
Real World Development and
Test of a Mobile Hybrid Robot

Platform.
A Master Thesis

ROB10 Group 1060

Robotics
Aalborg University

Robotics
Aalborg University

http://www.robotics.aau.dk

Title:
Real world development and test of a mo-
bile hybrid robot platform.

Theme:
Mobile Robotics

Project Period:
Master thesis Spring Semester 2022

Project Group:
ROB1060 2022

Participant(s):
Iñaki Pujol
Mark R. Blankensteiner

Supervisor(s):
Shahabodin Heshmati-Alamdari
Karl Damkjær Hansen

Standard Page Count: 89

Date of Completion: 1st June 2022

Abstract:

This project investigates how to design
and construct a hybrid robot between a
car and a Segway such that it allows the
transition between the two modes of op-
eration by producing a swing-up motion
and balancing it on an inverted pendulum
state. A testing scenario simulation has
been developed to be able to test designs
and features before trying them out in the
real world. The simulation also has been
used to obtain an estimation of the charac-
teristics of the needed motors, which has
been gotten as close as possible within the
price and availability limitations. After
testing, it has been proven that it is pos-
sible to perform a swing-up motion after
achieving a certain velocity and that it is
possible to stabilize the robot on an inver-
ted pendulum state using different control
systems, such as they can be PID, simple
state feedback, or LQR. And it is shown
that it is a good start in the development
of this technology but it needs refinement
and optimization on the design and part
selection to be able to perform optimally
and be able to be used in a real world
scenario that would need this kind of ro-
bot.

http://www.robotics.aau.dk

Preface

This project is created by 10th semester students of Robotics at Aalborg University.

The code for the project can be seen here:
https://github.com/ipujol10/hybrid_robot.

The video showing the project’s solution can be accessed here:

The citation style used in this report is IEEE of Style; the citation inside of the sentence
indicates it refers to the same sentence, whereas the citation placed after the dot mark
indicates that it refers to the whole paragraph. The links are marked with blue text and
are clickable. This report uses ’.’ as decimal point and ’,’ as thousands separators in
numbers. The reading should be done in a chronological order.

Many thanks to our supervisors, for providing us guidance, feedback and inspiration
during the entire project. Also a big thanks to Jesper in the machine shop, for his guidance
in the design of our metal parts as well as doing the fabrication of the parts. — ROB1060

22gr1060, Aalborg University, 1st June 2022

Iñaki P. Carmona
<ipujol20@student.aau.dk>

Mark R. Blankensteiner
<mblank16@student.aau.dk>

https://github.com/ipujol10/hybrid_robot

Contents
Abbreviation . 1

1 Introduction 2
1.1 Problem formulation . 3

2 Problem analysis 4
2.1 Background . 4

3 State of the Art 7
3.1 Ascento . 7
3.2 DRC-HUBO+ . 8
3.3 Hybrid Wheeled Jumping Robot . 9
3.4 Conclusion . 9

4 Delimitations 11

5 Final Problem Formulation 13

6 Requirements 14
6.1 Requirements . 14

7 Technical Analysis 15
7.1 System Motion Equations . 15
7.2 Linearization . 20
7.3 Control Methods . 22

8 Implementation and Design of the Hardware 32
8.1 Body of the Hybrid Robot . 33
8.2 Motor and Motor-Controller . 34
8.3 Wheels . 36
8.4 Brakes . 38
8.5 Electronic components . 40

9 Implementation and Design of the Software 43
9.1 Model Simulation . 43
9.2 Simulation Implementation . 49
9.3 Controller Implementation . 53
9.4 Real World Implementation . 60

10 Testing 65
10.1 Unit Tests . 65
10.2 Experimental Tests . 68

iii

11 Results and Discussion 70
11.1 Unit Tests . 70
11.2 Testing of the Experimental Hybrid Robot System 75

12 Conclusion 79

13 Future Works 80

Bibliography 81

A Github Appendix 85

B Movies Appendix 86

C Schematics 87

D Node Communication 88

E Model Values 89

1

Abbreviation

DARPA Defense Advanced Research Projects Agency

DOF Degrees Of Freedom

Hz Hertz

IMU Inertial Measurement Unit

IO Input-Output

LQR Linear-Quadratic Regulator

MIMO Multi-Input Multi-Output

MPC Model predictive control

PID Proportional-Integral-Derivative control

ROS Robot Operating System

RPI Raspberry Pi

SAR Search And Rescue

SISO Single-Input Single-Output

UART Universal Asynchronous Receiver/Transmitter

URDF Unified Robot Description Format

Xacro XML Macros

1 - Introduction

The wheel and axle are one of the seven simple machines used since ancient times [1]. This
mechanism allows the transformation of torque into force and vice versa [1]. In actuality,
the concept of a wheel has been expanded from just the wheel and axle and it can be used
to move objects like vehicles or robots.

Mobile robots normally use some kind of wheel to be able to move around. They could
be categorized into three general groups: the standard wheels which could be the most
similar to a car/bike and can be fixed or swiveling; the ball wheels which allows the
movement in the 360º of the plane; and finally the omni wheels which also allow multi-
directional movement. [2]

(a) Standard wheel
(b) Ball wheel

(c) Omni wheel

Figure 1.1: The types of wheels by category [2]

One of the most common wheels used, is the standard fixed wheels as they can be directly
attached to the motor by the axle. The differential drive is obtained by using two parallel
wheels that are powered by independent motors, this allows the robot to go straight (both
wheels spinning at the same velocity) or turning (otherwise).

The differential drive is used widely on car-type robots, with two or four wheels and,
at least, a pair of them powered. Another use is the Segway model which only uses
the two wheels to balance itself [3, 4, 5]. Each of those with different advantages and
disadvantages.

The four wheel robots have the advantage that, when static, they don’t consume any
energy as it is a stable position; but they also have a fairly big turning radius. In contrast,
the Segway method can have a quite small turning radius; but takes energy all the time
as it is in an unstable configuration and it needs to adjust itself continuously. The turning
radius difference can be seen in figure 1.2.

2

3 Chapter 1. Introduction

(a) Turning radius of a four wheeled robot (b) Turning radius of a Segway robot

Figure 1.2: Comparison of turning radius for the different types of robots. Here the same robot approximate
diagram is used to illustrate both systems. As seen in figure 1.2a, the turning radius is significantly bigger than
in figure 1.2b.

1.1 Problem formulation

"How is it possible to have a robot driving in different configurations?"

2 - Problem analysis

In this chapter an analysis is done on "How is it possible to have a robot driving in
different configurations?".

2.1 Background

In this section, an understanding of locomotion is carried out in various wheeled robotic
types is discussed.

2.1.1 Differential Drive

The differential-driven robot is a widely used implementation, to perform locomotion in
robotic solutions. The differential drive is used in various setups such as skid cart steering,
Segways, tracked robots and the use vacuum cleaning robots. [6]

The concept of the differential drive is that there is a control function that allows, one side
to move independently from the other side, this allows for steering as well as propulsion.
This independence from the two sides can be done in various ways, it can be done by
having two motors directly driving each side of the vehicle, applying more torque to one
wheel than the other lets robot steering [6]. It can also be done as it is in some tracked
vehicles, where one motor is applying torque on both sides of the vehicle’s wheels, and a
secondary steering motor is then used to supply more torque to one or the other side to
control the steering [6].

One of the most used platforms of a differential drive robot is, the use of two motors
connected to two wheels directly or through a set of gears, a typical component used
in this configuration of the differential drive is a caster wheel that can move freely to
balancing the platform.[5, 4]

There are also other ways to control a robot besides the differential drive, the robot turns
either the front or rear wheels in the direction of motion to steer, or both front and rear
wheels to steer together known as explicit steering.[7]

Skid car steering is yet a different way of controlling a robot is through the use of a
skid cart model, this model is based around a four-wheel configuration, where all wheels

4

5 Chapter 2. Problem analysis

move independently, this means that the robot can move in all directions and turn around
on its center axis. This directional control is done by turning the wheels in the opposite
directions and at different velocities.[7]

Although skid steering pros is that it can steer in all directions, one of the cons is that it
needs different tire configurations than a robot that is turning its wheels to steer, due to
the wear on ordinary tires as the velocity of the wheels counters each other.[7]

2.1.2 Segway

As stated previously, a Segway is a two-wheeled vehicle that is capable of balancing itself
to keep an upright position [3].

This transport method uses the same control approach as the classic inverted pendulum
model. This is thanks to the fact that the Segway has a similar motion equations model to
the inverted pendulum.

The kinematics of the Segway can be simplified into having two bodies (the handle and
the wheels) connected through axles and thinking it in 2D [3].

The control of this device is made by trying to maintain the body angle. This means that
when it is vertical, it is static and stable; but when it is tilted forward the controller tries to
bring the wheels beneath it to keep it balanced causing a forward velocity. To go backward
or brake, it would be the same as going forwards but tilting backward. To turn, it is just a
matter to incline the handle to the side and the controller will produce a differential drive
movement. [8]

The controller is feed by gyroscope readings regarding the inclination of the body [8] and
the odometry to obtain the position of the vehicle. It is a fast controller to be able to make
small and frequent adjusts to the angle of it [8].

6 Chapter 2. Problem analysis

Figure 2.1: Image of a Segway. [9]

3 - State of the Art

This section is going to discuss the already existing robotic technology, that can work in
different configurations to adapt to different scenarios.

3.1 Ascento

Ascento Robotics is a company that has specialized in the development of a two-wheeled
robot with a bend leg linking the robot which allows it to have a flexible configuration to
adapt to almost any terrain. [10]

The basic idea of the robot is that it can go up and down stairs, drive autonomously and
go up into a Segway drive position from the floor, pick itself up. [10]

Figure 3.1: Ascento Pro robot [10].

In the last iteration of the robot, they have been able to include enough features that allow
it to perform different tasks. It can be used to produce 3D scans of the desired arias as it
can be a construction site or the sewers. [10]

It can also be used in security tasks. It can perform predefined paths and with the sensors,
it has included, it can produce this task [10]. Through the robot, the personnel can see
through the cameras and spotlights and also hear through the microphones [10]. With
enough data, it could be automatized with a neural network to detect any security bridge.

The other big task that it can perform is the Structure Assessment using Ground Penet-
rating Radars (GPR). Using the GPR technology can be possible to predict the risks on the

7

8 Chapter 3. State of the Art

structures without destroying them. It can also be used for visual inspection with RGB or
thermal cameras. [10]

3.2 DRC-HUBO+

One of the ways that the robot can move around in a human-created environment is if
the robot takes the shape of a humanoid, with two legs; arms; hands (grippers), this can
allow the robot to step over obstacles and climb stairs; grab door handles; using tools and
more.[11] One competition by Defense Advanced Research Projects Agency (DARPA) by
the U.S. Department of defense unintended created a push for these types of humanoid
robots by creating a challenge where the robot has to navigate ruble, use different tools,
with one of the tools, which were a jigsaw the robot has to autonomously cut a hole in a
door.[11, 12, 13]

DRC-HUBO+ for the research team KAIST, is a bipedal robot that can move around in
a human-created environment, that was competing in the DRAPA Search And Rescue
(SAR) challenge, this robot uses a combination of wheels and the legs to move around.
When the terrain allows for it the robot crouches down on its knees, as seen in fig. 3.2, in
the lower legs of DRC-HUBO+ there have implemented a set of wheels with motors that
make the robot expend less energy traveling through the area of concern.[12]

Figure 3.2: DRC-HUBO+ in a sitted position, in the pose DRC-HUBO+ is able to drive around on it wheels

The way that DRC-HUBO+ transitions between its two states walking and crouching is
done by moving the center of mass of the DRC-HUBO+’s upper body, at the same time
bending the legs at the knees and pushing the knees forward, till it lands on it knees.
As seen in the fig 3.2 DRC-HUBO+ has two smaller wheels on each toe, when driving in
four-wheel configuration the center of mass is placed in the middle of the 4 wheels.[12]

9 Chapter 3. State of the Art

3.3 Hybrid Wheeled Jumping Robot

Traiko Dinev et al. have thought about taking a closer model to a standard 4-wheeled dif-
ferential drive robot and providing it with different capabilities so it can adapt to different
terrain conditions as it can be rough terrain or be able to jump over holes. This project
was never carried out into a physical prototype and just tested in simulation. [14]

Figure 3.3: Image of the simulation model. In this frame, the robot is on the Segway drive and using the
extensible body to jump. [14]

They have designed a four-wheeled robot with a pair of wheels independently powered,
allowing a differential drive, and a prismatic joint on the two parts of the body (as seen in
the figure 3.3). [14]

They have made the robot catch speed and fully brake to produce enough torque on the
body to produce a swing-up motion and stabilize on a vertical position, drive while in a
Segway mode and jump over a hole using the force produced by the prismatic joint. [14]

To control this hybrid robot, they used two methods: a PID controller and a Model Pre-
dictive Control (MPC). The MPC surprised them at some points as it used the extendable
body to help balance itself. [14]

3.4 Conclusion

It is also seen that a four-wheel robot can be converted into a Segway if it is swung-up
into an upright position. After analyzing both types of robots, it is clear that the main
disadvantages of one are the advantages of the other and vice versa, which brings to the
conclusion that if both configurations could be combined in a single robot, it could be

10 Chapter 3. State of the Art

used to take advantage of the best of both of them.

One of the scenarios that this could be useful for, would be the SAR mission. In an urban
terrain where a disaster has happened, tight spaces and corners can be found. With that in
mind, a hybrid robot that could switch from a four-wheel robot to a Segway could have a
low energy consumption to explore and a small turning radius for tight corners.[11, 15, 16]

Some theoretical studies have been performed on that matter already. For example, a
paper that made a simulation of a four-wheeled robot with an extensible body. This
allowed it to drive as a car; swing up into a Segway configuration; jump with the extension
of the body. [14]

4 - Delimitations

In the Traiko Dinev et al. [14], the hybrid robot can drive in a differential drive state. Then
it can gain speed to brake suddenly achieving a swing-up motion and stabilizing itself in
an inverted pendulum/Segway state.

Once in the balancing state, the robot can drive around like a Segway. They have shown
that it is stable enough to go through rough terrains with bumps and keep the balance.

The final state is the one that provides the robot with the jumping by releasing the pris-
matic joint with force enough to lift the robot from the ground and when it lands, it can
balance itself again.

Figure 4.1: States that the robot on the Traiko Dinev et al. paper [14] goes through to be able to achieve all the
requirements.

They used a simplified version of the motion equations. Instead of working on the three
dimensions, they assumed a linear motion of the robot (just forwards and backward
without turning) and simplified its dynamics.

Due to the limited amount of time; human resources; and economical limitations, it is not
going to be possible to reproduce all the states seen in the figure 4.1 from the original
paper. There is no real-world scenario where the cart can be tested in these early stages,
the running and testing of the real world cart, will take place in laboratory settings.

As it can be seen each step further that the robot goes on the states from the figure 4.1, it
needs all the others before achieving that state. This is why it has been decided that the
way to start developing this project is from top to bottom of the figure 4.1. The reasonable

11

12 Chapter 4. Delimitations

goal due to all the limitations is to aim to achieve up to the balancing point of the robot.

Figure 4.2: These are the states that the hybrid has to translate between after limiting the project.

The next coming chapters will go through the different aspects of how the project group
developed the Hybrid Robot, it was an iterative process, where first basic model was
implemented in a simulation, and this model was able to perform the drive and do the
swing-up state as seen in the figure 4.2, this figure illustrates the different states that the
Hybrid Robot has to be able to transition between.

In the next coming chapters, the solution that is made by the project group are named
"Hybrid Robot" with capital letters.

5 - Final Problem Formulation

How can a hybrid robot between a car and a Segway be constructed to allow
transition between the two modes of operation with a fixed body.

13

6 - Requirements

In this chapter, the project requirements are going to be stated.

6.1 Requirements

Req. 1 The cart must be able to drive.

Req. 2 The cart must be able to rotate the body of the cart over it’s front or back wheels.

Req. 3 The cart must be able to balance, at an inverted pendulum state on it’s front or
back wheels.

Req. 4 The cart must be able to catch the body of the cart when rotating over either front
or back wheels, and balancing the body of the cart in an inverted pendulum state.

14

7 - Technical Analysis

The purpose of this chapter is to analyze and understand the technical aspects of the
dynamics and how to control the Hybrid Robot.

7.1 System Motion Equations

To understand how the robot reacts, works, and predict what can happen next, it is im-
portant to obtain the motion equations of the system. Those equations describe how the
robot moves.

To obtain the motion equations, is done by using the Lagrangian Mechanics method [17].
They use the states of the system and its energy.

The energies of the system are the kinetic (T) and potential (V) energies. With those, the
Lagrangian function of the states (q) is found [17]:

L = T − V (7.1)

Then it is calculated the Euler-Lagrange equation by doing the partial derivatives of the
states (finding the jacobian) [17]:

d
dt

∂L
∂q̇

− ∂L
∂q

− Qncons = 0 (7.2)

Then, taking into account that V is not depending on q̇, the equation 7.2 can be rewritten
as [17]:

d
dt

∂T
∂q̇

− ∂T
∂q

+
∂Q
∂q

− Qncons = 0 (7.3)

And finally, be able to write the dynamics on the standard matrix form [17]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Qncons (7.4)

Where, in equation 7.4, M(q) is the inertia matrix, C(q, q̇) is the Coriolis matrix and G(q)
is the conservative forces matrix.

15

16 Chapter 7. Technical Analysis

7.1.1 Initial Motion Equations

Figure 7.1: Diagram of the system to study. With the physical attributes of the system as the masses: the mw as
the mass of the front powered wheels and the mb as the mass of the body (the rest of the cart); the inertias: the
Iw is the inertia of the front wheels and the Ib is the inertia of the body; and the d as the distance from the center
of the front wheels to the center of mass of the body. The system states are: x is the distance of the cart from
the initial point; θ is the angle of the cart respect to the floor; ϕ is the turned angle of the front wheels respect to
the starting point. And finally the only actuation on the system is the τ that represents the torque of the motors
over the front wheels.

To obtain the motion equations of the figure 7.1, first, it is necessary to define the kinetic
and potential energies:

T =
1
2

mwv2
w +

1
2

mbv2
b +

1
2

Iwω2
w +

1
2

Ibω2
b (7.5)

V = mbgd sin (θ) (7.6)

The variables of the equations 7.5 and 7.6 are described in the figure 7.1 with the gravity
constant g = 9.81m/s2. The v are the linear velocities and the ω are the angular velocities.

Then it is time to calculate and assign each velocity to 7.5

vw = ẋ (7.7)

xb = x − d cos (θ) → ẋb = ẋ + d sin (θ)θ̇ (7.8)

17 Chapter 7. Technical Analysis

yb = d sin (θ) → ẏb = d cos (θ)θ̇ (7.9)

v2
b = ẋ2

b + ẏ2
b = ẋ2 + d2θ̇2 + 2d sin (θ)ẋθ̇ (7.10)

ωw = ϕ̇ (7.11)

ωb = θ̇ (7.12)

After plugging in L and V into the equation 7.1 and obtaining the system Lagrangian
function, it is possible to use 7.2 to obtain the different Euler-Lagrangian equations.

When deriving respect the state x:

∂L
∂ẋ

= mb(ẋ + d sin (θ)θ̇) + mw ẋ (7.13)

d
dt

∂L
∂ẋ

= mw ẍ + mb(ẍ + d cos (θ)θ̇2 + d sin (θ)θ̈) (7.14)

∂L
∂x

= 0 (7.15)

d
dt

∂L
∂ẋ

− ∂L
∂x

= Qncons
x = mw ẍ + mb(ẍ + d cos (θ)θ̇2 + d sin (θ)θ̈) (7.16)

When deriving respect the state θ:

∂L
∂θ̇

= mbd2θ̇ + mbd sin (θ)ẋ + Ib θ̇ (7.17)

d
dt

∂L
∂θ̇

= (mbd2 + Ib)θ̈ + mbd sin (θ)ẍ + mbd cos θẋθ̇ (7.18)

∂L
∂θ

= mbd cos (θ)(ẋθ̇ − g) (7.19)

d
dt

∂L
∂θ̇

− ∂L
∂θ

= Qncons
θ = (mbd2 + Ib)θ̈ + mbd sin (θ)ẍ + gmbd cos θ (7.20)

When deriving respect the state ϕ:

∂L
∂ϕ̇

= Iwϕ̇ (7.21)

d
dt

∂L
∂ϕ̇

= Iwϕ̈ (7.22)

∂L
∂ϕ

= 0 (7.23)

d
dt

∂L
∂ϕ̇

− ∂L
∂ϕ

= Qncons
ϕ = Iwϕ̈ (7.24)

18 Chapter 7. Technical Analysis

7.1.2 Simplified Motion Equations

The equations presented in this section have been obtained by discarding a state as it is
assumed no slip between the ground and the wheel.

By having this assumption, the position of the robot (x) is directly associated with the
turning of the wheels (ϕ).

Figure 7.2: Diagram of the simplified system to study. The physical attributes are the same as the one in the
figure 7.1 but having disregarded the state ϕ as it is assumed no-slip getting the relation x = −Rϕ being R the
radius of the front wheels.

The kinetic and potential energies are the same as 7.5 and 7.6 and it will just change how
the angular velocity of the wheel is defined, as there is the no-slip condition (being R the
radius of the wheel):

x = −Rϕ (7.25)

The equation 7.11 becomes:

ωw = − ẋ
R

(7.26)

After plugging in L and V into the equation 7.1 and obtaining the system Lagrangian
function, it is possible to use 7.2 to obtain the different Euler-Lagrangian equations.

d
dt

∂L
∂θ̇

− ∂L
∂θ

= (mbd2 + Ib)θ̈ + mbd sin (θ)ẍ + gmbd cos (θ) (7.27)

19 Chapter 7. Technical Analysis

d
dt

∂L
∂ẋ

− ∂L
∂x

= (mb + mw +
Iw

R2)ẍ + mbd sin (θ)θ̈ + mbd cos (θ)θ̇2 (7.28)

To be able to work with the equations 7.27 and 7.28, it is helpful to have them stored in a
matrix form as it will help to do some operations. And it is important to define the state
vector and its derivatives:

q =

[
θ
x

]
→ q̇ =

[
θ̇
ẋ

]
→ q̈ =

[
θ̈
ẍ

]
(7.29)

Then, taking the equation 7.4 and rearrange it to a better form for the purpose of the
project:

M(q)q̈ + h(q, q̇) = gqu → q̈ = −M−1h + M−1gqu (7.30)

In the equation 7.30 it is important to define that u is the control input of the system and,
in this case, it is the torque of the motors that can be seen in the figure 7.2.

With M(q), h(q, q̇) and gq on 7.30 being:

M =

[
mbd2 + Ib mbd sin (θ)

mbd sin (θ) mb + mw + Iw/R2

]
(7.31)

h =

[
gmbd cos (θ)
mbd cos (θ)θ̇2

]
+

[
αθ̇
βẋ

]
(7.32)

gq =

[
Iw
−Iw

]
(7.33)

On the equation 7.32, the second term is related to the friction coefficients. The equation
7.1.2 has input on both terms because the torque made by the motor affects both parts of
the system equally but with a contrary sign.

It is also important to explain how it is obtained the matrix gq on the equation 7.1.2: the
standard way to represent control inputs is by using forces or torques, but in this case, it
was possible to control the motors by velocity, the control was modified to adapt to the
necessities.

It is known that a torque applied to the body produces an angular acceleration following
the next equation, where τ is the torque, I is the inertia of the body, and α the angular
acceleration:

τ = Iα (7.34)

Being that acceleration is much easier to relate to a velocity than a torque, it was decided
to replace the torque with the equation 7.34 and use the angular acceleration of the wheel
as the control input. This change has been possible since the inertia of the body is greater
than the one on the wheels.

20 Chapter 7. Technical Analysis

To obtain something similar to a standard dynamic system form of ẋ = Ax + Bu, it is
necessary to rearrange everything and have the states and the first derivative of them in
the state vector k:

k =

θ
x
θ̇
ẋ

 → k̇ =

θ̇
ẋ
θ̈
ẍ

 (7.35)

k̇ =

[
q̇

−M−1h

]
+

[
0

M−1gq

]
u (7.36)

7.2 Linearization

For a lot of the most common control methods, the dynamic systems must be linearized.
The linearization is performed in a working point (normally an equilibrium point).

The Taylor Expansion, when x = x̄ and the exponent (n) being the derivative order, is:

f (x) =
∞

∑
n=0

f (n)(x̄)
n!

(x − x̄)n (7.37)

The general equation for linearization comes from the Taylor Series up to the first order,
so it is linear:

f (x, u) ≈ f (x̄, ū) +
∂ f (x̄, ū)

∂x
(x − x̄) +

∂ f (x̄, ū)
∂u

(u − ū) (7.38)

In the equation 7.38 the "bar" variables (x̄ and ū) mean that they are the fixed value of the
working point.

When the linearization equation 7.38 is applied to a system in the form of the equation
7.36, it will look similar to 7.39 and 7.40 for continuous and discrete time, respectively.

ẋ = Ax + Bu
y = Cx

(7.39)

xk+1 = Axk + Buk

yk = Cxk
(7.40)

21 Chapter 7. Technical Analysis

Figure 7.3: General representation of a linear system. In continuous time (equation 7.39) and discrete time
(equation 7.40)

7.2.1 Transformation from Continuous to Discrete Time

Nowadays almost all the control is done by computers, which work in a discrete-time,
that is why is also called digital control. [18]

In a digital control is very important to know the sample time (Ts) at which the controller
works as it is a factor that modifies the systems while converting them from continuous
to discrete time [18]. The subscripts ·c and ·d mean continuous and discrete, respectively:

x(k + 1) = eAcTs x(k) +
∫ Ts

0
eAcτdτBcu(k) (7.41)

Ad = eAcTs (7.42)

Bd =
∫ Ts

0
eAcτdτBc (7.43)

If the system is uniquely determined by A [19], meaning that Ac is invertable, the equation
7.43 can be expressed as:

Bd = A−1
c (eAcTs − I)Bc (7.44)

And, if it is used the approximation ẋ(t) = x(t+Ts)−x(t)
Ts

with t = kTs, both Ad and Bd can
be simplified to:

Ad = I + AcTs (7.45)

Bd = BcTs (7.46)

7.2.2 Stabilize in an Inverted Pendulum

The linearization for this section is made on the marginal stable point of the vehicle being
vertical 7.2. This point is:

22 Chapter 7. Technical Analysis

θ
x
θ̇
ẋ

 =

0
0
0
0

 (7.47)

For the motion equations used in the section 7.1.2, having α = β = 0 and using the values
in the table E.1, the continuous time matrices would be:

A =

0 0 1 0
0 0 0 1

47.2747 0 0 0
−1.3443 0 0 0

 (7.48)

B =

0
0

0.09687
−0.003311

 (7.49)

To control the system with a computer, it is needed to convert the system to the discrete
region. Using the Matlab function to perform the task and using a Ts = 1/100s (100Hz),
the following matrices are obtained:

A =

1.0024 0 0.0100 0

0 1 0 0.0100
0.4731 0 1.0024 0
−0.0135 0 0 1

 (7.50)

B =

0
0

9.6949e − 4
0

 (7.51)

7.3 Control Methods

This section is going over the theory behind the different control methods used in this
project.

7.3.1 PID

When something has to be controlled automatically, as it can be a robot or any other
process, the first and more simple way that comes to mind is to use a PID.

23 Chapter 7. Technical Analysis

The beauty of this type of controller comes from its simplicity of it, as well as its limit-
ations. Normally a PID is used on Single-Input Single-Output (SISO) systems due to its
simplicity of it, but applying some more advanced design methods, it can also be used on
a Multi-Input Multi-Output (MIMO) systems [20].

As the name specifies, there are Proportional, Integral and Derivative stages (which will be
explained further) and, normally, ordered from more important to least.

It all starts as any controller: by calculating the error to the reference (objective to achieve)
or just stabilizing (bring all the states to 0). With the error obtained, control input is
computed by passing it through the constant gains of the PID.

Figure 7.4: Diagram of a PID. The e is the error calculated previously and u is the output of the PID. Then there
are Kx which have the subscript related to proportional, integral and derivative

The most important part of a PID is the Proportional gain as it uses the current error and
scales it to produce a u input for the system. Increasing the magnitude of the Kp, usually
increases the speed of response [20]. It is the present error corrector.

The next term is the Integral gain. This term is used to be able to overcome the steady-
state error that can occur in some systems by external perturbations. To achieve that, it
uses an integrator on the error to be able to keep track of the error over time. It is the past
error corrector.

In the figure 7.5 it can be seen that there is an error and it is not going to disappear just by
using a proportional gain. But when the integral gain is applied, the PID output starts to
compensate for the offset until it disappears. It causes oscillations as it will over or under
shoot until when the area under the error curve is canceled out [20].

The cause of the steady-state error is, as stated before, an external perturbation as it can

24 Chapter 7. Technical Analysis

Figure 7.5: The error that is left constant when time tends to infinity, this figure is an illustration.

Figure 7.6: The effect on a system when an integral action is applied, this figure is an illustration.

be the gravity on a drone. The steady-state error will be the point where the input to the
propellers due to the proportional gain is equal to the gravitational acceleration that will
cause the drone to be in an equilibrium.

The last term is the Derivative gain. This is used to prevent an overshoot on the control
output. To achieve that, it uses a derivative on the error to try to overcome future errors.
If the derivative part detects that the error is decreasing too fast, it will try to compensate
for it, compensate the tend of the error [20]. It is the future error corrector.

Parameter Steady-state error Speed Stability
Kp Reduces Increases Decreases
Ki Eliminates Reduces Increases*
Kd No effect Increases Increases*

Table 7.1: Effects of adjusting each PID gain individually [20]. *If they are too big they can decrease the stability.

As said in the table 7.1, having a Ki too big can cause the oscillations to increase over time,
and it will cause instability. In the Kd case, it can cause bad performance if there is a noisy

25 Chapter 7. Technical Analysis

error or if the magnitude is too big as it can lead to instability.

7.3.2 State Feedback

State feedback is a control method that uses the full state vector of the linear system to
compute the control input. In case that the output of the system (y from the figure 7.3) is
not the unaltered states (x from the figure 7.3), the states have to be estimated. [21]

Figure 7.7: Representation of a linear state feedback system. Inspired by [21]

Using the diagram in figure 7.7 it can be seen that the control input is [21]:

uk = −Kxk + vk (7.52)

If then, the equations 7.40 and 7.52 are combined, a new system is found [21]:

xk+1 = Axk + B(−Kxk + vk) = (A − BK)xk + Bvk (7.53)

Producing a new state matrix on the close-loop [21]:

Acl = A − BK (7.54)

Ending with the new system as [21]:

xk+1 = Acl xk + Bvk

yk = Cxk
(7.55)

The control of the state feedback is done by selecting a K gain that produces an Acl gain
stable. To obtain the dimensions of the K matrix it is important to look at the dimensions

26 Chapter 7. Technical Analysis

of Bmxn as they are going to be transposed: Knxm producing a matrix Mmxm with the same
dimensions as A.

A common way to design a state feedback control is by using the poles placement method.

7.3.2.1 Linearization

When the system has to be linearized, it becomes a problem like [22]:

˙̂x = Ax̂ + Bû
x̂ = x − x̄
û = u − ū

 (7.56)

In the equation 7.56 the x̄ is the linearized point and the ū the control input needed to be
stable at the operating point. In the case of a static equilibrium point, ū = {0}; contrary to
this case, to provide an equilibrium point the system would be provided with a constant
input or acceleration.

Having the input control (u) in state feedback as equation 7.52, the control signal that the
system has to receive in a linearized model becomes [22]:

u = ū − K(x − x̄) (7.57)

7.3.3 Poles Placement

The poles of a system determine its dynamics.

The poles of a system would be found by obtaining the eigenvalues of the linear matrix of
it [23]:

det(λI − A) = 0 (7.58)

On the equation 7.58, A is the matrix or system that the eigenvalues would be found; I is
the identity matrix; λ are the eigenvalues once the equation is solved.

If any of the poles of the system are in the unstable zone (red zone), the system becomes
unstable. If the system is unstable, the states, over time, tend to ±∞.

The job of the control matrix K (section 7.3.2) is to bring all the poles into the stable zone
and to place them so the system reacts as desired.

The method to place poles is done by obtaining the desired characteristic polynomial [21]:

N

∏
i=0

(λ − polei) (7.59)

27 Chapter 7. Technical Analysis

(a) Stability plane on the continuous time, this figure is an il-
lustration.

(b) Stability plane on the discrete time, this figure is an illus-
tration.

Figure 7.8: Comparison between the stability of the continuous and discrete time. On the 7.8a figure, the stability
comes when the real part of the poles are < 0; on the 7.8b figure, the stability comes when the poles are inside
the unit circle (|pole| < 1).

Then obtain the characteristic polynomial of the closed-loop system (Acl):

det(λI − (A − BK)) = det(λI − Acl) (7.60)

Then compare and select K such that both of them become the same polynomial.

Matlab has a built-in function that allows the user to find the K gain that satisfies the
placement of the poles.

1 % Obtain the control gain
2 K = place(A, B, p);

Code 7.1: Example of how to obtain the control gain with Matlab. ’p’ are the desired poles, A and B are the
system matrices and K is the control matrix.

7.3.4 Observer

A lot of times is not worth it or impossible to obtain every single state of a system. When
this occurs and the measurements of the state are required (either to be able to control or
to be able to show them), it is required to estimate them. [21, 24]

To estimate the states used in an observer, which takes a model of the system and uses the
control input u, an output y, and a gain L to get an estimation of the states (figure 7.9).
Then, instead of using the measured state vector x, this is substituted by the estimated x̂k.

The equations of the observer are derived from the diagram in the figure 7.9 [24]:

˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂

(7.61)

28 Chapter 7. Technical Analysis

Figure 7.9: Representation of an observer. P is the plant or system as shown in the figure 7.3; A, B, and C are
the model of the system; and L is the observer gain. x̂k is the estimated state vector.

7.3.4.1 Obtaining the L Gain of the Observer

Obtaining the gain for the state estimator is similar to controlling a system: bringing the
error to 0.

In this case, instead of taking the error between the reference and the output, is between
the output and the estimated output (as seen in the figure 7.9) [24]:

e = x − x̂ (7.62)

Taking the equations of the system and the observer and getting the error, the next equa-
tion is obtained:

ė = (A − LC)e
ek+1 = (ALC)ek

(7.63)

The design of the L gain can be made by pole placement (section 7.3.3) or Linear Quadratic
Regulator (LQR) (section 7.3.5), explained later.

Normally the dynamics of the observer are faster than the real system to converge faster
into a good estimate. Faster dynamics means: poles further left on the complex plane for
the continuous-time; poles closer to (0,0) in the discrete-time.

29 Chapter 7. Technical Analysis

1 % Obtain the observer gain
2 L = place(A’, C’, p)’;

Code 7.2: An example of how to obtain the observer gain with Matlab. ’p’ are the desired poles, A and C are
the system matrix and L is the control matrix. As seen here, the C matrix is used instead of B. A and C are
transposed as well as the resultant gain.

In the code 7.2, it is seen how to design an observer with Matlab by having A, C, and the
desired poles for the estimator.

7.3.5 LQR

The LQR is one of the most used optimal control strategies for a full state feedback. [22]

The control model for the LQR is the same as in the equation 7.52, just designing an
optimal K gain (figure 7.7) instead of placing the poles "arbitrarily".

This method is basically an optimization problem, as the goal is to define a cost function
and minimize it [22]:

J =
∫ ∞

0

[
xTQx + uT Ru

]
dt, Q = QT ⪰ 0, R = RT ≻ 0 (7.64)

In the equation 7.64 is shown the cost function (J) used to perform the optimization of the
feedback and then two other matrices: Q and R.

Q and R are weights on how each state and input affect the cost function. They are
diagonal matrices, meaning that each element on the diagonal represents the contribution
to the cost while they are not 0. Q ⪰ 0 means that the matrix is positive semi-definite and
R ≻ 0 means that it is strictly positive definite [25].

The contribution to the cost function can be explained as: if a state has a big weight,
it means that the controller will try to converge it to 0 faster than other with smaller
contribution. In the contrary, if a control input has a big contribution, the control will
limit the use of it, useful if an actuation is expensive. [21]

Knowing the cost function and having decided the Q and R gains, it is time to find the
optimal solution by solving the Hamiltonian [22]:

∀x, 0 = min
u

[
xTQx + uT Ru +

∂J∗

∂x
(Ax + Bu)

]
(7.65)

And being J∗ and its derivative [22]:

J∗(x) = xTSx, S = ST ⪰ 0
∂J∗

∂x
= 2xTS

(7.66)

30 Chapter 7. Technical Analysis

The final control feedback becomes [22]:

u = −R−1BTSx = −Kx → K = R−1BTS (7.67)

As seen in the equation 7.67, the control gain depends on R and B already defined and S.
S is the gain that is needed to be found so the equation 7.65 is minimized at the same time
that the closed-loop poles are stables.

To solve the S gain there is the algebraic Riccati equation [22]:

SA + ATS − SBR−1BTS + Q = 0 (7.68)

As seen in the section 7.3.3, Matlab had build-in functions to design controllers. In this
case, it also has one to find the LQR:

1 % Obtain the control gain
2 K = lqr(A, B, Q, R);

Code 7.3: Example of how to find the control gain with Matlab. A and B are the system and Q and R are the
weights.

7.3.5.1 Discrete Time

When working in the discrete world, some changes have to be made to adapt for the LQR
design.

The equations 7.64, 7.65 and 7.66 becomes [22]:

min
N−1

∑
n=0

xT
n Qxn + uT

n Run, Q = QT ⪰ 0, R = RT ≻ 0 (7.69)

J(x, n − 1) = min
u

xTQx + uT Ru + J(Ax + Bu, n) (7.70)

J(x, n) = xTSnx, Sn = ST
n ≻ 0 (7.71)

In the end the control gain becomes [22]:

K = (R + BTSnB)−1BTSn A (7.72)

And S comes from the discrete Riccati equation [22]:

S = Q + ATSA − (ATSB)(R + BTSB)−1(BTSA) (7.73)

Obtaining the control gain in Matlab, is simple and it also has a function for it:

31 Chapter 7. Technical Analysis

1 % Obtain the control gain
2 K = dlqr(A, B, Q, R);

Code 7.4: Example of how to find the control gain with Matlab. A and B are the system and Q and R are the
weights.

7.3.5.2 Observer

In case it is not possible to measure all the states of the system, it is necessary to estimate
them by using an observer.

The design of the observer can be made by using the same method as the stabilization, as
it already was done in the section 7.3.4:

1 % Get the observer gain in continuous time
2 L = lqr(A’, C’, Q, R)’;
3

4 % Get the observer gain in discrete time
5 L = dlqr(A’, C’, Q, R)’;

Code 7.5: Example of how to find the observer gain with Matlab. Using the same method as to find the control
but having the same changes as in the code 7.2.

8 - Implementation and Design of the
Hardware

The design and development of the Hybrid Robot were done in multiple steps, a flowchart
describing the development of the Hybrid Robot, can be seen in the figure 8.1.

Figure 8.1: This flowchart illustrates the process that was used to develop the Hybrid Robot.

32

33 Chapter 8. Implementation and Design of the Hardware

8.1 Body of the Hybrid Robot

The first thing to be design was the body of the Hybrid Robot, this was due to all other
parts of the Hybrid Robot had to be attached to the body in the simulation. The body
was made in two separate sections, a section that houses the motor and a box section that
have the rear wheels attached. The reasons for this was, that the implementation of the
various inertias in URDF would be eased, the use of basic shapes to calculate the sections’
inertias. Another reason was that initial implementation of the Hybrid Robot’s body was
larger than the build area of the 3D printer available, this also allow to make the body
more modular, such that if a changes to a section did not have to affect the design of the
other sections.

The section of the body that changed the most was the motor section, the first iteration,
was after the Hybrid Robot was shown in Gazebo, that the robot was able to preform
the swing-up state and land upside down. After the successful swing-up it was time to
select motors, the choice of the motors would determine the size of the first iteration of the
motor section. The new motor section was implemented in Gazebo to test if the changes
had any effect on the swing-up, which it did not.

The second major change to the motor section was during the discovery that the motors
could not stop the wheels during the test of the swing-up state in real life. Here there were
two options, one to buy better motors which will cost money, the second is that delivery
of new parts takes time, which is just as costly as the money in this project. This lead to an
implementation of brakes, this brake system that was develop was implemented into the
motor section. The final iteration of the motor section inertia were found in SolidWorks
where it is possible do an assembly of multiple parts to find most precise inertia of the
section, this requite a model of the motors which was found on GrabCAD. This is a website
that has models made to be used in a CAD software, the assembly of the motor section
can be seen the figure 8.2.

Figure 8.2: Assembly of the Hybrid Robot’s motor section. The square hole is for the MG90s servo. Doing an
Assembly like this, can catch errors before production.

The only major change, that was done to the section where the rear-wheels are attached
was that it was change from a box section, to a T-shaped section that was lighter, this

34 Chapter 8. Implementation and Design of the Hardware

can be seen in the figure 8.3, the reason for this was that the body was too heavy for the
selected motor, to accelerate to the velocity where the Hybrid Robot was able to do the
swing-up motion in the real world. The motors would stall out and the robot would come
to stand still. During the change over to the T-shape, the distance between the front and
the rear wheels was also changed, which also lessened the velocity required to preform
the swing-up motion of the Hybrid Robot, which was found in Gazebo. A final assembly
of the full body can be seen in the figure 8.4.

Figure 8.3: The t-shaped part of the Hybrid Robot.

Figure 8.4: The full assembly of the body of the Hybrid Robot

8.2 Motor and Motor-Controller

As mentioned, after it was shown that it was able to do the swing-up in simulation, a
selection of the motors that would be used in this project had to be chosen, these motors
are based on the first iteration of the model implemented in simulation. There were

35 Chapter 8. Implementation and Design of the Hardware

different options for motor choices, DC motors, brushless motors, and stepper motors.
What was needed was a motor with higher torque that was affordable and had a short
delivery time. The different motor types also required different ways of control which
also is an expense that has to be taken into account when selecting the motor.

The motor that was selected was a motor named SM42HT47-1684A which is a variation of
the Nema 17 stepper motor, this has 4400 g-cmNm holding torque and a rotor inertia of 68
g-cm² and a mass of 350g[26]. The stepper motor has been used in different applications
such as 3D printers, Computer Numerical Control (CNC) machines, and robotics[27]. A
stepper motor does not work in the same manner as an ordinary DC-motor, where voltage
is applied over the inner coil also known as the rotor, this creates a magnetic field when
the current is applied and this act against the stator which often is made out of magnets,
this makes the rotor and the output shaft spin on the DC-motor[28]. The Nema 17 stepper
motor chosen has eight outer coils, four of these coils are connected together and placed
opposite to each other, a simplified view can be seen in the figure 8.5, where two coils
will become positive charged and the other coils will be negative charged[29]. The inner
rotor of a stepper motor is made up of magnets alternating north and south pole setup, as
seen in the figure 8.5 such that the north is aligned with the positive coils and the south
pole is facing the negative coils, alternating the coils that are energized make the motor
increment to the next magnets that align with the magnetic fields, the motor chosen have
48 alternating sets of north and south magnets[27].

Figure 8.5: A simplified view of a stepper motors inner working. The red and blue are magnets, red is north
and blue is south. The winding’s is illustrating a coil[29].

A stepper motor can be controlled directly through a micro-controller like Arduino, with
the use of a set of H-bridges, although there are controllers made to control stepper mo-
tors. The controller that was chosen for this project was an Ustepper S board[30] from the
company Ustepper, the Ustepper is developed to attach to a Nema 17 and a Nema 23
on the back, as seen in the figure 8.6. Moreover, the Ustepper S controller board has an
encoder implemented that can be used to determine the shafts position and the angular
velocity; An Atmel 328p micro-controller is also implemented on the Ustepper controller
board, this Atmel 328p micro-controller is the same used on an Arduino. The company
Ustepper furthermore provides an open-source Arduino library on GitHub, this allows
for programming the Ustepper S in the Arduino IDE. The Ustepper S board also has all

36 Chapter 8. Implementation and Design of the Hardware

the infrastructure build-in such that the board only need a power supply between 12 and
42 voltage to run the motor as well as the Atmel and the encoder[30].

Figure 8.6: The Ustepper S board mounted on the back of the Nema 17 stepper motor.

Some changes to the motors were done, one was to make a flat surface on the motor shaft,
to accommodate for the set screw that holds the wheel on the shaft. A second was to
shorten up the motor wires, those wires had to have the same length on both motors to
prevent a difference in the voltage drop which could lead to one motor turning faster or
slow then the other.

As mentioned before, the Ustepper has a library developed to control the Nema 17 motor,
this library provides different ways to handle it. One way to run the motor controller is to
having it run in a closed loop control, were the built-in functions takes care of getting the
motor to a given angular velocity or position; or a PID controller can be used, this opens
for more parameters, the primary one is parameters for the PID controller, some others
are how much amperes the controller is allowed to use, during running or holding the
shaft, set on a scale from 0 100% relating 0A - 1.8A [30].
A setup that is important for both PID and closed loop control is how many steps the
motor has to make full rotation of the shaft, this controller can handle 200 steps called full
step to 1/8 step which is 1600 steps to a full revolution[30]. Full step is controlling the
motor with the highest torque to the motor, but is less precise that the 1/8 which gives
more precision control of the motor, but the torque drops off[29, 27].

8.3 Wheels

The first iteration of the wheels used on the Hybrid Robot were used in simulation with
the following paramaters: 50mm in radius and a mass of 70g. The mass was calculated by

37 Chapter 8. Implementation and Design of the Hardware

Cura which is a 3D slicing tool that creates files which can be used on a 3D printer. When
Cura calculates the slicing, it also calculates an estimation of the mass of the object.

Due to the change in the size of the body, to fit the expansion, the wheels were too small
and left no clearance from the body to the ground, so the wheel diameter was increased
to 160mm. During the test of this configuration, it was found that the front wheels needed
more mass to preform the swing-up motion. The mass of a wheel to help the swing-up
was found to be approximately 260g, the material chosen was aluminum. This choice was
made in cooperation with the in AAU in-house industrial machinist Jesper.

To get a wheel with the mass of 260g Solid-Works was used. First for the design and
second to see the mass and calculate the inertia, by using the mass properties of the wheel
that then also could be used in the simulation. The goal of the design was to get as close
to 260g and having the most of the mass of the wheel on the outer rim to create the largest
inertia for the wheel with the minimal mass possible.

When the wheel design was done, it was send to Jesper for production. Jesper had differ-
ent suggestions, to ease the production and reduce the production time for each wheel.
This meant that the wheels were created in two different part, a hub and a rim that are
screwed together, as seen in the figure 8.7. This modular setup allows the same wheel rim
to be used on different motors.

Figure 8.7: In the front of the Hybrid Robot, manufactured in aluminum, the axle of the wheel is meant to be
changed if a different motor would be used, this fits the shaft size of the Nema 17 stepper motor.

The back wheels of the Hybrid Robot were kept in Poly Lactic Acid(PLA) to reduce the
weight of the cart during the swing-up state, one alteration that was made to the rear
wheels was to change it from a machine-screw directly through the rear wheel hub, a
set of bearings were design into the rear wheels to lower the friction, a Computer-Aided
Design(CAD) drawing of the rear wheel can be, seen in the figure 8.8.

All the wheels got a tire printed of the material Thermoplastic polyurethane(TPU), the
reason for choosing the TPU over PLA is that TPU is a type of rubber that is more elastic
than the PLA, this allows the Hybrid Robot to gain more friction against the surface[31].
On all the rims, a ridge was created, on the outside of the rim, such that the tire would
have a harder time slipping off to the sides.

38 Chapter 8. Implementation and Design of the Hardware

Figure 8.8: Rear-wheel, with space for a bearing on each side, this design choice was because, when running
with a machine-screw through the plastic, created too high friction when turning the wheels.

At this point, the front wheels could not be changed as with the motor and the motor
controller. This was due to time constraints as well as the limited funding.

8.4 Brakes

Because the motors and the motor-controller were not able to stop the Hybrid Robot
prototype, well enough to perform the flip that is needed for the swing-up state, a choice
was made to implement breaks on the Hybrid Robot. A reason for this choice was time to
implement a new motor into the design, this will also lead to an implementation of new
software development for the motor-controller.

The first discussion to be had was where to place the brakes on the Hybrid Robot, this
was during the implementation when the robot consisted of a boxed section. A reason for
placing the brake mechanism in the boxed section is that it is possible to get more leverage
on the wheels to stop them as fast as possible, a downside to placing the brake mechanism
in the box is that the time it took to print the box was around 24 hours, the motor section
took 8 hours to print, which makes possible to print and evaluate if all parts fit proper,
four times within time for printing the box. Furthermore, if the design of the box section
should be changed in the future as it did, mentioned in section 8.1 as this was done in the
iteration of the box section. The choice of placement was to place it in the motor section.

After the decision on the placement of the brakes, different options were considered as
options for how to construct such a brake. One idea was to try and catch the spokes of the
wheel itself, this was not an option in that the force this solution would exert a high force
on the part that should grip the spoke and where the part and the mechanism that would
move the part. A second idea was to have a lever pull down on the axle of the wheel, this
idea lead to the final approach, which was to use two levers to grasp around the axle.

The levers were designed in a manner, where the levers would be able to grasp the largest
area of axles on the wheels, with a safety margin to the wheel walls, this meant that

39 Chapter 8. Implementation and Design of the Hardware

circular cuts were made in the levers, as seen in the figure 8.9. The bent shape of the
levers is opposite to the hole seen in the figure 8.9, were made to house a spindle that is
oval-shaped, as seen in the figure 8.10. The levers were cut such that the arms of the levers
could go over each other. As the levers were printed in PLA, a brake pad was made out
of TPU to give more friction in the braking face than PLA will provide.

Figure 8.9: Design of a single lever which is used to brake the wheels.

Figure 8.10: First iteration of the spindle that is used to push the levers from each other.

When all the parts where printed and fitted to the motor section, it was found that the
levers bend just enough under load, to stop the wheels to the desired effect, a second
spindle was made in the same shape and size as the first oval spindle, the size could not
changes due to the fact that if the size became bigger in any direction, this would lead
to the activation of the levers as a brake. The second spindle as seen in the figure 8.11.
The design of the spindle, utilizes the fact the two levers cross each other, as seen in the
figure 8.12, where a tap is placed on the oval shape offset from the long axis line, such
that the tap extended out over each of the arms of the levers. The taps are set on different
levels such that they would not interfere with the lever that tap should not activate. Each
spindle is operated by a MG90s servo, the reasons for the use of a servo, is that a servo
can be controlled to a desired position, this lessen the need of extra infrastructure, such
as switches or encoders on if a ordinary DC-motor would need to estimate the position

40 Chapter 8. Implementation and Design of the Hardware

of the spindle. The servo is controlled by and Arduino Uno, this was done to protect the
Raspberry Pi, that is used as the main controller of the robot.

Figure 8.11: This is the final iteration of the spindle, this works on two different levels to push the levers as much
as possible.

8.5 Electronic components

In this section the different electronic components that were used in this project will be de-
scribed, besides the Ustepper and the servo motor and its controllers that has already been
described in section 8.2 and section 8.4. How these electronic components are connected
can be seen in appendix C.

8.5.1 Onboard Computer

As the onboard computer a Raspberry Pi(RPI)4 with 4 Gb RAM was used, a reason to
choose the RPI4 over the RPI3 is that the RPI4 has more Universal Asynchronous Re-
ceiver/Transmitter (UART) connections than the RPI3, this meant that there were 4 more
serial connections[32, 33]. That can be used to communicate with the various devices im-
plemented as the Arduino that controls the brakes and the two Usteppers boards, which
would not be possible with the RPI3 as it only has one UART.

A second reason for choosing the RPI4 over the RPI3 is that RPI4 has overall better char-
acteristics than RPI3, the RPI4 has more RAM and a quicker CPU[34]. The faster the CPU
on the RPI4 runs hotter, this was addressed by having a small aluminum block with fins
attached to disperse the heat.

The operating system, used on the RPI4 is a version of the Ubuntu 16.04 named Lunetic,
this is installed by the image from Ubiquity-robotics[35]. The reason for using this image
from Ubiquity-robotics was that this image has everything built for Robot Operating Sys-
tem (ROS) to work out of the box. Furthermore, this image from Ubiquity-robotics also

41 Chapter 8. Implementation and Design of the Hardware

Figure 8.12: In this figure a test bed is presented, this was used to validate the brake system before it was
produced.

has setup an access point such that multiple PCs can be connected to control the Hybrid
Robot [36].

8.5.2 IMU

The IMU chosen in this project, is the GY-91, this IMU contains a MPU9250 and BMP280
[37]. MPU9250 is a 10-DOF (Degrees Of Freedom), 3 axis of acceleration, 3 axis of angular
rate and 3 axis that look at the magnetic fields, this can also be used to describe how
the Hybrid Robot is oriented in the world. The magnetometer is not used in this project,
the reason for this is that there is no need for it during the test of the Hybrid Robot,
furthermore the rebar in the floor of the building where the robot is tested can make
for a noise signal. The barometric sensor BMP280, is not used either, it was found that
there were no reason for implementing, as the Hybrid Robot does not need to know what
altitude it is at. The accelerometer and the gyroscope were used to estimated the pitch and
angular rate of the Hybrid Robot. The GY-91 gives access to all the components through
a I²C connection, the GY-91 board requires between 3.3V to the 5V for the GY-91 to work
properly.

42 Chapter 8. Implementation and Design of the Hardware

8.5.3 Power Supplies

To supply all electronics with the right amount of voltage, two separated power supplies
were implemented. This was found that during the test of the Hybrid Robot the AP closed
down when operating the servos on the same power supply as the RPI, this was thought
to be because of the high start current used by the servos. All devices on the Hybrid
Robot are powered through a single battery pack, this was to reduce the number of wires
to be controlled during the test. The voltage regulator boards that were chosen are based
around XL6009 chip from XLSEMI [38], this boost buck convert can deliver up to 4A
according to the data-sheet, although the place of purchases the board is only rated at
2.5A continuous [39], which is enough to power the RPI with one. The voltage regulators
are variable and can be adjusted by a trim potentiometer to the voltage at the desired level,
for the RPI4 it is 5V according to the data-sheets [33]. The servos are rated between 4V
and 6V, the higher the voltage the servos provide more toque, and the Arduino is rated
from 5V to 12V, this meant that the second power supply could be tuned to 6V to give
the most torque to the brakes. Tuning the regulators before anything was attached, was
done by using a multi-meter and a power resistor, the resistor is put on the output to put
a load on the regulator board because the voltage could drop below operating voltage for
the brake system or the RPI4, if not tested with a load on the output.

9 - Implementation and Design of the
Software

In this chapter the implementation of all the software used is in simulation as well as
in the real world is discussed, the repository can be found at https://github.com/
ipujol10/hybrid_robot.

9.1 Model Simulation

To be able to test the ideas without having the risk of damaging the physical prototype or
try extreme conditions, it is important to have a simulation of the system to test.

For the simulation on this project, a combination of ROS [40] and Gazebo [41] has been
used. ROS is used to communicate each part of the system with each other and Gazebo
is the simulation environment and supports ROS to interact with the robot models. Both
of the systems have been used during the Robotics Masters and the authors of this report
are well versed in them.

Once decided the environments of the simulation, it is important to be able to build or
represent the prototype or robot to be tested. This can be done with already existing
robots in real life to further tests or to tests design concepts and accept them to build or
reject them.

Figure 9.1: Last iteration of the model used for the simulation.

43

https://github.com/ipujol10/hybrid_robot
https://github.com/ipujol10/hybrid_robot

44 Chapter 9. Implementation and Design of the Software

9.1.1 URDF

Unified Robot Description Format (URDF) [42] is a way to describe a robot in an XML
format.

Everything starts with the robot tag, where everything is going to be defined and described.
Here is also stated the name of the robot.

1 <robot name="hybrid_robotv0_2">
2 <!-- Robot description -->
3 </robot>

Code 9.1: Example of the start of a robot description in a URDF file. The robot name is hybrid_robotv0_2.

Figure 9.2: A basic representation of a robot with 2 rigid bodies (the green shapes named links) joined by a
specific behavior (the blue shape named joint). [42]

The next step is to understand the essential parts of a robot and how they are connected (in
the URDF context): the links and the joints as seen in the figure 9.2. The links represent
the rigid bodies of the robot as can be wheels, arm sections or chassis. And the joint
specify how two links interact with each other: if they can move freely, if they are static
with each other, etc.

The link have three basic elements: the visual which describes how is it going to be
visualized on the simulation; the collision which describes how to interact if it touches
other links; and the inertial which have the physic properties as the mass and inertia
tensor.

1 <link name="base">
2 <visual>
3 <geometry>
4 <box size="1 1 1"/>

45 Chapter 9. Implementation and Design of the Software

5 </geometry>
6 <material name="blue"/>
7 </visual>
8 <collision>
9 <geometry>

10 <box size="1 1 1"/>
11 </geometry>
12 </collision>
13 <inertial>
14 <mass value="1"/>
15 <inertia ixx="1" ixy="0" ixz="0"
16 iyy="1" iyz="0"
17 izz="1"/>
18 </inertial>
19 </link>

Code 9.2: An example of a cube link, both visual and collision-wise, with a side of 1m. It also has a mass of 1kg
and an inertia tensor as the identity matrix.

In the geometry element, it is also possible to import a mesh created on other designing
programs as can be SolidWorks or a CAD program by using <mash file"" scale""/> instead
of the box.

The joint has two required attributes: the name and the type; and at least the parent
and child elements, it can have more elements to define better the relation or limit some
aspects. [42]

1 <joint name="base_wheel_joint" type="continuous">
2 <axis xyz="0 0 1"/>
3 <parent link="base"/>
4 <child link="wheel"/>
5 <origin xyz="0 0.6 0" rpy="1.5708 0 0"/>
6 </joint>

Code 9.3: Example of a joint that joins a wheel to the cube from the code 9.2. It specifies that it can rotate freely
around the z-axis while it is displaced 0.6m from the origin and rotated 1.5708rad or 90° on the roll axis.

As the code 9.3 showed, there is an attribute type that defines the type of movement that
can happen between two links. There are the following types: [42]

revolute A hinge type joint that rotates around the specified axis (with the tag <axis>) and
that has upper and lower limits (with the tag <limit>) that can represent physical
restrictions as a robotic arm.

continuous The same as the revolute but without limits. It can represent for example an
axle.

prismatic A joint that allows the movement on 1D and has limits. An example of this
joint would be a piston.

46 Chapter 9. Implementation and Design of the Software

fixed This is the only joint that does not allow movement. It would be the equivalent of
gluing or fixing with screws two pieces. In the URDF modeling is useful to build
complex parts with just basic shapes without having to import an external design.

floating This one does not have any restriction, it allows the 6 degrees of freedom. Like
not having a joint at all.

planar Allows the movement on a plane defined by the perpendicular of the <axis> tag.
It can be an example of moving a magnetized floor or a board games simulation.

With these simple elements, a robot can be built by combining links through joints one by
one.

9.1.2 Xacro

To build small and simple robots the standard URDF method is more than sufficient, but
when trying to make more complex projects can be inefficient and lead to typing errors.

The problem comes from the fact that if you need to have ten wheels on a robot, you need
to define them one by one with almost the same parameters.

Then comes the XML Macros (Xacro) that allow much more modular implementation and
conversion to URDF afterward. It can have variables or properties that make it easier to
change a single value that will affect the rest of the robot instead of having to go one by
one. It also allows using math expressions while defining links or joints and conditional
blocks to be able to have different behaviors depending on the parameters. Xacro, as
the name indicates, allows to have macros (similar to functions in other programming
languages) and import other Xacro files which allow to have more clean and modular
work. [43]

1 <robot name="hybrid_robotv0_2"
xmlns:xacro="http://ros.org/wiki/xacro">

2 <!-- Robot description -->
3 </robot>

Code 9.4: Example of the start of a robot description in a Xacro file. The robot name is hybrid_robotv0_2. That is
how it would look for the code 9.1 while being a Xacro.

To start the description of the robot, normally the first lines are reserved for importing the
needed Xacro files and defining the properties of the robot:

1 <xacro:include filename="$(find
hybrid_jumping_robot)/urdf/material.xacro"/>

2 <xacro:include filename="$(find
hybrid_jumping_robot)/urdf/plugins_v2.gazebo.xacro"/>

3 <xacro:include filename="$(find
hybrid_jumping_robot)/urdf/macro.xacro"/>

47 Chapter 9. Implementation and Design of the Software

4 <xacro:include filename="$(find
hybrid_jumping_robot)/urdf/transmission_v2.xacro"/>

5

6 <!-- Wheels -->
7 <xacro:property name="wheel_r" value="0.075"/>
8 <xacro:property name="wheel_width" value="0.015"/>
9 <xacro:property name="front_wheel_mass" value="0.279"/>

10 <xacro:property name="back_wheel_mass" value="0.09589"/>
11

12 <!-- Rest of the properties -->

Code 9.5: Example of how to include other Xacro files and define some properties to be used further in the
description of the robot.

As seen in the code 9.5, the xacro:include tag allows to include other files with predefined
macros or other parts of the robot that have been decided to keep in separate files. The
other useful tag is the xacro:property which allows to have the equivalent to variables and
be accessed at any point of the file, it also allows to have values used on different places
all on the same spot and have them controlled.

In the next code snippet, it can be seen how a macros is defined and it uses math and the
properties:

1 <!--box_inertial makes it easier to implement mass and inertial
for a box shape-->

2 <xacro:macro name="box_inertial" params="mass length width
height">

3 <inertial>
4 <mass value="${mass}"/>
5 <inertia
6 ixx="${1/12*mass*(width*width+height*height)}"
7 ixy="0.0"
8 ixz="0.0"
9 iyy="${1/12*mass*(length*length+height*height)}"

10 iyz="0.0"
11 izz="${1/12*mass*(width*width+length*length)}"/>
12 </inertial>
13 </xacro:macro >
14

15 <xacro:box_inertial mass="${base_short_mass}"
length="${base_short_length}" width="${base_width}"

16 height="${base_short_height}"/>

Code 9.6: Example of the definition of macros and the use of it.

As seen in the code 9.6, the definition of a macros starts with the <xacro:macro name=""
params=""> tag. The name defines how is it going to be called after being defined as it
can be seen in the line 15: the name is "box_inertial" and it is called <xacro:box_inertial>.
params defines the parameters that need to be passed on when called as seen in the lines

48 Chapter 9. Implementation and Design of the Software

15 and 16. The parameters are treated the same way as the properties.

The math is produced when an expression is between "$" as seen in the line 6 for example
where it can be seen how multiplications and additions are performed. In the math mode,
it can also be accessed the parameters and properties as seen in the line 4 or 6.

The last big feature that Xacro have over plain URDF are the conditional blocs. This allows
to create macros that produces different results depending of the parameters passed on:

1 <xacro:property name="origin_y" value="${(base_width +
wheel_width)/2 + clear}"/>

2 <xacro:if value="${side == ’right’}">
3 <xacro:property name="origin_y" value="${-(base_width +

wheel_width)/2 - clear}"/>
4 </xacro:if >

Code 9.7: Example of a conditional block.

In the code 9.7 it can be seen how an if statement is performed. First of all, a property
is defined, then it checks if the statement is true and overrides the property in that case.
Apart from acting on properties, it can also be used to produce complete blocks as it can
be a complete joint.

9.1.3 Gazebo

When it comes to simulating together with Gazebo, the description needs some additional
tags.

To be able to be visualized properly, the <gazebo> tag must be included:

1 <gazebo reference="base">
2 <material>Gazebo/Red</material>
3 </gazebo>

Code 9.8: Gazebo tag with the reference as the link referenced to.

When it comes to actuated joints, it is necessary to specify the type of control:

1 <transmission name="trans_front_right_wheel_joint">
2 <type>transmission_interface/SimpleTransmission</type>
3 <joint name="front_right_wheel_joint">
4 <hardwareInterface>
5 hardware_interface/VelocityJointInterface
6 </hardwareInterface>
7 </joint>
8 <actuator name="front_right_wheel_joint_motor">
9 <hardwareInterface>

49 Chapter 9. Implementation and Design of the Software

10 hardware_interface/VelocityJointInterface
11 </hardwareInterface>
12 <mechanicalReduction>1</mechanicalReduction>
13 </actuator>
14 </transmission>

Code 9.9: Example of a velocity control transmission.

In the code 9.9 it can be seen that the transmission is referred to the joint in line 3 and
using the VelocityJointInterface as the controller.

Once having all these tools, then it is only a matter to build the robot peace by peace. The
end result can be seen in the figure 9.1.

9.2 Simulation Implementation

In this section, it is going to be talked about the classes used during the simulation to
be the bridge between the simulation and the controller. In the physical model, they are
going to be implemented on the onboard computer.

As has been stated before, ROS is the tool that allows communication between each part
or node of the system. Each node is a process that can be run individually and all of them
will be managed by a ROS Master. Each node can publish or be subscribed to as many
topics as needed and that is the way that they can send and receive information to/from
other nodes. [40]

During the simulation, it is not possible to just send or receive a signal through the Input-
Output (IO) of the onboard computer because there is no physical link. To solve that and
be able to simulate, gazebo uses ROS to simulate these signals.

9.2.1 Velocity

The velocity node serves the purpose of receiving the input from the controller and send-
ing it to the virtual wheels.

In the figure 9.3, it can be seen the most important attributes and methods. The Publishers
in this class work in two directions: towards the simulation as an IO link and towards the
controller. The Subscribers work as the feedback from the simulation and controller. The
methods are used to control the wheels and obtain the feedback data.

1 Vel::Vel() : rate(100), now_velocity(0), now_position(0) {
2 ros::NodeHandle nh;
3 left_front_wheel_publisher =

nh.advertise<std_msgs::Float64>(left_front_wheel_connection, 10);

50 Chapter 9. Implementation and Design of the Software

Figure 9.3: The basic structure of the Vel class.

4 right_front_wheel_publisher =
nh.advertise<std_msgs::Float64>(right_front_wheel_connection, 10);

5 current_velocity_publisher =
nh.advertise<std_msgs::Float64>(current_velocity_connection, 1);

6 current_wheel_pos_publisher =
nh.advertise<std_msgs::Float64>(current_position_connection, 1);

7 vel_sub = nh.subscribe(commanded_velocity_connection, 1,
&Vel::velocity_callback, this);

8 state_sub = nh.subscribe(joint_state_connection, 1,
&Vel::now_vel_callback, this);

9 }

Code 9.10: The constructor of the Vel class.

Gazebo uses ROS topics to interact with the simulation. To send data to the wheel control-
lers, it is needed to publish on the specific topic (initialized on the lines 3 and 4 of the code
9.10) with the names "/hybrid_robotV0_2/front_side_wheel_joint_velocity_controller/command"
with side replaced by right or left (the full ROS connections can be seen in the figure D.1).

1 void Vel::set_front_wheels_velocity(Float64 vel) {
2 std_msgs::Float64 msg;
3 msg.data = vel;
4 left_front_wheel_publisher.publish(msg);
5 right_front_wheel_publisher.publish(msg);
6 ros::spinOnce();
7 rate.sleep();
8 }
9

10 void Vel::velocity_callback(const std_msgs::Float64 &data) {
11 set_front_wheels_velocity(data.data);
12 }

Code 9.11: Control of the wheels.

51 Chapter 9. Implementation and Design of the Software

In the code 9.11 it is specified how it interacts with the simulation: publishing on the
correct topics (lines 4 and 5). Then it is told to the Master that it has received a message to
be redistributed in line 6. The set_front_wheels_velocity function is called when the message
through the controller is received.

1 void Vel::now_vel_callback(const sensor_msgs::JointState &data) {
2 now_velocity = (data.velocity[3] + data.velocity[4]) / 2;
3 std_msgs::Float64 msg;
4 msg.data = now_velocity;
5 current_velocity_publisher.publish(msg);
6

7 now_position = (data.position[3] + data.position[4]) / 2;
8 msg.data = now_position;
9 current_wheel_pos_publisher.publish(msg);

10 }

Code 9.12: Callback from the joint states from the simulation.

The data that would be obtained by odometry, is provided by the ROS topic
"/hybrid_robotV0_2/joint_states" in the code 9.12. The joint state structure contains the
position, velocity and torque of each joint of the robot, which will allow to obtain the
needed simulated odometry. In the lines 2 and 7 are calculated the position and velocity
of the robot having in mind that it is a differential drive, which are obtained by the
following equation:

readr + readl
2

(9.1)

The indexing are to obtain the correct items on the whole list of joints.

9.2.2 IMU

The IMU node serves the purpose of getting the simulated IMU data and converting it to
the relevant information for the system.

Figure 9.4: The basic structure of the IMU class.

This node subscribes to the simulated IMU topic ("/imu") to be able to broadcast it to the
other nodes of the system. The Gazebo sensor sends a quaternion which is converted to

52 Chapter 9. Implementation and Design of the Software

Tait–Bryan angles [44].

1 RPY conv::quaternion_to_rpy(geometry_msgs::Quaternion q) {
2 tf::Quaternion quaternion(q.x, q.y, q.z, q.w); // construct the quaternion
3 tf::Matrix3x3 m(quaternion); // convert it into matrix
4 Float64 roll, pitch, yaw;
5 m.getRPY(roll, pitch, yaw); // convert it to Roll−Pitch−Yaw
6 return {roll, pitch, yaw};
7 }

Code 9.13: Function to convert a quaternion into Tait–Bryan angles using the ROS transform library.

The problem with using this conversion to the Tait–Bryan angles, is that the registered
pitch keeps increasing until π/2 and, at that point, instead of continuing to go up, it falls.

Figure 9.5: The graphic that shows how the raw pitch can lead to problems, how it can be detected the issue
with the roll and the corrected pitch.

As seen in the figure 9.5, the pitch behaved as described before. But after some thinking
and analyzing the obtained data, it was detected that when the pitch decreases, the roll
suddenly changes the value. It seems like for the IMU, the robot flipped horizontally
instead of vertically, which is the reality.

To obtain the correct pitch, it is passed together with the roll through a function that
checks if the roll has flipped. If it is the case, it returns the complementary angle, else
returns the original angle.

53 Chapter 9. Implementation and Design of the Software

9.3 Controller Implementation

In this section, it is going to be talked about the implementation of the different controllers.

9.3.1 PID

In the section 7.3.1, has been explained the PID controller. In this section, it is going to be
explained the implementation of this controller.

Figure 9.6: The basic structure of the PID class.

In the figure 9.6, it can be seen the most important attributes and methods. With the PID
attributes as the controller constants, the SetPoint as the target, using the LastTime to be
able to determine the time elapsed since the last update and LastError to be able to get the
∆e (differential error). The update method is used to obtain the output of the PID and the
clear method to reset variables that could cause troubles on long periods of time as they
can be ITerm and LastError.

1 Float64 PID::update(Float64 feedback_value, ros::Time current_time, ...)
{

2 Float64 error = SetPoint - feedback_value;
3

4 ros::Duration delta_time = CurrentTime - LastTime;
5 Float64 delta_error = error - LastError;
6

7 PTerm = P * error;
8 ITerm += error * delta_time.toSec();
9

10 DTerm = delta_error / delta_time.toSec();
11

12 LastTime = CurrentTime;
13

14 Output = PTerm + (I * ITerm) + (D * DTerm);

54 Chapter 9. Implementation and Design of the Software

15

16 return Output;
17 }

Code 9.14: Implementation of the PID using the update method.

In the code 9.14 it is shown how the most important part of the PID is implemented.
First of all, is calculated the time elapsed and the differential error with respect to the last
update. Then it calculates the proportional term in line 7 by using the current error and
multiplying by the proportional constant (PTerm = P ∗ error).

To use the integral part of the PID it is necessary to obtain the integral of the error (area
below the curve) to then use the constant gain I. But the integral on the discrete-time, it is
defined by a summation:

N

∑
i=0

errori∆ti (9.2)

Then the ITerm+ = error ∗ deltatime.toSec() (in the line 8) is the n-place of the summation
while ITerm has the historical error.

On the derivative part, something similar happens as it is a discrete process and it is
described as:

∆error
∆time

=
errori − errori−1

∆t
(9.3)

And that is how it is implemented: in line 5 obtaining the ∆error and in line 10 obtaining
the derivative.

The total PID output is calculated in line 14 where all the terms are put together.

There are some additional features such as the integral windup guard, which limits its
influence if it starts to be too high, as it is something that can happen especially in a long
term runs. The other is the overall output limit to avoid an overload on the actuator.

9.3.2 State Feedback

In the section 7.3.2 it was described the theory behind the state feedback control. In this
one, it is going to explain how it has been implemented.

The implementation has been inspired by a GitHub repository [45]. This is a general case
where it allows not having full state output and estimate if it is necessary, implementing
the compensator for reference tracking, and adding an integral component in case it is
needed to be used.

As seen in the figure 9.7, there is the diagram of how the state feedback works. In the
bottom there is the standard simplified state feedback stabilization where the feedback is
defined by the negative control gain. It can also be seen that there is an estimator, but it is
only going to be used in case that the output is not the full state vector.

55 Chapter 9. Implementation and Design of the Software

Figure 9.7: Diagram of the full state feedback class that allows it to have a general-purpose and work with
different control methods.

The other two lines contain the added features: the reference tracking to stabilize on a
different working point than the stable point; and the integral term that can help stabilize
in case of having constant disturbances from the exterior of the system.

Figure 9.8: The basic structure of the State Feedback class.

In the figure 9.8, it can be seen the most important attributes and methods. For the
standard model, there are the K as the control matrix; the x_hat as the input to the control
gain; and the L as the observer gain in the case that has to be used if there is not a full
output.

For the reference branch, there is the r as the reference that can be constant or changing
over time. In the case of the integral part, the I is the integral gain and the w_hat represents
the integral as it has stored the whole accumulated error. And to finish with the attributes,
there is the u as the control input to the robot.

56 Chapter 9. Implementation and Design of the Software

1 Matrix StateFeedback::update(const Matrix &y, Float64 dt) {
2 // Update the state estimate
3 if (X == Y) { // if it’s Full State Feedback
4 x_hat = y; // directly the new x_hat are the measured states
5 } else { // if it’s not FSF
6 x_hat = estimate_state(y, dt); // it needs to estimate the x_hat
7 }
8

9 // Calculate the control input to stabilize at 0
10 u = -K * x_hat;
11

12 // Calculate the offset control for reference tracking
13 u += N_bar * r;
14

15 // get the offset to control the disturbance w
16 w_hat += I * (y - r) * dt;
17 u += w_hat;
18

19 return u;
20 }

Code 9.15: Implementation of the update method on the State Feedback.

The update method (in the code 9.15) computes the whole control input u. First, it checks if
it is full state feedback (X represents the number of states and Y the number of outputs) on
line 3, in the case of being affirmative the x_hat is taken directly from the system output;
otherwise, it needs to compute the estimate. The estimate is done by the estimate_state
method which has a linearized model of the system with the L gain.

Then it is time to add all the different contributions to the control input. First, it does the
stabilization term on line 10 continuing with the reference tracking in line 13. In line 16 it
is calculated and updated the integral part and the added to the control input.

In the following sections, there are going to be talk about the different methods to obtain
the control gain.

9.3.2.1 Heuristic

The heuristic method to find or design a control method is based on try and error until
a solution is found. This solution is not going to be optimal, but sufficient as a starting
point to be able to start testing, a temporal solution. [46]

Being in the case of a system with four states and a single control input the dimensions of
the control matrix must be: K1x4. Each of the components of K is going to be associated
with a state of the system and how much they contribute to the overall value of the control
signal. For the present system the association is going to be like: [θ, x, θ̇, ẋ].

57 Chapter 9. Implementation and Design of the Software

After testing and heuristically tuning the parameters, the control matrix obtained is:

K = [802.88, 0, 139.09, 784.99] (9.4)

9.3.2.2 Poles Placement

The pole placement method has been explained in the section 7.3.3, in the current one is
going to talk about how it has been implemented.

To be able to place poles, first, it is needed to obtain the dynamic model of the system
similar to obtaining the matrices 7.50 and 7.51.

Those have been obtained by using a Matlab script to help do all the derivatives without
error and work with the matrix operations. The first step is to define the symbolic variables
as the physical constants and the states dependent on the time which will allow deriving
respect the time. This method of using a script will also allow having changed as it can
be the system reference to be able to recalculate the system model automatically and fast.

With those variables, it is possible to build and calculate the equations 7.5 and 7.6. As
Matlab allows to derivate respect to any variable, the operations can be done the same as
they can be done on paper:

1 xb = x - d*cos(theta); % position on the x of the body
2 vxb = diff(xb, t); % velocity on the x of the body
3 % vxb =
4 % diff (x(t) , t) + d∗sin(theta(t))∗ diff (theta(t) , t)

Code 9.16: Example of how to calculate the velocity by deriving the position with respect to the time.

Then it is time to build the Euler-Lagrange equations for each state (equation 7.2) and
have them organized already as a matrix to help the automation of the process:

1 Qtheta = simplify(diff(diff(L, theta1), t) - diff(L, theta)); %
d/t∗dL/dtheta1 − dL/dtheta

2 Qx = simplify(diff(diff(L, x1), t) - diff(L, x)); % d/t∗dL/dphi1 − dL/dphi
3 Q = [Qtheta; Qx]; % have both terms on a matrix to have it easier to derivate and obtain both

equations of motion

Code 9.17: Example of how to build the Euler-Lagrange equations having already calculated L = T − V. And
having them stored as a single matrix object. theta1 and x1 are the first derivatives respect the time of the states
(θ̇ and ẋ).

The last step before obtaining the equations of the second derivatives of the states (q̈ =
f (q̇, q, u)) is to obtain the matrices to build the equation 7.30:

1 M = simplify([diff(Q, theta2), diff(Q, x2)]); % obtain the friction matrix
2 M1 = simplify(inv(M)); % inverse of M
3 h = simplify(subs(Q, {theta2, x2}, {0, 0}) + diag([alpha beta])*q1); %

corriolis, gravity effect and inertia

58 Chapter 9. Implementation and Design of the Software

4 gq = [Iw; -Iw]; % the input matrix
5

6 Anl = [q1; simplify(-M1*h)]; % The A matrix on the non−linear form
7 Bnl = [0; 0; simplify(M1*gq)]; % The B matrix on the non−linear form

Code 9.18: Example of how to obtain the matrices to build 7.30 and end up with the A-B matrices on the non
linear form.

In the equation 9.18 it is important to explain how each matrix has been found by looking
at 7.30. The components of the friction matrix are the ones that are multiplying the second
derivative of a state (q̈), that is why it is derived by the second derivative of the states (line
1), to discard the terms without q̈ and isolating the ones go with it.

A similar procedure is taken to obtain the h matrix in line 3: it is needed to isolate the
terms without a q̈ so the second derivatives are substituted by a 0 and when it is computed,
they will disappear. After that, the friction coefficients are added by relating them to the
velocity.

1 point = {pi/2, 0, 0, 0}; % The point of work
2 vars = {theta, x, theta1, x1}; % the states
3

4 A_theta = subs(diff(Anl, theta), vars, point); % get derivative respect theta
5 A_theta1 = subs(diff(Anl, theta1), vars, point); % get derivative respect theta1
6 A_x = subs(diff(Anl, x), vars, point); % get derivative respect phi
7 A_x1= subs(diff(Anl, x1), vars, point); % get derivative respect phi1
8

9 Ap = simplify([A_theta, A_x, A_theta1, A_x1]); % linearized A matrix with
parameters

Code 9.19: Example of how to build the A linear matrix from the non-linear and with the linearization point.

At this point, there is only left the linearization part of the problem to be able to apply a
state feedback control done in the code 9.19. Each column of the linearized A matrix is
multiplied to the same state of the system, meaning that if the Anl is derived by a state, it
is going to be left in the column related to that state. And then the states are substituted
by the linearization point.

The B matrix simply substitute the linearization point into the Bnl as the control variable
is already isolated in this matrix configuration.

Then it is just a matter to design the system by deciding on the poles to place. In the case
of this project, it was decided to place the poles at [0, −1, −3,−6.87565805306348] giving
a control matrix (using the same method as in 7.1):

K = [802.882847764951, 0, 139.094311369446, 784.988650429386] (9.5)

But the control is discrete, so it is time to convert the system to the discrete-time world by
having the period at which the controller works.

1 Ts = 1/100; % sample time

59 Chapter 9. Implementation and Design of the Software

2 sys_d = c2d(sys, Ts); % obatin the discrete system

Code 9.20: Example of how to convert a continuous system into a discrete time having already build the system
A, B, C, D.

And obtain the control gain for the discrete-time:

K = [958.097552156146, 0, 140.746653569888, 54.8485642096788] (9.6)

9.3.2.3 LQR

To obtain the LQR control gain it is needed to obtain the system model as in the pole
placement section 9.3.2.2 being the same as the system has not changed.

It is only a matter of defining the Q and R matrices and using the command on the code
7.4:

Q =

50 0 0 0
0 0.001 0 0
0 0 1 0
0 0 0 0.001

R =

[
0.001

] (9.7)

And obtaining a control gain:

K = [991.909531865653, 0.930291450322719, 145.759105890912, 58.798408812102] (9.8)

9.3.3 Inverted Pendulum Drive

This class brings together the control methods and is the one sending and receiving the
signals from the robot.

In the figure 9.9, it can be seen the most important attributes and methods. Where the pid
and stateFeedback are the controllers that the user can decide which one to use depending
on the constructor used. Then there are the Pitch, PitchVel, Position and Velocity that are
the states in the real world coordinate system, the target as the working point and the
sys_states as the state vector in the controller coordinate system.

Having the system states in both coordinate systems is because when a state feedback is
linearized, the states change according to 7.56, meaning that there is a conversion needed
in between by using the next lines of code:

1 Matrix current_real_state{{Pitch},
2 {Position},
3 {PitchVel},

60 Chapter 9. Implementation and Design of the Software

Figure 9.9: The basic structure of the Inverted Pendulum Drive class.

4 {Velocity}};
5 sys_states = current_real_state - target;

Code 9.21: This piece of code is shown how to convert the real-world state into the controller coordinate system.
Assuming that the target variable is the linearization point.

In the loop method is where all the control update happens at the rate decided, in the case
of this project at 100Hz. And the get_matrix method is used to be able to store different
control gains and different systems and access them by selecting one of the saved System
models.

1 enum class System {
2 NONE,
3 pole_placement,
4 k_manual,
5 LQR
6 };

Code 9.22: Example of the structure of System that would allow to store a different set of matrices and access
them using a switch statement.

9.4 Real World Implementation

In this section, the different nodes created to drive the real-world Hybrid Robot and get
feedback form the sensors are discussed.

61 Chapter 9. Implementation and Design of the Software

9.4.1 IMU Node

To make the controllers work in the real world, there is a need to know the orientation of
the Hybrid Robot and how it is turning about its axis. The node IMU_robot-1.py is made
to read the signal from the IMU and processing the signal can be found in the GitHub
repository in appendix A.

The IMU is using an I2C protocol as a communication medium [37], by calling the main
address of the MPU6050 and making the call to either read or write a value to a register.
Instead of writing a lengthy code for this a library is used called "mpu9250" this library
can be found on pypi.org.

Before the IMU can be used it needs to be configured, the accelerometer is set to scale up
to 4g and the gyroscope is set to be able to register up to 500 degrees per second. After
the setup, a calibration of the accelerometer and the gyroscope is performed to ensure that
the axis of the accelerometer is aligned with the body of the IMU.

Every time a new set of data is generated, within the IMU a bit is set in the register of
the IMU, this bit is then used to check if the script IMU_robot-1 will read in the data,
before publishing it on the ROS topics. New data is ready on the IMU at the rate of
approximately 280Hz measured.

The accelerometer data of the Hybrid Robot is used to calculate the pitch and the angular
rate of the system. The pitch is derived from all the axis of the accelerometer, the x-axis is
aligned lengthwise of the body of the Hybrid Robot; the y-axis is aligned with the width
of the body, and the z-axis is pointing through the body. Using the eq. 9.9 to calculate an
estimate of the pitch, after this there is a need to check if the acceleration on the z-axis is
less than zero, if this is the case the pitch needs to be subtracted from π as in eq. 9.10.

pitch = atan2(accelerationX,
√

accelerationY2 + accelerationZ2) (9.9)

i f accelerationZ < 0 : pitch = π − pitch (9.10)

If this check is not done, it is not possible to see what way the Hybrid Robot is tilted, as
the numbers will increase to half π and then decrease again, need values were needed to
be between 0 − π, which is possible with the check of eq.9.10.

Due to the noise nature of the accelerometer, when a new pitch is calculated it needed to
be filtered with the prior calculated pitch, this is done through an alpha filter as seen in
eq. 9.11. The alpha used in this case is set to 0.3, this means that only 30% of the new
pitch is used and 70% of the old pitch is used as a stabilization. After the filtering, the
pitch is then published on a topic named "/HJC/IMU/Pitch".

f iltered_pitch = (new_pitch ∗ alpha + old_pitch ∗ (1 − alpha)) (9.11)

When a new pitch has been calculated and filtered, the angular rate is calculated before

pypi.org

62 Chapter 9. Implementation and Design of the Software

being published on a ROS topic called "/HJC/IMU/AngularVelocity", this is done by the eq.
9.12.

angular_velocity = new_pitch − old_pitch/dt (9.12)

9.4.2 Wheel Node

The node that is constructed to control the wheels of the Hybrid Robot, does a few things,
it communicates with the two motor-controller(Ustepper) and the brakes(Arduino); calcu-
lates the odometry of the Hybrid Robot; it communicates with the ROS nodes. The source
code for this node can be found in the GitHub repository in appendix A, the name of this
source file is wheel_node.py.

In every iteration of the main loop of this node, there is a check if new information
is available from the motor controllers, the data is received from the motor controllers
comes in the format of a string, and the string looks like this: RPM:value,Pitch:value, the
RPM is the angular velocity of the wheels and the pitch is the position of the motor shaft.
The RPM is converted to a linear velocity through the function RPMtoVel 9.23, the values
from both wheels are then added together and multiplied by 0.5 and published on the
topic named /HJC/Vel_robot/Current_velocity. The pitch values are published individually
on two different topics /HJC/Vel_robot/Left_wheel_pos,/HJC/Vel_robot/Right_wheel_pos.

Before the odometry can be published on the topic /HJC/Vel_robot/Current_pos, the odo-
metry had to be calculated, the calculation is based on the odometry of a differential
drive[47].In the function rpmtovel 9.23 the RPM of the linear velocity, this needs to be
calculate the next step.

1 def rpmtovel(self,rpm):
2 v = ((math.pi * self.wheel_radii * rpm) / 60.0)
3 v = v * (time.time()-self.oldTime) #time
4 return v
5 }

Code 9.23: This code is used to transform from RPM to linear distance traveled

The function calvrvl 9.24 sets the internal represntaion of the velocity of the left and right
wheels.

1 def calvrvl(self):
2 self.vr = round(self.rpmtovel(self.velocity_right),4)
3 self.vl = round(self.rpmtovel(self.velocity_left),4)
4 }

Code 9.24: This function calculates how far each wheel have traveled.

The next function used is caldot 9.25 this function calculates the changes in the x, y and
orientation theta of the Hybrid Robot.

1 def caldot(self):

63 Chapter 9. Implementation and Design of the Software

2 self.calvrvrl()
3 xdot = (self.vr + self.vl) * math.cos(self.theta_pos)
4 ydot = (self.vr + self.vl) * math.sin(self.theta_pos)
5 thetadot = (self.vr - self.vl) / self.base_withd
6 return {’xdot’: xdot, ’ydot’: ydot, ’thetadot’: thetadot}
7 }

Code 9.25: This function calculates the changes in position and orientation.

The data from caldot is summarized in the function odom 9.26. After the function odom
have been called, the data for the odometry topic is ready and will be published.

1 def odom(self):
2 pos = self.caldot()
3 self.x_pos += round(pos[’xdot’],4)
4 self.y_pos += round(pos[’ydot’],4)
5 self.theta_pos += round(pos[’thetadot’],2)
6 }

Code 9.26: This function is used to calculate the odometry, based on the linear translation and angular rotation.

When a message is received on the topic /HJC/Vel_robot/Set_velocity a callback function is
used, in this callback function, the data from the message is transmitted through the 3
serial communication, and it transmits the data to the Usteppers as well as to the brakes.

9.4.2.1 Motor-Controller (Ustepper)

The Ustepper code is named wheel_HJC_new.ino, in this program, the library from Ustep-
per is used, and the same program is uploaded to each motor. In the setup phase of the
program, the Ustepper setup function needs to know some data, how many steps to a
full rotation, this is set to 200 steps, and the PID controller parameters P = 10, I = 0, D=0
these values were found through trial and error. Furthermore, the motor was set to run
at a continuous velocity. A serial communication was opened as well at the BAUD rate of
1152000.

After the initial setup of the Usteppers, the program loops. In every loop the serial com-
munication is checked if any data is available, the data is then cast to an integer and set as
the velocity of the wheel. In every loop the encoder is used, to get the RPM of the wheels
as well as the position of the motor shaft, this data is then put in the format as explained
above.

9.4.2.2 Brakes (Arduino)

The code for the brakes is named breakmodeteensy.ino, this program controls the two servos
used for braking. In the setup phase of the code, the servos are attached on pins 8 and 9
and a serial communication is open at the BAUD rate of 1152000.

64 Chapter 9. Implementation and Design of the Software

In the main loop, it is checked if there is incoming data the serial, the data that comes in is
then cast to an integer. If this integer is 0 the brakes will be applied else the brakes would
release and let the wheels spin.

10 - Testing

This chapter goes over the testing of the system that was performed and the results of the
tests are shown in the chapter 11.

10.1 Unit Tests

In this section, the different unit tests that were performed are described.

10.1.1 Power Supply

Testing of the voltages is for all prototypes, in this test it is ensured that all voltages to the
different devices are with-in specifications.

• The Raspberry pi 4 needs between 4.7 V to 5.25 V [48]

• The Arduino Uno needs between 2.7 V to 5.5 V [49]

• The Tower-Pro MG90S servos needs between 4.8V to 6V [50]

• The Ustepper S needs between 12 V to 42V [30]

• The IMU needs 3V to 5V depending on the connection pin. [37]

This is the test with a multi-meter, the reason for measuring these power supplies can be
regulated, this will ensure that there is less likely to burn components.

10.1.2 IMU - Pitch

The pitch that was calculated from the IMU, needs to be validated, this is done by placing
the Hybrid Robot prototype at various angles that were measured by an angles measure-
ment device. The measurement and the calculated pitch are correlated, if the difference is
less than 0.5 % it is accepted.

65

66 Chapter 10. Testing

Figure 10.1: This is a figure of the Hybrid Robot, where the positive direction of x is marked with the white
arrow.

10.1.3 Motor Control

The control of the motors through the Ustepper was tested by setting the input of the
function setRPM, this function was implemented by the Ustepper company. Using the
Arduino IDE’s serial monitor to set the RPM of the wheel, the speeds were measured
by a tachometer. The tachometer used during all tests is named AdventOptial A2103[51]
Tachometer from the company Compact. Besides the test of control of the motors’ speed,
the motor spins directions are also tested so that it can decipher which direction the motor
shaft has to spin.

• -600 RPM

• -300 RPM

• -100 RPM

• 0 RPM

• 100 RPM

• 300 RPM

• 600 RPM

10.1.4 Odometry

The position of the Hybrid Robot is only tested in the x-direction of the cart, as seen in the
figure 10.1, the test is done by moving the cart 2 meters forward and backward 5 times in
total, this means the Hybrid Robot has moved 20 meters in total. The data is recorded in
a rosbag file for documentation. The test will be considered a success if the odometry is
within 5% of the expected value, which is +2 meters in the x-direction.

67 Chapter 10. Testing

10.1.5 Hybrid Robot Velocity

The angular velocity of the wheels was tested by commanding the motor controller to
run at various velocity clockwise and counter-clockwise on the wheel to be tested. The
velocities were set in RPM and the wheel velocity is measured by a tachometer, used at
the center of the wheel axis. It was also displayed trough the encoder that is implemented
in the Ustepper S, the feedback from the encoder and tachometers are then compared.
The velocities were as following:

• -600 RPM

• -300 RPM

• -100 RPM

• 100 RPM

• 300 RPM

• 600 RPM

The test will be validated if the difference between the encoder and the tachometer is less
than 1% overall.

10.1.6 Communication - Topics

Testing the publishing of the topics running within the Hybrid Robot.

• Vel_robot/Set_velocity

• Vel_robot/Current_velocity

• IMU/Pitch

• IMU/angular_velocity

• Odom

• State-machine

10.1.7 Communication - Serial

Testing the serial communications running within the Hybrid Robot, are working and the
data is interpreted correctly. The test was done in both directions from the RPI to the
device and vice versa.

68 Chapter 10. Testing

• Right Motor to RPI4

• RPI4 to Right Motor

• Left Motor to RPI4

• RPI4 to Left Motor

• Breaks(Arduino)

10.1.8 Brakes

This test is to ensure that brakes are applied when receiving a signal and are able to stop
the wheels from turning at speed.

The test is carried out by running the motor up to 300 RPM, and applying the brakes and
stop the supply of current to the motor. This test is carried out on both wheels.

10.2 Experimental Tests

In this section, a test of the sub-systems, such as the Hybrid Robot is validated.

10.2.1 Drive State

The drive state will be tested, by accelerating the Hybrid Robot to the desired velocity that
is needed for the swing-up motion.

10.2.2 Swing-up State

This test will combine the drive state and the brake system. The Hybrid Robot, is acceler-
ated as in the prior test to a desired velocity, after the velocity is obtained, the motor will
be set to zero RPM and the brakes will be applied. If the test is successful, the Hybrid
Robot will swing-up to at least 90 degrees.

10.2.3 Balancing State

The balancing State is tested with three different control methods, PID, State feedback, and
an LQR controller. Testing the PID and the State feedback controller is done by tuning PID
parameters and the K matrix for the state feedback controller until the Hybrid Robot is

69 Chapter 10. Testing

stable and can balance for at least 25 sec. The LQR is tested through the calculated matrix
of the motion equations model.

10.2.4 Catch State

The final test is combining the 2 states, swing-up and balancing. The Hybrid Robot is
in this test manually manipulated by a test person, the test person has to push the back
end of the Hybrid Robot, as seen in the figure 11.12 with enough force to make the robot
swing-up at an angle of 90 degrees. When the pitch of the Hybrid Robot is over 60 degrees
the LQR controller will begin to take effect.

11 - Results and Discussion

This chapter will discuss the testing results and the implementation that was evaluated
concerning the performed test. First, the tests data will be evaluated which respect to the
requirement for the system. After all the test have been evaluated, there will be a general
discussion and evaluation of the whole project.

11.1 Unit Tests

The reason for running these unit test is to discover if any problems is with the basic parts,
that has to work before a test of sub-systems, if trying to test a sub-system with a basic
part not working, it will be harder to find the individual part of the system that is not
working correctly.

11.1.1 Power Supply

The measured voltages can be seen in the table 11.1.

Table 11.1: Table of voltage measured at different components.

Component V
XL6009 for RPI 4.98V

XL6009 for break system 5.9V
Ustepper 16.0V

IMU Gy-91 3.29V

This test was carried out every time a new component was introduce into the system, to
ensure that all components had the proper voltage. Furthermore all wires were checked
over by two persons before turning on the power for the Hybrid Robot, this was to lessen
the opportunity of short circuit. The voltages of the power supply test was found to be in
working order, which means that test is considered validated.

70

71 Chapter 11. Results and Discussion

11.1.2 IMU - Pitch

The pitch of the Hybrid Robot was tested at 5 different angles, 0, 45, 90, 135, and 180
degrees, the results of this test can be seen in graph 11.1.

Figure 11.1: The graph shows the output from testing the pitch in 5 different positions.

Table 11.2: The table shows the minimum, maximum, and mean values of the pitch test.

g Degrees max min mean
0 2.6114 -2.727 -0.12949
45 44.6428 41.5375 43.0846
90 90.0798 85.155 86.9917

135 132.7416 128.5888 131.1409
180 179.8622 175.8305 177.7246

As shown in graph 11.1 and table 11.2 there is a small amount of noise in the measure-

72 Chapter 11. Results and Discussion

ments, the reason for the missing degrees could be the way that the angel of the Hybrid
Robot was measured in the real world, therefor the results a considered valid.

11.1.3 IMU - Angular

The results of testing the IMU gyroscope output against the encoder of the Ustepper can
be seen in the graph 11.2.

Figure 11.2: Results of the angular velocity of the IMU, measured against the encoder data from the Ustepper.

The graph shows that there is a correlation between them, but the two outputs are not the
same in value.

11.1.4 Motor Control

In the test of the motor controller’s ability to reach the desired RPM, the motor controller
was set to run at the given speeds, as seen in table 11.3, after a second it was measured

73 Chapter 11. Results and Discussion

by the AdventOptial A2103 by placing the tip on the end of the shaft of the motor, the
AdventOptial A2103 then displays the measured RPM’s that can be seen in table 11.3.

Table 11.3: This table shows the test results of motor control, RPM commanded is the input that is specified by
the user and RPM motor output is the RPM measured by the AdventOptial A2103[51].

RPM commanded RPM motor output
-600 -599
-300 -300
-100 -100

0 0
100 100
300 300
600 600

The motor control test showed, that it is possible command a certain RPM that the motor
will follow. This test was carried out without any load on the wheels, this means that the
test do not show if the motors are able to move the robot at 600 RPM, but it is at least
possible to set an RPM and the motor controller will try and obtain the specified RPM.

The only RPM that did not reach the desired out put was -600 RPM, one reason for this
could be that the AdventOptial A2103 only shows the RPM’s in integers, meaning it could
be that the RPM’s was around 599,45 and this meant that it rounded down.

11.1.5 Hybrid Robot Velocity

This test is similar to the previous test, instead of measuring RPM with the AdventOptial
A2103, the internal encoder in the Ustepper is tested, the results can be seen in table 11.4.

Table 11.4: This table shows the test results of out from the encoder implemented in the Ustepper[30].

RPM commanded RPM encoder output
-600 -599.51
-300 -299.78
-100 -100.01
100 100.12
300 299.56
600 599.45

The results from the encoders were found to produce a small amount of noise at steady
RPM, which could lead to a difference in the odometry out of the system.

74 Chapter 11. Results and Discussion

11.1.6 Odometry

The results can be seen in the graph 11.5, the results are acquired by moving the Hybrid
Robot forwards and backward two meters five times, as seen in figure 11.3,11.4.

Figure 11.3: Start position in the odometry test. Figure 11.4: End position in the odometry test.

The graph 11.5 shows that at the end of the test, the odometry showed that the y compon-
ent was 0 as well as the angel of the Hybrid Robot, this is also what was expected from
the test. The x component ended up at 1.98 meters, which is less than 5% of the expected
result of 2.0 meters. A reason for the missing distance could be due to the slip of the
wheels on the ground and noisy measurements from the Ustepper encoder.

Figure 11.5: The results from the test of the odometry implemented on the Hybrid Robot.

The odometry did not hit 2 meters exactly, it came within 1% of the expected result of 2
meters.

75 Chapter 11. Results and Discussion

11.1.7 Communication - ROS Communication

During the test of the communication between nodes, it was found that some nodes were
not receiving any response from the ROS publisher, a reason for this was a typo in the
topic name. The result of the ROS communication showed that all nodes were able to
transmit and receive the messages, that are needed for the individual nodes and nodelets.

11.1.8 Communication - Serial

This test was a success as the data transmitted between Usteppers and RPI was transmitted
and received correctly, the same goes for the data from the RPI to the Arduino Uno is also
working as indented.

11.1.9 Brakes

The results from the brake test showed that the wheels were able to stop within less than
1 sec, which is much quicker than using the motors as brakes. This also lead to lowering
of the operating temperature of the motor controller board.

11.2 Testing of the Experimental Hybrid Robot System

The test in this section was recorded by video, the different controllers also have a rosbag
recording of the output from the system. These rosbags were not recorded during the
driving and swing-up state.

11.2.1 Drive State

The first test, of the drive-state, showed that there was a need for reducing the weight of
the Hybrid Robot, in that the robot could not move, without the aid of a person to push
the robot along. After the reduction of the weight, the test was carried out again, the robot
was able to reach the desired velocity to perform the swing-up phase found in Gazebo.
Moreover, during the driving phase, it was found that the Hybrid Robot, tended to turn
slightly towards the right, which meant that the robot had to align a bit to the left when
starting the test, or else it would hit the walls in the test area. A video of the drive state
can be seen here https://youtube.com/shorts/TgWy4cHKMK0.

This test was pertaining the first requirement in 6.

https://youtube.com/shorts/TgWy4cHKMK0

76 Chapter 11. Results and Discussion

11.2.2 Swing-up State

The swing-up state was tested after it was found that the robot was able to achieve the
given velocity. The test showed that the robot was able to swing-up and go over the 90
degree minimum and land on the other side. This showed that if it is possible to flip
it over, it is possible to end the swing-up motion close to the objective of 90 degrees
applying less power. A video combing the drive state and the swing-up state can be seen
here https://youtube.com/shorts/3fAE0ZCKVyY?feature=share.

11.2.3 Balancing State

In this section, the results of the different controllers used to balance the Hybrid Robot in
an inverted pendulum state are discussed. In this section, the prototype is changed, and a
counterweight is installed to counteract the components that are placed on onside of the
Hybrid Robot.

This test was pertaining the second requirement in 6.

PID control The test of the PID controller with different parameters was done many
times, the result seen in graph 11.6,11.7, is the one that the team behind the project found
work the best. The PID controller was able to balance the Hybrid Robot for a duration
of just 10 seconds. A video of the PID controller can be seen here https://youtu.be/
zD7ouL_Wdcg.

Figure 11.6: Result of the PID test, this graph is only
showing the position and linear velocity.

Figure 11.7: Result of the PID test, this graph is only
showing the pitch and the angular rate.

State-feedback control The State-feedback controller was tested many times, in each
test one of the four parameters was tuned, the parameters are pitch, angular rate, linear
velocity, and position, the best result can be seen in the graphs 11.8, 11.9. The result shows
that the state-feedback controller increased the control-ability of the Hybrid Robot, and
increased the balancing to 12 seconds. A video of the state-feedback controller can be seen
here https://youtube.com/shorts/Zv3CVIF6Pl0.

https://youtube.com/shorts/3fAE0ZCKVyY?feature=share
https://youtu.be/zD7ouL_Wdcg
https://youtu.be/zD7ouL_Wdcg
https://youtube.com/shorts/Zv3CVIF6Pl0

77 Chapter 11. Results and Discussion

Figure 11.8: Result of the State-feedback test, this graph
is only showing the position and linear velocity.

Figure 11.9: Result of the State-feedback test, this graph
is only showing the pitch and the angular rate.

LQR control The LQR parameters were derived from the real world physical in Matlab,
these parameter were then implemented in the controller. The result of that test can be
seen in the graphs 11.10, 11.11.

Figure 11.10: Result of the LQR test, this graph is only
showing the position and linear velocity.

Figure 11.11: Result of the LQR test, this graph is only
showing the pitch and the angular rate.

It shows a great increase over the two other controllers tested, by doubling the duration
that the Hybrid Robot is able to balance. Although at first glance of the graphs of the LQR
is moving more erratic, but to the better balancing the scale of the LQR is off compared to
the other controllers.

This test was pertaining the third requirement in 6.

A video of the LQR controller can be seen here https://youtube.com/shorts/xbFDzqCOYbU.

11.2.4 Catch

To test if the controllers can stabilize to Hybrid Robot after a swing-up motion is per-
formed, the swing-up state was done manually by a person that gives the Hybrid Robot
an initial kick, as seen in the figure-11.12, such that it would go towards the inverted
pendulum shape, as seen in the figure 11.13. This initial kick was hard to manage, but
after many attempts, it was possible to be more consistent in where the Hybrid Robot
ended up. The reason for doing this manually was that the acceleration and running of
the Hybrid Robot was infeasible, due to the distance that Hybrid Robot had to travel to
have enough velocity to do the swing-up motion.

https://youtube.com/shorts/xbFDzqCOYbU

78 Chapter 11. Results and Discussion

Figure 11.12: Here the Hybrid Robot is pushed up
manually, to perform a swing-up motion with out mov-
ing the Hybrid Robot.

Figure 11.13: Here the Hybrid Robot is trying to balance
after the initial swing-up motion done manually by a
test person.

It was found while testing that the motors had a hard time following the controller, one of
the reasons for this could be that it has to counter act the up swing of the Hybrid Robot
and this leads to the saturation of how fast the motors can accelerate without losing the
magnetic field.

One test showed promise in that, the Hybrid Robot was able to balance for a couple of
seconds, this was using the LQR controller, a video of this can be seen here https:
//youtu.be/j2J-NO6jLVg.

This test was pertaining the fourth requirement in 6.

https://youtu.be/j2J-NO6jLVg
https://youtu.be/j2J-NO6jLVg

12 - Conclusion

This project investigated: How can a hybrid robot between a car and a Segway be con-
structed to allow transition between the two modes of operation with a fixed body.
Through the simulation, it was found that it was possible to make a 4-wheel cart, perform
a swing-up motion and end up at an inverted pendulum state. To perform this swing-up
motion, it was found that the wheels that would do the braking force was required to have
high inertia, to help swing up the cart.

After it was found to be possible in simulation to do the swing up motion, the motors and
the motor controller that would be used to drive the Hybrid Robot have to be selected,
this was done based on the torque found in simulation. Due to limited funding, it was
not possible to get a motor that could produce the amount of torque, the motor chosen
was readily available, from most electronic shops. The motor controller, was the expensive
part, first an attempt to make a stepper controller was tried out to save money, but this
was a time-consuming task, therefor a request to get more money to buy a controller, this
controller the Ustepper also had the benefit of having extra sensor the encoder, which is
used to find the shafts position and rotational speed.

During testing it was found that the motors could not drive the Hybrid Robot in what
was its current state, it was too heavy therefore a second design was made around the
motors selected, which allow the Hybrid Robot to accelerate to the desired velocity. After
being able to accelerate it was found that the motors were not able to stop the robot hard
enough to make the Hybrid Robot do the swing-up motion, therefor a set of brakes was
implemented, now the Hybrid Robot was able to swing-up.

While testing the inverted pendulum state, it was found that the motors had trouble to
move fast enough the wheels to the control inputs due to the high inertia of the wheels,
this lead to the use of lighter wheels in the inverted pendulum state, these wheels were in
the same dimension as the one that they substituted. This made the Hybrid Robot motors
able to follow the changes from the PID, State feedback, and LQR controller.

The test of the Hybrid Robot where it has to catch itself in the swing-up state showed that
the motors with the lighter wheels were not able to stabilize due to the low torque. This
leads to the conclusion that it is possible to build a Hybrid Robot between a car and a
Segway but it still needs some design optimization and different electronic components.

79

13 - Future Works

This chapter goes over some ideas that were thought about but could not be implemented
due to the limited amount of time for this single project.

• The robot to control is a highly non-linear system and all the control methods imple-
mented in this project are designed to work on linear systems. Great improvements
on the control would be using a control method that allowed a non-linear model as
it can be an MPC which can also include more detailed limits and constraints.

• A high limiting factor has been the motors used to move and control the robot as
they did not have enough torque to perform correctly some of the motions that are
needed. For example, it needs a lot of distance to get the needed velocity to brake
and flip due to the fact the motor can not accelerate fast enough. The other example
is that when it is stabilizing and the robot tries to move fast to recover it cannot do
it. To solve this, it is needed to obtain motors with higher torque to be able to handle
the correct control.

• The design of the Hybrid Robot has been done from scratch. That means that it
still needs a lot of iteration and time to achieve an optimal design. Some of the key
points are to be able to distribute all the electronic components so the center of mass
is located in the center of the vertical and uniformly distributed.

Figure 13.1: Diagram of the ideal position of the center of mass of the robot.

• A good thing to always improve is the accuracy of the sensors. Even with a perfect
controller, if the sensors are not good, it will be very complicated to control correctly
the robot. So, a key to improving the performance is to improve the sensors.

• Another long-term project would be to implement a closer model to the one de-
scribed in the paper [14]. That would include covering the ability of the robot to
jump. This could be performed by using a spring to launch a mass that would pro-
duce enough force to bring the robot with it. That mass could be part of the body
with a prismatic joint.

• Another feature would be to have the model in a 3D space so it could move in all
directions and turn.

80

Bibliography

[1] The Editors of Encyclopaedia Britannica. simple machine. https://www.
britannica.com/technology/simple-machine. (accessed: 04.05.2022).

[2] Robot Platform. Wheeled robots. http://www.robotplatform.com/
knowledge/Classification_of_Robots/Types_of_robot_wheels.html.
(accessed: 04.05.2022).

[3] Palak Purohit, Poojan Modi, and Udit Vyas. Kinematic control of 2-wheeled segway.
2021.

[4] Mordechai. Ben-Ari. Elements of Robotics. Springer International Publishing, Cham,
1st ed. 2018. edition, 2018.

[5] Steven M LaValle. Differential drive. http://planning.cs.uiuc.edu/
node659.html.

[6] Robot Platform. Wheel control theory. http://www.robotplatform.com/
knowledge/Classification_of_Robots/wheel_control_theory.html.

[7] Benjamin Shamah. Experimental comparison of skid steering vs. explicit steering for
wheeled mobile robot,” m.sc, 1999.

[8] Whitsunday Segway Tours. What is a segway? https://www.
whitsundaysegwaytours.com.au/whatisasegway. (accessed: 11.05.2022).

[9] IEEE Robots. Segway. https://robots.ieee.org/robots/segway/. (accessed:
11.05.2022).

[10] Ascento Robotics. Ascento. https://www.ascento.ch/.

[11] Jeffrey Delmerico, Stefano Mintchev, Alessandro Giusti, Boris Gromov, Kamilo Melo,
Tomislav Horvat, Cesar Cadena, Marco Hutter, Auke Ijspeert, Dario Floreano,
Luca M. Gambardella, Roland Siegwart, and Davide Scaramuzza. The current state
and future outlook of rescue robotics. Journal of Field Robotics, 36(7):1171–1191, 2019.

[12] Jeongsoo Lim, Hyoin Bae, Jaesung Oh, Inho Lee, Inwook Shim, Hyobin Jung, Hyun-
Min Joe, Okkee Sim, Taejin Jung, Seunghak Shin, Kyungdon Joo, Mingeuk Kim,
Kangkyu Lee, Yunsu Bok, Dong-Geol Choi, Buyoun Cho, Sungwoo Kim, Jungwoo
Heo, Inhyeok Kim, and Jun-Ho Oh. Robot system of DRC-HUBO+ and control strategy
of team KAIST in DARPA robotics challenge finals, pages 27–69. 04 2018.

[13] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai,
Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based
locomotion planning, estimation, and control design for the atlas humanoid robot.
Autonomous Robots, 40, 07 2015.

81

https://www.britannica.com/technology/simple-machine
https://www.britannica.com/technology/simple-machine
http://www.robotplatform.com/knowledge/Classification_of_Robots/Types_of_robot_wheels.html
http://www.robotplatform.com/knowledge/Classification_of_Robots/Types_of_robot_wheels.html
http://planning.cs.uiuc.edu/node659.html
http://planning.cs.uiuc.edu/node659.html
http://www.robotplatform.com/knowledge/Classification_of_Robots/wheel_control_theory.html
http://www.robotplatform.com/knowledge/Classification_of_Robots/wheel_control_theory.html
https://www.whitsundaysegwaytours.com.au/whatisasegway
https://www.whitsundaysegwaytours.com.au/whatisasegway
https://robots.ieee.org/robots/segway/
https://www.ascento.ch/

82 Bibliography

[14] Traiko Dinev, Songyan Xin, Wolfgang Merkt, Vladimir Ivan, and Sethu Vijayakumar.
Modeling and control of a hybrid wheeled jumping robot. 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2020.

[15] Robin Murphy, Satoshi Tadokoro, Daniele Nardi, Adam Jacoff, Paolo Fiorini, Howie
Choset, and Aydan Erkmen. Search and Rescue Robotics, pages 1151–1173. 01 2008.

[16] Corina Warfield. The disaster management cycle. https://www.gdrc.org/uem/
disasters/1-dm_cycle.html.

[17] Manuel A. Roehrl, Thomas A. Runkler, Veronika Brandtstetter, Michel Tokic, and
Stefan Obermayer. Modeling system dynamics with physics-informed neural net-
works based on lagrangian mechanics. CoRR, abs/2005.14617, 2020.

[18] Gene Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dynamic Systems-
Third Edition. 12 2021.

[19] Wolfram MathWorld. Matrix inverse. https://mathworld.wolfram.com/
MatrixInverse.html.

[20] Iván D. Díaz-Rodríguez. Analytical Design of PID Controllers. Springer International
Publishing, Cham, 1st ed. 2019. edition, 2019.

[21] M. Sami Fadali and Antonio Visioli. Digital Control Engineering: Analysis and Design.
Elsevier Science & Technology, San Diego, 2012.

[22] Russ Tedrake. Underactuated Robotics. 2022.

[23] eigenvalue, 2020.

[24] Gene F. Franklin. Feedback control of dynamic systems. Pearson Education Limited,
Harlow, England, eighth edition. edition, 2020.

[25] Roger A. Horn. Matrix analysis. Cambridge University Press, Cambridge, 1985.

[26] myhobby cnc.de. High torque hybrid stepping motor. https://shop.
myhobby-cnc.de/media/pdf/af/ee/4f/nema17.pdf. (accessed: 13.05.2022).

[27] etechnophiles. Guide to nema 17 stepper motor dimen-
sions, wiring pinout. https://www.etechnophiles.com/
guide-to-nema-17-stepper-motor-dimensions-wiring-pinout/
#specifications-of-nema-17. (accessed: 13.05.2022).

[28] RS-online. The complete guide to dc motors. https://ie.rs-online.com/
web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide.
(accessed: 13.05.2022).

[29] Carmine Fiore. Stepper motors basics: Types, uses, and working principles. https:
//www.monolithicpower.com/stepper-motors-basics-types-uses. (ac-
cessed: 13.05.2022).

[30] Ustepper. usteppers github documentation. https://github.com/uStepper/
uStepperS. (accessed: 08.05.2022).

https://www.gdrc.org/uem/disasters/1-dm_cycle.html
https://www.gdrc.org/uem/disasters/1-dm_cycle.html
https://mathworld.wolfram.com/MatrixInverse.html
https://mathworld.wolfram.com/MatrixInverse.html
https://shop.myhobby-cnc.de/media/pdf/af/ee/4f/nema17.pdf
https://shop.myhobby-cnc.de/media/pdf/af/ee/4f/nema17.pdf
https://www.etechnophiles.com/guide-to-nema-17-stepper-motor-dimensions-wiring-pinout/#specifications-of-nema-17
https://www.etechnophiles.com/guide-to-nema-17-stepper-motor-dimensions-wiring-pinout/#specifications-of-nema-17
https://www.etechnophiles.com/guide-to-nema-17-stepper-motor-dimensions-wiring-pinout/#specifications-of-nema-17
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
https://www.monolithicpower.com/stepper-motors-basics-types-uses
https://www.monolithicpower.com/stepper-motors-basics-types-uses
https://github.com/uStepper/uStepperS
https://github.com/uStepper/uStepperS

83 Bibliography

[31] mae.ufl.edu. Friction coefficients between different wheel/tire materials and con-
crete. https://mae.ufl.edu/designlab/Class%20Projects/Background%
20Information/Friction%20coefficients.htm. (accessed: 13.05.2022).

[32] raspberry pi. raspberry pi bcm2711 arm peripherals. https://datasheets.
raspberrypi.com/bcm2711/bcm2711-peripherals.pdf. (accessed:
11.05.2022).

[33] https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.
pdf, JUN 2019. (accessed: 08.02.2022).

[34] seedstudio.com. Raspberry pi 4 vs. 3. https://www.seeedstudio.com/blog/
2019/09/30/raspberry-pi-4-vs-pi-3-all-the-major-differences/.
(accessed: 11.05.2022).

[35] https://www.ubiquityrobotics.com/downloads-raspberry-pi/, JUN
2019. (accessed: 08.02.2022).

[36] https://learn.ubiquityrobotics.com/, JUN 2019. (accessed: 08.02.2022).

[37] Plexsihop.it. Gy-801. https://www.plexishop.it/en/
10-axis-gy-801-module-gyroscope-accelerometer-magnetometer-pressure-sensor.
html. (accessed: 09.05.2022).

[38] XLSEMI. 400KHz 60V 4A switching current boost / buck-boost / invert-
ing dc/dc converter. https://www.haoyuelectronics.com/Attachment/
XL6009/XL6009-DC-DC-Converter-Datasheet.pdf. (accessed: 11.05.2022).

[39] ArduinoTech. xl6009 dc-dc adjustable step power converter. https://
arduinotech.dk/shop/xl6009-dc-dc-adjustable-step-power-converter/.
(accessed: 11.05.2022).

[40] Robot Operating System (ROS) The Complete Reference (Volume 3). Studies in Com-
putational Intelligence, 778. Springer International Publishing, Cham, 1st ed. 2019.
edition, 2019.

[41] Gazebo. Gazebo. https://gazebosim.org/home. (accessed: 14.05.2022).

[42] ROS Wiki. urdf. http://wiki.ros.org/urdf. (accessed: 14.05.2022).

[43] Marc B. Reynolds. xacro. http://wiki.ros.org/xacro. (accessed: 15.05.2022).

[44] ROS Wiki. Converting to euler & tait-bryan. http://marc-b-reynolds.github.
io/math/2017/04/18/TaitEuler.html. (accessed: 19.05.2022).

[45] tomstewart89. Statespacecontrol. https://github.com/tomstewart89/
StateSpaceControl.

[46] James Chen. Heuristics. https://www.investopedia.com/terms/h/
heuristics.asp. (accessed: 26.05.2022).

[47] ros-mobile robots.com. Odometry. https://ros-mobile-robots.com/theory/
modeling-control/odometry/. (accessed: 13.05.2022).

[48] Raspberry pi foundation. RPI4 Datasheet. https://datasheets.raspberrypi.
com/rpi4/raspberry-pi-4-datasheet.pdf. (accessed: 08.05.2022).

https://mae.ufl.edu/designlab/Class%20Projects/Background%20Information/Friction%20coefficients.htm
https://mae.ufl.edu/designlab/Class%20Projects/Background%20Information/Friction%20coefficients.htm
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://www.seeedstudio.com/blog/2019/09/30/raspberry-pi-4-vs-pi-3-all-the-major-differences/
https://www.seeedstudio.com/blog/2019/09/30/raspberry-pi-4-vs-pi-3-all-the-major-differences/
https://www.ubiquityrobotics.com/downloads-raspberry-pi/
https://learn.ubiquityrobotics.com/
https://www.plexishop.it/en/10-axis-gy-801-module-gyroscope-accelerometer-magnetometer-pressure-sensor.html
https://www.plexishop.it/en/10-axis-gy-801-module-gyroscope-accelerometer-magnetometer-pressure-sensor.html
https://www.plexishop.it/en/10-axis-gy-801-module-gyroscope-accelerometer-magnetometer-pressure-sensor.html
https://www.haoyuelectronics.com/Attachment/XL6009/XL6009-DC-DC-Converter-Datasheet.pdf
https://www.haoyuelectronics.com/Attachment/XL6009/XL6009-DC-DC-Converter-Datasheet.pdf
https://arduinotech.dk/shop/xl6009-dc-dc-adjustable-step-power-converter/
https://arduinotech.dk/shop/xl6009-dc-dc-adjustable-step-power-converter/
https://gazebosim.org/home
http://wiki.ros.org/urdf
http://wiki.ros.org/xacro
http://marc-b-reynolds.github.io/math/2017/04/18/TaitEuler.html
http://marc-b-reynolds.github.io/math/2017/04/18/TaitEuler.html
https://github.com/tomstewart89/StateSpaceControl
https://github.com/tomstewart89/StateSpaceControl
https://www.investopedia.com/terms/h/heuristics.asp
https://www.investopedia.com/terms/h/heuristics.asp
https://ros-mobile-robots.com/theory/modeling-control/odometry/
https://ros-mobile-robots.com/theory/modeling-control/odometry/
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

84 Bibliography

[49] Arduino. Arduino datasheet. https://docs.arduino.cc/resources/
datasheets/A000066-datasheet.pdf. (accessed: 08.05.2022).

[50] Metal Gear. Mg90s datasheet. https://datasheetspdf.com/pdf-file/
1106582/ETC/MG90S/1. (accessed: 08.05.2022).

[51] Compact. Advent professional optical/contact tachometers a2103. https://docs.
rs-online.com/81c4/A700000007190985.pdf. (accessed: 09.05.2022).

https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://datasheetspdf.com/pdf-file/1106582/ETC/MG90S/1
https://datasheetspdf.com/pdf-file/1106582/ETC/MG90S/1
https://docs.rs-online.com/81c4/A700000007190985.pdf
https://docs.rs-online.com/81c4/A700000007190985.pdf

A - Github Appendix

The code that has been created in this project can be found a at GitHub at this hyperlink
https://github.com/ipujol10/hybrid_robot

85

https://github.com/ipujol10/hybrid_robot

B - Movies Appendix

Video of test of driving mode https://youtube.com/shorts/TgWy4cHKMK0.

Video of test of swing-up mode using the brakes https://youtube.com/shorts/
3fAE0ZCKVyY?feature=share.

Video of test of balancing mode using PID https://youtu.be/zD7ouL_Wdcg.

Video of test of balancing mode using State feedback control https://youtube.com/
shorts/Zv3CVIF6Pl0.

Video of test of balancing mode using Linear–quadratic regulator https://youtube.
com/shorts/xbFDzqCOYbU.

Video of test of combining balancing mode and the swing-up mode https://youtu.
be/j2J-NO6jLVg.

86

https://youtube.com/shorts/TgWy4cHKMK0
https://youtube.com/shorts/3fAE0ZCKVyY?feature=share
https://youtube.com/shorts/3fAE0ZCKVyY?feature=share
https://youtu.be/zD7ouL_Wdcg
https://youtube.com/shorts/Zv3CVIF6Pl0
https://youtube.com/shorts/Zv3CVIF6Pl0
https://youtube.com/shorts/xbFDzqCOYbU
https://youtube.com/shorts/xbFDzqCOYbU
https://youtu.be/j2J-NO6jLVg
https://youtu.be/j2J-NO6jLVg

C - Schematics

Figure C.1: This is the schematics of how the hardware components are connected in this project

87

D - Node Communication

Figure D.1: This figure illustrate the communication between nodes in this project.

88

E - Model Values

In this appendix there is going to be listed the values used on the model that in the end
leads to the matrices in the section 7.2.2:

Variable Value Units
d 0.03773 m

mw 0.1918 kg
mb 0.9792 kg
g 9.81 m/s2

Iw 7.2229e-4 kg m2

Ib 7.3246e-2 kg m2

R 0.075 m

Table E.1: Summary of the values used on the model.

89

	Front page
	Title Page
	Contents
	Abbreviation

	1 Introduction
	1.1 Problem formulation

	2 Problem analysis
	2.1 Background

	3 State of the Art
	3.1 Ascento
	3.2 DRC-HUBO+
	3.3 Hybrid Wheeled Jumping Robot
	3.4 Conclusion

	4 Delimitations
	5 Final Problem Formulation
	6 Requirements
	6.1 Requirements

	7 Technical Analysis
	7.1 System Motion Equations
	7.2 Linearization
	7.3 Control Methods

	8 Implementation and Design of the Hardware
	8.1 Body of the Hybrid Robot
	8.2 Motor and Motor-Controller
	8.3 Wheels
	8.4 Brakes
	8.5 Electronic components

	9 Implementation and Design of the Software
	9.1 Model Simulation
	9.2 Simulation Implementation
	9.3 Controller Implementation
	9.4 Real World Implementation

	10 Testing
	10.1 Unit Tests
	10.2 Experimental Tests

	11 Results and Discussion
	11.1 Unit Tests
	11.2 Testing of the Experimental Hybrid Robot System

	12 Conclusion
	13 Future Works
	Bibliography
	A Github Appendix
	B Movies Appendix
	C Schematics
	D Node Communication
	E Model Values

