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Chapter 1

Introduction

In this chapter, we will introduce the problem of water level prediction that we are
attempting to solve in this Master’s project. We will review the relevant literature
and then discuss the use of neural networks in this field. We will then introduce
the subject of the case study on which we apply the developed methodology. The
purpose of this project is to find a solution to the problem of water level predic-
tion as a flood mitigation strategy with a methodology that can be generalised to
different catchments.

1.1 Problem Statement

In July 2021, Germany and Belgium experienced severe floods along the rivers
Rhine and Meuse caused by record-breaking precipitation[8], an event that took
more than 200 lives. In the same month, China’s Henan province experienced
flooding caused by 60 centimetres of precipitation in a single day; as much as
expected over the course of an entire year. The official death toll for this event was
given as 398 by the Chinese government[10].

The Intergovernmental Panel on Climate Change’s (IPCC) report 2021 con-
cluded with "high confidence" that the frequency of extreme rainfall has increased
since the 1950s and with "medium confidence" that the increasingly common ex-
treme rainfall events will translate into an increase in flood risk, intensity and
damage[22].

The European Union’s European Environmental Agency (EEA) has assessed
that climate change is driving an increase in the frequency of extreme precipitation
events[1]. The World Meteorological Organization (WMO) reports that 44% of dis-
asters reported worldwide between 1970 and 2019 have been associated with floods
which caused 16% of reported deaths and 31% of reported economic losses (rela-
tive to the total of disaster-related deaths and economic losses). For river floods
specifically, the numbers are 24% of disasters, causing 6% of deaths and 21% of

1



2 Chapter 1. Introduction

reported economic losses. The WMO also reports that disaster-related deaths have
declined, which the report relates to improvements to warning systems. However,
the number of floods has seen a marked increase, for example, 66% of reported
disasters in Africa between 2000 and 2019 were floods.[49]

River floods are one of the major type of natural disasters and are generally
caused by high-intensity rainfall. While measurements and forecasts of precipita-
tion are often readily available, forecasts of the stream levels are usually done with
detailed hydrological models that are specific to their respective locations. The
purpose of this project is to develop a methodology for short-term forecasting of
critical points in streams that can be generally applied to any catchment in which
flooding is a known problem. The longest forecasting time that is achievable is
highly dependant on the specific system and on the availability of precipitation
forecasts.
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1.2 Literature Review

In this section, we will discuss different methods used in the field of hydrological
modelling, the most recent advancements regarding the use of neural networks in
this field and how those approaches compare to physics-based models.

1.2.1 Types of Hydrological Models

Generally speaking most hydrological models can be distinguished according to
several properties, how they were obtained, how they divide the area of interest
and whether their output is deterministic or stochastic.

A conceptual model is obtained by finding physical relationships between dif-
ferent elements (for example sub-catchments). These relationship require knowl-
edge of a number of system parameters, some of which can be measured directly,
like elevation maps, others require calibration against measurements of the system.
On the other hand, black box models are based on time series data that measure
the relevant system states, inputs and outputs (for example water levels and pre-
cipitation measurements). Functional relationships between inputs and outputs
are then obtained from data.

Hydrological models can be further classified into lumped, distributed and
semi-distributed. Lumped models lump the catchment together and only provide
the output for one location (generally the discharge at the exit of the catchment),
whereas distributed and semi-distributed models separate the catchment into small
areas (for example cells on a grid map). The model states then correspond to local
water levels or discharges. This allows the user to gain a fine-grained insight into
the hydrological system.

Finally, a hydrological model may be formulated in a deterministic or stochas-
tic environment. A deterministic model may also provide a stochastic prediction
when given stochastic inputs. If a neural network model is used, stochasticity may
be introduced through the use of dropout layers. The advantage of a stochastic
model lies in the fact that it can produce the distribution of the prediction which
allows the user to compute statistics of that distribution. This can be used to pro-
vide a measure of prediction uncertainty.

1.2.2 Comparison of Neural Network and Conceptual Approaches

The main advantage in conceptual approaches lies in the fact that they can make
intermediate states available (such as water flow estimates) that are often times
unavailable. This allows the usage of the model for planning. For example a con-
ceptual model may allow the user to estimate the effect on flooding behaviour
given the placement of a hypothetical dyke. Furthermore, they are based on sim-
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plifications on physical interaction between nodes or grid points and are thus ex-
plainable.

On the other hand, neural networks are based purely on measurement data,
such as water level measurements and data from rainfall gauges. The advantage
of this is that neural networks can be trained with just data. Knowledge of the
underlying processes is not required, unlike conventional models which require,
for example, detailed elevation maps and a number of other parameters, some
of which need to be estimated empirically. Furthermore, neural networks can be
much lighter in terms of computational cost compared to conceptual models which
often require discretisation of the St. Venant shallow water equations. Since neural
networks can approximate these dynamics, it allows real-time predictions of one
or more relevant water levels at little computational cost.

However, we can only predict water levels at locations where enough data is
available, which requires that water level sensors have been placed at the critical
locations a sufficiently long time ago (a few years is assumed to be sufficient). The
drawback of data-driven approaches is that unmonitored locations cannot be pre-
dicted at all, whereas with conventional models you can make a prediction (albeit
the prediction quality would suffer in the absence of data to calibrate against).

We summarise, that neural networks are a convenient and powerful tool for
forecasting the water level at specific locations of interest as a function of rainfall
for the purpose of flood forecasting. However, they do not allow easily accessible
insight into the underlying dynamics and they cannot be used to obtain interme-
diate states, or model the system behaviour given a user-specified change in some
physical parameter. Neural networks are easier to obtain given sufficient measure-
ments and have the capacity to outperform conceptual models which makes them
well suited to address the problem of flood forecasting.

1.2.3 State-of-the-art hydrological modelling

Machine learning has become a focus of research in many environments in recent
years. Hydrology in particular has seen many attempts at modelling discharge or
water levels, in part due to the lack of a complete understanding of the underlying
physical process. Since it is the objective of this work to develop a generalisable
methodology of short-term water level forecasting, we will review the recent re-
search regarding the application of neural networks in the field of hydrology.

The Long-Short Term Memory (LSTM) neural network introduced by Hochre-
iter and Schmidhuber[19] is considered among the state-of-the-art of neural net-
work architectures for time series prediction and are preferred over standard Re-
current Neural Networks, primarily due to its capability to learn long-term time
dependencies present in the input-output data. This is relevant for purposes of
stream water level forecasting as catchments can maintain water for a long time.
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Liu et al. trained LSTM models for short-term real-time forecasting in Fuzhou,
China, and showed that the forecasts generated by the LSTMs were accurate three
to six hours into the future (depending on the location)[32]. Le et al. trained
an LSTM model for discharge prediction of the Da river basin, Vietnam, which
showed good performance on a 24-hour prediction. Lee et al. coupled an LSTM
model using radar precipitation measurements with a Storm Water Management
Model (SWMM) to achieve accurate water level predictions in Seoul for prediction
times ranging from 30 to 90 minutes[29].

Hu et al. trained both an LSTM and a Feed-Forward Neural Network (FFNN)
for runoff prediction with a 1 to 6 hour prediction time on the Fen river basin,
China, and showed that both LSTM and FFNN outperformed conceptual models.
Furthermore, the LSTM model outperformed the FFNN model for all prediction
times[21]. Shalev et al. trained a single LSTM model for daily runoff prediction for
several hundred basins by encoding basin-specific static information in the LSTM
input and showed that this model outperformed conceptual models calibrated to
the individual basins[43]. Rahimzad et al. found that LSTM outperforms lin-
ear regression, multilayer perceptron (MLP) models and Support Vector Machines
(SVM)[37].

The prediction quality depends heavily on the catchment itself. LSTM models
have also been applied on fast-flowing rivers. Luppichini et al. trained an LSTM
model for water level prediction on the Arno river basin, Italy, where parts of the
basin have runoff times of just four hours[34]. Li et al. investigated two small
and medium sized basins in China and found that LSTM models outpeformed
comparative models such as Convolutional Neural Networks (CNN) and SVM[30].

A major challenge that Machine Learning faces, especially so in the field of
hydrology, is the lack of understanding in how exactly the model works internally.
This has become a focus of research in recent years. For example, Kratzert et
al. showed that the LSTM cell states correlate to known states of the modelled
hydrological system that the LSTM is unaware of[28].

1.2.4 Challenges of Data-driven Approaches

While hydrology has become a hotspot for machine learning in recent years, it is
also a field characterised by its resistance against data-driven approaches that lack
a direct connection to the underlying physical processes.

The lack of explainability is commonly held against neural networks and other
data-driven approaches, for example, hydrologist and former President of the In-
ternational Association of Hydrological Sciences (IAHS) Vit Klemeš provided a
rather scathing rebuke of data-driven approaches in his paper "Dilettantism in Hy-
drology: Transition or Destiny". An excerpt is given below:

"For a good mathematical model it is not enough to work well. It must
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work well for the right reasons. It must reflect, even if only in a simpli-
fied form, the essential features of the physical prototype."[26]

We believe it is necessary to acknowledge his criticisms. Klemeš primarily crit-
icises data-driven approaches for extrapolation far into the future (he humorously
remarks that he was once asked to compute a 1-million-year flood). He further
comments on the lack of validation of data-driven approaches. We believe that our
methodology survives his test for two reasons: we compute the change in water
level from now at most a few hours hours into the future (this is a short period
given the slow change of the system) and we evaluate our model on a withheld
set of data that the network is not trained on. Thereby, we can reasonably well
extrapolate how well the model would perform on the data it may be given in a
real-life implementation. Secondly, we note that the model must be retrained peri-
odically as there is no guarantee that the underlying physical processes remain the
same, especially in the face of climate change; this is the kind of extrapolation that
Klemeš warned against.

By only using data from events in a multi-year-long window, we can reasonably
assume that the model performance on unseen events in the past is an approximate
indicator of the model performance on events in the near future. We recommend
a moving window approach; after one year of runtime, we drop the oldest year
of events in the overall set, add all events in the past year and then retrain the
model on the new set of events. This ensures that we only extrapolate the system
dynamics one year into the future.

We point out that in prior work by the author[11], an LSTM network was
trained to model the water level and then used to extract local transfer function
estimates. It was shown that the step responses exhibited roughly first-order be-
haviour which is consistent with our knowledge of the system. This suggests that
the internal states of the LSTM correspond in some way to the physical states of the
system; thus the LSTM implicitly contains a sort-of conceptual model that could
theoretically be extracted. We assume that this property of the trained LSTM is
what allows acceptable performance on unseen data.
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1.3 Vejle as Case Study

In order to develop a generalisable methodology for local water level forecasting
which can then be used to perform flood forecasting, we require a test system to be
used as a case study. In this work, we will discuss the stream system of Vejle which
has been facing floods at Abelones Plads, a location for which measurement data
has been available since December 2015, which makes the city well suited to serve
as our case study. This work is done in cooperation with Vejle Spilevand A/S
to provide our partner with a methodology to aid them in mitigating the flood
problem in Vejle specifically but the methodology itself can be applied to other
catchment.

Vejle is Denmark’s ninth largest city with 58 777 inhabitants (2021,[36]). It is
located at the north-western edge of the administrative subdivision Region Syd-
danmark (Region of Southern Denmark) of whose regional government Vejle is the
administrative seat. Vejle is also located at the confluence of the rivers Vejle Å and
Grejs Å (which enter the city from west and north, respectively) as well as at the
estuary of Vejle Å, the starting point of Vejle Fjord. Most of the city is located in
the low-lying areas of the Vejle Å valley, the larger of the city’s two rivers. Both
rivers have special significance; the Vejle Ådal is Denmark’s longest tunnel valley
and the Grejsdal is Denmark’s longest canyon.

The catchment of the Vejle Å is around 245 square kilometres, whereas the
catchment of the smaller Grejs Å is about 78 square kilometres. The latter is almost
entirely within Vejle Kommune, with the exception of a small area around the
village of Ulkær, which belongs to the Region Midtjylland. Figure 1.3 shows the
full extent of the Grejs Å catchment.

Shortly after entering Vejle, the Grejs Å is divided into the two streams of
Mølleåen and Omløbsåen by a distribution structure (called the fordelerbygværk)
located next to the intersection of Vedelsgade and Vesterbrogade. This struc-
ture employs three pipes of 140 centimetre diameter with valves that control the
flow through the structure. This structure separates Grejs Å and Omløbsåen; the
connection between Grejs Å and Mølleåen is uncontrolled. The purpose of the
fordelerbygværk is to control the water levels within Omløbsåen. A control algo-
rithm that maintains a constant water level at Aagade, a location approximately
central along Omløbsåen, was developed in the previous semester[11]. The con-
troller is intended to automate a currently manual operation; a human operator ad-
justs the opening percentage of the distribution structure to feed as much flow into
Omløbsåen without causing a flood; the excess flow is then shunted into Mølleåen.

In order to understand the frequent occurrence of flooding events in Vejle, it is
necessary to understand the geography of Vejle and Vejle Kommune as a whole.
According to the cooperative partner, the majority of floods occur in the area of
Abelones Plads, where Mølleåen tends to exceed its bank given suffient flow. The
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Figure 1.1: Map of Vejle with the locations of the water level measurements stations marked.
Risikoområde means risk environment. Figure taken from [39, Figure 2.2]

excess water drains into Abelones Plads and then flows down the streets of Vedels-
gade and Staldgårdsgade to finally drain into Omløbsåen near Frejasgade.

However, floods at Abelones Plads cannot be prevented entirely by automating
the distribution structure; this only allows minimising the flow into Mølleåen by
maximising the capacity of Omløbsåen. If the flow through Grejs Å exceeds the
combined capacity of Omløbsåen and Mølleåen, a flood must occur and it will,
generally, occur near Abelones Plads. Figure 1.1 provides a map of the city Vejle
and 1.2 provides a map of Vejle Kommune with the relevant locations marked.

Because of the rapid response of the Grejs Å catchment and the availability of
a 2-hour precipitation rainfall, we will limit the water level forecast to a maximum
of 4 hours.
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Figure 1.2: Map of Vejle Kommune with the locations of the water level measurement stations
marked. Figure taken from [39, Figure 2.1]
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Figure 1.3: Catchment of the Grejs Å until the fordelerbygværk. Figure was obtained from Scalgo
Live.[40]
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1.4 Structure of the Report

The following report is divided into five chapters. We will begin chapter 2 by
discussing the data obtained for this project with a focus on the normalisation
procedure for each different type. In chapter 3, We will then introduce a method
to automatically select an optimal set of moving averages applied on the rainfall
measurements and provide the theoretical basis for the developed heuristic algo-
rithm. We then introduce the LSTM network used in this project in 4 which was
applied successfully in prior work[11] and show that the LSTM is a universal ap-
proximator for dynamical systems, as well as introducing the Residual LSTM we
will apply. In 5, we will discuss how to identify events from data, classify them
according to their characteristics and how the neural network training procedure
is implemented with a focus on the validation loss. In chapter 6, we will evalu-
ate the effect of a number of hyperparameters onto the validation loss, obtain the
best performing model and analyse its performance over the validation events and
over the entire dataset. We will further investigate the reasons for any observed
network failure in individual events.

Finally, we will summarise and evaluate the model performance in chapter 7
and discuss possible future work in chapter 8.





Chapter 2

Data Processing

In this chapter, we will first discuss the different measurements that have been
made available to the author by Vejle Spildevand A/S and discuss their relevance
to flood prediction with respect to different prediction times. We will also discuss
the peculiarities involved with processing of the different measurements.

2.1 Water Level Measurements

Along the streams of Grejs Å, Omløbsåen and Mølleåen, there are six water level
measurements available. The records start in December 2015 with an initial sam-
pling time of 15 minutes, later on 5 minutes. In order to obtain a uniform sampling
time of the data, we upsample the initial period to a sampling time of 5 minutes us-
ing linear interpolation. We further interpolate missing periods of data when those
periods are at most 5 hours long. This can be justified by the slow dynamics of
the system. Furthermore, all normalised measurements below zero were replaced
with linear interpolations. It should be noted that the water level measurements
are provided in local time (i.e. CET/CEST) and are converted to UTC for ease of
usage.

Table 2.1 provides the names, locations as well as the ground and bank levels
used for normalisation following the procedure 2.1.

xn =
x − xground

xbank − xground
(2.1)

13
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Name Location Ground Level [m] Bank Level [m]
ST.32.06 Grejsdalens Planteskole 27.35 29.4
ST.32.20 Abelones Plads 1.47 2.8
ST.32.21 Aagade 0.28 1.4
ST.32.22 Ny Grejsdalsvej 1.67 3.6
ST.32.23 Mølleåen Dæmningen -0.46 2

Table 2.1: Measurements stations in Vejle, excluding those along Vejle Å. Ground and bank levels
were provided by Benjamin Refsgaard.

2.2 Rainfall Measurements

In order to accomplish long-term predictions, rainfall measurements are needed.
Within Vejle Kommune, there are several gauges located. Those gauges utilise
a tipping bucket mechanism with 0.2 millimetre buckets. The number of tips is
counted each minute to generate the rainfall measurements. In order to obtain the
same sampling time as the water level measurements, we keep the rainfall mea-
surements at the same time indices and to those add the four preceding rainfall
measurements respectively. The rainfall measurements from the gauges are avail-
able since 2000 and are given in UTC. It is noted here that the measurements of
the rainfall sampled over 5 minute intervals exhibit significant left skew, which
may pose issues in the neural network training process. We normalise using a log
transform as given in 2.2, where k is computed based on the rounded maximum
measurement. The transform maps a measurement in the range x ∈ [0, max(x)]
to the range xn ∈ [0, 1]. Table 2.2 provides the rounded maximum values for a
selected set of moving average window lengths.

xn = ln(1 + kx)

k =
1

round(max(x))
(e − 1)

(2.2)
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Window Length [min] Rounded maximum [mm]
10 618
20 420
25 344
30 290
50 174
60 145
120 77
180 53
205 49
240 45
300 38

Table 2.2: Rainfall moving average windows and associated rounded maximum values used for log
normalisation for selected window lengths (including the window lengths generated by the feature
selection algorithm, see section 3.4)

2.3 Radar Measurements

While the rain gauges can accurately capture the temporal variability in the rain-
fall, they do not capture the spatial variability of the rainfall to the same extent as
radar data as the radar generates a 2d image of rainfall data over a large area. The
cooperative partner stated that there are around 1200 radar measurements avail-
able over the catchment of the Grejs Å. This means that a neural network based
on rain gauge data will perform well in scenarios that exhibit uniform rainfall
but its predictive capability will degrade significantly in scenarios described by
a high spatial variability in the rainfall. For example, the system may be driven
by rainfall that is not measured by the rain gauges. In that case, the network
will under-predict the water level. This spatial variability can be captured using
radar measurements of the Grejs Å catchment which are originally measured with
a spatial-temporal resolution of 1 kilometre and 10 minutes which were then up-
sampled to a resolution of 200 metres and 1 minute. While the radar measures
reflectivity, this is related to the rainfall by the semi-empirical Z-R relationship 2.3,
where a, b are semi-empirical coefficients that depend on the type of rainfall as well
as the raindrop size distribution but are generally estimated as constants a = 200
and b = 1.6.[24]

Z = aRb (2.3)

Radar data is not available for this project and we are limited to the rain gauge
located in the parking lot of Vejle Spildevand A/S at Toldbodvej 20, 7100 Vejle.
We point out that this rain gauge is not located in the catchment of the Grejs Å
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but rather south of Vejle Å. The effect of this onto the prediction quality will be
investigated in this report.

2.4 Yearly Variation

It is known that rainfall in the winter causes a higher increase in water level com-
pared to rainfall in the summer. It was explained by the cooperative partner that
in the winter, the soil can store little water and any rainfall will proceed to flow
into Vejle, whereas in the summer, the storage capacity of the soil will capture a
portion of the incoming rainfall.

Beyond temperature alone, there are a number of correlated variables such as
air humidity, evaporation, sunlight intensity etc. that express seasonal behaviour
with a yearly period. As these inputs were available, we instead opted to accom-
modate the seasonality by providing the neural network model with an artificial
measurement called yearly variation, denoted as tA as given in 2.4, where tyear de-
notes the time that has passed since the beginning of the current year (YYYY.01.01
00:00:00), and τyear denotes the duration of the year. Note that the argument of the
cosine must be dimensionless, i.e. the units of tyear, τyear must agree.

tA =
1
2

cos
(

tyear

τyear

)
+

1
2

∈ [0, 1] (2.4)

The yearly variation tA is high in the winter and low in the summer. A visual
representation of this artificial input is provided in 2.1. In the absence of inputs
with a seasonal dependency and a direct physical interaction with the system, the
yearly variation will be given to the LSTM as an additional input to account for the
effect of seasonality.
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Figure 2.1: Yearly variation over the entire dataset





Chapter 3

Feature Selection using Multiple Spear-
man Correlation

Correlation Analysis shows that the instantaneous rainfall measurement reported
by the rain gauge located in the parking lot of Vejle Spildevand A/S is nearly
uncorrelated with the water level. The correlation coefficient was found to be
r ≈ 0.06 over the entire the entire dataset and r ≈ 0.13 when only considering the
events. The small degree of correlation should be understood in the context that
the water level at Abelones Plads is driven by the water stored in the catchment
and the instantaneous rainfall measurement is a part of time derivative of the water
storage level. This complicates training as from the neural network perspective, the
instantaneous rainfall measurement is effectively noise. Furthermore, the rainfall
measurements exhibit significant left skewness.

Since the driver of the water levels within near Abelones Plads is the stored
water within the catchment of the Grejs Å, it is reasonable to compute the accu-
mulation of rainfall over different intervals in the past. This technique was used
successfully by Benjamin Refsgaard in prior work[39], who utilised contiguous,
non-overlapping moving average blocks. With this approach, it is necessary to
determine which moving average blocks to use and in what temporal resolution.
A method for feature selection using multiple correlation analysis has been devel-
oped and will be presented below. We will begin with some theoretical background
that allows us to use the multiple correlation coefficient as a measure of informa-
tion carried by the rainfall with respect to the change in water level, if the two are
related by a system governed by mostly monotonous dynamics. We will show that
this condition generally holds for the system of the change of water level caused
by rainfall. Then, we will show how the optimal method may be implemented and
provide a suboptimal but computationally more efficient heuristic method.

19
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3.1 Approximation of the Information Coefficient

Suppose we define the information coefficient IC(y|x), which is a generalised version
of the coefficient of determination R2. It describes the ratio of variance in y that can
be explained given x. This specifies the upper bound of the model performance
in terms of variance. However, the IC is only a theoretical concept and there is no
way to obtain it for a general system. The complement of the IC might be easier to
understand; the fraction of unexplained variance which is given as FVU(y|x) = 1 −
IC(y|x). This denotes the ratio of variance of y that cannot be causally explained
given x.

As an example: consider y = x1 + x2, where x1, x2 are independent of each
other and have the same distribution, i.e. Var[x1] = Var[x2] and Var[y] = 2Var[x1].
Suppose, you attempt to make a prediction of y given only x1. In that case, you
can compute the IC through the Pearson correlation coefficient as IC(y|x1) = 0.5.
This allows you to claim that your predictor ŷ = f (x1) can at most explain 50% of
the variance of y, the remaining 50% cannot be causally explained given only x1.
A model with a better performance necessarily requires additional information to
make the prediction. It is trivial to see that IC(y|x1, x2) = 1 and thus the model
ŷ = f (x1, x2) can explain 100% of the variance of y given x1, x2.

It can be seen that IC(y|x) specifies the amount of causal information carried by
x with respect to y. To our knowledge, no formula exists that captures the entire
nonlinear, asymmetric dependency of y = f (x). However, we can approximate
the information coefficient from correlation coefficients. For example, suppose
all dependencies are linear. In that case the square of the Pearson correlation
coefficient can be used to estimate IC(y|x) ≈ R2(y|x).

It is known that the system is nonlinear (for example, the flow velocity increases
as the water level increases), therefore the Pearson R-squared value will underes-
timate the information coefficient. An alternative is a rank correlation coefficient
like Spearman’s ρ given in 3.1, which is effectively the Pearson correlation coeffi-
cient computed on the rankings of x, y. The benefit of the Spearman correlation is
that it captures nonlinear, monotonous dependency. For example, given y = x3,
with x ∼ U (−0.5, 0.5), the Spearman Rho-squared is ρ2 = 1, while the Pearson
R-squared is r2 = 0.84. Since, given x, one can compute y, the information co-
efficient is IC(y|x) = 1. For this nonlinear, monotonous function, the Spearman
Rho-squared is more accurate approximation compared to the Pearson R-squared
which misses 16% of the dependency that we know to exist.

ρy,xi =
Cov(R(y), R(xi))

σ(R(y))σ(R(xi))
(3.1)

For a multivariate input x =
[
x0 ... xM−1

]T
, the Multiple Spearman Rho-squared

can be computed using the pairwise Spearman correlation coefficients as given in
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3.2. If the input variables in x are independent, then Pxx = IM and ρ2 = ∑M−1
i=0 ρ2

xi,y.

IC(y|x) ≈ ρ2 = ρT
xyP−1

xx ρxy

ρxy(i) =
[
ρxi,y

]
Pxx(i, j) =

[
ρxi,xj

] (3.2)

3.2 Proof of Monotonicity

It has been shown that the square of the Spearman rank correlation coefficient ρ is
an approximation of the information coefficient if the function f that maps x to y is
monotonous. In order to base a method of feature selection on the multiple Spear-
man R-squared, we need to show that the water level is a monotonous function of
the rainfall.

This can be approached intuitively through a thought experiment (see theorem
1). Let r1(t) be the rainfall curve and let w1(t) be the water level curve caused by
the rainfall through an unknown physical system r(t) → w(t). Suppose a different
rainfall curve r2(t) which dominates r1(t), i.e. r2(t) ≥ r1(t) ∀t and r2(t) > r1(t)
for some value(s) of t. Then, monotonicity is given if and only if the water level
w2(t) (caused by r2(t)) dominates w1(t). We assume based on our intuition that this
should generally hold. A strict proof is not given and not required either; simply
showing that a majority of the system dynamics are monotonous with respect to
the rainfall is sufficient.

Theorem 1 The system r(t) → w(t) is monotonous, if and only if the following condition
is satisfied:

w2(t)

{
≥ w1(t) if r2(t) ≥ r1(t)

≤ w1(t) if r2(t) ≤ r1(t)

ri(t) → wi(t) i = 1, 2

(3.3)

We can also approach this from the perspective of mass flow and mass storage
during a steady state situation. The water level at Abelones Plads is a function of
the local mass flow. Due to conservation of mass, the sum of mass flows through
Mølleåen and Omløbsåen, and the mass input through rainfall must be equal,
assuming the system is in its steady state. The total mass storage in the system is
the result of the integration of the difference between mass input and mass output.
If the water level at Abelones Plads is constant, this implies that the mass storage
is constant. If the rainfall now increases, the steady state of the water level has to
increase due to conservation of mass. Note, water level is a nonlinear, monotonous
function of mass flow.
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These considerations imply that the system has a global equilibrium point
which is a monotonous function of the rainfall (as well as the water level in the
harbour, as outflow depends on it). This leads us to assume, in general, an in-
crease in rainfall somewhere causes an increase in water level somewhere, which
aligns with theorem 1.

3.3 Optimal Dimensionality Reduction based on the Multi-
ple Rho-squared

In this section, we will derive the optimal dimensionality reduction method (opti-
mal in the sense of the least reduction of the ρ2 for a reduction of a given number
of dimensions; i.e. given 10 rainfall features, what are the set of 10 features that
maximise the ρ2).

Let m(i)
k be the value of the rainfall feature i at time k and Let Li be the length of

the moving average block (in samples) that generates feature i; we might initialise
this as Li = 1.

We then compute the Multiple Rho-squared for the whole set of features IC(y|m),
where m = {m(i)|i = 0, .., M − 1} is the set of moving averages. For |m| moving
average blocks, there are |m| − 1 pairs of neighbours that can be combined. For
every pair (i, i + 1), we compute the average weighted by L, replace element i in
m, L with the new average and length and drop element i + 1 in m, L. Let the new
set of features be m(1,i), where i denotes the first element of the pair that is com-
bined. We compute the set of information coefficients IC(y|m(1,j)) and then select
the largest value. We iteratively choose the combination that yields the highest IC,
i.e. the combination with the least loss of information carried by the set of features
with respect to y until some user-specified termination criterion is met.

This algorithm has two main problems, the computational complexity and the
numerical precision issues both associated with inverting the correlation matrix
Rxy. Consider that the optimal algorithm starts with a high number of features
and then iteratively combines them to reach a compact representation that captures
the majority of information carried by the rainfall with respect to the water level
prediction to be made.

3.4 Heuristic Feature Selection Algorithm

Due to the computational issues faced by the optimal algorithm, a less optimal,
but significantly more efficient heuristic algorithm was developed and will be in-
troduced in this section. We have reason to assume that monotonocity holds gen-
erally. From prior experience of working with water level prediction in Vejle[11],
we know that the system exhibits local first-order-like behaviour. We note here
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Figure 3.1: Example of first-order-like decay behaviour. Figure shows the water level at Abelones
Plads and the log-normalised rainfall accumulated over the last 30 minutes.

that the system may potentially be better understood as a damped higher-order
system, but even then, monotonicity still holds. Figure 3.1 shows a first-order-like
decay to the base water level after the rainfall has ended.

Since the decay behaviour appears like that of a first-order system, we expect
a roughly exponentially decaying impulse response, i.e. the concentration of in-
formation carried by a measurement with respect to the water level reduces as we
progress backwards in time. Therefore, it intuitively makes sense that the features
start short and become increasingly long, since merging neighbouring samples will
lose information and therefore merging low-information samples loses less infor-
mation.

Since the most relevant information is found in the recent past, we can iterate
along the tapped delay line and create the moving average blocks in sequence
instead of creating all possible blocks at once and then merging them. This greatly
reduces computational cost. It furthermore handles the question of how long the
tapped delay line should be.

Suppose we use a set of moving average blocks as well as the yearly variation
tA to compute the change in water level. In the winter, rainfall causes a higher
increase than the same rainfall would cause in the summer, so we assume that
a significant portion of the dependency between tA and the water level is also
monotonous, therefore the Spearman rank correlation coefficient is a meaningful
approximation of the information coefficient 3.4.
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IC(∆w|tA, m) ≈ ρ2(∆w|tA, m) (3.4)

We define the shorthand ρ2(i) which is the Spearman Rho-squared of ∆w with
respect to the input set {tA, m0, ..., mi}. We then define the added information ∆ρ(i) =
∆ρ(i)− ∆ρ(i − 1), which denotes the information of ∆w we gained by adding mi to
the set of inputs. Since the impulse response exhibits exponential decay, we expect
∆ρ2(i) > ∆ρ2(i + 1) (the difference between the two will decrease as i increases).
In order to achieve a dimensionality reduction, we merge blocks that add little
in terms of non-redundant information. Suppose we define the minimum added
information ∆ρ2

min = 0.02 which enforces that all inputs add at least 2% monotonous
explanatory power. If a block does not satisfy this requirement, it is extended into
the past.

If rainfall falling within either the block or the sample(s) to be included in the
block, has a similar effect onto the water level that we are attempting to predict,
then extending the block will increase the added information. Note: ∆ρ2(0) =

ρ2(0)− ρ2(∆w|tA).
The heuristic algorithm is given below. A simplified flowchart is given in 3.2.

1. Specify ∆ρ2
min, Lmin, ϵ, i = 0 and set L = {}.

2. Create set of inputs {tA, mj|j ∈ [0, i]}

3. Set l = Lmin and add l to L

4. compute ∆ρ2(i, l)

5. if ∆ρ2(i, l) ≥ ∆ρ2
min, set i = i + 1, add mi to m, add Li = Li−1 to L, else set

l = l + 1 and Li = l

6. if l ≥ 10 and ∆ρ2(i, l) < maxl−1
j=0 ∆ρ2(i, j), remove mi, Li from m, L and termi-

nate algorithm.

7. if l ≥ Lmax:

(a) if also ∆ρ2(i, l) ≥ ϵ, terminate algorithm

(b) else, remove mi, Li from m, L and terminate algorithm.

8. return to 2.

3.5 Results

Consider the set of auxiliary inputs X̃. We know that the impact of the rainfall
onto the water level change is dependent on the season, thus we include the yearly
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Figure 3.2: Flowchart of the feature selection algorithm given in simplified form for reasons of
readability.

variation tA in the set of inputs X̃. Since tA changes very slowly, it is effectively a
different constant for each event, therefore no processing is necessary.

It is known from prior work[11], that the water level at one point can be pre-
dicted with a short prediction time using only one water level measurement from
an upstream location and one from a downstream location. Since in this work the
neural network predicts the change in the water level, it is useful to provide the
water level inputs as differences as well. In order to find the best interval ∆T over
which to compute the change in water level ∆w[k] = w[k]− w[k − ∆T] for the mea-
surements from Planteskole and Mølleåen Dæmningen, we compute the Spearman
Rho-squared value of the water level change for prediction times ranging from 30
minutes to 4 hours with respect to the change of the two upstream/downstream
water levels over intervals of length 5 minutes to 12 hours. Note, that the upstream
water level change carries significantly more information than the downstream
water level change. This is because the change at Abelones Plads lags behind
the change at Planteskole but leads the change at Mølleåen Dæmningen. In prior
work[11], it was established that for prediction at Aagade, the downstream water
level was in fact necessary because Aagade was low enough to be affected by tides,
which are not present at Abelones Plads (which has a ground level of 1.47 m). Fig-
ures 3.3,3.4 show the Rho-squared curves for both locations. It can be seen that
the Rho-squared values increases briefly (likely due to the fact that differences for
small interval length are affected by noise) and then decreases as the interval grows
in length.
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Figure 3.3: Spearman R-squared of the change of the water level at Abelones Plads over different
prediction times (30 minutes to 4 hours) with respect to the change of the water level at Grejsdalens
Planteskole over intervals of 5 minutes to 12 hours

For reasons of simplicity, we propose using one 30-minute interval for both
measurements, i.e. the change in water level at Planteskole and Mølleåen Dæmnin-
gen over the past 30 minutes. Since the water level behaviour changes very slowly,
it is considered unnecessary to add blocks further into the past. Let X̃ be a set con-
taining the yearly variation tA as well as the change in water level at Planteskole
and Dæmningnen over the last 30 minutes.

Given the established set of auxiliary inputs X̃, we seek an acceptably optimal
set of moving averages to generate the complete set of inputs X = {X̃, M} in the
sense of ρ2(Y|X). Consider that the information carried by the water level differ-
ence blocks with respect to the target Y decreases as the prediction time increases
(the further we try to predict into the future, the more we need to rely on rainfall
measurements). We therefore apply the heuristic algorithm developed in 3.4 onto
the change of the water level at Abelones Plads for a prediction time of 4 hours into
the future given the auxiliary inputs X̃. We further set the minimum information
added to 2%.

The output of the heuristic algorithm is given in 3.1, which gives the block
lengths and types (mean or difference). Note that the blocks are always sequential
with no space between blocks and no overlaps. The block number indicates the
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Figure 3.4: Spearman R-squared of the change of the water level at Abelones Plads over different
prediction times (30 minutes to 4 hours) with respect to the change of the water level at Mølleåen
Dæmningen over intervals of 5 minutes to 12 hours

position of the block along the tapped delay line; the block most recent in the past
is denoted as 0 and always takes the current measurement as its first element of the
block. For example, the input denoted by ’Delta_ST.32.06_0_30min’ is the current
water level at Planteskole minus the water level at Planteskole 30 minutes ago.
Similarly, ’Rainfall+2h_0_10min’ is the mean of the rainfall forecast at the gauge 2
hours into the future in the 10-minute interval [t + 120min, t + 111min]. Note that
the rainfall tapped delay line effectively consists of a 2-hour window of forecasted
data followed by a tapped delay line containing the rainfall measurements.

The table shows that the generated set of input features allow us to explain
69.73% of the variance of the water level change at Abelones Plads 4 hours into
the future. The Spearman R-squared ρ2(Y|X) only accounts for monotonous, non-
recurrent information. The LSTM should be capable of extracting the unmeasured
dependency (non-monotonous and recurrent) and therefore should be able to out-
perform this measure of dependency.

As a measure of confidence, we took the total rainfall window considered by
our set of inputs X (10 hours and 10 minutes) and split it up into 61 10-minute
blocks (the smallest block size generated by the algorithm) and compute the mul-
tiple Rho-squared as 71.85%. The heuristic algorithm captures 2.5% monotonic
information less (equivalent to 3.45% loss of relative information), while using 6
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Input Block Block Length Block Type ρ2 ∆ρ2

tA - - - 0.017 0.017
ST.32.23 0 30 min Difference 0.0394 0.0411
ST.32.06 0 30 min Difference 0.4108 0.4519

Rainfall+2h 0 10 min Mean 0.1325 0.5844
Rainfall+2h 1 20 min Mean 0.0217 0.6061
Rainfall+2h 2 25 min Mean 0.0229 0.6290
Rainfall+2h 3 50 min Mean 0.0208 0.6498
Rainfall+2h 4 300 min Mean 0.0205 0.6703
Rainfall+2h 5 205 min Mean 0.0200 0.6973

Table 3.1: Total Spearman R-squared and added Spearman R-squared for the set of inputs with
respect to the water level change at Abelones Plads given a prediction time of 4 hours.

rainfall measurements instead of 61. We note here, that the loss of information is
likely irrelevant due to the LSTM’s ability to maintain memory and thus extract re-
lationships between past values of the rainfall blocks and the prediction is trained
to make. We conclude that the suboptimal heuristic algorithm developed in 3.4 is
sufficient for our purposes.
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Neural Network Architectures

In this chapter, we will discuss different neural network architectures that may be
applied to the problem of flood forecasting and discuss their internal processes in
detail. We will also discuss the Universal Approximation Theorem in detail and
show that the LSTM is a universal approximator for dynamical systems. This chap-
ter is meant to give the reader a detailed understanding about the implementation
of the neural networks that were trained during the course of this project.

4.1 Feed-Forward Neural Networks

The simplest neural network structure is the Feed-Forward Neural Network which
gains its name based on the fact that it only feeds through the input and maintains
no memory. The output at time k is only a function of the input at time k. This
type of network architecture is generally implemented as a set of densely connected
layers with a nonlinear activation function (such as ReLU). An implementation of
this structure with one hidden layer is given in 4.1, where xk, hk, yk are the input,
hidden and output signals, Wh, bh, Wy, by the network parameters and f a nonlinear
activation function (such as ReLU) applied element-wise.

hk = f (Whxk + bh)

yk = Wyhk + by
(4.1)

It is important to note, that f must be a nonlinear function. If f is omitted, then
4.1 simplifies to 4.2, which shows that a linear Feedforward Neural Network with
any number of hidden layers is equivalent to a linear transformation yk = Axk + b.

y2,k = A2A1xk + A2b1 + b2 = Axk + b (4.2)

It is known that the single hidden layer Feed-Forward Neural Network is a
universal approximator for continuous functions in a bounded region. Impor-

29
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tantly, Kolmogorov’s Superposition theorem[27] shows that any multivariate func-
tion f (x) = f (x1, ..., xn) can be represented as a superposition of univariate func-
tions as given in 4.3.

f (x) = f (x1, ..., xn) =
2n

∑
q=0

Φq

(
n

∑
p=1

ϕq, p(xp)

)
(4.3)

Lorentz, and Sprecher then showed that the functions Φq, ϕq,p do not need to be
different functions and proved that f (x) can be represented as given in 4.4.[33][45]

f (x) = f (x1, ..., xn) =
2n

∑
q=0

Φ

(
n

∑
p=1

λpϕ(xp + µq) + q

)
(4.4)

It is well established that Feedforward Neural Networks with at least one hid-
den layer are capable of approximating all continuous functions to any degree of
accuracy given a sufficient amount of neurons in the hidden layer.[20][5][12][9].
In the context of dynamical systems, this means that if the system can be discre-
tised as xk+1 = f (xk, uk), a Feed-Forward Neural Network is sufficient to predict
xk+1. Furthermore, if there is a mapping of current and past states and inputs
z = g(xk, xk−1, ..., uk, uk−1, ...) such that xk+1 = f (zk), and the mapping g is avail-
able (for example, those can be moving averages), then the Universal Approximator
Theorem still applies and the dynamical system can be modelled accurately. This
means that in practice, such a network is highly dependent on what inputs are pro-
vided, as no memory of past inputs are maintained. Benjamin Refsgaard showed
that prediction of water levels in Vejle can be done with a Feed-Forward Neural
Network when rainfall inputs are provided as block-wise moving averages of 30
minute length.[39]

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are extensions of the aforementioned Feed-
Forward Neural Network. It uses the same feed-forward structure with added
terms that relate the current activations to the previous activations. A simple ver-
sion (known as the Elman Network) is given in 4.5, where xk, hk, yk are the input,
hidden state and output signals, Wh, bh, Wy, by are the model parameters and fh, fy

are activation functions.

hk = fh(Whxk + Uhhk−1 + bh)

yk = fy(Wyhk + by)
(4.5)

It has been shown that a single hidden layer RNN is a universal approximator
for a dynamical system with continuous derivatives[42]. In practice, however, the
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RNN suffers from the problem of exploding and vanishing gradients which is
caused by the state signal circling through the static gain Uh (see 4.5. Consider
the sample case of such an RNN with a single state. In that case, Uh is scalar. If
Uh < 1, then the gradient decays exponentially; if Uh > 1, then the gradient grows
exponentially. This causes a significant problem for the training of an RNN. If
the gradient explodes, the training process may become unstable. If the gradient
vanishes, the RNN is unable to learn the dynamics associated with those gradients.
In practice, this hampers the RNNs ability to learn dynamics that require long-term
memory.

4.3 Long-Short Term Memory

Due to the aforementioned problems faced by RNNs, Schmidhuber and Hochre-
iter developed the Long-Short Term Memory (LSTM)[19], which evades the problem
of vanishing and exploding gradients by gating their internal state. The internal
working process of an LSTM layer is given in 4.6, where xk, hk, ck denote the input,
hidden states and cell states, ik, fk, gk, ok denote the input, forget, cell and output
gates, σ, tanh denote the sigmoid and hyperbolic tangent functions and ⊙ denotes
the Hadamard (element-wise) product.

ik = σ(Wiixk + bii + Whihk−1 + bhi)

fk = σ(Wi f xk + bi f + Wh f hk−1 + bh f )

gk = tanh(Wigxk + big + Whghk−1 + bhg)

ok = σ(Wioxk + bio + Whohk−1 + bho)

ck = fk ⊙ ck−1 + ik ⊙ gk

hk = ok ⊙ tanh(ck)

(4.6)

Various different modifications of the LSTM structure have been developed, a
notable one being the Gated Recurrent Unit (GRU)[6] which merges the hidden
and cell states as well as the input and forget gates of the LSTM into an update
gate. The GRU is governed by 4.7, where rk, zk, nk are the reset, update and new
gates, xk, hk are the input and hidden state, W, b denote weight matrices and biases,
respectively, σ, tanh denote the sigmoid and hyperbolic tangent functions respec-
tively and ⊙ denotes the Hadamard (element-wise) product.

rk = σ(Wirxk + bir + Whrhk−1 + bhr)

zk = σ(Wizxk + biz + Whzhk−1 + bhz)

nk = tanh(Winxk + bin + rk ⊙ (Whnhk−1 + bhn))

hk = (1 − zk)⊙ nk + zk ⊙ hk−1

(4.7)
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4.3.1 Universal Approximation Theorem For LSTM

Consider an LSTM with a single hidden layer as given in 4.6 and an output layer
governed by yk = Wy + hk. We can now recover the basic, single hidden layer Re-
current Neural Network by setting fk = 0 and ik ⊙ gk = c, which yields a constant
cell state ck = c. This reduces 4.6 to 4.8.

hk = tanh(c)⊙ σ(Wioxk + bio + Whohk−1 + bho)

yk = Wyhk
(4.8)

Since tanh(c) is a constant term in 4.8, we define hk = tanh(c)⊙ h′k. This yields
4.9.

h′k = σ(Wioxk + bio + Who tanh(c)⊙ h′k−1)

yk = Wy tanh(c)⊙ h′k
(4.9)

Since, h′k is scaled element-wise by tanh(c), this can also be written as the mul-
tiplication with the diagonal matrix diag(tanh(c))h′k = tanh(c)⊙ h′k. Inserting this
equality into 4.9 yields 4.10, where V = diag(tanh(c)) and Wh = Who diag(tanh(c)).
For the sake of brevity, we rename Wi = Wio, b = bio + bho.

h′k = σ(Wixk + Whh′k−1 + b)

yk = Vyh′k
(4.10)

It can be seen that 4.10 is the simple, single-hidden-layer Recurrent Neural Net-
work with a sigmoid activation function. It is well known that such a network is a
universal approximator for dynamical systems[42]. As we have shown, all single-
hidden-layer RNNs of the structure 4.10 can be written as LSTM networks. There-
fore, the single-hidden-layer RNN is a subset of the single-hidden-layer LSTM, i.e.
if all dynamical systems can be represented by a single-hidden-layer RNN, the
same must apply to the single-hidden-layer LSTM, i.e. the Universal Approxima-
tion Theorem holds for the single hidden layer LSTM to the exact same extent as
to which it applies to the single hidden layer RNN.

4.3.2 Universal Approximation Theorem For GRU

Consider a single hidden layer GRU governed by 4.7 and an output layer yk =

Wyhk. Similar to the preceding proof, we fix the reset update gates in place by
setting rk = 1, zk = 0. This yields 4.11.

hk = tanh(Winxk + Whnhk−1 + bhn)

yk = Wyhk
(4.11)
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As we have shown the GRU is the superset of the class of RNNs with a single
hidden layer and a hyperbolic tangent activation function. As proven by Zimmer-
mann and Schäfer[42], this class of RNN is a universal approximator for dynamics
systems. Note, that while Zimmermann and Schäfer gave proof for the Universal
Approximator Theorem for RNNs with sigmoid functions, this refers not the func-
tion commonly denoted as sigmoid (more specifically known as the logistic function),
but to the class of sigmoid functions (i.e. functions that are monotonic, differen-
tiable and bounded) which includes the hyperbolic tangent function.

4.4 Residual Networks

He et al. introduced the Residual Network[16], an architecture which has been found
to outperform and generalise better than deep stacked neural networks. He et al.
hypothesised that it is easier for a neural network to learn residual mappings as
opposed to unreferenced mappings (i.e. y = f (x) + x as opposed to y = f (x). The
commonly understood working principle of Residual Networks is to learn pertu-
bations from the identity functions. Hauser[15] showed that the norm of the per-
tubation decreases with block number (i.e. the early blocks create higher changes).
Jastrzębski et al.[23] reported that the residual layers iteratively refine the estimate.
Veit et al. showed that residual networks in practice behave like an ensemble of
shallow networks. Siu showed that Residual Networks behave like a boosting al-
gorithm, meaning when a shared linear classifier is applied on the output of the
residual blocks, each will be an estimate of the target with decreasing error as we
proceed along the feed-forward path. Wang et al. proposed that the effectiveness of
residual connections can be explained by studying the loss landscape; they showed
that the loss landscape of a deep residual network remains well-behaved when the
number of layers is increased whereas the loss landscape becomes chaotic without
the residual connections in place. Su et al[50] hypothesises that Residual Networks
generalise better because they are less sensitive to noise. Arora et al.[3] showed
that noise sensitivity is correlated to generalisability. This allows deep Residual
Networks to generalise even though the number of parameters may be larger than
the number of samples.

In addition to the Universal Approximation Theorems that were shown to hold
for single-hidden-layer NNs with infinite width, Lin et al.[31] showed that a single-
neuron Residual Network with infinite depth is also a universal approximator. It
follows that a Residual Network with a fixed width can approximate any given
function arbitrarily well given enough layers.

We discussed the problem of vanishing gradients in section 4.3. We note that
the LSTM handles the problem of gradients vanishing along the recursive path.
Recall from 4.6 that the signal has to pass through at least one sigmoid function
to pass through one LSTM layer. The maximum gradient of the sigmoid function
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is 0.25, which implies that for a deep stacked LSTM, we lose 75+% of the gradi-
ent for each layer, which introduces the problem of gradients vanishing along the
feed-forward path. It has been shown that residual connections allow gradients to
bypass nonlinear activation functions and thus the gradients do not degrade[47].
Zaeemzadeh et al.[51] showed that Residual Networks preserve the norm of the
gradients and thus lead to a stable back-propagation process. This property en-
ables Residual Networks to become very deep, compared to Deep Stacked Net-
works which become increasingly harder to train as depth increases. The original
authors (He et al.[17]) showed that Residual Networks with non-identity mappings
along the residual connections either perform worse than models with identity
mappings or fail outright. This result underscores the importance of using as few
non-identity mappings as possible.

In this work, we employ a Deep Residual LSTM network architecture which
we refer to as ResLSTM based on an architecture proposed by Wang et al.[48]. It
features residual connections connecting the inputs of each block to its output.
Each block consists of one LSTM layer followed by a Dropout layer (see section
4.12). The residual connection employs a linear layer (with bias) if the block’s
input and output dimensions differ; if they are identical, the mapping is simply
the identity function. After the final block, a linear output layer is employed to
generate the predictions. All mappings along the residual connections except the
first are identity mappings.

The application of Deep Residual LSTMs such as the ResLSTM used in this
work appears to be sparse in the field of hydrology. A comprehensive 2020 review
of machine learning in the field by Sit et al.[44] mentions Residual Networks only
in the context of Residual CNNs being used for precipitation nowcasts.

Figure 4.1 gives a block diagram of a 2-layer ResLSTM network. Note that the
only non-identity functions along the residual path are the initial mapping (re-
quired to change dimensions from the input dimension to the hidden dimension)
and the output layer which is required to change the dimension to the output
dimension. For an abitrary hidden dimension, this the minimum number of non-
identity mappings along the residual path. Importantly, both are linear mappings
which do not squash the gradient like the sigmoid functions inside the LSTM layers
do.

4.5 Dropout

In this section, we will briefly explain the concept of Dropout since it is our method
of choice of dealing with the problem of overfitting and thus obtaining a model that
can generalise to unseen data. In prior work[11], it was observed that when using
Dropout, the validation loss at one point levels out instead of increasing again.

Introduced by Hinton and Srivastava et al.[18][46], Dropout randomly drops
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Figure 4.1: Example of a 2-layer ResLSTM network. Any potential further blocks will have the same
structure as the second block.

out neurons during the forward passes in the training process as shown in 4.12,
where y denotes the output of a layer (i.e. the input to the dropout layer), δ is
a vector of Bernoulli random variables that is generated at the beginning of each
iteration and ỹ is the output of the dropout layer.

δ(l) ∼ Bernoulli(p)

ỹ = δ(l) ⊙ y
(4.12)

In each iteration, Dropout creates a different subnetwork by dropping out dif-
ferent neurons each iteration. At the end of the training process, the Dropout is
deactivated and the weights are scaled down to account for the increase in the
number of active neurons. This is similar to training an ensemble of neural net-
works and then averaging their outputs.

The exact reason for why Dropout works is not very well understood yet
and several different explanations have been proposed. The original paper hy-
pothesised that Dropout is effective because it reduces coadaption between neu-
rons. Coadaption means a neuron is only helpful in the context of other neurons.
Dropout then reduces coadaption by dropping those neurons out. The authors
showed that dropout in effect leads to sparsity in the hidden activations. In con-
trast, Hahn et al.[14] proposed that the effectiveness of Dropout is due to Dropout
leading to the hidden activations entering the saturation regions of the nonlinear
activations functions thus achieving better generalisation. They empirically con-
firmed that Dropout lead to an increase in activation variance. Nalisnick et al.[35]
proposed that Dropout adds multiplicative noise which induces shrinkage priors
on the network parameters. Gal and Ghahramani[13] hypothesised that Dropout
leads to an approximation of the probabilistic deep Gaussian process. Baldi and
Sadowski[4] argue that Dropout averages out the ensemble of possible subnet-
works. Ahmad and Scheinkman[2] argued that Dropout induces sparse represen-
tations in the hidden layers which leads to a better generalisation. They showed
that models trained with Dropout are less sensitive to additive input noise com-
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pared to model trained without Dropout which the authors relate to difference in
sparsity in the representation as models without Dropout learn dense representa-
tions.

The original paper[18] used a dropout rate of 50%, which was also used in prior
work by the author[11] and was found to be sufficient for the purpose of avoiding
the problem of overfitting. We therefore choose p = 0.5 for the neural networks to
be trained.



Chapter 5

Flood Forecasting Methodology

The methodology developed in this report is intended to provide flood warnings
for a single point (or at most a few points). Recall that a vast majority of floods in
Vejle originate at Abelones Plads, along Mølleåen. This location has been equipped
with a measurement station (ST.32.20) of which data has been available starting in
December 2015. This data can be used to train a neural network to obtain long-
term predictions which are related to flooding events. If the water level at Abelones
Plads is predicted to exceed the bank level, a flooding of Abelones Plads is to be
expected. The longer this continues and the higher the water level in excess of the
bank, the larger the flood extent. If some information regarding flood extent for
historic floods is available for periods in which water level data is also available,
then some correlation can potentially be made.

In the following sections, we will discuss how to identify and classify events
that exhibit dynamics of interest, we will discuss the set-up of the neural network
model to evade the known problem of the network converging to the zero-order-
forecast and we will introduce additional metrics for training and evaluation using
the zero-order-forecast model as a benchmark model. Furthermore, we will discuss
the training process with a special focus on preventing an undue prioritisation of
a prediction by the network. The following sections about data generation will
refer to Vejle specifically as they are based on data of Vejle; when applied to other
catchments, the process works in principle, but the user may need to adjust the
process based on the dynamics exhibited by that catchment.

5.1 Event Identification

The provided water level data starts in 2015 and the provided rainfall data starts in
2000. Most of it is irrelevant data as it reflects baseflow behaviour with little rainfall
and a normalised water level of approximately 0.2 at Abelones Plads. We will
therefore need to identify events of interest to be used as training and validation

37
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Figure 5.1: Sample Events in January-March 2021 highlighted on water level data from Abelones
Plads

data. As we do not possess knowledge of the base level from which we deviate
during events, we employ a moving average with a window of seven days to be
used as an estimate. Let x(t) be the water level and x = µ(x(t); T) the moving
average of the water level with a window length of T. In the discrete-time domain
x is defined as given in 5.1, where Ts is the sampling time of the data.

x[k] = µ(x[k], N) =
1
N

k

∑
l=k−N−1

x[l]

N =
T
Ts

+ 1

(5.1)

We then define events as continuous intervals of exceedance of the base line
estimate. Let ∆x[k] = x[k]− x[k]. Then the set of start and end indices kstart, kend
are the values of k that satisfy 5.2.

kstart : ∆x[kstart] > 0 and ∆x[kstart − 1] ≤ 0

kend : ∆x[kend] > 0 and ∆x[kend + 1] ≤ 0
(5.2)

Event Ei then encompasses the samples Ei : ki
start ≤ k ≤ ki

end, including both the
start and end indices. A visualisation of the events during the first three months of
2021 is given in 5.1 We then compute the maximum exceedance max(∆x) within
the event Ei as given in 5.3.
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Figure 5.2: Longest Event in E

max
k∈Ei

(∆x[k]) = max
ki

start≤k≤ki
end

(∆x[k]) (5.3)

Since we are comparing a signal against its own moving average, there will
be many spurious events caused by some natural variation. For example the 2410
events of set E have a combined length of 697 days, but the 90% percentile of maxi-
mum exceedance is 0.015 and the 95% percentile is 0.06, indicating that most events
do not exhibit a sufficiently significant response that can be used for training. In
order to isolate events with dynamics of interest, we compute the maximum ex-
ceedance values over each event to eliminate spurious events. Suppose, we impose
the criterion 5.4.

max
k∈Ei

(∆x[k]) ≥ ∆xmin (5.4)

For example, imposing ∆xmin = 0.05 will reduce E to 138 events of a combined
length of 393 days which corresponds to 6% of events making up 56% of its length
in time. Imposing ∆xmin = 0.1, reduces E to 73 events of a combined length of 235
days and finally imposing ∆xmin = 0.2, reduces E to 35 events worth 120 days.

As it turned out during preliminary testing, these events contained too much
data, which lead to a sluggish training process. We therefore created a new set of
modified events M. The longest event in E contains mostly spurious data before
the actual event occurs. In order to cut off spurious tails as the one seen in 5.2, we
enforce a minimum exceedance criterion ϵ on during the entirety of the events.

Suppose we generate the set of start and end indices as given in 5.5 which is
based on the exceedance criterion ∆x[k] > ϵ.
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Figure 5.3: Modified Events Highlighted on Data of Abelones Plads from 2021, see figure 5.1 for a
comparison

kstart : ∆x[kstart] > ϵ and ∆x[kstart − 1] ≤ ϵ

kend : ∆x[kend] > ϵ and ∆x[kend + 1] ≤ ϵ
(5.5)

Recall that event ends are identified by the indices at which the water level
returns to meet the moving average. Generally, the water level behaviour is marked
by spikes followed by first-order-like decay in the absence of rainfall where the
catchment drains. From communication with the cooperative partner, it is known
that it takes about five to seven days for the decay to be completed. This means
that perhaps half of each event is simple decay. While we do need the trained
network to understand when the decay will occur, it does not need to estimate the
decay precisely, since, if the water level is going down, no flood warning will be
necessary. We therefore opt to cut the events after the peak within the event. Let
kpeak be the index of the highest peaks within each event. We then cut off the events
shortly after the peak by setting kend = kpeak + ka f terpeak, where ka f terpeak corresponds
to four hours. Since the starting indices do not reflect the true beginning of the
deviation, all starting indices are left-shifted by four hours.

Figure 5.3 visualises the modified events using ∆xmin = 0.1 over the first three
months of 2021. The set M now contains 82 events with a combined length of 63
days. Table 5.1 contains the hyper-parameters of the event identification process.
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Minimum normalised exceedance 0.05
Left-shift start indices 4h
Right-shift end indices 4h

Truncate after peak Yes
Minimum time between events 0

Minimum normalised peak exceedance 0.1

Table 5.1: Specification of hyper-parameters of event identification process

Class Training Validation All Definition
4 19 10 29 Long, High-Intensity
3 8 4 12 Long, Low-Intensity
2 19 10 29 Short, High-Intensity
1 8 4 12 Short, Low-Intensity

Table 5.2: Class definitions and number of events by class and set. Medians are given as L = 13.5 h
and ∑ r = 695.6874 mm. The ratio of events used for training is 0.66.

5.2 Event Classification

In order to ensure that our network is trained on a variety of different types of
events and generalises to different types of events, it is necessary to split the set of
events into different classes and then draw events from those classes to generate
the training and validation sets at random such that each class is represented in the
training and validation sets at the same ratio as they are represented in the entire
set. This supports our ability to claim that the model generalises to unseen data
based on the model performance on the validation set because the validation set is
representative of the entire set of events.

Consider that increases in the water level at Abelones Plads are driven by rain-
fall. It is reasonable to split events by rainfall intensity (the total rainfall measured
during the event). The evolution of the water level also depends on the length of the
event; the longer the event, the more time for the catchment to drain which leads
to smaller increases in water level compared to events with short, high-intensity
rainfall.

We split each axis (length and total rainfall) by their median values. This
leads to similar class sizes for the two classes along the regression line (short,
low-intensity and long, high-intensity) and similar class sizes for the two off-line
classes (long, low-intensity and short, high-intensity). This discrepancy is due to
the correlation between the two axes; the longer the event, the more rainfall we
tend to accumulate.
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5.3 Delay Phenomenon

This section serves to discuss an important phenomenon that was already observed
in prior work[11] which greatly affects the considerations we made in regards to
what inputs to provide to the neural network. For lack of a better term, we call this
the delay phenomenon. Recall that the water level at Abelones Plads is a the result of
a relatively slow-moving dynamical system (relative to our sampling time). There-
fore, the delay (or zero-order-forecast) model ŷ[k + T] = y[k] generates an accurate
prediction in purely numerical terms. For example, on the set of events, the Mean
Absolute Error (MAE) of the zero-order-forecast model for a 1h-ahead prediction
is generally in the range of 2 to 3 centimetres. Compared to the ground-to-bank
distance of 133 centimetres of Mølleåen at Abelones Plads, this seems to imply a
2% relative error.

However, the zero-order-forecast model does not capture any information about
the change of the system, i.e. it makes no statement whether the water level will go
up or down, which is precisely the information relevant to us. For that reason, the
zero-order-forecast model is useful as a benchmark model because it is the non-
parametric model with the least loss (Refsgaard et al. also used it as a benchmark
model[39]). If any neural network model is observed to have a smaller loss, then it
must necessarily have captured some information about the dynamics. Conversely,
a model with a worse loss likely captures erroneous information irrelevant to the
evolution of the system.

Since the zero-order-forecast model has a high degree of numerical accuracy, a
Neural Network model that operates on a set of inputs which includes the state
to be predicted, then that model tends to converge to that model. This delay
phenomenon was observed in prior work[11], where it was observed that including
the state as input leads to the model failing to extract the underlying dynamics.

In the prior work, the problem posed by the delay phenomenon was handled
by omitting the state from the inputs and instead using only water level measure-
ments upstream and downstream of the point of prediction. It was noted that
this leads to a model that behaves in parallel with the actual water level. Since
the models trained in that work did not interact with the state measurements at
all, the prediction exhibited an approximately constant error. As the purpose of
the prior work was the design of a control algorithm, this behaviour was deemed
acceptable.

However, for the purpose of flood forecasting, we are interested in the absolute
values of the water level at Abelones Plads some time into the future, and therefore
such a constant error is deemed unacceptable. We therefore employ an architecture
that has the benefit of using the state as an input (no offset) and the benefit of
excluding the state (avoiding the delay phenomenon). Consider that the largest
portion of the water level prediction ŷk+T is provided by the current water level yk.
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Figure 5.4: Block diagram of model trained to predict change in water level, x[k] denotes the input
to the neural network, y[k] the current water level and yhat[k + T] the prediction of the network.

Therefore, it makes sense to train the neural network to predict the change in value
∆yk as given in 5.6. We hypothesise that it is easier for the neural network to learn
changes of a variable over time than to learn to predict the value of that variable. A
similar logic has been applied to explain why residual networks outperform classic
deep networks[16].

ŷk+T = yk + ∆ŷk (5.6)

A block diagram of this model architecture is given in 5.4, where the block de-
noted as model can be any neural network model. Note, that this architecture can
be understood as a sort of residual network as the current water level measurement
bypasses the model and thus generally avoids the delay phenomenon.

5.4 Zero-Order-Forecast Benchmark Model

In order to evaluate the forecast accuracy of a neural network model, we compare
the Mean Square Error (MSE) of the NN with the MSE of the zero-order-forecast
model to compute the Skill Score vs Delay Model (SSD), as given in 5.7. An SSD of
1 indicates a perfect model, an SSD of 0 indicates a model with performance equal
to the zero-order-forecast model.

SSD = 1 − MSENN

MSEdelay
(5.7)

We primarily use the SSD for a qualitative assessment; i.e. if a model shows a
strictly positive median SSD for the validation set, then we say the model provides
an acceptable forecast for the water level at Abelones Plads. It should be noted
that any single-prediction model that minimises the MSE also maximises the SSD.
However, the SSD faces the same issue as the MSE regarding the qualitative inter-
pretation, since both have the dimension of water level squared.

For that reason, we introduce two related comparative metrics, the Root Skill
Score vs Delay (RSSD) and the Absolute Skill Score vs Delay (ASS), which are based
on the ratio of RMSE and MAE, respectively, as given in 5.8.
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RSSD = 1 − RMSENN

RMSEdelay
= 1 −

√
MSENN

MSEdelay
= 1 −

√
1 − SSD

ASSD = 1 − MAENN

MAEdelay

(5.8)

The two new metrics can be easily interpreted; an ASSD or RSSD of x indicates
that the model reduces the associated metric by 100x% compared to the benchmark
delay model. We point out that the SSD is computed similar to the Nash-Sutcliffe
Efficiency (NSE) for the water level change assuming a mean water level change
of zero (which is generally given considering the water level is bounded). This is
importantly not the case for our event data as the events are truncated after the
peaks and therefore tend to end at a higher level than the starting level. Simply
computing the R-squared or NSE would then be identical to computing the SSD
with ∆x̂ = µx as benchmark model which (considering our event data yields µx >

0) is not meaningful. Instead, the SSD is computed using the zero-order-forecast
benchmark model ∆x̂ = 0 and then interpreted in the same manner as the R-
squared. The fraction of explained variance is equal to the SSD and the fraction of
unexplained variance is equal to the complement of the SSD (we later denoted this
quantity as the NMSE, see 5.9).
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5.5 Network Training

In this section, we will briefly explain the training process that we use to obtain
neural network models.

The training process is an interative procedure. Each step, we execute a hotstart
using a 4-hour window preceding each event and extract the final hidden and cell
states. We then compute the predictions for the training events using the extracted
states with Dropout switched on. We then switch the Dropout off and compute the
predictions for the validation events using the states extracted from the hotstart.
We note that the only data kept from the hotstart are the internal states; we do not
require the prediction made over the hotstart windows.

We note an important fact here: if one wishes to make a single prediction, the
Mean Square Error (MSE) is sufficient for that purpose. However, for a network
making multiple predictions, this will prioritise the longer prediction times as it
contributes more to the overall error. In general, network outputs must be nor-
malised. We have done so with the water level by scaling it such that the ground
and bank level map to 0 and 1. We note that the network output is the change in
water level. The more time passes, the larger the expected change will be. There-
fore, the longer prediction times will provide a much larger part of the overall
MSE and thus provide the most significant opportunity to decrease the overall
MSE. The result is that the shorter prediction times may potentially be neglected
by the model. However, we expect this issue to be somewhat remedied by the fact
that the different water level changes to be predicted are correlated, therefore tem-
poral features extracted by the LSTM that are helpful for one prediction are likely
helpful to the other predictions as well.

Ordinarily, we would handle this by scaling the changes to have, for example,
unit variance. However, the change itself is not computed in the data; instead
we simply add the water levels at the time at which we make the prediction to
the network output. The water level changes are not explicitly computed. This is
primarily due to the fact that scaling all these variables independently and then
scaling them back to the original scale adds obscurity which increases the risk
of the network generating a wrong prediction through user error. Recall that we
scaled the water levels according to bank and ground levels as this scale is easily
understandable to the user. Therefore, instead of scaling the outputs, we instead
opted to scale the errors.

Recall that the magnitude of the errors increases with time. We therefore in-
troduced the SSD as a relative metric that compares the model prediction with a
zero-order forecast benchmark model, so that the errors are equally scaled. Let
NMSE denote the normalised MSE as given in 5.9. We point out that the NMSE is
simply the complement of the SSD. This is beneficial as a model that minimises
the NMSE for several predictions, also maximises the SSD. For a model trained
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using the MSE, this only holds if the model makes a single prediction, due to the
difference in scales, as the MSE is the average of the prediction MSEs, whereas the
SSD is a weighted average of the prediction MSEs.

NMSE =
MSE(NN)

MSE(ZOF)
= 1 − SSD (5.9)

Using the water level measurements at the prediction times, the water levels
to be predicted and our predictions, we compute the NMSE for the training and
validation events. The former is used for parameter updates, while the latter is
done without maintaining gradients to withhold the validation events from the
network. The parameter updates are generated using the Adam optimiser with
the Amsgrad implementation[25, 38].

We begin the training procedure with an initial learning rate of 0.01. While
the network is being trained, we monitor the validation NMSE. The learning rate
is modified by a factor of 0.5 if the validation NMSE stops improving using a
’ReduceLROnPlateau’ learning rate scheduler (see [7]). We terminate the training
process when the learning rate decays below 1e − 7 as we consider a learning rate
of that magnitude to generate insignificant parameters updates. During the pro-
cedure, we maintain the minimum validation NMSE and the associated parameter
set. Once training concludes, we load the best performing parameter set into the
model.

5.6 Sign Conformance Metric

We have explained the SSD and the complementary NMSE metrics before, as
they are the most relevant metrics for both model evaluation (SSD) and training
(NMSE). In addition, we introduce another evaluation metric that helps us quantify
the model performance, which we call the Sign Conformance. We point out that this
metric should only be used to complement the quantitative performance analysis
made using the SSD scores.

The Sign Conformance SC is a categorical evaluation; given a change in water
level to be predicted, the SC specifies the likelihood that the sign of the model
prediction conforms with the sign of the change as given in 5.10 (i.e, the likelihood
of the model correctly predicting the direction of the change in water level). This
metric is perhaps easier to understand than the SSD due to its categorical nature.
Recall that the zero-order-forecast is a numerically good prediction but captures no
information about the expected evolution of the system. Since it always predicts
zero change, it has a Sign Conformance of 0%. A neural network that incurs some
prediction error but has a sign conformance of 100% is a very good predictor since
it outperforms the ZOF benchmark model in a categorical sense. Thus, the SC can
also be understood as a categorical relative metric. We note that some care has to
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be taken here; a hypothetical model whose prediction is a small positive constant
will have an SC of approximately 50%. Therefore, it is desirable to split up the SC
into two partial metrics for the two cases of sgn(∆w); note that we omit the case of
sgn(∆w) = 0.

SC = p(∆w > 0 ∧ ∆ŵ > 0) + p(∆w < 0 ∧ ∆ŵ < 0) (5.10)

The SC can be computed as follows. Let ϵ(x) be zero close to x = 0 and 1
everywhere else as given in 5.11. The epsilon function can be understood as a
relevance function with the criterion ε which we use to drop out irrelevant values.

ϵ(x) =

{
0 if |x| ≤ ε

1 if |x| > ε
(5.11)

We primarily care about getting the sign correct for changes of high magni-
tude. For changes of very low magnitude, whether the sign conforms is irrelevant.
We compute the pairwise Sign Conformance sck in 5.12 using ε as the relevance
criterion. Let yk = ∆wk be the exact change and ŷk = ∆ŵk be the predicted change.

sck = ϵ(yk)sgn(yk)sgn(ŷk) (5.12)

The pairwise sign conformance is 1 if y is relevant and the signs of y, ŷ conform,
it is zero if y is irrelevant, and −1 is y is relevant but the signs of y, ŷ do not
conform. The number of relevant samples in sc is given by ∑N

k=1 |sck|.
The Sign Conformance SC is then given in 5.13, where u(x) denotes the unit

step function, which replaces the −1 entries with 0 in the numerator to enforce a
lower bound of 0. We note that u(0) = 0.

SC =
∑N

k=1 u(sc[k])

∑N
k=1 |sc[k]|

∈ [0, 1] (5.13)

Consider that ϵ(x)u(x) is the step function with a dead-zone around the ori-
gin. We can use this function to determine which samples have a relevant positive
change y and which have a relevant negative change y (denoted by y+, y−, respec-
tively, in 5.14).

y+k = ϵ(yk)u(yk) =

{
1 if yk > ε

0 if yk ≤ ε

y−k = ϵ(yk)u(−yk) =

{
1 if yk < −ε

0 if yk ≥ −ε

(5.14)

We can now compute the partial Sign Conformances SC(y+) and SC(y−) as
given in 5.15.
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SC(y+) =
∑N

k=1 y+k u(sck)

∑N
k=1 y+k

SC(y−) =
∑N

k=1 y−k u(sck)

∑N
k=1 y−k

(5.15)

The two partial Sign Conformances are related to the overall Sign Conformance
depending on the occurrence of relevant positive and negative changes. Note that
the set of relevant positive changes and the set of negative changes are mutually
exclusive and exhaustive with respect to the set of relevant changes as given in
5.16. If a model has both partial Sign Conformances above 50%, then it is a better
predictor than the zero-order-forecast benchmark model in a categorical sense.

SC =
∑N

k=1 y+k
∑N

k=1
(
y+k + y−k

)SC(y+) +
∑N

k=1 y−k
∑N

k=1
(
y+k + y−k

)SC(y−) (5.16)

The Sign Conformance metrics will be used to evaluate the categorical perfor-
mance of the neural network model. For the purposed of flood forecasting, we are
primarily concerned with detecting an incoming rise in water levels which war-
rants action to be taken. While a quantitatively correct prediction allows that (this
can be measured using the SSD), a network that does not predict the exact extent
of the rise in water level but does correctly predict that the water level will rise is
valuable. The Sign Conformance may thus be understood as a relaxed performance
criterion compared to the SSD.



Chapter 6

Testing

In this chapter, we will train neural networks for different hyper-parameter choices
and evaluate the effect onto the model performance. We will start by comparing a
model trained with the rainfall moving average blocks obtained in 3.4 with a model
trained with 30 minute blocks covering the same time interval. This will allow us
to evaluate whether the feature selection algorithm managed to extract the relevant
temporal features. Then, we will compare a model trained with rainfall inputs as
well as water level inputs with a model trained with only rainfall inputs. This will
allows us to evaluate how well the rainfall input can compensate when the water
level inputs are dropped, i.e. how much information carried by the water level
input is redundant. Since the water level inputs themselves are functions of the
rainfall, ideally, no decrease in model performance should be observed. However,
since our rainfall input does not fully capture the spatial variability of the rainfall,
we expect to see a decrease in performance. We will then compare models with
different numbers of layers to obtain the best performing model. We will also
evaluate models with and without Dropout to evaluate the effect of Dropout with
regards to overfitting.

Finally, we will evaluate the performance of the obtained model on the valida-
tion events and attempt to explain under what circumstances the model performs
well and when it performs poorly. We hypothesise that the insufficient coverage of
the rainfall is responsible for a significant part of the failure.

The general structure of the models (unless explicitly stated otherwise) is a
ResLSTM with 20 neurons in each hidden layer, a Dropout layer (with p = 0.5)
located after each LSTM layer. There is no Dropout along the residual connections
and no Dropout along the recursive connections within the LSTM layers (see figure
4.1). This structure (20 neurons, 50% Dropout) was found to be effective in prior
work by the author[11]. We train all models to predict the change in the water level
at Abelones Plads with prediction times of 30 minutes, 1 hour, 2 hours, 3 hours and
4 hours. Table 6.1 provides a summary of hyper-parameters shared by all models

49



50 Chapter 6. Testing

Hyper-parameters Values
Width 20
Output ∆ST.32.20

Prediction Times [30 min, 1 h, 2 h, 3 h, 4 h]

Table 6.1: Hyper-parameters shared by all models

Loss Name Unit
NMSE Normalised Mean Square Error -
MAE Mean Absolute Error [m]
RMSE Root Mean Square Error [m]
SSD Skill Score vs Delay Benchmark Model -
SC Sign Conformance [%]

SC+ Sign Conformance for ∆w > 0 [%]
SC− Sign Conformance for ∆w < 0 [%]

Table 6.2: Loss functions used for model performance evaluation

trained in this chapter.
The purpose of this section is to be able to give a recommendation on how

to obtain the best performing model. While there are numerous possible com-
binations of hyper-parameters to test, each combination requires a model to be
trained. We therefore opt to test iteratively, i.e. we determine optimal choice of
hyper-parameters sequentially and not in parallel. All evaluations are done over
the validation events and do not involve the training events. This will allow us to
evaluate the expected model performance in a real-life implementation during an
event. Table 6.2 provides a list of loss functions we will evaluate.

6.1 Evaluation of the Feature Selection Algorithm

In this section, we will evaluate the model performance using the moving aver-
age blocks generated by the feature selection algorithm which is compared against
the model performance of a model using 30-minute blocks covering approximately
the same interval. In section 3.4, we only compared the two sets of inputs via
the Spearman Multiple Rho-squared which only covers monotonous dependency.
There might in fact be some relevant non-monotonous dependency which the fea-
ture selection algorithm cannot account for.

We train two ResLSTM models. The first is given the input set 3.1 and the other
is given the same yearly variation and water level inputs along with 21 moving
average blocks of length 30 minutes. Both models are trained as described in 5.5
and then compared via their median SSD scores over the validation events. We
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MA type 30 min 1 h 2 h 3 h 4 h Mean Number of Parameters
custom 0.325 0.488 0.633 0.632 0.608 0.537 12865

fixed 0.293 0.408 0.639 0.629 0.636 0.521 14365

Table 6.3: Median SSD scores for 4-layer ResLSTM models using custom or fixed rainfall inputs for
different prediction times.
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Figure 6.1: Comparison of 2 ResLSTM models using the custom and fixed moving average sets for
the rainfall input for 1 to 4 layers. The custom set is generated by the heuristic feature selection
algorithm.

note here that neural networks are initialised with random parameters and there
is no convenient way to account for the effect.

Table 6.3 provides the median SSD scores for the two models for the different
prediction times along with the overall mean. We also trained the two ResLSTM
models with depths ranging from 1 to 4 layers. Figure 6.1 visualises the median
SSD of the two ResLSTM models with one to four layers (the individual median
SSD scores from the different predictions were average out to generate the figure).

Table 6.3 shows that the 4-layer ResLSTM model with the rainfall features gen-
erated by the algorithm introduced in 3.4 yields an increase of 0.016 in SSD (this
is equivalent of explaining an additional 1.6% of the variance of the water level
change) while using 1500 parameters less compared to the model using a set of
30-minute blocks. Since the models were initialised with random parameters, a
hypothesis test would be appropriate to determine if the difference is indeed sig-
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nificant; however doing so would require numerous trained models which is not
feasible. We therefore conclude that the difference may not be significant. This
means the feature selection algorithm accomplished the same model performance
using less model parameters and less inputs.

6.2 Evaluation of Models using only Rainfall Inputs

In the previous section, we showed that the model using rainfall features generated
by the feature selection algorithm yields similar or perhaps better median SSD
scores over the validation events while also reducing the dimension of the rainfall
input. We will therefore proceed with using features generated by the algorithm.

In this section, we will compare two 1-layer ResLSTM models, the first using
inputs given in table 3.1, the second using the yearly variation tA along with rain-
fall features generated by the feature selection algorithm given tA as auxiliary input
(i.e. the second model does not use any water level information). This test is meant
to investigate the effect of water level information onto the model performance for
the different prediction times. We will also train a ResLSTM model using only tA
and the water level inputs from table 3.1. We hypothesise that water level informa-
tion is primarily useful for shorter prediction times (30 minutes and 1 hours) but
not useful for longer prediction times (4 hours). We know from prior work[11] that
the water level can be predicted a very short time into the future using only water
level information from two points up- and downstream of the prediction point.

Table 6.4 provides the median of the Validation SSD scores with respect to pre-
diction time and input set. Figure 6.2 visualises the data. It can be seen that up
until a prediction time of two hours, the model using rainfall and water level infor-
mation has similar performance as the model using only water level information.
The latter’s performance quickly degrades for prediction times in excess of two
hours. In contrast to that, the performance of the model using only rainfall infor-
mation increases as the prediction time increases and surpasses the performance of
the model using only water level information for a prediction time of four hours.
This underscores the relevance of using both water level and rainfall information
to obtain best possible performance (we note that adequate rainfall inputs may
make water level inputs redundant). The test was repeated using 4-layer ResLSTM
models and yielded similar results.

6.3 Evaluation of Dropout

In this section, we will train two 1-layer ResLSTM models using the inputs given
in table 3.1, the first with Dropout of 50% after each LSTM Layer (see figure 4.1),
the second without Dropout. On average the model with Dropout achieved an im-
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Inputs 30 min 1 h 2 h 3 h 4 h
Rainfall 0.150 0.244 0.368 0.447 0.576

Rainfall+Water 0.345 0.515 0.645 0.630 0.606
Water 0.351 0.502 0.637 0.511 0.366

Table 6.4: Median validation SSD of 1-layer ResLSTM models trained using three different input sets.
The rainfall sets were both generated by the feature selection algorithm using the yearly variation,
and the yearly variation and the water levels as auxiliary inputs.
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Figure 6.2: Comparison of median validation SSD as a function of prediction time for three models
using different input sets.
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Dropout 30 min 1 h 2 h 3 h 4 h
0% 0.301 0.458 0.597 0.571 0.563
50% 0.345 0.536 0.652 0.685 0.591

Table 6.5: Comparison of 1-layer ResLSTM models with Dropout of 0% and Dropout of 50%

Model 30 min 1 h 2 h 3 h 4 h Mean
Multi Prediction 0.321 0.501 0.661 0.659 0.607 0.550
Single Prediction 0.346 0.458 0.639 0.602 0.550 0.519

Difference -0.025 0.043 0.022 0.058 0.059 0.031

Table 6.6: Comparison of median validation SSD scores for multi-prediction model and ensemble of
single-prediction models.

provement of 0.06 in median validation SSD when compared to the model without
Dropout, i.e. the model with Dropout explains an additional 6% of the variance in
the water level change which we attempt to predict.

The model without Dropout terminated after 791 iterations of training, whereas
the model with Dropout terminated after 2215 iterations. This implies that the
learning rate scheduler together with the termination criterion imposed onto the
learning rate terminated the training of the first model after the validation loss
stopped improving (i.e. the model failed to generalise). Without this safeguard
in place, the model without Dropout would have likely exhibited a significantly
worse validation performance. We conclude that a Dropout of 50% is effective at
inducing a higher generalisability of the model and preventing overfitting of the
model.

6.4 Evaluation of Single vs Multiple Prediction

In this section, we will briefly analyse whether the training process places an undue
priority upon an individual prediction time at the cost of neglecting the other
prediction times in the process by training one model with multiple prediction
times and then training an ensemble of models for each prediction time. All models
have the same hyper-parameters other than the prediction time(s). Since we train
using the NMSE as loss function, we hypothesise that the single prediction models
will not perform significantly better than the multiple prediction model.

Table 6.6 shows the obtained median validation SSD scores. The multiple-
prediction model outperforms the ensemble of single-prediction models for all
prediction times except 30 minutes. The average difference is 0.031, which means
the multiple-prediction model can explain an average of 3.1% of the variance of
the water level changes at Abelones Plads that the ensemble of single-prediction
models cannot explain. We hypothesise that training with multiple objectives has a
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Layers 1 2 3 4 5 6 7 8
Median SSD 0.535 0.538 0.501 0.549 0.545 0.548 0.547 0.559
Parameters 2785 6145 9505 12865 16225 19585 22945 26305

Table 6.7: Comparison of median validation SSD scores and number of trainable parameters for
ResLSTM models with 1 to 8 layers.

Hyper-parameters Values
Input see table 3.1

Output ∆ST.32.20
Prediction Times [30 min, 1 h, 2 h, 3 h, 4 h]

Dropout 50%
Width 20
Layers 8

Parameters 26305

Table 6.8: Optimal hyperparameter values with respect to the median validation SSD.

regularising effect onto the model which allows better generalisation. We assume
that effect is the reason why the ensemble of five models with 2701 parameters
each does not outperform the multi-prediction model with 2785 parameters.

6.5 Evaluation of Network Depth

In this section, we will train ResLSTM models with the inputs given in table 3.1 of
depths ranging from 1 to 8 layers to evaluate the effect of the network depth onto
the model performance. It can be seen in table 6.7 that the 8-layer model yields the
best performance seen so far with a average median validation SSD of 0.559.

6.6 Summary of Hyperparameter Evaluation

In this section, we will summarise the results from the evaluated hyperparameter
options to settle on a set of hyperparameters. Table 6.8 provides the optimal values
obtained for the hyperparameters we tested for. The model that performs best on
the validation set in terms of the highest median SSD averaged out over the 5 dif-
ferent prediction times is the 8-layer ResLSTM model using rainfall and water level
information and Dropout of 50%. We retain the 8-layer model from the previous
section for further analysis which we will refer to as ResLSTM-8.

Table 6.8 specifies the hyperparameters used to obtain the ResLSTM-8 model
in a previous test (see 6.5). We will evaluate the model performance over the set of
validation events.
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Prediction Time 30min 1h 2h 3h 4h
MAE [cm] 0.84 1.60 2.83 3.53 4.48
RMSE [cm] 1.24 2.07 3.30 4.47 5.54

SC [%] 85.55 88.76 89.56 90.64 88.03
SC− [%] 84.34 90.44 90.85 84.94 83.10
SC+ [%] 90.45 92.26 92.56 94.94 91.83
NMSE 0.615 0.449 0.333 0.330 0.398

SSD 0.385 0.551 0.667 0.670 0.602
ASSD 0.321 0.368 0.338 0.441 0.409
RSSD 0.216 0.330 0.423 0.426 0.369

Table 6.9: Obtained values for different loss functions and prediction times of the ResLSTM-8 model
applied on validation events.
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Figure 6.3: Histogram of event-specific SSD scores computed over the set of validation events (his-
togram cuts off one event with SSD=-1.59 for a prediction time of 4h).
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Prediction Times 30min 1h 2h 3h 4h Total
SSD < 0 3 2 4 3 3 15
SSD > 0 25 26 24 25 25 125

Table 6.10: Occurrence of positive and negative SSD scores computed over the validation events. In
15 out of 140 predictions, the SSD is negative which indicates a model performance worse than the
zero-order forecast benchmark model.
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Figure 6.4: Histogram of the event-specific Sign Conformance values computed over the validation
events.

Figure 6.3 provides a histogram of the validation SSDs which exhibit a sig-
nificant skew behaviour. From the figure we see that the bin with the highest
occurrence for prediction times of 2 and 3 hours is [0.667, 1]. Table 6.9 provides
the median of the event losses for different loss functions and prediction times.
The best individual median validation SSD is 0.67 for a prediction time of 3 hours,
which indicates that in a real-life event, there is a 50% chance that the event SSD
for that prediction time is above 0.67. The distribution of loss function values over
the events is skewed significantly by a few events characterised by a poor model
performance. Table 6.10 provides the occurrence of positive and negative valida-
tion SSD. The 15 cases belong to only 5 events, thus the per-event chance is 83%
that the ResLSTM-8 model will outperform the zero-order benchmark model on all
prediction times in a real-life implementation. On a per-event and per-prediction
basis, the chance is 90%.
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6.7 Event-Based Evaluation of Best-Performing Model

In this section, we will analyse the ResLSTM-8 model that was found to have the
best performance of all trained models during testing (the model hyperparame-
ters were given in table 6.8). We apply the model onto the validation events and
evaluate the event-specific performance.

A preliminary investigation showed that the 5 events with partially or com-
pletely negative SSD scores, are all events with a below-median peak water level
deviation measured at Abelones Plads, yet (with one exception) report above me-
dian total rainfall over the duration of the event. Figure 6.5 provides a scatter
plot of the validation events with respect to total accumulated rainfall and peak
water level deviation with the events colour-coded by SSD. Recall that the rain
gauge used in this work is not located in the Grejs Å catchment but rather to the
south of Abelones Plads. All 5 events in which the ResLSTM-8 model fails to make
an acceptable prediction (i.e. SSD≥ 0), are events where we measure significant
rainfall, yet a less-than-expected increase in water level. We hypothesise based
on this knowledge that in these 5 events, the rainfall in the catchment was less
than the rainfall over the gauge. The ResLSTM-8 model is unaware of the spatial
non-uniformity and attempts to extrapolate the rainfall in the catchment from the
measured rainfall and in the process, it over-predicts the rainfall. One of the events
is depicted in 6.6. This behaviour is exhibited by four of the 5 events where at least
one prediction reports a negative SSD score. The remaining event (also the one
with the least total rainfall) does not exhibit any significant over-prediction, but
only the 30-minute-ahead prediction reports a negative SSD which is due to some
oscillatory behaviour in the prediction. Based on this, we conclude that the inad-
equacy of the rainfall information used by the ResLSTM-8 model causes at least 4
of the 5 failures reported among the 28 validation events and 14 of the 15 failures
reported among the 140 pairs of validation events and prediction times.

From conversations with our cooperative partner, we know that the rainfall
distribution is dependent on the season. It is therefore valuable to analyse the
network performance on validation events based on when the event occurs in the
year. For simplicity, we will refer to the months of October to March as winter
months and to the months of April to September as summer months. Table 6.11
provides the median validation SSD over the entire set of validation events and over
the set of validation events in the winter and summer months. Figure 6.7 provides
the normalised total and peak rainfall for the 12 months over a period of 5 years.
It can be seen that while the total rainfall is roughly constant, the peak rainfall
exhibits clear seasonal behaviour. This indicates that rainfall in the winter months
tends to be more constant over time, whereas rainfall in the summer months is
characterised by short, heavy bursts. This change in temporal distribution of the
rainfall has a significant effect. For example, the 10-minute rainfall block for the
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Figure 6.5: Scatter plot of validation events by total accumulated rainfall and peak water level. Note
the placement of events which report a negative SSD.
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Figure 6.6: Example of network over-prediction due to rain falling over the gauge but not in catch-
ment; SSD=-0.5, SC=94%.
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Time 30min 1h 2h 3h 4h Mean
Overall 0.385 0.551 0.667 0.670 0.602 0.575
Winter 0.470 0.582 0.682 0.694 0.655 0.616

Summer 0.203 0.265 0.255 0.257 0.175 0.231

Table 6.11: Median Validation SSD computed according to the part of the year in which the validation
events occurred.
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Figure 6.7: Normalised Total and Peak Rainfall for each of the 12 months, computed over the period
2016-01-01 to 2020-12-31.

winter validation events has a maximum value of 0.15, in the summer validation
events it reaches a maximum of 0.57.

Furthermore, the set of events is dominated by winter events (65 vs 17). This
coupled with the difference in temporal rainfall distribution causes the network to
significantly over-predict the effect of summer rainfall since the network is primar-
ily trained on winter rainfall.

Finally, we will look at two more validation events. The first (6.8) is one that ex-
hibits acceptable performance. The second event (6.9) starts with acceptable perfor-
mance and then is effected by an unmeasured input (likely the fordelerbygværk).

6.8 Evaluation of Overall Performance

In the previous sections, we analysed the model performance on the events in the
validation set. However, the future data that we want to apply the model on does
not only include events but also non-events (periods where the water level at Abe-
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Figure 6.8: Example of acceptable prediction on a validation event; network predicts general direc-
tion, but under-predicts rise in water level; SSD=0.75, SC=94%.
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Figure 6.9: Example of prediction error when the water level is driven by an unaccounted input;
SSD=0.68, SC=79%.
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lones Plads does not diverge significantly from the 7-day moving average). We
apply the ResLSTM-8 model on the entire dataset and compute the loss function
values. Computing the five predictions over a period of almost 6 years took ap-
proximately 4 minutes. Missing values are handled by linear interpolation in the
case of the water level at Abelones Plads and 0 for the rainfall and water level
change inputs. We note that since the LSTM is a stable system (it was trained
on bounded inputs and bounded outputs), the effect of the error introduced by
replacing the missing values is expected to vanish with time.

The computed loss function values for the different prediction times are given
in 6.12. It can be seen that while the absolute losses MAE and RMSE were re-
duced significantly, the relative losses (SSD and associated metrics) do not out-
perform the zero-order forecast benchmark model in any significant fashion. We
caution against considering the SSD and similar metrics (also including the Sign
Conformance) when the model is applied on time periods where the stream is
in a baseflow scenario. In such cases, the water level is nearly static, therefore
the zero-order-forecast benchmark model is very accurate. Similarly, the ResLSTM
prediction will vary around 0, therefore the SC metrics are distorted by the effect
of noise. However, the absolute loss metrics indicate that the model does not di-
verge significantly in baseflow situations compared to events of interest. The fact
that the ResLSTM fails to outperform the zero-order-forecast benchmark model
during baseflow situations is considered acceptable given that no flood warnings
are required in such cases.

Figure 6.10 visualises the comparison of the 2h prediction and the measured
water levels over the time period of 2021 (up until 2021-10-11, where the dataset
ends) and figure 6.11 visualises the error of the 2h prediction over the same time
period (note that we define the error as w − ŵ; i.e. a positive error indicates the
model under-predicts the water level). It can be seen that the network tracks the
peaks of the winter events but under-predicts the water level in base-flow situations
in the winter. Furthermore, the predictions in the summer exhibit intermittent
behaviour in excess of the actual water level. Recall that we truncated the events
after the time at which the water level peaked. This has the result that the network
has learned that the water level has to drop when rainfall has ceased but it has
not learned the full extent of the decay behaviour. We hypothesise that this is
responsible for the under-prediction in the winter. The error spikes in the summer
are likely due to the difference in temporal distribution in the rainfall data, i.e. the
network over-predicts the effect of a short rainfall burst.

Table 6.12 suggests that the Sign Conformance metrics are lower than the re-
sults from the validation events would suggest. We hypothesise that this is due
to the high occurrence of changes with small magnitudes in the dataset since it is
dominated by baseflow situations. We therefore compute the Sign Conformance Pro-
file, which is the sign conformance metric considering only changes of magnitude
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Prediction Time 30min 1h 2h 3h 4h
MAE 0.34 0.52 1.22 1.23 1.27
RMSE 0.59 0.94 1.81 2.10 2.51

SC 63.89 67.21 68.63 70.33 70.94
SC− 79.34 82.96 87.14 88.80 89.39
SC+ 39.15 41.9993 39.00 40.78 41.42

NMSE 1.047 0.866 1.113 0.831 0.802
SSD -0.047 0.134 -0.113 0.169 0.198

ASSD -1.279 -1.027 -1.631 -0.889 -0.559
RSSD -0.023 0.069 -0.055 0.088 0.104

Table 6.12: Obtained values for different loss functions for the different prediction times computed
over the entire dataset.
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Figure 6.10: Comparison of the 2h prediction with the measured water levels computed over time
period of 2021 as far as data was available.
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Figure 6.11: Error of the 2h prediction computed over the time period of 2021 as far as data was
available.

ε where ε is a set of test values. Additionally, we compute the occurrence of those
changes over the dataset as given in 6.1.

The Sign Conformance SC(ε) and the associated Occurrence o(ε) for test values
ε ∈ [0 cm, 5 cm] are shown in figure 6.12. Table 6.13 provides numerical values of
Sign Conformance and Occurrence for selected values of ε. As can be seen, the
SC metrics increase roughly monotonically (with the exception of the 30 minute
prediction) as a function of the test value. The Occurrence rapidly decreases mono-
tonically as a function of the test value which indicates that ∆w is approximately
normally distributed. We note that the Occurrence should be understood as an
estimate of the complement to the cumulative distribution function. This would
suggest that o(0) = 1. However, ∆w is a discrete variable (with a numerical preci-
sion of 0.1 cm). The algorithm that computes the SC was set up to omit all samples
where |∆w| ≤ ε, i.e. SC(0) considers only samples |∆w| > 0 where. Consequently,
the occurrence of zero-change samples is simply 1− o(0). Due to the slow nature of
the system, the discretisation, the frequency of baseflow situations, the occurrence
of zero-change samples is between 45% and 17% depending on the prediction time.
We can conclude that in a real implementation, we expect an SC of more than 85%
when predicting a change of at least 1 cm. This aligns with our findings regarding
the median validation SC (see table 6.9)

o(ε) =
1
N

N

∑
k=1

u(|∆wk| − ε), u(0) = 0 (6.1)

Recall that we emphasised the need to investigate the Sign Conformance based
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Figure 6.12: Sign Conformance Profile computed over the entire dataset using cut-off values for
the magnitude of the change ∆w from 0 to 5 centimetres. The figure also shows the occurrence
p(|∆w| > ε).

ε [cm] 0 1 2 3 4 5

SC(ε) [%]

30min 63.89 86.57 85.48 83.26 81.74 80.96
1h 67.21 88.83 90.00 89.09 88.51 88.57
2h 68.63 89.71 92.06 92.08 91.84 91.63
3h 70.33 88.25 90.89 91.74 91.80 91.66
4h 70.94 86.24 89.41 90.80 91.27 91.47

o(ε) [%]

30min 55.13 2.51 0.95 0.51 0.32 0.22
1h 64.13 5.33 2.22 1.26 0.85 0.60
2h 74.26 9.96 4.73 2.85 1.97 1.44
3h 79.86 13.72 6.86 4.38 3.06 2.31
4h 83.44 16.67 8.77 5.65 4.11 3.14

Table 6.13: Sign Conformance and Occurrence values for the different prediction times and selected
values of ε.
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Figure 6.13: SC, SC+ and SC− and Occurrence averaged over the prediction times as a function of ε.

ε [cm] 0 1 2 3 4 5
o(ε) [%] 71.36 9.64 4.71 2.93 2.06 1.54

SC(ε) [%] 68.20 87.92 89.57 89.39 89.03 88.86
SC−(ε) [%] 85.53 92.53 91.99 90.46 89.48 88.54
SC+(ε) [%] 40.47 82.84 87.45 88.61 88.74 89.04

Table 6.14: Sign Conformance and Occurrence values for selected values of ε.

on the sign of the change. Figure 6.13 shows the three different SC metrics (av-
eraged over the prediction times) along the Occurrence as a function of the test
value. Table 6.14 provides numerical values for selected values of ε. The figure
shows that the model performs better for negative changes ∆w < 0 compared to
positive changes ∆w > 0 but the two metrics converge as ε increases. Recall that
for the set of validation metrics, the opposite was found (SC+ > SC−). We hypoth-
esise that this difference is due to the fact that the ResLSTM-8 model was found
to under-predict the change during base-flow situations in the winter. There, the
occurrence of small positive and small negative changes is roughly even but since
the model tends to predict ∆ŵ < 0, the Sign Conformance metric is punished more
harshly for positive changes. As we increase the cut-off value, we expect this effect
to disappear which aligns with our findings.



Chapter 7

Conclusion

In this chapter, we will summarise the work done in this project and make con-
clusions regarding the performance of the specific application in Vejle as well as
about our methodology as a generalisable method of flood forecasting applicable
to other catchments.

A generalisable method of flood forecasting via the LSTM-based prediction of
water levels at locations of interest has been developed. We detailed the event
identification and event classification process to generate training and validation
data useful for training. We further developed a heuristic feature selection algo-
rithm to automatically generate a set of moving average blocks for the rainfall
measurements and forecasts given some other inputs to maximise the monotonic
explanatory power of the input set with respect to some prediction time. The
overall methodology is purely data driven and requires no knowledge of the un-
derlying physical processes; only water level measurements from a critical point
along with neighbouring water levels and/or rainfall measurements are required.
Thus, the method is generally applicable to any catchment in which flooding is a
concern, assuming sufficient data is available.

We conducted a case study by applying the method on the city of Vejle where
we trained a neural network model to predict the water levels at the critical point
of Abelones Plads with prediction times ranging from 30 minutes to 4 hours into
the future. We showed that the model performance on the withheld validation
events is superior (median SSD = 0.575) to the zero-order forecast model which
was chosen as benchmark model. The SSD can be interpreted similar to the R-
squared, i.e. the model is expected to explain 57.5% in the variance of the water
level change that the model attempts to predict.

An important limitation was discovered during testing. The model performed
acceptably well during the winter (median SSD = 0.616) but poorly during the
summer (median SSD = 0.231). We attributed this difference in performance to a
lack of data for summer events as well as to a different spatio-temporal distribution
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of rainfall in the summer and winter. We conclude that in the winter the network
performs well due to the spatio-temporal uniformity even though the rainfall data
is generated by a gauge located outside the catchment. We have shown that all
events, where any prediction fails to outperform the zero-order forecast, exhibit
disproportionally high amounts of rainfall over the event given the deviation of
the water level at Abelones Plads from the baseline level. We conclude that the
poor model performance for those events are due to inadequate measurements of
the rainfall and hypothesise that the difference in performance would be mitigated
if radar measurements were included in the model inputs.

Based on our experiences with the subject of the case study which is a catch-
ment with a quick response time and thus difficult to model (as stated by the
cooperative partner), we conclude that the methodology developed in detail in this
work is generally capable of providing short-term flood forecast for river floods in
a real-life implementation. We have shown that a stream can be modelled to an
acceptable degree with limited rainfall information; even though the rain gauge
we rely on was located outside the catchment itself, the neural network model was
able to extrapolate the effect of the catchment rainfall from the rainfall outside the
catchment. We have shown on a catchment with a quick response time that a pre-
diction of up to 4 hours into the future can be made using a 2h rainfall nowcast.
For catchments with slower response times, the maximum prediction time is expect
to be larger.

Finally, we wish to make recommendations for the usage of the methodology
in Vejle. We recommend usage primarily in the winter. Since the model may incur
an error in predicting the numerical change in water level but has been found to
generally predict the direction correctly (SC between 85% and 90%), we propose
to modify the quantitative prediction to obtain a categorical prediction by keep-
ing the sign and omitting all predictions of insufficient magnitude. The network
output can then be represented as an arrow pointing either up or down. This will
aid a human operator in gauging whether a flood is likely to occur or not and
will remove unneeded and potentially misleading information from the eyes of the
operator. Another possible approach is to keep Dropout active during inference,
compute a number of stochastic predictions and then plot the prediction with con-
fidence intervals. A more effective but also more time-consuming solution would
be to train the model using radar data which we expect to significantly to lead to
a significantly better performance.



Chapter 8

Discussion

In this chapter, we will discuss potential work that we think could to be done to
improve upon the methodology. We will discuss the performance issues arising
from the insufficient rainfall inputs and potential solutions. We will then discuss
the problem of interpretability. This is especially important to data-driven flood
forecasting approaches as it is necessary to convince the relevant government au-
thorities to trust the model that was trained on the catchment. Showing that the
LSTM cell states are a representation of the actual system states is helpful for build-
ing trust in neural network models.

We have shown during testing that all events in which the model failed to out-
perform the zero-order forecast exhibit a water level deviation from the baseline
that is disproportionally low given the rainfall measured during the event. Based
on this knowledge, we have concluded that in those events, the rainfall is spa-
tially non-uniform and the rain gauge captures more rainfall that the catchment,
and thus the model over-predicts the effect of the rainfall. Conversely, in events
where the rainfall is primarily located in the catchment and not above the gauge,
the network will under-predict the change in water level to some extent. In both
cases, the model will get the direction correctly (as rainfall measurements from
different locations are positively correlated) but it fails to extrapolate the rainfall in
the catchment from the measurements. This cause of failure is likely solvable if the
network is given more rainfall data, ideally radar data, to properly capture the spa-
tial distribution of the rainfall and thus reduce the prediction error. For radar data,
we propose feeding the radar images through a Convolutional Neural Network
and the output of that as well as all other inputs into a ResLSTM. A comparable
approach could be to conduct a dimensionality reduction on the radar image to
obtain modes that describe the system (Principal Component Analysis or Dynamic
Mode Decomposition[41]), reduce the high-dimensional radar image to a small set
of modes or components and then feed them into the model. The LSTM is capable
of extracting temporal features in the input data by learning how to gate the cell
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state, however it is not capable of extracting spatial features since the LSTM input
is a flat vector (reducing a 2d image to a 1d vector loses the spatial information).

With adequate rainfall inputs it may be possible to generate accurate predic-
tions using only rainfall inputs. In that case, water level inputs may be omitted and
only a single water level sensor located at the critical point is needed. If multiple
water level measurements are available, all of them can potentially be predicted
since none of them have to be withheld to be used as inputs. Furthermore, the
change in water level is affected by noise (since it is a finite difference) and there-
fore introduces noise into the prediction. This can be seen in figure 6.10, where
there is apparent noise in the prediction during a base-flow situation.

We have discussed the issue of interpretability before. Additional work should
be done in this field. If a conceptual hydrological model is available, we can at-
tempt to map the LSTM cell states to the conceptual model’s internal states. Since
the cell states can be interpreted as mass or energy storage, they ought to be cor-
related with the states of the conceptual model. This would allow us to claim that
the LSTM managed to extract a representation of the system states without being
given those states explicitly. If it can be shown that the LSTM extracts an implicit
representation of those states, this supports our argument for using neural net-
work models for flood forecasting. Recall how Klemeš stated that a hydrological
model should reflect the underlying physical system; this criterion would then be
fulfilled.
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