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Resumé på Dansk

Spektraldekomposition er et værktøj, som ofte bruges til at analysere signaler. Den
mest kendte og nok også mest udbredte dekompositionsmetode er Fouriertransfor-
mationen. Dog har Fouriertransformationen sine begrænsninger, og er bedst egnet
til lineære og stationære systemer. I denne specialeafhandling arbejdes der med sig-
naler, som hverken er lineære eller stationære, og derfor anvendes de såkaldte adaptive
dekompositionsmetoder, som netop kan anvendes til at opsplitte ikke-lineære og ikke-
stationære signaler i komponenter, der tilnærmelsesvis har lokal smal båndbredde. I
1998 blev den adaptive dekompositionsmetode ved navn empirical mode dekomposi-
tion (EMD) introduceret, og siden da er der blevet introduceret yderligere adaptive
dekompositionsmetoder.

I dette speciale er målet at lave prædiktioner én time frem af vindkraftproduktionen
i en online opsætning, og til dette formål er fire forskellige adaptive dekompositions-
metoder introduceret. Den ene metode er baseret på partielle differentialligninger og
kaldes PDE-EMD, to af metoderne er baseret på compressive sensing, og slutteligt
er EMDen inkluderet. Disse metoder er anvendt som forbehandling på et vindkraft-
produktionssignal, inden en prædiktion er lavet. Desuden er EMDen også testet i en
offline opsætning.

For at introducere disse metoder er relevant teori vedrørende compressive sensing
og partielle differentialligninger introduceret. Desuden er to teoremer omhandlende
entydigheden af dekompositionen for compressive sensing metoderne bevist.

Dekompositionsmetodernes evne er testet ift. den resulterende opsplitnings ortog-
onalitet, metodernes evne til at begrænse randeffekter samt metodernes evne til at
være konsekvente ved små ændringer i data. Ved disse undersøgelser ses det, at
PDE-EMD metoden klarer sig bedst ift. at være konsekvent samt i at begrænse ran-
deffekter, hvorimod metoden klarer sig dårligst ift. ortogonalitet.

Prædiktionerne laves ved at træne et long short-term memory (LSTM) neuralt netværk
til at prædiktere hver komponent fra dekompositionerne, og prædiktionen fås ved at
aggregere prædiktionerne fra hver komponent. Prædiktionsevnen for metoderne er
sammenlignet med et LSTM neuralt netværk og en autoregressiv model. For den
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offline metode ses det, at en klar forbedring kan opnås ved at bruge dekompositions-
metoder. For de online metoder viser resultaterne, at compressive sensing metoderne
og EMDen klarer sig dårligere end baseline metoderne, hvorimod PDE-EMD meto-
den klarer sig lige så godt som baseline metoderne. Ved at analysere resultaterne
ses det, at PDE-EMD metoden har en lav mean squared error (MSE) på hver kom-
ponent, dog bliver MSEen efter aggregering af komponenterne større end summen
af MSEerne. Dette skyldes positive korrelationer i prædiktionsfejlen, hvilket kunne
skyldes dekompositionens manglende ortogonalitet.



Abbreviation List

AIO Average index of orthogonality.

AM-FM Amplitude-modulated and frequency-modulated.

BPDN Basis pursuit denoising.

CPM Consistency performance measure.

CS Compressive sensing.

DNN Deep neural network.

EEEI End effect evaluation index.

EMD Empirical mode decomposition.

FFT Fast Fourier transform.

FFT-NMP-EMD Fast Fourier transform non-linear matching pursuit
based empirical mode decomposition.

HHT Hilbert-Huang transform.

IA Instantaneous amplitude.

IF Instantaneous angular frequency.

IMF Intrinsic mode function.

IO Index of orthogonality.

LSTM Long short-term memory.

MIO Maximum index of orthogonality.
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MP Matching pursuit.

MSE Mean squared error.

NBIAS Normalised bias.

NMAE Normalised mean absolute error.

NMP Non-linear marching pursuit.

NMP-EMD Non-linear matching pursuit based empirical mode de-
composition.

NP-hard Non-deterministic polynomial-time hard.

NRMSE Normalised root mean squared error.

NWP Numerical weather predictions.

OMP Orthogonal matching pursuit.

PDE Partial differential equation.

PDE-EMD Partial differential equation based empirical mode de-
composition.

SampEN Sample entropy.

SP Sifting procedure. Daniel van Diepen

VSMSE Variance scaled mean squared error.



Notation List

Miscellaneous

R The set of real numbers.

R+ The set of non-negative real numbers.

C The set of complex numbers.

N The set of natural numbers.Lukas Menholt

I Identity matrix.

j Imaginary unit.

Cn n times continuously differentiable.

Lp Space of p-order Lebesgue integrable functions.

ℓp Space of p-order summable vectors.

∥ · ∥p Lp-norm or ℓp-norm. Mikkel Olsen

⟨·, ·⟩ L2 or ℓ2 inner product.

Re{·} Real part of complex number.

F{·} Fourier transform.

H{·} Hilbert transform.

| · | Absolute value of a real number or cardinality of a set.

diag(·) Diagonal matrix with · in the diagonal.
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P (t) Wind power at time t.

s Sparsity of adaptive decomposition.

ck(t) The kth component of a decomposition.

r(t) = cs+1(t) Residual.

p Amount of power history used.

P p
t Window of wind power of length p ending at time t.

cpk,t
Window of length p ending at time t of the kth compo-
nent of a decomposition.

τ Forecast horizon in samples.

P̂t(t+ τ) τ -ahead forecast of P given time t.

ĉk,t(t+ τ) τ -ahead forecast of component k given time t.

q Window length of online decomposition.

ω(t) Instantaneous angular frequency.

θ(t) Instantaneous phase.

a(t) Instantaneous amplitude.

Adaptive
Decomposition

Methods

y(t) Observed signal.

yA(t) y(t) converted to an analytical signal.

c(t) Intrinsic mode function.

h(t) Intrinsic mode function candidate.

m(t) Local mean.

eu(t) Upper envelope.

el(t) Lower envelope.



Compressive Sensing
with Time-Frequency

Dictionaries

[m] {1, 2, . . . ,m}.

supp(x) {j ∈ [m] : xj ̸= 0}.

T Length of observation window.

Lθ Reciprocal of the smallest scale of θ, i.e. θ(T )−θ(0)2π .

D Dictionary of mono-components.

λ Smoothness parameter.

V (θ;λ) Over-complete Fourier dictionary.

vκ Basis functions for V .

δ Noise level/energy in residual.

alk
Value of a after the kth outer iteration and lth inner
iteration.

âl+1
k Representation of al+1

k in V (θlk;λ).

f Frequency.

χV (θlk;λ)
Low-pass filter with cut-off frequency determined by the
highest frequency in V (θlk;λ).

ĥlk Frequency response of χV (θlk;λ)
.

Uniqueness of
Compressive Sensing

Algorithm

Dε Dictionary of scale separated signals with separation
factor ε.

Aε,fr
Dictionary of well-separated signals with scale separa-
tion factor ε and frequency ratio fr.

(̂·) Fourier transform of (·).

ψ Wavelet function.

W{·} Wavelet transform.
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Partial Differential
Equation Based

Adaptive
Decomposition

u Solution to partial differential equation.

S Continuous-time spatial domain.

ST = S × (0, T ] Continuous-time spatial and time domain.

Cnm(ST )
Functions which are m times continuous differentiable
in the temporal variable and n continuous differentiable
in the spatial variables.

S Discrete-time domain.

ν Metric.

S Closure of S.

BS Boundary of S.

K Length of observation window.

T Point of convergence for PDE solution.

uji Discrete observation u(xi, tj).

m(x) = u(x, T ) Local mean.

α Diffusivity constant.

Experimental Setup

P q
t Window of wind power of length q ending at time t.

cqk,t kth component of a decomposition of P q
t .

ck,m(t)
Observation at time t for the kth component in an adap-
tive decomposition of a window ending at time m > t.

ξ Window shift used when assigning target value.
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1. Problem Analysis

This thesis has been made in cooperation with Energinet with the purpose of re-
searching different time series decomposition methods used as a pre-processing step
in a forecasting algorithm for the Danish wind power production. This chapter is
structured as follows: The primary tasks of Energinet are introduced in Section 1.1,
afterwards, in Section 1.2, the data and some of the factors which contribute to the
uncertainty in the data are described. Then, in Section 1.3, the problem of forecast-
ing the wind power production and the principle behind decomposition methods for
this setup are presented, and finally the problem statement is given in Section 1.4.

1.1 The Primary Tasks of Energinet

The primary task of Energinet is to solve the trilemma of energy: (i) Convert power
systems to renewable energy (ii) while preserving the security of supply for consumers
(iii) at a low price. [Ene22b]

The power in the power grid is dependent on both the time and the location.
The power grid consists of a discrete set of nodes that are connected by edges given
by the power cables. The nodes in the discrete domain include points where power
enters the power grid, points where power cables meet, i.e. transformer stations, and
points where power exits the power grid. Power can enter the power grid by being
generated by an energy source or it can enter by being purchased from another nation.
Power can exit the power grid by being consumed or by being sold to other nations
[Ene22a]. Additionally, when power is transported via an edge in the power grid,
a loss of energy occurs due to energy dissipation which is caused by a number of
internal and external factors such as resistance, atmospheric conditions etc. A graph
illustrating a simplified power grid is shown in Fig. 1.1.

To secure the supply for consumers, i.e. task (ii), it is seminal to ensure a balance
between the energy supply and demand in the power grid [Ene21]. We pose this issue
by the inequality [Ene22d]

|S −D| ≤ ε (1.1)

where D is the demand, S is the supply, and ε > 0 is the acceptable threshold for
balance.

The supply is affected by power trading and power generation by sources such as
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2 Chapter 1. Problem Analysis

Transformer station

Power consumption

Power trade

Fossil fuels

Renewables

Figure 1.1: Schematic depiction of a simplified power grid. Arrows indicate the flow of power
through the grid and the length of an edge indicates the distance between the nodes.

coal power, solar photovoltaic power, wind power etc. [Ene22c]. The power generation
from fossil fuel based power sources such as coal power can be accurately predicted and
controlled whereas the renewable sources such as wind power are largely dependent on
atmospheric conditions and as such are difficult to predict. However, it is important
to predict the power generation in the power grid in order to balance the supply and
demand as to uphold Eq. (1.1) [Ene21].

Generally, the tasks of Energinet can be formulated as an optimisation problem
based on solving the trilemma of energy. This is done by regulating the electricity
market, planning the infrastructure, etc. [Ene22d; Ene21].

1.2 Data and System Uncertainties

In order to forecast the wind power production, it is necessary to understand the
underlying system from which the wind power production data is sampled. The
power produced by a wind turbine is dependent on several weather factors such as
wind speed and air density. This can be seen by the theoretical relationship between
wind speed v and wind power P [Jai16, p. 20]

P =
1

2
ρairACv

3 (1.2)

where ρair is the air density, A is the swept area, and C is a constant describing the
physical properties of the wind turbine. The constant C is bounded by the Betz limit
C ≤ 16

27 and states that ideally a wind turbine can be approximately 59% effective
[Jai16, pp. 11-25]. As is apparent from Eq. (1.2), the wind power depends on weather
conditions, namely air density and wind speed in the direction towards the blades of
the wind turbine.

The power grid in Denmark is divided into 2 power grids called DK1 and DK2,
respectively. This has been done for historical reasons and influences the data avail-
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Figure 1.2: The sub-grids in DK1 and DK2. Taken from a presentation given by Energinet.

able to us. Geographically, DK1 covers the western part of Denmark, i.e. Jutland and
Funen, whereas DK2 consists of the eastern part of Denmark, i.e. Zealand and the
adjacent islands. Each power grid is further divided into a number of sub-grids. DK1
contains 15 sub-grids and DK2 contains 6 sub-grids yielding a total of 21 sub-grids.
The sub-grid division can be seen in Fig. 1.2. [Ene22a]

The data available to us represents the wind power production in each of the
21 sub-grids provided in 5 minute intervals. The data as well as the underlying
system are influenced by several factors which contribute to the uncertainty in the
data. Firstly, a data acquisition process called SCADA-upscaling is used to collect
the data. In this process, sensor measurements from some of the wind turbines
in each sub-grid are used to approximate the actual wind power production in the
sub-grid. This introduces uncertainty in the data since these measurements do not
completely represent the entire sub-grid. Moreover, inaccuracy is expected from the
sensor measurements themselves. Additionally, the data is affected by how the power
grids have been regulated during the data acquisition. Specifically, in order to ensure
balance in the power grid, the wind power production can be down-regulated. This
down-regulation is given to us at power grid resolution, i.e. the down-regulation for
DK1 and DK2 are available, but the down-regulation for each of the 21 sub-grids
is not available. Finally, as can be seen in Eq. (1.2), weather conditions affect the
wind power production and as such any uncertainty in the weather conditions also
contributes to uncertainty in the wind power production.
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1.3 Wind Power Production Forecasting

Wind power forecasting is an active research area with many existing methods in the
literature. Different time horizons for forecasting yield different applications and also
warrants the use of different methods. Some applications are related to the energy
market, while others are based on specific tasks related to the wind turbines such
as determining the pitch of the turbine blades and maintenance of the turbines. In
general, the forecasting time horizons are split into four categories, i.e. very short
term, short term, medium term, and long term. Very short term forecasts are fore-
casts up to 30 minutes ahead and can be used for regulation actions, real-time grid
operations, market clearing, and turbine control. Short term forecasts range from
30 minutes to 6 hours and these can be used for load dispatch planning. Medium
term forecasts range from 6 hours to 1 day and can be used for operational security
in the electricity market, energy trading, and online and offline generating decisions.
Finally, long term forecasts are forecasts which are longer than 1 day and these can
be used for reserve requirements, maintenance schedules, optimum operating cost,
and operation management. [Han+20; Ene19]

Broadly, the methods can be classified according to the explanatory variables
used for the forecast. These classes are the physical numerical weather predic-
tion (NWP) based methods [CD14; Sin16], the wind power history based methods
[Nie+07; Liu+10; Tou+21], and methods using a combination of the two aforemen-
tioned inputs [MNN05; SH07; Zhe+13; Zha+19]. The term NWP refers to forecasts
of meteorological variables such as wind speed, wind direction, air density, etc. us-
ing spatio-temporal computational fluid dynamics models [Qia+19]. Using NWPs is
useful when doing medium and long term forecasts, however computing the NWPs is
computationally expensive thereby limiting the resolution and introducing a delay in
real-time applications. Moreover, for very short and short term forecasts, the wind
power production history should be used to exploit the autocorrelations of the wind
power production time series [Qia+19]. Additionally, methods using the wind speed
history to forecast the wind speed followed by a mapping to the wind power produc-
tion are also widely used in the literature and are referred to as indirect methods
[Bok+19].

This thesis is focused on a one hour forecast, i.e. a short term forecast, as En-
erginet highlighted this time frame as being of interest. For the very short and
short term time horizons, a common method used for forecasting is data-driven
non-linear regression models using the wind power production history as the ex-
planatory variable. Let {P (t)}nt=1 be the observed wind power production and let
P p
t =

(
P (t), P (t−1), . . . , P (t−p+1)

)T for p ≥ 1 and t = p, p+1, . . . , n be data vec-
tors of p samples of wind power production history. Assume that the power history
up to time t is known, then a τ -ahead forecast can be made as

P̂t(t+ τ) = f(P p
t ;ϕ) (1.3)

for some model f with parameters ϕ. It should be noted that the combination of
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wind power production history and NWPs is often used for short term forecasts in
the literature. The benefit of using NWPs is dependent on the quality and resolution
of the NWPs as well as the specific time horizons, i.e. the longer the time horizons,
the more beneficial the use of NWPs can be. [Qia+19]

A variety of methods for designing the forecast model, also referred to as a fore-
caster, for very short and short term applications exists in the literature [Han+20].
The methods can be categorised into the classical statistical time series methods, e.g.
autoregressive models [MNN05; Nie+07; PS+09; ZCA16; Lyd+16; AS17], and the
more modern machine learning techniques, e.g. deep neural networks (DNNs) [BT07;
SH07; Zha+19; Zha+20; Pen+20; Tou+21]. Additionally, a variety of pre-processing
and post-processing techniques have been employed to improve the performance of
the forecasting models [LC19]. In relation to forecasting, pre-processing encompasses
any processing of the data prior to applying a forecaster. This includes outlier de-
tection, denoising, dimensionality reduction, feature extraction, etc. [GLH15, pp. 10-
16][Bis06, pp. 2-3][LC19]. Feature extraction refers to methods of transforming the
data into a new space where ideally forecasting is easier. This includes decomposition
methods which is a class of pre-processing methods that decomposes time series data
into components for which patterns are easier to recognise than for the original time
series [LC19]. Models combining two or more techniques are referred to as hybrid
models [Bok+19]. In this thesis, hybrid decomposition based models using a DNN
forecaster are considered, i.e. models using a time series decomposition method as
a pre-processing step when doing forecasting with a DNN model. These are then
compared to a baseline DNN forecaster and a baseline autoregressive forecaster.

1.3.1 Decomposition Based Models

It is generally recognised that wind power production time series are generated by
a non-linear and non-stationary system and thereby the time series have a low pre-
dictability [Qia+19]. We also refer to the time series as being non-linear and non-
stationary. Due to the low predictability, methods employing time series decomposi-
tion have been widely used for forecasting of wind power (or wind speed) in the lit-
erature with encouraging results [Liu+10; SV13; Zhe+13; MZR14; XHY19; LDB21].
These methods combine the capabilities of different approaches by decomposing the
wind power production (or wind speed) time series into components which are more
predictable than the original time series and subsequently doing the forecast.

With the consideration that the wind power production time series is non-linear
and non-stationary, the use of adaptive data analysis methods is of interest. Us-
ing an adaptive data analysis method, a signal is decomposed into a sum of locally
narrowband amplitude-modulated and frequency-modulated (AM-FM) signals and a
residual, i.e. for some signal P (t) the decomposition is made as

P (t) =
s∑

k=1

ck(t) + r(t) (1.4)
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{P (t)}nt=1 Decomposition

Forecaster 1

Forecaster 2

Forecaster s+ 1

Aggregate P̂t(t+ τ)

cp1,t

cp2,t

cps+1,t

ĉ1,t(t+ τ)

ĉ2,t(t+ τ)

ĉs+1,t(t+ τ)

...

Offline

Figure 1.3: Block diagram of a typical decomposition based method.

for t = 1, . . . , n where ck are the AM-FM signals for k = 1, . . . , s and r is the residual.
We adopt the convention that r is also denoted cs+1.

The most widely used structure of decomposition based methods is to construct
a forecaster for each sub-series [Qia+19]. In this setup, it is assumed that the
wind power production data {P (t)}nt=1 can be decomposed into the representation in
Eq. (1.4). The components are then given as input to a forecaster each yielding the
τ -ahead forecasts

ĉk,t(t+ τ) = fk(c
p
k,t;ϕk)

for models fk parameterised by ϕk and with cpk,t =
(
ck(t), ck(t−1), . . . , ck(t−p+1)

)T
for k = 1, . . . , s + 1, p ≥ 0, and t = p, p + 1, . . . , n. The forecast of the wind power
production is then computed as

P̂t(t+ τ) =
s+1∑

k=1

ĉk,t(t+ τ). (1.5)

A block diagram of this structure is shown in Fig. 1.3.
In 1998, the adaptive data analysis method called the empirical mode decompo-

sition (EMD) was introduced by [Hua+98]. The EMD is an intuitive method which
can be used to compute a decomposition on the form Eq. (1.4) where the AM-FM
components are called intrinsic mode functions (IMFs). However, the EMD intro-
duces several problems. Firstly, the method lacks a solid mathematical foundation.
Furthermore, the EMD suffers from mode mixing and end effects.

To exemplify mode mixing and end effects, the EMD of the signal

y(t) = cos
(
(15 + 4.5cos(1.5π))2πt

)
+
(
1.7− 0.7cos(0.4πt)

)
cos(8πt) (1.6)

for t ∈ [0, 1.2] is shown in Fig. 1.4. This simulated example has been constructed with
the consideration that in the middle of the observation window, the instantaneous
frequencies of the two components are close. From Fig. 1.4, mode mixing is clearly
observed around the time t = 0.5 when comparing IMFs 1 and 2. Moreover, end
effects can be observed when considering the residual at t > 1.1.

In this thesis, alternatives to the EMD are investigated in an attempt to alleviate
the end effect and mode mixing issues.
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Figure 1.4: Example of mode mixing and end effects when using the EMD on the signal in Eq. (1.6).

1.3.2 Online Setup

Due to difficulties with adaptive data analysis in an online setup, typically in the
literature the entire time series {P (t)}nt=1 is used for the decomposition as shown in
Fig. 1.3. The decomposition is as such made with the assumption that the entire
dataset is observed before making forecasts.

In practice, the entire dataset is not known beforehand. Hence, at each time
where a forecast is to be computed, only the previous data can be used for the de-
composition. This introduces both a computational challenge as well as a challenge
to avoid compromising the quality of the decomposition method with the loss of infor-
mation. The computational challenge can be addressed by introducing a windowing
operation before the decomposition such that the decomposition of the time series is
only based on the previous q ≥ p samples. This implies replacing the input {P (t)}nt=1

in Fig. 1.3 by the vector P q
t =

(
P (t), P (t − 1), . . . , P (t − q + 1)

)T for q > 0 and
t ≥ q [Qia+19]. As for the quality of the decomposition, using a fraction of the entire
data has a negative influence on the decomposition, particularly with regards to the
low frequency components of the signal. Moreover, when using the EMD, end effects
further degrades the decomposition at the boundary and the different decompositions
computed at each step can produce inconsistent results due to mode mixing. These
defects are detrimental to subsequent forecasting [SPC20].
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To enable the use of decomposition based models for an online setup, an adaptive data
analysis method which alleviates the mode mixing and end effects issues is needed.
Adaptive decomposition of signal is an active research area with many promising
developments towards alleviating the aforementioned issues of the EMD [DPB21;
SECB22]. Investigating the recent developments in this field is a central focus of
this thesis with the purpose of developing a novel hybrid decomposition based model
applicable to online forecasting of wind power production.

1.4 Problem Statement

The preceding discussion leads to the following problem statement.

What is the effect of applying adaptive decomposition based models for online forecast-
ing of wind power production compared to a purely deep neural network based model?

The rest of the thesis is structured as follows. Different adaptive decomposition meth-
ods are investigated in Chapter 2 facilitating a discussion regarding which methods
to pursue further. In Chapter 3, the theory of compressive sensing is introduced in
the context of time-frequency dictionaries leading to a description of an adaptive de-
composition method. This is followed by theoretical results concerning uniqueness of
the compressive sensing based adaptive decomposition methods in Chapter 4. Then
in Chapter 5, theory regarding a specific type of partial differential equation, i.e.
the heat equation, is introduced in order to present a partial differential equation
based adaptive decomposition method. Having introduced the theoretical side of the
adaptive decomposition methods, the experimental part of the thesis follows. This
includes a description of the experimental setup in Chapter 6 followed by numer-
ical experiments in Chapter 7. Finally, in Chapter 8, the thesis is concluded and
directions to pursue to further the work are discussed in Chapter 9.



2. Adaptive Decomposition
Methods

Spectral decomposition is a mathematically well established and powerful tool for
analysis of signals. A spectral decomposition method of particular importance is the
Fourier transform which yields the Fourier spectrum of a given signal. The Fourier
transform is a linear transformation well suited for stationary signals. However,
most signals stemming from natural phenomena are not stationary nor linear. To
accommodate the non-stationarity, methods such as the short-time Fourier transform
and the wavelet transform have been developed both empirically and mathematically.
These methods are linear and well suited for piecewise stationary signals yielding a
time-frequency representation. However, inherently these integral transform methods
are limited by Heisenberg’s uncertainty principle as a result of the convolution time-
frequency duality [Fol92, pp. 232-233], imposing a bound on the possible time and
frequency resolution. This presents a practical deficit in the analysis of non-linear
and non-stationary signals since these signals often have a frequency representation
which changes rapidly over time [HS14, p. 3].

In 1946, a definition of the concepts of instantaneous frequency (IF) and instan-
taneous amplitude (IA) was proposed by Gabor using the Hilbert transform [Gab46].
The key idea was to complexify the signal using the Hilbert transform by defining the
so-called analytic signal yA(t) = y(t)+jH{y}(t) where y(t) is the observed signal and
H is the Hilbert transform. For definitions of analytic signals and the Hilbert trans-
form see Appendix A.1. Rewriting the complex-valued function yA(t) in polar form
as yA(t) = a(t) exp(jθ(t)) provides a definition of IF as ω(t) = θ′(t) and IA as a(t).
These definitions, however, are rather restrictive since they only allow for a single fre-
quency at any given time t. In 1998, the empirical mode decomposition (EMD) was
introduced as an algorithm to decompose a signal into so-called intrinsic mode func-
tions (IMFs) which, from an intuitive interpretation, mimics some properties of these
single frequency modes a(t) exp(jθ(t)) which we also refer to as mono-components or
locally narrowband amplitude-modulated and frequency-modulated (AM-FM) signals
[Hua+98]. Combining this decomposition method with the Hilbert transform gave
rise to the time-frequency representation method called the Hilbert-Huang transform
(HHT) [HS14, ch. 1].

9
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The focus of this thesis is an application of adaptive decomposition methods to fore-
casting and while the EMD has empirically shown to be a powerful tool for forecasting,
several weaknesses with the classical EMD algorithm have been emphasised such as
mode mixing, end effects, and a lack of mathematical foundation [HS14, ch. 1]. In
light of these weaknesses, methods for adaptively decomposing a signal into a super-
position of mono-components have been an active research area. Empirically, some of
the developed methods have been applied successfully in forecasting applications, for
instance forecasting wind power production, however many remain mostly untested
[DPB21; Bok+19; Qia+19].

The remainder of the chapter is structured as follows. In Section 2.1, the problem
is posed in a strict sense by discussing how the concept of mono-components can be
posed in a mathematically well defined setting and in Section 2.2, the EMD algorithm
is explained. Finally, in Section 2.3, existing methods are categorised and merits of
the individual methods are discussed, facilitating a choice regarding which methods
to pursue further.

2.1 The Adaptive Data Analysis Setup

Let y(t) be a real-valued continuous-time signal observed on a finite interval [0, T ] and
assume that it is a realisation of a non-linear and non-stationary stochastic process.
The purpose is to decompose this signal into multi-scale features such that

y(t) =

s∑

k=1

ck(t) + r(t) (2.1)

for t ∈ [0, T ] where s is the number of AM-FM signals, ck(t) = ak(t) cos(θk(t)) are
AM-FM signals, and r is the residual representing the trend and/or noise. To derive
the time-frequency representation of this decomposition, the analytic signal approach
is used to determine ak(t) and ωk(t) = θ′(t). From this demodulation, the signal can
be represented as

y(t) = Re
{ s∑

k=1

ak(t) exp

(
j

∫
ωk(t)dt

)}
+ r(t). (2.2)

This clarifies the interpretation of the HHT as a generalised Fourier expansion with
Fourier coefficients and frequencies that are functions of time [HS14, p. 13]. With
Eq. (2.2) in mind, the Hilbert-Huang spectrum is defined as

HHS{y}(t, ω) =
{
ak(t), ω = ωk(t),

0, otherwise,

thereby providing a spectral analysis tool capable of accommodating non-stationary
and non-linear signals. [HS14, pp. 12-14]
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It is clear that the decomposition in Eq. (2.1) is not unique and can provide physically
nonsensical decompositions. This motivates imposing restrictions on the functions ak
and θk. In [Hua+98], an operational definition is given by introducing the concept
of IMFs. The IMFs are defined using envelopes, i.e. smooth curves outlining the
extremes as stated below.

Definition 2.1 (Intrinsic Mode Function)
Let c(t) be a signal observed for t = 1, . . . , n with ne extrema and zc zero cross-
ings and let it be bounded by an upper envelope, eu(t), and a lower envelope,
el(t), defined by a smooth interpolation of the local maxima and minima of c(t),
respectively. Then c(t) is an IMF if

|ne − zc| ≤ 1

and if for t = 1, . . . , n

m(t) =
∣∣eu(t) + el(t)

2

∣∣ = 0

where m(t) is called the local mean. [Hua+98]

Subsequently, other classes of functions have been defined in a pursuit to develop a
mathematically well defined class of mono-components. The most basic assumptions
placed on the IA and the IF are that a(t) ≥ 0 and ω(t) ≥ 0, respectively. These as-
sumptions are based on providing a physically meaningful decomposition. In [Qia05;
Qia06; Qia+09], a definition of mono-components is given based on these assumptions
as well as an assumption related to unique modulation.

Definition 2.2 (Mono-component)
A signal c(t) = a(t) cos(θ(t)) is a mono-component if

• The IA a : R→ R is non-negative.

• The instantaneous phase θ : R → R is differentiable with non-negative IF
ω = θ′ : R→ R.

• The IA a and instantaneous phase θ are such that H{a cos(θ)}(t) =
a(t) sin(θ(t)).

The identity H{a cos(θ)}(t) = a(t) sin(θ(t)) is motivated by the demodulation using
the analytic signal since if the identity holds, then

cA(t) = c(t) + jH{c}(t) = a(t)
(
cos(θ(t)) + j sin(θ(t))

)
= a(t) exp(jθ(t)).



12 Chapter 2. Adaptive Decomposition Methods

As such, this property ensures a uniquely determined modulation. To fulfil the
identity H{a cos(θ)}(t) = a(t) sin(θ(t)) it is sufficient that the Bedrosian identity
H{a cos(θ)}(t) = a(t)H{cos(θ)}(t) is fulfilled, and that H{cos(θ)}(t) = sin(θ(t)). To
fulfil the Bedrosian identity, it is required that the IA is band-limited to frequen-
cies below the frequency domain support of the carrier wave cos(θ(t)) [Bed63]. The
criterion H{cos(θ)}(t) = sin(θ(t)) further provides a productive way of constructing
mono-components. The Bedrosian identity in its most general form can be found in
Theorem A.5.

Many other definitions of mono-components exist in the literature such as Fourier
intrinsic band functions [Pus+17], δ-IMF [DAP13], ε-mono-components [HYY15;
Hua+17], AM-FMσ [Guo+16], intrinsic mode type function [DLW11], scale sepa-
rated signals [LSH17], see also [HS11; HHY17]. Similarities in the requirements
among these different definitions include a non-negative IA and IF which both varies
more slowly or is smoother than the carrier wave.

Additionally, assumptions can be imposed on the decomposition as a whole, e.g.
orthogonality of mono-components [Hua+17; Pus+17; HK13; Sin+15] in order for the
decomposition to preserve the energy in the signal and thereby providing a mean-
ingful decomposition without redundancy, and separation of modes [LSH17; DLW11;
Hua+17] in order to avoid overlap of the IF and thereby avoid mode mixing.

2.2 Empirical Mode Decomposition

In 1998, the adaptive decomposition method called the EMD was introduced [Hua+98].
In the EMD method, the procedure which is used to extract the IMFs is the sifting
procedure (SP). Consider a signal y(t). The EMD method works by identifying all
the extrema of the signal and then using these extrema to fit an upper and a lower en-
velope by cubic spline interpolation [dBo78, pp. 39-45]. These envelopes are denoted
eu(t) and el(t), respectively. With the envelopes, a local mean is defined as

m1,0(t) =
eu(t) + el(t)

2

and then the first potential IMF is found as

h1,1(t) = y(t)−m1,0(t).

This is the principle behind the SP in the EMD and is depicted in Fig. 2.1 where the
signal in consideration is

y(t) = sin

(
t
4π

199

)
+ cos

(
t
14π

199

)
+ 0.2ε(t)

with εt
iid.∼ N (0, 1) for t = 0, . . . , 199.

Ideally, h1,1(t) should be an IMF, however, this is often not the case due to
overshoots and undershoots of the envelopes compared to the signal which can result
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(a) Original signal y(t). (b) Upper envelope eu(t) (orange). Lower envelope
el(t) (green). Local mean m1,0(t) (red).

(c) The first potential IMF h1,1(t).

Figure 2.1: Depiction of one iteration of the SP.

in new extrema, shifts, or exaggerate existing extrema. Thus, it is likely that h1,1(t)
is not an IMF and if this is the case, then the process is repeated with h1,1(t) treated
as the signal. This process is repeated j + 1 times until h1,j+1(t) is obtained as

h1,j+1(t) = h1,j(t)−m1,j(t)

which is an IMF and then h1,j+1(t) is denoted as c1(t). Next the first residual r1(t)
is computed as

r1(t) = y(t)− c1(t).
After the first iteration of the SP, r1(t) is treated as the new data and the SP is
applied to r1(t) to obtain the second IMF c2(t) and a new residual r2(t) is then
determined as

r2(t) = r1(t)− c2(t).
This process is continued until iteration s ∈ N when a stopping criteria is met. Then
the signal has been decomposed as in Eq. (2.1). [Hua+98, pp. 917-923]

The SP is summarised in Algorithm 1.
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Algorithm 1 The Sifting Procedure
Input: Signal y(t), sifting procedure stopping criteria.

1: Initialise k = 0; hk(t) = y(t).
2: while sifting stopping criteria are False do
3: Determine the local mean mk(t) of hk(t).
4: Compute IMF candidate hk+1(t) = hk(t)−mk(t).
5: Update k ← k + 1.
6: end while

Output: Mono-component c(t) = hk(t) and residual r(t) = y(t)− c(t).

The EMD method has the advantage of being simple and the only hyperparameters
are the stopping criteria. However, the EMD suffers from some known problems such
as end effects, mode mixing, and a lack of mathematical foundation. Therefore, other
methods for adaptive data analysis are presented in the following section which try
to alleviate some of these problems.

2.3 Adaptive Decomposition Methods

A plethora of adaptive decomposition methods for decomposing a multi-component
signal into a superposition of mono-components as in Eq. (2.1) have been developed
since the introduction of the EMD. The main part of the EMD algorithm is the
SP, and in many cases the SP still forms the foundation for the methods. The key
step in the SP which allows for different approaches is the determination of the local
mean. Some sifting based approaches follow this procedure by using different types of
interpolation techniques, while other methods skip the step of finding local extrema
and instead develop a procedure for directly determining the local mean.

Different criteria for classification of existing methods can be considered depend-
ing on the objective of the comparison. Based on the preceding discussion, one way of
categorising the methods is depending on whether the method uses the SP or not. An
entirely different criterion to use would be to categorise the methods by considering
from which mathematical point-of-view the algorithms are derived.

Initially, we consider a categorisation which can broadly be used to distinguish
between methods which have potential in terms of alleviating end effects and methods
which inherently struggle with end effects. Consider the categorisation into sifting
based methods and non-sifting based methods. The sifting category can be further
sub-categorised into interpolation based methods, i.e. methods finding local extrema
and then interpolating the extrema to find envelopes, and interpolation free methods,
i.e. methods finding the local mean without using interpolation techniques. Inher-
ently, the interpolation based methods have problems with end effects since extrema
outside the observation window are unknown. This motivates us to not consider
these methods in further detail. This includes the methods in [Smi05; DLN05; FO07;
HK13; Yan+14; Li+18].
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Considering interpolation free methods, we recognise 4 main classes of methods de-
pending on the mathematical point-of-view of the algorithms. These are Fourier
series based methods, operator based methods, partial differential equation (PDE)
based methods, and compressive sensing (CS) based methods. The Fourier series and
operator based methods are briefly mentioned in the following.

With regards to Fourier series based methods, in [Pus+17], a so-called Fourier decom-
position method is introduced. Here the signal is decomposed into so-called Fourier
intrinsic band functions based on a method derived using Fourier series. However, the
method of [Pus+17] shows poor performance in terms of tone separation [Zho+22].
In [Zho+22], an expansion of this method is introduced, however, this method is non-
causal and as such can only be applied in an offline setup. Additionally, in [HYY15],
a method is introduced to extract ε-mono-components which combines the fields of
Fourier theory and CS. However, [HYY15] provides little insight into the performance
of the method and the practical implementation.

With the operator based methods, an operator is constructed and the idea is that
the mono-components should be in the null space of the operator. Then the mono-
components can be found using an algorithm called null space pursuit. Examples of
these methods can be found in [Guo+16; PH08; HPH15; HPH13; PH10]. While some
of the earlier operator based methods has issues with end effects and computational
complexity, the method of [Guo+16] shows promise. However, due to time limitations
this method has not been further investigated.

In the following, the PDE and CS based methods are introduced in further detail.

2.3.1 Partial Differential Equation Based Methods

The PDE based methods are a type of sifting based methods in which the local mean
is determined by solving a linear PDE. In this section, the interpolation free PDE
based methods are described. The PDE based methods have a stronger theoretical
framework compared to the EMD. Additionally, by avoiding interpolation using the
local extrema, the PDE based methods can avoid end effects to some extent [SECB22].

In [DAB09; DAB10; DAP13], they replace the local mean by an operator

mδ{y}(x) =
1

2
[ sup
|∆|<δ

y(x+∆) + inf
|∆|<δ

y(x+∆)] (2.3)

for x ∈ Ω ⊂ R where y : Ω→ R and δ > 0. It is proven that the operator mδ{y}(x)
can be represented by a differential equation and from this a PDE is posed, the
solution of which is a so-called δ-IMF. The PDE which is solved is

{
∂u
∂t +

1
δ2
u+ 1

2
∂2u
∂x2

= 0,

u(x, 0) = y(x)

where x ∈ Ω, u : Ω × R → R, y(x) is the signal to be decomposed which is used
as the initial condition, and the δ-IMF is hT (x) = u(x, T ) for some T > 0. One of



16 Chapter 2. Adaptive Decomposition Methods

the advantages of PDE based methods is that the end effects can be controlled by a
proper choice of boundary conditions thereby forming an initial and boundary value
problem. Furthermore, they show that the resulting PDE is a heat equation. This
is used to show that the PDE has a unique solution and to prove numerical stability
of the update scheme used to solve the PDE. Using this method, they obtain better
results than the ones obtained using the classical EMD as they alleviate end effects
and mode mixing.

In [WMV18], they propose a different heat equation than the one introduced in
[DAP13]. They argue for this formulation by noting that the decomposition with the
method of [DAP13] has three problems:

1. The parameter δ has to be fitted empirically and greatly influences the result.

2. Even if the frequency is extracted correctly there is no guarantee that the
amplitude of the component is correct.

3. The heat equation of [DAP13] can sometimes have problems with instability of
numerical methods for solving the PDE.

The method of [WMV18] is to solve the heat equation
{
∂u
∂t = α∂

2u
∂x2

,

u(x, 0) = y(x)

where α > 0 and they define the local mean as m(x) = u(x, T ) for T > 0 chosen such
that the PDE has converged. The heat equation is used to find the local mean due to
properties ensuring a smooth solution which passes through the inflection points of
the signal. The results of [WMV18] indicate that the method can alleviate the mode
mixing problem of the EMD.

2.3.2 Compressive Sensing Based Methods

In the CS based methods, the decomposition of the signal y is formulated as a sparse
optimisation problem where the solution is sought as a sparse decomposition into
oscillatory components which belong to some dictionary D. Hence, these methods
are non-sifting based. The initial optimisation problem is formulated by considering
a version of the ℓ0 optimisation problem which is usually considered in CS with
non-linear constraints. This optimisation problem is formulated as

Minimise s

Subject to y(t) =
s∑

k=1

ak(t) cos(θk(t))

ak(t) cos(θk(t)) ∈ D, for k = 1, . . . , s.

(P0)

The Eq. (P0) optimisation problem is NP-hard and it is reformulated into a simpler
problem which can be solved. The reformulated optimisation problem, the dictionary,
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and the method used to solve the reformulated optimisation problem differ from
article to article.

In [HS11], a method is introduced which searches for the sparsest representation
of a multi-component signal where the IMF candidates are in the dictionary

D = {a(t) cos(θ(t)) : dθ(t)
dt
≥ 0, a(t) is smoother than cos(θ(t))}.

An ℓ1 optimisation problem is formulated which uses the third order total variation.
However, this optimisation problem is difficult and has to be solved recursively using
an interior-point method. Through numerical examples, it is seen that the proposed
method is less noise sensitive and reduces end effects compared to the classical EMD.
However, the computational cost of using this method is relatively high. In [HS13b],
the same dictionary is considered and a non-linear matching pursuit (NMP) algorithm
is used to solve the optimisation problem. This method proves to be computationally
efficient compared to that of [HS11], alleviates end effects, is more noise robust than
ensemble EMD [WH09], and has a solid mathematical foundation as convergence and
uniqueness of the decomposition have been proven [HST13; LSH15].

In [LSH17], recent developments following the method introduced in [HS13b] are
given. The article introduces a two-level method consisting of a local algorithm and
a global algorithm. The local algorithm is used to determine a piecewise constant
phase function which is used for initialisation in the global algorithm and then the op-
timisation problem is approximately solved using the method introduced in [HS13b].

In [DSB19], methods using either orthogonal matching pursuit (OMP) or least angle
regression are used to solve the CS optimisation problem in Eq. (P0). Using proper-
ties of OMP, convergence of the OMP algorithm is shown. Furthermore, they argue
for convergence of the least angle regression method through convexity of the opti-
misation problem. The algorithms are tested both quantitatively and qualitatively
on a variety of simulated signals and the results are compared to the classical EMD
and the PDE based δ-EMD method introduced in [DAP13]. The results show good
capability regarding the separation of the frequency components as well as tone sepa-
ration, however in some of the tests amplitude attenuation occurs. Lastly, it is shown
numerically that the algorithms are noise robust.

2.3.3 Summary

For the PDE based methods, the method introduced in [DAP13] seems to have a
broader mathematical foundation compared to that of [WMV18]. However, as pointed
out by [WMV18], the method has some shortcomings, specifically it is sensitive to
the choice of δ, whereas the method of [WMV18] is less hyperparameter sensitive.

In terms of CS based methods, the method introduced in [HS11] is able to both
alleviate end effects and is noise robust, however a more computationally effective
method has been given in [HS13b] which generally shows better performance. Fur-
thermore, the method of [LSH17] can be seen as an extension of the method in [HS13b]
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which further improves performance but is more computationally complex. Finally,
the method of [DSB19] also achieves good results, however, the method is hard to
replicate as they do not disclose which dictionary they use.

Based on these considerations, the methods of [WMV18] and [HS13b] are decom-
position methods of interest for this thesis. Introducing these methods in detail is
the subject of Chapters 3 to 5.



3. Compressive Sensing with
Time-Frequency Dictionaries

Compressive sensing refers to an area of mathematics which was originally motivated
by applications in sampling theory. Collecting measurements via sensors that are
sampling a physical process is common in many applications as is also the case with
wind power production. In the classical Shannon sampling theory, the sample rate
is required to be twice the bandwidth of the observed process. This can be rather
restrictive and introduces an excessive sampling requirement for exact recovery of
signals from the sampled data. However, it has been found that if the observed
process is sparse with respect to some basis, then the sample rate can be lowered
depending on the sparsity. [FR13, ch. 1]

In this chapter, the CS approach to adaptive time-frequency decomposition intro-
duced in [HS13b] is presented. The underlying assumption is that the observed signal
is sparse with respect to some dictionary consisting of potential mono-components
defined via the so-called scale separation property which is formally introduced in
Chapter 4. In this chapter, approximations of this dictionary are given based on
Fourier bases in order to develop practical algorithms.

This chapter is structured as follows. In Section 3.1, the basic CS problem is
discussed. Subsequently, in Section 3.2, the CS problem is related to time-frequency
dictionaries and in Section 3.3, an algorithm called non-linear matching pursuit em-
pirical mode decomposition (NMP-EMD) for adaptive data analysis is introduced. A
special case of the algorithm is then considered in Section 3.4 leading to an efficient
algorithm, called the fast Fourier transform non-linear matching pursuit empirical
mode decomposition (FFT-NMP-EMD) algorithm. Then in Section 3.5, practical
considerations concerning the introduced algorithms are given. Finally, in Sections 3.6
and 3.7, the progression of the algorithms are shown and the influence of a particularly
important hyperparameter is analysed through synthetic examples.

19
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3.1 Sparse Recovery from Redundant Dictionaries

For convenience, we define the notation [m] = {1, 2, . . . ,m} and the cardinality of a
set S as |S|. Moreover, the support of a vector x =

(
x1, . . . , xm

)T ∈ Rm is defined
as supp(x) = {j ∈ [m] : xj ̸= 0}. The notion of sparsity of vectors is defined below.

Definition 3.1 (s-Sparse Vectors)
Let x ∈ Rm. If ∥x∥0 ≤ s for s ∈ N, then x is called an s-sparse vector. Moreover,
let y = Ax where y ∈ Rn is the observed data and A ∈ Rn×m for n < m is called
a dictionary. If x is s-sparse, then y is s-sparse with respect to the dictionary A.
[FR13, p. 41]

The columns of A ∈ Rn×m are denoted (A)j = aj for j = 1, . . . ,m and are also
referred to as atoms.

The basic CS problem is motivated from an underdetermined set of linear equa-
tions

y = Ax

where y ∈ Rn, A ∈ Rn×m, and x ∈ Rm for n < m. In CS, y is interpreted as the
observed data and it is assumed that x is an s-sparse vector such that the observed
data y is s-sparse with respect to the dictionary A. To recover x from the observed
data y, the sparsity assumption of x is used and an ℓ0-optimisation problem is posed
as

Minimise
z∈Rm

∥z∥0
Subject to y = Az.

(P0)

In the presence of noise, a slightly modified problem is posed as

Minimise
z∈Rm

∥z∥0
Subject to ∥y −Az∥2 ≤ δ

(P0δ)

where δ determines the noise tolerance in the optimisation problem. This P0 problem
is in general NP-hard which means that the optimisation problem needs to be relaxed
and formulated differently to provide a constructive way of solving the problem ap-
proximately [FR13, ch. 1]. Existing methods include basis pursuit, in which a convex
relaxation of the ℓ0-optimisation problem is considered; greedy algorithms, in which
it is assumed that the overall problem can be solved accurately by iteratively solving
sub-problems; and thresholding based methods, in which a thresholding operation is
used to impose sparsity [FR13, ch. 3].

In this thesis, a greedy algorithm is used. Greedy algorithms in CS seek to ap-
proximately solve the P0 problem by building an approximate solution by iteratively
updating the support set of the solution. The update in the greedy algorithm is
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based on determining the locally optimal choice at each iteration. As such, in this
process, atoms which match the data the best are found one-by-one. Examples of
greedy algorithms commonly used in CS are matching pursuit (MP) and OMP. [MZ94,
p. 3399-3400][FR13, pp. 65-66]

3.2 Sparse Time-Frequency Decomposition

Combining the ideas of the EMD with that of CS, an adaptive data analysis method
can be developed. Consider an observed signal assumed to be non-linear, non-
stationary, and with low predictability. Extraction of patterns from the observed sig-
nal motivates decompositions over large and redundant dictionaries of time-frequency
atoms. Due to the adaptive nature of the data, it is required to adaptively learn the
dictionary from the data. [MZ94]

In [HS13b], a method for this purpose is introduced. The method works by
searching for the sparest representation of a signal over the largest possible dictionary
consisting of IMFs. The method is said to be adaptive due to the fact that a large
and highly redundant basis is used to obtain the sparsest decomposition.

The dictionary over which this problem is solved can be defined as follows

D = {a(t) cos
(
θ(t)

)
:
dθ(t)

dt
≥ 0, a(t) ∈ V (θ;λ),

dθ(t)

dt
∈ V (θ;λ)} (3.1)

where V (θ;λ) is a set consisting of functions which are smoother than cos
(
θ(t)

)
with

smoothness parameter λ. Based on the approach in [HS13b], given a θ(t) then V (θ;λ)
is constructed as the linear span of an over-complete Fourier basis defined as

V (θ;λ) = span{Vb(θ;λ)} (3.2)

for
Vb(θ;λ) =

{
1, cos

( kθ
ρLθ

)
, sin

( kθ
ρLθ

)
: k = 1, 2, . . . , ⌊ρλLθ⌋

}
(3.3)

where Lθ = θ(T )−θ(0)
2π for a signal observed in the interval [0, T ], ρ > 1 controls the

over-completeness, and the parameter λ ≤ 1/2 controls the smoothness of V (θ;λ).
An over-complete representation is used in order to obtain a large dictionary which in
turn gives the possibility for a sparse decomposition. Note that for ρ = 1, the basis
reduces to the standard Fourier basis and an algorithm based on the fast Fourier
transform (FFT) can be used. However, abiding with traditional Fourier theory, the
algorithm would assume periodicity of the signal which is not an assumption we can
make in practice when considering wind power production data [HS13b]. Due to
the reduced computational complexity, the fast algorithm is still considered. This
algorithm is introduced in Section 3.4.



22 Chapter 3. Compressive Sensing with Time-Frequency Dictionaries

In contrast to the traditional CS problem, the dictionary in this case is infinite dimen-
sional and thus the problem cannot be posed using a matrix transformation. However,
the infinite number of functions in the dictionary can be defined as an infinite set.
Let an index set for the functions in the set D be given as

I = {k ∈ N : ak(t) cos
(
θk(t)

)
∈ D}.

In this context, each index k ∈ N relates to a function ak(t) cos
(
θk(t)

)
in the dictio-

nary D. The dictionary D can then be expressed as

D = {ak(t) cos
(
θk(t)

)
}k∈I = {ck(t)}k∈I

where ck(t) = ak(t) cos
(
θk(t)

)
. Assuming a signal y(t) can be perfectly represented

by the dictionary D, then the signal y(t) can be decomposed as

y(t) =
∑

k∈I
αkck(t) (3.4)

for α ∈ {0, 1} and where
∑

k∈I 1[αk ̸= 0] ≤ s for s ∈ N, i.e. y(t) is s-sparse with
respect to D. The goal is as mentioned to find the sparsest decomposition and this
can be done by solving the following optimisation problem

Minimise s

Subject to y(t) =
s∑

k=1

ak(t) cos
(
θk(t)

)
,

ak(t) cos
(
θk(t)

)
∈ D, for k = 1, . . . , s.

(P)

In the presence of noise, the signal can be decomposed as

y(t) =
∑

k∈I
αkck(t) + r(t)

where r(t) is the residual which represents the noise. In this case, the problem is
reformulated as follows

Minimise s

Subject to ∥y(t)−
s∑

k=1

ak(t) cos
(
θk(t)

)
∥2 ≤ δ,

ak(t) cos
(
θk(t)

)
∈ D, for k = 1, . . . , s

(Pδ)

where δ is dependent on the energy in the residual. The problems Eqs. (P) and (Pδ)
are non-linear L0 minimisation problems, similarly to Eqs. (P0) and (P0δ), and are
known to be NP-hard to solve [FR13, pp. 53-56]. Therefore, following the CS theory,
the optimisation problem is relaxed. In this thesis, the L1-regularised NMP method
for solving the problem, introduced in [HS13b], is presented.
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Using the NMP method, the first component is extracted by determining the function
a(t) cos(θ(t)) ∈ D which matches y(t) the best with respect to the L2-norm. This
is done iteratively, as to solve the problem by solving a series of sub-problems. At
iteration k, these considerations imply the following optimisation problem

Minimise ∥rk(t)− ak(t) cos(θk(t))∥22
Subject to ak(t) cos(θk(t)) ∈ D

(PNMP)

where rk(t) = y(t) −∑k−1
j=1 aj(t) cos

(
θj(t)

)
. This is referred to as an MP algorithm

since at each iteration a search for the atom in the dictionary which matches the signal
the best is made. However, the problem is non-linear since θk(t) is introduced in the
objective function non-linearly which is the case as cos(·) is a non-linear function.
[HS13b]

3.3 NMP-EMD

In this section, the NMP-EMD algorithm to approximately solve Eq. (PNMP) is in-
troduced. Initially, some considerations are needed to motivate the steps in the
algorithm. This includes posing the optimisation problem in a way which results
in a series of L1-regularised least square problems while imposing the constraints
ak(t) cos(θk(t)) ∈ D.

Firstly, the constraint that ak ∈ V (θk;λ) is imposed by parameterising ak directly
in the V (θk;λ)-space as

ak(t) = âk,0 +

⌊ρλLθk
⌋∑

κ=1

âk,κ cos
(κθ(t)
ρLθk

)
+

⌊ρλLθk
⌋∑

κ=1

âk,⌊ρλLθk
⌋+κ sin

(κθ(t)
ρLθk

)
(3.5)

where Lθk = θk(T )−θk(0)
2π . This yields a representation of ak(t) in the V (θk;λ)-space

given as âk =
(
âk,0, . . . , âk,2⌊ρλLθk

⌋
)T . The minimisation is then done with respect to

the parameter vector âk. For notational convenience, Eq. (3.5) is also expressed as

ak(t) =

2⌊ρλLθk
⌋∑

κ=0

âk,κvκ(t) (3.6)

where vκ(t) are the functions in the basis Vb(θk;λ) which has been defined in Eq. (3.3).
Secondly, an inner iteration is introduced. The algorithm inherently has an outer

iteration where a component ak cos
(
θk(t)

)
is found in each iteration. For each outer

iteration, a number of inner iterations are introduced not unlike the SP in the classical
EMD. This inner iteration consists of steps to update IMF candidates. These steps
iteratively update the amplitude function and the phase function, respectively. The
candidate amplitude function and the candidate phase function in the kth outer
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iteration and the lth inner iteration are denoted alk and θlk, respectively. In order to
provide a method for these updates, the trigonometric identity

al+1
k cos

(
θlk
)
+ bl+1

k sin
(
θlk
)
= Al+1

k cos
(
θlk − ϕl+1

k

)
(3.7)

where Al+1
k =

√(
al+1
k

)2
+
(
bl+1
k

)2 and ϕl+1
k = arctan

(
bl+1
k

al+1
k

)
is used [Apo67, p. 334].

Consider then the optimisation problem

Minimise
âl+1
k , b̂

l+1
k

∥∥∥rk(t)− al+1
k (t) cos

(
θlk(t)

)
− bl+1

k (t) sin
(
θlk(t)

)∥∥∥
2

2

+ γ
(∥∥âl+1

k

∥∥
1
+
∥∥b̂l+1

k

∥∥
1

) (P2)

where γ ≥ 0 is a regularisation parameter and âl+1
k , b̂

l+1

k are the representations of
al+1
k (t), bl+1

k (t) in V (θlk;λ), respectively. With the identity in Eq. (3.7) in mind, if the
optimisation problem Eq. (P2) is solved given θlk and Eq. (3.5) is used to determine

al+1
k and bl+1

k , then the update for the phase function is θl+1
k = θlk−arctan

(
bl+1
k

al+1
k

)
. In

the optimisation problem Eq. (P2), an L1-regularisation term has been added since
this tends to stabilise the least square problem using an over-complete Fourier basis
and it also tends to produce a sparse decomposition. [HS13b]

Considering the constraint ak cos(θk) ∈ D in Eq. (PNMP), the requirement ak ∈
V (θk;λ) has been enforced, however the constraints ωk = θ′k ≥ 0 and ωk ∈ V (θk;λ)
still need to be imposed. In the implementation, this is done by updating the IF
rather than the phase function. Hence, using Eq. (3.7) the update for the IF is
derived by differentiation

∆ωl+1
k =

(
arctan

( bl+1
k

al+1
k

))′

=

(
bl+1
k

)′
al+1
k − bl+1

k

(
al+1
k

)′

(al+1
k )2

1

1 +
(
bl+1
k

al+1
k

)2

=

(
bl+1
k

)′
al+1
k − bl+1

k

(
al+1
k

)′

(al+1
k )2 + (bl+1

k )2
. (3.8)

The update is then
ωl+1
k = ωlk −∆ωl+1

k .

To enforce the criteria ωk ∈ V (θk;λ), a low-pass filter χV (θlk;λ)
is used to limit the

frequency domain support of ∆ωl+1
k to that of V (θlk;λ). This motivates re-defining

the IF update step as [HS13a; HS13c]

∆ωl+1
k = χV (θlk;λ)

{(bl+1
k

)′
al+1
k − bl+1

k

(
al+1
k

)′

(al+1
k )2 + (bl+1

k )2

}
.
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Additionally, to enforce the criteria ωk ≥ 0, a step size ηl+1
k is determined as

ηl+1
k = max

{
µ ∈ [0, 1] : ωlk − µ∆ωl+1

k ≥ 0
}

(3.9)

and the IF is updated as [HS13b]

ωl+1
k = ωlk − ηl+1

k ∆ωl+1
k . (3.10)

The update for the instantaneous phase can be recovered from the update for the IF
by integration.

3.3.1 Discrete-Time Formulation

The optimisation problem in Eq. (P2) is an L1-regularised least square problem. In
the CS literature, this is also referred to as basis pursuit denoising (BPDN) [FR13,
p. 18]. In the following, Eq. (P2) is formulated as a finite dimensional BPDN optimi-
sation problem. Assume that the signal y(t) is observed for a finite temporal interval
t ∈ [0, T ] and consider an equidistant sampling of the signal in samples ti = (i−1)∆t
for i = 1, . . . , n where n is the number of samples and ∆t = T

n−1 is the spacing between
samples. The sampled signal is then collected in a vector y =

(
y(t1), . . . , y(tn)

)T and
the procedure is repeated for all signals sampled in a discrete grid. Hence, we define
the notation used in the kth outer iteration and lth inner iteration

rk =



rk(t1)

...
rk(tn)


 , alk =



alk(t1)

...
alk(tn)


 , blk =



blk(t1)

...
blk(tn)


 , θlk =



θlk(t1)

...
θlk(tn)


 .

Then by Eq. (3.6)

alk =

2⌊ρλL
θl
k
⌋

∑

κ=0

âlk,κ
(
vκ(t1) · · · vκ(tn)

)T

=




v0(t1) v1(t1) · · · v2⌊ρλL
θl
k
⌋(t1)

v0(t2) v1(t2) · · · v2⌊ρλL
θl
k
⌋(t2)

...
...

. . .
...

v0(tn) v1(tn) · · · v2⌊ρλL
θl
k
⌋(tn)







âlk,0
âlk,1

...
âlk,2⌊ρλL

θl
k
⌋




= V l
kâ

l
k

where vκ(ti) for i = 1, . . . , n are the samples of the basis functions. Equivalently, it
follows that

blk = V l
kb̂
l
k.

Finally, with the notation

xlk =

(
âlk

b̂
l
k

)
, and Al

k =
(
diag

(
cos
(
θlk
))
V l
k diag

(
sin
(
θlk
))
V l
k

)
,
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then Eq. (P2) can be formulated as [THS14]

Minimise
zl+1
k

1

2
∥rk −Al

kz
l+1
k ∥22 + γ∥zl+1

k ∥1 (P2)

with solution xl+1
k . This is an ℓ1-regularised least square problem and methods for

solving this convex optimisation problem are known [CDS98]. [HS13b]

3.4 FFT-NMP-EMD

In this section, the FFT-NMP-EMD algorithm is derived as a special case of the
algorithm introduced in Section 3.3. This special case involves assuming periodicity
of the observed signal, thus making the use of an over-complete dictionary obsolete.
This implies that the over-completeness parameter ρ = 1 and the regularisation
parameter γ = 0. In correspondence with Eq. (P2), the optimisation problem for the
kth outer iteration and the lth inner iteration is in this case posed as

Minimise
al+1
k ,bl+1

k

∥rk(t)− al+1
k (t) cos

(
θlk(t)

)
− bl+1

k (t) sin
(
θlk(t)

)
∥22

Subject to al+1
k (t), bl+1

k (t) ∈ V (θlk;λ).

(P2 Fast)

In the following, the continuous-time situation is considered to derive the solution to
this optimisation problem. For this purpose, it is assumed that rk(t) ∈ L2. Subse-
quently, a discrete-time formulation is considered yielding an approximate solution to
the problem. Herein, a description of how the algorithm can be applied in a practical
setting is given.

Firstly, since the IF is non-negative, the phase function is monotonically increas-
ing. This allows a reformulation of the optimisation problem Eq. (P2 Fast) by con-
sidering the functions in the θ-coordinate as

Minimise
alk,θ,b

l
k,θ

∥rk,θ(θlk)− al+1
k,θ (θ

l
k) cos

(
θlk
)
− bl+1

k,θ (θ
l
k) sin

(
θlk
)
∥22

Subject to al+1
k,θ (θ

l
k), b

l+1
k,θ (θ

l
k) ∈ V (θlk;λ)

(P2 Fast θ-domain)

where rk,θ
(
θlk(t)

)
= rk(t), al+1

k,θ

(
θlk(t)

)
= al+1

k (t), and bl+1
k,θ

(
θlk(t)

)
= bl+1

k (t). Tem-
porarily, the constraints are disregarded and the minimum is found for the uncon-
strained optimisation problem. The solution is without error given as

ãl+1
k,θ (θ

l
k) = rl+1

k,θ (θ
l
k) cos

(
θlk
)
,

b̃l+1
k,θ (θ

l
k) = rk,θ(θ

l
k) sin

(
θlk
)
.

Using the fact that in the θ-coordinate cos
(
θlk
)
, sin

(
θlk
)
, and the functions in the

basis Vb(θlk;λ) are all simple Fourier modes, the constraint is applied to the solution.
Using Plancherel’s theorem, this can be done by applying a low-pass filter to ãl+1

k,θ
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and b̃l+1
k,θ in the Fourier domain. For instance, the Fourier transform of ãl+1

k,θ can be
constrained to be in the V (θlk;λ)-space by applying a low-pass filter χV (θlk;λ)

. In the
frequency domain, this filter is applied as

âl+1
k,θ (f) = Fθ{ãl+1

k,θ }(f)ĥlk(f) (3.11)

where ĥlk is the frequency response of the filter χV (θlk;λ)
and the Fourier transform in

the θ-coordinate is defined as

Fθ{ãl+1
k,θ }(f) =

∫
ãl+1
k,θ (θ

l
k) exp

(
− j2πfθlk

)
dθlk

for θlk(t) =
θlk(t)−θ

l
k(0)

2πL
θl
k

and Lθlk
=

θlk(T )−θ
l
k(0)

2π . The function âl+1
k,θ is the function in

V (θlk;λ) which minimises the distance in L2 to Fθ{ãl+1
k,θ }. By Plancherel’s theorem

[Fol92, p. 222],

∥rk,θ(θlk)− al+1
k,θ (θ

l
k) cos

(
θlk
)
− bl+1

k,θ (θ
l
k) sin

(
θlk
)
∥22

= ∥Fθ
{
rk,θ(θ

l
k)− al+1

k,θ (θ
l
k) cos

(
θlk
)
− bl+1

k,θ (θ
l
k) sin

(
θlk
)
}(f)∥22.

Exploiting this property, the optimisation problem Eq. (P2 Fast θ-domain) can in-
stead be considered in the Fourier domain

Minimise
al+1
k,θ ,b

l+1
k+θ

∥Fθ
{
rk,θ(θ

l
k)
}
−Fθ

{
al+1
k,θ (θ

l
k) cos

(
θlk
)}
−Fθ

{
bl+1
k,θ (θ

l
k) sin

(
θlk
)}

(f)∥22

Subject to al+1
k,θ (θ

l
k), b

l+1
k,θ (θ

l
k) ∈ V (θlk;λ).

By the definition of ĥlk and by Eq. (3.11), it follows that F−1
θ {âl+1

k,θ } minimises Eq. (P2
Fast θ-domain). Similarly, F−1

θ {Fθ{b̃l+1
k,θ }(f)ĥlk(f)} is the solution. Thereby, the

solution to Eq. (P2 Fast) is given as

al+1
k (t) = al+1

k,θ (θ
l
k(t)) = F−1

θ {âl+1
k,θ (f)}(θlk(t)),

bl+1
k (t) = bl+1

k,θ (θ
l
k(t)) = F−1

θ {b̂l+1
k,θ (f)}(θlk(t)).

Using the frequency shift property [Fol92, p. 214] of Fourier transforms of rl+1
k,θ (θ

l
k) cos

(
θlk
)

and rk,θ(θlk) sin
(
θlk
)
, this solution can alternatively be expressed as

al+1
k (t) = F−1

θ

{(
r̂k,θ(f + Lθlk

) + r̂k,θ(f − Lθlk)
)
ĥlk(f)

}
(θlk(t)), (3.12)

bl+1
k (t) = F−1

θ

{
j
(
r̂k,θ(f + Lθlk

)− r̂k,θ(f − Lθlk)
)
ĥlk(f)

}
(θlk(t)). (3.13)

Thus, this provides a method of solving Eq. (P2 Fast) using the Fourier transform
[HS13b]. In the following, the problem is posed in a discrete-time setting and an
explicit algorithm employing the FFT is introduced.
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3.4.1 Discrete-Time Formulation

Let rk(ti) be an observed signal in discrete samples ti = (i − 1)∆t for i = 1, . . . , n
where ∆t = T

n−1 and let θ(ti) for i = 1, . . . , n be the sampled phase function. Define

a normalised phase function as θlk(ti) =
θlk(ti)−θ

l
k(t1)

2πLθ
where Lθlk =

θlk(tn)−θ
l
k(t1)

2π . In line
with Eq. (P2 Fast θ-domain), the signal is represented in the θ-coordinate. In order to
apply the discrete Fourier transform and thereby the FFT, a uniform sampling of the
signal in the θ-coordinate is needed. Let θlk,i = 2πLθlk

ti for i = 1, . . . , n be the uniform
mesh in the θ-coordinate, and define rk,θ(θlk,i) as the ith sample in the interpolation
of rk,θ(θlk(ti)) = rk(ti) to the uniform mesh in the θ-coordinate. Assuming n is an
even number, compute the discrete Fourier transform of rk,θ(θlk,i) as

r̂k,θ(κ) =
n∑

i=1

rk,θ(θ
l
k,i) exp

(
− j2πκθlk,i

)

for κ = −n
2 + 1, . . . , n2 where θlk,i =

θlk,i−θ
l
k,1

2πL
θl
k

. Following the result in Eqs. (3.12)

and (3.13), the discrete solution in the θ-coordinate is

al+1
k,θ (θ

l
k,i) = F−1

θ

{(
r̂k,θ(κ+ ⌊Lθlk⌋) + r̂k,θ(κ− ⌊Lθlk⌋)

)
ĥlk,κ

}
(θlk,i),

bl+1
k,θ (θ

l
k,i) = F−1

θ

{
j
(
r̂k,θ(κ+ ⌊Lθlk⌋)− r̂k,θ(κ− ⌊Lθlk⌋)

)
ĥlk,κ

}
(θlk,i)

for i = 1, . . . , n where the low-pass filter is defined as

ĥlk,κ =

{
1, |κ| < λLθlk

,

0, otherwise

for κ = −n
2 + 1, . . . , n2 and the inverse discrete Fourier transform in the θ-coordinate

is defined as

F−1
θ {r̂k,θ}(θlk,i) =

1

n

n
2∑

κ=−n
2
+1

r̂k,θ(κ) exp
(
j2πκθ

l
k,i

)

for i = 1, . . . , n. Finally, the solution in the time domain is the interpolation of
al+1
k,θ (θ

l
k,i) and bl+1

k,θ (θ
l
k,i) given in the uniform mesh in the θ-coordinate back to the

physical grid θlk(ti), yielding the solution al+1
k (ti) and bl+1

k (ti), respectively.

3.5 Practical Considerations

In this section, some practical considerations are given regarding efficiently solving
Eq. (P2), choosing the over-completeness parameter ρ, the type of interpolation used
in the FFT-NMP-EMD algorithm, specific design of the filter χV (θlk;λ)

, initialisation
of the algorithms, stabilising computations, and determining the step size Eq. (3.9).
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To conclude the section, an algorithm outlining the two methods introduced in this
chapter is given.

The optimisation problem Eq. (P2) can be equivalently expressed as a perturbed
linear program [CDS98, p. 51]

Minimise
ζl+1
k , e

(hl+1
k )T ζl+1

k +
1

2
∥e∥22

Subject to Φl+1
k ζl+1

k + e = rk, ζl+1
k ≽ 0

(P2 PLP)

where ≽ denotes entry-wise inequality, hl+1
k = γ14|Vb(θlk;λ)|

, Φl+1
k =

(
Al+1
k ,−Al+1

k

)
,

ζl+1
k =

(
(ul+1

k )T , (vl+1
k )T

)T , e ∈ Rn, and the solution is xl+1
k = ul+1

k − vl+1
k . This

is a quadratic program with linear constraints, however it retains a structure similar
to linear programming. Therefore, linear programming methods such as simplex
type and interior-point type methods can be used to solve this optimisation problem
[CDS98, p. 51]. In this thesis, an interior-point type method is used. Details regarding
the method are outside the scope of this thesis and the implementation is based on
using the CVXOPT library in Python [ADV22; Van10]. Regarding the regularisation
parameter γ, this is fixed as 1 following the considerations of [HS13b].

For the NMP-EMD algorithm, a scheme for defining the over-completeness pa-
rameter ρ is employed. This is done to reduce the sensitivity of the algorithm to
this parameter, particularly in situations where ρλjLθ is less than one since in this
case Vb(θ;λj) = {1} contains no frequency modes. We choose to fix the cardinality of
Vb(θ; ·), thereby defining the over-completeness parameter ρ at each iteration in order
to comply with this criteria. To avoid the over-completeness parameter ρ becoming
too small such that the adaptivity of the algorithm is lost, the lower bound for ρ is
set as 2.

With the FFT-NMP-EMD algorithm, a step in the algorithm is to interpolate the
phase function θlk(ti) to a uniform mesh in the θ-coordinate. Additionally, an inter-
polation is used to to map the solutions al+1

k,θ (θ
l
k,i) and bl+1

k,θ (θ
l
k,i) given in the uniform

mesh in the θ-coordinate back to the physical grid θlk(ti). Practically, these interpo-
lations are done using cubic spline interpolation.

The filter χV (θlk;λ)
can be constructed in a multitude of ways. One approach could

be to define the frequency response of the filter as an ideal filter in the frequency
domain, i.e.

ĥlk,κ =

{
1, |κ| < λLθlk

,

0, otherwise.

for κ = −n
2 + 1, . . . , n2 assuming n is even. This type of filter has the disadvantage

that a step function in the frequency domain causes ripple effects in the time domain
as a consequence of Gibbs’ phenomenon. Instead, we utilise a raised cosine filter
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which has the frequency response [HS13b]

ĥlk,κ =





1
2 − 1

2 cos
(
(κ− λLθlk)

π
λL

θl
k

)
, |κ| < λLθlk

,

0, otherwise
(3.14)

for κ = −n
2 + 1, . . . , n2 assuming n is even providing a smooth transition to zero near

the boundary of the support of ĥlk.

To initialise Eq. (3.10), an initial estimate ω0
k of the IF ωk is required. This initial esti-

mate can be acquired with a multitude of different methods, e.g. the synchrosqueezed
wavelet transform [DLW11]. However, following the approach in [HS13b], in this the-
sis the frequency is initialised by searching for a frequency which the high frequency
content of the residual is centred around. Specifically, this is done using the HHT by
computing

ω0
k =

1

n

n∑

i=1

ωEMD
k (ti)

where ωEMD
k is the IF derived using the EMD in conjunction with the analytic signal

method using the Hilbert transform to determine the IF.
The type of iterative algorithm employed in this section is sensitive to the initial

estimate of the IF. Empirically, it has been found that by defining a sequence of
V (θ;λj)-spaces, the algorithm tends to converge even from rough initial estimates.
This sequence is designed as V (θ;λ1) ⊂ V (θ;λ2) ⊂ · · · ⊂ V (θ;λL) = V (θ;λ) and
can be constructed by iteratively increasing the λ hyperparameter as the algorithm
has converged within a given V (θ;λj)-space. As such, an ordered sequence of λj
parameters is defined as 0 < λ1 < λ2 < · · · < λL = λ from which the V (θ;λj)-spaces
can be constructed. Using this method, for the first iteration j = 1, the smoothness
of ak and ωk is significantly restricted and as j → L, the smoothness restriction is
lessened. Following the choices of [HS13b], L is fixed as 20 and λ1 is set to 0. [HS13b]

In a practical implementation, if the expression (al+1
k )2(t) + (bl+1

k )2(t) is close to
zero for some t, then the division in Eq. (3.8) can become unstable. To alleviate this
practical issue, a threshold ξ > 0 is fixed and if (al+1

k )2(t)+ (bl+1
k )2(t) < ξ for some t,

then the value of ∆ωl+1
k (t) is not used and instead the value is assigned based on an

interpolation of ∆ωl+1
k (t) at other times where (al+1

k )2(t) + (bl+1
k )2(t) ≥ ξ. We have

chosen ξ = 0.1 in the numerical experiments in this thesis. [HS13b]

To determine the maximum in Eq. (3.9), consider the inequality

ωlk − ηl+1
k ∆ωl+1

k > 0

for ηl+1
k ∈ [0, 1] and rearrange the inequality as

ηl+1
k <

ωlk
∆ωl+1

k

.
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Moreover, note that for points where ∆ωl+1
k < 0 the step direction for the IF is away

from zero. Let I denote the indices where ∆ωl+1
k (ti) is greater than zero. With the

previous discussion in mind, if I = ∅, then ηl+1
k = 1. Otherwise, the step size ηl+1

k is
chosen as

ηl+1
k = min

{
min
i∈I

{ ωlk(ti)

2∆ωl+1
k (ti)

}
, 1
}
.

In this way, ηl+1
k is guaranteed to be in the interval [0, 1] while also ensuring that

ωlk − ηl+1
k ∆ωl+1

k is positive.
An algorithm outlining the NMP-EMD method is given in Algorithm 2. With the

FFT-NMP-EMD method, the approach introduced in Section 3.4 replaces the step in
Algorithm 2 where al+1

k and bl+1
k are determined. The rest of the algorithm proceeds

analogously.

3.6 Synthetic Example

To visualise the progression of the NMP-EMD algorithm, a synthetic example has
been constructed in which a signal is defined as

y(t) = cos
(
2π(10t+ 16t2)

)

for t ∈ [0, 1] with 300 equidistantly spaced samples. In Fig. 3.1, the updates of the
IF when running the NMP-EMD method is visualised for a good initial guess and a
poor initial guess. For this example γ = 0, λ = 0.5, and δ = 1e−05. Moreover, for
the good initial guess, the initial smoothness parameter, λ1, is 0.1 and the length of
the smoothness parameter sequence, L, is 10. On the other hand, for the poor initial
guess, the initial smoothness parameter, λ1, is 0 and the length of the smoothness
parameter sequence, L, is 20. With both the good initial guess and the poor initial
guess it is seen that the method converges to the true IF. This shows the benefit of
the λ-sequence as this allows convergence in both cases. Additionally, it is noticed
that a good initial guess can significantly reduce the number of required iterations.

(a) Good initial guess. (b) Poor initial guess.

Figure 3.1: Progress of IF during the NMP-EMD algorithm. Inspired by Fig. 18 in [HS13b].
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Algorithm 2 NMP-EMD
Input: Signal y, regularisation parameter γ, threshold parameter δ, smoothness
parameters {λj}Lj=1.

1: Initialise k = 1; rk = y; IMFs = {}.
2: while ∥rk∥2 > δ do
3: l = 0.
4: Find ω0

k.
5: Determine θ0k from ω0

k by summation.
6: for all j ∈ {1, . . . , L} do
7: while ∥θlk − θl−1

k ∥2 > δ do
8: For the V (θlk;λj)-space, solve the ℓ1-regularised least square problem

Minimise
zl+1
k

1

2
∥rk −Al

kz
l+1
k ∥22 + γ∥zl+1

k ∥1 (P2)

and let xl+1
k =

(
âl+1
k , b̂

l+1

k

)T be the solution.
9: Update θlk as

θl+1
k = θlk − ηl+1

k ∆θl+1
k (3.15)

where ∆θl+1
k (t1) = 0 and for i = 2, . . . , n

∆θl+1
k (ti) = ∆θl+1

k (ti−1) +
1

fs

∆ωl+1
k (ti−1) + ∆ωl+1

k (ti)

2
,

∆ωl+1
k = χV (θlk;λj)

{(bl+1
k

)′
al+1
k − bl+1

k

(
al+1
k

)′
(
al+1
k

)2
+
(
bl+1
k

)2
}

for the linear low-pass filter χV (θlk;λj)
with frequency response

as in Eq. (3.14), and where

ηl+1
k = max

{
µ ∈ [0, 1] : ωlk − µ∆ωl+1

k ≥ 0
}
.

10: l← l + 1.
11: end while
12: end for
13: ak =

√(
alk
)2

+
(
blk
)2.

14: θk = θlk.
15: IMFs← IMFs ∪ {ak(t) cos

(
θk(t)

)
}.

16: Update the residual

rk+1(t) = y(t)−
k∑

i=1

ai(t) cos
(
θi(t)

)
.

17: k ← k + 1.
18: end while
19: r(t) = rk(t).

Output: IMFs, r(t).
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3.7 Influence of Smoothness Parameter

In this section, the influence of the smoothness parameter is analysed using synthetic
examples. This is done since the performance of the algorithm has been found to be
particularly sensitive to the smoothness parameter λ.

Consider an example with two components of the same constant amplitude sep-
arated in frequency by a parameter f and where additionally the IF of the high
frequency component is a linear function with slope α. The signal is defined as
follows

y(t;α, f) = cos
(
20πt+ παt2

)
+ cos

(
2πft

)

for t ∈ [0, T ], α ≤ 0 and f ∈ (0, 10). The variable α both determines the bandwidth
of the high frequency component and alters the separation between the two frequency
components as a function of time.

Firstly, consider an experiment where α = 0 is fixed and define a performance
measure as

Q1(λ, f ; ĉ1) =
∥ĉ1(t;λ, f)− cos(20πt)∥2

∥ cos(2πft)∥2
(3.16)

where f ∈ (0, 10), λ ∈ (0, 0.5], and ĉ1(t;λ, f) is the first IMF extracted with smooth-
ness parameter λ and for relative frequency f . The results with the FFT-NMP-EMD
and the NMP-EMD algorithms are shown in Figs. 3.2c and 3.2d. These figures show
that as a general trend, components with constant frequency and constant amplitude
are best found when the smoothness parameter is sufficiently low, and when this is
the case even closely spaced components can be resolved.

Secondly, consider an experiment where f = 5 is fixed and define a performance
measure as

Q2(λ, α; ĉ1) =
∥ĉ1(t;λ, α)− cos

(
20πt+ παt2

)
∥2

∥ cos(10πt)∥2
(3.17)

where α ∈ [−2, 0], λ ∈ (0, 0.5], and ĉ1(t;λ, α) is the first IMF extracted with smooth-
ness parameter λ and for slope α. The results are shown in Figs. 3.2c and 3.2d for
the FFT-NMP-EMD and NMP-EMD algorithms and shows that the best choice of
smoothness parameter λ is generally speaking λ = 0.5. Additionally, is seems that
the FFT-NMP-EMD method outperforms the NMP-EMD method when α is close to
−2.0.
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(a) FFT-NMP-EMD. (b) NMP-EMD.

(c) FFT-NMP-EMD. (d) NMP-EMD.

Figure 3.2: Figs. 3.2a and 3.2b: Relation between relative frequency f and smoothness parameter
λ evaluated according to Eq. (3.16). Figs. 3.2c and 3.2d: Relation between frequency slope α and
smoothness parameter λ evaluated according to Eq. (3.17).



4. Uniqueness of Compressive
Sensing Algorithm

In this chapter, theoretical results regarding the uniqueness of the decomposition
resulting from the NMP-EMD and FFT-NMP-EMD methods introduced in Chapter 3
are proven. However, in order to prove the theoretical properties some assumptions
have to be considered regarding the signals being decomposed. Therefore, the notion
of scale separation is defined.

Definition 4.1 (Scale Separation)
A pair

(
a(t), θ(t)

)
is said to satisfy the scale separation property with a separation

factor ε > 0 if a(t) ∈ C1(R) and θ(t) ∈ C2(R) satisfy the following criteria

inf
t∈R

θ′(t) > 0,

sup
t∈R

θ′(t)

inf
t∈R

θ′(t)
=M <∞,

∣∣∣a
′(t)

θ′(t)

∣∣∣ ≤ ε,
∣∣∣ θ′′(t)
(
θ′(t)

)2
∣∣∣ ≤ ε (4.1)

for all t ∈ R. The dictionary Dε is defined as the set of functions on the form
y(t) = a(t) cos(θ(t)) which fulfils Eq. (4.1) with separation factor ε. [LSH15]

A multi-component signal where each mono-component satisfies the scale separation
property as in Definition 4.1 can be said to be well-separated if additional criteria are
satisfied. Hence, the notion of well-separated signals is introduced.

Definition 4.2 (Well-Separated Signal)
Let Dε be the dictionary from Definition 4.1 with separation factor ε. A signal
y : R→ R is said to be well-separated with separation factor ε and frequency ratio
fr if it can be expressed as

y(t) =

s∑

k=1

ak(t) cos(θk(t)) + r(t)

35
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where all ak(t) cos(θk(t)) ∈ Dε, |r(t)| ≤ ε0 for all t ∈ R and for ε0 > 0, and the
phase functions satisfy

θ′k(t) ≥ frθ′k−1(t)

for all t ∈ R and for fr > 1, fr < N <∞ for some constant N ∈ R. The dictionary
Aε,fr is defined as the set of functions which are well-separated with scale separation
factor ε and frequency ratio fr. [LSH15]

Using Aε,fr , a CS problem similar to Eq. (3.4) can be formulated where the dictio-
nary Aε,fr is used in place of D. For this dictionary, theoretical properties of the
decomposition methods are shown.

Assume that the signal y(t) ∈ Aε,fr . For this kind of signal, the existence of a
decomposition is fulfilled since y(t) has a representation

y(t) =
s∑

k=1

ak(t) cos(θk(t)) + r(t). (4.2)

Each of the feasible decompositions given by Eq. (4.2) gives an integer s and by
collecting these integers in a set B, the solution to Eq. (Pδ) is given as s0 = inf B
where by the assumptions on y(t), B is a non-empty set of positive integers. This
gives the existence of a solution. Before presenting the main theorem of this chapter,
a lemma is introduced.

Lemma 4.3 ([LSH15])
Let ψ be a wavelet function such that

I1 =

∫

R
|ψ(τ)|dτ <∞, I2 =

∫

R
|τψ′(τ)|dτ <∞, I3 =

∫

R
|τ2ψ′′(τ)|dτ <∞.

Suppose
(
a(t), θ(t)

)
satisfies Definition 4.1 with separation factor ε. Then

W{ae−jθ}(t, ω) = √ωa(t)e−jθ(t)ψ̂
(
ωθ′(t)

)
+ C
√
ωε (4.3)

whereW{ae−jθ}(t, ω) denotes the wavelet transform of ae−jθ, ψ̂ denotes the Fourier
transform of ψ, and

C = (sup
t∈R
|a(t)|+ 4|a(t)|+ 1)I1 + (M + (M + 1)|a(t)|)I2 +M |a(t)|I3

with M =
supt∈R θ

′(t)
inft∈R θ′(t)

.
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Proof.
For a proof see [LSH15]. ■

For readers unfamiliar with the wavelet transform, a definition can be found in Ap-
pendix A.2. The following theorem states that the decomposition is unique up to an
error term depending on ε and ε0. However, in order to simplify the notation assume
ε0 = ε.

Theorem 4.4 ([LSH15])
Let y : [0, T ] → R be well-separated with separation factor ε approaching 0 and
frequency ratio fr. Then {ak, θk}sk=1 is an optimal solution to the optimisation
problem Eq. (Pδ) and it is unique up to the error ε, i.e. if {ãk, θ̃k}s̃k=1 is another
optimal solution to Eq. (Pδ), then s̃ = s and

|ak(t)− ãk(t)| ≤ 2
√
Tε,

|θk(t)− θ̃k(t)|
θ′k(t)

≤ C ′

1− ∆
2

ε (4.4)

for all t ∈ [0, T ] and for k = 1, . . . , s where C ′ > 0 is a positive constant and
0 < ∆ <

√
fr−1√
fr+1

.

Proof.
In order to prove this theorem, assume there are two decompositions of y such that

y(t) =
s∑

k=1

ak(t) cos(θk(t)) + r(t) =
s̃∑

k=1

ãk(t) cos
(
θ̃k(t)

)
+ r̃(t)

where |r(t)| ≤ ε and |r̃(t)| ≤ ε for all t.
First it is proven that s = s̃. In order to use Lemma 4.3, a complex function is

defined as

g(t) =
s∑

k=1

ak(t) exp(−jθk(t)) + r(t) =
s̃∑

k=1

ãk(t) exp
(
− jθ̃k(t)

)
+ r̃(t).

Note that y(t) = Re{g(t)}. Using Lemma 4.3

1√
ω
W{g}(t, ω) =

s∑

k=1

ak(t)e
−jθk(t)ψ̂(ωθ′k(t)) + e(ε; t, ω)

=

s̃∑

k=1

ãk(t)e
−jθ̃k(t)ψ̂(ωθ̃′k(t)) + ẽ(ε; t, ω) (4.5)
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where the terms |e(ε; t, ω)| = |sCε +W{r}(t, ω)| ≤ (sC +
√
T )ε and |ẽ(ε; t, ω)| =

|sCε + W{r̃}(t, ω)| ≤ (sC +
√
T )ε. Note that the term sCε is derived using

Lemma 4.3 and the term
√
Tε is derived using the property that |W{r}(t, ω)| ≤ ∥r∥2

since then [Dau94, p. 24]

|W{r}(t, ω)| ≤ ∥r∥2 =
√∫ T

0
|r(t)|2dt ≤

√∫ T

0
|ε|2dt =

√
Tε

where it is assumed that ∥ψ∥2 = 1.
Now pick a wavelet function ψ which fulfils the following properties: The Fourier

transform ψ̂ ∈ C2 has support in [1−∆, 1+∆] where 0 < ∆ <
√
fr−1√
fr+1

and ψ̂(1) = 1

is the maximum of |ψ̂|. This wavelet is chosen as a fifth order B-spline after proper
scaling and translation [LSH15]. Now fix t = t0 ∈ [0, T ] and for any l ∈ {1, . . . , s}
let ωl,0 = 1

θ′l(t0)
. Using Eq. (4.5)

1√
ω
W{g}(t0, ωl,0) =

s∑

k=1

ak(t0)e
−jθk(t0)ψ̂

(θ′k(t0)
θ′l(t0)

)
+ e(ε; t0, ωl,0) (4.6)

=
s̃∑

k=1

ãk(t0)e
−jθ̃k(t0)ψ̂

( θ̃′k(t0)
θ′l(t0)

)
+ ẽ(ε; t0, ωl,0).

Now consider θ′k(t0)
θ′l(t0)

≤ 1
fr
< 1−∆ and θ′k(t0)

θ′l(t0)
≥ fr > ∆+ 1 for k ̸= l where the first

inequalities are results of Definition 4.2 and the second inequality is a result of the
fact that fr > 1 and that the upper bound of ∆ increases slower than fr for fr > 1
by Lemma A.9. Thus, by the assumption of the support of ψ̂ only the term k = l
is non-zero in the first sum of Eq. (4.6)

al(t0)e
−jθl(t0)ψ̂(1) =

s̃∑

k=1

ãk(t0)e
−jθ̃k(t0)ψ̂

( θ̃′k(t0)
θ′l(t0)

)
+ẽ(ε; t0, ωl,0)−e(ε; t0, ωl,0) (4.7)

where |ẽ(ε; t0, ωl,0)− e(ε; t0, ωl,0)| ≤ 2
√
Tε. In order for Eq. (4.7) to be true, there

exists at least one I(l, t0) ∈ {1, . . . , s̃} such that

|ψ̂
( θ̃′I(l,t0)(t0)

θ′l(t0)

)
| > 0

which means

1−∆ <
θ̃′I(l,t0)(t0)

θ′l(t0)
< 1 + ∆. (4.8)

By the assumption that y ∈ Aε,fr , for any k ̸= l

θ′l(t0)

θ′k(t0)
≥ fr or

θ′l(t0)

θ′k(t0)
≤ 1

fr
.
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Using Lemma A.9 gives

θ̃′I(l,t0)(t0)

θ′k(t0)
=
θ̃′I(l,t0)(t0)

θ′l(t0)

θ′l(t0)

θ′k(t0)
≥ fr(1−∆) > 1 + ∆

or
θ̃′I(l,t0)(t0)

θ′k(t0)
=
θ̃′I(l,t0)(t0)

θ′l(t0)

θ′l(t0)

θ′k(t0)
≤ 1 + ∆

fr
< 1−∆.

Then for any k ̸= l

|ψ̂
( θ̃′I(l,t0)(t0)

θ′k(t0)

)
| = 0.

This implies I(k, t0) ̸= I(l, t0), k ̸= l. Thus,

s̃ ≥ s.

However, {ãk, θ̃k}sk=1 is a solution to Eq. (Pδ), therefore s̃ ≤ s and hence

s̃ = s. (4.9)

Now it is proven that |ak(t) − ãk(t)| ≤ 2
√
Tε. Eq. (4.9) implies that for any

t ∈ [0, T ], I(·, t) : {1, . . . , s} → {1, . . . , s} is a one-to-one mapping. As such,
I−1(·, t) : {1, . . . , s} → {1, . . . , s} can be defined. The proof starts by studying the
function I−1(k, ·) : [0, T ]→ {1, . . . , s} for k = 1, . . . , s. Using the condition

θ̃′′
(
θ̃′
)2 ≤ ε

from Definition 4.1 and that the signal y ∈ Afr,ε, then it is shown that I−1(k, ·) is
constant over [0, T ], i.e.

I−1(k, t) = I−1(k, 0)

for t ∈ [0, T ] and k = 1, 2, . . . , s. Suppose by contradiction that there exists t0 ∈
[0, T ] such that I−1(k, t0) ̸= I−1(k, 0). Let A = {0 ≤ t ≤ t0 : I−1(k, t0) = I−1(k, 0)}
and ξ = supA. Then for any η > 0 there exists t1, t2 ∈ [0, T ] such that

t1 < ξ < t2, |t2 − t1| < η, I−1(k, 0) = I−1(k, t1) ̸= I−1(k, t2).

Now, define the notation

I−1(k, t1) = k1, I−1(k, t2) = k2

for k1 ̸= k2. Since I(k, t) is a one-to-one mapping and by Eq. (4.8)

1−∆ <
θ̃′k(t1)

θ′k1(t1)
< 1 + ∆, 1−∆ <

θ̃′k(t2)

θ′k2(t2)
< 1 + ∆. (4.10)
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Without loss of generality, assume that θ′k2 > θ′k1 . By Eq. (4.10)

θ̃′k(t1) < (1 + ∆)θ′k1(t1), θ̃′k(t2) > (1−∆)θ′k2(t2).

Now, let η → 0 such that t1, t2 → ξ. Then,

θ̃′k(ξ) ≤ (1 + ∆)θ′k1(ξ), θ̃′k(ξ) ≥ (1−∆)θ′k2(ξ).

Since y ∈ Aε,fr ,
θ′k1(t)

θ′k2(t)
≤ 1

fr

and then

θ̃′k(ξ) ≤ (1 + ∆)θ′k1(ξ), θ̃′k(ξ) ≥ fr(1−∆)θ′k1(ξ) > (1 + ∆)θ′k1(ξ)

which is a contradiction. Thus, I−1(k, ·) is a constant over [0, T ], and it can be
assumed that

I−1(k, t) = k

for t ∈ [0, T ] and k = 1, . . . , s which implies

1−∆ <
θ̃′k(t)

θ′k(t)
< 1 + ∆.

Now for any θ ∈ C1 define the set

Uθ = {(t, ω) ∈ R2 : |ψ̂(ωθ′(t))| > ε}.

Using the assumption that y ∈ Aε,fr and the choice of ψ, for any k, l = 1, . . . , s,
k ̸= l it follows that

ψ̂
(
ωθ′l(t)

)
= ψ̂

(
ωθ̃′l(t)

)
= 0, ∀(t, ω) ∈ Uθk , (4.11)

ψ̂
(
ωθ′l(t)

)
= ψ̂

(
ωθ̃′l(t)

)
= 0, ∀(t, ω) ∈ Uθ̃k (4.12)

and by Lemma 4.3

1√
ω
W{g}(t, ω) =

s∑

k=1

ak(t)e
−jθk(t)ψ̂

(
ωθ′k(t)

)
+ e(ε; t, ω)

=
s̃∑

k=1

ãk(t)e
−jθ̃k(t)ψ̂

(
ωθ̃′k(t)

)
+ ẽ(ε; t, ω). (4.13)

Using Eqs. (4.11) to (4.13)

|ak(t)e−jθk(t)ψ̂
(
ωθ′k(t)

)
− ãk(t)e−jθ̃k(t)ψ̂

(
ωθ̃′k(t)

)
| ≤ 2

√
Tε
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for all (t, ω) ∈ Uθk ∪ Uθ̃k which implies

∣∣|ak(t)ψ̂
(
ωθ′k(t)

)
| − |ãkψ̂

(
ωθ̃′k(t)

)
|
∣∣ ≤ 2

√
Tε. (4.14)

Assume ak(t) > ãk(t) and choose ω = 1
θ′k(t)

∣∣∣∣ak(t)|ψ̂(1)| − ãk(t)
∣∣∣ψ̂
( θ̃′k(t)
θ′k(t)

)∣∣∣
∣∣∣∣ ≤ 2

√
Tε.

Since ak(t) > ãk(t) and remembering |ψ̂(ξ)| achieves its maximum at ξ = 1,

0 ≤ |ψ̂(1)|(ak(t)− ãk(t)) ≤ ak(t)|ψ̂(1)| − ãk(t)
∣∣∣ψ̂
( θ̃′k(t)
θ′k(t)

)∣∣∣ ≤ 2
√
Tε.

This shows

ak(t)− ãk(t) ≤
2
√
Tε

|ψ̂(1)|
= 2
√
Tε.

By a similar argument, assuming ãk(t) > ak(t), it can be shown that

ãk(t)− ak(t) ≤ 2
√
Tε.

Combining these cases, the result follows

|ak(t)− ãk(t)| ≤ 2
√
Tε.

We end the proof here. For a proof of the assertion

|θ′k(t)− θ̃′k(t)|
θ′k(t)

≤ C ′

1− ∆
2

ε

see [LSH15]. ■

Now a result regarding a variation of the Eq. (PNMP) problem is shown. However,
first a lemma which is useful later is introduced.

Lemma 4.5 ([LSH15])
Let ak, θk for k = 1, . . . , s be well-separated with frequency ratio fr and separation
factor ε. Furthermore, let

(
a(t), θ(t)

)
satisfy Definition 4.1 and let there exist an

α ∈ [1, fr) and l ∈ {1, . . . , s} such that

α−1dθl(t)

dt
≤ dθ(t)

dt
≤ αdθl(t)

dt
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for t ∈ [0, 1]. Then

µk,l =
|⟨ak cos(θk), al cos(θl)⟩|
∥ak cos(θk)∥2∥al cos(θl)∥2

< 4ε
(1
2
− 3ε

)−1(
1 +

1

(1− f−|l−k|
r )2

)
,

µk,l,α =
|⟨ak cos(θk), a cos(θ)⟩|
∥ak cos(θk)∥2∥a cos(θ)∥2

< 4ε
(1
2
− 3ε

)−1(
1 +

1

(1− αf−|l−k|
r )2

)

for any k ∈ {1, . . . , s}, k ̸= l.

Proof.
For a proof see [LSH15]. ■

Consider the following variation of Eq. (PNMP)

Minimise p(a, θ) = ∥y(t)− a(t) cos(θ(t))∥22
Subject to a(t) cos(θ(t)) ∈ Dε.

(4.15)

A theorem which states under which conditions on a(t) cos(θ(t)) the solution to the
optimisation problem Eq. (4.15) could provide an approximation to Eq. (P) is proven.
The following theorem shows that for a periodic signal each IMF is a local minimiser
of Eq. (4.15) under certain assumptions. Note that the theorem applies to signals
with finite support in time. As such, without loss of generality assume that the signal
has support in the time interval [0, 1]. When working with signals of finite length end
effects occur. However, this problem is avoided by assuming that the signal is periodic
with a period of 1. However, this also means that for signals which are non-periodic
the results shown only applies for the interior region away from the boundary.

Theorem 4.6 ([LSH15])
Let y ∈ Aε,fr and suppose there exists an α ∈ [1, fr) and an l ∈ {1, . . . , s} such
that

α−1dθl(t)

dt
≤ dθ(t)

dt
≤ αdθl(t)

dt

for t ∈ [0, 1]. If
p(a, θ) ≤ p(al, θl),

then
∥a cos(θ)− al cos(θl)∥2

∥al cos(θ)∥2
< C ′′ε

for a positive constant C ′′ > 0.
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Proof.
In the following proof, the explanatory variable t is omitted for ease of notation.
Additionally, for convenience of notation, |y| where y : [0, 1]→ R is used to denote
the L2([0, 1])-norm. By assumption,

0 ≥ p(a, θ)− p(al, θl)
= |y − a cos(θ)|2 − |y − al cos(θl)|2

=
∣∣∣

s∑

k=1

ak cos(θk) + r − a cos(θ)
∣∣∣
2
−
∣∣∣

s∑

k=1

ak cos(θk) + r − al cos(θl)
∣∣∣
2

=
∣∣∣

s∑

k=1,k ̸=l
ak cos(θk) + r − a cos(θ) + al cos(θl)

∣∣∣
2
−
∣∣∣

s∑

k=1,k ̸=l
ak cos(θk) + r

∣∣∣
2

=

∫ (( s∑

k=1,k ̸=l
ak cos(θk) + r − a cos(θ) + al cos(θl)

)2

−
( s∑

k=1,k ̸=l
ak cos(θk) + r

)2
)
dt.

Consider the integrand and compute the square

0 ≥
( s∑

k=1,k ̸=l
ak cos(θk)

)2
+ r2 + a2 cos2(θ) + a2l cos

2(θl) + 2
s∑

k=1,k ̸=l
ak cos(θk)r

− 2

s∑

k=1,k ̸=l
ak cos(θk)a cos(θ) + 2

s∑

k=l,k ̸=l
ak cos(θk)al cos(θl)

− 2ra cos(θ) + 2ral cos(θl)− 2a cos(θ)al cos(θl)

−
( s∑

k=1,k ̸=l
ak cos(θk)

)2 − 2

s∑

k=1,k ̸=l
ak cos(θk)r − r2.

Cancelling terms and re-introducing the integral yield the inequality

0 ≥ |al cos(θl)− a cos(θ)|2 + 2⟨al cos(θl)− a cos(θ),
s∑

k=1,k ̸=l
ak cos(θk) + r⟩. (4.16)

Now focus on the inner product in the above inequality. Defining the terms

µk,l =
|⟨al cos(θl), ak cos(θk)⟩|
|al cos(θl)||ak cos(θk)|

, δ1 =

s∑

k=1,k ̸=l
µk,l
|ak cos(θk)|
|al cos(θl)|

+
|r|

|al cos(θl)|
.
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Using these terms,

|⟨al cos(θl),
s∑

k=1,k ̸=l
ak cos(θk) + r⟩|

≤
s∑

k ̸=l,k=1

|⟨ak cos(θk), al cos(θl)⟩|+ |r||al cos(θl)|

=
s∑

k=1,k ̸=l
µk,l|al cos(θl)||ak cos(θk)|+ |r||al cos(θl)|

= δ1|al cos(θl)|2. (4.17)

Similarly, defining

µk,l,α =
|⟨a cos(θ), ak cos(θk)⟩|
|a cos(θ)||ak cos(θk)|

, δ2 =
s∑

k=1,k ̸=l
µk,l,α

|ak cos(θk)|
|al cos(θl)|

+
|r|

|al cos(θl)|

and then

|⟨a cos(θ),
s∑

k=1,k ̸=l
ak cos(θk) + r⟩|

≤
s∑

k=1,k ̸=l
|⟨a cos(θ), ak cos(θk)⟩|+ |a cos(θ)||r|

=
s∑

k=1,k ̸=l
µk,l,α|a cos(θ)||ak cos(θk)|+ |a cos(θ)||r|

= δ2|a cos(θ)||al cos(θl)|
≤ δ2|a cos(θ)− al cos(θl)||al cos(θl)|+ δ2|al cos(θl)|2 (4.18)

where the last inequality is a result of the triangle inequality |a cos(θ)| ≤ |a cos(θ)−
al cos(θl)|+ |al cos(θl)|. Combining Eqs. (4.16) to (4.18), it follows that

0 ≥ |al cos(θl)− a cos(θ)|2 − 2δ2|a cos(θ)− al cos(θl)||al cos(θl)|
− 2(δ1 + δ2)|al cos(θl)|2.

≥ |al cos(θl)− a cos(θ)|
2

|al cos(θl)|2
− 2δ2

|a cos(θ)− al cos(θl)|
|al cos(θl)|

− 2(δ1 + δ2).

Now, this quadratic equation is solved for the positive solution, as the norm is
positive, to obtain

|a cos(θ)− al cos(θl)|
|al cos(θl)|

≤ δ2 +
√
δ22 + 2(δ1 + δ2). (4.19)
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Using Lemma 4.5, then

µk,l < 4ε
(1
2
− 3ε

)−1(
1 +

1

(1− f−|l−k|
r )2

)
,

µk,l,α < 4ε
(1
2
− 3ε

)−1(
1 +

1

(1− αf−|l−k|
r )2

)
.

From these inequalities and using |r(t)| ≤ ε for all t, it follows that

δ1 <
s∑

k=1,k ̸=l
4ε
(1
2
− 3ε

)−1(
1 +

1

(1− f−|l−k|
r )2

) |ak cos(θk)|
|al cos(θl)|

+
ε

|al cos(θl)|
, (4.20)

δ2 <

s∑

k=1,k ̸=l
4ε
(1
2
− 3ε

)−1(
1 +

1

(1− αf−|l−k|
r )2

) |ak cos(θk)|
|al cos(θl)|

+
ε

|al cos(θl)|
. (4.21)

Thus, it follows from Eq. (4.19)

|a cos(θ)− al cos(θl)|
|al cos(θl)|

< C ′′ε (4.22)

for a positive constant C ′′ > 0 which can be expressed explicitly using Eqs. (4.19)
to (4.21). Note that the positive constant is bounded since 0 < |ak cos(θk)| < ∞
by the assumption y ∈ Aε,fr . [LSH15] ■

Therefore, the uniqueness of the Eq. (P0δ) problem has been shown up to an error
bound given by C ′′ε and it has been shown that the solution to Eq. (4.15) estimates
the optimal solution. The factor ε is related to the scale separation factor and the
energy in the residual. The positive constant C ′′ is influenced by the frequency ratio
and the energy in the components ak cos(θk). Specifically, when extracting component
l of a signal y ∈ Aε,fr , the error bound decreases when the frequency ratio increases
and additionally decreases as the energy in component l increases in comparison to
the energy in components k for k ̸= l. [LSH15]



5. Partial Differential Equation
Based Adaptive Decomposition

In this chapter, a method to adaptively decompose a signal using PDEs is introduced.
The method was first introduced in [WMV18] and is considered in this thesis based
on the discussion in Chapter 2. The method is in this thesis dubbed PDE-EMD and
is based on the heat equation. In the context of this thesis, only introductory results
regarding PDEs are needed to introduce the method.

The chapter is organised by first introducing the basics of PDEs in the context of
the heat equation in Section 5.1 and a finite difference scheme for numerically solving
the heat equation in Section 5.2. Then, in Section 5.3, the PDE-EMD method is
described. Finally, in Section 5.4, the PDE-EMD method is tested on a simulated
example.

5.1 Partial Differential Equation Basics

A PDE, defined below, is an equation of two or more variables containing at least
one partial derivative.

Definition 5.1 (Partial Differential Equation)
A PDE is an equation involving partial derivatives of an unknown function u : S →
R where S is an open subset of Rd for d ≥ 2. [Jos13, p. 1]

The study of PDEs is usually not focused on arbitrary PDEs but instead on equations
which naturally occur in various applications. As mentioned, the type of PDE which
is used in this thesis is the heat equation, defined below, whose name originates from
its usage in modelling diffusion processes such as heat.

46
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Definition 5.2 (Heat Equation)
Let u : S × R+ → R and u ∈ C2, then the heat equation is given as

∂u(x1, . . . , xd, t)

∂t
= α

( d∑

i=1

∂2u(x1, . . . , xd, t)

∂2xi

)

where α ∈ R, t ∈ R+ and (x1, x2, . . . , xd) ∈ S ⊂ Rd. The variable t is called the
time coordinate and x1, x2, . . . , xd the spatial coordinates. [Jos13, p. 2] [Kre11,
p. 558]

PDEs are often classified not only by their type but by their characteristics. Con-
sidering the heat equation, it is classified as a linear PDE since it only contains the
partial derivatives of u linearly. Similarly, it can also be classified as a second order
PDE as the highest order of occurring partial derivatives is second order.

The use of the heat equation for adaptive decompositions is motivated by its
property regarding regularity or smoothness of its solution stated below.

Theorem 5.3 (Smoothness of the Solution)
Suppose, u ∈ C2 is a solution to a heat equation in S × (0, T ]. Then, u ∈ C∞.
[Eva10, p. 59]

Proof.
For a proof see [Eva10, pp. 59-61]. ■

5.1.1 Initial and Boundary Conditions

In general, PDEs have an infinite number of solutions and to determine a specific
solution, some conditions need to be imposed. There are two types of conditions
which are usually imposed on a PDE which are the initial conditions and the boundary
conditions. An initial condition on a system is specified at some time t0

u(x, t0) = f(x)

for some function f and another initial condition can be added such as

∂u(x, t0)

∂t
= g(x)
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for some function g. In general, this pattern can be continued adding conditions on
the nth order derivative. For an nth order PDE in time, n− 1 initial conditions are
needed in order to obtain a particular solution. Therefore, with the heat equation,
only one initial condition is needed. [Dem21, p. 32]

Another type of condition which can be imposed are the boundary conditions.
Boundary conditions are imposed on the boundary of the spatial domain as defined
below.

Definition 5.4 (Closure)
Let S ⊂ Rd be an open set and define an open ball with radius r > 0 centred at
z ∈ Rd as Br(z) = {x ∈ Rd | ν(x, z) < r} for a metric ν : S×S → R+. The closure
of S is then defined as

S = {x ∈ Rd | Br(x) ∩ S ̸= ∅ for all r > 0}.

Definition 5.5 (Boundary)
Let S ⊂ Rd be an open set and let S denote the closure of S. Then the boundary
of S is given by

BS = S\S.

In the simple case of one dimension, consider x ∈ (0,K). Then the boundary condi-
tions could be defined as

u(0, t) = f(t),

u(K, t) = g(t)
(5.1)

for some functions f and g. In this thesis, two types of boundary conditions are
tested. These are the Dirichlet boundary conditions and the Neumann boundary
conditions, respectively, which have been tested since they are standard boundary
conditions. The Dirichlet boundary conditions are conditions on u at the boundary
and as such Eq. (5.1) are examples of Dirichlet boundary conditions. The Neumann
boundary conditions are conditions on the normal derivative of u on the boundary, i.e.
conditions on n∇u where n is the normal-vector to the hyperplane which defines the
boundary and ∇ is the vector gradient operator. [Jak19, pp. 19-21][Kre11, pp. 557-
564]

Given a PDE and some initial and boundary conditions yield a so-called initial
and boundary value problem. For applications, the notion of a well posed problem,
defined below, is used to summarise some desirable features in relation to solving the
problem.
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Definition 5.6 (Well Posed Problem)
[Jak19, p. 21] A well posed problem is a problem which satisfies the following two
criteria

1. Existence and uniqueness: There exists one and only one solution which sat-
isfies all the criteria of the model.

2. Stability: The unique solution depends continuously on the data of the prob-
lem, i.e. small changes in data lead to small changes in the solution.

In the following, the existence and uniqueness of a solution to the heat equation is
considered. The stability point is discussed in Section 5.2 when considering numerical
solutions.

The uniqueness of the heat equation assuming continuity of the initial and bound-
ary conditions is established below.

Theorem 5.7 (Uniqueness on Bounded Domains)
Let ST = S × (0, T ] denote the domain of the solution and define the boundary
as BST

= ST \ST . Consider a heat equation with initial and boundary conditions
g ∈ C(BST

). Then there exist at most one solution u ∈ C2
1 (ST ) ∩ C(ST ) of the

problem 



∂u(x1,...,xd,t)
∂t = α

( d∑

i=1

∂2u(x1, . . . , xd, t)

∂2xi

)
in ST

u = g on BST
.

The notation C2
1 (ST ) refers to functions which are once continuous differentiable in

the temporal variable and twice continuous differentiable in the spatial variables.
[Eva10, p. 57]

Proof.
For a proof see [Eva10, p. 57]. ■

This result guarantees the uniqueness of the solution in case there is a solution.
The existence of a solution can also be proven although this is a more laborious
exercise and requires more strict assumptions. In [Eva10, p. 388], a smooth solution
is constructed by assuming smoothness of the initial and boundary conditions and
assuming that the boundary conditions vanishes.
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5.2 Numerical Solution of the Heat Equation

So far in this chapter, PDEs have been considered in a continuous-time domain
operating on functions u : S → R. The solution to the PDEs are as such functions u
given in the domain S. In the following, the heat equation in one spatial dimension
is considered and the domain is defined as S = [0,K]× [0, T ]. Numerical solutions to
PDEs yield solutions in a discrete set of points denoted S. Assume for simplicity that
the points in S are equidistantly spaced. As such, the set S defines a two-dimensional
grid in which the PDE is solved. Let ∆x and ∆t be the spacing between points in the
first axis and second axis, respectively. Then a discretised domain is defined in the
spatial dimension as S∆x = {xi : i = 1, . . . , n} where xi = (i− 1)∆x for i = 1, . . . , n
and in the temporal domain as S∆t = {tj | j = 0, 1, . . . , T } where tj = j∆t, T = T

∆t ,
and it is assumed that ∆t divides T . The discrete domain in which the PDE is solved
numerically is S∆x × S∆t.

In the following section, a finite difference scheme for numerically solving the heat
equation is introduced.

5.2.1 Finite Difference Scheme

Consider the heat equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
.

The partial derivatives can be approximated by the following equations

∂u(x, t)

∂t
=
u(x, t+∆t)− u(x, t)

∆t
+R1 (5.2)

and
∂2u(x, t)

∂x2
=
u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

∆x2
+R2 (5.3)

where R1 ≤ ∆t
2 ∥∂

2u
∂t2
∥∞ and R2 ≤ ∆x2

6 ∥∂
3u
∂x3
∥∞. [OO18, pp. 96-99]

Now define uji = u(xi, tj) for i = 1, . . . , n and j ≥ 0. The equations Eqs. (5.2)
and (5.3) motivate the following update scheme

uj+1
i − uji
∆t

=
uji−1 − 2uji + uji+1

∆x2

which in turn gives the update formula

uj+1
i =

∆t

∆x2
(uji−1 − 2uji + uji+1) + uji . (5.4)

Using Dirichlet boundary conditions given by uj0 = ujn+1 = 0 for j ≥ 0 and initial
conditions as u0i = y(xi). With Eq. (5.4), the values of iteration j+1 can be obtained
using only values from iteration j [TW, pp. 119-120].
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Eq. (5.4) can be expressed with matrix-vector notation as

uj+1 = (I − ∆t

∆x2
AD0)u

j (5.5)

for j ≥ 0 where uj = (uj1, u
j
2, . . . , u

j
n)T with initial condition u0 = (y(x1), y(x2), . . . , y(xn))

T

and

AD0 =




2 −1 0 · · · 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2



. (5.6)

Eq. (5.5) provides an explicit finite difference updating scheme for the heat equation.
[TW, pp.123-126]

Stability of the update scheme depends on the step sizes ∆t and ∆x. Specifically,
if the following inequality is satisfied, then the update scheme is stable [TW, pp. 129-
130]

∆t

∆x2
≤ 1

2
. (5.7)

5.3 PDE Based Empirical Mode Decomposition

In an effort to find an alternative to the cubic spline interpolation used in the EMD,
[DLN05] introduced a PDE based method for determining the upper and lower enve-
lope of a signal which in turn is used to extract the IMFs of a signal. Another method
was introduced by [DAP13] where the PDE was used to find the IMFs directly from
the signal. Finally, in [WMV18], a method was introduced in which a PDE is used
to determine the local mean directly from the signal. After trying the methods of
[DAP13] and [WMV18], it was found that the method of [WMV18] is less hyperpa-
rameter sensitive. Additionally, [WMV18] pointed out some deficiencies of [DAP13]
as mentioned in Chapter 2.

Therefore, the method of [WMV18] is outlined in this section. In this method,
the process of finding the local mean of the signal by use of envelopes is replaced by
a direct computation of the local mean. Here the local mean is the solution to the
heat equation

∂u

∂t
= α

∂2u

∂x2
, (5.8)

u(x, 0) = y(x)

for α > 0 which has solution u(x, T ) for T > 0. Using this heat equation, the solution
m(x) = u(x, T ) can be used as the local mean in the SP shown in Algorithm 1.

The primary motivation for the initial value problem in Eq. (5.8) is that the local
mean m(x) passes through the inflection points of the signal since the right side of
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Eq. (5.8) reduces to 0 at inflection points. Additionally, by the theorem of regularity
of the solution of the heat equation, cf. Theorem 5.3, the local mean is smooth.

In order to use the algorithm, the parameter α needs to be determined. The
choice of α is important to ensure that the local mean is contained within the range
of the signal amplitude. One way to ensure this is by choosing

α ≤ 1

ω2
k(t)

where ωk is the instantaneous angular frequency of the kth IMF. Thus, to ensure this
inequality is fulfilled choose

α =
1

ω2
max

(5.9)

where ωmax = max
k,t
{ωk(t)}.

5.3.1 PDE Based Sifting Algorithm

Consider the case where some signal y with entries yi for i = 1, 2, . . . , n is observed
and consider the PDE introduced in Eq. (5.8). Taking offset in the procedure of
Section 5.2.1, an algorithm to solve this PDE is introduced and is given the name
PDE-EMD. The solution to the PDE is initialised as the signal, i.e. u0i = yi for
i = 1, 2, . . . , n. As in Section 5.2.1, the following update scheme is used

uj+1
i = uji +

α∆t

∆x2
(uji−1 − 2uji + uji+1)

for j ≥ 0 and i = 1, . . . , n where ∆t and ∆x are step sizes in the time domain and
spatial domain, respectively.

Using matrix-vector notation, this can be written as

uj+1 = (I − α∆t

∆x2
A)uj (5.10)

where uj = (uj1, u
j
2, . . . , u

j
n)T . Since the signal is observed in a finite observation win-

dow, boundary conditions should be introduced. If the Dirichlet boundary conditions
uj0 = ujn+1 = 0 are used, the matrix A is the same as in Eq. (5.6). In practice, the
structure of A depends on the choice of boundary conditions and some variations of
A are introduced shortly, specifically for Dirichlet boundary conditions and Neumann
boundary conditions.

The stability condition for the update scheme in Eq. (5.10) follows analogously
from Eq. (5.7) with

α∆t

∆x2
≤ 1

2
(5.11)

ensuring stability.
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Boundary Conditions

The previously shown AD0 matrix corresponds to the Dirichlet conditions with the
boundaries given as uj0 = ujn+1 = 0 for j = 1, . . . , T . This type of boundary conditions
is referred to as D0. With this type of boundary conditions, the local mean equals 0
on the boundary which through the SP results in IMFs which equal the input signal
to the SP on the boundary.

Now consider the Dirichlet conditions where uj1 = y1 and ujn = yn, then

AD1 =




0 0 0 · · · 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 0 0



. (5.12)

These boundary conditions are referred to as D1. Using this type of boundary con-
ditions results in a local mean which equals the signal on the boundary. This in turn
implies that the IMFs equals zero on the boundary.

The Neumann boundary conditions are given by setting a criterion on the deriva-
tive on the boundary. One such example is

∂u(x1, tj)

∂x
= 0,

∂u(xn, tj)

∂x
= 0.

In practice, these derivatives are approximated by a central difference. As such, these
Neumann boundary conditions are given as

uj0 − uj2
∆x

= 0⇒ uj0 = uj2

and similarly
ujn+1 = ujn−1.

This gives the following structure of A

AN0 =




2 −2 0 · · · 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −2 2



. (5.13)

These boundary conditions are referred to as N0 and results in a local mean that
extends as a horizontal line on the boundary.
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Another type of Neumann conditions are given by

∂u(x1, tj)

∂x
=
∂u(x2, tj)

∂x
,

∂u(xn, tj)

∂x
=
∂u(xn−1, tj)

∂x
.

Using these conditions and approximating the derivatives by central differences give
the following structure of A

AN1 =




−1 2 −1 0 · · · 0

−1 2 −1 0
. . .

...

0 −1 2 −1 . . . 0

0
. . . . . . . . . . . . 0

...
. . . 0 −1 2 −1

0 · · · 0 −1 2 −1




. (5.14)

These boundary conditions are referred to as N1. This type of boundary conditions
leads to a local mean which extends in a straight line at the boundary.

Practical Considerations

In order to execute the algorithm, the parameters T , α, ∆t, and ∆x must be deter-
mined. In practice, the value of ∆x is determined by the sample rate since if the
sampled signal includes n samples from a signal on the interval [0,K], then

∆x =
K

n
.

In order to choose α, Eq. (5.9) is used. However, in order to do this, ωmax must be
approximated. This is done by determining the positions of the local minima of the
signal y and then the maximum frequency is approximated as the reciprocal of the
minimum distance between two local minima which is denoted f̂max and α is then
given by

α =
1

(2πf̂max)2
=

1

ω̂2
max

(5.15)

where ω̂max = 2πf̂max. However, if two minima are not present in the current signal,
we set fmax = 1 which is chosen since in this case the signal must be of low frequency.
Using α, then ∆t is determined as

∆t =
K2

4αn2
=

∆x2

4α
(5.16)

which is chosen as it ensures stability of the update scheme, cf. Eq. (5.11), and it
gives the local update formula

uj+1
i =

1

2
uji +

1

4

(
uji+1 + uji−1

)
(5.17)
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when inserted into Eq. (5.10).
The final hyperparameter T has to be chosen empirically. The choice of T deter-

mines the number of updates in time as the number of finite difference steps is

T =
⌊ T
∆t

⌋
.

Setting a low value of T gives a low value of T which results in a lower computational
complexity but a worse approximation of the local mean. The opposite is the case
with a higher value of T except if uj has converged in which case more updates do
not yield a different local mean.

The update scheme in Eq. (5.17) continues until j = T . Then the local mean is
set as m = uT from which the extracted IMF is computed as c1 = y −m and the
first residual is computed as r1 = y− c1. The next IMF is then determined by using
r1 as the initial condition to the finite difference scheme Eq. (5.10). This iterative
method for extracting IMFs is continued until the residual is monotone or one of the
following stopping criteria on the residual is met

√√√√ 1
n

n∑

i=1

mi

√√√√ 1
n

n∑

i=1

rk,i

< τ1, max
i=1,...,n

rk,i − min
i=1,...,n

rk,i < τ2,

n∑

i=1

|rk,i| < τ3

for the kth residual obtained using the PDE-EMD and for 3 thresholds τ1, τ2, τ3 > 0.
The PDE-EMD method is summarised in Algorithm 3.

Algorithm 3 PDE-EMD
Input: Signal y, boundary type, thresholds, T , sample rate fs.

1: Initialise u0 = y; r1 = y; ∆x = 1
fs

; IMFs = {}; j = 0; k = 1.
2: Determine A based on the type of boundary conditions.
3: while a stopping criterion is not fulfilled do
4: Determine the positions of the minima of rk.
5: Find ω̂max.
6: Determine α using Eq. (5.15).
7: Compute ∆t as Eq. (5.16).
8: Compute uj = (I − α∆t

∆x2
A)uj−1 for j = 1, . . . , T .

9: ck = rk − uT

10: IMFs = IMFs ∪ {ck}
11: Update the residual rk+1 = y −∑k

i=1 ci.
12: k ← k + 1.
13: end while
14: r = rk.

Output: IMFs, r.
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Figure 5.1: Depiction of the SP using the PDE-EMD. Example with a signal given by Eq. (5.18)
and decomposition performed with T = 6. The procedure is depicted on the left and the resulting
IMF on the right. Finally, the residual can be seen. The example has been made with D1 boundary
conditions.
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5.4 Synthetic Example

In this section, synthetic experiments with Algorithm 3 are performed. Specifically,
the importance of the T parameter is tested on a simulated example.

Consider the following signal

y(x) = 4 sin(6πx) + sin(2πx) + 3x+ ε (5.18)

where ε Gaussian white noise process with an SNR of 35 dB and with 576 equidis-
tantly spaced datapoints for x ∈ [0, 6]. In Fig. 5.1, the SP of the PDE-EMD method
is depicted. Here it is seen that a local mean is fitted by solving the PDE and then
by subtracting the local mean from the signal, an IMF is extracted. Moreover, it
is noticed that the procedure extracts all four components. However, both mono-
components have a diminished amplitude and these parts of the signal are contained
in the noise component found by the algorithm. Now the effect of T is considered.

(a) First mono-component T = 4. (b) First mono-component T = 5.

(c) Second mono-component T = 4. (d) Second mono-component T = 5.

Figure 5.2: An example showcasing the effect of T . The example has been made with the D1
boundary conditions.

The value of T should be chosen such that the finite difference scheme has converged,
however setting T too high might result in an unnecessarily high amount of compu-
tations. In Fig. 5.2 the resulting decomposition for T = 5 and T = 4 can be seen
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with the signal defined in Eq. (5.18). Looking at these figures, it is noticed that the
PDE-EMD method seems to be able to find the first mono-component with these
settings and the frequency of the second mono-component has also been captured
precisely in the case T = 5 but with an artefact fluctuations around the maxima
for T = 4. However, for the second mono-component the amplitude is attenuated
for both values of T which in turn results in a residual with small fluctuations. The
results for T = 6 and T = 7 are very similar to the results for T = 5 whereas for
T > 7 the decomposition only returns a single component and the second component
becomes part of the residual. Finally, setting T < 4 results in more than 2 mono-
components, several of which have a frequency similar to the first mono-component
but an attenuated amplitude. These tests suggest that T = 5 is a good choice for this
specific example. However, an initial test for the choice of T should be made before
this decomposition method is used.

Next the effect on the computational complexity as T gets larger is investigated.
The effects of T is explored in relation to computation time and the number of
extracted components. Looking at Fig. 5.3, the computation time for different choices
of T as well as the amount of components which has been extracted is seen. It is
noticed that increasing T does not necessarily increase the computation time. This
is the case since the computation time not only depends on T but also the number
of components and the α parameter for the components.

Figure 5.3: The effect of T on the computation time and the amount of components.



6. Experimental Setup

In this chapter, the setting in which the experiments are conducted is described. In
Section 6.1, the data used for the experiments are introduced and in Section 6.2, the
idea of decomposition based forecasting is introduced in a setup where the data is
windowed. Then, in Section 6.3, performance measures for the adaptive decompo-
sition methods are introduced and in Section 6.4, the deep neural network (DNN)
forecast model used in this thesis is presented. Finally, in Section 6.5, the supervised
learning setup which is used to train and test the forecasters is described.

6.1 Data Description

The data used in this thesis has been supplied by Energinet and consists of the
wind power production data for each of the 21 sub-grids described in Section 1.2
given in 5 minute intervals in the time period from January 1st 2019 to October 5th
2021. Furthermore, the installed wind power production capacity for each sub-grid is
available. We note that additional data such as weather forecasts has been supplied
by Energinet, however due to differences in resolution and because the interpretation
of the weather forecasts are unclear after the data has been decomposed, these are
not be included in the forecasting models. Furthermore, we have previously seen
good performance with an EMD based model which did not use weather predictions
[AVK21, pp. 71-72].

For the experiments, we only consider a single sub-grid which is sub-grid 1 in
DK1, see Fig. 1.2. The reasoning for this decision is to reduce the computation time
and hyperparameter fitting time and additionally we deemed that only considering a
single sub-grid is sufficient to answer the problem statement.

The wind power production data for sub-grid 1 in DK1 is denoted as the time
series {P (t)}nt=1 where n is the number of datapoints. Note that the wind power
production data has been collected using a data acquisition process in which sensor
measurements from some wind turbines in sub-grid 1 in DK1 are used to approximate
the actual wind power production. This process is referred to as SCADA-upscaling.

59
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P q
t

Decom-
position

Forecaster 1

Forecaster 2

Forecaster s+ 1

Aggregate P̂t(t+ τ)

cp1,t

cp2,t

cps+1,t

ĉ1,t(t+ τ)

ĉ2,t(t+ τ)

ĉs+1,t(t+ τ)

...

Figure 6.1: Block diagram of a decomposition based forecasting method.

6.2 Decomposition Based Forecasting

Decomposition based forecasting is motivated by a need to increase the predictability
of data for forecasting. The purpose of the decomposition method as a pre-processing
step is then to extract components from the signal which are easier to forecast than
the signal itself. In this thesis, adaptive decomposition methods are considered and
as such it is assumed that the wind power production can be expressed as

P (t) =
s∑

k=1

ck(t) + r(t)

where ck for k = 1, . . . , s are mono-components, r is called the residual, and we define
cs+1 = r(t) for ease of notation. For further details regarding adaptive decomposition
methods and the concept of mono-components see Section 2.1. In general, the com-
ponents resulting from the decomposition can vary depending on three aspects which
are the decomposition method, the hyperparameters, and the data used to extract
the components.

As mentioned in Section 1.3.2, the decomposition of the wind power production
is computed for windows of length q, i.e. at time t the window of wind power data
given by the datapoints P q

t =
(
P (t), P (t− 1), . . . , P (t− q+ 1)

)T is decomposed into
components cqk,t =

(
ck,t(t), ck,t(t − 1), . . . , ck,t(t − q + 1)

)T for k = 1, . . . , s + 1 such
that

P (t) =

s+1∑

k=1

ck,m(t)

for m = t, . . . , t + q − 1. Note that P q
t is referred to as the wind power data for

window t and cqk,t is the data of component k for window t. Using the wind power
data in window t, a forecast for time t+τ is made for each of the components and the
result is aggregated to obtain a forecast for the wind power production. The forecast
is based on using the p most recent datapoints with p ≤ q, i.e. cpk,t.
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The forecast of the components for time t+ τ given time t is denoted {ĉk,t(t+ τ)}nt=q
for k = 1, . . . , s+ 1 and the forecast is made as

ĉk,t(t+ τ) = fk(c
p
k,t;ϕk)

where fk are forecasters parameterised by ϕk. Hence, the forecast of the wind power
production for time t+ τ given time t is

P̂t(t+ τ) =
s+1∑

k=1

ĉk,t(t+ τ). (6.1)

This is shown schematically in Fig. 6.1.

6.3 Performance Measures of Decompositions

In this section, performance measures for the adaptive decomposition methods are
introduced. These measures are related to end effects, orthogonality, consistency
of the decomposition when windowing data, and the uncertainty of the extracted
components, respectively. While the actual forecasting performance is the seminal
quantity for a forecasting application, the indirect performance measures introduced
in this section are used to evaluate the success of a decomposition in Chapter 7
without having to train a forecaster.

6.3.1 End Effect Evaluation Index

In order to test whether or not the implemented methods alleviate end effects, the
so-called end effect evaluation index (EEEI) is used. The EEEI quantifies the end
effects in terms of the energy before and after decomposition. This is done based
on the idea that a decomposition with end effects produces false mono-components
which then results in an energy change before and after decomposition. In general,
the root mean squared of the signal P q

t for t = 1, . . . , n can be computed as

EP q
t
=

√√√√1

q

q−1∑

j=0

P (t− j)2.

Now it is assumed that P q
t has been decomposed into s + 1 components cqk,t for

k = 1, . . . , s+1. Then for a decomposition made for a window of size q at time t the
EEEI is computed as

EEEI(t) =

∣∣∣

√√√√
s+1∑

k=1

E2
cqk,t
− EP q

t

∣∣∣

EP q
t

(6.2)

where Ecqk,t
is the root mean squared of the kth component for k = 1, . . . , s + 1. In

general, a large EEEI is associated with a low decomposition precision and large end
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effects, whereas EEEI = 0 means the end effects are minimal [HYX15]. The average
EEEI across different windows is given as

EEEI =
1

n− q + 1

n∑

t=q

EEEI(t)

thereby expressing how good the performance of the decomposition is in terms of
EEEI on average.

6.3.2 Index of Orthogonality

Another performance measure is the index of orthogonality (IO). This performance
measure is motivated by the fact that ideally the mono-components should be or-
thogonal to avoid redundancy. Thus, the inner product between two components
should ideally be zero. However, since the decomposition is not perfect, this is not
the case. The performance measures which can be used are the maximum index of
orthogonality (MIO) and the average index of orthogonality (AIO), respectively. Be-
fore introducing the IO, the Pearson correlation coefficient (PCC) is introduced. The
PCC for a vector c is computed as

PCC{cj , ck} =
⟨cj , ck⟩
∥cj∥2∥ck∥2

.

The PCC returns a number between −1 and 1 where −1 is complete negative corre-
lation, 0 is uncorrelated, and 1 is complete positive correlation. The IO is simply the
absolute value of the PCC. Hence, for a decomposition made for a window of size q
at time t, the MIO and AIO are given by

MIO(t) = max
k ̸=j
|PCC{cqj,t, c

q
k,t}|, (6.3)

AIO(t) =
1

s2(s+ 1)/2

s+1∑

j=1

j−1∑

k=1

|PCC{cqj,t, c
q
k,t}|. (6.4)

Both of these performance measures return a number in the interval [0, 1]. Ideally,
both of these should be zero and an IO close to one indicates redundancy in the
decomposition [HS14, p. 85]. When decomposing data in many windows, the sample
mean of both the MIO and the AIO are defined as

MIO =
1

n− q + 1

n∑

t=q

MIO(t), AIO =
1

n− q + 1

n∑

t=q

AIO(t).
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cqk,t

cqk,t−1

cqk,t+1

...

...

Figure 6.2: Block diagram illustrating the computation of the CPM for time shift h = 1.

6.3.3 Consistency

When windowing a dataset and then decomposing each window, there is no guarantee
that the decompositions of adjacent windows are similar. In a forecasting application,
however, this is a desirable property. Hence, we introduce a consistency performance
measure (CPM) given as the following for component k and time shift h

CPMk,h =
1

n− q − 2h+ 1

n−h∑

t=q+h

(
∥cqk,t(t− h : t− q + 1)− cqk,t−h(t− h : t− q + 1)∥2

∥cqk,t(t− h : t− q + 1)∥2

+
∥cqk,t+h(t : t− q + 1 + h)− cqk,t(t : t− q + 1 + h)∥2

∥cqk,t(t : t− q + 1 + h)∥2

)

(6.5)

for k = 1, . . . , s+ 1 and h = 0, . . . , q − 1 where q is the window length and with the
notation

cqk,t(t− a : t− b) =
(
ck,t(t− a), ck,t(t− a− 1), . . . , ck,t(t− b)

)T

for a, b ∈ {0, . . . , q − 1} and a < b. The CPM quantifies how similar components
at the same time-index resulting from different data windows are. This is illustrated
in Fig. 6.2 where the colours indicate which parts of the adjacent components are
compared. The CPM should ideally be zero and assuming that the amplitude scale
of the extracted components for the different windows are similar, then a poor result
is a value near 4. We define the average of CPMk,h across the components as

CPMh =
1

s+ 1

s+1∑

k=1

CPMk,h.
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6.3.4 Sample Entropy

Since the purpose of applying an adaptive decomposition method as a pre-processing
step when forecasting is to increase the predictability, a quantitative performance
measure designed for measuring the predictability is introduced. The term pre-
dictability refers to the existence of patterns within a time series and is related to
the terms randomness, uncertainty, and complexity. The sample entropy (SampEN)
is used to quantify the uncertainty of the time series. Intuitively, a low SampEN
implies that a signal is repetitive and predictive, while a high SampEN indicates a
low amount of repeated patterns and a high amount of randomness. [DBM19]

Consider a discrete time series y = (y1, . . . , yn)
T and let

ymi = (yi, yi+1, . . . , yi+m−1)
T

for i ≤ n −m + 1 be a block of length m. The SampEN is defined as the negative
logarithm of the empirical conditional probability that two blocks of length m+1 are
similar given that two blocks of length m are similar. Whether two blocks are similar
is determined by the Chebyshev distance defined as

ν(ymi ,y
m
j ) = max

k=0,...,m−1
|yi+k − yj+k|

for i, j ≤ n−m+ 1. The Chebyshev distance returns the largest difference between
two points in the blocks ymi and ymj . Two blocks are said to be similar if their
Chebyshev distance is less than some tolerance r > 0.

The empirical probability that any two blocks of length m are similar within the
tolerance r is computed as

Bm(y; r) =
1

n−m
n−m∑

i=1

( 1

n−m− 1

n−m∑

j=1
j ̸=i

1[ν(ymj ,y
m
i ) < r]

)
.

By construction, Bm+1(y; r) ≤ Bm(y; r) and the SampEN is defined as [DBM19,
pp. 11-20]

SampEn(m; r){y} = − log
(Bm+1(y; r)

Bm(y; r)

)
. (6.6)

A popular choice for r is r = 0.2σ where σ is the sample standard deviation of the
time series and this choice is also used in this thesis. [RM00]

Considering component k in a decomposition when windowing the components in
windows of length q, the average SampEN across all windows is defined as

SampENk(m; r) =
1

n− q + 1

n∑

t=q

SampEN(m; r){cqk,t}.
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6.4 Neural Network Forecaster

For the forecaster, a long short-term memory (LSTM) neural network is used which
has been chosen due to its abilities for modelling temporal dependencies. For a
description of the forward propagation equations of an LSTM layer see Appendix B.1,
and for further insight regarding LSTM neural networks see [GBC16, pp. 397-400].
From this, a forecasting model is obtained for the wind power production for each of
the decomposition methods.

A block diagram of the LSTM neural network can be seen in Fig. 6.3. This
notation indicates the baseline LSTM model without using a decomposition method
as a pre-processing step. With the decomposition based models using an LSTM
forecaster, the input to the LSTM is cpk,t and the output is ĉk,t(t+ τ).

P p
t LSTM · · · LSTM Dense P̂t(t+ τ)

Figure 6.3: Block diagram of the LSTM model.

In the following, the hyperparameters associated with the LSTM neural network
used in this thesis are described. The LSTM neural networks take p samples as
input in order to make a one hour forecast, i.e. 12 steps ahead forecast. The LSTM
neural network has a number of hidden layers and a number of hidden units or
cells in each hidden layer. During training, an optimiser which is a variation of
stochastic gradient descent called root mean squared propagation is used to optimise
the network [GBC16, pp. 299-300]. In this method, batches are sampled from the
training data and is used to update the parameters of the neural network based on
gradient information derived using back propagation [GBC16, pp. 197-211]. This is
done by updating the parameters in the direction of the negative gradient with a
step size called the learning rate. The size of the batches is called the batch size and
choosing a larger batch size gives a more stable estimate of the gradient, whereas
a smaller batch size can have a regularising effect which in turn can lead to better
generalisation. However, a smaller batch size requires a smaller learning rate in order
to maintain stable training leading to an increase in training time [GBC16, p. 272].
Typically, each available datapoint is used multiple times during training and the
term epoch is used to refer to a complete pass through the training data. For each
epoch that has been completed, the learning rate is updated by a multiplicative factor
which is the so-called learning rate decay.

In terms of regularisation, we use both early stopping and dropout. Early stopping
is a regularisation technique which works by letting the network train on a sub-
training set until the loss on a validation set has not improved for a number of
iterations referred to as the patience. When the validation loss has not improved for
the patience number of iterations, the training is terminated and the total number of
training iterations is saved. Then the network is retrained on the entire training set,
i.e. the union of the sub-training set and the validation set, for as many iterations as
was determined by the early stopping procedure [GBC16, pp. 239-245]. In practice, it
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01-01-2019 00:00 05-10-2021 10:00

Dataset

Sub-training

01-01-2019 00:00 01-08-2020 23:55
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02-08-2020 00:00 05-10-2020 09:55

Training

01-01-2019 00:00 05-10-2020 09:55

Testing

05-10-2020 10:00 05-10-2021 10:00

Figure 6.4: Partitioning of the dataset into the four datasets.

is computationally expensive to compute the validation loss each time the parameters
of the network are updated and therefore the validation loss is only computed at an
interval. Finally, as mentioned, we use dropout regularisation. Dropout works by
excluding some of the cells in the hidden layers in a training iteration removing
connections to and from this cell. The dropout rate refers to the likelihood that
a cell is dropped in a training iteration and as such if the dropout rate is 0.1, it
is expected that approximately 10% of the hidden layer cells are dropped in some
training iteration. After the training iteration has finished, the dropped cells and
their corresponding weights and biases are reintroduced into the model. [GBC16,
pp. 251-261]

6.5 Supervised Learning Setup

As mentioned in the Section 6.1, the data which is used in this thesis is the wind
power production data in the time period from January 1st 2019 at 00:00 to October
5th 2021 at 10:00 for sub-grid 1 in DK1. The dataset has been divided into two
subsets, i.e. a training set and a test set. The training set consists of the wind
power production data from the time period lasting from January 1st 2019 at 00:00
to October 5th 2020 at 09:55 and the test set consists of the data during the time
period lasting from October 5th 2020 at 10:00 to October 5th 2021 at 10:00. The
training set has been further divided into a sub-training set and a validation set in
order to choose the hyperparameter setting before evaluating on the test set. The
sub-training set consists of the data during the time period from January 1st 2019
at 00:00 to August 1st 2020 at 23:55 and the validation set consists of the data from
August 2nd 2020 at 00:00 to October 5th 2020 at 09:55. The partitioning of the data
is depicted in Fig. 6.4.
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6.5.1 Training

The forecast of the wind power production is as seen in Eq. (6.1) expressed as the
sum of the components. Therefore, a forecaster is trained for each of the components
as illustrated in Fig. 1.3. To pose the training in a supervised learning setup, tar-
get values are necessary, however, when considering decomposition based forecasting
models the assignment of target value is non-trivial. This is caused by the fact that
the components extracted by adaptive decomposition methods depends on the data
and as such when considering different parts of a dataset, the decomposition results
differ. In [Qia+19], three methods of assigning targets used in the literature are
outlined.

With the first method, the entire training data is decomposed jointly thereby
giving access to target values. Then during testing, every time a new datapoint is
observed a new decomposition is computed using all the data up to the current time.
This method is costly in terms of memory and computation time. [SPC20]

With the second method, at each time t a window of the most recent observations
are used to compute a decomposition. Then when forecasting time t+ τ given time
t, the target value is given as ck,t+τ+ξ(t+ τ), i.e. the component value at time t+ τ
obtained from decomposing window t + τ + ξ where ξ ∈ N. The inclusion of the ξ
parameter is motivated by the possibility of end effects as ck,t+τ (t+τ) is at the end of
a window and as such is expected to be subject to more end effects than ck,t+τ+ξ(t+τ)
for ξ > 0.

A third method is to use the data itself directly as the target, however, this implies
training the forecasters for all the components jointly which can be detrimental to
successful training.

In this thesis, the second method is used to assign targets due to its computational
and memory efficiency and due to its DNN training advantages. The method is
depicted in Fig. 6.5. For training, the mean squared error (MSE) is used as the loss
function which with this method is given by

MSE =
1

ntrain − q − τ − ξ + 1

ntrain−τ−ξ∑

t=q

(ck,t+τ+ξ(t+ τ)− ĉk,t(t+ τ))2

where ntrain is the number of datapoints in the training set, q is the window length, τ
is the forecast horizon in samples, ĉk,t(t+ τ) is the forecast at time t+ τ given time t,
ck,t+τ+ξ(t+ τ) is the target value, and ξ is the window shift used to assign the target
value.
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cqk,t

↓
t

...

↓
t+ τ

cqk,t+τ
...

cqk,t+τ+ξ
↑

ck,t+τ+ξ(t+ τ)

Figure 6.5: Block diagram depicting the choice of target value.

6.5.2 Testing

To evaluate the performance of the forecasting models, we use the normalised root
mean squared error (NRMSE), the normalised mean absolute error (NMAE), and the
normalised bias (NBIAS) given by

NRMSE =

√√√√ 1

ntest − q − τ + 1

n−τ∑

t=ntrain+1+q

(P (t+ τ)− P̂t(t+ τ))2

P 2
capacity

,

NMAE =
1

ntest − q − τ + 1

n−τ∑

t=ntrain+1+q

|P (t+ τ)− P̂t(t+ τ)|
Pcapacity

,

NBIAS =
1

ntest − q − τ + 1

n−τ∑

t=ntrain+1+q

P (t+ τ)− P̂t(t+ τ)

Pcapacity

where Pcapacity is the installed capacity, ntest is the number of datapoints in the test
set, P (t+ τ) is the actual wind power production at time t+ τ , and P̂t(t+ τ) is the
forecast of the wind power production at time t+ τ given time t. These performance
measures are used since they have been highlighted by Energinet. The NRMSE and
NMAE return numbers between 0 and 1, while NBIAS return numbers between −1
and 1. The NRMSE is more sensitive to outliers than the NMAE and the NMAE is
intuitively understandable. Moreover, the NBIAS gives the bias of the forecaster. The
use of normalisation has the advantage of resulting in numbers that are comparable to
other datasets and providing a percentage error interpretation. Additionally, the 95th
percentile of the normalised error is found. Empirically, this is defined as determining
ζ such that the following equality holds

Pdata

( |P (t+ τ)− P̂t(t+ τ)|
Pcapacity

≤ ζ
)
= 0.95



6.5. Supervised Learning Setup 69

where Pdata is the empirical probability defined by the data. The 95th percentile
determines the upper bound on the absolute error when infrequent peaks are ignored
which gives an idea of the maximum absolute error that can be expected in most
cases.

To compare the forecast ability for each individual component, a performance
measure dubbed variance scaled mean squared error (VSMSE) is used

VSMSEk =

1
ntest−q−τ−ξ+1

n−τ−ξ∑

t=ntrain+1+q

(
ck,t+τ+ξ(t+ τ)− ĉk,t+τ+ξ(t+ τ)

)2

σ2ck,t+τ+ξ

(6.7)

where σ2ck,t+τ+ξ
is the sample variance defined as

σ2ck,t+τ+ξ
=

1

ntest − τ − ξ

n−τ−ξ∑

t=ntrain+1

(
ck,t+τ+ξ(t+τ)−

1

ntest − τ − ξ

n−τ−ξ∑

t=ntrain+1

ck,t+τ+ξ(t+τ)
)2
.

If the forecast is made as the mean of the component, then the VSMSE equals 1.
Therefore, the VSMSE yields a number between 0 and 1 where 0 means that the
forecaster has flawless accuracy and 1 means that the forecaster has not learned any
patterns allowing it to increase the forecast accuracy.



7. Numerical Experiments

In this chapter, numerical experiments with the decomposition methods and fore-
casting models introduced in this thesis are presented. The experiments are designed
with the purpose of answering the problem statement given in Section 1.4. As such,
the main objective is to test whether or not a forecast model using a decomposition
method as a pre-processing step can perform better than a set of baseline models in
an online setup. The baseline models considered are an autoregressive method and an
LSTM neural network with no decomposition as pre-processing. A brief introduction
to these methods is given in Appendix B. The baseline methods are compared to
decomposition based forecasting models where each component of the decomposition
is forecasted using an LSTM neural network. The decomposition based models are
made using the adaptive decomposition methods introduced in this thesis, i.e. the
EMD, FFT-NMP-EMD, NMP-EMD, and PDE-EMD algorithms, respectively. Ad-
ditionally, to see the potential of decomposition based forecasting models, an offline
decomposition of the entire dataset using the EMD is included.

Firstly, experiments with the decomposition methods are made in Section 7.1 and
afterwards, in Section 7.2, numerical experiments with forecasting the wind power
production are conducted.

7.1 Decomposition Experiments

To see the pros and cons of the different adaptive decomposition methods and to mo-
tivate some relevant design choices before proceeding to the forecasting application,
experiments are conducted with the methods on both synthetic data and the wind
power production data.

7.1.1 Decomposition of Simulated Data

To compare the decomposition methods in a controlled setting, a qualitative compar-
ison of the decomposition methods is given for a specific synthetic example. After-
wards, the tone separation capability of the methods is tested.

70
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Two-Component AM-FM Signal

Consider a two-component AM-FM signal

y(t) =
(5
4
+

1

4
cos(πt+ π)

)
cos
(
2π(7t+ t2)

)

+
(
1 +

1

2
cos(3πt)

)
cos

(
8πt+

1

2
sin(πt)

)
+ ε(t)

(7.1)

where t ∈ [0, 2] and ε is a Gaussian white noise process with an SNR of 50 dB. In the
following, this signal is decomposed using the EMD, PDE-EMD, FFT-NMP-EMD,
and NMP-EMD. The maximum number of IMFs extracted with each method is s =
2. With regards to the NMP-EMD and FFT-NMP-EMD methods, the smoothness
parameter is set as λ = 0.3 with frequency initialised as the mean of the IF of the
IMFs obtained from the EMD. For the PDE-EMD, T is set to 3 and the N0 boundary
conditions given in Eq. (5.13) are used.

In order to quantify the error of the decompositions, the following performance
measure is used

Q =
2∑

k=1

∥ck − c̃k∥2
∥ck∥2

(7.2)

where c1 is the high frequency component of y, c2 is the low frequency component of
y, and c̃1, c̃2 are the components extracted with a decomposition method. The value
of Q should preferably be close to zero. [DSB19]

In Fig. 7.1, a qualitative comparison of the decomposition methods is given using
the Hilbert-Huang spectrum. It is seen that the NMP-EMD method visually resem-
bles the true spectrum the most. Moreover, the EMD and PDE-EMD methods have
many fluctuations in the frequency domain. A quantitative comparison is given in
Table 7.1 where it is seen that the NMP-EMD method has the best performance in
terms of AIO, MIO, EEEI, and Q.

Decomposition EMD PDE-EMD NMP-EMD FFT-NMP-EMD

AIO 0.1304 0.6243 0.04617 0.09745
MIO 0.1788 0.7966 0.09374 0.1575
EEEI 0.03204 0.2491 0.001576 0.04360
Q 1.134 1.087 0.7548 0.9883

Table 7.1: Comparison of the EMD, PDE-EMD, NMP-EMD, and FFT-NMP-EMD methods in
terms of the quantitative performance measures: AIO Eq. (6.4), MIO Eq. (6.3), EEEI Eq. (6.2), and
Q Eq. (7.2).
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(a) True spectrum.

(b) EMD Hilbert-Huang spectrum. (c) FFT-NMP-EMD Hilbert-Huang spectrum.

(d) NMP-EMD Hilbert-Huang spectrum. (e) PDE-EMD Hilbert-Huang spectrum.

Figure 7.1: Comparison of the Hilbert-Huang spectrum of the signal defined by Eq. (7.1) for the
different adaptive decomposition methods considered in this thesis.
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Tone Separation Capability

In this section, the tone separation capabilities of the adaptive decomposition methods
considered in this thesis are compared. This is done in correspondence with the
method of [RF08]. The starting point is to consider the most general two-component
signal with constant amplitudes, constant frequencies, and constant phase shifts given
as

y(t) = a1 cos(2πf1t+ ϕ1) + a2 cos(2πf2t+ ϕ2)

for t ∈ [0,K] where K > 0 is the length of the observation window, a1, a2 > 0 are
the amplitudes, f1, f2 > 0 are the frequencies, and ϕ1, ϕ2 ∈ [0, 2π] are phase shifts.
This yields a total of 6 parameters. To simplify the analysis, it is assumed that
the decomposition methods are only sensitive to the relative differences a = a1

a2
and

f = f1
f2

. Moreover, for simplicity of visualisation, we let ϕ1 = ϕ2 = 0. This reduces
the parameters from 6 to 2. An example signal is then

y(t; a, f) = cos(20πt) + a cos(2πft) (7.3)

which only depends on a where it is chosen that a ∈ [0.01, 100] and f is chosen as
f ∈ (0, 10). Moreover, the length of the observation window is fixed as K = 2. The
decomposition methods can be used in an attempt to separate the two components
which y(t) consists of. To quantitatively evaluate the performance of the separation,
the following performance measure is used

Q(a, f ; c̃1) =
∥c̃1(t; a, f)− cos(20πt)∥2

∥a cos(2πft)∥2
(7.4)

where c̃1(t) is the first IMF, i.e. the highest frequency component which has been ex-
tracted. When this performance measure is close to zero, the first IMF resembles the
high frequency component of the signal and hence the method has successfully sepa-
rated the two components. However, if the separation is poor, then the performance
measure takes a value close to one due to the choice of denominator. [RF08]

In Fig. 7.2, the tone separation capabilities of the EMD, the FFT-NMP-EMD, the
NMP-EMD, and the PDE-EMD methods are shown using the same hyperparameters
for the decomposition methods as for the two-component AM-FM signal. Notably,
the EMD can resolve the tones when a ≈ 0 and f < 5. For the FFT-NMP-EMD
method, it is noticed that it has a poor tone separation ability compared to the other
methods for a < 1. The NMP-EMD performs well in a large frequency and amplitude
area compared to the other methods, specifically, it is the only method with good
tone separation capabilities for low amplitudes when f > 5. Finally, the PDE-EMD
method, has a better capability to separate the tones when 0.1 < a < 10 and f > 5
than what is achieved with the EMD.
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(a) EMD. (b) FFT-NMP-EMD.

(c) NMP-EMD. (d) PDE-EMD.

Figure 7.2: Quantitative evaluation of tone separation using the performance measure defined in
Eq. (7.4).
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7.1.2 Decomposition of Wind Power Data

To apply the different decomposition methods effectively to the wind power pro-
duction data, an analysis of the result of decomposing the wind power production
data is made. In this context, design choices and selection of hyperparameters for
the different decomposition methods are considered. This is done for the EMD, the
FFT-NMP-EMD, the NMP-EMD, and the PDE-EMD methods. For all the methods,
windows of length q = 288 are used due to computational complexity and memory
complexity limitations. This is discussed further in the end of this section.

Empirical Mode Decomposition

The only hyperparameters related to the EMD are the stopping criteria and for this
we employ the default settings used in the EMD-signal library in Python. However,
some processing of the result of the EMD is done in order to increase the consistency
of the EMD. This is done as described in Appendix C.1 and is referred to as the
unification procedure. After this unification of the EMD result, the distribution of
the number of components in the training data is as shown in Fig. 7.3. This result
shows that the number of components changes depending on the window for which
the EMD is computed. Moreover, typically 4 or 5 IMFs are present in the data, while
the minimum number of IMFs in a window is 3.

Figure 7.3: Bar chart displaying the distribution of the number of components extracted using the
EMD.

FFT-NMP-EMD

When using the FFT-NMP-EMD algorithm, the sparsity is fixed based on the result
with the EMD. This means that since the number of EMD IMFs is typically 4 or 5,
the sparsity with the FFT-NMP-EMD method is initially fixed as s = 5. In Fig. 7.4,
the average consistency performance measure CPMh is given for the FFT-NMP-EMD
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Figure 7.4: CPMh of FFT-NMP-EMD for varying λ values.

with varying λ values on the training data. As a general trend, it is seen that a larger
λ value gives smaller values of CPMh and thereby a more consistent decomposition.

A quantitative comparison of the different decompositions according to the per-
formance measures AIO, MIO, and CPM12 is given in Table 7.2. Note that CPM12

is considered since for one hour ahead forecasting τ = 12. This table indicates that a
smaller λ value is better in terms of the IO performance measures. The EEEI perfor-
mance measure has also been considered, however no measurable difference has been
seen for varying λ values. The choice of a λ value is then a trade-off between small IO
and small CPM. As we suspect that the CPM is more relevant to the success of the
forecasts, adhering to the trade-off, we choose λ = 0.4. This statement is analysed in
further detail in Section 7.2.2.

λ 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5

AIO 0.0268 0.0277 0.0285 0.0302 0.0367 0.0446 0.0541 0.0650

MIO 0.1818 0.1834 0.1843 0.1873 0.2019 0.2238 0.2497 0.2771

CPM12 2.677 2.476 2.402 2.315 2.101 1.991 1.935 1.927

Table 7.2: Comparison of decomposition performance measure with the FFT-NMP-EMD for vary-
ing λ values. Boldface indicates the best value for a given performance measure.

Due to the computational complexity of the NMP-EMD method, cf. Table 7.6,
experimentation with hyperparameter settings has not been made for the NMP-EMD
method. Therefore, λ = 0.4 is also used for the NMP-EMD method.
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PDE-EMD

In this section, the results obtained from using the PDE-EMD are shown. As for the
EMD, a unification procedure has been applied to the data, cf. Appendix C. After
applying the unification procedure, the distribution of the number of components is
as seen in Fig. 7.5.
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Figure 7.5: Distribution of the number of components extracted using the PDE-EMD after unifi-
cation. Results found using N0 boundary conditions and T = 5.

In order to choose which type of boundary conditions to use, the performance in
terms of the introduced performance measures is tested. This has been done using
T = 5 and the results can be seen in Table 7.3. It is seen that the AIO and the
MIO are very similar for all choices of boundary conditions. However, in line with
expectations, changing the boundary conditions changes the EEEI. Additionally, the
choice of boundary conditions has a large influence on the CPM12. The lowest values
of the EEEI and the CPM12 are observed when using the N0 boundary conditions and
therefore the following tests are conducted using this choice of boundary conditions.

Boundary conditions D0 D1 N0 N1

AIO 0.2470 0.2189 0.2045 0.2703
MIO 0.5611 0.5637 0.5635 0.6185
EEEI 0.1450 0.6096 0.0422 0.2777
CPM12 1.456 0.5220 0.3882 1.487

Table 7.3: Comparison of decomposition performance measures for the implemented boundary
conditions. Boldface indicates the best value for a given performance measure.

Next the effect of T is considered. The CPMh has been plotted for different values
of T which can be seen in Fig. 7.6. From this plot, it is noticed that a low value of T
yields the best CPM. Furthermore, the effect of T on EEEI, AIO, and MIO can be
seen in Table 7.4. Looking at these measures, it is seen that lower values of T result in
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Figure 7.6: The CPMh for different values of T using the N0 boundary conditions.

a worse IO, whereas the best AIO and MIO are observed when T = 5. When plotting
the components for T = 3 and T = 4, it is noticed that the IMFs have low amounts of
energy and that there are many fluctuations in the residual. This makes the residual
more difficult to forecast and therefore these choices of T are not desirable. As such,
we choose T = 6 as it performs well in terms of CPM12 and EEEI.

T 3 4 5 6 7

AIO 0.3701 0.3342 0.2045 0.2706 0.2544
MIO 0.8721 0.8235 0.5635 0.7326 0.7018
EEEI 0.0059 0.0093 0.0422 0.0258 0.0298
CPM12 0.2839 0.3087 0.3882 0.3537 0.3566

Table 7.4: The effect of T on EEEI, AIO, and MIO. Experiment has been performed using N0
boundary conditions. Boldface indicates the best value for a given performance measure.

Comparison

To conclude the numerical experiments with the decomposition methods, a com-
parison is made. In Table 7.5, a quantitative comparison in terms of the indirect
performance measures of the decomposition results of the different adaptive decom-
position methods is given. It is seen that in terms of AIO, the FFT-NMP-EMD has
the best performance, while in terms of MIO the EMD has the best performance.
Additionally, the PDE-EMD has the smallest EEEI indicating a low amount of end
effects and in terms of the consistency performance measure CPM12, the PDE-EMD
also has the best performance. Finally, the NMP-EMD method has significantly
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worse EEEI and CPM12 than the other methods. For this reason, the NMP-EMD
method is not used for forecasting.

Decomposition EMD PDE-EMD NMP-EMD FFT-NMP-EMD

AIO 0.0780 0.2706 0.2349 0.05407

MIO 0.1981 0.7326 0.7048 0.2497

EEEI 0.0428 0.0258 50.45 0.03876

CPM12 0.9018 0.3537 7.791 1.935

Table 7.5: Comparison of performance of the different adaptive decomposition methods in terms
of the indirect performance measures AIO, MIO, EEEI, and CPM12.

A more detailed overview of the CPM of the different methods is given in Fig. 7.7.
From these plots, it is again seen that the PDE-EMD is best in terms of CPM and
that the component with the worst CPM for this method is k = 4.

(a) EMD. (b) PDE-EMD.

(c) FFT-NMP-EMD. (d) NMP-EMD.

Figure 7.7: Colour plots of the CPM for the different decomposition methods.



80 Chapter 7. Numerical Experiments

An additional point of interest is the computational complexity of the methods. This
is addressed in Table 7.6 in which the runtime of each method has been tested display-
ing that the EMD is the fastest algorithm, then follows the FFT-NMP-EMD, then
the PDE-EMD, and lastly the NMP-EMD. As can be seen from the comparison of
the complexity for decompositions with length q = 288 and q = 576, the PDE-EMD
and NMP-EMD algorithms increase significantly in complexity for larger windows,
whereas the EMD and FFT-NMP-EMD algorithms remain efficient.

Decomposition EMD PDE-EMD NMP-EMD FFT-NMP-EMD

q = 288 0.0314 0.371 10.2 0.294
q = 576 0.0539 17.3 38.4 0.364

Table 7.6: Timing the speed in seconds of the different decomposition methods averaged over 10
repetitions. Computations made on a 2000 MHz AMD EPYC Processor.

Concerning the value of q, we have chosen q = 288, i.e. a window length of 1 day.
This has been chosen because it was feasible in terms of computational complexity
and memory complexity for all the tested methods in accordance with Table 7.6 and
since we expected a component relating to the fact that there is a diurnal pattern
in wind speed [Bur+01, pp. 11-16]. We suspect that better performance could be
achieved using a larger value of q as there would be more of the same samples in
each window which in turn might make for a more consistent decomposition. Addi-
tionally, increasing the window length opens opportunities for extracting additional
low frequency components. However, this comes at the cost of a higher computation
time for the decomposition as seen in Table 7.6.

7.2 Forecasting Experiments

In this section, the application of decomposition based methods for forecasting is
evaluated. This includes model selection in Section 7.2.1 as well as an analysis of the
results in Section 7.2.2.

7.2.1 Model Selection

Before evaluating models for forecasting on the test data, a validation set has been
used to fit hyperparameters. This has been done for all the forecasting methods used
in this thesis.
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Autoregressive Model

In order to choose the order p of the autoregressive baseline method, we have per-
formed preliminary tests and based on these, we set p to 1. The AR(1) model is fitted
using ordinary least square and from this, we obtain ϕ = 0.9979. Hence, the obtained
AR(1) model is almost equal to a persistence method. The validation NRMSE with
this AR(1) model is 5.42 %.

LSTM

With the LSTM baseline model, many hyperparameter settings has been tested and
the hyperparameters for which the best model has been obtained are p = 3, batch
size of 32, initial learning rate of 0.001 with exponential learning rate decay of 0.7,
dropout rate of 0.3, a total of 3 hidden layers with 128 hidden units in each layer.
The validation NRMSE with the best hyperparameter setting is 5.34 %.

Offline EMD-LSTM

In the offline setup, we have tested the EMD-LSTM model for different hyperparam-
eter settings and the setting yielding the best validation NRMSE is identical to the
setting used for the baseline LSTM. In the offline setup, the EMD is applied to the
entire dataset. When the EMD is applied to the entire dataset, it results in 20 com-
ponents. During testing, it has been seen that the LSTM has difficulties forecasting
the last component on the test set. By visual inspection of the residual of the EMD,
i.e. the last component, seen in Fig. 7.8, it is seen that the residual only consist of
a single oscillation and that the data in the training set does not resemble the data
in the test set. Hence, the LSTM model is not able to learn the behaviour of the
residual. Furthermore, it is noticed that the residual does not change a lot between
samples. With this in mind, we choose to forecast the residual using a persistence
model rather than an LSTM model. The validation loss in terms of NRMSE of this
model is 3.03 %.

While the offline EMD-LSTM model is successful for forecasting, preliminary
tests have revealed that the offline FFT-NMP-EMD-LSTM model cannot compete
with the best observed validation NRMSE being 7.34 %. This poor performance is
attributed to a higher SampEN observed for the offline FFT-NMP-EMD components
in comparison to the offline EMD components and the offline FFT-NMP-EMD-LSTM
model is therefore not considered further in this thesis.

EMD-LSTM

When using the EMD, the wind power data is decomposed into 6 components for
each window where the IF descends as the component number increases. During
preliminary tests, we have found that the first 2 components are unpredictable. This
is seen since for a wide variety of training settings, the training loss and validation
loss remain constant during training. Moreover, predicting zero in each point is
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Figure 7.8: The residual of the offline EMD-LSTM where the vertical dotted line separates the
training data from the test data.

equally good to implementing a neural network. Hence, we conclude that the first
two components are noise.

An extensive hyperparameter search has been conducted. Among the important
hyperparameters are the input size p and the target shift ξ as these hyperparameters
change the input-output relation. The model with the lowest validation NRMSE
uses p = 3 and ξ = 0 with a batch size of 32, an initial learning rate of 0.001
with exponential learning rate decay of 0.9, dropout rate of 0.3, and a total of 3
hidden layers with the number of hidden units given as 64, 64, 32 for layers 1, 2, 3,
respectively. The validation NRMSE for this model is 6.70 % which is poor compared
to the AR(1) and LSTM baselines. An overview of the performance with the model
for each component is given in Table 7.7.

Component 1 2 3 4 5 6 Power

MSE 22.5 56.1 212 442 127 474 900

Table 7.7: Validation loss in terms of MSE for each component and of the wind power forecast
using the EMD-LSTM.

Considering the poor performance observed in the preceding result, alternative
representations of the EMD have been tested. This includes reducing the number of
components to 3 or 4 by either collecting multiple components in the last IMF or in
the residual. This decreases the CPM, however, it also decreases the predictability of
the compounded component. The best result has been found by reducing the number
of components to 3 by aggregating IMFs 3, 4, 5, and the residual thereby yielding
a decomposition consisting of two high frequency noise components and one signal
component. As such, this method reduces to a type of denoising using the EMD
followed by forecasting. With this method, the NRMSE on the validation data is



7.2. Forecasting Experiments 83

5.77 % for the wind power forecast which is still worse than the AR(1) and LSTM
baselines.

A different method for assigning targets has also been attempted in which the
target is the actual wind power production and thereby the forecasters for all the
components are trained jointly, as the loss is computed by combining the result from
each of the forecasters. In this setup, the decomposition method is seen as a feature
extraction method that increases the dimensionality of the input space. However,
poor results have been observed with this method.

FFT-NMP-EMD-LSTM

Following the experiments with different hyperparameter settings for the EMD-LSTM,
the hyperparameters for the forecasters with the FFT-NMP-EMD-LSTM model have
been fitted. The model with the lowest validation NRMSE is obtained for p = 18,
ξ = 0, a batch size of 32, an initial learning rate of 0.001 with exponential learning
rate decay of 0.7, dropout rate of 0.3, a total of 4 hidden layers with the number
of hidden units given as 512, 512, 512, 256 for layers 1, 2, 3, 4, respectively. The
validation NRMSE for this model is 7.26 % which is worse than the AR(1), LSTM,
and EMD-LSTM models.

PDE-EMD-LSTM

Using the PDE-EMD method, the wind power data has been decomposed into 5
components and for each of these components, an LSTM neural network has been
trained. As for the EMD, the LSTM neural network cannot learn anything from
the first two components extracted using the PDE-EMD. In order to determine the
hyperparameters, a manual hyperparameter tuning has been made. This results in
an LSTM neural network which consists of three layers with 128, 256 and 128 cells for
layers 1, 2 and 3, respectively. The batch size has been chosen as 32 and the initial
learning rate is 0.0007 with an exponential learning rate decay of 0.7. The dropout
rate is set to 0.05 and we have chosen ξ = 0 and p = 1. This results in an NRMSE
of 5.43 %. For these choices of hyperparameters, the validation loss in terms of MSE
observed for the individual components is given in Table 7.8.

Component 1 2 3 4 5 Power

MSE 19.9 9.92 43.7 91.2 154 598

Table 7.8: Validation loss in terms of MSE for each component and of the wind power forecast
using the PDE-EMD.
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Notice that for all the tested adaptive decomposition methods, ξ = 0 has been found
to be the best value. The reason the ξ parameter has been introduced is to avoid
end effects, however, increasing ξ also has the downside of an increased CPM and as
such there is a trade-off between these measures and the results have shown that it
is more important to have a low CPM.

7.2.2 Test Data Results

Looking at Table 7.9, the performance of the forecasting models in terms of NRMSE,
NMAE, and NBIAS can be seen. Additionally, the 95th percentile is given. It is
noticed that the offline EMD-LSTM model is the best model by far on all the per-
formance measures except NBIAS where the AR model performs the best. The good
performance of this model has also been expected based on the results in [AVK21].
However, this model cannot be applied in an online setup and is therefore not as
relevant in an actual forecasting scenario. Considering the models which can be

Model NRMSE NMAE NBIAS ζ

Offline EMD-LSTM 3.04 1.80 −0.200 6.56

AR 5.40 3.46 0.108 11.5
LSTM 5.34 3.40 −0.207 11.5
EMD-LSTM 6.82 4.61 0.335 14.7
FFT-NMP-EMD-LSTM 6.46 4.36 0.440 13.8
PDE-EMD-LSTM 5.39 3.46 0.225 11.7

Table 7.9: The NRMSE, NMAE, and NBIAS in percentage on the test data for one hour ahead
forecasting with Pcapacity = 447.565 MW. Additionally, the normalised 95th percentile in percentage
can be seen. The best performance for a method which can be applied in an online setup is highlighted
using boldface.

applied in an online setup, it is seen that the LSTM baseline model has the best
performance in terms of NRMSE and NMAE. This result shows that the use of de-
composition methods as a pre-processing tool in an online setup has not resulted in
an improved model over the baseline. However, it is seen that the PDE-EMD-LSTM
model is clearly the best of the three online decomposition based models, display-
ing significant improvements compared to the EMD-LSTM model. In comparison to
the baselines, the PDE-EMD-LSTM has similar performance to the AR model and
slightly worse performance than the LSTM model.

In Fig. 7.9, the performance of the LSTM, EMD-LSTM, PDE-EMD-LSTM, and
offline EMD-LSTM models for each month in the test set can be seen. Again, it is
clearly seen that the offline EMD-LSTM method performs the best. However, the
offline EMD-LSTM method also has the largest fluctuations from month to month.
For the other methods, the performance is fairly stable for all months with a small
decrease in performance in November. Generally, the performance of the models are
separated for all the months, i.e. the performance ranking of the models does not
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depend on the time of year.

Figure 7.9: Performance in terms of NRMSE and NMAE in percentage for individual months
during a year with the LSTM, EMD-LSTM, PDE-EMD-LSTM, and offline EMD-LSTM models.

The following analysis is focused on the PDE-EMD-LSTM and the offline EMD-
LSTM as these methods have been shown to be the best decomposition based meth-
ods in an online and offline setup, respectively. In Fig. 7.10, a kernel density estimate
(KDE) with a Gaussian kernel function [Bis06, pp. 122-124] on the errors of the PDE-
EMD-LSTM, the offline EMD-LSTM, and the baseline LSTM models can be seen.
It is noticed that the shape of the KDE for the LSTM and PDE-EMD-LSTM models
are similar. Additionally, it is clearly seen that a better performance is obtained with
the offline EMD-LSTM model as there is a higher concentration of low errors.

Figure 7.10: A KDE of the normalised errors in percent for the PDE-EMD-LSTM, the LSTM,
and the offline EMD-LSTM.



86 Chapter 7. Numerical Experiments

To visualise the forecasting models, in Fig. 7.11, a forecast of the wind power for Oc-
tober 12th 2021 can be seen using the offline EMD-LSTM and the PDE-EMD-LSTM
models. In this figure, it is seen that the offline EMD-LSTM forecast is smoother
than both the production data and the PDE-EMD-LSTM forecast and is also more
accurate than the PDE-EMD-LSTM forecast.

Figure 7.11: Forecast for October 12th 2021 for the offline EMD-LSTM and the PDE-EMD-LSTM
models.

In the following, the decomposition based forecasting models are analysed in fur-
ther detail to understand the successes and failures of the models. In relation to this,
the indirect performance measures are related to the forecast performance with the
models.

The effect of the SampEN and the CPM on the success of forecasting individual
components have been investigated. The result can be seen in Fig. 7.12 in which the
VSMSEk, cf. Eq. (6.7), is plotted according to SampENk(2) and CPMk,12. It is seen
that the lowest VSMSEk is achieved by the point in the lower left corner which is
the PDE-EMD residual. Then follows the EMD residual which is the point to the
right of the PDE-EMD residual. This component has a slightly lower SampENk(2)
but a slightly higher CPMk,12. Then comes the VSMSEk for the power data itself
using the baseline LSTM model which is the point at CPMk,12 = 0. This indicates
that due to the higher SampENk(2) of the wind power compared to the residuals,
the forecaster does not learn the patterns as effectively. Furthermore, a tendency to
have VSMSEk close to 1 when SampENk(2) is above 0.5 is seen and additionally by
inspecting the points with SampENk(2) below 0.5 it is seen that a lower VSMSEk
tends to be achieved when CPMk,12 is lower.
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Figure 7.12: VSMSEk for each component computed according to Eq. (6.7) for the EMD-LSTM,
PDE-EMD-LSTM, and FFT-NMP-EMD-LSTM and plotted with respect to the sample entropy,
SampENk(2), and the consistency performance measure, CPMk,12. Additionally, the result with the
LSTM without decomposition is included for comparison with CPMk,12 set to 0. The dashed lines
indicate which decomposition method each point belongs to and it is noted that the EMD and the
FFT-NMP-EMD has the same last component. Moreover, note that with the EMD, CPM5,12 is 59.8
and this point is therefore excluded from this figure.

As mentioned, the PDE-EMD-LSTM model has similar performance to the baselines,
however, when analysing the performance of the PDE-EMD-LSTM model on the
individual components of the decomposition in comparison to that of the EMD-LSTM
model, encouraging results are seen. This is shown in Table 7.10 in which it is seen
that the PDE-EMD-LSTM generally has significantly less MSE in the individual
components. Specifically, we note that the sum of the MSE for the EMD-LSTM
components is 1285 with an MSE on the power of 930, while for the PDE-EMD-
LSTM the sum of the MSE for the individual components is merely 306 with an
MSE on the power of 582. Hence, while the EMD-LSTM model decreases the MSE
loss when aggregating the components, the opposite is observed for the PDE-EMD-
LSTM.

To analyse the error of the EMD-LSTM and PDE-EMD-LSTM further, the PCC
for all pairs of components is considered for both the target, i.e. ck,t+τ (t+ τ) and the
forecast error, i.e. ĉk,t(t + τ) − ck,t+τ (t + τ). By inspecting Figs. 7.13b and 7.13d,
it is noted that significant positive correlations are present in the PDE-EMD-LSTM
forecast errors particularly for neighbouring components, while for the EMD-LSTM
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Component 1 2 3 4 5 6

EMD-LSTM 19.2 75.4 186 397 111 495
PDE-EMD-LSTM 15.6 10.3 42.1 93.7 144

Table 7.10: Test loss in terms of MSE for each component.

model the correlations are closer to 0 with significant negative correlations between
component 6 and components 4 and 5. In this situation, negative correlations are
preferred to that of positive correlations since this means that the errors when ag-
gregated tend to cancel each other out where the opposite is the case for positive
correlations. Hence, the positive correlations in Fig. 7.13d explain why the sum of
MSE for the individual components is much less than the MSE of the power fore-
cast for the PDE-EMD-LSTM model. Additionally, by comparing Fig. 7.13c with
Fig. 7.13d and comparing Fig. 7.13a with Fig. 7.13b, a tendency is observed which
indicates that if the components are correlated in the targets, then the forecast errors
of the components are also correlated. This can be related to the IO of the decom-
positions for which it has been seen in Table 7.5 that the PDE-EMD is significantly
worse than the EMD on the wind power data in terms of both AIO and MIO. Thus,
it seems that a poor performance of the PDE-EMD method in terms of AIO and
MIO manifests itself in the power forecast error. However, while the correlation of
the targets seems to be able to explain some of the correlations in the forecast er-
ror of the components, this is not a guarantee and significant differences can occur.
For instance, this is the case for component 5 with components 3 and 4 with the
PDE-EMD where unfortunately significant positive correlations are observed for the
forecast error even though the correlations in the targets are approximately 0.

A KDE plot for each component for the PDE-EMD-LSTM and the EMD-LSTM
can be seen in Fig. 7.14. Considering this plot, it is noticed that each component is
right skewed. Additionally, it is seen that the residual with the PDE-EMD-LSTM
model has a more concentrated shape than that of the residual with the EMD-LSTM
model.
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(a) EMD target. (b) EMD test error.

(c) PDE-EMD target (d) PDE-EMD test error.

Figure 7.13: PCC of decomposed EMD and PDE-EMD target as well as the forecast error of the
components with the EMD-LSTM and PDE-EMD-LSTM models.

(a) PDE-EMD-LSTM. (b) EMD-LSTM.

Figure 7.14: A KDE of the normalised errors for each component of the PDE-EMD-LSTM and
the EMD-LSTM.



8. Conclusion

The aim of this thesis has been to study the effect of using adaptive decomposition
methods as a pre-processing tool in forecasting of the Danish wind power production
which we sought to do by answering the problem statement:

What is the effect of applying adaptive decomposition based models for online forecast-
ing of wind power production compared to a purely deep neural network based model?

It has previously been seen that the predominant method for adaptive data anal-
ysis, i.e. the empirical mode decomposition (EMD), possesses a great potential for
forecasting in an offline setting. However, it suffers from weaknesses such as mode
mixing and end effects which might make the method unsuitable in an online setup.
In order to answer the problem statement, we have investigated four different adap-
tive decomposition methods, namely the EMD, a partial differential equation based
decomposition method dubbed PDE-EMD, and two compressive sensing based de-
composition methods referred to as NMP-EMD and FFT-NMP-EMD, respectively.
To introduce the theoretical aspects of the adaptive decomposition methods in con-
sideration, theory regarding compressive sensing with time-frequency dictionaries and
partial differential equations, specifically the heat equation, has been presented.

The decomposition methods have been analysed both in regards to performance
of the decomposition itself as well as performance of the resulting forecasts of the
wind power data. Through the analysis of the decompositions, it has been seen that
the PDE-EMD is both least subject to end effects and obtains the most consistent
decompositions among the four methods whereas the NMP-EMD has the worst per-
formance. However, with regards to orthogonality of the resulting components, the
PDE-EMD results in the largest index of orthogonality, whereas the EMD and FFT-
NMP-EMD obtain the smallest index of orthogonality.

For the evaluation of the performance of the forecasting models of the wind power
data, the models have been compared with an autoregressive model and a long short-
term memory (LSTM) neural network as baselines. Due to its high computational
complexity and poor decomposition results, the NMP-EMD has not been included
for the forecasting part of the analysis. For the three remaining methods, an LSTM
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neural network has been trained for each of the components. The forecasting results
show that while the EMD-LSTM model in an offline setting obtain promising re-
sults, the performance is significantly degraded in an online setup. Specifically, the
EMD-LSTM and FFT-NMP-EMD-LSTM models have worse performance in terms
of normalised root mean squared error (NRMSE) and normalised mean absolute error
(NMAE) than the baselines. The PDE-EMD-LSTM model in an online setup has
performance rivalling that of the baselines in terms of NRMSE and NMAE, however
the model does not manage to outperform the baselines. The good consistency of
the decomposition as well as the low amount of end effects allow the PDE-EMD-
LSTM model to have good performance in terms of mean squared error (MSE) on
the individual components. However, when aggregating the results on the individual
components, the forecast error is amplified due to positive correlations present in the
forecast error of the components which can partly be attributed to less orthogonal
components with the PDE-EMD than with the EMD.

To summarise, the performance of an adaptive decomposition based forecast model is
degraded when applied in an online setup compared to an offline setup. This degra-
dation can be alleviated by employing an adaptive decomposition method that can
alleviate the weaknesses of the EMD, however, the adaptive decomposition methods
considered in this thesis did not alleviate the degradation enough to outperform the
baselines for forecasting.



9. Further Work

In this thesis, adaptive decomposition methods used as a pre-processing step in a one
hour forecast has been investigated with a focus on an online implementation.

When making the decompositions for the online forecast, windows with a length
of one day have been used. This has primarily been chosen based on considerations
of computational complexity. However, we expect larger windows to yield a better
overall result as we expect it would result in more consistent decompositions and allow
the decomposition methods to find additional low frequency components. This would
come at the cost of a higher computational complexity. However, the computational
complexity would mostly be a problem when making the data windows for training
and testing forecasters and it would still be possible to implement the trained models
in an online setup.

When analysing the errors of the method using partial differential equations for
adaptive data decomposition, it has been found that the forecast errors between
the components are positively correlated and partly attribute this to a lack of or-
thogonality of the decomposition. This is an issue as it results in an amplification
of the power forecast error when the forecast errors of the individual components
are aggregated. However, seeing as the forecast for each component has been done
separately, it is difficult to change in the setup used in this thesis. A different training
procedure could be made for the forecaster where the LSTM neural network should
learn to forecast the components simultaneously. In this setup, the forecaster should
minimise the combined MSE which might incentivise it to minimise the correlations
between the forecast errors.

Finally, other decomposition methods may have yielded better results and as seen
in Chapter 2 there are still several methods which can be investigated. Based on
the results of this thesis, it could be interesting to investigate the partial differen-
tial equation based methods further or look into new methods for decomposition.
Furthermore, methods which make a combined decomposition may be investigated,
i.e. instead of finding one component at a time, it might be beneficial to find all
components concurrently. Doing this might allow the algorithm to ensure that the
decomposition fulfils properties such as orthogonality.
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A. Mathematical Preliminaries

In this appendix, preliminary results used in Chapters 2 to 4 are introduced. In
Appendix A.1, the Hilbert transform alongside the Bedrosian identity is introduced.
In Appendix A.2, some preliminary definitions regarding the wavelet transform and
a result used in Chapter 4 are introduced.

A.1 Preliminaries for the Hilbert-Huang Transform

Firstly, for later convenience, the Fourier transform for integrable functions is defined.

Definition A.1 (Fourier Transform)
Let y : R→ C be a function in L1. Then its Fourier transform is given by

F{y}(ω) =
∫ ∞

−∞
y(t)e−jωtdt.

Furthermore, for F{y}(ω) ∈ L1 the inverse Fourier transform is given by [Fol92,
p. 213 & 218]

y(t) = F−1{y}(t) = 1

2π

∫ ∞

−∞
F{y}(ω)ejωtdt.

The Fourier transform can be extended to L2 as is stated by the following theorem.

Theorem A.2 (Plancherel’s Theorem)
[Tes10, p. 187] The Fourier transform extends to a unitary operator F : L2 → L2.

Proof.
For a proof see [Tes10, p. 187]. ■
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Secondly, an analytical signal is introduced as this type of signal is paramount in
obtaining the instantaneous frequency using the Hilbert-Huang transform.

Definition A.3 (Analytical Signal)
[Smi07] Let y : R → C be a complex-valued function with Fourier transform
F{y}(ω). Then y(t) is called an analytical signal if F{y}(ω) = 0 when ω < 0.

A way to obtain analytical signals is by the use of the Hilbert transform. Specifically,
given a signal y : R → C, an analytical signal can be derived as yA(t) = y(t) +
jH{y}(t) where H{y} denotes the Hilbert transform of y. This representation does
not change the distribution of the positive frequency content of the signal. The
Hilbert transform is defined as follows.

Definition A.4 (Hilbert Transform)
[Joh12, pp. 1-2] The Hilbert transform H{y} : R → C of a function y : R → C is
defined for all t by

H{y}(t) = y(t) ∗ 1

πt
=

1

π
p.v.

∫ ∞

−∞

y(τ)

t− τ dτ

when the integral exists as a principle value and where the integral as a principal
value is given by

p.v.

∫ ∞

−∞

y(τ)

t− τ dτ = lim
ε→0+

(∫ τ−ε

−∞

y(τ)

t− τ dτ +
∫ ∞

τ+ε

y(τ)

t− τ dτ
)
.

This section is ended by introducing the Bedrosian identity in its most general form.

Theorem A.5 (Bedrosian Identity)
[Bed63] Let y : R→ C and f : R→ C denote two functions in L2. If

1. the Fourier transform F{y}(u) of y(t) vanishes for |u| > a and the Fourier
transform F{f}(u) of f(t) vanishes for |u| < a where a is an arbitrary positive
constant, or

2. y(t) and f(t) are analytic,

then the Hilbert transform of the product y(t) and f(t) is given by

H{y(x)f(x)} = y(x)H{f(x)}.
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Proof.
For a proof see [Bed63]. ■

A.2 Preliminaries to the Uniqueness of the Compressive
Sensing Solution

In this section, some results which are useful in Chapter 4 are presented. First, the
wavelet function is defined.

Definition A.6 (Wavelet Function)
[Dau94, p. 24] A function ψ ∈ L2 is called a wavelet function if it fulfils the following
criterion

Cψ = 2π

∫

R
|ξ|−1|F{ψ}(ξ)|2dξ <∞. (A.1)

This leads to the following criteria for ψ ∈ L1.

Theorem A.7 (Wavelet Function in L1)
[Dau94, p. 24] If ψ ∈ L1 then Eq. (A.1) can only be satisfied if

F{ψ}(0) = 0,

or ∫

R
ψ(t)dt = 0.

Having defined a wavelet function, the wavelet transform can then be defined.

Definition A.8 (Wavelet Transform)
[Dau94, p. 3] The continuous-time wavelet transform of y(t) is given by

W{y}(ω, t) = 1√
|ω|

∫

R
ψ(
τ − t
ω

)y(τ)dτ, ω ̸= 0, t ∈ R

where ω is a scale factor, ψ is the wavelet function defined in Definition A.6, and
the ψ denotes complex conjugation of ψ.
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Finally, a lemma which is used in the proof of Theorem 4.4 is presented. In the
lemma, the rate at which a certain function increases is determined.

Lemma A.9
Let y(x) =

√
x−1√
x+1

and x > 1, then

dy(x)

dx
=

1√
x(
√
x+ 1)2

< 1.

Proof.
Using the quotient rule for differentiation, then

d

dx

√
x− 1√
x+ 1

=
(
√
x− 1)′(

√
x+ 1)− (

√
x− 1)(

√
x+ 1)′

(
√
x+ 1)2

=

1
2
√
x
(
√
x+ 1)− (

√
x− 1) 1

2
√
x

(
√
x+ 1)2

=

√
x+ 1−√x+ 1

2
√
x(
√
x+ 1)2

=
1√

x(
√
x+ 1)2

and since x > 1, it follows that 1√
x(

√
x+1)2

< 1. ■



B. Baselines

In this appendix, the theory of baselines used in the thesis are briefly introduced.
In Appendix B.1, the forward propagation equations in a long short-term memory
(LSTM) neural network are given and in Appendix B.2, an autoregressive (AR)
equation is given.

B.1 Long Short-Term Memory Neural Network

LSTM neural networks are a type of gated recurrent neural network in which the
usual hidden units of a neural network are replaced by so-called LSTM cells. In
LSTMs, a gate structure is used in combination with an internal self loop. The
gate structure plays an important role in how the information is passed through the
network. LSTMs have three different gates, i.e. the forget, input, and output gate.

Consider an input time series yt observed at t = 1, 2, . . . , n, then at time t the
hidden layer gives output ht and the three gates can be expressed by the following
equations

f t = σ(W hfht−1 +W yfyt + bf ),

it = σ(W hiht−1 +W yiyt + bi),

ot = σ(W hoht−1 +W yoyt + bo)

where f t, it, and ot are the forget gate, input gate, and output gate, respectively,
W ∗∗ and b∗ denote the weights and biases, respectively, and σ denotes the sigmoid
activation function. In addition to the gates, the LSTM also has a state which is
updated through a self loop

st = f t ⊙ st−1 + it ⊙ gt

where ⊙ denotes the Hadamard product and where gt is given by

gt = tanh(W hght−1 + bhg +W ygyt + byg).

Afterwards, the hidden layer output of an LSTM cell is computed as

ht = tanh(st)⊙ ot. (B.1)
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The architecture of an LSTM cell can be seen in Fig. B.1. [GBC16, pp. 397-400]
The gate structure can be interpreted as follows. The forget gate determines the

information which needs to be discarded from the state. The input gate determines
the information which should be stored in the state. Finally, the output gate deter-
mines what is outputted from the state to the hidden unit or if a cell should be shut
down.

⊙

st
⊙

⊙

gt it f t ot

tanh

yt ht−1

ht

Delay
�

yt ht−1 yt ht−1 yt ht−1

Figure B.1: A block diagram of an LSTM cell. The gate variables gt, it, f t and ot internally
apply the weights, biases, and activation functions seen in the forward propagation equations. Figure
inspired by [GBC16, fig. 10.16].
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B.2 Autoregressive Model

As mentioned in Chapter 7, an AR model is used as a baseline. An AR model of
order p, AR(p) is given by [SS17, p. 76]

P (t) =

p∑

j=1

ϕjP (t− j) + w(t)

where P (t) is assumed to be stationary with zero mean, w(t) ∼ N (0, σ2w), ϕj for
j = 1, . . . , p are coefficients, and ϕp ̸= 0. In order to obtain a forecast for time t+ τ
at time t, the minimum mean squared error predictor is used [SS17, p. 109]

P̂t(t+ τ) =

p∑

j=1

ϕjP̂t(t+ τ − j) (B.2)

for τ > 0 and where P̂t(i) = P (i) for 1 ≤ i ≤ t and P̂t(i) = 0 for i ≤ 0.



C. Unification Procedure

In this chapter, the unification procedure used in Chapter 7 to increase the consistency
of the results from the empirical mode decomposition (EMD) and the method dubbed
PDE-EMD is explained. This includes the motivation for the procedure and an
outline of the procedure. The procedure is similar but not identical for the EMD and
the PDE-EMD. Hence, the procedure for the EMD is described in Appendix C.1 and
following in Appendix C.2, the procedure for the PDE-EMD is given.

C.1 Empirical Mode Decomposition

The unification is initially motivated by handling undesirable effects in the decom-
position including mode mixing and the fact that the number of components when
using the EMD on different windows of the data is not the same. Consider a window
size q = 288, i.e. one day of wind power data. Then using the EMD, the distribution
of the number of components found is illustrated by a bar chart in Fig. C.1a and a
boxplot in Fig. C.1b. It is seen that most of the windows result in 5 or 6 components
when using the EMD. The minimum amount of components found is 4 and a few in-
stances occur where the number of components is 7, 8, or 9. An outlier is seen as for
three windows 20 components are found when the maximum amount of components
is fixed as 20. However, all the additional components with index above 6 contain a
very small amount of energy.

Based on the preceding discussion, the maximum number of intrinsic mode func-
tions (IMFs) is set to 5. Now the unification procedure is introduced in order to
handle situations where the number of IMFs found are less than s and to handle cer-
tain exceptions that can occur when applying the EMD. The heuristic rules applied
in the following are based on observing the EMD decomposition on windows of the
data while considering the stopping criteria used for the EMD:

1. Firstly, components with index above 5 are summed together to form the resid-
ual.

2. Secondly, the residual is checked for number of extrema and energy to make
sure it is the trend. If it is not the trend, then the last IMF is joined with the
residual to form the new residual. Additionally, if the last IMF has less than
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4 extrema, then add this to the residual. Repeat this step until the residual is
the trend.

3. Finally, if the number of components after this treatment is less than s+1, then
the last component is assumed to be the residual and the missing components
are assumed to be the last IMFs, i.e. the low frequency components.

(a) Bar chart.
(b) Boxplot.

Figure C.1: Distribution of the number of components extracted using the EMD.

After this unification of the EMD result, the distribution of the number of components
is as shown in Fig. C.2.

Figure C.2: Bar chart displaying the distribution of the number of components extracted using
the EMD after the unification.

Comparing the average consistency performance measure (CPM) at time shift
h, i.e. CPMh, defined in Section 6.3, for the EMD before and after the unification
procedure, it is found that after unification CPM1 is 0.61, while before unification it
is 17.3 which supports the use of the unification. The performance measures CPMk,h

and CPMh are plotted with respect to the time shift in Fig. C.3 both before and
after unification. The gain of using the unification in terms of decreasing the CPM
is clearly seen in these plots.
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(a) Before unification. (b) After unification.

(c) Before unification. (d) After unification.

Figure C.3: The plots in the top row show colour plots of the CPM before and after unification.
The bottom row shows CPMh before and after unification.

C.2 PDE-EMD

Seeing as the PDE-EMD method is similar to the EMD method in the sense that
both methods are based on the SP, a similar analysis is made. As is the case for the
EMD, the number of components obtained in each window is not constant. Thus, we
start by defining some heuristic rules which limit the number of IMFs and make the
IMFs in neighbouring windows more consistent. In Figs. C.4a and C.4b, a bar chart
and a boxplot, respectively, of the number of components can be seen.

It is noticed that the number of components is concentrated below 6. Additionally,
by inspecting individual IMFs we notice that multiple similar low frequency IMFs are
extracted in each window. The number of low frequency IMFs which has been found
has a large influence on how the resulting residual looks. Thus, for the sake of consis-
tency the low frequency IMFs should be added to the residual. These two observations
gives us the two heuristic rules which we apply to make a unification procedure of
the decomposition which should result in a more consistent decomposition.

1. All components with index above 4 are added together to form the residual.

2. If an IMF has less than 4 extrema, it is added to the residual.
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3. Finally, as with the EMD if the number of components after this treatment
is less than 5, then the last component is assumed to be the residual and the
missing components are assumed to be the last IMFs, i.e. the low frequency
components.

(a) Bar chart. (b) Boxplot.

Figure C.4: Distribution of the number of components extracted using the PDE-EMD. Results
found using N0 boundary conditions and T = 5.

After applying the unification procedure, the distribution of components is as seen in
Fig. C.5. Notice that after unification the component before the 5th component has
often become a part of the residual.
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Figure C.5: Distribution of the number of components extracted using the PDE-EMD after unifi-
cation. Results found using N0 boundary conditions and T = 5.

The CPM defined in Eq. (6.5) has been computed for decompositions before and
after applying the heuristic rules and the result can be seen in Fig. C.6.



(a) Before unification. (b) After unification.

(c) Before unification. (d) After unification.

Figure C.6: The top row shows colour plots of the CPM before and after unification. The bottom
row shows CPMh before and after unification. Plots made for N0 boundary conditions and T = 6.
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