d < 3) {
8 MoveVertically(x, y + d, 1);
9 }

10 break;
11 }
12 default: {
13 if (y + d > 0) {
14 MoveVertically(x, y + d, -1);
15 }
16 break;
17 }
18 }
19 }
20 }
21 }

Listing 11: Example of selection change to 2048, MoveVertically method.

3.2. Larger benchmarks 39

In Listing 11 we can see an example of selection change to 2048. On line
5 to 18, we can see how a switch is used instead of an if/else where we
check if the variable d is above 0.

With regards to the changes to loops, we look for places where we iterate
through a collection and change that to using a foreach loop.

1 public class Loops {
2 internal class G2048 {
3 private void WaitKey() {
4 ...
5 foreach (Tile tile in _board) {
6 tile.IsBlocked = false;
7 }
8 }
9 }

10 }

Listing 12: Example of loop change to 2048, WaitKey method.

In Listing 12 we can see an example of loop change to 2048. On line 5
to 7 we can see how a foreach loop is used to change the IsBlocked field
on each tile in _board to false.

Lastly, with regards to objects, we naively change class to struct.

1 public class Object {
2 internal struct G2048 {
3 public G2048() {
4 _isDone = default;
5 _isWon = default;
6 _isMoved = default;
7 _score = default;
8 _inputs = null;
9 }

10 }
11 }

Listing 13: Example of objects change to 2048, G2048 struct.

3.2. Larger benchmarks 40

In Listing 13 we can see how the G2048 class is changed to a struct.
This also means that a default constructor needs to be implemented, as this
is necessary when using a struct. The default constructor can be seen on
lines 3 to 9, this constructor initializes all variables in the struct to the de-
fault value. Their initial values are still set in the InitializeBoard method,
so the values set in the constructor are not used.

The implementation of all of these changes in one class is also created,
to see what the effect is when all of the changes are made together.

Results

We compare the results of the different implementations of 2048 to see if
the results can be generalized when implemented naively, or whether we
need to analyze to figure out how the language constructs should be used
in general implementations to achieve energy efficiency improvements.

Figure 3.5: Energy consumption of each implementation of 2048.

In Figure 3.5 we can see the energy consumption for the different im-

3.2. Larger benchmarks 41

plementations of 2048. The y-axis does not start from zero and the span is
around 1.500.000.000µJ. Here we can see that there are no significant differ-
ences between any of the implementations.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default 2048 281.926 8.171.909.912 157.448.975 N/A

Data Type 2048 283.261 8.216.815.682 158.238.407 0,55%
Foreach 2048 282.802 8.178.229.403 158.022.372 0,08%
Object 2048 281.644 8.104.721.753 157.182.399 -0,82%
Switch 2048 280.628 8.064.600.838 156.666.319 -1,31%

All 2048 283.727 8.186.948.568 158.587.674 0,18%

Table 3.6: Table showing the elapsed time and energy measurement for each 2048, the
difference from default is with regards to package energy.

Looking at Table 3.6, we can see that all of the results with regards to
package energy are within 2% of the default implementation, meaning there
are no significant differences when naively implementing these changes to
2048.

To verify that the results are plausible, we make a sanity check on our
package energy.

281.643,503673ms ∗ 1000 ∗ 20W = 5.632.870.073,46µJ (3.5)

Equation 3.5 shows the result of our sanity check for the 2048 object
benchmark. The calculated energy consumption is within a factor of 2,
meaning that there are no obvious errors to the benchmark. The same is
the case for the other benchmarks.

Because there are no significant differences between the different imple-
mentations, we analyze to understand how the language constructs should
be used to get the best energy efficiency in 2048. Furthermore, we see if
any suggestions can be generalized so that they always decrease energy
consumption in Section 4.2.

3.2.3 21 Game

The benchmark [42] is an implementation of a 2-player game where each
player, in turn, adds either 1, 2, or 3 to the running total which starts at 0.
The player who causes the running total to hit exactly 21 is the winner, the
specifics of which can be seen in [42].

3.2. Larger benchmarks 42

The 21 game benchmark is used to show whether the batches from Sec-
tion A.2.1, with regards to Datatypes, Selection, and Exceptions have the
desired effect when generalizing to larger benchmarks.

The change with regards to Datatypes is changing the int variables to
uint. Furthermore, we change string interpolation to StringBuilder.

The change with regards to Selection is changing if statements to
switch statements when possible.

The change with regards to Exceptions is replacing the exceptions with
if statements when possible.

Code Changes

No changes to the code are necessary to make the default implementation
of 21 work.

The changes to datatypes are the same naive changes done as in 2048,
seen in Section 3.2.2, the same is the case with the selection changes.

With regards to exceptions, we remove all occurrences of try-catch.

1 public class Exceptions {
2 public static void PlayGame() {
3 ...
4 while (playAnother) {
5 Console.WriteLine($"Now playing: {currentPlayer}")
6 // Removed try-catch block here
7 ...
8 if (roundChoice != 1 && roundChoice != 2 &&

roundChoice != 3) {ãÑ

9 // Removed exception throw here
10 Console.WriteLine("Invalid choice! Choose from

numbers: 1, 2, 3.");ãÑ

11 continue;
12 }
13 ...
14 }
15 }
16 }

Listing 14: Example of exception change to 21, PlayGame method.

3.2. Larger benchmarks 43

In Listing 14 we can see that a try-catch block has been removed and
an exception throw has been removed, no functionality has changed as a
result from this.

The implementation of all of these changes in one class is also created,
as in 2048, to see what the effects are of having all of these changes in one
benchmark.

Results

We compare the results of the different implementations of 21 to see what
effects the changes have to the energy consumption of 21.

Figure 3.6: Energy consumption of each implementation of 21.

In Figure 3.6 we can see the energy consumption of the different im-
plementations of 21. The y-axis does not start from zero and the span is
around 15.000.000µJ. Here we can see that the changes to datatype increases
the energy consumption, which is surprising.

3.2. Larger benchmarks 44

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default 21 4.469 58.685.176 2.493.352 N/A

Datatype 21 5.172 68.117.483 2.894.853 16,07%
Exception 21 4.467 58.369.766 2.490.455 -0,54%

Switch 21 4.485 58.570.674 2.501.339 -0,20%
All 21 5.168 67.220.656 2.892.854 14,54%

Table 3.7: Table showing the elapsed time and energy measurement for each 21, the dif-
ference from default is with regards to package energy.

In Table 3.7, we see the same as in the plot, that there is a significant
difference between the datatype (and all) implementation compared to the
default implementation, while all other implementations have no significant
difference.

To verify that the results are plausible, we calculate a sanity check on
our package energy.

4.484,737200ms ∗ 1000 ∗ 20W = 89.694.744µJ (3.6)

In Equation 3.6 we can see the result of our sanity check for the 21
switch benchmark. The calculated energy consumption is within a factor
of 2, meaning that there are no obvious errors in the benchmark. The same
is the case for the other benchmarks.

Because the results show that datatype changes increase the energy con-
sumption and that no other change has a significant difference, we do anal-
ysis to figure out what changes to the 21 benchmark can be done to get the
best energy efficiency, and what suggestions should be given to the devel-
oper if any in Section 4.2.2.

3.2.4 4-Rings or 4-Squares Puzzle

The benchmark [43] is an implementation of solutions to a puzzle where
letters in 4 squares should be replaced with digits within a range of num-
bers such that the sum of the letters inside of each square add up to the
same sum [43].

The 4-Rings or 4-Squares Puzzle benchmark is used to show whether
the batches from Section A.2.1, with regards to Datatypes, and LINQ, has
the desired effect when generalizing to larger benchmarks.

The changes with regards to Datatypes is changing int variables are
changed to uint variables. Furthermore, we change the method of string
concatenation when using Console.WriteLine, to using StringBuilder.

3.2. Larger benchmarks 45

The change with regards to Language Integrated Query (LINQ) is re-
moving and replacing any occurrences of LINQ where possible.

Code Changes

No changes to the code are necessary to make the default implementation
of 4-Rings or 4-Squares Puzzle work.

The changes to datatypes are the same naive changes done in 2048, seen
in Section 3.2.2. With regards to LINQ, we remove and replace any occur-
rence of LINQ.

1 public class LINQ {
2 private static bool NotValid(bool unique, int needle, params

int[] haystack) {ãÑ

3 if (unique) {
4 foreach (int i in haystack) {
5 if (i == needle) {
6 return true;
7 }
8 }
9 }

10 return false;
11 }
12 }

Listing 15: Example of removing and replacing LINQ in the 4-Rings or 4-Squares Puzzle
benchmark, NotValid method.

In Listing 15 we can see how a .Any LINQ method has been replaced
with a foreach loop that checks for the same condition.

An implementation of the changes in both of these categories is also
created, as in the previous benchmarks.

Results

We compare the results of the different implementations of the 4-Rings or
4-Squares Puzzle to see what effects the changes have on the energy con-
sumption of this benchmark.

3.2. Larger benchmarks 46

Figure 3.7: Energy consumption of each implementation of the 4-Rings or 4-Squares Puz-
zle.

In Figure 3.7, we can see the energy consumption of the different im-
plementations of the 4-Rings or 4-Squares Puzzle. The y-axis does not start
from zero and the span is around 10.000.000.000µJ. Here we can see that the
changes to LINQ decreases the energy consumption significantly.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default Four Squares 1.784.827 23.477.282.118 999.845.486 N/A

Data Type Four Squares 1.762.870 23.264.401.476 981.884.549 -0,91%
LINQ Four Squares 1.115.392 14.662.122.396 621.370.226 -37,55%

All Four Squares 1.106.992 14.495.177.083 618.932.726 -38,26%

Table 3.8: Table showing the elapsed time and energy measurement for each Four Squares,
the difference from default is with regards to package energy.

In Table 3.8 we can see the same as in the plot, however here it is more
clear to see that the datatype changes have no significant impact on the
energy consumption, as it is within 2% of the default implementation.

3.2. Larger benchmarks 47

To verify that the results are plausible, we do a sanity check on our
package energy.

1.115.392,361111ms ∗ 1000 ∗ 20W = 22.307.847.222, 22µJ (3.7)

In Equation 3.7 we can see that the sanity check shows that there are no
obvious errors to the result of the LINQ benchmark, as the result is within
a factor of 2 to the actual result. The same is the case for the other bench-
marks.

As the results show what we would expect given the results from our
microbenchmarks, we do not do any analysis of these results.

3.2.5 99 Bottles of Beer

The benchmark [44] is an implementation of displaying the lyrics to the
"99 Bottles of Beer on the Wall" song. Specifically, we look at the "Flexible"
implementation for C#.

The 99 Bottles of Beer benchmark is used to show whether the batches
from Section A.2.1, with regards to Datatypes, and Invocation has the
desired effect when generalizing to larger benchmarks.

The changes with regards to Datatypes is changing int variables to
uint variables, as well as changing the method of string concatenation
from String.Format to StringBuilder.

The changes with regards to Invocation is changing the lambda expres-
sions to not use variables that are defined outside the lambda expressions
and instead send the variables as parameters.

Code Changes

No changes to the code are necessary to create the default implementation
of the flexible version of 99 Bottles of Beer within our framework.

The changes to datatypes are the same naive changes done in previous
benchmarks. With regards to Invocation we change lambda expressions to
use parameters instead of variables outside of the lambda expression.

1 public class Invocation {
2 public static int Invocation99BottlesOfBeer() {
3 for (ulong i = 0; i < LoopIterations; i++) {
4 ...

3.2. Larger benchmarks 48

5 Func<string, string, string, string, string>
describeBottles =ãÑ

6 (first, second, third, fourth) =>
string.Format("{0} {1}{2} of {3}", first,
second, third, fourth);

ãÑ

ãÑ

7 ...
8 for (int y = 0; y < 199; y++) {
9 write(string.Format("{0} {1}, {0},",

describeBottles(describeCount(bottles),
Vessel, plural(bottles), Beverage),
Location));

ãÑ

ãÑ

ãÑ

10 write(Act(ref bottles));
11 write(string.Format("{0} {1}.",

describeBottles(describeCount(bottles),
Vessel, plural(bottles), Beverage),
Location));

ãÑ

ãÑ

ãÑ

12 write(string.Empty);
13 }
14 }
15 return 2048;
16 }
17 }

Listing 16: Example of changing a lambda expression to using parameters.

In Listing 16 we can see how the describeBottles lambda expression
has four parameters instead of one, making it possible to keep the lambda
expression without references to outside variables.

An implementation with both these categories is also made, as in previ-
ous benchmarks.

Results

We look at the results of the different implementations of the 99 Bottles of
Beer benchmark to see what effects the changes have on the energy con-
sumption of this benchmark.

3.2. Larger benchmarks 49

Figure 3.8: Energy consumption of each implementation of the 99 Bottles of Beer bench-
mark.

In Figure 3.8, we can see the energy consumption of the different imple-
mentations of the 99 Bottles of Beer benchmark. The y-axis does not start
from zero and the span is around 650.000.000µJ. Here we can see that the
datatype changes increases the energy consumption significantly from the
default.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default 99 Bottles of Beer 446.865 5.935.885.525 250.093.859 N/A

Data Type 99 Bottles of Beer 464.054 6.203.198.405 260.691.840 4,50%
Invocation 99 Bottles of Beer 445.618 5.935.232.282 249.346.889 -0,01%

All 99 Bottles of Beer 460.668 6.262.095.378 258.539.864 5,50%

Table 3.9: Table showing the elapsed time and energy measurement for each 99 Bottles of
Beer, the difference from default is with regards to package energy.

In Table 3.9, we can see the same as in the plot, and also see that the
changes to invocation is not significantly different from the default imple-
mentation.

3.2. Larger benchmarks 50

To verify that the results are plausible, we do a sanity check on our
package energy.

460.667,793470ms ∗ 1000 ∗ 20W = 9.213.355.869,4µJ (3.8)

In Equation 3.8 we can see that the sanity check on "All 99 Bottles of
Beer" shows that there are no obvious errors to the result of the benchmark,
as the result is within a factor of 2 to the actual result. The same is the case
for the other benchmarks.

As the results show that the datatype changes have created an increase
in energy consumption, we do an analysis of these results in Section 4.2.3.

3.2.6 Determine if a String has All the Same Characters

The benchmark [45] is an implementation of an algorithm that checks if a
string consists of only the same characters or if there are differences in the
string.

The "Determine if a String has All the Same Characters" benchmark
is used to show whether the batches from Section A.2.1, with regards to
Datatypes, and Loops has the desired effect when generalizing to larger
benchmarks.

The change with regards to Datatypes is changing the method of string
concatenation when using Console.WriteLine, to using StringBuilder.

The change with regards to Loops is changing the for loop to a foreach.

Code Changes

No changes to the code are necessary to create the default implementation
of the "Determine if a String has All the Same Characters" benchmark.

The changes to the code in the Datatypes batch and the Loops batch
are the same naive changes done in previous benchmark, where methods
of string concatenation is changed to StringBuilder, and the for loops is
changed to foreach loops when iterating through the string.

Furthermore, a benchmark with all the changes is created like in previ-
ous benchmarks.

Results

We compare the results of the different implementations of the "Determine
if a String has All the Same Characters" benchmark, to get further insight

3.2. Larger benchmarks 51

into how these changes affect larger benchmarks.

Figure 3.9: Energy consumption of each implementation of the "Determine if a String has
All the Same Characters" benchmark.

In Figure 3.9, we can see the energy consumption of the different imple-
mentations of the benchmark. The y-axis does not start from zero and the
span is around 4.000.000µJ. Here we can see that changes to datatypes have
a significant decrease in energy consumption, while the changes to Loops
have a significant increase in energy consumption, which is surprising.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default Equal Strings 1.997 28.393.107 1.112.824 N/A

Data Type Equal Strings 1.827 26.071.351 1.037.025 -8,18%
For Each Equal Strings 2.059 29.370.734 1.149.146 3,44%

All Equal Strings 1.903 27.055.465 1.078.427 -4,71%

Table 3.10: Table showing the elapsed time and energy measurement for each Equal
Strings, the difference from default is with regards to package energy.

In Table 3.10 we can see the same as in the plot, that there are more than

3.2. Larger benchmarks 52

2% difference between the default and the other variants with regards to
energy consumption.

To verify that the results are plausible, we create a sanity check on our
package energy.

2.059,078895ms ∗ 1000 ∗ 20W = 41.181.577,9µJ (3.9)

In Equation 3.9 we can see that the sanity check shows that there are
no obvious errors to the result of the foreach benchmark, as the result is
within a factor of 2 to the actual result. The same is the case for the other
benchmarks.

As the results show that the loops changes have created an increase in
energy consumption, we do an analysis of these results in Section 4.2.4.

3.2.7 Dijkstra’s Algorithm

The benchmark [46] is an implementation of Dijkstra’s Algorithm.
We use this benchmark to show whether the batches from Section A.2.1,

with regards to Datatypes, LINQ, Collections, and Objects has the de-
sired effect when generalizing to larger benchmarks.

The change with regards to Datatypes is changing int variables to uint
variables.

The change with regards to LINQ is removing and replacing cases of
LINQ where possible.

The change with regards to Collections is changing Lists to arrays
where possible.

The change with regards to Objects is changing class to struct where
possible.

Code Changes

No changes to the code are necessary to create the default implementation
of Dijkstra’s Algorithm.

The changes with regards to datatypes, LINQ, and objects, are the
same naive changes as done in previous benchmarks. With regards to
Collections we change occurrences of List to array when possible.

1 public class Collections {
2 internal sealed class Graph {

3.2. Larger benchmarks 53

3 private readonly EdgeList[] adjacency;
4 public Graph(int vertexCount) {
5 adjacency = new EdgeList[vertexCount];
6 for (var index = 0; index < adjacency.Length;

index++) {ãÑ

7 adjacency[index] = new EdgeList();
8 }
9 }

10 ...
11 }
12 }

Listing 17: Example of changing a List to an array, Graph class.

In Listing 17 we can see how the adjancency List has been changed
into an array, and how the corresponding constructor for Graph has been
changed to accomodate this change.

An implementation with all these categories is also made, as in previous
benchmarks.

Results

We look at the results of the different implementations of Dijkstra’s Algo-
rithm to see what effects our changes have on the energy consumption of
this benchmark.

3.2. Larger benchmarks 54

Figure 3.10: Energy consumption of each implementation of Dijkstra’s Algorithm.

In Figure 3.10, we can see the energy consumption of the different im-
plementations of Dijkstra’s Algorithm benchmark. The y-axis does not start
from zero and the span is around 20.000.000µJ. Here we can see that the
collections and LINQ changes have a significant effect on the energy effi-
ciency of the benchmark, while the other changes have less effect.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default Dijkstra 4.469 63.836.619 2.511.046 N/A

Collections Dijkstra 4.258 60.555.783 2.396.288 -5,14%
Data Type Dijkstra 4.508 64.258.298 2.538.355 0,66%

LINQ Dijkstra 3.423 48.861.610 1.917.692 -23,46%
Objects Dijkstra 4.446 63.341.985 2.496.351 -0,77%

All Dijkstra 3.332 47.226.367 1.868.384 -26,02%

Table 3.11: Table showing the elapsed time and energy measurement for each Dijkstra, the
difference from default is with regards to package energy.

In Table 3.11, we see the same as in the plot, where collections and
LINQ have a significant impact on the efficiency, while the other changes

3.2. Larger benchmarks 55

have shown no significant difference.
To verify that the results are plausible, we do a sanity check on our

package energy.

4.468,567573ms ∗ 1000 ∗ 20W = 89.371.351,46µJ (3.10)

In Equation 3.10 we can see that the sanity check shows that there are
no obvious errors to the result of the default benchmark, as the result is
within a factor of 2 to the actual result. The same is the case for the other
benchmarks.

As the results show the same as earlier results with regards to objects,
and otherwise shows what is expected, we do not analyze these results.

3.2.8 Happy Numbers

The benchmark [47] is an implementation of a solution to find and print
the first 8 happy numbers. A happy number is defined by a positive integer
which is replaced by the squares of its digits, repeating until the number
equals 1. If it does not reach 1 it will cycle endlessly and is an unhappy
number.

The Happy Number benchmark is chosen to show whether the batches
from Section A.2.1 with regards to Datatypes and Collections can be gen-
eralized to a larger benchmark.

The change within Datatypes is changing the int variables to uint and
changing the strategy of string concatenation from using the concatenation
operator (+) to using StringBuilder.

The change within Collections is changing List to Array.

Code Changes

No changes to the code are necessary to create the default implementation
of the Happy Numbers benchmark.

The changes with regards to datatype, and collections are the same
naive changes as done in previous benchmarks.

An implementation where both of these batches of changes are done is
also created like in previous benchmarks.

3.2. Larger benchmarks 56

Results

We look at the different implementations of the Happy Numbers bench-
mark to see if our changes affect the energy consumption of the benchmark.

Figure 3.11: Energy consumption of each implementation of the Happy Numbers bench-
mark.

In Figure 3.11, we can see the energy consumption of the different im-
plementations of the Happy Numbers benchmark. The y-axis does not start
from zero to show a better view of the differences, and the span is around
6.000.000µJ. Here we can see that the collections changes decrease the en-
ergy efficiency of the benchmark significantly, while the datatype changes
significantly increases the energy efficiency of the benchmark.

3.2. Larger benchmarks 57

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default Happy Number 4.171 55.261.641 2.349.720 N/A

Collection Happy Number 3.903 51.505.524 2.186.327 -6,80%
Data Type Happy Number 4.278 56.554.523 2.406.531 2,34%

All Happy Number 3.872 50.953.873 2.171.529 -7,80%

Table 3.12: Table showing the elapsed time and energy measurement for each Happy
Numbers, the difference from default is with regards to package energy.

In Table 3.12, we can see that the same as in the plot, where the energy
efficiency changes are all above 2% from the default implementation. Inter-
esting to note is that the change in efficiency when using all the changes are
more significant than only having the collection changes, even though the
datatype changes seems to create an increase in energy consumption. That
being said, the difference between all changes and collection changes are
not significant, as they are within 2% of each other.

To verify that the results are plausible, we do a sanity check on our
package energy.

3.903,189256ms ∗ 1000 ∗ 20W = 78.063.785,12µJ (3.11)

In Equation 3.11 we can see that the sanity check shows that there are
no obvious errors to the result of the collection benchmark, as the result
is within a factor of 2 to the actual result. The same is the case for the other
benchmarks.

As the results show that there are different impacts when using all the
changes, we look into this in Section 4.2.5.

3.2.9 Introspection

Introspection [48] is a task that is used to verify that a compiler is up-to-
date and check whether a variable exists and the method abs exists on it,
the specifics of which can be seen in [48].

The Introspection benchmark is chosen to show whether the batches
from Section A.2.1 with regards to Datatypes, and Invocation have the
desired results when generalized to a larger benchmark.

The changes to the benchmark with regards to Datatypes is to replace
int variables with uint variables. Furthermore, changes with regards to
Console.WriteLine string concatenation are made, specifically changing
this from String.Format to StringBuilder.

The changes to the benchmark with regards to Invocation is to replace
Reflection with Reflection Delegation.

3.2. Larger benchmarks 58

Code Changes

To make it possible to run the benchmark as part of our framework, it is
necessary to make changes besides the ones needed to test the language
constructs.

Specifically, we only look through the class that is part of the specific
benchmark, instead of all the exported types.

1 public class Default {
2 public static void Main() {
3 ...
4 foreach (FieldInfo field in typeof(Default).GetFields())

{ãÑ

5 ...
6 }
7 ...
8 }
9 }

Listing 18: Change to Default implementation of Introspection, looking through Default
class.

In Listing 18 on line 4 we can see that only the Default class is looked
through to get the fields necessary for the benchmark. This is also done at
the end of the Main method.

Besides these changes, it has been necessary to add an extra check for
the assemblies, so that we only get the assemblies that are not dynamic.

1 public class Default {
2 public static void Main() {
3 ...
4 foreach (Assembly refAsm in

AppDomain.CurrentDomain.GetAssemblies().Where(assembly
=> !assembly.IsDynamic)) {

ãÑ

ãÑ

5 ...
6 }
7 ...

3.2. Larger benchmarks 59

8 }
9 }

Listing 19: Change to getting assemblies, so only non-dynamic assemblies are collected.

In Listing 19 on line 4 we can see that the .Where(assembly => !assembly.IsDynamic)
LINQ method has been appended to the line, to only get the non-dynamic
assemblies.

Besides these changes, the changes with regards to datatype are the
same naive changes as before, while the invocation change wraps a reflec-
tion invocation in a delegate.

1 public class Invocation {
2 public static void Main() {
3 ...
4 foreach (Assembly refAsm in

AppDomain.CurrentDomain.GetAssemblies().Where(assembly
=> !assembly.IsDynamic)) {

ãÑ

ãÑ

5 foreach (Type type in refAsm.GetExportedTypes()) {
6 if (type.Name == "Math") {
7 MethodInfo? absMethod =

type.GetMethod("Abs", new Type[] {
typeof(int) });

ãÑ

ãÑ

8 if (absMethod != null) {
9 var absDelegate = (Func<int,

int>)Delegate.CreateDelegate(typeof(Func<int,
int>), absMethod);

ãÑ

ãÑ

10 Console.WriteLine("bloop's abs value =
{0}",
absDelegate((int)bloopField.GetValue(null)));

ãÑ

ãÑ

11 }
12 }
13 }
14 }
15 ...
16 }
17 }

3.2. Larger benchmarks 60

Listing 20: Example of changing a reflection invocation to a delegate.

In Listing 20, we can see how the MethodInfo gathered via reflection is
wrapped in a delegate on line 9, and is called on line 10.

An implementation where both the datatype changes and the invocation
changes are used, is created like in previous benchmarks.

Results

We look at the different implementations of the Introspection benchmark
to see if the changes affect the energy consumption of the benchmark.

Figure 3.12: Energy consumption of each implementation of the Introspection bench-
mark.

In Figure 3.12, we can see the energy consumption of the different im-
plementations of the Introspection benchmark. The y-axis does not start
from zero to show a better view of the differences, and the span is around
400.000.000µJ. Here we can see that the changes have no significant impact
on the energy consumption of the benchmark.

3.2. Larger benchmarks 61

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default Introspection 442.800 5.779.993.273 248.941.406 N/A

Data Type Introspection 443.159 5.711.772.678 249.279.297 -1,18%
Invocation Introspection 442.916 5.733.289.931 248.895.182 -0,81%

All Introspection 444.107 5.775.570.984 250.320.251 -0,08%

Table 3.13: Table showing the elapsed time and energy measurement for each Introspec-
tion, the difference from default is with regards to package energy.

In Table 3.13, we can see the same as in the plot, all of the results are
within 2% of the default implementation, meaning no significant difference
is observed with the changes as they currently stand.

To verify that the results are plausible, we do a sanity check on our
package energy.

444.106,762695ms ∗ 1000 ∗ 20W = 8.882.135.253,9µJ (3.12)

In Equation 3.12 we can see that the sanity check shows that there are
no obvious errors in the result of the "All Introspection" benchmark, as the
result is within a factor of 2 to the actual result. The same is the case for the
other benchmarks.

As the results show that there is no impact of the change to invocation,
despite a large impact in the relevant microbenchmark, we look into this
in Section 4.2.6.

3.2.10 World Cup Group Stage

This benchmark [49] is a solution to the group stage of the football world
cup, where four teams in a group should play every other team in the group
once. The results for these games determine which teams advance to the
"knockout stage". The two teams from each group with the most points
advance.

The World Cup Group Stage benchmark is chosen as it has possible
changes with regards to Datatypes and several LINQ implementations,
which are not optimized for energy consumption according to the results
of our microbenchmarks.

The changes to the benchmark with regards to Datatype is replacing
int variables with uint variables, and changing String.Concat and string
interpolation to StringBuilder.

The changes to the benchmark with regards to LINQ is replacing it with
any other functionality possible.

3.2. Larger benchmarks 62

Code Changes

The only change to the default implementation of this benchmark is that a
Console.Read at the end of the program has been removed, as this would
otherwise halt the benchmark during measurement.

The same naive changes to datatypes, and LINQ are done, as in previous
benchmarks.

Furthermore, a benchmark where both of these batches are done is also
created to see the impact of this, like in previous benchmarks.

Results

We look at the different implementations of the World Cup Group Stage
benchmark to see if the changes have an impact on energy consumption,
like in previous benchmarks.

Figure 3.13: Energy consumption of each implementation of the World Cup Group Stage
benchmark.

3.2. Larger benchmarks 63

In Figure 3.13, we can see the energy consumption of the different im-
plementations of the World Cup Group Stage benchmark. The y-axis does
not start from zero to show a better view of the differences, and the span
is around 4.500.000.000µJ. Here we can see that the LINQ benchmark has
a significant decrease in energy consumption compared to the default im-
plementation, while the datatype benchmark has a significant increase in
energy consumption compared to the default implementation.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Default World Cup Stage 480.730 6.815.760.525 271.617.730 N/A

Data Type World Cup Stage 502.122 7.082.867.839 283.386.285 3,92%
LINQ World Cup Stage 199.663 2.649.373.573 112.157.494 -61,13%

All World Cup Stage 215.450 2.873.367.025 121.089.844 -57,84%

Table 3.14: Table showing the elapsed time and energy measurement for each World Cup
Group Stage, the difference from default is with regards to package energy.

In Table 3.14 we can see the same as in the plot. Furthermore, it is
confirmed that the datatype benchmark increases the energy consumption
significantly, as the difference to the default implementation is above 2%.

To verify that the results are plausible, we do a sanity check on the
package energy of the benchmarks.

199.663,256073ms ∗ 1000 ∗ 20W = 3.993.265.121,46µJ (3.13)

In Equation 3.13 we can see that the sanity check shows that there are no
obvious errors to the result of the LINQ benchmark, as the result is within
a factor of 2 to the actual result. The same is the case for the other bench-
marks.

As the results show that there is a significant increase in energy con-
sumption when using the datatype changes, we look into this in Sec-
tion 4.2.7.

3.2.11 Summary

In this section we summarize the changes and results of each large bench-
mark, to serve as an overview for the analysis. These results are used as
a starting point for the analysis, which makes it possible to create formal
suggestions for Energy Analyzer that helps developers write more energy
efficient code.

3.2. Larger benchmarks 64

Benchmark Variants
Results

Package E (µJ)
Difference

from Default

2048

Default 8.171.909.912 N/A
All 8.186.948.567 0,18%
DataType 8.216.815.681 0,55%
Foreach 8.178.229.403 0,08%
Object 8.104.721.752 -0,82%
Switch 8.064.600.838 -1,31%

21 Game

Default 58.685.175 N/A
All 67.220.655 14,54%
DataType 68.117.482 16,07%
Switch 58.570.673 -0,20%
Exception 58.369.766 -0,54%

Four Squares

Default 23.477.282.118 N/A
All 14.495.177.083 -38,26%
DataType 23.264.401.475 -0,91%
LINQ 14.662.122.395 -37,55%

99 Bottles of Beer

Default 5.935.885.525 N/A
All 6.262.095.377 5,50%
DataType 6.203.198.404 4,50%
Invocation 5.935.232.282 -0,01%

Determine if a
String has All the
Same Characters

Default 28.393.107 N/A
All 27.055.465 -4,71%
DataType 26.071.351 -8,18%
Foreach 29.370.734 3,44%

Dijkstra’s Algorithm

Default 63.836.619 N/A
All 47.226.366 -26,02%
DataType 64.258.298 0,66%
Object 63.341.985 -0,77%
LINQ 48.861.610 -23,46%
Collections 60.555.782 -5,14%

Happy Number

Default 55.261.640 N/A

3.2. Larger benchmarks 65

All 50.953.872 -7,80%
DataType 56.554.523 2,34%
Collections 51.505.523 -6,80%

Introspection

Default 5.779.993.272 N/A
All 5.775.570.983 -0,08%
DataType 5.711.772.677 -1,18%
Invocation 5.733.289.930 -0,81%

World Cup Group Stage

Default 6.815.760.525 N/A
All 2.873.367.024 -57,84%
DataType 7.082.867.838 3,92%
LINQ 2.649.373.573 -61,13%

Table 3.15: Summary of all larger benchmarks

Chapter 4

Benchmark Analysis

In this chapter we look into and analyse the results of the benchmark, and
if any changes needs to be made to gather better results. The result of
this analysis is formal suggestions that are used in Energy Analyzer to help
developers write more energy efficient code.

4.1 Microbenchmark Analysis

In this section we analyze the results for microbenchmarks gathered in
Chapter 3, we use the same overall process as used in [3, p.111], with a
few differences.

This provides insight into why the results occurred in the way they did
and thereby makes it possible to create more precise suggestions for Energy
Analyzer that will help developers write energy efficient code.

We add an extra step in the process presented in [3, p.111], specifically
before checking the Intermediate Language (IL) code, we check if the con-
struct we are testing is a library construct, in which case we study how it is
implemented in C#.

Besides this, we discovered the tool PowerUp [50] that can be used
for checking the assembly code in release mode instead of debug mode,
therefore we change the step regarding checking the assembly code, which
means that the overall process now is the following:

1. See if there is a difference between the benchmarks that explains the
difference in performance, as sometimes it has been necessary to cre-
ate slightly different benchmarks, to ensure that they are not removed
by the compiler due to optimizations.

66

4.1. Microbenchmark Analysis 67

2. Read the documentation for the language constructs we are looking
at to see if there is an explanation for differing energy consumption.

3. If the construct is a library construct, check the implementation in C#.

4. Look at the IL code to see if there is a difference between the bench-
marks.

5. Look at the assembly code in release mode to see if there is a difference
between the benchmarks.

4.1.1 Lambda Expressions Outside Loop Analysis

In this section, we look at why there is a variance in the results for lambda
expressions that are created outside the for loop.

As mentioned in Section 3.1.1, the results from the lambda expressions
outside the loop were inconsistent between runs, so the procedure for these
results is different from the ordinary analysis procedure.

First, we establish that the results are inconsistent between runs by run-
ning these specific benchmarks 10 times.

Package Energy (µJ) Lambda Parameter Lambda Lambda Action Lambda Delegate Lambda Closure
Run 1 20.954 24.740 22.353 18.379 22.196
Run 2 18.245 18.319 19.581 18.209 21.905
Run 3 18.476 24.247 19.771 21.062 19.490
Run 4 20.898 18.338 21.627 18.187 19.256
Run 5 20.947 18.122 21.551 20.967 21.559
Run 6 20.903 17.990 19.507 17.974 19.216
Run 7 20.876 23.445 21.345 20.825 19.077
Run 8 20.607 17.891 20.951 20.661 21.083
Run 9 20.980 23.933 21.876 18.070 21.357
Run 10 20.849 18.056 21.437 20.943 21.269

Table 4.1: The results of running the lambda expressions outside loop microbenchmarks
10 times.

In Table 4.1 we can see all of the benchmarks have a large variance.

4.1. Microbenchmark Analysis 68

Percentage Variance
Lambda Parameter 13,04%
Lambda 27,68%
Lambda Action 12,73%
Lambda Delegate 14,66%
Lambda Closure 14,05%

Table 4.2: The percentage variance between the highest and lowest energy consumption
measured for each of the benchmarks.

In Table 4.2 we can see the variance between the highest and lowest
energy consumption measured for each benchmark.

The variance is higher than the 2% ordinary results shown in [3], we hy-
pothesize that there is another reason for this variance is occurring, there-
fore we do not start by looking at the differences between the individual
benchmarks.

As Func, and Action utilizes delegate [51, 52, 53], and as delegate
shows the same variance as the rest, we will focus on the Lambda Delegate
benchmark.

The cause of the variance can be within two categories, either delegate
is inconsistent between each measurement, or lambda expressions is in-
consistent between each measurement. This is the case as the only other
parts to the LambdaDelegate benchmark, are addition and the for loop,
which we know from [3] does not cost this much to do. Because of this, we
create a new benchmark where we use a delegate with a named function
instead of a lambda expression. If the new benchmark is also inconsistent,
we assume that delegate is what causes the issues with the results.

1 public class LambdaBenchmarks {
2 ...
3 private delegate ulong PerformCalculation();
4 [Benchmark("Lambda Expression", "Delegate Test")]
5 public static ulong DelegateTest() {
6 ulong result = 0;
7 PerformCalculation test = Test;
8 for (ulong i = 0; i < LoopIterations; i++) {
9 result = test() + result + i;

10 }
11 return result;

4.1. Microbenchmark Analysis 69

12 }
13 public static ulong Test() {
14 return 25;
15 }
16 ...
17 }

Listing 21: The DelegateTest method which tests a delegate with a named benchmark
in the LambdaBenchmarks class.

We run this benchmark 10 times to get an idea of the variance with
delegate, so we can ascertain whether delegate or lambda expressions
are the cause of the variance.

Package Energy (µJ) Delegate Test
Run 1 23.988
Run 2 23.958
Run 3 26.539
Run 4 24.081
Run 5 24.243
Run 6 26.895
Run 7 24.039
Run 8 26.728
Run 9 26.575
Run 10 26.591

Table 4.3: The results of running the delegate test benchmark 10 times.

In Table 4.3 we can see the results of running the DelegateTest bench-
mark 10 times, which shows that delegate is the cause of the variance,
where there is a difference of 10,92% between the lowest and highest en-
ergy consumption.

Because of this we focus on the documentation for delegate [53] to try
to find an explanation.

The documentation states "Delegates are similar to C++ function point-
ers, but delegates are fully object-oriented, and unlike C++ pointers to
member functions, delegates encapsulate both an object instance and a
method.", which could hint towards the issue being with garbage collec-
tion of the object instances.

4.1. Microbenchmark Analysis 70

To look into this, we create a critical area around the runs of the bench-
marks where garbage collection will not be done (if possible), by using
GC.TryStartNoGCRegion [54] and GC.EndNoGCRegion [55].

As the amount of memory used will increase as each benchmark is being
run, we limit our scope to looking at the Lambda benchmark, to ensure
that the "No Garbage Collection Region" can be utilized successfully. This
means, we skip all the other benchmarks, and add the lines of code around
the relevant parts of the code that runs the benchmark.

Package Energy (µJ) Lambda Benchmark
Run 1 18.093
Run 2 17.933
Run 3 18.127
Run 4 18.093
Run 5 17.985
Run 6 18.047
Run 7 17.984
Run 8 18.003
Run 9 18.051
Run 10 18.008

Table 4.4: The results of running the lambda benchmark 10 times with garbage collection
turned off.

As can be seen in Table 4.4, this has made the results consistent, making
the variance drop from 27,68% to 1,07%. This does not guarantee consistent
results in all cases, as garbage collection is not completely turned off, the
runtime only tries to not garbage collect during the critical region. If the
critical region exceeds a specific amount of memory, the garbage collection
will occur anyway and an outlier will happen. Furthermore, there are a lot
of other things that influence the energy consumption when using a lot of
memory, therefore outliers may still occur.

This is an explanation for why the variance is so large when running
the benchmarks ordinarily. Getting results without the effects of memory
management is not possible for all of the benchmarks within this group, as
some of them use more memory than others. Because of this, either garbage
collection will trigger or other forms of memory management will trigger
making the results vary significantly.

4.1. Microbenchmark Analysis 71

4.1.2 Lambda Expressions Inside Loop Analysis

In this section, we look into why there is a difference in energy consumption
for different types of lambda expressions that are created within the for
loop of the benchmarks.

Specifically, we want to look into why:

• Using the Action construct and using closure with a lambda expres-
sion is less efficient than not doing that when initializing the lambda
expressions inside the for loop.

First we look at how the benchmarks are written, with one of them
shown in Section 3.1.1, and the rest shown in [1] we can see that the Action
and Closure benchmarks that a variable initialized outside the for loop is
utilized inside the lambda expression in the for loop, which is the main
difference between the benchmarks with a high energy consumption and a
low energy consumption.

This could be the reason why there is a difference, so we look at [56],
specifically at the section called "Capture of outer variables and variable
scope in lambda expressions". The documentation states "Variables that are
captured in this manner are stored for use in the lambda expression even if
the variables would otherwise go out of scope and be garbage collected.",
which makes sense as an explanation for why these would increase the
energy consumption. It makes sense that storing variables every time a new
lambda expression is created costs more energy, compared to not having
to do that.

We consider this an explanation for why there is a difference in energy
consumption between InsideLoopLambdaAction and InsideLoopLambdaClosure
compared to InsideLoopLambda, InsideLoopLambdaDelegate, and InsideLoop-
LambdaParameter.

4.1.3 Exception Creation Analysis

In this section, we look into why there is a difference in energy consumption
for creating different exceptions. We specifically want to look into why:

• Creating an Exception consumes 8 times less package energy than
creating an ArgumentException or a DivideByZeroException.

First, we look at how the benchmarks are written which are shown in
Section 3.1.2. We can see the benchmarks are written in the same way, ex-
cept for the type of exception. Therefore the reason for the difference in

4.1. Microbenchmark Analysis 72

energy consumption does not come from the benchmarks written in differ-
ent ways, and we look into the documentation for an explanation.

In Microsoft’s Documentation [57] Exception is the base for all excep-
tions. In [58] we see ArgumentException inherits from SystemException
class, which inherits from the Exception class. While in [59] we see DivideBy-
ZeroException inherits from ArithmeticException which inherits from System-
Exception. ArgumentException and DivideByZeroException inherits from
Exception class, this could be a cause for higher energy consumption. Be-
sides this, there could be more functionality which could be an additional
cause for higher energy consumption.

To get further insight we look into the library implementation of the
exceptions. Looking into the different implementations of the exceptions,
we find nothing that was not explained in the documentation. Therefore
we look into the IL code generated from the benchmarks.

1 ...
2 // result = new ArgumentException();
3 IL_000b: newobj instance void

[System.Private.CoreLib]System.ArgumentException::.ctor()ãÑ

4 IL_0010: stloc.0
5 ...

Listing 22: The CreateArgumentException method translated to IL code.

In Listing 22 we see the IL code for CreateArgumentException. Here we
see what type of exception is created.

1 ...
2 // result = new DivideByZeroException();
3 IL_000b: newobj instance void

[System.Private.CoreLib]System.DivideByZeroException::.ctor()ãÑ

4 IL_0010: stloc.0
5 ...

Listing 23: The CreateDivideByZeroException method translated to IL code.

In Listing 23 we see the IL code for CreateDivideByZeroException. As
the case with the C# code, it is very similar to the IL code of CreateArgumentException,
except that we create a DivideByZeroException.

4.1. Microbenchmark Analysis 73

1 ...
2 // result = new Exception();
3 IL_000b: newobj instance void

[System.Private.CoreLib]System.Exception::.ctor()ãÑ

4 IL_0010: stloc.0
5 ...

Listing 24: The CreateException method translated to IL code.

In Listing 24 we see the IL code for CreateException. Again the only
difference from the other two code snippets is that the benchmark creates an
Exception. The IL code shows the same as the C# code, the only difference
between the benchmarks is which type of exception is used, therefore we
look into the assembly code.

1 ExceptionBenchmark+Exception CreateException():
2 ...
3 7FFC05A90D26: mov rcx, 7FFC0360F048h
4 7FFC05A90D30: call CORINFO_HELP_NEWSFAST 7FFC6310AE20
5 7FFC05A90D35: mov rsi, rax
6 7FFC05A90D38: mov dword ptr [rsi+70h], 0E0434352h
7 7FFC05A90D3F: mov dword ptr [rsi+74h], 80131500h
8 ...

Listing 25: The CreateException method translated to ASM code. Instruction Count: 30;
Code Size: 121.

In Listing 25 we see the relevant parts of the assembly code for CreateException,
this is the benchmark that consumes the least amount of energy. The bench-
mark consists of 30 code instructions, with the relevant part within the loop
being 5 code instructions.

1 ExceptionBenchmark+Exception CreateDivideByZeroException():
2 ...
3 7FFC05A90C67: mov rcx, 7FFC05A8D5C0h
4 7FFC05A90C71: call CORINFO_HELP_NEWSFAST 7FFC6310AE20
5 7FFC05A90C76: mov rsi, rax

4.1. Microbenchmark Analysis 74

6 7FFC05A90C79: call System.SR.get_Arg_DivideByZero()
7FFC03DC7AF0ãÑ

7 7FFC05A90C7E: mov dword ptr [rsi+70h], 0E0434352h
8 7FFC05A90C85: mov dword ptr [rsi+74h], 80131500h
9 7FFC05A90C8C: lea rcx, [rsi+10h]

10 7FFC05A90C90: mov rdx, rax
11 7FFC05A90C93: call CORINFO_HELP_ASSIGN_REF 7FFC6310AA00
12 7FFC05A90C98: mov dword ptr [rsi+74h], 80131501h
13 7FFC05A90C9F: mov dword ptr [rsi+74h], 80070216h
14 7FFC05A90CA6: mov dword ptr [rsi+74h], 80020012h
15 ...

Listing 26: The CreateDivideByZeroException method translated to ASM code. Instruc-
tion Count: 37; Code Size: 161.

In Listing 26 we see the assembly code for CreateDivideByZeroException.
The benchmark has 37 instructions, which is 7 more than CreateException,
and the relevant part within the loop is 12 instructions. We expect this
to be the reason CreateDivideByZeroException consumes more energy, as
extra instructions take more time and consume more energy. The instruc-
tion on line 6 and 11 are calls that are not present in the CreateException
benchmark, which is a reason for the high energy consumption, as calling
a method means code not seen here is executed and therefore consumes
more energy.

1 ExceptionBenchmark+Exception CreateArgumentException():
2 ...
3 7FFC05A90BA7: mov rcx, 7FFC03614B40h
4 7FFC05A90BB1: call CORINFO_HELP_NEWSFAST 7FFC6310AE20
5 7FFC05A90BB6: mov rsi, rax
6 7FFC05A90BB9: call System.SR.get_Arg_ArgumentException()

7FFC03DC7A20ãÑ

7 7FFC05A90BBE: mov dword ptr [rsi+70h], 0E0434352h
8 7FFC05A90BC5: mov dword ptr [rsi+74h], 80131500h
9 7FFC05A90BCC: lea rcx, [rsi+10h]

10 7FFC05A90BD0: mov rdx, rax
11 7FFC05A90BD3: call CORINFO_HELP_ASSIGN_REF 7FFC6310AA00
12 7FFC05A90BD8: mov dword ptr [rsi+74h], 80131501h

4.1. Microbenchmark Analysis 75

13 7FFC05A90BDF: mov dword ptr [rsi+74h], 80070057h
14 ...

Listing 27: The CreateArgumentException method translated to ASM code. Instruction
Count: 36; Code Size: 154.

In Listing 27 we see the assembly code for CreateArgumentException.
The benchmark has 36 instructions, 6 more than CreateException, and the
relevant part within the loop being 11 instructions. We expect this is the rea-
son CreateArgumentException consumes more energy than CreateException.
Again, the instructions on line 6 and 11 are call instructions not present
in the CreateException benchmark, which is a reason for the extra en-
ergy consumption, as mentioned before. We consider the extra instructions
and the fact that ArgumentException and DivideByZeroException inherit
from Exception, to be part of the explanation for the difference between
creating an Exception compared to creating an ArgumentException or a
DivideByZeroException.

4.1.4 Throwing and Catching Exceptions Analysis

In this section, we look into why there is a difference in energy consumption
for throwing and catching different exceptions. We specifically want to look
into why:

• Throwing and catching an Exception is more energy efficient than
using an ArgumentException or a DivideByZeroException when not
using cached exceptions.

• Throwing and catching a cached exception consumes less energy than
throwing and catching a newly created exception when using ArgumentException
or DivideByZeroException.

We start by looking into why throwing and catching an Exception is
more energy efficient than using an ArgumentException or a DivideByZeroException
when not using cached exceptions. We already have an answer to this
from Section 4.1.3, where we found that creating an Exception consumes
less energy than creating an ArgumentException or a DivideByZeroException,
because creating ArgumentException and DivideByZeroException have more
instructions.

4.2. Larger benchmark Analysis 76

We now look into why throwing and catching a cached exception con-
sumes less energy than throwing and catching a newly created exception
when using ArgumentException or DivideByZeroException. First, we look
into how the benchmarks are written which are shown in Section 3.1.2. We
can see that the benchmarks consuming the least amount of energy are the
ones using cached exceptions. Using cached exceptions means we do not
need to initialize a new exception every time we want to throw an exception,
and therefore we save energy. We consider this a satisfactory explanation as
to why using a cached exception is cheaper than using a new exception.

4.2 Larger benchmark Analysis

In this section, we analyze the results for the larger benchmarks gathered
in Section 3.2. This is done to get more insight into the results, and thereby
make it possible to give better suggestions for Energy Analyzer that will help
developers write more energy efficient code.

We use the following process:

1. Look for the cause of the oddities by making various changes to the
relevant benchmarks.

2. Try to create an optimal benchmark with the knowledge gathered.
An optimal benchmark is a benchmark written using all of the im-
proved suggestions we have found from the analysis of the larger
benchmarks.

3. Try to create a suggestion general enough for Energy Analyzer, while
not creating an increase in energy consumption.

4.2.1 2048 Analysis

In Section 3.2.2, we found that the changes made to 2048 had no significant
effect on the energy consumption of the program. To figure out why this is,
we look into what changes were made and what consequences these had to
make the program work as intended.

When looking at the datatype changes, we see that changing int vari-
ables to uint variables, there are cases where casts to uint is necessary.

4.2. Larger benchmark Analysis 77

1 public class DataType {
2 internal class G2048 {
3 private void AddTile() {
4 for (uint y = 0; y < 4; y++) {
5 for (uint x = 0; x < 4; x++) {
6 if (_board[x, y].Value != 0) continue;
7 uint a, b;
8 do {
9 a = (uint)_rand.Next(0, 4);

10 b = (uint)_rand.Next(0, 4);
11 } while (_board[a, b].Value != 0);
12 ...
13 }
14 }
15 }
16 }
17 }

Listing 28: Example of a cast when making datatype changes.

In Listing 28, we can see that when calling _rand.Next, we need to cast
the result to a uint, this likely increases the energy consumption of the
benchmark. When looking at the change to StringBuilder, there is no
big difference to the microbenchmark, besides being a smaller amount of
strings that need to be concatenated. Therefore, our first change to the
benchmark is changing all the cases where uint needs to be cast, to being
int from the start.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Data Type 2048 282.026 8.059.475.586 157.393.821

Optimized Data Type 2048 281.382 8.158.477.796 157.013.929

Table 4.5: Table showing the elapsed time and energy measurement for the uint to int
change with regards to datatypes in 2048.

In Table 4.5 we can see an updated table with the results after changing
the variables. These numbers may differ slightly from the numbers in Sec-
tion 3.2.2 as other background processes may be running or the temperature
is different, therefore the original DataType benchmark is run again to com-
pare against.

4.2. Larger benchmark Analysis 78

Here we can see that there is no significant difference between the orig-
inal datatype optimization, and the try at optimizing datatypes using int
in cases where casts were needed, as the package energy consumption is
within 2% of each other.

Following this, we try to switch the concatenation approach from using
StringBuilder to using string interpolation, as this is the second most
efficient string concatenation method, and might be more effective when
fewer strings need to be concatenated.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Data Type 2048 279.719 7.994.737.305 156.090.929

Optimized Data Type 2048 283.076 8.240.086.395 157.966.797

Table 4.6: Table showing the elapsed time and energy measurement for the string con-
catenation approach change each 2048.

In Table 4.6, we can see an updated table with the results after changing
the string concatenation approach. Here we can see, that changing this
away from a StringBuilder has made it perform significantly worse, as the
difference is higher than 2%. Because of this, we keep the StringBuilder
tip as something that should be utilized.

Lastly, with regards to Data Type, we try running the benchmark with
the default implementation of variable datatypes, but use StringBuilder
instead of the string concatenation operator (+) that is utilized in the de-
fault implementation. This is done to see if int is better than uint in a more
generalized setting.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Data Type 2048 280.449 8.136.178.489 157.504.883

Optimized Data Type 2048 278.835 8.134.824.768 156.081.787

Table 4.7: Table showing the elapsed time and energy measurement for the uint to int
change with StringBuilder in 2048.

In Table 4.7 we can see an updated table with the results after utilizing
the default variable datatypes. This shows that there is no significant dif-
ference between using int and uint for this benchmark. This is surprising,
given that the analysis in [3] shows that the compiler knows a lot of ways to
optimize uint variables when using microbenchmarks. However, as chang-
ing from uint to int and vice versa does not have a bad effect on energy
consumption, we will keep it as a tip for Energy Analyzer. This is because, as

4.2. Larger benchmark Analysis 79

the microbenchmarks in [3] showed, the compiler can sometimes optimize
uint more than int, so in some cases, this may be a useful tip, while in
worst-case scenarios, it has no effect.

When looking at the changes to the Foreach benchmark, we see that ev-
ery time a foreach loop is utilized, it is to iterate through a 2D array. See-
ing that the difference between the default implementation and the Foreach
benchmark is not significant, we consider it irrelevant whether a for loop
or a foreach loop is used in this case.

When looking at the changes to the Object benchmark, we see that
changing G2048 to a struct made it necessary to create a default constructor
for G2048, that is not there in the default implementation.

Because of this, we try to change the type of G2048 to a class (and
therefore being able to remove the constructor), while keeping Tile as a
struct to see if there is a difference in performance.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Object 2048 277.932 7.785.201.063 155.170.356

Optimized Object 2048 279.274 7.939.008.758 155.904.202

Table 4.8: Table showing the elapsed time and energy measurement for the changes to
object types in 2048.

In Table 4.8 we can see the results between using the original Object
benchmark, and only having Tile be a struct. We see in the original results
that there is potential for the Object benchmark to be better than the default,
therefore we will use the Object benchmark in our optimal implementation
of 2048.

When looking at the changes to the Switch benchmark, we see that all of
the changes made are done where there are only two cases. As the analysis
in [3] shows, the reason switch is more efficient than if, is because jump
tables can be utilized after evaluation. In cases where there are only two
outcomes, this is unlikely to make a difference, and therefore we consider
cases where there are only two outcomes to have no significant differences
between if and switch.

Lastly, we want to create the optimal version of 2048 given the results
we have found. The optimal version includes the changes Energy Analyzer
would give us. The changes we do are using uint instead of int, struct
instead of class, and StringBuilder instead of the string concatenation
operator (+).

4.2. Larger benchmark Analysis 80

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Optimal 2048 281.312 7.980.975.260 157.243.164
Default 2048 276.512 7.846.216.146 154.594.184

Table 4.9: Table showing the elapsed time and energy measurement for the "optimal" and
default implementation of 2048.

In Table 4.9 we can see that the changes to 2048 in our optimal version,
are not significantly different from the default implementation, meaning
that 2048 is already near-optimal compared to the changes we have evi-
dence behind making. In fact, we can see that the measurement for the
default implementation is lower than optimal in this case, however, it is
within 2% and therefore not significant.

This is likely because most of the code executed in 2048 is not changed.
This is unlike microbenchmarks, where we change the most important part
of the benchmark every time, therefore seeing larger differences.

Furthermore, the test setup has an impact, as different test setups would
have different hot paths and therefore might see more impact from the
changes.

Lastly, the randomness with regards to memory can have an impact that
is unknown, which makes results close to each other difficult to differenti-
ate.

Findings

To summarize, we have the following findings/suggestions:

• uint and int have no significant difference in energy consumption for
2048,

• StringBuilder is more efficient than string interpolation, even when
only three strings are concatenated.

• StringBuilder has no significant difference to string concatenation
operator, when only three strings are concatenated.

• There are no significant differences between for and foreach when
iterating through 2D arrays.

• Using struct instead of class has potential to be more efficient than
vice versa.

4.2. Larger benchmark Analysis 81

• There are no significant differences between switch and if when there
are only two outcomes.

• Overall, the "optimal" implementation of 2048 does not have many
changes compared to the default implementation, therefore no big
changes in energy efficiency are seen.

4.2.2 21 Analysis

In Section 3.2.3, we found that making datatype changes increase the en-
ergy consumption while all other changes had no significant impact on the
energy consumption. We look further into this, to see if we can figure out
how to best utilize these results for Energy Analyzer.

When looking at the changes to datatype, we see the same as for 2048,
that casts to uint has been necessary in some cases.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Datatype 21 5.161 65.477.372 2.887.042

Optimized Datatype 21 5.207 67.177.238 2.917.101

Table 4.10: Table showing the elapsed time and energy measurement for datatype changes
in 21.

In Table 4.10 we can see the results from changing the casts to uint to
using int natively, while keeping the StringBuilder changes. The results
show that having the cast is more optimal than removing it, as the changes
necessary to remove the cast increases the energy consumption by more
than 2%. Therefore, we use the original datatype changes for further testing.

Furthermore, when looking at the usage of StringBuilder, there are
multiple usages of StringBuilder, where only two strings are concate-
nated together, which may not be optimal. Seeing as we found no sig-
nificant difference between StringBuilder and the string concatenation
operator (+) for 2048, we try three cases of string concatenation methods,
for the places where only two strings are concatenated together. We try
using StringBuilder, string interpolation, and the string concatenation
operator (+).

4.2. Larger benchmark Analysis 82

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
String Interpolation Datatype 21 4.506 57.140.322 2.516.946

Datatype 21 5.176 67.904.624 2.903.444
String Concatenation Op Datatype 21 4.517 58.104.979 2.525.120

Table 4.11: Table showing the elapsed time and energy measurement for each method of
string concatenation in 21.

In Table 4.11 we can see that using string interpolation or the string
concatenation operator (+) is more efficient than using StringBuilder when
two strings are concatenated. Between string interpolation and the string
concatenation operator (+), there are no significant difference between them,
as they are within 2% of each other, however string interpolation is al-
most significantly more efficient than the string concatenation operator(+).
Therefore, when creating Energy Analyzer, when only two strings are con-
catenated, we advise using string interpolation.

When looking at switch we see that there is no significant difference in
the result compared to the default, however, we also see in the code that
there is one place where switch can possibly be used, however requiring a
bit more work.

1 public class Switch {
2 public static void PlayGame() {
3 ...
4 while (playAnother) {
5 ...
6 if (total == final) {
7 ...
8 string choice = "n";
9 if (choice == "y") {

10 total = 0;
11 }
12 else if (choice == "n") {
13 break;
14 }
15 else {
16 Console.WriteLine("Invalid choice! Choose

from y or n");ãÑ

17 continue;
18 }

4.2. Larger benchmark Analysis 83

19 ...
20 }

Listing 29: A place where switch can theoretically be used instead of if statements.

In Listing 29, we can see a place where a switch could be used instead
of if, the problem is the case where we need to break out of the while
loop, as a break statement in a switch means you break out of the switch.
Therefore, to get around this, while adding the least amount of overhead,
we utilize goto.

This is done by switching the break with goto, and creating a label it
can jump to after the while loop.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Switch 21 4.523 56.324.407 2.523.950

Optimal Switch 21 4.506 56.072.868 2.513.129

Table 4.12: Table showing the elapsed time and energy measurement for each switch
implementation in 21.

In Table 4.12, we can see that there are no significant differences when
making this change. This is likely because the amount of if statements
that need to be evaluated is low, and therefore changes close to nothing.
However, as it does not have a negative impact, and we have seen in mi-
crobenchmarks that it is optimal, we will keep this suggestion for Energy
Analyzer.

When looking at Exception, there is no significant difference in the re-
sult compared to the default, this is likely because no exception is thrown
throughout the program, and this is where most of the energy savings
would be. Furthermore, the try-catch block is unlikely to consume a lot
of energy compared to the rest of the program, as there are a lot of other
things happening in the program. However, as it also does not have a nega-
tive impact, and we have seen in microbenchmarks that there is a difference,
we will keep this suggestion for Energy Analyzer.

Lastly, we want to create the optimal version of 21 given the results we
have found. We change usages of int to uint as Energy Analyzer would sug-
gest, we also change string concatenation to StringBuilder when more
than two strings are concatenated, however we use string interpolation
when only two strings are concatenated. Furthermore, we change the if

4.2. Larger benchmark Analysis 84

statements to switch statements, including the one where we need a goto.
Lastly, we make the changes to exceptions, meaning we remove the try-catch
block, and the throw statements.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Optimal 21 4.475 55.999.663 2.498.010
Default 21 4.508 57.507.949 2.518.654

Table 4.13: Table showing the elapsed time and energy measurement for default and opti-
mal version of 21.

In Table 4.13 we can see that the changes to create an optimal version of
21, have resulted in no significant change from the default. This is likely
because the main changes to 21 are not a large part of the overall program.
Furthermore, the test setup of 21 can have an impact on the energy con-
sumption, as with the current setup, no exception is thrown in the default
implementation, however, with another setup, an exception is thrown. As
previously, there is also randomness with regards to memory that have un-
known impacts, which makes the results difficult to differentiate.

Findings

To summarize, we have the following findings/suggestions:

• String interpolation is more efficient than StringBuilder when two
strings are concatenated.

• When three or more strings are concatenated, StringBuilder should
be used.

• There are no significant difference between if statements and switch
when there are three cases.

• Using a try-catch block has no significant effect in 21, likely because
there is a lot of code executed within the try block, with no exception
being thrown.

4.2.3 99 Bottles of Beer

In Section 3.2.5, we found that making datatype changes increase the overall
energy consumption while the other changes had no significant effect on the

4.2. Larger benchmark Analysis 85

energy consumption. We look further into this, to see if we can figure out
how to utilize these results for Energy Analyzer.

For 99 Bottles of Beer, the only change to the datatype variant is chang-
ing string.Format to StringBuilder.

According to our microbenchmarks, string.Format should be the worst
type of string concatenation, which means this is a surprising result.

1 public class DataType {
2 public static uint DataType99BottlesOfBeer() {
3 for (ulong i = 0; i < LoopIterations; i++) {
4 ...
5 for (int y = 0; y < 199; y++) {
6 StringBuilder sb = new StringBuilder();
7 StringBuilder sb2 = new StringBuilder();
8 sb.Append(describeBottles(bottles))
9 .Append(" ")

10 .Append(Location)
11 .Append(", ")
12 .Append(describeBottles(bottles))
13 .Append(",");
14 write(sb.ToString());
15 ...
16 }
17 }
18 }
19 }

Listing 30: Example of using StringBuilder in 99 Bottles of Beer.

In Listing 30, we can see how a StringBuilder is utilized.
A big difference here, to string.Format, is that a new object is created

every time we go through the inner loop, which is likely to increase the
energy consumption because of garbage collection or other memory man-
agement. This is especially true in this case, as for every iteration, 398
StringBuilders are created, which consumes a large amount of memory
compared to the memory consumed by string.Format.

This was done as it is the most direct way to change a string.Format to
a StringBuilder, however as string.Format do not create a new object ev-
ery time it is used (Besides the string), we try to move the StringBuilders

4.2. Larger benchmark Analysis 86

outside the inner loop, and then use StringBuilder.Clear to clear the
StringBuilder inside the loop.

1 public class OptimizedDataType {
2 public static uint DataType99BottlesOfBeer() {
3 for (ulong i = 0; i < LoopIterations; i++) {
4 StringBuilder sb = new StringBuilder();
5 StringBuilder sb2 = new StringBuilder();
6 StringBuilder sb3 = new StringBuilder();
7 ...
8 for (int y = 0; y < 199; y++) {
9 sb.Clear();

10 sb2.Clear();
11 sb.Append(describeBottles(bottles))
12 .Append(" ")
13 .Append(Location)
14 .Append(", ")
15 .Append(describeBottles(bottles))
16 .Append(",");
17 write(sb.ToString());
18 ...
19 }
20 }
21 }
22 }

Listing 31: Changes to the optimized version of the datatype variant in 99 Bottles of Beer.

In Listing 31 we can see how the benchmark has changed, where the
StringBuilders have been moved out of the loops. The reason we do not
move the creation of StringBuilders outside the outer loop, is because we
do not measure what is outside the loop, and we generally want as little
code outside of that as possible.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Data Type 99 Bottles of Beer 464.223 6.389.852.818 259.349.854

Default 99 Bottles of Beer 446.442 5.965.694.336 249.352.105
Optimized Data Type 99 Bottles of Beer 404.346 5.652.342.215 225.625.698

Table 4.14: Table showing the elapsed time and energy measurement for the datatype
optimized version of 99 Bottles of Beer.

4.2. Larger benchmark Analysis 87

In Table 4.14 we can see that this has had a significant effect on lower-
ing the energy consumption. It had a large enough effect to show that it
is better than the default implementation, meaning that StringBuilder is
more efficient than string.Format, when a StringBuilder object has been
created already.

With regards to invocation, there are no significant differences between
default and the invocation variant of the benchmark. This is likely be-
cause the main part of the benchmark uses a lot of energy on concatenating
strings. As the invocation suggestions does not increase energy consump-
tion, we will keep the suggestion for Energy Analyzer.

Lastly, we want to create a theoretical optimal version with the opti-
mized datatype variant together with the invocation variant, to see what
the effect is.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Optimal 99 Bottles of Beer 390.996 5.190.948.676 217.722.005
Default 99 Bottles of Beer 434.179 5.847.384.440 241.741.048

Optimized Data Type 99 Bottles of Beer 391.158 5.248.324.490 217.672.255

Table 4.15: Table showing the elapsed time and energy measurement for the optimal vari-
ant of 99 Bottles of Beer compared to default and the optimized datatype.

In Table 4.15, we can see that the optimal version of the program uses
significantly less energy than the default implementation, meaning chang-
ing from string.Format to StringBuilder is a good change when a new
object does not need to be created every time it needs to be used.

Findings

To summarize, we have the following findings/suggestions:

• If a new StringBuilder object needs to be created often, other types
of string concatenation may be more efficient because of memory
consumption.

• StringBuilder is better than string.Format when a new StringBuilder
object does not need to be created often.

• Lambda expressions with or without closure have no significant dif-
ference in energy consumption in this benchmark, likely because the
main part of the benchmark consumes more energy.

4.2. Larger benchmark Analysis 88

4.2.4 Determine if a String has All the Same Characters
Analysis

In Section 3.2.6, we found that our datatype changes had the expected ef-
fects, while the loops changes increased the energy consumption signifi-
cantly.

The datatype changes were changing formatting in a Console.WriteLine
to using a StringBuilder that would then create the string used in the
Console.WriteLine instead.

Looking at the loops changes to the "Determine if a String has All the
Same Characters", we see that we iterate through a string with a foreach
loop instead of using a for loop.

Our experience suggests that this is because we need to use an extra
variable to keep track of the index of the character, as this is used in the
result.

Therefore, we find that if an index is needed, using a for loop is more
efficient than using a foreach loop.

As the optimal variant is equivalent to the datatype variant, we do not
create a new variant.

Findings

To summarize, we have the following findings/suggestions:

• Using StringBuilder is more efficient than formatting directly in a
Console.WriteLine, as expected.

• Using a for loop is more efficient than using a foreach loop when the
index of a collection/string is needed.

4.2.5 Happy Numbers Analysis

In Section 3.2.8, we found that while the datatype variant was significantly
worse than the default, using the datatype changes together with the col-
lection changes, it became better than what we would expect. We would
expect the changes with collections to be slightly worse than only the col-
lection changes, as the datatype changes by themselves were worse.

When looking at the datatype changes, two main categories of changes
are made: int to uint, and changing the type of string concatenation to
using StringBuilder.

4.2. Larger benchmark Analysis 89

In this specific case, StringBuilder is used to concatenate two separate
strings, meaning, as we have found earlier, that string interpolation is
more efficient.

However, as the string concatenation operator (+) is used instead, this
is not the reason for the energy efficiency difference.

Therefore, the changes from using int to uint must be the reason behind
the difference.

As we have previously found that changing int to uint either has no
effect or decreases the energy consumption, we must look at the unique
changes done in this benchmark compared to previous benchmarks.

We find that uint is used in Lists, which may be the reason behind the
energy increase, as int may be more efficient in Lists.

Therefore, we change the Lists to using int to test this, however, to test
this, casts are needed which may increase the energy consumption.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
Data Type Happy Number 4.374 58.146.974 2.437.059

Optimized Data Type Happy Number 4.118 54.623.167 2.293.635
Default Happy Number 4.137 55.525.206 2.309.984

Table 4.16: Table showing the elapsed time and energy measurement for the datatype
changes in Happy Numbers.

In Table 4.16, we can see that this has a significant effect on the result,
therefore we can conclude that when using Lists, the developer should
prioritize using int over uint.

However, as the results from the All variant shows, using uint in ordi-
nary arrays is more efficient than using int, as that is what is used in the
Collection benchmark.

As we found in the analysis for 21, string interpolation is more efficient
than StringBuilder when concatenating exactly two strings.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
All Happy Number 3.814 50.298.275 2.126.204

Optimal Happy Number 3.857 50.569.534 2.146.851
Default Happy Number 4.063 54.996.940 2.261.495

Table 4.17: Table showing the elapsed time and energy measurement for each Happy
Numbers.

In Table 4.17 we can see that there are no significant difference between
the All variant and the Optimal variant, therefore, we stay with the previous

4.2. Larger benchmark Analysis 90

suggestion of using string interpolation instead of StringBuilder when
exactly two strings are concatenated.

Findings

To summarize, we have the following findings/suggestions:

• Using int is more efficient than uint in a List.

• Using uint is more efficient than int in an array.

• Using array is more efficient than using List, as expected.

4.2.6 Introspection Analysis

In Section 3.2.9 we found that there was no significant difference to the
invocation part of the benchmark, which we will focus on here.

Besides this, we found that the datatype changes have no significant
changes, which is likely to be because the datatype changes do not have a
big enough impact compared to the rest of the code, as we have found in
the earlier analysis.

When looking at the changes, we see that reflection is done the same
amount of times in both benchmarks, while the invocation benchmark has
wrapped the reflection invocation in a Func delegate.

1 public class Invocation {
2 public static void Main() {
3 ...
4 foreach (Assembly refAsm in

AppDomain.CurrentDomain.GetAssemblies().Where(assembly
=> !assembly.IsDynamic)) {

ãÑ

ãÑ

5 foreach (Type type in refAsm.GetExportedTypes()) {
6 if (type.Name == "Math") {
7 MethodInfo? absMethod =

type.GetMethod("Abs", new Type[] {
typeof(int) });

ãÑ

ãÑ

8 if (absMethod != null) {
9 var absDelegate = (Func<int,

int>)Delegate.CreateDelegate(typeof(Func<int,
int>), absMethod);

ãÑ

ãÑ

4.2. Larger benchmark Analysis 91

10 Console.WriteLine("bloop's abs value =
{0}",
absDelegate((int)bloopField.GetValue(null)));

ãÑ

ãÑ

11 }
12 }
13 }
14 }
15 ...
16 }
17 }

Listing 32: The reflection part of the invocation benchmark, where we see that the
invocation is wrapped in a Func delegate.

In Listing 32 we can see on line 7 to 10 how reflection is done and how
it is wrapped in a Func delegate.

As mentioned, as reflection is done every time we get to this stage, it
is natural that no large difference is observed between the benchmarks.

Despite the extra overhead in creating a Func delegate, no increase in
energy consumption is observed. Therefore, we keep the suggestion that a
reflection invocation should be wrapped in a delegate when invoked.

The optimal benchmark for this benchmark is the All variant, as we have
found no changes necessary to the suggestions based on this analysis.

Findings

To summarize, we have the following findings/suggestions:

• Despite needing reflection every time it is invoked, wrapping it in
a delegate does not increase energy consumption, therefore this sug-
gestion should not be changed.

4.2.7 World Cup Group Stage Analysis

In the results for World Cup Group Stage, we found replacing Language
Integrated Query (LINQ) has a positive impact on energy consumption for
the benchmark, while changes for datatypes have a negative impact on en-
ergy consumption, giving an overall positive effect on energy consumption
when all changes where implemented in the same benchmark.

4.2. Larger benchmark Analysis 92

When analyzing the results we run the experiments multiple times again,
and we now see that the Datatype benchmark is sometimes better than the
Default benchmark in regards to energy consumption.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
LINQ World Cup Stage 199.510 2.805.185.372 111.129.011

All World Cup Stage 206.609 2.752.152.285 115.172.589
Default World Cup Stage 485.782 6.901.756.402 270.326.280

Data Type World Cup Stage 474.198 6.761.858.181 264.074.436

Table 4.18: Table showing the elapsed time and energy measurement for each World Cup
Group Stage.

In Table 4.18 we see one of the runs where the Datatype benchmark
is better than Default. This is despite the original showing the default
implementation to be more efficient than the datatype implementation.
Therefore, we can not conclude that the two benchmarks consume different
amounts of energy. Because these results do not give further insight, we do
not use them to change our suggestions.

Looking at the LINQ benchmark results, we see that our changes have
made a positive impact by reducing the energy consumption to approxi-
mately half. As we did expect this result, we do not change our suggestions
towards LINQ.

As we did not find any specific changes from the analysis of this bench-
mark, we use the results of the analysis done from previous benchmarks to
make smaller changes to get the optimal version, this includes changing the
List to using int instead of uint.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ)
All World Cup Stage 215.705 2.867.487.671 120.505.412

Default World Cup Stage 487.250 6.856.450.412 271.776.584
Optimal World Cup Stage 197.433 2.744.775.346 110.181.618

Table 4.19: Table showing the elapsed time and energy measurement for the optimal World
Cup Group Stage benchmark compared to default and the All variant.

In Table 4.19 we can see that there is no significant difference between
the All variant and the optimal variant, however they both consume signif-
icantly less energy than the default variant.

4.2. Larger benchmark Analysis 93

Findings

To summarize, we have the following findings/suggestions:

• The variants between benchmarks regarding datatypes is higher than
expected, and we can therefore not change our suggestions regarding
dataypes.

• Using LINQ is inefficient, and should be avoided.

4.2.8 Summary

In this section, we summarize the findings from the analysis of the larger
benchmarks. These findings are used to be more precise when making
suggestions for Energy Analyzer.

Findings

• Has an effect

– Using int is more efficient than uint in a List.

– Using uint is more efficient than int in an array.

– StringBuilder is the same or more efficient than other types of
concatenation when three strings or more are concatenated.

– String interpolation is more efficient than StringBuilder when
two strings are concatenated.

– If a new StringBuilder object needs to be created often, other
types of string concatenation may be more efficient because of
memory consumption.

– Using a for loop is more efficient than a foreach loop when the
index is needed.

– Using LINQ is inefficient, and should be avoided.

– Arrays are more efficient than Lists.

– Using struct instead of class has potential to be more efficient
than vice versa.

• Has no effect

4.2. Larger benchmark Analysis 94

– uint and int have no significant difference in energy consump-
tion in a lot of cases.

– There are no significant differences between switch and if when
there are three or less outcomes.

– There are no significant differences when using for and foreach
when iterating through 2D arrays.

– Lambda expressions with or without closure have no significant
difference in energy consumption, in cases where a large amount
of the energy consumption of a benchmark does not come from
this.

– Despite needing reflection every time it is invoked, wrapping
reflection invocation in a delegate does not increase energy
consumption.

– Using a try-catch block has no significant effect when there is a
lot of code executed within the try block, when no exception is
thrown.

Following these findings, the formal suggestions for Energy Analyzer are
created, seen in Section A.4.

Chapter 5

Energy Analyzer

In this chapter we design, implement, and evaluate Energy Analyzer.
We do this based on the suggestions in Section A.4, which are created

based on the analysis in Chapter 4.

5.1 Design

This section provides the design choices and requirements of Energy Ana-
lyzer, which leads into the implementation of Energy Analyzer in Section 5.2.

5.1.1 Analyzer type

A natural way of creating a C# analyzer is creating a Roslyn analyzer, as
this is what Microsoft uses for their code analysis [22]. The .NET compiler
platform uses several Roslyn analyzers to inspect C# code for code style,
quality, and other issues.

We look into two ways of implementing a third-party Roslyn analyzer:
Integrated Development Environment (IDE) based extensions, and NuGet
packages, as these are presented by Microsoft as the options of how to
implement a third-party Roslyn analyzer [22].

IDE based extensions

An IDE based extension enables rules for the entire IDE that a developer
can use to write higher quality code [22]. This is useful if developers have
code quality rules they want to follow, or have specific analyses they want
to do with their code. However, this means that all developers working

95

5.1. Design 96

on a project need to install the same extensions, therefore this is mainly
useful if only one developer is working on a project, for example for smaller
programs or prototypes to test if something works or if developers use the
same code quality rules across all the projects they work on.

NuGet packages

A NuGet package enables rules for the specific project, this means that any
developer that works on the same project will have the same rules [22].

Choice of Extension vs NuGet Package

The main difference between using an IDE based extension and a NuGet
package is the scope of the rules. As we choose to focus on the applications
instead of the developers in Section 1.1, we want to create an analyzer that
can be used without issue by multiple developers in a project, therefore
we choose to focus on creating a NuGet package. A limitation of Energy
Analyzer is that automatic refactoring without the user choosing to do so is
not created. This has the advantage that developers know what code is used
in the program and that any bugs in Energy Analyzer will not automatically
make the analyzed program have bugs. However, it has the disadvantage
that the developers need to make the changes themselves, either by using
built-in code fixes in Energy Analyzer or by writing the code fix manually.

Analyzer Categories

It is also important to look at what category of analyzer we create. There
are three categories of Roslyn analyzers: Stateless, Stateful, and Additional
File analyzer.

Stateless analyzers analyze specific code units, such as a symbol, syn-
tax node, code block, compilation, etc. independent of the state of the
program [60]. Stateful analyzers analyze specific code units while keeping
the state of the enclosing code block or compilation in mind [60]. Addi-
tional File analyzers read data from non-source text files included in the
project [60].

Choice of Analyzer Category

As we want to create an analyzer that gives suggestions for language con-
structs where the state of the program sometimes has an effect, such as not

5.2. Implementation 97

recommending uint if a variable is negative, a stateful analyzer is chosen.

5.1.2 Requirements

These requirements are prioritized using the MoSCoW method [61, p. 140].
The requirements are based on the knowledge gathered in the introduction,
problem statement, and the design chapter of Energy Analyzer. They are
prioritized based on how necessary they are to have a product that can be
used based on the knowledge we have gathered, with less priority on bonus
features.

• Must give suggestions regarding energy consumption.

• Must be created for C#.

• Must be a NuGet package.

• Must base the suggestions on the experiments done in this project and
in [3], the suggestions are seen in Section A.4.

• Must give suggestions that can be used in the given situation.

• Should not have any blocking issues, i.e. the developer not being able
to proceed without help, with regards to usability when tested by
other developers.

• Should give an option for refactoring a given suggestion.

• Could have an easy to modify list of suggestions.

• Could provide an explanation of why this refactoring is suggested.

• Will not make changes to the code automatically without user input.

5.2 Implementation

Energy Analyzer is divided into two parts. The first part focuses on identi-
fying the construct that should be changed and giving relevant suggestions
to this construct. The second part is giving an automatic code fix for the
identified code, meaning we change the developers’ code to implement the
suggested fix if they choose to do so.

5.2. Implementation 98

The code fix is only provided for suggestions where it has been possible
to create a code fix.

The source code for Energy Analyzer can be found on GitLab [2] and the
package can be found on NuGet [5].

Implementing a Roslyn Analyzer

When implementing the suggestion part of a Roslyn Analyzer we extend
the abstract class DiagnosticAnalyzer which is provided by Microsoft as
an entry point for the analyzer [62].

To implement DiagnosticAnalyzer we are required to specify two mem-
bers, the Initialize method and the SupportedDiagnostics property. Initialize
is the method entry point called at once when registering the analyzer.
When implementing the Initialize method we use the parameter AnalysisContext
to register which syntax nodes to operate on. This means that we register
a callback for when the analyzer reaches certain nodes. This allows us to
implement callbacks that execute our analysis and display the suggestion if
the analysis shows that the suggestion should be displayed.

The second member to implement from the abstract class is the property
SupportedDiagnostics which returns a collection of the diagnostics that the
analyzer is capable of producing. Furthermore, the DiagnosticAnalyzer
attribute is added to the class, this describes which language it targets, in
our case it is C#.

Implementing the code fix part of a Roslyn Analyzer uses the abstract
class CodeFixProvider, which also contains two members which must be
implemented [23].

This includes the method RegisterCodeFixesAsync and the property
FixableDiagnosticIds.

The RegisterCodeFixesAsync method is responsible for computing the
code fix itself and applying it. The FixableDiagnosticIds property is a
collection of all the ids this code fix should show a suggestion to code fix
for.

To export this code fix provider we have to annotate the class with the
ExportCodeFixProvider attribute. This attribute describes what language
the code fix is meant for and the name of the code fix.

5.2. Implementation 99

5.2.1 Suggestions

We start by looking at giving suggestions. Some suggestions are simpler
than others, therefore we look at two different suggestions, a simple and a
complex one, to get an overview of how the suggestions have been imple-
mented.

Dictionary Suggestion

The first suggestion we look at is a simple one, here we need to give the
suggestion that a Dictionary should be used, whenever a table is used that
is not a Dictionary.

1 [DiagnosticAnalyzer(LanguageNames.CSharp)]
2 public class DictionaryAnalyzer : DiagnosticAnalyzer {
3 private const string DiagnosticId = "MakeDictionary";
4 private static readonly DiagnosticDescriptor MakeDictionary

= new(DiagnosticId, "Use Dictionary", "Using a
Dictionary is usually more efficient than other types of
tables.", "Usage", DiagnosticSeverity.Warning, true);

ãÑ

ãÑ

ãÑ

5 private static string[] RelevantTypes = { "Dictionary",
"Hashtable", ... };ãÑ

6 public override ImmutableArray<DiagnosticDescriptor>
SupportedDiagnostics =>
ImmutableArray.Create(MakeDictionary);

ãÑ

ãÑ

7 ...

Listing 33: Descriptive code used to let the IDE know what the suggestion looks like.

In Listing 33, we can see the initial descriptive code used to let the IDE
know what the suggestion looks like. This is created for all of the sugges-
tions, the most important part for the user is the DiagnosticDescriptor.
The first parameter is a unique ID that identifies which suggestion it is,
after which a title and description are given. The last two parameters are
used to show what the DiagnosticSeverity is, which can be Hidden, Info,
Warning, and Error, and whether the suggestion should be enabled by de-
fault. We have decided to give our suggestions as Warnings because we
do not want the compiler to stop, while also ensuring that the user notices
the suggestions. Besides the descriptive code, we also have a string array

5.2. Implementation 100

for the types that are specifically relevant for this suggestion, this is unlike
other suggestions which may not have a lot of relevant types and therefore
it is unnecessary to have a helper-array for them.

1 ...
2 public override void Initialize(AnalysisContext context) {
3 context.ConfigureGeneratedCodeAnalysis(

GeneratedCodeAnalysisFlags.None);ãÑ

4 context.EnableConcurrentExecution();
5 context.RegisterSyntaxNodeAction(AnalyzeNode,

SyntaxKind.LocalDeclarationStatement);ãÑ

6 context.RegisterSyntaxNodeAction(AnalyzeNode,
SyntaxKind.FieldDeclaration);ãÑ

7 context.RegisterSyntaxNodeAction(AnalyzeNode,
SyntaxKind.PropertyDeclaration);ãÑ

8 }
9 ...

Listing 34: The Initialize method that is called before the code analysis is done, so we
can setup everything.

In Listing 34, we can see the Initialize method, that is also created
for all of the suggestions. This method is used to initialize different parts
of the analysis, such as what the analyzer does with generated code, and
whether it runs concurrently. Most importantly, here we can register meth-
ods that is called when different parts of the code is found, in this case we
register the method AnalyzeNode whenever a LocalDeclarationStatement,
a FieldDeclaration, and a PropertyDeclaration is found in the code.
A LocalDeclarationStatement is a declaration of a variable done locally,
while a FieldDeclaration is a declaration done in a field, and a PropertyDeclaration
is a declaration done as a property.

1 ...
2 private void AnalyzeNode(SyntaxNodeAnalysisContext context)

{ãÑ

3 if (CanBeDictionary(context.Node)) {
4 context.ReportDiagnostic(

Diagnostic.Create(MakeDictionary,
context.Node.GetLocation()));

ãÑ

ãÑ

5.2. Implementation 101

5 }
6 }
7 ...

Listing 35: The AnalyzeNode method, which is used to give the suggestion, if the declara-
tion should be a Dictionary.

In Listing 35 we can see the AnalyzeNode method. We call the method
CanBeDictionary with the node to see if the declaration should be a Dictionary,
in which case we call the ReportDiagnostic method with a new Diagnostic,
which is our suggestion. This suggestion is then reported to the user at the
location of the node.

1 ...
2 private static bool CanBeDictionary(SyntaxNode declaration)

{ãÑ

3 string type = declaration switch {
4 LocalDeclarationStatementSyntax l =>

l.Declaration.Type.GetText().ToString().Trim(),ãÑ

5 FieldDeclarationSyntax f =>
f.Declaration.Type.GetText().ToString().Trim(),ãÑ

6 PropertyDeclarationSyntax prop =>
prop.Type.GetText().ToString().Trim(),ãÑ

7 _ => ""
8 };
9 return RelevantTypes.Contains(type.Split("<")[0]) &&

!type.StartsWith("Dictionary");ãÑ

10 }
11 }

Listing 36: The CanBeDictionary method that checks if a declaration should be a
Dictionary.

In Listing 36, we can see the CanBeDictionary method. Here we first
determine if the declaration is a LocalDeclarationStatementSyntax, a
FieldDeclarationSyntax, or a PropertyDeclarationSyntax, as they have
no shared parent with the relevant methods. During this, we get the name

5.2. Implementation 102

of the type of the declaration. We then return the boolean value of if it is any
of the types that are relevant for this suggestion, and it is not a Dictionary.

StringBuilder Suggestion

The second suggestion we look at is a more complex one, where we need
to give the suggestion that a StringBuilder should be used if three strings
or more are concatenated. The initial descriptive code is similar to the
Dictionary suggestion shown in Section 5.2.1, therefore we do not go through
that in the report.

1 public class StringBuilderAnalyzer : DiagnosticAnalyzer {
2 ...
3 public override void Initialize(AnalysisContext context) {
4 context.ConfigureGeneratedCodeAnalysis(

GeneratedCodeAnalysisFlags.None);ãÑ

5 context.EnableConcurrentExecution();
6 context.RegisterSyntaxNodeAction(AnalyzeBlock,

SyntaxKind.Block);ãÑ

7 }
8 ...

Listing 37: The Initialize method that is called to setup the analyzer.

In Listing 37 we can see the Initialize method for the StringBuilder
suggestion, the most important part is that the RegisterSyntaxNodeAction
calls the AnalyzeBlock method whenever a Block is found in the code. We
limit ourselves to only local declarations because of the complexity of the
suggestion.

1 private void AnalyzeBlock(SyntaxNodeAnalysisContext context)
{ãÑ

2 Dictionary<string, int> count = new();
3 foreach (StatementSyntax statement in

((BlockSyntax)context.Node).Statements) {ãÑ

4 if (statement is LocalDeclarationStatementSyntax l)
{ãÑ

5 string type =
l.Declaration.Type.GetText().ToString().Trim();ãÑ

5.2. Implementation 103

6 if (type is not "string" and not "String") {
7 continue;
8 }
9 foreach (VariableDeclaratorSyntax

variableDeclaratorSyntax in
l.Declaration.Variables) {

ãÑ

ãÑ

10 count.Add(
variableDeclaratorSyntax.Identifier.Text,
0);

ãÑ

ãÑ

11 if (variableDeclaratorSyntax.Initializer !=
null) {ãÑ

12 count[variableDeclaratorSyntax
.Identifier.Text] +=ãÑ

13 CountRight(variableDeclaratorSyntax
.Initializer.Value);ãÑ

14 }
15 else {
16 count[variableDeclaratorSyntax

.Identifier.Text] = 0;ãÑ

17 }
18 }
19 }

Listing 38: The AnalyzeBlock method that is called whenever a Block is encountered, 1/3.

In Listing 38, we can see the first part of the AnalyzeBlock method.
We look through the statements in the block we look at, and see if the
statement is a local declaration. If the statement is a local declaration, we
look at what type it has, if the local declaration is not a string we go to
the next statement, as no other type is relevant for this suggestion. After
this, we look through the variables in the declaration and count how many
concatenations are done in the initialization of the local declaration. If there
is no initialization of this variable at the declaration, we set the count of it
to zero.

1 private void AnalyzeBlock(SyntaxNodeAnalysisContext context)
{ãÑ

2 ...

5.2. Implementation 104

3 if (statement is ExpressionStatementSyntax e &&
e.Expression is AssignmentExpressionSyntax a &&
a.Left is IdentifierNameSyntax i) {

ãÑ

ãÑ

4 ...
5 if (count.ContainsKey(i.Identifier.Text)) {
6 count[i.Identifier.Text]++;
7 }
8 else {
9 count.Add(i.Identifier.Text, 2);

10 }
11 if (count[i.Identifier.Text] < 3 &&

!a.ToString().Contains("+=")) {ãÑ

12 count[i.Identifier.Text] = 0;
13 }
14 else if (count[i.Identifier.Text] == 1 &&

a.ToString().Contains("+=")) {ãÑ

15 count[i.Identifier.Text]++;
16 }
17 count[i.Identifier.Text] +=

CountRight(a.Right);ãÑ

18 }
19 }
20 ...

Listing 39: The AnalyzeBlock method that is called whenever a Block is encountered, 2/3.

In Listing 39, we can see the second part of the AnalyzeBlock method.
We count the number of times a string has been concatenated using the +=
operator, by looking at the expression statements in the block.

If the count dictionary already contains the identifier, we start by adding
one to the count, as we are at least doing one concatenation with this. If the
count dictionary does not contain the identifier, we add it and set it to two,
as that means the initial string did not have a concatenation, and it is not
being concatenated with at least one other string, therefore two in total.

After this, we check if the expression contains the += operator, if it does
not, we reset the count for this variable to zero if the count is below three.
If the count for this variable is three or above, we need to send a diagnostic
to the declaration of the variable, so we do not reset it. If the count for this

5.2. Implementation 105

variable is one, when concatenating, we add one to the count, as there will
always be at least two variables in the concatenation.

After this, we call the CountRight method to count the concatenations
of the right side of the assignment.

1 private void AnalyzeBlock(SyntaxNodeAnalysisContext context)
{ãÑ

2 ...
3 foreach (StatementSyntax statementSyntax in

((BlockSyntax)context.Node).Statements) {ãÑ

4 if (statementSyntax is
LocalDeclarationStatementSyntax l) {ãÑ

5 foreach (VariableDeclaratorSyntax
variableDeclaratorSyntax in
l.Declaration.Variables) {

ãÑ

ãÑ

6 if (count.ContainsKey(
variableDeclaratorSyntax.Identifier.Text)
&& count[
variableDeclaratorSyntax.Identifier.Text]
> 2) {

ãÑ

ãÑ

ãÑ

ãÑ

7 context.ReportDiagnostic(
Diagnostic.Create(MakeStringBuilder,
l.GetLocation()));

ãÑ

ãÑ

8 }
9 }

10 }
11 }
12 }

Listing 40: The AnalyzeBlock method that is called whenever a Block is encountered, 3/3.

In Listing 40, we can see the last part of the AnalyzeBlock method, we
go through all of the statements in the block to find the local declarations. If
the local declaration is in the count dictionary, and the count is above two,
we know that at least three strings are concatenated with another method
than StringBuilder, therefore we report a diagnostic at this location.

1 ...

5.2. Implementation 106

2 private int CountRight(ExpressionSyntax e) {
3 switch (e) {
4 case BinaryExpressionSyntax b:
5 return CountRecursive(b);
6 case InterpolatedStringExpressionSyntax i:
7 return i.Contents.Count;
8 case InvocationExpressionSyntax ie:
9 if (ie.ToString().Contains("string.Format")) {

10 return ie.ArgumentList.Arguments.Count - 1;
11 }
12 else if (ie.ToString().Contains("string.Join")

|| ie.ToString().Contains("string.Concat"))
{

ãÑ

ãÑ

13 return ie.ArgumentList.Arguments.Count;
14 }
15 else {
16 return 0;
17 }
18 default:
19 return 0;
20 }
21 }
22 ...

Listing 41: The CountRight method that is called from various points in the AnalyzeBlock
method.

In Listing 41 we can see the CountRight method that is called at various
points in the AnalyzeBlock method.

We can see that the expression it is called with is used in a switch to
figure out what type of expression it is.

If the expression is a BinaryExpressionSyntax, we know that there are
at least two parts to the expression, and therefore call the CountRecursive
method with the expression, to count all of the parts individually. If the
expression is an InterpolatedStringExpressionSyntax, we know the right
side is an interpolated string and we return the number of strings in the
interpolated string. If the expression is an InvocationExpressionSyntax,
we know the right side is a method call, in which case we check what type
of method call it is.

5.2. Implementation 107

If the method call is to string.Format, we return the number of argu-
ments to it, minus one because the first argument in that call is the overall
string, not the number of strings concatenated. Otherwise, if the method
call is to string.Join or string.Concat, we return the number of argu-
ments, as these do not have extra arguments. If the method call is none of
these methods or if the expression is something else than these types, we
return 0 as we do not know what method it is or how many strings are
concatenated, if any.

1 ...
2 private int CountRecursive(BinaryExpressionSyntax b) {
3 var count = 1;
4 switch (b.Left) {
5 case InterpolatedStringExpressionSyntax i:
6 count += i.Contents.Count;
7 break;
8 case InvocationExpressionSyntax ie:
9 if (ie.ToString().Contains("string.Format")) {

10 count += ie.ArgumentList.Arguments.Count -
1;ãÑ

11 }
12 else if (ie.ToString().Contains("string.Join")

|| ie.ToString().Contains("string.Concat"))
{

ãÑ

ãÑ

13 count += ie.ArgumentList.Arguments.Count;
14 }
15 break;
16 case BinaryExpressionSyntax bl:
17 count += CountRecursive(bl);
18 break;
19 default:
20 count++;
21 break;
22 }
23 ...

Listing 42: The CountRecursive method that is called from the CountRight method, 1/2.

5.2. Implementation 108

In Listing 42, we can see the first part of the CountRecursive method
that is called in the CountRight method. We can see how the left part
of the BinaryExpressionSyntax is handled, which is the same way as in
CountRight, however with the left side of the BinaryExpressionSyntax in-
stead of the right side.

1 ...
2 if (b.Right is BinaryExpressionSyntax br) {
3 return count + CountRecursive(br);
4 }
5 switch (b.Right) {
6 case InterpolatedStringExpressionSyntax i:
7 return count + i.Contents.Count;
8 case InvocationExpressionSyntax ie:
9 if (ie.ToString().Contains("string.Format")) {

10 count += ie.ArgumentList.Arguments.Count -
1;ãÑ

11 }
12 else if (ie.ToString().Contains("string.Join")

|| ie.ToString().Contains("string.Concat"))
{

ãÑ

ãÑ

13 count += ie.ArgumentList.Arguments.Count;
14 }
15 return count;
16 default:
17 return count;
18 }
19 }
20 }

Listing 43: The CountRecursive method that is called from the CountRight method, 2/2.

In Listing 43, we can see the second part of the CountRecursive method.
We handle the right side of the BinaryExpressionSyntax, we do this in the
same way as previously, with the one exception that if the right side is still
a BinaryExpressionSyntax we return the current count added to what the
CountRecursive method returns.

Once all of this is done, we have the number of concatenations done for
a local declaration and can report the diagnostic as shown in Listing 40.

5.2. Implementation 109

5.2.2 Code Fixes

After looking at the suggestions, we look at how we implement code fixes
for some of the suggestions. We do not implement code fixes for all of
the suggestions, as some code fixes are so complex that it is not possible
to figure out what the code should change into. Therefore there are some
parts of Energy Analyzer where only a suggestion is shown, hinting that the
developer should change the code themselves.

As with the suggestions, some code fixes are simpler than others, there-
fore we look at two different code fixes, a simple and a complex one.

Uint Code Fix

We start by looking at the code fix for uint, as this is a simple code fix,
where we need to find the declarations where the relevant analyzer has
given a suggestion, and change that to using uint. Besides this, the code
fix also needs to remove any suffix that may appear with the number, such
as L for long datatypes.

1 [ExportCodeFixProvider(LanguageNames.CSharp, Name =
nameof(MakeUIntCodeFixProvider)), Shared]ãÑ

2 public sealed class MakeUIntCodeFixProvider : CodeFixProvider {
3 public override ImmutableArray<string> FixableDiagnosticIds

=> ImmutableArray.Create(MakeUIntAnalyzer.DiagnosticId);ãÑ

4 public override FixAllProvider GetFixAllProvider() =>
WellKnownFixAllProviders.BatchFixer;ãÑ

Listing 44: Initial descriptive code for the uint code fix.

In Listing 44 we can see the initial descriptive code for the uint code fix.
Before declaring the class, we give the class an attribute, which describes
the language the code fix is for, and the name of the code fix.

When initializing the class, we create an ImmutableArray consisting of
the diagnostics this code fix is relevant for. After this, the last of the de-
scriptive code is made by defining which FixAllProvider should be used.
This makes it possible to fix multiple types of suggestions, if the code fix
for the suggestion is the same. In the case of this example, it is redundant
as only one DiagnosticId is fixable by the code fix.

5.2. Implementation 110

1 public override async Task
RegisterCodeFixesAsync(CodeFixContext context) {ãÑ

2 SyntaxNode root = await
context.Document.GetSyntaxRootAsync(
context.CancellationToken).ConfigureAwait(false);

ãÑ

ãÑ

3 Diagnostic diagnostic = context.Diagnostics.First();
4 Microsoft.CodeAnalysis.Text.TextSpan diagnosticSpan =

diagnostic.Location.SourceSpan;ãÑ

5 LocalDeclarationStatementSyntax declaration =
root.FindToken(diagnosticSpan.Start).Parent.
AncestorsAndSelf().OfType<
LocalDeclarationStatementSyntax>().FirstOrDefault();

ãÑ

ãÑ

ãÑ

6 ...

Listing 45: The RegisterCodeFixesAsync method that is used to give the codefix to the
developer 1/2.

In Listing 45, we can see where we begin creating the code fix. We
start by getting the root of the document we want to change, meaning
the node that contains all of the code. After this, we get the first diag-
nostic and the span of the code where this diagnostic is active. This is
received from the analyzer that is relevant to this code fix, in this case,
MakeUIntAnalyzer. After this we get the declaration that we want to change,
we look for LocalDeclarationSyntax, PropertyDeclarationSyntax, and
FieldDeclarationSyntax, because these are the three types of declarations
that exist.

1 if (declaration != null) {
2 CodeAction action = CodeAction.Create(
3 "Make uint",
4 c => MakeUIntLocal(context.Document,

declaration, c),ãÑ

5 nameof(MakeUIntCodeFixProvider));
6 context.RegisterCodeFix(action, diagnostic);
7 }
8 ...
9 }

5.2. Implementation 111

Listing 46: The RegisterCodeFixesAsync method that is used to give the codefix to the
developer 2/2.

In Listing 46 we can see the second part of the RegisterCodeFixsAsync
method, we check which of the declarations are not null and create a rele-
vant CodeAction with the relevant method, after which the code fix is regis-
tered. A CodeAction is the action that will occur if the developer chooses to
use the code fix. The registered code fixes are the list of code fixes that are
provided to the user. The methods called with regards to the declarations
are almost the same, with the only difference being the type of declaration,
therefore we only look through the method for LocalDeclarationSyntax in
this section.

1 private static async Task<Document> MakeUIntLocal(Document
document, LocalDeclarationStatementSyntax
localDeclaration, CancellationToken cancellationToken) {

ãÑ

ãÑ

2 VariableDeclarationSyntax variableDeclaration =
localDeclaration.Declaration;ãÑ

3 TypeSyntax variableTypeName = variableDeclaration.Type;
4 TypeSyntax typeName =

SyntaxFactory.ParseTypeName("uint")
.WithLeadingTrivia(variableTypeName
.GetLeadingTrivia())
.WithTrailingTrivia(variableTypeName
.GetTrailingTrivia());

ãÑ

ãÑ

ãÑ

ãÑ

ãÑ

5 var newVariableDeclarators = new
SeparatedSyntaxList<VariableDeclaratorSyntax>();ãÑ

6 foreach (VariableDeclaratorSyntax variableDeclarator in
variableDeclaration.Variables) {ãÑ

7 VariableDeclaratorSyntax fix =
8 variableDeclarator.

WithInitializer(FixVariableDeclarator(
variableDeclarator.Initializer));

ãÑ

ãÑ

9 newVariableDeclarators =
newVariableDeclarators.Add(fix);ãÑ

10 }

5.2. Implementation 112

Listing 47: The MakeUIntLocal method which is used to change the code 1/2.

In Listing 47 we can see the MakeUIntLocal method. We start by get-
ting the declaration of the LocalDeclaration, the type of it, and the trivia
around it. Trivia refers to Syntax Trivia, which includes elements such as
comments, preprocessor directives, and various formatting elements such
as spaces and newlines [63]. The trivia is applied to the new type of the
declaration we create. After this, we go through all of the variables initial-
ized in this declaration, as there can be multiple. When doing this, we look
through the initializers, as they could have suffixes for another datatype
which would not be legal when changed to uint. We fix the initializers
by calling the FixVariableDeclarator method with the initializer of the
declaration.

1 TypeSyntax simplifiedTypeName =
typeName.WithAdditionalAnnotations(Simplifier.Annotation);ãÑ

2 variableDeclaration =
variableDeclaration.WithType(simplifiedTypeName).
WithVariables(newVariableDeclarators);

ãÑ

ãÑ

3 LocalDeclarationStatementSyntax newLocal =
localDeclaration.WithDeclaration(variableDeclaration);ãÑ

4 SyntaxNode root = await
document.GetSyntaxRootAsync(cancellationToken).ConfigureAwait(false);ãÑ

5 SyntaxNode newRoot = root.ReplaceNode(localDeclaration,
newLocal);ãÑ

6 return document.WithSyntaxRoot(newRoot);
7 }

Listing 48: The MakeUIntLocal method which is used to change the code 2/2.

In Listing 48 we can see the second part of the MakeUIntLocal method.
Here we simplify the typename of the variable, if it can be simplified further
than it is, and replace the type of the variable declaration with the simpli-
fied type. We also replace the variable initializers with the new ones that
were fixed using the FixVariableDeclarator method. After this, we create
the new LocalDeclarationStatementSyntax which contains the declaration
that we have created throughout the method, after which we get the root of
the document and replace the old LocalDeclarationStatementSyntax node
with the new LocalDeclarationStatementSyntax node. In the end, we re-

5.2. Implementation 113

turn the new document with the new node, and the code fix will have been
applied to the document.

1 private static EqualsValueClauseSyntax?
FixVariableDeclarator(EqualsValueClauseSyntax?
initializer) {

ãÑ

ãÑ

2 if (initializer == null) {
3 return initializer;
4 }
5 return initializer.WithValue(

SyntaxFactory.ParseExpression(Regex.Replace(
initializer.Value.ToString(), "([L|l|u|U|ul|UL|])",
"")));

ãÑ

ãÑ

ãÑ

6 }
7 }

Listing 49: The FixVariableDeclarator method that fixes the initializer of the
declaration.

In Listing 49 we can see the FixVariableDeclarator method that is used
to replace the suffix of a variable, if it exists. We use regex to replace any
occurrence of a valid suffix with no suffix, as no suffix is needed when
uint is provided explicitly in the variable declaration. We then return the
new initializer with the replaced suffix, so no suffix is used in the variable
declaration.

Lambda Expression Code Fix

We look at the code fix for lambda expressions, where we change lambda
expressions with closure to lambda expressions with parameters so that
the lambda expressions will not access any variables outside the lambda
expression itself.

The complex part of this code fix is to find the type of the variables that
need to be changed, as well as finding the places in the expression where a
type needs to be inserted and a variable identifier needs to be inserted.

Furthermore, we need to ensure that we do not add too many or too
few of the types to the generic type of the lambda expression, as the code
would not be able to compile in that case.

5.2. Implementation 114

The initial descriptive code for the lambda expression code fix is similar
to the uint code fix, which means we will not describe that in the report.

1 [ExportCodeFixProvider(LanguageNames.CSharp, Name =
nameof(ReflectionCodeFixProvider)), Shared]ãÑ

2 public class LambdaCodeFixProvider : CodeFixProvider {
3 ...
4 private static async Task<Document>

MakeLambdaWithoutClosure(CodeFixContext context,
CancellationToken c) {

ãÑ

ãÑ

5 ...
6 ParenthesizedLambdaExpressionSyntax lambdaExpression =

root!.FindToken(diagnosticSpan.Start).Parent!.
AncestorsAndSelf().OfType<
ParenthesizedLambdaExpressionSyntax>().FirstOrDefault()!;

ãÑ

ãÑ

ãÑ

7 VariableDeclarationSyntax? ancestor;
8 if (lambdaExpression.Parent?.Parent?.Parent is

VariableDeclarationSyntax v) {ãÑ

9 ancestor = v;
10 }
11 ...

Listing 50: Finding the lambda expression and the declaration of the lambda expression.

In Listing 50 we can see the initial code used to find the old lambda
expression that needs to be updated.

Whenever we add a parameter to the lambda expression, we also need to
add the type of the parameter to the declaration of the lambda expression.

1 GenericNameSyntax? genericType = ancestor.Type as
GenericNameSyntax;ãÑ

2 GenericNameSyntax newGenericType = genericType!;
3 newGenericType = newGenericType.WithTypeArgumentList(

newGenericType.TypeArgumentList.WithArguments(
newGenericType.TypeArgumentList.Arguments.RemoveAt(
newGenericType.TypeArgumentList.Arguments.Count -
1)));

ãÑ

ãÑ

ãÑ

ãÑ

4 ParenthesizedLambdaExpressionSyntax? newLambdaExpression
= lambdaExpression;ãÑ

5.2. Implementation 115

5 foreach (IdentifierNameSyntax identifierNameSyntax in
LambdaAnalyzerV2.MapFromLambdaToIdentifiersToFix[
lambdaExpression.ToString()]) {

ãÑ

ãÑ

6 string variableName =
identifierNameSyntax.Identifier.Text;ãÑ

7 ILocalSymbol? symbol =
document.GetSemanticModelAsync().Result!
.LookupSymbols(diagnostic.Location.SourceSpan.Start)
.First(a => a.Name == variableName) as
ILocalSymbol;

ãÑ

ãÑ

ãÑ

ãÑ

8 ParameterSyntax parameter =
SyntaxFactory.Parameter(...,
SyntaxFactory.Identifier(variableName), ...);

ãÑ

ãÑ

9 string typeName = symbol!.Type.ToString()!;

Listing 51: Initializing the new generic type of the lambda expression and the new lambda
expression, as well as finding the variable name and symbol, and at the end creating a
parameter and finding the type.

In Listing 51 we can see how we find the type of the declaration of
newLambdaExpression. This is the type we will update with the type of the
parameters. To ensure that the return type is at the end of the list of types
in the declaration, we remove it from the initial list of types, and add it after
all the other types are added. We do this because the last type in the list is
the return type of the lambda expression.

We initialize newLambdaExpression, so we can change it with the changes
needed.

In the foreach loop we go through all of the variables that have been
found by the analyzer, that need to be moved to a parameter. We find the
name of the variable, and find the symbol that is relevant to it.

We create a parameter with the name of the variable and find the type
of the symbol, so we can input these into the parameter list of the lambda
expression, and the type list of the declaration respectively.

1 newGenericType = newGenericType.
AddTypeArgumentListArguments(SyntaxFactory
.ParseTypeName(typeName));

ãÑ

ãÑ

2 newLambdaExpression =
SyntaxFactory.ParenthesizedLambdaExpression()ãÑ

5.2. Implementation 116

3 ...
4 .WithParameterList(newLambdaExpression.ParameterList

.AddParameters(parameter))ãÑ

5 ...
6 }
7 newGenericType =

newGenericType.AddTypeArgumentListArguments(
SyntaxFactory.ParseTypeName(genericType!.TypeArgumentList
.Arguments[^1].ToString()));

ãÑ

ãÑ

ãÑ

8 Dictionary<SyntaxNode, SyntaxNode> replacements = new
Dictionary<SyntaxNode, SyntaxNode>();ãÑ

9 replacements.Add(genericType!, newGenericType!);
10 replacements.Add(lambdaExpression,

newLambdaExpression!);ãÑ

11 root = root.ReplaceNodes(new List<SyntaxNode> {
genericType!, lambdaExpression }, (oldNode, _) =>
replacements[oldNode].WithTriviaFrom(oldNode));

ãÑ

ãÑ

12 return document.WithSyntaxRoot(root);
13 }
14 }

Listing 52: Creating the new generic type and new lambda expression, inserting them into
the replacements to be made in the code, and creating the new document.

In Listing 52 we can see how the newGenericType is updated with the
type of the new parameter. Next the newLambdaExpression is updated with
the new parameter, and then the foreach loop continues until all the pa-
rameters have been added.

After the foreach loop is done, we add the returntype of the newLambdaExpression
back to the list of types in the declaration of the newLambdaExpression.

After this, we create a Dictionary of the replacements we want to make
to the code. We add the type of the declaration of the newLambdaExpression,
as well as the newLambdaExpression.

Lastly, we replace the old nodes with the new ones in the root node and
return the new document.

5.3. Evaluation 117

5.3 Evaluation

To determine how well Energy Analyzer works, and how easy it is to use, we
do two types of evaluation.

We use Energy Analyzer on larger projects to determine how much en-
ergy Energy Analyzer saves as our first type of evaluation.

The second type of evaluation is usability tests, where another group of
developers use Energy Analyzer to see how easy it is to use.

5.3.1 Energy Evaluation

We use the tool on the source code of two large programs: CUP [64] and
SLY [65].

We will have three measurements:

• the default implementation,

• using only the changes provided by the code fixes, and

• all the suggestions given by Energy Analyzer being addressed.

As Energy Analyzer provides both suggestions and code fixes, the second
measurement does not address all the issues presented by Energy Analyzer,
therefore we have the third measurement where we manually address the
remaining suggestions. The changes to each of the programs can be seen in
the 3rd Party Examples Projects folder on our Gitlab repository [2].

The p-values for the results can be seen in Section A.5.
As we evaluate the benchmarks instead of using them to determine fu-

ture suggestions, we only look through the tables with results to see how
well our suggestions have worked.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Original 3.003 42.385.327 1.691.376 N/A

Code Fixes 2.516 36.006.834 1.413.389 -15,05%
All 2.530 36.072.308 1.419.435 -14,89%

Table 5.1: Table showing the elapsed time and energy measurement for each CUP, the
difference from default is with regards to package energy.

In Table 5.1 we can see the results from evaluating the CUP [64] program.
Our code fixes have cut down on energy consumption by 15%. All sugges-
tions being addressed does not cut further down on energy consumption,

5.3. Evaluation 118

however, our experience suggests that the changes that were made, which
were not already dealt with by the code fix providers, were not a large part
of the code path or were too small to give a significant difference. Another
explanation could be that the combination of the suggestions does not pro-
vide the same energy savings as individual savings does, this is discussed
in Section 8.1.2.

Benchmark Time (ms) Package Energy (µJ) DRAM Energy (µJ) Difference from Default
Original 4.631.859 63.975.830.529 2.685.393.029 N/A

Code Fixes 4.648.180 64.191.706.597 2.682.202.257 0,33%
All 4.670.993 64.332.241.757 2.691.817.790 0,56%

Table 5.2: Table showing the elapsed time and energy measurement for each Sly, the
difference from default is with regards to package energy.

In Table 5.2 we can see the results from evaluating the Sly [65] pro-
gram. The changes we have made with help from Energy Analyzer have not
changed the energy consumption significantly. Based on our experience
this is because the changes made are not a significant part of the code path
when running the benchmark we have set up, and therefore have minimal
effect on the results.

From these results, we can see that there are potential energy savings
from using Energy Analyzer, and in the worst case, no significant difference
is observed.

5.3.2 Usability Test

To test how usable Energy Analyzer is, we perform usability tests with soft-
ware developers.

We do this by asking a group of developers to use Energy Analyzer on a
program we have created and giving them instructions on what to do, so
we can observe any issues they may have.

If any issue is blocking, we need to make changes to Energy Analyzer
until it is usable, per our requirement "Should not have any blocking issues,
i.e. the developer not being able to proceed without help, with regards to
usability when tested by other developers." seen in Section 5.1.2.

Test Setup

The usability tests consist of five tasks a test subject, i.e. a developer, should
complete during the test to see if there are any usability issues, these tasks

5.3. Evaluation 119

can be seen in Section A.6.
The usability test is conducted with three student developers that have

multiple years of experience in C#, and are therefore part of our target
group.

Ideally, five developers should conduct the usability test, as they find
approximately 80% of usability issues, and the amount of usability issues
found does not increase significantly beyond five subjects [66]. However,
we conduct the usability tests with only three developers due to time con-
straints.

Besides selecting the developers to conduct the usability test with, we
also need a way to categorize the usability issues into severity categories to
prioritize how we should fix them.

We use four categories of severity: Cosmetic, Severe, Critical, and Exter-
nal, inspired by [67].

The severity levels are based on how long it takes to complete a task,
how irritated the developer gets during the task, and what the result is
compared to the expected result.

• Cosmetic: if it causes little to no irritation, or there are small differ-
ences between expected and actual results.

• Severe: if it causes medium amounts of irritation, or there are some
differences between expected and actual results.

• Critical: if it is not solved, causes large amounts of irritation, or there
are large differences between expected and actual results.

• External: if the issue is regarding a system outside our control, such
as the IDE or the Package Manager.

Test Results

During the usability test, we log what issues appear during the tests.

5.3. Evaluation 120

ID Usability Problem Severity Subject(s)
1 Counted suggestions that are not from Energy Analyzer. External 1, 2
2 Initially missed the struct suggestion. Cosmetic 1, 2, 3

3
Slight confusion at the switch suggestion spanning
the entire if statement instead of only the keyword.

Cosmetic 1, 3

4
Initially missed new suggestions appearing after code
fixing an old suggestion.

Cosmetic 1, 2

5
Did not notice which suggestions and code fixes were
from Energy Analyzer versus other plugins.

Cosmetic 1, 2, 3

6
Used some time looking for the name of Energy Analyzer
when installing NuGet package.

Cosmetic 2

7
Used a different code fix than one provided by
Energy Analyzer which created an error.

External 2

8
Slight confusion at what to do with the try-catch
suggestion, but satisfied with the suggestion.

Cosmetic 3

Table 5.3: Usability issues with the severity and which subjects had the issue.

In Table 5.3 we can see the usability issues with an associated ID, a
severity level, and which subjects had the issue.

We can see that there are only cosmetic or external issues with Energy
Analyzer, with none of the cosmetic issues blocking the usage of Energy An-
alyzer. None of the issues created significant differences from the expected
result and caused any irritation, except for the usability problem with id 7.
This problem is considered an external issue because the error occurred be-
cause of a code fix not provided by Energy Analyzer, furthermore, the issue
created an error that would be fixed by removing one line of code, meaning
it is an error that is easy to fix.

The issue with id 3 is fixed by moving the suggestion to the first if
keyword in the statement. The other cosmetic issues are not simple to fix
and therefore will be left for future work.

All of the developers were satisfied with the usability of Energy Analyzer,
meaning we consider it to have satisfied the requirement.

Chapter 6

Reflections

In this chapter we reflect on the project, to give insight into what went right
and what could be better in the future. We start by reflecting on our choice
of benchmarks. We then reflect on our implementation of Energy Analyzer.
Lastly, we reflect on our work process.

6.1 Benchmarks

We chose to research microbenchmarks and larger benchmarks to get in-
sight into how different language constructs affect programs. This has been
a good choice because we gathered information that was used for our linter:
Energy Analyzer.

Getting extra information within Lambda Expressions and Exceptions,
as well as improving our methodology for evaluation and analysis for bench-
marks has been a good choice, as that improves the suggestions in Energy
Analyzer. Knowing the reasons behind the results means we can understand
cases where the results may differ from the expected, and thereby take this
into account when creating the suggestions for Energy Analyzer.

Generalizing the microbenchmarks to larger benchmarks has also been
a good choice, as this has given extra insight into how language constructs
work in larger contexts. We have found that there are cases where results
from microbenchmarks are not directly applicable to larger programs. The
knowledge found from this has been used to improve the suggestions in
Energy Analyzer. The larger benchmarks chosen did give us insight into a
large amount of the language constructs we had, therefore they were a good
choice, however there were still some language constructs that are yet to be

121

6.2. Energy Analyzer 122

tested in larger benchmarks making this a possible place for improvement.

6.2 Energy Analyzer

We have implemented a linter called Energy Analyzer. This analyzer has
shown to improve energy consumption by up to 15% in one benchmark,
while another benchmark has shown no energy difference.

We consider Energy Analyzer to be easy to use and well implemented.
Making usability tests for Energy Analyzer has been a good choice, as that
gathered insight into how other developers would use Energy Analyzer and
if there were any major usability issues.

There were no major usability issues within our test group of three peo-
ple when using Energy Analyzer, which suggests that we have created a
usable tool.

We were surprised at how simple it was to get started with creating a
Roslyn Analyzer, however, we were also surprised at how fragile the code
was when creating a linter, as we encountered many bugs in our code. We
mitigated a lot of the bugs by utilizing test-driven development [68], which
was a good choice as our experience shows that we otherwise would have
spent months debugging our project, instead of the two weeks it took. We
recommend ourselves and future developers of linters to use more time
initially to research the APIs and workflow of creating linters, as our expe-
rience shows that this helps lessen the time it takes to debug and fix bugs.

6.3 Work Process

Our work process has worked well to keep a structure in the project, with
regards to how the work has been divided and how well we were prepared
for unforeseen consequences.

This semester we were a smaller group of three instead of six people,
which created some worry at the start of the project. Having fewer people
working on the project than in previous semesters meant we had to divide
the workload differently, which we did successfully. This is because of
our work process, as that has made it possible to keep track of everything,
including being able to keep track of tasks that need to be done, if any
difficulties occurred or if things went smoother than expected.

6.3. Work Process 123

Creating tasks that need to be done was simple, because we were three
people and that made discussions about these tasks shorter than in previous
projects with larger groups. Furthermore, having these tasks made it easy to
continue work, as we would just tell the other two people that we are done
with a task and then continue with another task without much discussion.
We used Notion [25] to keep track of the tasks, and how far we were in
the project, which we consider a good choice as that helped us keep an
overview.

Chapter 7

Conclusion

In this project, we expand on the research into the energy efficiency of C#
language constructs and how they affect the energy usage of programs [3].
We use this knowledge to create a NuGet package consisting of a linter
called Energy Analyzer [5], which is a Roslyn analyzer that helps develop-
ers by giving suggestions and code fixes to reduce the energy consumption
of their programs.

Overall we have three main contributions in this project:

1. Results from microbenchmarks regarding lambda expressions and exceptions,

2. results from generalizing the results from microbenchmarks to larger
benchmarks, and

3. a linter named Energy Analyzer that serves to decrease the energy con-
sumption of C# programs.

We improve upon our earlier method [3, p.60, p.111] in researching C#
language constructs using microbenchmarks, by adding a few steps into
our procedure of analyzing and presenting the results. These extra steps
help sanity check if our results are plausible, and help analyze the results
to understand the results.

Besides the expanded research in microbenchmarks, we use our results
from the microbenchmarks in larger benchmarks to see if the results can
be generalized into bigger programs. This is done to understand what lan-
guage constructs are the most efficient and where they might not be as
efficient as shown in the microbenchmarks. We found some interesting
results such as string interpolation is the most efficient type of concatena-

124

125

tion when only two strings are concatenated, and that for loops are more
efficient than foreach loops when the index of an array is used.

Following the larger benchmarks, we create Energy Analyzer, which
gives suggestions and code fixes based on the results found. Creating En-
ergy Analyzer was a learning experience, as we have no previous experience
creating linters. We implement a small part of Energy Analyzer, ensuring it
works before implementing the next part of Energy Analyzer, which helps
us understand how linters work.

We evaluate Energy Analyzer using both usability tests and by evaluating
the performance of larger programs. The usability tests with three develop-
ers, only find cosmetic issues and suggest that Energy Analyzer is easy to
use. We find that applying the code fixes lowers the energy consumption
by up to 15,05% energy in one benchmark, while another benchmark gets
no significant improvement.

Chapter 8

Future Work

In this chapter, we provide suggestions for future work with regards to the
benchmarks, analysis, and Energy Analyzer.

8.1 Benchmarks

There is more work to be done with regards to benchmarks of language
constructs. Specifically, more categories can be tested and in a different
way, as well as more analysis that can be done to understand the results of
the benchmarks better.

8.1.1 Categories

There are categories of language constructs that we have not tested, for
example, different ways of dealing with concurrency. Besides this, we have
found different results depending on the larger benchmarks, which means
multiple setups of each language construct could be created. For example
testing try-catch blocks versus checking for two or more things in an if
statement, or seeing the difference between a switch with 4 cases and an if
with 4 cases, using int instead of uint in a Dictionary etc.

Additional larger benchmarks could be tested to get a broader overview
of whether the effects found in microbenchmarks hold true when gener-
alized. For example, it could be useful to test a larger benchmark with
boxed datatypes, to see what the effect is compared to the results from
microbenchmarks in [3].

126

8.2. Energy Analyzer 127

8.1.2 Analysis

We found in Section 4.1.1 that garbage collection affects the results found
in benchmarks, therefore looking into this further would help create better
benchmarks and gather more accurate results.

Furthermore, analyzing if the results are the same on multiple comput-
ers, running different operating systems and with different processors, etc.
could give insight into whether the results found can be used in all cases or
if any results should be dismissed because it is not always clear-cut.

Figuring out if significant results can be found by running the bench-
marks more times would be useful, as we currently have the limitation
that if two benchmarks are within 2% of each other they are not signifi-
cantly different. This limitation is based on experience from previous re-
search [3], where any benchmark that is less than 2% more efficient than
another benchmark could be less efficient the next time the benchmarks
were run.

Lastly, it would be interesting to figure out if the energy savings always
are cumulative or if they have different effects when used together in differ-
ent ways. An example we found is that using uint in a List is less efficient
than using int in a List, which was contrary to our initial suggestions.

8.2 Energy Analyzer

With regards to our tool Energy Analyzer, different improvements can be
made, for example improving the suggestions to have a better understand-
ing of the code structure, implementing complex code fixes, creating En-
ergy Analyzer as an Integrated Development Environment (IDE) extension
instead of only a NuGet package, and utilizing semantic analysis.

8.2.1 Suggestions

If more research is done into benchmarks, the suggestions in Energy Ana-
lyzer should be adjusted accordingly. Furthermore, there are cases currently
where suggestions are made despite giving errors in the program, this is
not trivial to fix. An example is uint being suggested despite the variable
becoming negative at a later point in the program.

The errors can be mitigated by trying to create a program with the sug-
gestion implemented, seeing if there is an error and in that case, dismiss

8.2. Energy Analyzer 128

the suggestion. This would not be able to remove all errors that could occur
after implementing a suggestion, however, it could mitigate some of them.

Besides this, an easier way to implement suggestions without having an
understanding of code analysis could be interesting to work on. This could
for example be by setting up a text file that has suggestion descriptions,
language constructs to look for, and what to replace them with. However,
ensuring that these suggestions are always placed correctly is difficult.

8.2.2 Code Fixes

There are currently some code fixes that are not implemented, despite a
formal suggestion existing for it. This is because there are parts of the code
fixes that need to be implemented that are complex and are difficult to
ensure that no error is made in the code fix. Like with the suggestions, the
code fix could be applied and we can check if there is an error, and in that
case not give the code fix.

Furthermore, implementing code fixes for additional suggestions found
in the future is also important, to ensure that Energy Analyzer is up-to-date
with the latest research.

8.2.3 IDE Extension

In the future, Energy Analyzer could be both a NuGet package and an IDE
extension to cover more use cases for developers. Microsoft has documen-
tation [22] for creating a Roslyn analyzer as a NuGet package and an IDE
extension, therefore we believe that this is possible to do.

This would make it possible for developers to have Energy Analyzer an-
alyze all the projects they work on, instead of having to install Energy Ana-
lyzer to all the projects they want analyzed.

8.2.4 Semantic Analysis

Creating semantic analysis in Energy Analyzer could be useful to figure out
what language construct should be used depending on the code flow. A
step in this direction could be using Aspect-Oriented Programming [69] to
analyze the workflow of programs. An example where semantic analysis
could be an improvement, is analyzing if a program would be correct after
changing a int variable to a uint variable, as our current way of analyzing

8.3. More Tools 129

does not ensure that the int never becomes negative, and therefore chang-
ing it to uint would break the program.

8.3 More Tools

More tools can be made that can utilize the research done in this project
and in [3].

For example, a tool that automatically makes changes to a program with-
out developer input, to ensure that the most efficient language constructs
are utilized.

Another tool could be one that automatically evaluates how efficient a
program could be if the code fixes from Energy Analyzer are implemented.
This tool could be used as a test to see if a developer should bother imple-
menting the code fixes from Energy Analyzer in the places where possible.

Besides this, a tool that can automatically evaluate any program with
regards to energy consumption could be useful. The program can build
upon the research done in [3], specifically the framework CSharpRapl found
on GitLab [4].

Bibliography

[1] Lasse Stig Emil Rasmussen, Milton Kristian Lindof, and Søren Bech
Christensen. Benchmarks-P10. url: https://gitlab.com/ImDreamer/
benchmarks-p10.

[2] Søren Bech Christensen Lasse Stig Emil Rasmussen Milton Kristian
Lindof. EnergyAnalyzer. url: https://gitlab.com/ImDreamer/analyzer-
p10/-/tree/main (visited on 2022-05-10).

[3] Aleksander Øster Nielsen, Kasper Jepsen, Lasse Stig Emil Rasmussen,
Milton Kristian Lindof, Rasmus Smit Lindholt, and Søren Bech Chris-
tensen. Benchmarking C# for Energy Consumption. Aalborg University,
2022.

[4] Aleksander Øster Nielsen, Kasper Jepsen, Lasse Stig Emil Rasmussen,
Milton Kristian Lindof, Rasmus Smit Lindholt, and Søren Bech Chris-
tensen. CsharpRAPL. url: https://gitlab.com/ImDreamer/CsharpRAPL
(visited on 2022-05-23).

[5] Søren Bech Christensen Lasse Stig Emil Rasmussen Milton Kristian
Lindof. Analyzer-P10. url: https : / / www . nuget . org / packages /
EnergyAnalyzer/ (visited on 2022-05-10).

[6] Aleksander Øster Nielsen, Kasper Jepsen, Lasse Stig Emil Rasmussen,
Milton Kristian Lindof, Rasmus Smit Lindholt, and Søren Bech Chris-
tensen. CsharpRAPL. url: https://www.nuget.org/packages/CsharpRAPL/
(visited on 2022-06-08).

[7] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. “Recalibrating global data center energy-use estimates”. In:
Science 367.6481 (2020), pp. 984–986.

[8] Nicola Jones. “How to stop data centres from gobbling up the world’s
electricity”. In: Nature 561.7722 (2018), pp. 163–167.

130

https://gitlab.com/ImDreamer/benchmarks-p10
https://gitlab.com/ImDreamer/benchmarks-p10
https://gitlab.com/ImDreamer/analyzer-p10/-/tree/main
https://gitlab.com/ImDreamer/analyzer-p10/-/tree/main
https://gitlab.com/ImDreamer/CsharpRAPL
https://www.nuget.org/packages/EnergyAnalyzer/
https://www.nuget.org/packages/EnergyAnalyzer/
https://www.nuget.org/packages/CsharpRAPL/

Bibliography 131

[9] Luís Gabriel Lima, Francisco Soares-Neto, Paulo Lieuthier, Fernando
Castor, Gilberto Melfe, and João Paulo Fernandes. “Haskell in Green
Land: Analyzing the Energy Behavior of a Purely Functional Lan-
guage”. In: 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER). Vol. 1. 2016, pp. 517–528.
doi: 10.1109/SANER.2016.85.

[10] Mohit Kumar, Youhuizi Li, and Weisong Shi. “Energy consumption
in Java: An early experience”. In: 2017 Eighth International Green and
Sustainable Computing Conference (IGSC). 2017, pp. 1–8. doi: 10.1109/
IGCC.2017.8323579.

[11] Christian Bunse, Hagen Höpfner, Essam Mansour, and Suman Roy-
choudhury. “Exploring the energy consumption of data sorting algo-
rithms in embedded and mobile environments”. In: 2009 Tenth Inter-
national Conference on Mobile Data Management: Systems, Services and
Middleware. IEEE. 2009, pp. 600–607.

[12] Hesham Hassan, Ahmed Moussa, and Ibrahim Farag. “Performance
vs. Power and Energy Consumption: Impact of Coding Style and
Compiler”. In: International Journal of Advanced Computer Science and
Applications 8 (2017-12). doi: 10.14569/IJACSA.2017.081217.

[13] Stefanos Georgiou, Maria Kechagia, Panos Louridas, and Diomidis
Spinellis. “What are Your Programming Language’s Energy-Delay
Implications?” In: 2018 IEEE/ACM 15th International Conference on Min-
ing Software Repositories (MSR). 2018, pp. 303–313.

[14] Rui Pereira, Pedro Simão, Jácome Cunha, and João Saraiva. “jstanley:
Placing a green thumb on java collections”. In: 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE.
2018, pp. 856–859.

[15] Jacob Ruberg Nørhave, Casper Susgaard Nielsen, and Anne Benedicte
Abildgaard Ejsing. IDE Extension for Reasoning About Energy Consump-
tion. MA Thesis, Aalborg University, 2021.

[16] Irene Manotas, Lori Pollock, and James Clause. “SEEDS: A Software
Engineer’s Energy-Optimization Decision Support Framework”. In:
Proceedings of the 36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: Association for Computing Machin-
ery, 2014, pp. 503–514. isbn: 9781450327565. doi: 10.1145/2568225.
2568297. url: https://doi.org/10.1145/2568225.2568297.

https://doi.org/10.1109/SANER.2016.85
https://doi.org/10.1109/IGCC.2017.8323579
https://doi.org/10.1109/IGCC.2017.8323579
https://doi.org/10.14569/IJACSA.2017.081217
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/2568225.2568297

Bibliography 132

[17] Mohit Kumar, Xingzhou Zhang, Liangkai Liu, Yifan Wang, and Weisong
Shi. “Energy-Efficient Machine Learning on the Edges”. In: 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE. 2020, pp. 912–921.

[18] TIOBE. TIOBE Index for August 2021. 2021-08. url: https://www.
tiobe.com/tiobe-index/ (visited on 2022-02-09).

[19] Testim. What Is a Linter? Here’s a Definition and Quick-Start Guide. 2021-
06-18. url: https://www.testim.io/blog/what- is- a- linter-
heres-a-definition-and-quick-start-guide/ (visited on 2022-03-
04).

[20] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan.
“What do programmers know about the energy consumption of soft-
ware?” In: PeerJ PrePrints 3 (2015), e886v2.

[21] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jas-
pan, Caitlin Sadowski, Lori Pollock, and James Clause. “An empirical
study of practitioners’ perspectives on green software engineering”.
In: 2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE). IEEE. 2016, pp. 237–248.

[22] Microsoft. Overview of source code analysis. url: https://docs.microsoft.
com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?
view=vs-2022 (visited on 2022-02-23).

[23] Microsoft. Tutorial: Write your first analyzer and code fix. url: https:
/ / docs . microsoft . com / en - us / dotnet / csharp / roslyn - sdk /
tutorials / how - to - write - csharp - analyzer - code - fix # write -
the-code-fix (visited on 2022-05-06).

[24] Ian Sommerville. Software engineering. Harlow Singapore: Pearson,
2016. isbn: 1-292-09613-6.

[25] Inc Notion Labs. Notion. 2022. url: https://www.notion.so (visited
on 2022-02-01).

[26] GitLab. GitLab. url: https://gitlab.com/ (visited on 2022-02-01).

[27] Mohit Kumar. Improving Energy Consumption of Java Programs. Wayne
State University, 2019.

[28] Guang Wei, Depei Qian, Hailong Yang, Zhongzhi Luan, and Lin Wang.
“FPowerTool: A Function-Level Power Profiling Tool”. In: IEEE Access
7 (2019), pp. 185710–185719. doi: 10.1109/ACCESS.2019.2961507.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide/
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide/
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix#write-the-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix#write-the-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix#write-the-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix#write-the-code-fix
https://www.notion.so
https://gitlab.com/
https://doi.org/10.1109/ACCESS.2019.2961507

Bibliography 133

[29] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan.
“Estimating mobile application energy consumption using program
analysis”. In: 2013 35th International Conference on Software Engineering
(ICSE). 2013, pp. 92–101. doi: 10.1109/ICSE.2013.6606555.

[30] Marco Couto, João Saraiva, and João Paulo Fernandes. “Energy Refac-
torings for Android in the Large and in the Wild”. In: 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER). 2020, pp. 217–228. doi: 10.1109/SANER48275.2020.
9054858.

[31] Jóakim von Kistowski, Jeremy Arnold, Karl Huppler, Klaus-Dieter
Lange, John Henning, and Paul Cao. “How to Build a Benchmark”. In:
ICPE 2015 - Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering (2015-02). doi: 10.1145/2668930.2688819.

[32] Noah Gibbs. Microbenchmarks vs Macrobenchmarks (i.e. What’s a Mi-
crobenchmark?) 2019. url: https : / / engineering . appfolio . com /
appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-
ie-whats-a-microbenchmark (visited on 2022-02-09).

[33] Peter Sestoft. “Microbenchmarks in Java and C#”. In: Lecture Notes,
September (2013).

[34] Stan Brown. “How big a sample do I need?” In: Brownmath (2013).

[35] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
software engineering 14.2 (2009), pp. 131–164.

[36] Roger-luo. Reproducible benchmarking in Linux-based environments. 2021-
05-19. url: https://github.com/JuliaCI/BenchmarkTools.jl/blob/
863c514f559cab04a05315e84868183fbfa8758d/docs/src/linuxtips.
md (visited on 2022-02-09).

[37] Dr. Saul McLeod. What a p-value tells you about statistical significance.
2019. url: https://www.simplypsychology.org/p-value.html (vis-
ited on 2022-02-09).

[38] Intel. Intel® Xeon® W-1250P Processor. url: https://ark.intel.com/
content/www/us/en/ark/products/199340/intel-xeon-w1250p-
processor-12m-cache-4-10-ghz.html (visited on 2022-02-09).

[39] Rosetta Code. Rosetta Code. url: http://rosettacode.org/wiki/
Rosetta_Code (visited on 2022-02-28).

https://doi.org/10.1109/ICSE.2013.6606555
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1145/2668930.2688819
https://engineering.appfolio.com/appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark
https://engineering.appfolio.com/appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark
https://engineering.appfolio.com/appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark
https://github.com/JuliaCI/BenchmarkTools.jl/blob/863c514f559cab04a05315e84868183fbfa8758d/docs/src/linuxtips.md
https://github.com/JuliaCI/BenchmarkTools.jl/blob/863c514f559cab04a05315e84868183fbfa8758d/docs/src/linuxtips.md
https://github.com/JuliaCI/BenchmarkTools.jl/blob/863c514f559cab04a05315e84868183fbfa8758d/docs/src/linuxtips.md
https://www.simplypsychology.org/p-value.html
https://ark.intel.com/content/www/us/en/ark/products/199340/intel-xeon-w1250p-processor-12m-cache-4-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199340/intel-xeon-w1250p-processor-12m-cache-4-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199340/intel-xeon-w1250p-processor-12m-cache-4-10-ghz.html
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Rosetta_Code

Bibliography 134

[40] The Computer Language Benchmarks Game. The Computer Language
Benchmarks Game. url: https://benchmarksgame-team.pages.debian.
net/benchmarksgame/index.html (visited on 2022-03-03).

[41] Rosetta Code. 2048. url: http://rosettacode.org/wiki/2048 (vis-
ited on 2022-02-28).

[42] Rosetta Code. 21 game. url: http://rosettacode.org/wiki/21_game
(visited on 2022-02-28).

[43] Rosetta Code. 4-rings or 4-squares puzzle. url: http://rosettacode.
org/wiki/4-rings_or_4-squares_puzzle (visited on 2022-02-28).

[44] Rosetta Code. 99 bottles of beer. url: http://rosettacode.org/wiki/
99_bottles_of_beer (visited on 2022-02-28).

[45] Rosetta Code. Determine if a string has all the same characters. url: http:
//rosettacode.org/wiki/Determine_if_a_string_has_all_the_
same_characters (visited on 2022-02-28).

[46] Rosetta Code. Dijkstra’s algorithm. url: http://rosettacode.org/
wiki/Dijkstra’s_algorithm (visited on 2022-02-28).

[47] Rosetta Code. Happy numbers. url: http://rosettacode.org/wiki/
Happy_numbers (visited on 2022-02-28).

[48] Rosetta Code. Introspection. url: https://rosettacode.org/wiki/
Introspection (visited on 2022-03-01).

[49] Rosetta Code. World Cup group stage. url: http://rosettacode.org/
wiki/World_Cup_group_stage (visited on 2022-02-28).

[50] Bartosz and Yoh Deadfall. PowerUp. url: https://rat.dev/badamczewski/
PowerUp.

[51] Microsoft. Func<T,TResult> Delegate. url: https://docs.microsoft.
com/en-us/dotnet/api/system.func-2?view=net-6.0 (visited on
2022-02-14).

[52] Microsoft. Action<T> Delegate. url: https://docs.microsoft.com/
en-us/dotnet/api/system.action-1?view=net-6.0 (visited on
2022-02-14).

[53] Microsoft. Delegates (C# Programming Guide). url: https : / / docs .
microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
(visited on 2022-02-14).

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
http://rosettacode.org/wiki/2048
http://rosettacode.org/wiki/21_game
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
http://rosettacode.org/wiki/99_bottles_of_beer
http://rosettacode.org/wiki/99_bottles_of_beer
http://rosettacode.org/wiki/Determine_if_a_string_has_all_the_same_characters
http://rosettacode.org/wiki/Determine_if_a_string_has_all_the_same_characters
http://rosettacode.org/wiki/Determine_if_a_string_has_all_the_same_characters
http://rosettacode.org/wiki/Dijkstra's_algorithm
http://rosettacode.org/wiki/Dijkstra's_algorithm
http://rosettacode.org/wiki/Happy_numbers
http://rosettacode.org/wiki/Happy_numbers
https://rosettacode.org/wiki/Introspection
https://rosettacode.org/wiki/Introspection
http://rosettacode.org/wiki/World_Cup_group_stage
http://rosettacode.org/wiki/World_Cup_group_stage
https://rat.dev/badamczewski/PowerUp
https://rat.dev/badamczewski/PowerUp
https://docs.microsoft.com/en-us/dotnet/api/system.func-2?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.func-2?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/

Bibliography 135

[54] Microsoft. GC.TryStartNoGCRegion Method. url: https://docs.microsoft.
com/en-us/dotnet/api/system.gc.trystartnogcregion?redirectedfrom=
MSDN&view=net-6.0#overloads (visited on 2022-02-15).

[55] Microsoft. GC.EndNoGCRegion Method. url: https://docs.microsoft.
com/en-us/dotnet/api/system.gc.endnogcregion?redirectedfrom=
MSDN&view=net-6.0#System_GC_EndNoGCRegion (visited on 2022-02-
15).

[56] Microsoft. Lambda expressions (C# reference). url: https://docs.microsoft.
com/en-us/dotnet/csharp/language-reference/operators/lambda-
expressions (visited on 2022-02-14).

[57] Microsoft. Exception Class. url: https://docs.microsoft.com/en-
us/dotnet/api/system.exception?view=net-6.0 (visited on 2021-
02-14).

[58] Microsoft. ArgumentException Class. url: https://docs.microsoft.
com/en-us/dotnet/api/system.argumentexception?view=net-6.0
(visited on 2021-02-14).

[59] Microsoft. DivideByZeroException Class. url: https://docs.microsoft.
com/en-us/dotnet/api/system.dividebyzeroexception?view=net-
6.0 (visited on 2021-02-14).

[60] Manish Vasani, Tom Meschter, Leonid Tsarev, and Allison Chou. An-
alyzer Samples.md. url: https://github.com/dotnet/roslyn/blob/
main/docs/analyzers/Analyzer%20Samples.md (visited on 2022-03-
22).

[61] David Benyon. Designing interactive systems: A comprehensive guide to
HCI, UX and interaction design. Pearson Edinburgh, 2014. isbn: 978-1-
4479-2011-3.

[62] Microsoft. Tutorial: Write your first analyzer and code fix. url: https:
/ / docs . microsoft . com / en - us / dotnet / csharp / roslyn - sdk /
tutorials/how-to-write-csharp-analyzer-code-fix (visited on
2022-05-06).

[63] Codingvila. C# Code Analysis Using Roslyn Syntax Trivia. url: https:
//www.codingvila.com/2021/04/csharp-code-analysis-using-
roslyn-syntax-trivia.html (visited on 2022-04-22).

[64] Jacob Anderson. CUP. url: https://github.com/BeyondOrdinary/
CUP (visited on 2022-05-10).

https://docs.microsoft.com/en-us/dotnet/api/system.gc.trystartnogcregion?redirectedfrom=MSDN&view=net-6.0#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.gc.trystartnogcregion?redirectedfrom=MSDN&view=net-6.0#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.gc.trystartnogcregion?redirectedfrom=MSDN&view=net-6.0#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.gc.endnogcregion?redirectedfrom=MSDN&view=net-6.0#System_GC_EndNoGCRegion
https://docs.microsoft.com/en-us/dotnet/api/system.gc.endnogcregion?redirectedfrom=MSDN&view=net-6.0#System_GC_EndNoGCRegion
https://docs.microsoft.com/en-us/dotnet/api/system.gc.endnogcregion?redirectedfrom=MSDN&view=net-6.0#System_GC_EndNoGCRegion
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.argumentexception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.argumentexception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception?view=net-6.0
https://github.com/dotnet/roslyn/blob/main/docs/analyzers/Analyzer%20Samples.md
https://github.com/dotnet/roslyn/blob/main/docs/analyzers/Analyzer%20Samples.md
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix
https://www.codingvila.com/2021/04/csharp-code-analysis-using-roslyn-syntax-trivia.html
https://www.codingvila.com/2021/04/csharp-code-analysis-using-roslyn-syntax-trivia.html
https://www.codingvila.com/2021/04/csharp-code-analysis-using-roslyn-syntax-trivia.html
https://github.com/BeyondOrdinary/CUP
https://github.com/BeyondOrdinary/CUP

Bibliography 136

[65] Olivier Duhart et al. csly. url: https://github.com/b3b00/csly
(visited on 2022-05-10).

[66] Jakob Nielsen. Why You Only Need to Test with 5 Users. 2000-03-18. url:
https://www.nngroup.com/articles/why-you-only-need-to-test-
with-5-users/ (visited on 2020-11-04).

[67] Svetomir Kurtev, Tommy Aagaard Christensen, and Bent Thomsen.
“Discount method for programming language evaluation”. In: Pro-
ceedings of the 7th International Workshop on Evaluation and Usability of
Programming Languages and Tools. 2016, pp. 1–8.

[68] Thomas Hamilton. What is Test Driven Development (TDD)? Tutorial
with Example. 2022-04-30. url: https : / / www . guru99 . com / test -
driven-development.html (visited on 2022-05-30).

[69] Gregor Kiczales. “Aspect-oriented programming”. In: ACM Comput-
ing Surveys (CSUR) 28.4es (1996), 154–es.

https://github.com/b3b00/csly
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.guru99.com/test-driven-development.html
https://www.guru99.com/test-driven-development.html

Appendix A

Appendix

A.1 P-values for Microbenchmarks

A.1.1 Lambda Expressions Outside Loop

Elapsed Time
p-Values

Lambda Lambda Closure Lambda Action Lambda Parameter Lambda Delegate

Lambda - <0,05 <0,05 <0,05 <0,05
Lambda Closure <0,05 - 0,877 0,724 <0,05
Lambda Action <0,05 0,877 - 0,831 <0,05

Lambda Parameter <0,05 0,724 0,831 - <0,05
Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.1: Table showing the p-values for the group Lambda Expression with regards to
Elapsed Time.

Package Energy
p-Values

Lambda Lambda Closure Lambda Action Lambda Parameter Lambda Delegate

Lambda - <0,05 <0,05 <0,05 <0,05
Lambda Closure <0,05 - <0,05 <0,05 <0,05
Lambda Action <0,05 <0,05 - <0,05 <0,05

Lambda Parameter <0,05 <0,05 <0,05 - <0,05
Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.2: Table showing the p-values for the group Lambda Expression with regards to
Package Energy.

137

A.1. P-values for Microbenchmarks 138

DRAM Energy
p-Values

Lambda Lambda Closure Lambda Action Lambda Parameter Lambda Delegate

Lambda - <0,05 <0,05 <0,05 <0,05
Lambda Closure <0,05 - 0,781 0,430 <0,05
Lambda Action <0,05 0,781 - 0,468 <0,05

Lambda Parameter <0,05 0,430 0,468 - <0,05
Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.3: Table showing the p-values for the group Lambda Expression with regards to
DRAM Energy.

A.1.2 Lambda Expressions Inside Loop

Elapsed Time
p-Values

Inside Loop Lambda Inside Loop Lambda Closure Inside Loop Lambda Action Inside Loop Lambda Parameter Inside Loop Lambda Delegate

Inside Loop Lambda - <0,05 <0,05 <0,05 <0,05
Inside Loop Lambda Closure <0,05 - <0,05 <0,05 <0,05
Inside Loop Lambda Action <0,05 <0,05 - <0,05 <0,05

Inside Loop Lambda Parameter <0,05 <0,05 <0,05 - <0,05
Inside Loop Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.4: Table showing the p-values for the group Lambda Expression Inside Loop with
regards to Elapsed Time.

Package Energy
p-Values

Inside Loop Lambda Inside Loop Lambda Closure Inside Loop Lambda Action Inside Loop Lambda Parameter Inside Loop Lambda Delegate

Inside Loop Lambda - <0,05 <0,05 0,355 <0,05
Inside Loop Lambda Closure <0,05 - <0,05 <0,05 <0,05
Inside Loop Lambda Action <0,05 <0,05 - <0,05 <0,05

Inside Loop Lambda Parameter 0,355 <0,05 <0,05 - <0,05
Inside Loop Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.5: Table showing the p-values for the group Lambda Expression Inside Loop with
regards to Package Energy.

DRAM Energy
p-Values

Inside Loop Lambda Inside Loop Lambda Closure Inside Loop Lambda Action Inside Loop Lambda Parameter Inside Loop Lambda Delegate

Inside Loop Lambda - <0,05 <0,05 <0,05 <0,05
Inside Loop Lambda Closure <0,05 - 0,330 <0,05 <0,05
Inside Loop Lambda Action <0,05 0,330 - <0,05 <0,05

Inside Loop Lambda Parameter <0,05 <0,05 <0,05 - <0,05
Inside Loop Lambda Delegate <0,05 <0,05 <0,05 <0,05 -

Table A.6: Table showing the p-values for the group Lambda Expression Inside Loop with
regards to DRAM Energy.

A.1.3 Throwing and Catching Exceptions

Elapsed Time
p-Values

Cached Argument Exception Cached Divide by Zero Exception Cached Exception New Argument Exception New Divide by Zero Exception New Exception Throw Cached Argument Exception Throw Cached Divide by Zero Exception Throw Cached Exception Throw New Argument Exception Throw New Divide by Zero Exception Throw New Exception

Cached Argument Exception - 0,875 <0,05 <0,05 <0,05 0,520 <0,05 0,154 <0,05 <0,05 <0,05 0,412
Cached Divide by Zero Exception 0,875 - <0,05 <0,05 <0,05 0,292 <0,05 0,123 <0,05 <0,05 <0,05 0,239

Cached Exception <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 0,190 <0,05 <0,05 <0,05
New Argument Exception <0,05 <0,05 <0,05 - 0,166 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05

New Divide by Zero Exception <0,05 <0,05 <0,05 0,166 - <0,05 <0,05 <0,05 <0,05 0,296 0,216 <0,05
New Exception 0,520 0,292 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 0,483

Throw Cached Argument Exception <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 - 0,157 <0,05 <0,05 <0,05 <0,05
Throw Cached Divide by Zero Exception 0,154 0,123 <0,05 <0,05 <0,05 <0,05 0,157 - <0,05 <0,05 <0,05 <0,05

Throw Cached Exception <0,05 <0,05 0,190 <0,05 <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05
Throw New Argument Exception <0,05 <0,05 <0,05 <0,05 0,296 <0,05 <0,05 <0,05 <0,05 - 0,940 <0,05

Throw New Divide by Zero Exception <0,05 <0,05 <0,05 <0,05 0,216 <0,05 <0,05 <0,05 <0,05 0,940 - <0,05
Throw New Exception 0,412 0,239 <0,05 <0,05 <0,05 0,483 <0,05 <0,05 <0,05 <0,05 <0,05 -

Table A.7: Table showing the p-values for the group Exception with regards to Elapsed
Time.

A.1. P-values for Microbenchmarks 139

Package Energy
p-Values

Cached Argument Exception Cached Divide by Zero Exception Cached Exception New Argument Exception New Divide by Zero Exception New Exception Throw Cached Argument Exception Throw Cached Divide by Zero Exception Throw Cached Exception Throw New Argument Exception Throw New Divide by Zero Exception Throw New Exception

Cached Argument Exception - <0,05 <0,05 <0,05 <0,05 0,258 0,109 0,080 <0,05 <0,05 <0,05 0,433
Cached Divide by Zero Exception <0,05 - 0,129 <0,05 <0,05 <0,05 0,468 0,472 <0,05 <0,05 <0,05 0,071

Cached Exception <0,05 0,129 - <0,05 <0,05 <0,05 <0,05 <0,05 0,347 <0,05 <0,05 <0,05
New Argument Exception <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05

New Divide by Zero Exception <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 0,683 0,124 <0,05
New Exception 0,258 <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 0,065

Throw Cached Argument Exception 0,109 0,468 <0,05 <0,05 <0,05 <0,05 - 0,959 <0,05 <0,05 <0,05 0,343
Throw Cached Divide by Zero Exception 0,080 0,472 <0,05 <0,05 <0,05 <0,05 0,959 - <0,05 <0,05 <0,05 0,218

Throw Cached Exception <0,05 <0,05 0,347 <0,05 <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05
Throw New Argument Exception <0,05 <0,05 <0,05 <0,05 0,683 <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05

Throw New Divide by Zero Exception <0,05 <0,05 <0,05 <0,05 0,124 <0,05 <0,05 <0,05 <0,05 <0,05 - <0,05
Throw New Exception 0,433 0,071 <0,05 <0,05 <0,05 0,065 0,343 0,218 <0,05 <0,05 <0,05 -

Table A.8: Table showing the p-values for the group Exception with regards to Package
Energy.

DRAM Energy
p-Values

Cached Argument Exception Cached Divide by Zero Exception Cached Exception New Argument Exception New Divide by Zero Exception New Exception Throw Cached Argument Exception Throw Cached Divide by Zero Exception Throw Cached Exception Throw New Argument Exception Throw New Divide by Zero Exception Throw New Exception

Cached Argument Exception - 0,513 <0,05 <0,05 <0,05 0,715 <0,05 <0,05 <0,05 <0,05 <0,05 0,905
Cached Divide by Zero Exception 0,513 - <0,05 <0,05 <0,05 0,549 <0,05 0,080 <0,05 <0,05 <0,05 0,484

Cached Exception <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 0,100 <0,05 <0,05 <0,05
New Argument Exception <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05

New Divide by Zero Exception <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 0,955 0,989 <0,05
New Exception 0,715 0,549 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05 <0,05 <0,05 0,745

Throw Cached Argument Exception <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 - 0,095 <0,05 <0,05 <0,05 <0,05
Throw Cached Divide by Zero Exception <0,05 0,080 <0,05 <0,05 <0,05 <0,05 0,095 - <0,05 <0,05 <0,05 <0,05

Throw Cached Exception <0,05 <0,05 0,100 <0,05 <0,05 <0,05 <0,05 <0,05 - <0,05 <0,05 <0,05
Throw New Argument Exception <0,05 <0,05 <0,05 <0,05 0,955 <0,05 <0,05 <0,05 <0,05 - 0,927 <0,05

Throw New Divide by Zero Exception <0,05 <0,05 <0,05 <0,05 0,989 <0,05 <0,05 <0,05 <0,05 0,927 - <0,05
Throw New Exception 0,905 0,484 <0,05 <0,05 <0,05 0,745 <0,05 <0,05 <0,05 <0,05 <0,05 -

Table A.9: Table showing the p-values for the group Exception with regards to DRAM
Energy.

A.1.4 Exception Creation

Elapsed Time
p-Values

Create Argument Exception Create Divide by Zero Exception Create Exception

Create Argument Exception - <0,05 <0,05
Create Divide by Zero Exception <0,05 - <0,05

Create Exception <0,05 <0,05 -

Table A.10: Table showing the p-values for the group Exception Creation with regards to
Elapsed Time.

Package Energy
p-Values

Create Argument Exception Create Divide by Zero Exception Create Exception

Create Argument Exception - <0,05 <0,05
Create Divide by Zero Exception <0,05 - <0,05

Create Exception <0,05 <0,05 -

Table A.11: Table showing the p-values for the group Exception Creation with regards to
Package Energy.

DRAM Energy
p-Values

Create Argument Exception Create Divide by Zero Exception Create Exception

Create Argument Exception - <0,05 <0,05
Create Divide by Zero Exception <0,05 - <0,05

Create Exception <0,05 <0,05 -

Table A.12: Table showing the p-values for the group Exception Creation with regards to
DRAM Energy.

A.2. Larger Benchmark Changes 140

A.2 Larger Benchmark Changes

The changes made to the larger benchmarks have been summarized to the
following list.

• uint variables should replace other integer variables when possible.

• If uint is not possible, ulong should be used.

• If unsigned integers are not possible, int, nint or long should be
used.

• double should replace other types of decimal types.

• parameters should replace other types of variables when possible.

• If parameters can not be used local variables should replace instance
and static variables when possible.

• If parameters and local variables can not be used, static variables
should be used when possible.

• if statements should be replaced with switch statements when pos-
sible.

• foreach loops should be used when elements in a collection is gone
through.

• LINQ should be replaced when possible.

• array should replace any type of list if possible.

• If array is not possible, List should replace any type of list if possi-
ble.

• HashSet should replace any type of set when possible.

• Dictionary should replace any type of table when possible.

• Replace occurences of string concatenation with StringBuilder or
string interpolation.

• Replace boxed integer datatypes with unboxed integer datatypes when
possible.

A.2. Larger Benchmark Changes 141

• If replacing boxed datatypes with unboxed datatypes is not possible,
use boxed uint if possible.

• If using boxed uint is not possible, use boxed ulong if possible.

• If using boxed ulong is not possible, use boxed int or long if possible.

• Replace all boxed floating point datatypes with the unboxed double
datatype if possible.

• Replace boxed boolean datatypes with unboxed boolean datatypes if
possible.

• Replace reflection with other types of invocation when possible.

• If replacing reflection is not possible, wrap reflection in delegates
if possible.

• Replace classes and records with structs, if creating objects and
invoking methods is the most prevalent.

• Replace structs with classes if accessing fields is the most prevalent.

• Remove try-catch blocks if possible.

• Replace exceptions with if statements when possible.

• Avoid using variables outside the lambda expression when possible.

• Replace ArgumentException and DivideByZeroException with Exception
when possible.

• Reuse exceptions if thrown more than once.

A.2.1 Batches

The different batches of changes are divided into, and each of these batches
is tested individually to see the impact each of them has.

A.2. Larger Benchmark Changes 142

Datatypes

• uint variables should replace other integer variables when possible.

• If uint is not possible, ulong should be used.

• If unsigned integers are not possible, int, nint or long should be
used.

• double should replace other types of decimal types.

• parameters should replace other types of variables when possible.

• If parameters can not be used local variables should replace instance
and static variables when possible.

• If parameters and local variables can not be used, static variables
should be used when possible.

• Replace occurences of string concatenation with StringBuilder or
string interpolation.

• Replace boxed integer datatypes with unboxed integer datatypes when
possible.

• If replacing boxed datatypes with unboxed datatypes is not possible,
use boxed uint if possible.

• If using boxed uint is not possible, use boxed ulong if possible.

• If using boxed ulong is not possible, use boxed int or long if possible.

• Replace all boxed floating point datatypes with the unboxed double
datatype if possible.

• Replace boxed boolean datatypes with unboxed boolean datatypes if
possible.

Selection

• if statements should be replaced with switch statements when pos-
sible.

A.2. Larger Benchmark Changes 143

Loops

• foreach loops should be used when elements in a collection is gone
through.

LINQ

• LINQ should be replaced when possible.

Collections

• array should replace any type of list if possible.

• If array is not possible, List should replace any type of list if possi-
ble.

• HashSet should replace any type of set when possible.

• Dictionary should replace any type of table when possible.

Invocation

• Replace reflection with other types of invocation when possible.

• If replacing reflection is not possible, wrap reflection in delegates
if possible.

• Avoid using variables outside the lambda expression when possible.

Objects

• Replace classes and records with structs, if creating objects and
invoking methods is the most prevalent.

• Replace structs with classes if accessing fields is the most prevalent.

Exceptions

• Remove try-catch blocks if possible.

• Replace exceptions with if statements when possible.

• Replace ArgumentException and DivideByZeroException with Exception
when possible.

A.3. P-values for the larger benchmarks 144

• Reuse exceptions if thrown more than once.

A.3 P-values for the larger benchmarks

A.3.1 2048

Elapsed Time
p-Values

All 2048 Data Type 2048 Default 2048 Foreach 2048 Object 2048 Switch 2048

All 2048 - 0,512 <0,05 <0,05 0,160 <0,05
Data Type 2048 0,512 - <0,05 0,492 0,053 <0,05

Default 2048 <0,05 <0,05 - 0,152 0,801 0,097
Foreach 2048 <0,05 0,492 0,152 - 0,387 <0,05
Object 2048 0,160 0,053 0,801 0,387 - 0,136
Switch 2048 <0,05 <0,05 0,097 <0,05 0,136 -

Table A.13: Table showing the p-values for the group 2048 with regards to Elapsed Time.

Package Energy
p-Values

All 2048 Data Type 2048 Default 2048 Foreach 2048 Object 2048 Switch 2048

All 2048 - 0,472 0,645 0,782 0,155 <0,05
Data Type 2048 0,472 - 0,179 0,313 <0,05 <0,05

Default 2048 0,645 0,179 - 0,838 0,127 <0,05
Foreach 2048 0,782 0,313 0,838 - 0,161 <0,05
Object 2048 0,155 <0,05 0,127 0,161 - 0,176
Switch 2048 <0,05 <0,05 <0,05 <0,05 0,176 -

Table A.14: Table showing the p-values for the group 2048 with regards to Package Energy.

DRAM Energy
p-Values

All 2048 Data Type 2048 Default 2048 Foreach 2048 Object 2048 Switch 2048

All 2048 - 0,363 <0,05 <0,05 0,095 <0,05
Data Type 2048 0,363 - <0,05 0,549 <0,05 <0,05

Default 2048 <0,05 <0,05 - 0,125 0,676 0,077
Foreach 2048 <0,05 0,549 0,125 - 0,270 <0,05
Object 2048 0,095 <0,05 0,676 0,270 - 0,180
Switch 2048 <0,05 <0,05 0,077 <0,05 0,180 -

Table A.15: Table showing the p-values for the group 2048 with regards to DRAM Energy.

A.3. P-values for the larger benchmarks 145

A.3.2 21

Elapsed Time
p-Values

All 21 Datatype 21 Default 21 Exception 21 Switch 21

All 21 - 0,497 <0,05 <0,05 <0,05
Datatype 21 0,497 - <0,05 <0,05 <0,05
Default 21 <0,05 <0,05 - 0,317 <0,05

Exception 21 <0,05 <0,05 0,317 - <0,05
Switch 21 <0,05 <0,05 <0,05 <0,05 -

Table A.16: Table showing the p-values for the group 21 with regards to Elapsed Time.

Package Energy
p-Values

All 21 Datatype 21 Default 21 Exception 21 Switch 21

All 21 - <0,05 <0,05 <0,05 <0,05
Datatype 21 <0,05 - <0,05 <0,05 <0,05
Default 21 <0,05 <0,05 - <0,05 0,689

Exception 21 <0,05 <0,05 <0,05 - 0,489
Switch 21 <0,05 <0,05 0,689 0,489 -

Table A.17: Table showing the p-values for the group 21 with regards to Package Energy.

DRAM Energy
p-Values

All 21 Datatype 21 Default 21 Exception 21 Switch 21

All 21 - 0,744 <0,05 <0,05 <0,05
Datatype 21 0,744 - <0,05 <0,05 <0,05
Default 21 <0,05 <0,05 - 0,139 <0,05

Exception 21 <0,05 <0,05 0,139 - <0,05
Switch 21 <0,05 <0,05 <0,05 <0,05 -

Table A.18: Table showing the p-values for the group 21 with regards to DRAM Energy.

A.3. P-values for the larger benchmarks 146

A.3.3 4-Rings or 4-Squares Puzzle

Elapsed Time
p-Values

All Four Squares Data Type Four Squares Default Four Squares LINQ Four Squares

All Four Squares - <0,05 <0,05 <0,05
Data Type Four Squares <0,05 - <0,05 <0,05

Default Four Squares <0,05 <0,05 - <0,05
LINQ Four Squares <0,05 <0,05 <0,05 -

Table A.19: Table showing the p-values for the group Four Squares with regards to Elapsed
Time.

Package Energy
p-Values

All Four Squares Data Type Four Squares Default Four Squares LINQ Four Squares

All Four Squares - <0,05 <0,05 <0,05
Data Type Four Squares <0,05 - <0,05 <0,05

Default Four Squares <0,05 <0,05 - <0,05
LINQ Four Squares <0,05 <0,05 <0,05 -

Table A.20: Table showing the p-values for the group Four Squares with regards to Package
Energy.

DRAM Energy
p-Values

All Four Squares Data Type Four Squares Default Four Squares LINQ Four Squares

All Four Squares - <0,05 <0,05 0,103
Data Type Four Squares <0,05 - <0,05 <0,05

Default Four Squares <0,05 <0,05 - <0,05
LINQ Four Squares 0,103 <0,05 <0,05 -

Table A.21: Table showing the p-values for the group Four Squares with regards to DRAM
Energy.

A.3.4 99 Bottles of Beer

Elapsed Time
p-Values

All 99 Bottles of Beer Data Type 99 Bottles of Beer Default 99 Bottles of Beer Invocation 99 Bottles of Beer

All 99 Bottles of Beer - <0,05 <0,05 <0,05
Data Type 99 Bottles of Beer <0,05 - <0,05 <0,05

Default 99 Bottles of Beer <0,05 <0,05 - <0,05
Invocation 99 Bottles of Beer <0,05 <0,05 <0,05 -

Table A.22: Table showing the p-values for the group 99 Bottles of Beer with regards to
Elapsed Time.

A.3. P-values for the larger benchmarks 147

Package Energy
p-Values

All 99 Bottles of Beer Data Type 99 Bottles of Beer Default 99 Bottles of Beer Invocation 99 Bottles of Beer

All 99 Bottles of Beer - <0,05 <0,05 <0,05
Data Type 99 Bottles of Beer <0,05 - <0,05 <0,05

Default 99 Bottles of Beer <0,05 <0,05 - 0,974
Invocation 99 Bottles of Beer <0,05 <0,05 0,974 -

Table A.23: Table showing the p-values for the group 99 Bottles of Beer with regards to
Package Energy.

DRAM Energy
p-Values

All 99 Bottles of Beer Data Type 99 Bottles of Beer Default 99 Bottles of Beer Invocation 99 Bottles of Beer

All 99 Bottles of Beer - <0,05 <0,05 <0,05
Data Type 99 Bottles of Beer <0,05 - <0,05 <0,05

Default 99 Bottles of Beer <0,05 <0,05 - <0,05
Invocation 99 Bottles of Beer <0,05 <0,05 <0,05 -

Table A.24: Table showing the p-values for the group 99 Bottles of Beer with regards to
DRAM Energy.

A.3.5 Determine if a String has All the Same Characters

Elapsed Time
p-Values

All Equal Strings Data Type Equal Strings Default Equal Strings For Each Equal Strings

All Equal Strings - <0,05 <0,05 <0,05
Data Type Equal Strings <0,05 - <0,05 <0,05

Default Equal Strings <0,05 <0,05 - <0,05
For Each Equal Strings <0,05 <0,05 <0,05 -

Table A.25: Table showing the p-values for the group Equal Strings with regards to Elapsed
Time.

Package Energy
p-Values

All Equal Strings Data Type Equal Strings Default Equal Strings For Each Equal Strings

All Equal Strings - <0,05 <0,05 <0,05
Data Type Equal Strings <0,05 - <0,05 <0,05

Default Equal Strings <0,05 <0,05 - <0,05
For Each Equal Strings <0,05 <0,05 <0,05 -

Table A.26: Table showing the p-values for the group Equal Strings with regards to Package
Energy.

DRAM Energy
p-Values

All Equal Strings Data Type Equal Strings Default Equal Strings For Each Equal Strings

All Equal Strings - <0,05 <0,05 <0,05
Data Type Equal Strings <0,05 - <0,05 <0,05

Default Equal Strings <0,05 <0,05 - <0,05
For Each Equal Strings <0,05 <0,05 <0,05 -

Table A.27: Table showing the p-values for the group Equal Strings with regards to DRAM
Energy.

A.3. P-values for the larger benchmarks 148

A.3.6 Dijkstra’s Algorithm

Elapsed Time
p-Values

All Dijkstra Collections Dijkstra Data Type Dijkstra Default Dijkstra LINQ Dijkstra Objects Dijkstra

All Dijkstra - <0,05 <0,05 <0,05 <0,05 <0,05
Collections Dijkstra <0,05 - <0,05 <0,05 <0,05 <0,05
Data Type Dijkstra <0,05 <0,05 - <0,05 <0,05 <0,05

Default Dijkstra <0,05 <0,05 <0,05 - <0,05 <0,05
LINQ Dijkstra <0,05 <0,05 <0,05 <0,05 - <0,05

Objects Dijkstra <0,05 <0,05 <0,05 <0,05 <0,05 -

Table A.28: Table showing the p-values for the group Dijkstra with regards to Elapsed
Time.

Package Energy
p-Values

All Dijkstra Collections Dijkstra Data Type Dijkstra Default Dijkstra LINQ Dijkstra Objects Dijkstra

All Dijkstra - <0,05 <0,05 <0,05 <0,05 <0,05
Collections Dijkstra <0,05 - <0,05 <0,05 <0,05 <0,05
Data Type Dijkstra <0,05 <0,05 - <0,05 <0,05 <0,05

Default Dijkstra <0,05 <0,05 <0,05 - <0,05 <0,05
LINQ Dijkstra <0,05 <0,05 <0,05 <0,05 - <0,05

Objects Dijkstra <0,05 <0,05 <0,05 <0,05 <0,05 -

Table A.29: Table showing the p-values for the group Dijkstra with regards to Package
Energy.

DRAM Energy
p-Values

All Dijkstra Collections Dijkstra Data Type Dijkstra Default Dijkstra LINQ Dijkstra Objects Dijkstra

All Dijkstra - <0,05 <0,05 <0,05 <0,05 <0,05
Collections Dijkstra <0,05 - <0,05 <0,05 <0,05 <0,05
Data Type Dijkstra <0,05 <0,05 - <0,05 <0,05 <0,05

Default Dijkstra <0,05 <0,05 <0,05 - <0,05 <0,05
LINQ Dijkstra <0,05 <0,05 <0,05 <0,05 - <0,05

Objects Dijkstra <0,05 <0,05 <0,05 <0,05 <0,05 -

Table A.30: Table showing the p-values for the group Dijkstra with regards to DRAM
Energy.

A.3.7 Happy Numbers

Elapsed Time
p-Values

All Happy Number Collection Happy Number Data Type Happy Number Default Happy Number

All Happy Number - <0,05 <0,05 <0,05
Collection Happy Number <0,05 - <0,05 <0,05
Data Type Happy Number <0,05 <0,05 - <0,05

Default Happy Number <0,05 <0,05 <0,05 -

Table A.31: Table showing the p-values for the group Happy Numbers with regards to
Elapsed Time.

A.3. P-values for the larger benchmarks 149

Package Energy
p-Values

All Happy Number Collection Happy Number Data Type Happy Number Default Happy Number

All Happy Number - <0,05 <0,05 <0,05
Collection Happy Number <0,05 - <0,05 <0,05
Data Type Happy Number <0,05 <0,05 - <0,05

Default Happy Number <0,05 <0,05 <0,05 -

Table A.32: Table showing the p-values for the group Happy Numbers with regards to
Package Energy.

DRAM Energy
p-Values

All Happy Number Collection Happy Number Data Type Happy Number Default Happy Number

All Happy Number - <0,05 <0,05 <0,05
Collection Happy Number <0,05 - <0,05 <0,05
Data Type Happy Number <0,05 <0,05 - <0,05

Default Happy Number <0,05 <0,05 <0,05 -

Table A.33: Table showing the p-values for the group Happy Numbers with regards to
DRAM Energy.

A.3.8 Introspection

Elapsed Time
p-Values

All Introspection Data Type Introspection Default Introspection Invocation Introspection

All Introspection - 0,134 <0,05 0,060
Data Type Introspection 0,134 - 0,360 0,463

Default Introspection <0,05 0,360 - 0,746
Invocation Introspection 0,060 0,463 0,746 -

Table A.34: Table showing the p-values for the group Introspection with regards to Elapsed
Time.

Package Energy
p-Values

All Introspection Data Type Introspection Default Introspection Invocation Introspection

All Introspection - <0,05 0,836 0,063
Data Type Introspection <0,05 - <0,05 0,220

Default Introspection 0,836 <0,05 - <0,05
Invocation Introspection 0,063 0,220 <0,05 -

Table A.35: Table showing the p-values for the group Introspection with regards to Package
Energy.

DRAM Energy
p-Values

All Introspection Data Type Introspection Default Introspection Invocation Introspection

All Introspection - 0,140 0,058 <0,05
Data Type Introspection 0,140 - 0,441 0,232

Default Introspection 0,058 0,441 - 0,895
Invocation Introspection <0,05 0,232 0,895 -

Table A.36: Table showing the p-values for the group Introspection with regards to DRAM
Energy.

A.3. P-values for the larger benchmarks 150

A.3.9 World Cup Group Stage

Elapsed Time
p-Values

All World Cup Stage Data Type World Cup Stage Default World Cup Stage LINQ World Cup Stage

All World Cup Stage - <0,05 <0,05 <0,05
Data Type World Cup Stage <0,05 - <0,05 <0,05

Default World Cup Stage <0,05 <0,05 - <0,05
LINQ World Cup Stage <0,05 <0,05 <0,05 -

Table A.37: Table showing the p-values for the group World Cup Group Stage with regards
to Elapsed Time.

Package Energy
p-Values

All World Cup Stage Data Type World Cup Stage Default World Cup Stage LINQ World Cup Stage

All World Cup Stage - <0,05 <0,05 <0,05
Data Type World Cup Stage <0,05 - <0,05 <0,05

Default World Cup Stage <0,05 <0,05 - <0,05
LINQ World Cup Stage <0,05 <0,05 <0,05 -

Table A.38: Table showing the p-values for the group World Cup Group Stage with regards
to Package Energy.

DRAM Energy
p-Values

All World Cup Stage Data Type World Cup Stage Default World Cup Stage LINQ World Cup Stage

All World Cup Stage - <0,05 <0,05 <0,05
Data Type World Cup Stage <0,05 - <0,05 <0,05

Default World Cup Stage <0,05 <0,05 - <0,05
LINQ World Cup Stage <0,05 <0,05 <0,05 -

Table A.39: Table showing the p-values for the group World Cup Group Stage with regards
to DRAM Energy.

A.3.10 Overview of Changes to the larger benchmarks

In this section, we create an overview of the expected effects of each change
that is made in the large benchmarks. These do not include all of the indi-
vidual changes from the batches from Section A.2.1, as we have found that
a lot of the changes from the batches are not used in the benchmarks from
Rosetta Code [39].

Batch Change Effect in Microbenchmark

Datatypes

Using uint instead of int.
23%, from 33.452µJ
to 25.862µJ.

Using StringBuilder instead
of Concatenation Operator (+).

36%, from 1.012.054µJ
to 649.596µJ.

A.4. Formal Suggestions for Energy Analyzer 151

Using StringBuilder instead
of Interpolation.

31%, from 937.184µJ
to 649.596µJ.

Using StringBuilder instead
of String.Format.

74%, from 2.452.011µJ
to 649.596µJ.

Using StringBuilder instead
of String.Concat.

57%, from 1.498.696µJ
to 649.596µJ.

Selection Using switch instead of if.
41%, from 31.751µJ
to 18.620µJ.

Loops Using foreach instead of for.
18%, from 64.485µJ
to 53.031µJ.

LINQ Removing and replacing LINQ.
90%, from 88.412.171µJ
to 9.658.162µJ.

Collections Change List to array
16%, from 10.531.627µJ
to 8.794.373µJ.

Invocation
Using parameters in lambda
expressions instead of closure.

13%, from 200.548µJ
to 173.911µJ.

Wrapping reflection in delegate.
98%, from 1.506.979µJ
to 29.323µJ.

Objects Using struct instead of class.

50% when accessing methods,
from 18.222µJ to 9.201µJ.
90% when creating instances,
from 64.624µJ to 6.749µJ.
-35% when accessing fields,
from 4.878µJ to 6.617µJ.

Exceptions
Using if instead of try-catch.

99,8%, from 28.131.047µJ
to 64.449µJ.

Removing try-catch block.
53%, from 66.096µJ
to 31.295µJ.

Table A.40: The changes in the larger benchmarks and their respective effect in the mi-
crobenchmarks.

A.4 Formal Suggestions for Energy Analyzer

In this section, the formal suggestions for Energy Analyzer is presented. This
is used for Energy Analyzer in Chapter 5.

The original suggestions from Section A.2 are used as a starting point

A.4. Formal Suggestions for Energy Analyzer 152

and changed based on the findings found in Section 4.2.
This means these suggestions are based on the microbenchmarks when

no larger benchmarks have used the suggestion, and on larger benchmarks
when the suggestion has been used in one of those.
Datatypes

• uint variables should replace other integer variables when possible,
except in Lists where int should be used.

• If uint is not possible, ulong should be used.

• If unsigned integers are not possible, int, nint or long should be
used.

• double should replace other types of decimal types.

• Replace occurences of string concatenation with StringBuilder when
three or more strings are concatenated.

• If two strings are concatenated, string interpolation should be used.

• If a new StringBuilder is created often enough to trigger garbage
collection, string interpolation should be used.

• Replace boxed integer datatypes with unboxed integer datatypes when
possible.

• If replacing boxed datatypes with unboxed datatypes is not possible,
use boxed uint if possible.

• If using boxed uint is not possible, use boxed ulong if possible.

• If using boxed ulong is not possible, use boxed int or long if possible.

• Replace all boxed floating point datatypes with the unboxed double
datatype if possible.

• Replace boxed boolean datatypes with unboxed boolean datatypes if
possible.

• parameters should replace other types of variables when possible.

• If parameters can not be used local variables should replace instance
and static variables when possible.

A.4. Formal Suggestions for Energy Analyzer 153

• If parameters and local variables can not be used, static variables
should be used when possible.

Selection

• if statements should be replaced with switch statements when pos-
sible.

Loops

• foreach loops should be used when elements in a collection is gone
through, unless the index is needed, in which case a for loop should
be used.

LINQ

• LINQ should be replaced when possible.

Collections

• array should replace any type of list if possible.

• If array is not possible, List should replace any type of list if possi-
ble.

• HashSet should replace any type of set when possible.

• Dictionary should replace any type of table when possible.

Invocation

• Replace reflection with other types of invocation when possible.

• If replacing reflection is not possible, wrap reflection in delegates
if possible.

• Avoid using variables outside the lambda expression when possible.

Objects

• Replace classes and records with structs, if creating objects and
invoking methods is the most prevalent.

• Replace structs with classes if accessing fields is the most prevalent.

A.5. P-values for Evaluation 154

Exceptions

• Remove try-catch blocks if possible.

• Replace exceptions with if statements when possible.

• Replace ArgumentException and DivideByZeroException with Exception
when possible.

• Reuse exceptions if thrown more than once.

A.5 P-values for Evaluation

A.5.1 CUP

Elapsed Time
p-Values

Original All Code Fixes

Original - <0,05 <0,05
All <0,05 - <0,05

Code Fixes <0,05 <0,05 -
Table A.41: Table showing the p-values for the group CUP with regards to Elapsed Time.

Package Energy
p-Values

Original All Code Fixes

Original - <0,05 <0,05
All <0,05 - 0,419

Code Fixes <0,05 0,419 -
Table A.42: Table showing the p-values for the group CUP with regards to Package Energy.

A.5. P-values for Evaluation 155

DRAM Energy
p-Values

Original All Code Fixes

Original - <0,05 <0,05
All <0,05 - 0,306

Code Fixes <0,05 0,306 -
Table A.43: Table showing the p-values for the group CUP with regards to DRAM Energy.

A.5.2 Sly

Elapsed Time
p-Values

All Code Fixes Original

All - <0,05 <0,05
Code Fixes <0,05 - 0,123

Original <0,05 0,123 -
Table A.44: Table showing the p-values for the group Sly with regards to Elapsed Time.

Package Energy
p-Values

All Code Fixes Original

All - 0,460 0,101
Code Fixes 0,460 - 0,329

Original 0,101 0,329 -
Table A.45: Table showing the p-values for the group Sly with regards to Package Energy.

A.6. Usability Test Tasks 156

DRAM Energy
p-Values

All Code Fixes Original

All - 0,207 0,462
Code Fixes 0,207 - 0,678

Original 0,462 0,678 -
Table A.46: Table showing the p-values for the group Sly with regards to DRAM Energy.

A.6 Usability Test Tasks

In this section, the introduction to the usability tests as well as the usability
test tasks are presented.

Introduction

Today you will be testing a tool for optimizing the energy usage of C# pro-
grams. Namely an analyzer named EnergyAnalyzer. You will be handed a
list of tasks that we expect you to try to solve on your own while thinking
out loud. After you have solved all the tasks we will conduct a short inter-
view regarding other thoughts, improvements, and debriefing. The moder-
ator will be able to help you if you get stuck but otherwise will only observe.
By participating in this test you accept that we can use the collected data in
our university project. The data will be analyzed anonymously. Thank you
so much for your attention and participation in advance.

• Task 1

– Get an overview of the sample program.

• Task 2

– Install the package using NuGet.

• Task 3

– Count and say how many suggestions you can see.

• Task 4

A.6. Usability Test Tasks 157

– Apply all code fixes.

• Task 5

– Observe and explain how you would use the information pro-
vided to solve the remaining suggestions.

	Front page
	Title page
	1 Introduction
	1.1 Problem Statement
	1.2 Work Process
	1.3 Related Work
	1.3.1 Language Constructs
	1.3.2 Tools

	2 Benchmark Design
	2.1 Goals
	2.2 Microbenchmarks vs Macrobenchmarks
	2.3 Choice of Benchmarks
	2.4 Measurement Approach
	2.5 Experiment Guidelines
	2.6 Threats to Validity
	2.6.1 Construct validity
	2.6.2 Internal Validity,
	2.6.3 External Validity
	2.6.4 Reliability

	2.7 Summary

	3 Benchmark Results
	3.1 Microbenchmarks
	3.1.1 Lambda Expressions
	3.1.2 Exceptions

	3.2 Larger benchmarks
	3.2.1 Benchmark Overview and Choices
	3.2.2 2048
	3.2.3 21 Game
	3.2.4 4-Rings or 4-Squares Puzzle
	3.2.5 99 Bottles of Beer
	3.2.6 Determine if a String has All the Same Characters
	3.2.7 Dijkstra's Algorithm
	3.2.8 Happy Numbers
	3.2.9 Introspection
	3.2.10 World Cup Group Stage
	3.2.11 Summary

	4 Benchmark Analysis
	4.1 Microbenchmark Analysis
	4.1.1 Lambda Expressions Outside Loop Analysis
	4.1.2 Lambda Expressions Inside Loop Analysis
	4.1.3 Exception Creation Analysis
	4.1.4 Throwing and Catching Exceptions Analysis

	4.2 Larger benchmark Analysis
	4.2.1 2048 Analysis
	4.2.2 21 Analysis
	4.2.3 99 Bottles of Beer
	4.2.4 Determine if a String has All the Same Characters Analysis
	4.2.5 Happy Numbers Analysis
	4.2.6 Introspection Analysis
	4.2.7 World Cup Group Stage Analysis
	4.2.8 Summary

	5 Energy Analyzer
	5.1 Design
	5.1.1 Analyzer type
	5.1.2 Requirements

	5.2 Implementation
	5.2.1 Suggestions
	5.2.2 Code Fixes

	5.3 Evaluation
	5.3.1 Energy Evaluation
	5.3.2 Usability Test

	6 Reflections
	6.1 Benchmarks
	6.2 Energy Analyzer
	6.3 Work Process

	7 Conclusion
	8 Future Work
	8.1 Benchmarks
	8.1.1 Categories
	8.1.2 Analysis

	8.2 Energy Analyzer
	8.2.1 Suggestions
	8.2.2 Code Fixes
	8.2.3 IDE Extension
	8.2.4 Semantic Analysis

	8.3 More Tools

	Bibliography
	A Appendix
	A.1 P-values for Microbenchmarks
	A.1.1 Lambda Expressions Outside Loop
	A.1.2 Lambda Expressions Inside Loop
	A.1.3 Throwing and Catching Exceptions
	A.1.4 Exception Creation

	A.2 Larger Benchmark Changes
	A.2.1 Batches

	A.3 P-values for the larger benchmarks
	A.3.1 2048
	A.3.2 21
	A.3.3 4-Rings or 4-Squares Puzzle
	A.3.4 99 Bottles of Beer
	A.3.5 Determine if a String has All the Same Characters
	A.3.6 Dijkstra's Algorithm
	A.3.7 Happy Numbers
	A.3.8 Introspection
	A.3.9 World Cup Group Stage
	A.3.10 Overview of Changes to the larger benchmarks

	A.4 Formal Suggestions for Energy Analyzer
	A.5 P-values for Evaluation
	A.5.1 CUP
	A.5.2 Sly

	A.6 Usability Test Tasks

