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Chapter 1

Introduction

The investigating of electromagnetic scattering from nano-sized particles placed on
a layered thin-film structure was the initially stated goal for the work presented.
This have been considered previously in the context of improving light trapping in
silicon-on-silver thin-film solar-cell configurations, e.q. for single particles or an ar-
ray of particles [9], or for silver and silicon nanostrips [12]. This leads to improved
light trapping in the active solar-cell layer, thus improving the absorption of light
in the thin-film solar-cell. Investigating this problem with the intent to improve the
coupling of light into the silicon layer was the primary motivation for considering
this type of scattering problem.

The scattering problems introduced, can be modelled by Green’s function inte-
gral equation methods (GFIEMs) [15][16]. Here the scattering object can be placed
in free-space or on layered reference structure, like the silicon-on-silver configura-
tion. An appropriate Green’s function constructed for the reference structure can
then be used to solve the integral equations for the electromagnetic fields. A sur-
face integral approach will be used in this text, and restricting the discussion to
cylindrical symmetric bodies of revolution the surface of the particle can be dis-
cretized in one dimension. A computer program have been written which solves
the surface integral equations for a cylindrical symmetric scatterer in a homoge-
neous medium, and in order to investigate the solar-cell like structures, the Green’s
function should incorporate a layered reference structure, unfortunately time con-
straints led to this being abandoned.

1



2 Chapter 1. Introduction

Ω1
ε1

Ω2
ε2

Figure 1.1: Scattering particle placed in a homogeneous medium.

Overview

In chapter 2 the theoretical foundation is presented, starting from Maxwell’s equa-
tions in the frequency domain, from which the inhomogeneous wave equations
can be derived. In a homogeneous medium the solutions for the electric and mag-
netic fields can be found with the homogeneous medium Green’s function, and
its closed-form expression is presented in sec. 2.2. The Green’s function surface
integral equations which can be derived from the wave equations is introduced in
sec. 2.3, and this leads to two sets of coupled integral equations. The electric field
integral equation (EFIE) and the magnetic field integral equation (MFIE), where
the problem of finding the relevant field is cast in terms of the equivalent electric
and magnetic surface currents.

In chapter 3 the cylindrical symmetry of the scatterer is used to reduce the
dimensionality of the problem. First an appropriate surface parametrization is de-
fined in sec. 3.1, such that the surface of the scatterer can be described as a body
of revolution (BoR), with a bounding curve in two dimensions rotated around an
axis of symmetry. In sec. 3.2 the problem is further reduced by expanding the un-
known electric and magnetic surface currents in cylindrical harmonics, such that
a single harmonic mode can be considered at a time. In secs. 3.3 and 3.4 some
considerations about the incident field and boundary conditions needed to solve
the integral equations are discussed.

In order to find the unknown surface currents, the EFIE and MFIE are con-
verted to matrix equations via the method of moments in ch. 4, and the discretiza-
tion scheme used is presented in sec. 4.1. Here the bounding curve is divided
into sections, and on each section the surface currents are expanded in polynomial
basis functions. Both quadratic and cubic functions have been used with a point
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matching approach. This make it possible to state the matrix equations to be solved
in sec. 4.2. For a concrete numerical implementation, the matrix elements have to
be calculated with an appropriate Green’s function. In the case of a scatterer in
a homogeneous medium, the needed Green’s function can be expressed in closed
form, as shown in sec. 4.3.

A program for solving the EFIE and MFIE have been developed, and some of
the important choices and problems encountered are discussed in ch. 5. Accu-
rate calculation of the matrix elements, related to the singularity of the Green’s
function, was the main challenge encountered, especially when using quadratic
basis functions. How this was handled is discussed, before the results obtained are
presented in ch. 6





Chapter 2

Theoretical Foundation

In this chapter the relevant assumptions and equations needed to investigate the
problem of a scatterer in a homogeneous medium will be stated. First Maxwell’s
equations are stated in section 2.1, together with the wave equations for the electric
and magnetic field, which must be solved with appropriate boundary conditions.
The homogeneous medium Green’s function, that can be used to solve these equa-
tions is introduced in section 2.2. In section 2.3 the Green’s function surface inte-
gral equation method is briefly introduced and the surface integral equations for
the scattering problem is stated. The well known theory presented in this chapter
can be found in a variety of books on electromagnetism and relevant references
will be given at the start of each section.

2.1 Maxwell’s Equations in the Frequency Domain

Throughout the text it will be assumed the media under consideration are lin-
ear, local, and isotropic, furthermore only non-magnetic materials are considered.
Time harmonic fields are assumed, with time dependency e−iωt, which will be
suppressed. Under these assumptions Maxwell’s equations become [2][6][15]

∇× E(r) = iωµ0H(r), (2.1)

∇×H(r) = J(r)− iωε0ε(r)E(r), (2.2)

∇ ·D(r) = ρ(r), (2.3)

∇ · B(r) = 0, (2.4)

where E(r) is the electric field, H(r) the magnetic field, D(r) = ε0ε(r)E(r) the
electric displacement field and B(r) = µ0H(r) is magnetic induction field. ε(r) is

5



6 Chapter 2. Theoretical Foundation

the complex relative dielectric constant, J(r) the source current density and ρ(r) is
the source charge density. The frequency ω, dependency of the fields are implicit.
Finally µ0 and ε0 are the vacuum permeability and permittivity respectively.

2.1.1 Wave Equations

The inhomogeneous wave equations for the electric and magnetic fields with a
given source current density J(r), are obtained from equations 2.1 and 2.2.

−∇×∇× E(r) + k2
0ε(r)E(r) = −iωµ0J(r), (2.5)

−∇× 1
ε(r)
∇×H(r) + k2

0H(r) = −∇× (J(r)/ε(r)), (2.6)

where k0 = ω/c is the free-space wave number and c = 1/
√

ε0µ0 is the speed of
light in vacuum. These are the fundamental equations that will be considered for
the scattering problem introduced. In order to solve the wave equations boundary
conditions appropriate for the problem under consideration must be applied.

2.1.2 Boundary Conditions

The inhomogeneous equations are valid for any position in space and it will be
assumed that ε(r) is piecewise constant within regions Ωi,

ε(r) = ε i for r ∈ Ωi (2.7)

A geometry with two homogeneous regions was shown in fig. 1.1, and the solution
valid everywhere can be obtained by applying appropriate boundary conditions.
For an interface between regions the boundary conditions for the electric and mag-
netic field can be obtained from Maxwell’s equations or from either of the wave
equations. Assuming no given surface current density they become [2]

n̂× E(r1) = n̂× E(r2), (2.8)

n̂×H(r1) = n̂×H(r2), (2.9)

where n̂ is the normal vector to the interface, and r1 and r2 are positions an in-
finitesimal distance into either Ω1 or Ω2. The tangential components of E and H
are thus continuous across the interface, assuming non of the regions are a perfect
electric conductor (PEC) [6].
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For a scattering geometry like the one in fig. 1.1 a radiating boundary condition
should be applied. The total field outside the scattering object must be the sum
of a reference field and a scattered field propagating away from to scatterer, and
the Green’s function should be constructed such that it takes care of this condition
[16].

2.2 Homogeneous Medium Green’s Function

In this section the dyadic Green’s function for a homogeneous region is introduced
and rewritten in closed-form, which will be needed in the numerical implemen-
tation. Detailed derivations can be found in e.q. [2][16]. The Green’s function G,
for the wave equations 2.5 and 2.6 is the solution of the same equations for a point
source, and for a homogeneous region Ωi, eq. 2.5 leads to

−∇×∇×Gi(r, r′) + k2
0ε iGi(r, r′) = −Iδ(r− r′). (2.10)

Here I is the unit dyad and δ(r− r′) is the Dirac delta function representing a point
source at r′. Assuming the Green’s function is known this leads to the solutions

E(r) = iωµ0

∫
G(r, r′) · J(r′)d3r′, (2.11)

H(r) =
∫
∇×G(r, r′) · J(r′)d3r′, (2.12)

where G(r, r′) = Gi(r, r′) and it is understood that a homogeneous region Ωi is
considered. Eq. 2.12 is obtained from eqs. 2.1 and 2.11.

It can be shown that the dyadic Green’s function satisfying the appropriate
radiating boundary condition is

G(r, r′) =
(

I +
1
k2∇∇

)
g(r, r′). (2.13)

Here ∇∇ is a dyad, k2 = k2
0ε i and

g(r, r′) =
eik|r−r′|

4π|r− r′| , (2.14)

is the scalar Green’s function which satisfy the inhomogeneous Helmholtz equa-
tion for a point source. It is straightforward to find a closed-form expression for
the homogeneous Green’s function 2.13 by making the substitution R = r− r′ and
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R = |R| before differentiating. This leads to

G(r, r′) =
(

IA(R)− R
R

R
R

B(R)
)

g(r, r′), (2.15)

A(R) = 1 +
i

kR
− 1

(kR)2 , (2.16)

B(R) = 1 +
3i
kR
− 3

(kR)2 . (2.17)

It is noted how an observation point r in the source region leads to a singularity at
r = r′, and how this can be dealt with is discussed in sec. 2.3.

For the magnetic field given by equation 2.12 the curl of the dyadic Green’s
function in eq. 2.13 is needed. Only the first term remains, since the curl of the
gradient vanishes

∇×G(r, r′) = ∇×
[
Ig(r, r′)

]
,

=
[
∇g(r, r′)

]
× I, (2.18)

where the identity

∇× (aI) = (∇a)× I, (2.19)

for a scalar function a and the unit dyadic has been used [16]. Making the same
substitution for r − r′ as before, the closed-form expression for equation 2.18 is
found to be

∇×G(r, r′) = Am(R)g(R)
1
R

R× I, (2.20)

Am(R) = ik− 1
R

. (2.21)

The curl of the Green’s function is better behaved due to the vanishing ∇∇ part of
eq. 2.13.

The homogeneous Green’s function presented, will be implementation in the
numerical program as results obtained for a scatterer in a homogeneous medium
can be compared with known analytic results, and thus serves to validate the im-
plementation.

2.3 Green’s Function Surface Integral Equation Method

The two-region three-dimensional scattering problem from 1.1, can be investigated
with the Green’s function surface integral equation method. Only the most impor-
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S

S1,∞
n̂1

S1

n̂2 = n̂

S2

Ω1
ε1

Ω2
ε2

n̂1,∞
Einc

Figure 2.1: Geometry of a two-region scattering problem for which a surface integral equation can
be derived. Region Ω2 is the interior of a scattering particle of dielectric constant ε2, placed in an
otherwise homogeneous region Ω1 with dielectric constant ε1. The particle surface is denoted S,
and S1 and S2 denotes surfaces placed just outside and inside S respectively. Ω1 is bounded on the
outside by a spherical surface S1,∞ at infinity. The surface normal vector n̂i points out of Ωi. From
[15]

tant assumptions and results will be stated here, and detailed derivations can be
found e.q. in [3][8][13][15].

It is possible to start from either of the wave equations 2.5 or 2.6 for a homoge-
neous region Ωi and the appropriate equation for the Green’s function. Combining
either of the wave equations with the corresponding Green’s function equation and
integrating over the region Ωi, leads to a volume integral over the region, which
can be converted to a surface integral by applying Gauss’ theorem.

For the two region geometry considered, see fig. 2.1, Ω1 is bounded by a
spherical surface at infinity S1,∞ and the surface S1 placed just outside the scatterer
surface S. Ω2 is bounded by the surface S2 placed just inside S. The surface integral
over S1,∞ vanishes due to the radiating boundary condition and the electric field in
Ω1 and Ω2, is found to be [15]

E(r) = Einc(r) + iωµ0

∮
S1

G1(r, r′) · Js(r′)d2r′ −
∮

S1

∇×G1(r, r′) ·Ms(r′)d2r′, (2.22)

for positions r ∈ Ω1 and

E(r) = −iωµ0

∮
S2

G2(r, r′) · Js(r′)d2r′ +
∮

S2

∇×G2(r, r′) ·Ms(r′)d2r′. (2.23)

for r ∈ Ω2 where there is no incident field. The equations for the magnetic field can
be obtained from the magnetic wave equation or from the electric field equations
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directly. The integrals involve the electric and magnetic surface current densities,
defined as

Js(r) = n̂×H(r), (2.24)

Ms(r) = −n̂× E(r), (2.25)

respectively, where r is a position on the scatterer surface and n̂ is the surface nor-
mal vector pointing into Ω1. These are fictitious sources producing the same fields
as the actual sources and are an example of the fundamental surface equivalence
principle [1] [13]. If the equivalent surface current densities on the scatterer surface
have been calculated, then the electric field in Ω1 can be obtained from eq. 2.22.

By letting r approach S from either side, a set of self-consistent vector equa-
tions can be stated for the surface current densities. This leads to the electric field
integral equations (EFIEs) or the magnetic field equations (MFIEs) depending on
which wave equation was used as the starting point. The EFIE given next is the
one presented in [15] and similar considerations lead to the MFIE.

2.3.1 Electric Field Integral Equation

−Ms(r) = n̂× Einc(r) + iωµ0

∮
S1

[
n̂×G1(r, r′)

]
· Js(r′)d2r′

−
∮

S1

[
n̂×

(
∇×G1(r, r′)

)]
·Ms(r′)d2r′, (2.26a)

for r infinitesimally outside scatterer surface and

−Ms(r) = −iωµ0

∮
S2

[
n̂×G2(r, r′)

]
· Js(r′)d2r′

+
∮

S2

[
n̂×

(
∇×G2(r, r′)

)]
·Ms(r′)d2r′, (2.26b)

for r infinitesimally inside scatterer surface.

2.3.2 Magnetic Field Integral Equation

Js(r) = n̂×Hinc(r) + iωε0ε1

∮
S1

[
n̂×G1(r, r′)

]
·Ms(r′)d2r′

+
∮

S1

[
n̂×

(
∇×G1(r, r′)

)]
· Js(r′)d2r′, (2.27a)
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for r infinitesimally outside scatterer surface and

Js(r) = −iωε0ε1

∮
S2

[
n̂×G2(r, r′)

]
·Ms(r′)d2r′

−
∮

S2

[
n̂×

(
∇×G2(r, r′)

)]
· Js(r′)d2r′, (2.27b)

for r infinitesimally inside scatterer surface. The same electric and magnetic sur-
face currents can be determined from either the EFIEs or the MFIEs and both ap-
proaches will be considered. As mentioned in sec. 2.2, the homogeneous Green’s
function contains a singularity, and this leads to a needed modification of the inte-
gral equations.

2.3.3 Singularity of Green’s Functions

Let L and K be defined as operators acting on X, denoting either Js or Ms,

(LuX)(r) = iωµ0

∮
u

[
n̂×Gu(r, r′)

]
· X(r′)d2r′, (2.28)

(KuX)(r) =
∮

u

[
n̂×

(
∇×Gu(r, r′)

)]
· X(r′)d2r′, (2.29)

where the integral is over the surface Su. This way the EFIE and MFIE can be stated
in terms of these operators acting on the appropriate surface currents and the in-
tegrals in eqs. 2.28 and 2.29 will be denoted L- and K-type integrals, respectively.

The L-type integrals will be used in the way presented, and handled numer-
ically by placing the observation point r a small distance outside the scatterer
surface and utilizing an interpolation scheme to obtain the result for r → r′ as
proposed in [15].

The K-type integrals can be expressed as a principal value integral, excluding
the singular point, plus a X(r)/2 contribution from the singularity. This is valid if
the scatterer surface is assumed to be smooth [3][15].

Dropping the s-index on the surface current densities and with the understand-
ing that the integral in eq. 2.29 is the principle value integral, the two sets of
coupled integral equations 2.26 and 2.27 can be written compactly
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Coupled EFIEs

n̂× Einc(r) = −
1
2

M(r)− (L1J)(r) + (K1M)(r) (2.30a)

0 = −1
2

M(r) + (L2J)(r)− (K2M)(r) (2.30b)

Coupled MFIEs

n̂×Hinc(r) =
1
2

J(r)− 1
η2

1
(L1M)(r)− (K1J)(r) (2.30c)

0 =
1
2

J(r) +
1
η2

2
(L2M)(r) + (K2J)(r) (2.30d)

Here the constant ηi =
√

µ0/ε0ε i have been introduced. After determining the
equivalent electric and magnetic surface currents they can be used in eq. 2.22 or
2.23 to find the electric field at locations of interest and scattering properties can be
investigated. The remainder of this text will be concerned with finding the solution
to the coupled MFIEs and EFIEs for cylindrical symmetric scatterers.



Chapter 3

Bodies of Revolution

In this chapter the surface integral equations 2.30 are formulated for bodies of
revolution (BoR) placed in a homogeneous medium. First an appropriate surface
parametrization in two parameters is defined in sec. 3.1, together with relevant
unit vectors. Then in sec. 3.2 the unknown electric and magnetic surface cur-
rents to be determined are expanding in cylindrical harmonics, such that a single
harmonic mode can be considered at a time. Finally in secs. 3.3 and 3.4 some
considerations about the incident field and boundary conditions needed to solve
the integral equations are discussed.

A treatment of the problem can be found e.q. in the somewhat dated texts [10]
or [18] or in the modern works [3] and [15]. The notation and approach in this
chapter follows that of [15].

3.1 Surface Parametrization

Let the z-axis be the axis of symmetry for a body of revolution, as the one depicted
in fig. 3.1a. Any point s on the surface of the BoR can then be parameterized by
the two coordinates t and φ, where t denotes the distance from the starting point
s0 along the bounding curve, see fig. 3.1b and φ is the azimuthal angle measured
from the xz-plane.

s(t, φ) = ρ̂sρ(t) + ẑsz(t), (3.1)

where the unit vector in the ρ-direction contains the angular dependence

ρ̂(φ) = x̂ cos φ + ŷ sin φ. (3.2)

13
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y

z

x

(ρ, φ, z)

ρ
φ

t̂

n̂

φ̂

Ω1

Ω2

(a)

ρ

z

x

t

Ω1

Ω2

t̂

n̂
φ̂

s(t, φ)

s0

sL

(b)

Figure 3.1: (a) Scattering body of revolution in Cartesian and cylindrical coordinates with orthogonal
unit vectors (t̂, φ̂, n̂) defined at each surface point. (b) Bounding curve of length L of the BoR in the
ρz-plane, parametrized by t.

The direction of increasing t is chosen to be counterclockwise, and the length of
the bounding curve is denoted L, such that sL(φ) = s(L, φ) is the endpoint of the
curve. The unit vectors in the t- and φ-direction, are defined as

t̂(t, φ) =
∂s(t, φ)

∂t
/
∣∣∣∣∂s(t, φ)

∂t

∣∣∣∣ , (3.3)

φ̂(φ) = −x̂ sin φ + ŷ cos φ, (3.4)

and are everywhere tangent to the surface. From these the surface normal pointing
into region Ω1 is defined as

n̂(t, φ) = φ̂(φ)× t̂(t, φ), (3.5)

so (t̂, φ̂, n̂) form an orthogonal basis set, which can be used to expand the electric
and magnetic surface currents. Note how the unit vectors can be expressed in
terms of their ẑ- and ρ̂-components like

t̂(t, φ) = ρ̂tρ(t) + ẑtz(t). (3.6)

The example surface in fig. 3.1a, is constructed from a cylinder and two hemi-
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spherical caps at the ends to ensure the surface is smooth everywhere as assumed.
Numerically the bounding curve will be constructed from straight line segments,
and circle arcs preserving smoothness.

3.2 Cylindrical Harmonics Expansion

The unknown surface currents in eqs. 2.30, only have t̂- and φ̂-components on the
surface and due to the symmetry they can be expanded in cylindrical harmonics
as [1][6]

J(t, φ) =
∞

∑
n=−∞

(
t̂(t, φ)J(n)t (t) + φ̂(φ)J(n)φ (t)

)
einφ, (3.7)

M(t, φ) =
∞

∑
n=−∞

(
t̂(t, φ)M(n)

t (t) + φ̂(φ)M(n)
φ (t)

)
einφ, (3.8)

where the terms like J(n)t (t), are the unknowns to be determined for the nth har-
monic. Similarly the incident fields in eq. 2.30 are expanded

n̂(t, φ)× Einc(t, φ) =
∞

∑
n=−∞

(
−φ̂(φ)E(n)

inc,t(t) + t̂(t, φ)E(n)
inc,φ(t)

)
einφ, (3.9)

n̂(t, φ)×Hinc(t, φ) =
∞

∑
n=−∞

(
−φ̂(φ)H(n)

inc,t(t) + t̂(t, φ)H(n)
inc,φ(t)

)
einφ. (3.10)

Here the definition of the unit vectors in eq. 3.5 was used, and even though the
fields themselves might have a normal component only the tangential components
of the fields remain after the cross product with n̂.

Now the above cylindrical expansions are inserted into the integral equations
2.30. The details for the EFIEs can be found in [15] and a similar approach is used
here for the MFIEs. Both sides of the equations 2.30c and 2.30d are multiplied by
e−imφ/2π and integrated over φ from 0 to 2π. Using the following orthogonality
condition

∫ 2π

0
ei(n−m)φdφ =

2π n = m

0 n 6= m,
(3.11)

the left hand sides separate directly to a single harmonic when n = m. For the
right hand sides it will be shown in sec. 4.3, that the Green’s function parts, like
n̂×G(r, r′) in eqs. 2.28 and 2.29 will be functions of (φ′ − φ). And after inserting
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the expansions for the surface currents, the φ part of the integrals will be on the
form ∫ 2π

0
f (φ′ − φ)einφ′dφ′ = einφ

∫ 2π

0
f (φ′ − φ)ein(φ′−φ)dφ′, (3.12)

where the integral on the right hand side is independent of the choice of φ. Only
a single harmonic will thus remain after the multiplication with e−imφ/2π and
integrating.

The integral equations for a single harmonic n will now be stated in its t- and
φ-components and using the differential surface element in cylindrical coordinates
d2r′ = sρ(t′)dφ′dt′ they become[

H(n)
inc,φ(t)

−H(n)
inc,t(t)

]
=

1
2

[
J(n)t (t)
J(n)φ (t)

]
− 1

η2
1

∫ L

t′=0

[
L(n)

1,tt(t, t′) L(n)
1,tφ(t, t′)

L(n)
1,φt(t, t′) L(n)

1,φφ(t, t′)

] [
M(n)

t (t′)
M(n)

φ (t′)

]
dt′

− P
∫ L

t′=0

[
K(n)

1,tt(t, t′) K(n)
1,tφ(t, t′)

K(n)
1,φt(t, t′) K(n)

1,φφ(t, t′)

] [
J(n)t (t′)
J(n)φ (t′)

]
dt′, (3.13)

[
0
0

]
=

1
2

[
J(n)t (t)
J(n)φ (t)

]
+

1
η2

2

∫ L

t′=0

[
L(n)

2,tt(t, t′) L(n)
2,tφ(t, t′)

L(n)
2,φt(t, t′) L(n)

2,φφ(t, t′)

] [
M(n)

t (t′)
M(n)

φ (t′)

]
dt′

+ P
∫ L

t′=0

[
K(n)

2,tt(t, t′) K(n)
2,tφ(t, t′)

K(n)
2,φt(t, t′) K(n)

2,φφ(t, t′)

] [
J(n)t (t′)
J(n)φ (t′)

]
dt′. (3.14)

The integral kernels are defined as

L(n)
u,αβ(t, t′) = iωµ0

∫ 2π

φ′=0
α̂(t, φ) ·

[
n̂×Gu

(
s(t, φ), s(t′, φ′)

)]
· β̂(t′, φ′)sρ(t′)ein(φ′−φ)dφ′,

(3.15)

K(n)
u,αβ(t, t′) =

∫ 2π

φ′=0
α̂(t, φ) ·

[
n̂×

[
∇×Gu

(
s(t, φ), s(t′, φ′)

)]]
· β̂(t′, φ′)sρ(t′)ein(φ′−φ)dφ′,

(3.16)

where α̂ and β̂ denotes either t̂ or φ̂. Even though the surface currents are ex-
panded in an infinite number of harmonics, the equations 3.13 and 3.14 are only
solved for the significant harmonics excited by the incident field [13]. This leads
to a number of solutions for J(n)t , J(n)φ , M(n)

t and M(n)
φ which are then used in eqs.

3.7 and 3.8 to obtain the total surface currents. Before solving the equations, the
incident field and the appropriate boundary conditions will be discussed.
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3.3 Incident Field

It will now be shown that for an axially incident plane wave only the n = 1 and
n = −1 modes are excited, and symmetry considerations make it possible to only
consider the single mode n = 1. [13]
An incident field propagating in the ±ẑ-direction and polarized in the x̂-direction
is chosen

E0(r) = x̂E0e±ik1z, (3.17)

where the + or − gives a plane wave respectively from below and above. From eq.
2.1 the corresponding incident magnetic field is

H0(r) =
1

iωµ0
∇× E0(r) = ±

1
η1

E0e±ik1zŷ (3.18)

where the definitions ki = k0
√

ε i and ηi =
√

µ0/ε0ε i from earlier have been used.

The t- and φ-components of the nth harmonic for the known incident fields in
eqs. 3.9 and 3.10 can now be obtained from [15]

H(n)
0,α (t) =

1
2π

∫ 2π

φ=0
H0(r) · α̂e−inφdφ, (3.19)

and similarly for the electric field. Using the expressions for ρ̂, φ̂ and t̂ in eqs. 3.2,
3.4 and 3.6, the integral over φ can be carried out e.q.

H(n)
0,t (t) =

1
2π

∫ 2π

φ=0
H0(r) · t̂e−inφdφ = ±

tρ(t)
2πη1

E0e±ik1z
∫ 2π

φ=0
sin(φ)e−inφdφ

= ±
tρ(t)
2η1

E0e±ik1z

−i n = 1

i n = −1,
(3.20)

As the orthogonality of the trigonometric functions ensures the integral is zero for
any other n. Similarly the other components can be found.

H(n)
0,φ (t) = ±

1
2η1

E0e±ik1z

1 n = 1

1 n = −1,
(3.21)

E(n)
0,t (t) =

tρ(t)
2

E0e±ik1z

1 n = 1

1 n = −1,
(3.22)

E(n)
0,φ (t) =

1
2

E0e±ik1z

i n = 1

−i n = −1.
(3.23)
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Inserting back in the expansion for the H-field in eq. 3.10 and dropping the argu-
ments of the unit vectors one obtains

n̂(t, φ)×Hinc(t, φ) = ± 1
2η1

E0e±ik1z
[(

t̂ + tρiφ̂
)

eiφ +
(
t̂− tρiφ̂

)
e−iφ

]
= ± 1

η1
E0e±ik1z [t̂ cos φ− φ̂tρ sin φ

]
. (3.24)

A similar argument can be made for the electric field. This makes it clear that it
is possible to only consider the single harmonic n when an axially incident plane
wave is chosen as the excitation and from now on the index for the harmonic will
be suppressed.

3.4 Boundary Conditions

Before solving eqs. 3.13 and 3.14, the boundary conditions for the problem have to
be considered. In the following an open bounding curve, like the one for the scat-
terer in fig. 3.1 is assumed, and special care must be taken for the two endpoints
s0 and sL on the z-axis. Here the currents must be independent of φ and for the
n = 1 harmonic the current expansion in eq. 3.7 becomes

J(0, φ) =
[
t̂(0, φ)Jt(0) + φ̂(φ)Jφ(0)

]
eiφ (3.25)

for the startpoint. Furthermore t̂ must be equal to ρ̂ to ensure the surface is smooth
across the z-axis. For the angles φ = 0 and φ = π/2 specifically, one obtains

J(0, 0) = x̂Jt(0) + ŷJφ(0), (3.26)

J(0, π/2) = ŷi Jt(0)− x̂i Jφ(0). (3.27)

Equating these, the boundary condition for the surface current at the start point is

Jφ(0) = i Jt(0). (3.28)

Similar considerations for the endpoint, where t̂ = −ρ̂ leads to

Jφ(L) = −i Jt(L). (3.29)

The same boundary conditions apply for the magnetic surface current in 3.8.

Additionally the derivative of the surface currents across the symmetry axis
must vanish in order to avoid that the current results in a field singularity.



Chapter 4

Solution by the Method of Moments
for a BoR

In this chapter the method of moments, outlined in appendix A, is used to find the
unknown surface currents on a body of revolution excited by an axially incident
plane wave. The magnetic field integral equations 3.13 and 3.14, developed using
the cylindrical symmetry will be considered. In sec. 4.1 the discretization scheme
which allows an expansion of the surface currents in quadratic or cubic basis func-
tions, will be presented. This leads to the formulation of a matrix equation in sec.
4.2 suitable for numerical implementation. For the problem of homogeneous scat-
terer in a homogeneous background medium, the matrix elements needed will be
calculated in sec. 4.3. The approach in this chapter follows that of [15], where the
EFIE have been considered.

4.1 Discretization

In chapter 3 it was shown how the cylindrical symmetry of a body of revolution
makes it possible to parametrized the surface in the t and φ coordinates as shown
in fig. 3.1. In order to calculate the surface currents, the bounding curve is now
divided into Nk sections, as illustrated in one dimension in fig. 4.1. Each section
k is further divided into two subsections and the start, interior and end points are
denoted t(0)k , t(1)k , t(2)k respectively. For each section k the surface currents Jα(t) and
Mα(t), from eqs. 3.7 and 3.8, are expanded in a number of basis functions. Similar

19
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{t(v)k }

{ti} t1

t(1)1

t2

t(0)1

t3 t4

t(2)1

t(0)2

t5

t(2)2t(1)2

t(0)3

t(2)Nk

tNtN−1

t

Figure 4.1: Discretization of the bounding curve for a BoR parametrized by t. The curve is divided
into Nk sections where the start, interior and end points for section k is given by t(0)k , t(1)k and t(2)k
respectively. {ti} denotes the N unique sample points along the bounding curve.

to eq. A.2, this leads to the following expansion along the bounding curve

Jα(t) =
Nk

∑
k=1

∑
v

f (v)k (t)J(v)α,k , (4.1)

Mα(t) =
Nk

∑
k=1

∑
v

f (v)k (t)M(v)
α,k , (4.2)

Here f (v)k (t) are the basis functions for section k to be defined, and the unknown
local coefficients for section k are J(v)α,k and M(v)

α,k , for α = t or φ.
Let i denote the unique sample points {ti} along the curve, see fig. 4.1, such

that each point is only counted once, and let N be the number of those sample
points. By a point matching approach, where the testing functions are defined as
Dirac delta functions δi(t − ti), the surface current and incident field at specific
sample points i can be organized in vectors

Jα =
[

Jα,1 Jα,2 . . . Jα,N

]T
, (4.3)

Mα =
[

Mα,1 Mα,2 . . . Jα,N

]T
, (4.4)

Hinc,α =
[

Hinc,α,1 Hinc,α,2 . . . Hinc,α,N

]T
. (4.5)

These global coefficients must be related to the local coefficients defined within
each section. The approach differs for the quadratic and cubic polynomials, that
will be used as basis function, and will be shown separately.
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0

1

t

f (L,0)
1 f (L,1)

1
f (L,2)
1 f (L,0)

2

f (L,1)
2 f (L,2)

2

k = 1

t(0)1 t(1)1 t(2)1

k = 2t(0)2

t(1)2 t(2)2

Figure 4.2: Quadratic basis functions for the two first sections.

4.1.1 Point Matching Quadratic Polynomials

The quadratic Lagrange interpolation polynomials, see sec. A.2.1, appropriate for
a section with start and end points t(0)k and t(2)k are

f (L,v)
k (t) = f (L,v)

(
t− t(0)k

|t(2)k − t(0)k |

)
, v = 0, 1, 2 (4.6)

where f (L,v) are the quadratic polynomials defined on the unit interval in eqs. A.11.
In fig. 4.2 they are shown for the first two sections. Note how continuity between
the sections are ensured by the functions f (L,2)

1 and f (L,0)
2 .

The quadratic polynomials sample at the start, middle and end point of a section,
and to relate the local coefficients in eqs. 4.1 and 4.2 to the global coefficients in
eqs. 4.3 and eqs. 4.4 the local coefficients are expressed as vectors

Jα,k =
[

J(0)α,k J(1)α,k J(2)α,k

]T
, (4.7)

Mα,k =
[

M(0)
α,k M(1)

α,k M(2)
α,k

]T
, (4.8)
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and a relation matrix Pk between these and the global coefficients can be defined
as

Pk =

1 . . . 2k− 1 2k 2k + 1 . . . N 0 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0

. (4.9)

This way the relations can be expressed as

Jα,k = Pk Jα, (4.10)

Mα,k = Pk Mα. (4.11)

The relations for the cubic polynomials are presented next.

4.1.2 Point matching Cubic Polynomials

The cubic Hermite spline polynomials f (H,v) are defined on the unit interval in eqs.
A.12 in appendix A. The unit interval is sampled at both end points, and continuity
of the first derivative across section boundaries is ensured. The cubic polynomials
suitable for a point matching approach are now developed from those on the unit
interval.

Let the index k run over all N global sample points, such that t1 is the first
sample point, and tN the last. Instead of sampling at the endpoints of a section,
the polynomials f (H,1) and f (H,0), from eqs. A.12 are defined on the subsections
of k, [t(0)k , t(1)k ] and [t(1)k , t(2)k ] respectively, and similarly for f (H,3) and f (H,2). This
leads to the two piecewise combined polynomials f (CH,0)

k and f (CH,1)
k , defined on

[t(0)k , t(2)k ], shown for the first three sections in fig. 4.3. Note how adjacent sections
overlap and how the first section only have a single subsection from t1 = t(0)2 to
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Figure 4.3: Piecewise combined cubic polynomials for the first three sections. f (CH,0)
k ensures conti-

nuity and f (CH,1)
k ensures a continuous first derivative.

t2 = t(1)2 . The last section is handled similarly.

f (CH,0)
k (t) =



f (H,1)
(

t−t(0)k

|t(1)k −t(0)k |

)
, t(0)k ≤ t < t(1)k , 1 < k < N

f (H,0)
(

t−t(1)k

|t(2)k −t(1)k |

)
, t(1)k ≤ t ≤ t(2)k , 1 < k < N

f (H,0)
(

t
|t2|

)
, 0 ≤ t < t2, k = 1

f (H,1)
(

t−tN−1
|tN−tN−1|

)
, tN−1 ≤ t ≤ tN , k = N

(4.12a)

f (CH,1)
k (t) =



|t(1)k − t(0)k | f (H,3)
(

t−t(0)k

|t(1)k −t(0)k |

)
, t(0)k ≤ t < t(1)k , 1 < k < N

|t(2)k − t(1)k | f (H,2)
(

t−t(1)k

|t(2)k −t(1)k |

)
, t(1)k ≤ t ≤ t(2)k , 1 < k < N

|t2| f (H,3)
(

t
|t2|

)
, 0 ≤ t < t2, k = 1

|tN − tN−1| f (H,2)
(

t−tN−1
|tN−tN−1|

)
, tN−1 ≤ t ≤ tN , k = N

(4.12b)

The combined polynomials sample at the interior point of a section, where f (CH,0)
k

ensures continuity and f (CH,1)
k ensures continuity of the first derivative. For the

first and last sample point, f (CH,1)
k is defined to make sure the derivative vanishes

at those points. This way the boundary conditions for the derivative at the z-axis,
discussed in sec. 3.4 are taken care of. For f (CH,1)

k the length of each subsection is
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multiplied on f (H,2) or f (H,3) to ensure a derivative of one.

Similarly to how a relation matrix Pk, was defined for the quadratic basis poly-
nomials in the previous section. One must be constructed for the cubic basis poly-
nomials in order to relate the local and global coefficients. For the cubic basis
functions the expansion of the electric surface current along the bounding curve,
eq. 4.1, becomes

Jα(t) =
N

∑
k=1

f (CH,0)
k (t)J(0)α,k + f (CH,1)

k (t)J(1)α,k . (4.13)

Since f (CH,0)
k samples at every point, J(0)α,k corresponds to the current at the global

sample point i, Jα,i=k, defined in eq. 4.3. J(1)α,k representing the derivative of the

current at tk = t(1)k must also be related to the global sample points. In order to do
this, an expression for the derivative at a global sample point must be developed.

Consider a second order Taylor expansion of the current about the point ti

Jα(t) ≈ A + B(t− ti) + C(t− ti)
2, (4.14)

where A, B and C are the usual Taylor coefficients. B is then the first order deriva-
tive at tk=i, such that B = J(1)α,k . This can be expressed in terms of the global current
at adjacent points ti−1 and ti+1 by considering the system of equations

Jα,i = Jα(ti) = A, (4.15)

Jα,i−1 = A + B(ti−1 − ti) + C(ti−1 − ti)
2, (4.16)

Jα,i+1 = A + B(ti+1 − ti) + C(ti+1 − ti)
2. (4.17)

Inserting Jα,i into the last two equations, the matrix equation becomes[
(ti−1 − ti) (ti−1 − ti)

2

(ti+1 − ti) (ti+1 − ti)
2

] [
B
C

]
=

[
Jα,i−1 − Jα,i

Jα,i+1 − Jα,i

]
. (4.18)

Let D denote the matrix to the left, then by matrix inversion the solution for B is
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found

B = b0 Jα,i−1 + b1 Jα,i + b2 Jα,i+1, (4.19)

b0 =
1

det D
(ti+1 − ti)

2, (4.20)

b1 =
1

det D
[(ti−1 − ti)

2 − (ti+1 − ti)
2], (4.21)

b2 =
−1

det D
(ti−1 − ti)

2. (4.22)

The relation matrix for the combined cubic polynomials can now be constructed as

Pk =

1 . . . k− 1 k k + 1 . . . N[ ]
0 . . . 0 1 0 . . . 0
0 . . . b0 b1 b2 . . . 0

, 1 < k < N. (4.23)

For k = 1 or k = N, the second row is all zeros as the derivative must vanish at the
z-axis. The relation between the local coefficients from eq. 4.13

Jα,k =
[

J(0)α,k J(1)α,k

]T
, (4.24)

and the global coefficients from eq. 4.3 can finally be expressed as

Jα,k = Pk Jα. (4.25)

The relation is the same for the magnetic currents.

4.2 Matrix Equations

The MFIEs 3.13 and 3.14 will now be formulated as a combined matrix equation.
The first step is inserting the expansions 4.1 and 4.2 into eq. 3.13 and testing with
δi(t− ti) as was done for the currents in eq. 4.3. For a specific i this leads to[

Hinc,φ,i

−Hinc,t,i

]
=

1
2

[
Jt,i

Jφ,i

]
− 1

η2
1

Nk

∑
k=1

∑
v

∫ L

t′=0

[
L1,tt(ti, t′) L1,tφ(ti, t′)
L1,φt(ti, t′) L1,φφ(ti, t′)

] [
f (v)k (t′)M(v)

t,k

f (v)k (t′)M(v)
φ,k

]
dt′

−
Nk

∑
k=1

∑
v

∫ L

t′=0

[
K1,tt(ti, t′) K1,tφ(ti, t′)
K1,φt(ti, t′) K1,φφ(ti, t′)

] [
f (v)k (t′)J(v)t,k

f (v)k (t′)J(v)φ,k

]
dt′. (4.26)
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Here the vectors with the local current coefficients like eq. 4.7 can be used to
rewrite as [

Hinc,φ,i

−Hinc,t,i

]
=

1
2

[
Jt,i

Jφ,i

]
− 1

η2
1

Nk

∑
k=1

[
L1,tt,i,k L1,tφ,i,k

L1,φt,i,k L1,φφ,i,k

] [
Mt,k

Mφ,k

]

−
Nk

∑
k=1

[
K1,tt,i,k K1,tφ,i,k

K1,φt,i,k K1,φφ,i,k

] [
Jt,k

Jφ,k

]
, (4.27)

where L and K are row vectors with three or two elements for quadratic and cubic
basis functions respectively. The elements are given as

[
Lu,αβ,i,k

]
v =

∫ t(2)k

t′=t(0)k

Lu,αβ(ti, t′) f (v)k (t′)dt′, (4.28a)

[
Ku,αβ,i,k

]
v =

∫ t(2)k

t′=t(0)k

Ku,αβ(ti, t′) f (v)k (t′)dt′, (4.28b)

where f (v)k (t′) are the functions from eq. 4.6 or 4.12. In the same way as equation
4.27 was derived, eq. 3.14 can be formulated as a matrix equation.
By using the relations between local and global coefficients from either eq. 4.10 or
4.25 depending on the chosen basis functions the matrix systems for the coupled
MFIEs and EFIEs from eq. 2.30, can finally be stated.

Coupled MFIE


Hinc,φ

−Hinc,t

0
0

 =



(
− K1,tt +

1
2 I
)

−K1,tφ − 1
η2 L1,tt − 1

η2 L1,tφ

−K1,φt

(
− K1,φφ +

1
2 I
)
− 1

η2 L1,φt − 1
η2 L1,φφ(

K2,tt +
1
2 I
)

K2,tφ
1
η2 L2,tt

1
η2 L2,tφ

K2,φt

(
K2,φφ +

1
2 I
)

1
η2 L2,φt

1
η2 L2,φφ




Jt

Jφ

Mt

Mφ


(4.29a)

Coupled EFIE


Einc,φ

−Einc,t

0
0

 =


−L1,tt −L1,tφ

(
K1,tt − 1

2 I
)

K1,tφ

−L1,φt −L1,φφ K1,φt

(
K1,φφ − 1

2 I
)

L2,tt L2,tφ

(
− K2,tt − 1

2 I
)

−K2,tφ

L2,φt L2,φφ −K2,φt

(
− K2,φφ − 1

2 I
)




Jt

Jφ

Mt

Mφ


(4.29b)



4.2. Matrix Equations 27

In the coupled matrix equations, the N × N submatrices are defined as

Lu,αβ =
N

∑
i=1

Nk

∑
k=1

PiLu,αβ,i,kPk (4.30)

Ku,αβ =
N

∑
i=1

Nk

∑
k=1

PiKu,αβ,i,kPk (4.31)

where Pi is a column vector of zeros, except for a one at index i.

For a numerical implementation the elements given in eq. 4.28 needs to be
calculated. This means inserting eqs. 3.15 and 3.16 and performing the double
integration in t′ and φ′. [

Lu,αβ,i,k
]

v =

iωµ0

∫ t(2)k

t′=t(0)k

∫ 2π

φ′=0
α̂(t, φ)·

[
n̂×Gu

(
s(t, φ), s(t′, φ′)

)]
· β̂(t′, φ′) f (v)k (t′)sρ(t′)ei(φ′−φ)dφ′dt′

(4.32a)

[
Ku,αβ,i,k

]
v =∫ t(2)k

t′=t(0)k

∫ 2π

φ′=0
α̂(t, φ) ·

[
n̂×
[
∇×Gu

(
s(t, φ), s(t′, φ′)

)]]
· β̂(t′, φ′) f (v)k (t′)sρ(t′)ei(φ′−φ)dφ′dt′

(4.32b)

where t = ti and φ = φi such that s(t, φ) is the sample point i. In the next section it
will be shown how the integration kernels can be expressed explicitly for a scatterer
in a homogeneous medium.
The theory presented leading to the coupled EFIE and MFIE in eq. 4.29 is valid for
both PEC and dielectric scatterers, but for a PEC scatterer the electric field vanishes
inside the surface, and the equations reduce to

MFIE (PEC)[
Hinc,φ

−Hinc,t

]
=

(− K1,tt +
1
2 I
)

−K1,tφ

−K1,φt

(
− K1,φφ +

1
2 I
) [ Jt

Jφ

]
(4.33a)

EFIE (PEC) [
Einc,φ

−Einc,t

]
=

[
−L1,tt −L1,tφ

−L1,φt −L1,φφ

] [
Jt

Jφ

]
(4.33b)
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Figure 4.4: ρ and φ unit vectors for an observation point s and a source point s′ in the xy plane.

4.3 Matrix Elements for Homogeneous Medium Green’s Func-
tion

The Green’s function parts in eqs. 4.32 will now be considered for a scatterer in a
homogeneous medium. The Green’s function enters in the integral kernels as

α̂(t, φ) ·
[
n̂×G

(
s(t, φ), s(t′, φ′)

)]
· β̂(t′, φ′), (4.34)

for the L matrix elements, and

α̂(t, φ) ·
[
n̂×

[
∇×G

(
s(t, φ), s(t′, φ′)

)]]
· β̂(t′, φ′), (4.35)

for the K matrix elements. These terms are now found explicitly for the homoge-
neous Green’s function in eq. 2.15.

The relevant unit vectors from section 3.1 needed for α̂ and β̂′ = β̂(t′, φ′) are
stated below in terms of the (ρ̂, φ̂, ẑ) unit vectors, see fig. 4.4. The arguments (t, φ)

and (t′, φ′) have been dropped to ease notation.

ρ̂ = x̂ cos φ + ŷ sin φ

φ̂ = −x̂ sin φ + ŷ cos φ

t̂ = ρ̂tρ + ẑtz

n̂ = ρ̂nρ + ẑnz

s = ρ̂sρ + ẑsz

ρ̂′ = ρ̂ cos (φ′ − φ) + φ̂ sin (φ′ − φ)

φ̂′ = −ρ̂ sin (φ′ − φ) + φ̂ cos (φ′ − φ)

t̂′ = ρ̂′t′ρ + ẑt′z

n̂′ = ρ̂′n′ρ + ẑn′z

s′ = ρ̂′s′ρ + ẑs′z (4.36)

The vector R from a source point to an observation point, both on the surface, can
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now be given in cylindrical coordinates as

R = s− s′ = ρ̂(sρ − s′ρ cos (φ′ − φ))− φ̂s′ρ sin (φ′ − φ) + ẑ(sz − s′z), (4.37)

and the length of R is

R = |R| =
√
(sρ − s′ρ)2 + 2sρs′ρ(1− cos (φ′ − φ)) + (sz − s′z)2. (4.38)

4.3.1 L Matrix Elements

Ignoring the scalars for now in eq. 2.15, the anterior vector product in eq. 4.34
gives rise to two dyadic terms α̂ · [n̂× I] · β̂′ and α̂ · [n̂×RR] · β̂′.

For the unit dyadic term, the dyadic identity a · (b× C) = (a× b) · C [17] is
used to get

α̂ · (n̂× I) · β̂′ = (α̂× n̂) · I · β̂′ = (α̂× n̂) · β̂′, (4.39)

where the cross product is easily handled by remembering the definition 3.5. For
the four different combinations of unit vectors this leads to

t̂ · (n̂× I) · t̂′ = (t̂× n̂) · t̂′ = φ̂ · t̂′ = t′ρ sin (φ′ − φ)

= −n′z sin (φ′ − φ), (4.40a)

t̂ · (n̂× I) · φ̂′ = cos (φ′ − φ), (4.40b)

φ̂ · (n̂× I) · t̂′ = −(nzn′z cos (φ′ − φ) + nρn′ρ), (4.40c)

φ̂ · (n̂× I) · φ̂′ = −nz sin (φ′ − φ). (4.40d)

The relationship between the components of the tangential and normal vectors
tρ = −nz and tz = nρ have been used to simplify the expressions.

To find the explicit expressions for the α̂ · [n̂×RR] · β̂′ term, the vector product
between n̂ and R has to be calculated. Both have been expressed in the same
cylindrical unit vectors so the vector product is readily found

n̂×R = ρ̂[nzs′ρ sin (φ′ − φ)] + φ̂[nz(sρ − s′ρ cos (φ′ − φ))− nρ(sz − s′z)]

+ ẑ[−nρs′ρ sin (φ′ − φ)]. (4.41)

Now (n̂ × R)R is a dyadic and the final result is obtained by taking the scalar
products from the left and right with the appropriate unit vectors from eqs. 4.36.
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A bit of algebra leads to

t̂ · (n̂×R)R · t̂′ = −s′ρ sin (φ′ − φ)[n′ρ(sz − s′z)− n′z(sρ cos (φ′ − φ)− s′ρ)], (4.42a)

t̂ · (n̂×R)R · φ̂′ = sρs′ρ sin2(φ′ − φ), (4.42b)

φ̂ · (n̂×R)R · t̂′ = [nz(sρ − s′ρ cos(φ′ − φ))− nρ(sz − s′z)]

· [n′ρ(sz − s′z)− n′z(sρ cos(φ′ − φ)− s′ρ)], (4.42c)

φ̂ · (n̂×R)R · φ̂′ = −sρ sin(φ′ − φ)[nz(sρ − s′ρ cos(φ′ − φ))− nρ(sz − s′z)]. (4.42d)

Remembering the scalar terms from eqs. 2.14, 2.16 and 2.17, the expression for the
Green’s function used for the L matrix elements becomes

α̂ ·
[
n̂×G(s, s′)

]
· β̂′ =

[
(α̂ · [n̂× I] · β̂′)A(R)− 1

R2 (α̂ · [n̂×RR] · β̂′)B(R)
]
g(R),

(4.43)

for the different combinations of α̂ and β̂′ in eq. 4.40 and eq. 4.42.

4.3.2 K Matrix Elements

The curl of the homogeneous Green’s function from eq. 2.20 is inserted in the ex-
pression 4.35, and again ignoring the scalar terms and suppressing the arguments
one obtains

α̂ · (n̂× [∇×G(s, s′)]) · β̂′ ∝ α̂ · (n̂× [R× I]) · β̂′

= α̂ · [R(n̂ · I)− (n̂ ·R)I] · β̂′

= α̂ ·Rn̂ · β̂′ − α̂ · (n̂ ·R)β̂′, (4.44)

where the dyadic identity [17]

a× (b×C) = b(a ·C)− (a · b)C, (4.45)

was used to rewrite the double cross term. To find the explicit matrix elements, the
different combinations of α̂ · R, n̂ · β̂′, n̂ · R, and α̂ · β̂′ must be evaluated. For the
first term in eq. 4.44 the scalar products are

t̂ ·R = −nz(sρ − s′ρ cos(φ′ − φ)) + nρ(sz − s′z), (4.46a)

φ̂ ·R = −sρ sin(φ′ − φ), (4.46b)

n̂ · t̂′ = −nρn′z cos(φ′ − φ) + nzn′ρ, (4.46c)

n̂ · φ̂′ = −nρ sin(φ′ − φ). (4.46d)
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For the second term the needed scalar products are

t̂ · t̂′ = nzn′z cos(φ′ − φ) + nρn′ρ, (4.47a)

t̂ · φ̂′ = nz sin(φ′ − φ), (4.47b)

φ̂ · t̂′ = −n′z sin(φ′ − φ), (4.47c)

φ̂ · φ̂′ = cos(φ′ − φ), (4.47d)

n̂ ·R = nρ(sρ − s′ρ cos(φ′ − φ)) + nz(sz − s′z). (4.47e)

Reintroducing the scalars from eq. 2.20, the Green’s function used for the K matrix
elements becomes

α̂ · (n̂× [∇×G(s, s′)]) · β̂′ = (α̂ ·Rn̂ · β̂′ − α̂ · (n̂ ·R)β̂′)Am(R)
g(R)

R
, (4.48)

for the different combinations of α̂ and β̂′ in eqs. 4.46 and 4.47.

All that is needed to solve the EFIE or MFIE for a BoR scatterer in a homoge-
neous medium have thus been presented. The rest of the text is concerned with
the numerical implementation and results.





Chapter 5

Numerical Implementation

In this chapter the implementation of the program developed for solving the EFIE
and MFIE for cylindrical symmetric scatterers is discussed. In the case of a dielec-
tric scatterer the equations were given in eqs. 4.29 and for a PEC scatterer in eqs.
4.33. In order to verify the program the canonical example of plane wave scattering
by a homogeneous sphere is explored, see fig. 5.1a. Here analytic solutions for the
surface currents can be found for both dielectric or perfect conducting spheres, see
appendix B, and it will thus serve as a basis for assessing the accuracy of solutions
for the EFIE and MFIE.

After a short overview of the parts of the program, some choices made and
problems encountered are discussed. Results obtained are presented in the next
chapter.

5.1 Overview of Program

The developed program for solving the EFIE and MFIE consist of several steps and
is summarized below, with references to relevant sections.

• Problem definition, ch. 1.

• Discretization of bounding curve, sec. 4.1.

• Calculation of incident fields, sec. 3.3.

• Calculation of matrix elements, sec. 4.3.

• Setup the matrix equation sec. 4.2, using the boundary conditions, sec 3.4.

33



34 Chapter 5. Numerical Implementation

y

z

x

E0

H0

k1

a

Ω1

ε1

Ω2

ε2

(a)

ρ

z

x

Ω1

Ω2

tN

z0 t(2)2

t(1)2

t(0)2

t1
t2

t3

t4

(b)

Figure 5.1: (a) PEC or dielectric sphere of radius a and dielectric constant ε2 placed in a homo-
geneous background medium of dielectric constant ε1. Illuminated from below by a plane wave
polarized in the x̂-direction. (b) Discretization scheme for the sphere considered. The first three
observation/sample points ti, i = 1, 2, 3 are shown together with the three points t(v)2 , v = 0, 1, 2
associated with the second section.

• Calculate surface currents by solving the matrix equation.

• Use calculated surface currents to calculate properties of interest.

5.1.1 Problem Definition

The program handles both PEC and dielectric cylindrical symmetric scatterers. The
first step is to decide which type to consider and whether to use the EFIE or MFIE
formulation, such that one of the four matrix equations in 4.29 and 4.33 is used. In
order to solve the relevant equation one must choose the quadratic or cubic basis
functions for the expansion of the surface currents, and the number of sections Nk

for the expansions.
The dielectric constants of the scatterer ε2 and background medium ε1, and the
wavelength λ of the incident plane wave, must be defined. Finally the parameters
defining the geometry of the problem must be given, for a sphere this means the
radius a and z-coordinate of the center z0.
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5.1.2 Discretization

Following the approach presented in sec. 4.1, the bounding curve of length L for
the scatterer is divided into Nk sections, each with one interior point, see fig. 5.1b.
For an open bounding curve, this lead to the total number of discrete sample points
N = 2Nk + 1, where the two endpoints, ti = t1 = 0 and ti = tN = L, denotes the
t-parameter at those points. The bounding curve for φ = 0 is used, such that the
ρz-plane coincides with the xz-plane.

For the computation of the matrix elements, components of the surface posi-
tions s(ti, 0), s(t′, φ′) and normal vectors n̂(ti, 0), n̂(t′, φ′) are needed. In order to
integrate in the source coordinates, they need to be properly parametrized along
the surface. For a sphere this means every section have the same curvature and the
normal vector points out of the sphere in the direction from the center to the source
point. In principle any bounding curve could be used, provided it is smooth and
parametrized properly in t, see e.q. fig. 3.1, where straight and curved sections are
combined.

5.1.3 Incident Fields

The t and φ components of the relevant incident field must be calculated for all
N-sample points, according to eqs. 3.20-3.23. The incident plane wave can be from
below or above.

5.1.4 Calculation of Matrix Elements

In the matrix equations 4.29 or 4.33, the elements of the submatrices, like L1,tt or
K1,tt, must be calculated according to eqs. 4.32. Accurate numerical evaluation of
the integrals have been the primary challenge in the implementation of the pro-
gram, and some thoughts about the chosen approach are now presented.

For the matrix elements where the sample point i is outside section k the inte-
grals are straightforwardly calculated with the 'integral2' routine in Matlab®, which
numerically evaluates double integrals, to some specified degree of accuracy. When
a sample point is located at either the endpoints t(0)k or t(2)k , or interior point t(1)k of
a section, the singular nature of the homogeneous-medium Green’s function must
be addressed. Such a section will be referred to as a self-section.
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K-type Elements

For the K-type integrals it was discussed in sec. 2.3.3, how the integral must be
evaluated as a principal value integral. To this a contribution like 1

2 Js, is added, and
this current term enters in the matrix equations as I/2. Since the singular points
are known, the principal value integrals in 4.32b, can be performed for self-sections
by excluding a small part of the integration domain around the singular point. It
was found this leads to convergent integrals.

L-type Elements

As mentioned in sec. 2.3.3, the evaluation of the L-type integrals, in eq. 4.32a, is
handled for self-sections by placing the sample position a very small distance δ

outside the surface, see fig. 5.2a, where the case of a sample point at the end of a
section is shown. In practice the distance from source point to observation point R
in eq. 4.38 is made non zero by moving the observation point a small distance in
the direction of the unit vector

s = sδ = ρ̂(sρ + δnρ) + z(sz + δnz). (5.1)

This allows integration along the curve for a self-section without R becoming zero.
The integral is evaluated for a few δ-values and the value of a specific matrix
element L(v)

ik is extrapolated to δ = 0, using either a third order polynomial fit or a
logarithmic fit, given by

L(v)
ik (δ) = c0 + c1δ + c2δ2 + c3δ3 or (5.2)

L(v)
ik (δ) = c0 + c1 log δ, (5.3)

where the highest coefficient of determination determines which to use. An exam-
ple of a sample point at the end of a section, where a logarithmic fit was necessary
is shown in fig. 5.2b. The constant value c0 from the best fit is taken as the value of
the integral at δ = 0, where it would otherwise be singular. The real and imaginary
parts are fitted separately as one might be singular and the other not.
For the 'integral2' routine it is possible to integrate singularities on the boundary

of regions of integration if they are not too severe [14]. To make sure the singular-
ities are on the boundary, the limits on t′ is split at t(1)k . As illustrated in fig. 5.2b,
some of the matrix elements have singularities which are severe enough, that the
integral does not converge when δ is close to zero. This was especially pronounced
when using the quadratic basis functions.
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Figure 5.2: Illustrating the interpolation scheme to handle the singularity when integrating over a
self-section. (a) The sample point ti is pushed a small distance δ away from the bounding curve in
the direction of n̂ and the integration is performed for a number of δ’s. (b) Example of the integral
results obtained for six different delta values. The curve is the best logarithmic fit, and the constant
c0 the value obtained for the given matrix element.

5.1.5 Matrix Equation and Boundary Conditions

After the evaluation of the the matrix elements, the boundary conditions from sec.
3.4 must be applied. Taking the EFIE for a PEC from eq. 4.33b, as an example.
Then condition 3.28, Jφ(0) = i Jt(0), for the start point on the axis, can be applied
by first setting the (N + 1)’th row in the matrix to zero and then inserting i as the
first element in the same row, and −1 at position (N + 1). Finally the (N + 1)’th
element in the vector with the incident field components is set to zero, which leads
to the condition

0 = −i Jt,1 + Jφ,1, (5.4)

forcing the appropriate boundary condition for the start point, similarly can be
done for the end point.

The boundary condition that the derivative must vanish at the end points, are
automatically taken care of for the cubic basis functions as mentioned in sec. 4.1.2.
But is not guaranteed for the quadratic basis functions, this will be discussed fur-
ther in the next chapter.

5.1.6 Calculated Surface Currents

The matrix equation is solved by inversion, and the vectors of coefficients for the
surface currents, at the N discrete sample points is obtained. For a PEC, this means
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the vectors Jt, Jφ, and additionally Mt, Mφ for a dielectric scatterer. Inserting these
together with the chosen basis functions in the appropriate expansions of Jα(t)
and Mα(t) in sec. 4.1, the surface currents can be calculated everywhere along the
bounding curve.

5.1.7 Properties of Interest

In order to verify the program, a sphere was initially chosen as the scattering
object, as analytic results are available, see. appendix B. The results presented
in the next chapter will mainly be concerned with assessing the accuracy of the
implementation and as a way to quantify this, the following expression for the
integrated error have been used

Σ = Σt + Σφ, (5.5)

and for each of the components α = t or φ the integrated error have been defined
as

Σα =
∫ 1

0

∣∣Jα(t)− JMie
α (t)

∣∣2
|JMie

α (t)|2
dt, (5.6)

where Jα(t) is the α-component of the calculated electric surface current , and
JMie
α (t) is the analytic Mie-scattering result. The integrated error for the magnetic

surface current have been calculated the same way. Note that t have been normal-
ized.

For a scattering problem some of the main properties of interest are the scatter-
ing, absorption and extinction cross sections [15]. After the surface currents have
been calculated they can be used to determine the cross sections, but due to time
constraints only the implementation of the absorption cross section calculation was
implemented, and the expression used is stated here for reference. For a cylindrical
symmetric scatterer, the power absorbed is given by [15]

Pabs = −2π ∑
n

∫
t

1
2

Real
[(

J(n)φ (t)
)∗

M(n)
t (t)−

(
J(n)t (t)

)∗
M(n)

φ (t)
]
sρ(t)dt, (5.7)

where the ∗ denotes complex conjugation. This can be calculated directly from the
expressions for the surface currents along the bounding curve. In the case of a
incident plane wave, the absorption cross section can be obtained from the power
absorbed as

σabs =
Pabs

1
2 n1|Einc|2

√
ε0/µ0

. (5.8)
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Results and Discussion

The results presented in this chapter will mainly be concerned with the validation
of the numerical implementation. This will also serve as a comparison of the
performance of the EFIE and MFIE formulations, when using either the quadratic
or cubic basis functions.

The scattering problem considered is that of a sphere in free-space, illuminated
from below by a x̂-polarized plane wave with some wavelength λ, see fig. 5.1a.
Spheres of different radii will be considered and their radius will be given in terms
of the wavelength. The parameter t have been normalized with the length of the
bounding curve tN , such that t/tN = 0 denotes the bottom point of the sphere,
and t/tN = 1 the top point of the sphere. The electric surface current have been
normalized with the amplitude of the incident magnetic field, and the magnetic
surface current with the amplitude of the electric field.

First results obtained using the EFIE for a PEC sphere will be considered in sec.
6.1. These will serve to present some of the difficulties encountered, as they were
especially pronounced in this case. Then the MFIE is used to investigate the same
PEC sphere in sec. 6.2 and a comparison between the two formulations will be
made. Next, results for dielectric spheres for both the EFIE and MFIE is presented
in sec. 6.3, including the special cases of high dielectric constant and lossy spheres.
Finally in sec. 6.4, the absorption cross section of a spherical gold particle will be
used as a final validation of the implementation.

39
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6.1 EFIE for a PEC Sphere

6.1.1 Varying δ for Self-Sections

For the evaluation of the L-type matrix elements for self-sections, small δ-values
have to be chosen, as mentioned in sec. 5.1.4. A way to quantify an appropriately
small minimum δ value for a given geometry is thus sought.

In order to illustrate this problem the EFIE 4.33b, for a perfect electric conduct-
ing sphere of radius λ/2 in free-space, was used. Both the quadratic f L, and the
cubic basis functions f CH were employed on the bounding curve discretized in
Nk = 10 sections of equal length Lk. The smallest delta value δ1, was chosen as a
percentage of Lk. Six delta values evenly spaced between δ1 and δmax = 5δ1 were
used, and the program was run ten times with δ1/Lk being varied from 0.25‰ to
1%. For the smallest δ1, the results are shown in fig. 6.1, where the normalized ab-
solute value of the components of the surface current are plotted together with the
analytic Mie-solution. There is some deviation, especially near the top and bottom
of the sphere, and this will be explored further in the next subsection.
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(a) Quadratic basis functions
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Figure 6.1: Normalized absolute value of t- and φ-components of the electric surface current along
the bounding curve of a PEC sphere with radius λ/2. Obtained using the EFIE with 21 sample
points and six evenly spaced deltas such that, δ1/Lk = 0.25‰ and δmax/Lk = 1.25‰. For both (a)
quadratic and (b) cubic basis functions there is decent agreement with the analytic expression, but
some deviation near the endpoints is observed.

For each of the ten runs the integrated error from eq. 5.5 was calculated and
the results are shown in fig. 6.2a. For the quadratic basis functions it is clear, that
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(b) f L and δ1/Lk = 5.66‰ used.

Figure 6.2: (a) Integrated error for varying δ1/Lk, for the problem considered in fig. 6.1. The
error when using the quadratic basis functions f L, depends strongly on the chosen δ1. The first
solid marker shows the error for δ1/Lk = 0.25‰, see. fig. 6.1a, and the second solid marker for
δ1/Lk = 5.66‰, where the absolute values of the surface current is shown in (b). Both the t- and
φ-components deviates strongly from analytic result.

the choice of delta greatly influences the results. In general, increasing δ1 leads
to larger integrated error, but there are certain intervals where increasing the dis-
tance between sample point and bounding curve leads to smaller errors. In this
case from around 5.5‰ to 8‰, leading to a local top in the integrated error marked
by the second filled dot. This have been consistent with what was found for other
geometries and delta values. For the local top at δ1/Lk = 5.66‰ the integrated
error was found to be more than 200 times that of δ1/Lk = 0.25‰ and the surface
currents obtained when using δ1/Lk = 5.66‰ are shown in fig. 6.2b. Here large
deviations especially near the top and bottom are seen, this is discussed in the next
section. The results obtained with the cubic basis functions was significantly less
sensitive to changes in δi and for the specific example, the errors for all δi-values
deviated less than one percent.

The results in this section was obtained from a specific geometry and choice
of delta values, but similar results have been obtained for a range of parameters.
It has not been possible to find a condition for determining δ-values leading to
stable results, especially for the quadratic basis functions, even when increasing
the number of sample points.
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6.1.2 Quadratic or Cubic Basis Functions

Additional insight into the problems encountered near the axis of symmetry can be
gained by considering the surface current J(t) obtained from the discrete points,
shown in fig. 6.1a. The real and imaginary parts of the components of J(t) are
shown in figs. 6.3a and 6.3b. First note how the boundary conditions on the
surface current components from eqs. 3.28 and 3.29 are satisfied, but the condition
that the derivative should vanish at the symmetry axis is not. Secondly notice how
the deviation from the analytic result is primarily in the φ-component, and that the
imaginary part of the φ-component near the end of the bounding curve have two
cusps, where the derivative is not continuous.
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Figure 6.3: (a) Real and (b) imaginary parts of the electric surface current from fig. 6.1a. Deviations
from the analytic result is seen most clearly for the imaginary part of the φ-component, which have
two cusps near the end point. Through the boundary conditions this is linked with the real part of
the t-component, which also deviates near the ends.

A zoomed in view of the cusps in fig. 6.3b are shown in fig. 6.4, where the result
using the cubic basis functions is shown as well. For the cubic case smoothness is
preserved, and the derivative at the end point vanishes as expected, but both kinds
of basis functions introduces an oscillation around the analytic result. A possible
explanation could be that some matrix elements are not accurately estimated by
the δ-extrapolation scheme used to handle the singularity. For the EFIE used,
eq. 4.33b, the worst singularities stems from the imaginary part of self-section
elements of the L1,φt submatrix. Specifically from the second term of eq. 4.43.
An inaccurate imaginary part of Jφ near the symmetry axis, would introduced an
inaccuracy in the real part of Jt, as is seen in fig. 6.3a, due to the forced boundary
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Figure 6.4: Zoomed in view of the cusps in fig. 6.3b, obtained with the quadratic basis functions,
with the result using cubic basis functions, shown as well. The cusps of JL

φ are most pronounced at

the start of the last section t(0)Nk
, where the two last sections connect. The result obtained with cubic

basis functions JCH
φ , is better behaved as the derivatives are matched across sections.

condition. It is again pointed out that the results shown in this section is for a
specific set of parameters, but similar problems occurred for a variety of parameter
combinations, generally the cubic basis functions gave the most accurate results as
expected. Attention is now turned towards investigating the effect of increasing
the number of sections.

6.1.3 Varying the Number of Sections

The same PEC sphere as in the two previous sections now with δ1/Lk = 5‰ is
considered in this section. The program has been run for 5 to 40 sections, and the
integrated error is shown in fig. 6.5a for both types of basis functions. For the
quadratic basis functions there is a noticeable improvement by going from 5 to 10
sections, but after that the integrated error becomes relatively stable. The benefit of
using more sections is more pronounced when using the cubic basis functions, but
the outlier at Nk = 25 raises further doubt about the stability of the program. In
figure 6.5b, the absolute value of the surface current is shown for 25 sections. This
is compared to figure 6.1b, where the result for similar parameters obtained with
10 sections is shown. Even though a different δi was used earlier, the results should
be comparable. Using 25 sections improves the accuracy away from the start point,
but a clear deviation near it is observed, especially for the φ-component.

For a satisfactory implementation of the EFIE for a PEC, the integrated error
should be reduced when increasing the number of sections. This has not been
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Figure 6.5: (a) Integrated error for different numbers of sections for λ/2 radius PEC sphere using
the EFIE. The benefit of increasing the number of sections is more pronounced when using the cubic
basis functions. The absolute value of the surface current for the outlier with cubic basis function at
25 sections, is shown in (b). Good agreement with the analytic result is observed away from the start
point.

achieved, for neither the quadratic or cubic basis functions, and the results have
been shown to depend strongly on the delta distance parameter, introduced to
evaluate the L-type integrals near singularities. To avoid the problems related to
the use of δ, the surface currents can instead be obtained from the MFIE, where
only K-type integrals must be evaluated for a PEC scatterer.

6.2 MFIE for a PEC Sphere

The MFIE for a PEC scatterer eq. 4.33a have been used to find the electric surface
current on the sphere of radius λ/2 as before. The integrated error is shown in
fig. 6.6a, for a varying number of sections from 2 to 20, for both the quadratic
and cubic basis functions. The error decreases for increasing number of sections
as expected and the stability of the program is improved considerably compared
to the EFIE implementation. The first four results from fig. 6.5a for the EFIE is
inserted as well and connected by dashed lines. Here the increase from 10 to 15
sections lead to a small increase in the integrated error, attributed to the instability
near the end points for certain delta-values and number of sections, as illustrated
in fig. 6.4 or 6.5b. These oscillations were not encountered when using the MFIE,
where the singularity of the K-type integrals have been taken care off.



6.3. EFIE and MFIE for a Dielectric Sphere 45

5 10 15 20
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Nk

In
te

gr
at

ed
er

ro
r

Σ

EFIE MFIE
f L f L

f CH f CH

(a)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

t/tN

A
bs

ol
ut

e
va

lu
e

JMie
φ

Nk = 2
Nk = 4
Nk = 8

(b)

Figure 6.6: (a) Integrated error of the electric surface current on a PEC sphere (a = λ/2) for varying
number of sections Nk. Results obtained using quadratic or cubic basis functions for both the EFIE
and MFIE. Better convergence is observed for the MFIE for a PEC scatterer. (b) φ-component of
the electric surface current found with the MFIE and cubic basis functions. Plotted for different Nk,
illustrating how the current converges to the analytic result when increasing the number of sections.

In fig. 6.6b the absolute value of the φ-component found with the cubic basis
functions is shown, when using 2, 4 and 8 sections. It can be seen how the calcu-
lated surface current converges towards the exact result when increasing Nk, and
even at 8 sections it is hard to see the deviations from the analytic result unless
zooming in, in contrast to fig. 6.5b for the EFIE, where 25 sections was used.

The MFIE have been used for a number of PEC spheres of differing radii, and
for radii upto λ, the integrated error were below around 10−4 for 10 sections. For
larger radii, leading to more oscillating surface currents, more sections are needed
to properly model them. In general very good convergence have been found for
the MFIE for a PEC scatterer.

6.3 EFIE and MFIE for a Dielectric Sphere

Results obtained using the EFIE and MFIE in eq. 4.29 for dielectric scatterers
will be presented in this section. First a lossless dielectric sphere with dielectric
constant ε2 = 4 placed in vacuum is considered. As an example the calculations
have been done for two different spheres of radii a1/2 = λ/2 and a1/10 = λ/10
respectively Only the cubic basis functions will be used, as they provide a better
basis for the surface currents as discussed in sec. 6.1.2. Dielectric scatterers support
both electric and magnetic surface currents, and evaluation of both L- and K-type
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matrix elements are needed. For the evaluation of L-type elements, δi/Lk = 5‰
was used. The obtained results is again compared with the analytic results from
appendix B, this time with the boundary coefficients appropriate for a dielectric
sphere. The integrated error is calculated using eq. 5.5, for magnetic and electric
surface currents separately.
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Figure 6.7: Integrated error for the magnetic and electric surface currents on a dielectric sphere of (a)
radius λ/2 and (b) radius λ/10. For both cases, the lowest error for the electric current is obtained
when using the MFIE and for the magnetic current with the EFIE. The difference for J, is especially
pronounced for the small radius sphere. Instability is observed e.q. in M at 25 sections for the MFIE
in (a) or for J at 15 sections for the EFIE in (b).

Fig. 6.7 shows the error for a range of sections for both the EFIE and MFIE for
the small and large spheres. The best agreement is found for the electric surface
current calculated with the MFIE and the magnetic current with the EFIE, for both
spheres. The electric current obtained via the EFIE and the magnetic current via
the MFIE is significantly more inaccurate, especially for the small sphere. This
phenomenon is thought to be related to the problems of evaluating the L-integrals
accurately, as discussed in sec. 6.1. Even though the MFIE and EFIE couples the
electric and magnetic surface currents, see eqs. 4.29, the L-type integral contains
the inaccurate current in both cases.

The result for the magnetic surface current on the a1/2-sphere obtained with the
MFIE for 25 sections, is shown in fig. 6.8a, even though this was deemed a point of
instability in fig. 6.7a it is hard to notice a difference when compared to the analytic
result. The zoomed in view in fig. 6.8b near the bottom of the sphere reveals some
fluctuation in the φ-component, similarly to what was observed in fig. 6.4 where
the electric surface current was calculated with the EFIE for a PEC sphere. In
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Figure 6.8: (a) Components of the magnetic surface current for a dielectric sphere of radius λ/2, and
dielectric constant ε2 = 4 calculated with the MFIE using 25 sections and cubic basis functions. Only
when zoomed in (b) is the deviation from the analytic result at the bottom of the sphere noticeable.

general the fluctuations near the endpoints for the dielectric spheres have been
much less pronounced than for the EFIE PEC case and good convergence have
been found for a variety of parameters. Some results for spheres of high dielectric
constant and lossy spheres are presented in the next section.

High Dielectric Constant

The magnetic and electric surface currents for a sphere with a = λ/5 and ε2 = 80
have been found with the MFIE and EFIE using 10 sections and the cubic basis
functions, see fig. 6.9. The same geometry have been considered in [18] for the
EFIE using triangle basis functions for both testing and basis functions and in [4]
for the EFIE, where a pulse expansion approach was used. The electric surface
current is shown in fig. 6.9a, and the magnetic surface current in 6.9b. For both,
the result from the MFIE is indiscernible from the analytic result but the EFIE
introduces some instability for Jφ and Mt, and similar spurious oscillations were
observed by [18]. Although the approach used here differs, [4] attributed the oscil-
lations to insufficient accuracy in the evaluation of the matrix elements, and this is
thought to be the main problem for the examples presented here as well.
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Figure 6.9: (a) Electric surface current and (b) magnetic surface current on a sphere of radius λ/5
and ε2 = 80, calculated from both the EFIE and MFIE using 10 sections and cubic basis functions.
For the MFIE no discernible deviation from the analytic results can be seen, but the EFIE introduces
some oscilliations for both the electric and magnetic surface currents in this case.

Lossy Materials

As a final test of the stability of the implementation, a spherical gold scatterer in
free space is considered. The refractive index, n2 = 0.2487 + i3.0740 at λ = 600nm
was used [7], and the sphere radius was set to 60 nm. The calculated surface
currents are shown in fig. 6.10, for the MFIE and 10 sections used. There is decent
agreement with the analytic result, except near the ends for the magnetic currents,
though this could be remedied by increasing the number of sections.
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Figure 6.10: a) Electric surface current and (b) magnetic surface current on a gold sphere of radius 60
nm and ε2 = −9.388+ i1.529i, illuminated from below by a plane wave with λ = 600 nm. Calculated
with the MFIE using 10 sections and cubic basis functions.
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6.4 Absorption Cross Section for a Spherical Gold Particle

As an example of a calculation of the optical properties of a scattering object, the
absorption cross section of the gold particle from before have been calculated with
eq. 5.8. The refractive index over the range of wavelengths considered was ob-
tained from [7], and the calculation have been done with the MFIE and cubic basis
functions for both 3 and 10 sections. The results are shown in fig. 6.11, together
with the result obtained from the analytic expression. Using just 3 sections the
result follows the analytic result until the peak just above 500 nm, and deviates
less than 2% for the wavelengths below the peak.
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Figure 6.11: Calculated absorption cross section of a spherical gold particle of 60 nm. Calculated
with 3 and 10 sections and for the analytic result. Even for just 3 sections, resulting in 7 sample
points good agreement with the analytic result is obtained.





Chapter 7

Conclusion

Scattering from nanosized bodies of revolution have been considered in this text,
using the well known Green’s function surface integral equation method. The
problem of finding the electromagnetic fields was converted to a problem of find-
ing the equivalent surface current densities on the surface of the scattering par-
ticle, using either the electric field integral equation EFIE or the magnetic field
integral equation MFIE. The cylindrical symmetry made it possible to only dis-
cretize in one-dimension along the bounding curve of the body of revolution, and
the method of moments was used to convert the problem into a numerical solvable
matrix equation.

To solve the matrix equation a program was written in Matlab, capable of find-
ing the equivalent surface current densities using either the EFIE or MFIE with
quadratic or cubic basis functions. The program was tested for a spherical parti-
cle and the surface currents obtained was compared with the analytically known
result.

For a perfect conducting sphere, the MFIE was found to lead to significantly
more accurate results compared to the EFIE. This was attributed to, at least partly,
inaccuracy in the calculation of the matrix elements. Comparing the quadratic and
cubic basis functions, the cubic ones lead to much better stability for both PEC
or dielectric scatterers, especially near the top and bottom of the sphere. This is
thought to be due to improper implementation of the boundary conditions for the
quadratic basis functions.

The program was tested for high dielectric and lossy scatterers, where good
accuracy was obtained, even for a low number of sample points. Finally it was
shown, that a discretization in just 7 points along the bounding curve of a 60 nm
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gold particle, lead to a deviation of less than 2%, when calculating the absorption
cross section.

Excluding the EFIE case for a PEC scatterer, accurate result was found for both
the EFIE and MFIE when using the cubic basis functions.
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Appendix A

Method of Moments

In this appendix a brief introduction to the method of moments will be given. The
goal is to convert a functional equation to a matrix equation which can be solved
by numerically. The details of the presentation here, can be found in [5].

Start by considering an inhomogeneous equation of the type

L( f ) = g. (A.1)

where L is a linear operator, g a known excitation function and f is an unknown
field. Examples of such an equation are given in eqs. 2.28 and 2.29. In order to
solve equations of this type, f is first expanded into a sum of N basis functions as

f (r) =
N

∑
n=1

an fn(r), (A.2)

where an are unknown coefficients and fn are known basis (expansion) functions.
In principle the summation should be over an infinite number of terms, but for an
approximate solution a finite number of terms are used. Now inserting A.2 into
A.1 and using that L is linear one obtains

N

∑
n=1

anL( fn) ≈ g. (A.3)

Let 〈 f , g〉 be a suitable inner product defined by

〈 f , g〉 =
∫

f (r)g(r)dr, (A.4)
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and define a set of N testing (weighting) functions

wm(r), m = 1, . . . , N (A.5)

and take the inner product of eq. A.3 with each of these

N

∑
n=1

an〈wm,L fn〉 = 〈wm, g〉, m = 1, . . . , N. (A.6)

This can be written in matrix form as

La = b, (A.7)

where the matrix entries in L are given by

lmn = 〈wm,L fn〉, (A.8)

and a and b are the column vectors

a =
[

a1 a2 . . . aN

]T
, (A.9)

b =
[
〈w1, g〉 〈w2, g〉 . . . 〈wN , g〉

]T
. (A.10)

Instead of solving eq. A.1 directly, the matrix equation A.7 can be solved numer-

ically for the coefficients in a provided the inverse L
−1

exits. The approximate
solution of f can then be constructed from the finite number of coefficients and
basis functions according to eq. A.2.

For a particular problem one have to choose suitable basis and testing functions
and a large variety of options are available [13]. In this report a point matching
approach and two different sets of polynomial basis function are considered.

A.1 Point Matching

In order to calculate the matrix elements in eq. A.8 it is necessary to compute the
integral defined by the inner product for the chosen testing function. A relatively
simple approach is to require that eq. A.3 is satisfied at discrete points. This is
equivalent to using dirac delta functions as the testing functions and no integration
over the range of the testing functions is required.
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Figure A.1: Splitting the domain of f (t) into subsections

A.2 Subsectional Basis Functions

Instead of using basis functions defined on the entire domain of f , subsectional
basis functions fn, which are defined for some subsection of the domain can be
used. These can then be combined to find a solution spanning the domain of f .

As an example consider the one-dimensional problem, where f (t) is defined on
some interval [t0, tN ], and ti denotes N discrete sample points along the interval,
see fig. A.1. Now divide the domain in k subsections with start points t(s,k), interior
points t(m,k) and end points t(e,k). The first two subsections are shown in fig. A.1,
where the middle point of the subsection is chosen as the interior point. It is
noted how the end point of the first section is the start point of the second section.
Subsectional polynomial basis functions will now be defined.

A.2.1 Quadratic Lagrange Interpolation Polynomials

The second order Lagrange interpolation polynomials are now introduced [13].
They consist of three quadratic polynomials that interpolate between two end-
points and one interior point of a subsection like the ones shown in fig. A.1. The
Lagrange interpolation polynomials f (L,v) are defined on the unit interval [0, 1]
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Figure A.2: The three quadratic Lagrange interpolation polynomials defined on the unit interval.
v = 0, 2 ensures continuity at the endpoints and v = 1 samples at an interior point.

according to

f (L,0)(u) = 2(u− 1
2
)(u− 1), 0 ≤ u ≤ 1 (A.11a)

f (L,1)(u) = 4u(1− u), 0 ≤ u ≤ 1 (A.11b)

f (L,2)(u) = 2u(u− 1
2
), 0 ≤ u ≤ 1 (A.11c)

where the v-index denotes the sampling points in the interval, such that v = 0
denotes the point u = 0, where f (L,0) = 1 and the other two polynomials are zero.
v = 1 denotes u = 1/2, where f (L,1) = 1, and the others zero, and v = 2 the point
u = 1, where f (L,2) = 1 and the other zeros, see fig. A.2

For a non unit interval, like the ones in fig. A.1, the Lagrange polynomials of
course have to be corrected to fit the interval of interest. It is noted that the proper-
ties of the Lagrange polynomials for adjacent subsections ensures continuity at the
section boundaries, but not necessarily continuity of any derivatives. The polyno-
mials introduced here, will also be referred to as the quadratic basis functions.

A.2.2 Cubic Hermite Spline

The cubic Hermite spline, consists of four cubic polynomials f (H,v) and can be
used, if it is necessary to ensure continuity of the derivatives across section bound-
aries [13], see fig. A.3. Defined on the unit interval [0, 1], they can be expressed as
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Figure A.3: The four cubic Hermite spline polynomials defined on the unit interval. v = 0, 1 ensures
continuity and v = 2, 3 ensures continuity of derivative.

f (H,0)(u) = (u− 1)2(2u + 1), 0 ≤ u ≤ 1 (A.12a)

f (H,1)(u) = u2(3− 2u), 0 ≤ u ≤ 1 (A.12b)

f (H,2)(u) = u3 − 2u2 + u, 0 ≤ u ≤ 1 (A.12c)

f (H,3)(u) = u3 − u2, 0 ≤ u ≤ 1 (A.12d)

The interval is sampled at both endpoints, and f (H,0) and the derivative of f (H,2)

are equal to one at the start point and zero at the end point. f (H,1) and the deriva-
tive of f (H,3) are one at the endpoint, and zero at the start point. This way the two
polynomials f (H,0) and f (H,1) ensures continuity across boundaries and f (H,2) and
f (H,3) ensures continuity of the first derivative.
As for the Lagrange interpolation polynomials it is necessary to make an adjust-
ment if a non unit interval is considered. The cubic Hermite spline, will be referred
to as the cubic basis functions.





Appendix B

Analytical Scattering From a Sphere

In this appendix the analytic results for the surface currents densities are stated for
reference. They can be obtained following a Mie-scattering approach [6][15].

Jt(θ) = in1
E0

η0

∞

∑
n=1

gn

[
P1

n(cos θ)

k1a sin θ

(
[k1ajn(k1a)]′ + an[k1ahn(k1a)]′

)
+ i

∂P1
n(cos(θ)

∂θ

(
jn(k1a) + bnhn(k1a)

)]
(B.1)

Jφ(θ) = in1
E0

η0

∞

∑
n=1

gn

[
−i
k1a

∂P1
n(cos(θ)

∂θ

(
[k1ajn(k1a)]′ + an[k1ahn(k1a)]′

)
+

P1
n(cos θ)

sin θ

(
jn(k1a) + bnhn(k1a)

)]
(B.2)

Mt(θ) = E0

∞

∑
n=1

gn

[
P1

n(cos θ)

k1a sin θ

(
[k1ajn(k1a)]′ + bn[k1ahn(k1a)]′

)
+ i

∂P1
n(cos(θ)

∂θ

(
jn(k1a) + anhn(k1a)

)]
(B.3)

Mφ(θ) = E0

∞

∑
n=1

gn

[
−i
k1a

∂P1
n(cos(θ)

∂θ

(
[k1ajn(k1a)]′ + bn[k1ahn(k1a)]′

)
+

P1
n(cos θ)

sin θ

(
jn(k1a) + anhn(k1a)

)]
(B.4)

gn = in 2n + 1
n(n + 1)

(B.5)
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For dielectric scatterer

an = − jn(k2a)[k1ajn(k1a)]′ − jn(k1a)[k2ajn(k2a)]′

jn(k2a)[k1ahn(k1a)]′ − hn(k2a)[k2ajn(k2a)]′
(B.6)

bn = − ε1 jn(k1a)[k2ajn(k2a)]′ − ε2 jn(k2a)[k1ajn(k1a)]′

ε1hn(k1a)[k2ajn(k2a)]′ − ε2 jn(k2a)[k1ahn(k1a)]′
(B.7)

For PEC scatterer

an = − jn(k1a)
hn(k1a)

(B.8)

an = − [k1ajn(k1a)]′

[k1ahn(k1a)]′
(B.9)
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