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Summary

Few-shot object detection (FSOD), which is the task of detecting novel objects using very few annotated examples, is a
highly desirable feature for vision systems. However, even though it has received significant interest from researchers, it still
remains a challenge for modern systems. Research within FSOD has revealed that good feature embeddings are essential for
detectors to have a good performance.

Current methods in FSOD leave the available data underutilized. Recent studies in computer vision have shown image
data contains hierarchical data that Euclidean space, the common approach for embedding data, cannot properly model.
Additionally, most current methods focus on learning each class individually, leaving the information on inter-class and
intra-class relations mostly unutilized. FSOD is a data-scarce scenario, where leaving any data unutilized can lead to missed
opportunities for significant performance gains. We improve performance by utilizing the previously unutilized data.

An alternative method to Euclidean space is hyperbolic space, which is a space with constant negative curvature and has
shown to better capture the latent hierarchies of the data. Hyperbolic space in FSOD is still a relatively new subject that has
not been fully explored. Most of the works regarding hyperbolic space have mainly been in Natural language processing or
computer vision tasks, such as zero-shot and few-shot classification.

Another approach to improve the feature embedding is using contrastive learning, which improves the embeddings in the
feature space by making objects of the same class more compact and objects of different classes more distant from each other.
A combination of contrastive learning and hyperbolic space has been seen utilized in recent work for graph representation
learning but it is still unexplored in FSOD.

This paper proposes Hyperbolic and Contrastive Embedding using Decoupling with Baby Learning (HyCo-DeB) a novel
few-shot object detector that taps into the unexploited potential found in data for FSOD by using a combination of hyperbolic
space and contrastive learning. We propose a novel hyperbolic classification head, where extracted features are mapped
into hyperbolic space, to better encode the hierarchical features of the data, and during the fine-tuning stage, a contrastive
head is also introduced to boost intra-class similarity and inter-class difference. However, adding these two heads results in
increased complexity on top of the impact of using transfer-learning, due to object variance causes the adaption to the novel
dataset to be difficult. To address this, HyCo-DeB utilizes Baby Learning, which initially reduces the object variance and
allows it to increase the learning complexity gradually when transferred to the novel task. The process of Baby Learning is
to first fine-tune an initial base trained model on a subset of the available examples, resulting in a trained model that is then
used in further fine-tuning on an increased subset, in contrast to the standard fine-tuning stage, which only uses the initial
base trained model for each of the subsequent fine-tuning. Since our model is based on the widely used Faster R-CNN, we
insert a Gradient Decoupled Layer between the backbone and Region Proposal Network (RPN) and another one between the
backbone and RCNN Head to alleviate the conflicts between the class-agnostic RPN and the class-relevant RCNN head. We
also utilize a Hyperbolic Embedded Prototypes Using Transformer module, an offline prototype-based classification module,
to decouple the classification task from the localization task.

For a fair comparison with existing methods, we evaluate our model using the well-established benchmarks Pascal VOC
and Microsoft (MS) COCO. HyCo-DeB achieves state-of-the-art performance on the Pascal VOC benchmark and is on
par with state-of-the-art on the MS COCO benchmark. Specifically, HyCo-DeB outperforms the current state-of-the-art on
Pascal VOC in 11 of the 15 different settings by up to 3.8% mAP50 and achieves second best on the remaining four results.
Additionally, a thorough ablation study is conducted to demonstrate the effectiveness of our different additions in combination
with each other, which shows that all our additions collectively reach the best performance. The ablation study also includes
experiments for the value of our proposed hyperbolic classification head’s hyper-parameters, controlling the degree of the
hyperbolic space’s negative curvature and the embedding dimension. This shows a low negative curvature and keeping the
dimension size of its input vector is optimal.
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Abstract

Detection of novel objects from a few annotated exam-
ples, known as few-shot object detection (FSOD), is highly
desirable and received significant interest from researchers
but remains challenging for modern systems. Research has
shown good feature embedding is key to good performance.
However, many systems still use Euclidean space, although
hyperbolic space better encodes the data’s hierarchical in-
formation. Another way to optimize feature embeddings
is contrastive learning which promotes intra-class similar-
ity and inter-class difference. We propose Hyperbolic and
Contrastive Embedding using Decoupling with Baby Learn-
ing (HyCo-DeB) a novel few-shot object detector that re-
alizes the unused potential in data for FSOD by optimiz-
ing the feature embeddings using hyperbolic space through
a novel hyperbolic classification head and a contrastive
head. HyCo-DeB addresses the increased complexity of
these heads and the transition in transfer-learning by us-
ing Baby Learning, allowing it to first transition to the new
task, then gradually increase the complexity. Being based
on the widely used Faster R-CNN, our model deals with the
conflicts of the class-agnostic RPN and the class-relevant
RCNN head that shares the same backbone and the conflict
in localization and classification by decoupling the mod-
ules. Experiments show HyCo-DeB outperforms the exist-
ing state-of-the-art on the Pascal VOC benchmark and is on
par with state-of-the-art on the MS COCO benchmark.

1. Introduction
Computer vision tasks, such as object detection, have

received a lot of progress in recent years. However, the
success relies upon the availability of large amounts of an-
notated data. Generating all the annotations can be labor-

*Equal contribution.

Figure 1. FSOD performance (mAP50) on Pascal VOC’s novel set
3 for the different shots. The proposed HyCo-DeB achieves state-
of-the-art on all the different shots.

intensive, or collecting large amounts of images for the
area of interest might not even be possible, or extremely
expensive. On the contrary, humans have the ability to
comprehend novel concepts and recognize novel objects us-
ing only limited examples. This human-like capability to
generalize from a few samples is a highly desired qual-
ity for computer vision systems, however, there is still a
large gap between such systems, known as few-shot ob-
ject detectors [37, 41, 4, 60], and traditional object detec-
tors [34, 61, 5]. Research within few-shot object detection
(FSOD) has highlighted the importance of good feature em-
beddings in order to achieve good performance for such de-
tectors.

Images contain hierarchical data that most FSOD mod-
els do not fully utilize as they use Euclidean space, which
has problems modeling hierarchical data, as their embed-
ding space. A better method for encoding hierarchical data
is hyperbolic space, a space with constant negative curva-
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ture, which has been shown to better model the hierarchical
data [25, 36, 22]. Hyperbolic space has already seen suc-
cessful utilization in computer vision tasks [22, 33, 37, 25],
with HEPUT-DeFRCN [37] showcasing its effectiveness in
FSOD. Hyperbolic space can better utilize the hierarchical
data present in image data to improve image representation
leading to better performance.

Most models do not fully utilize the intra-class and inter-
class relations, as they focus on learning good representa-
tions of the classes individually [20, 51, 58]. This means
the models do not take advantage of the information avail-
able on how classes are related or different from each other.
Contrastive learning is a method that takes advantage of
this additional information, by optimizing intra-class sim-
ilarity and inter-class difference, that is, making objects of
the same class more alike and objects of different classes
less alike respectively. Contrastive learning has been uti-
lized in self-supervised and semi-supervised computer vi-
sion tasks [16, 3], and FSCE [47] has adapted contrastive
learning to FSOD. Utilizing contrastive learning makes bet-
ter use of the information available in the limited data in
FSOD.

A common model for FSOD is Faster-RCNN [45], how-
ever, it has conflicts between the class-agnostic Region Pro-
posal Network (RPN) and class-relevant RCNN head, as
well as the different goals of the classification and local-
ization heads, which have a significant impact on train-
ing in a data-scarce scenario like FSOD. Decoupling these
tasks alleviate the conflicts and leads to better learning for
the model. DeFRCN [41] and HEPUT-DeFRCN [37] uti-
lize this approach and have shown improvements over other
methods. Utilizing decoupling, a Faster R-CNN model can
learn better and quicker from the limited amount of data in
FSOD.

Methods for FSOD fall into two approaches meta-
learning, learning to learn, and transfer-learning, which
transfers knowledge from one domain to another. Vu et
al. [49] compared 1-shot, 2-shot, and 3-shot and found
transfer-learning models can have worse performance on 2-
shot and 3-shot, even though they have more data. They
posit this to be due to object variance causing difficulty in
adapting to new data. Inspired by how babies learn, they
propose a new learning mechanism called Baby Learning,
which gradually adapts to instances of new objects by uti-
lizing the previous shots. Baby Learning lets a model learn
the variability of novel data by gradually learning from each
shot.

We present Hyperbolic and Contrastive Embedding us-
ing Decoupling with Baby Learning (HyCo-DeB) to realize
the unused potential in the data. HyCo-DeB is a novel few-
shot object detector that is based on the Faster R-CNN ar-
chitecture using transfer-learning. Our model uses a combi-
nation of hyperbolic space and contrastive learning to better

utilize the hierarchical information and the intra-class and
inter-class information already present in the data. That is, it
uses a novel hyperbolic classification head to better encode
the hierarchical information, and adds a contrastive head
during novel fine-tuning to boost inter-class difference and
intra-class similarity. To address the conflicts in Faster R-
CNN’s architecture, and thus increase the possible contribu-
tion from its better utilization of the data, HyCo-DeB uses
decoupling following [37]. HyCo-DeB also utilizes Baby
Learning reducing the impact object variance has and en-
abling the gradual increase of complexity for k-shot k > 1.
As our model uses transfer-learning, using Baby Learning
also allows it to first transition to the new classes before
gradually learning to generalize these. We show that HyCo-
DeB outperforms state-of-the-art models and shows domi-
nant performance on Pascal VOC for novel set 3, shown in
Figure 1.

Our contributions are summarized as follows:
• We propose HyCo-DeB to optimize the utilization of

the limited data in FSOD by using: hyperbolic space,
contrastive learning, Baby Learning, and decoupling
the Faster R-CNN.

• We conduct a fair comparison with existing methods
which shows that our model achieves state-of-the-art
performance on the Pascal VOC benchmark and is on
par with state-of-the-art on the Microsoft (MS) COCO
benchmark.

• To the best of our knowledge, we are the first to op-
timize the feature representation by combining hyper-
bolic space with contrastive learning in FSOD.

• We propose a novel hyperbolic classification head for
FSOD, to better encode the hierarchical features. This
is, to the best of our knowledge, the first time someone
utilizes hyperbolic space in training a model for FSOD.

• We conduct a comprehensive ablation study to evalu-
ate the performance of our additions in combination
with each other and of the hyper-parameters for our
proposed hyperbolic classification head.

2. Related Work

2.1. Object Detection

Object detection is the computer vision task of locating
and identifying objects in an image. The most common
methods for object detection were previously either two-
stage or one-stage detectors. Two-stage detectors, such as
the ones based on the R-CNN framework [12, 11, 45, 30,
17], are proposal based, which use a module to first gen-
erate region proposals and then perform classification and
bounding-box regression. One-stage detectors, such as the
popular YOLO series [42, 43, 44, 50], are proposal free,
which does not use a module to generate region proposals,
but models the detection as a regression problem and uses
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a single Convolutional Neural Network (CNN) to directly
predict object classes and locations. Typically one-stage de-
tectors have a better inference speed, since they don’t have
an RPN, but are generally not as accurate compared to two-
stage detectors, which are typically slower but reach higher
accuracy.

Recently, models have been utilizing Transformers as
a backbone, for instance, by using the Swin Transformer
[35, 34], or as part of an encoder-decoder architecture, such
as DINO [61], and have achieved top performance on the
COCO val2007 benchmark.

However, in scenarios where a large amount of annotated
data is not available for training, the performance of these
object detector models will fall significantly, since they do
not have sufficient data to establish a good representation of
the object classes’ feature space.

2.2. Few-Shot Object Detection

FSOD aims to solve the limited data problem by first
training the model on abundant data and then fine-tuning
the model on the limited data.

Existing approaches in FSOD fall into one of two
paradigms, meta-learning, which learns learning strategies
to quicker and better adapt to novel concepts, or transfer-
learning, which uses the knowledge gained from training
on other similar tasks and transfers it to the novel task.
Meta-RCNN [58] is a meta-learner that infers class-specific
soft-attention vectors, which are applied to the features in
the predictor head to detect or segment objects of a class.
FSRW [20] uses a feature reweighting scheme, which takes
k-shot samples to create a reweighting vector for target
classes and applies it to obtain class-specific features. These
early meta-learners focus on learning each class individu-
ally, without truly considering the relation between classes.
Meta-DETR [60] is a more recent meta-learner that uti-
lizes inter-class relations to reduce misclassification and en-
hance model generalization, by aggregating query and sup-
port features for all classes simultaneously.

LSTD [2] and TFA [51] are early detectors that follow
the transfer-learning paradigm. LSTD transfers knowledge
from a larger dataset to a smaller dataset by first training
a base model using the base classes and then training a
novel model using base and novel classes as well as the
knowledge gained from training the base model. TFA in-
troduces a two-stage fine-tuning approach wherein in stage
one the model is trained on the base classes, and in stage
two the box predictor is fine-tuned using both base and
novel classes. A more recent approach to transfer-learning
is FSCE [47]. FSCE uses contrastive learning to improve
on the two-stage fine-tuning approach by better utilizing the
information present in the data, that is the intra-class simi-
larity and inter-class difference.

Recently, works like [22] and [25] have shown hyper-

bolic space outperforms Euclidean space in the classifica-
tion and object detection tasks. These successes are at-
tributed to the hierarchical structure inherent in hyperbolic
space and the exponentially growing distance, which better
models properties in the data.

The most recent developments in FSOD include De-
FRCN [41], where the architecture of Faster R-CNN [45]
is adapted to the FSOD setting and decoupled using a
Gradient Decoupled Layer (GDL) and a Prototypical Cal-
ibration Block (PCB). These effectively decouple tasks
that had conflicting goals in the architecture. HEPUT-
DeFRCN [37] further builds on DeFRCN by replacing the
PCB with a Hyperbolic Embedded Prototypes Using Trans-
former (HEPUT) module, which uses a Vision Transformer
and hyperbolic space to create better prototypes.

Contrastive learning and hyperbolic space are both ap-
proaches to improve the embeddings by using inter-class
and intra-class relations and better modeling the data hier-
archy, respectively. Both approaches have seen adaption in
FSOD in the form of FSCE for contrastive learning and
HEPUT-DeFRCN for hyperbolic space, however, the ap-
proaches have not been fully explored.

2.3. Contrastive Learning

Contrastive learning is an approach for semi-supervised
learning models [28, 56, 64], using limited labeled data with
mostly unlabeled data, and self-supervised models [6, 55],
using only unlabeled data. Contrastive learning, introduced
by Hadsell et al. [14], works by dragging positive examples,
e.g. augmentations of the same image, together and pushing
negative examples, e.g. different images, apart.

Recent work in self-supervised and semi-supervised
computer vision has shown great success. MoCo [16] imag-
ines the contrastive task as a dictionary look-up task us-
ing a queue and uses a momentum-based update for the
key encoder. SimCLR [3] combines components from pre-
vious works on contrastive learning into a single unified
framework, which uses data augmentations to define the
contrastive prediction task. While works on contrastive
learning have been focused on self-supervised and semi-
supervised learning, it has also seen success in supervised
learning. SupCon [21] proposes an extension of the con-
trastive loss function, which allows for the use of multiple
positives per image, using object classes to define positive
and negative examples. FSCE [47] adds a contrastive head
to help learn contrast-aware embeddings in FSOD, and like
SupCon proposes a new loss function called Contrastive
Proposal Encoding loss (CPE loss).

Recent work in graph representation learning has utilized
a combination of contrastive learning and hyperbolic space
to better capture hierarchical information. HCGR [13] is
a graph recommender system designed to capture the hier-
archical information that other recommender systems fail
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to capture. HGCL [32] is a framework for graph represen-
tation learning, which implicitly captures the hierarchical
structure by passing node representations through multiple
hyperbolic layers.

We combine contrastive learning and hyperbolic space to
improve the feature representation of HyCo-DeB. By com-
bining both methods we further improve the detector’s abil-
ity to differentiate between classes. To our knowledge, we
are the first to utilize a combination of contrastive learning
and hyperbolic space in FSOD.

2.4. Hyperbolic Space

Hyperbolic space is space with constant negative cur-
vature, in contrast to Euclidean space with no curvature
and spherical space with positive curvature. In hyperbolic
space, the circumference and area of a circle have exponen-
tial growth with radius, whereas in the Euclidean space it
only has linear and quadratic growth. This matches the ex-
ponential growth of the number of leaves seen in tree-like
structures with respect to their depth.

Recently, hyperbolic space has received attention in ma-
chine learning, due to its properties of modeling data to re-
flect complex hierarchical relations between data compared
to Euclidean and spherical space. Early works have mainly
been in Natural language processing (NLP) tasks. This ad-
vantage was demonstrated by [36], which introduces an ap-
proach to capture latent hierarchies, by embedding the ex-
tracted feature into the Poincaré ball model, a representation
of the hyperbolic space, and surpassing Euclidean space in
terms of generalization ability and representation capacity.
Later in [10], hyperbolic versions of multinomial logistic
regression (MLR), feed-forward, and recurrent neural net-
works are introduced, which show to either be on par or
outperform their Euclidean versions. Hyperbolic space was
first introduced to computer vision in [22] by Khrulkov et
al. for few-shot classification and person re-identification
tasks. Khrulkov et al. argue that hierarchical relations be-
tween images are common, this resulted in a prototypical
network that uses hyperbolic embeddings to capture the un-
derlying hierarchy of the visual data, which showed a sub-
stantial boost in performance. Recent works [33, 25] have
also found success and showed improved performance in
using hyperbolic space compared to Euclidean space. Liu
et al. [33], employs hyperbolic embedding in the context of
zero-shot image classification to preserve hierarchical infor-
mation and to capture semantic information of the WordNet
relations, and image features are projected into hyperbolic
space, which is used to perform classification based on the
distance to the embeddings. Lang et al. [25] introduces a
hyperbolic classification head that uses the Lorentz Model,
to represent the hyperbolic space, for two-stage, keypoint-
based, and transformer-based multi-object detection archi-
tectures, which is similar to our use of hyperbolic space,

but in the field of closed-set, long-tailed, and zero-shot ob-
ject detection. A recent work [37] in FSOD, introduces the
HEPUT module, an offline prototype-based classification
module that uses a ViT to extract image features and em-
beds them into hyperbolic space resulting in state-of-the-art
results on the Pascal VOC Benchmark.

Hyperbolic space has not been fully explored in FSOD.
Besides HEPUT-DeFRCN [37], which only uses hyperbolic
space to create hyperbolic embedded prototypes, there have
been no further works utilizing hyperbolic space to create a
classifier in FSOD, leaving the subject understudied. In this
work, we employ hyperbolic space in a hyperbolic classifi-
cation head that uses the Poincaré ball model and also make
use of an offline HEPUT module to take advantage of la-
tent hierarchies within data and thereby improve the feature
representation.

3. Preliminaries
3.1. Hyperbolic Space

The n-dimensional hyperbolic space Hn is a homoge-
neous, simply connected n-dimensional Riemannian mani-
fold with constant sectional negative curvature. A Rieman-
nian manifold (M, g) is a smooth manifold M , defining
notion of closeness, with a Riemannian metric g, defining
inner products for tangent spaces in the manifold. The neg-
ative curvature of hyperbolic spaces means it has different
properties than Euclidean space, e.g. hyperbolic space has
a hierarchical structure.

A common model to represent hyperbolic space in NLP
is the Poincaré ball model, which has also seen use in
computer vision tasks. The Poincaré ball model is de-
fined as (Dn, gD), a n-dimensional manifold Dn = {x ∈
Rn : ||x|| < 1} endowed with the Riemannian met-
ric gD(x) = λ2

xg
E , where λx = 2

1−||x||2 is the con-
formal factor and gE = In is the Euclidean metric ten-
sor. The conformal factor preserves the angles between
different lines in the manifold, and the Euclidean metric
tensor defines the length and angle between tangent vec-
tors. In hyperbolic space, the distance between two points
is measured using a geodesic, which is a curve defining
the shortest path between points in a Riemannian mani-
fold. The geodesic distance for the model is defined as
dD(x, y) = arccosh(1 + 2 ||x−y||2

(1−||x||2)(1−||y||2) ).
Due to the negative curvature, standard Euclidean opera-

tions do not work in hyperbolic space. Instead, one can use
the formalism of Möbius gyrovector spaces, analogous to
Euclidean vector spaces, to generalize standard operations
into hyperbolic space. Part of these hyperbolic operations is
the hyper-parameter c. Given a Poincaré ball model, c mod-
ifies the curvature such that if c = 1 one has the Poincaré
ball model previously described, i.e. Dn = Dn

c , while if
c = 0 one recovers Euclidean space.
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Figure 2. The architecture of HyCo-DeB. The black and red arrows indicate forward and gradient flow respectively. The dashed lines
indicate it only takes place in inference. The yellow modules are trainable during base training and fine-tune, whereas the blue is frozen
during fine-tune. The purple module is a trainable module only inserted and used during fine-tuning. The green module is an offline block
used only during inference.

Möbious addition. Performing addition in the Poincaré
ball model is done using the Möbious addition. Given a pair
of vectors x, y ∈ Dn

c , Möbius addition is defined as:

x⊕c y :=
(1 + 2c⟨x, y⟩+ c||y||2)x+ (1− c||x||2)y

1 + 2c⟨x, y⟩+ c2||x||2||y||2
. (1)

The exponential map. To map vectors from from tan-
gent space TxDn

c
∼= Rn, into hyperbolic space Dn

c , the ex-
ponential function is used, allowing for projection of vec-
tors from Euclidean space Rn into Dn

c .
The exponential map expcx is defined as:

expcx(v) := x⊕c (tanh(
√
c
λc
x||v||
2

)
v√
c||v||

). (2)

3.2. Problem Definition

As in other works [20, 41, 51, 60], we follow the standard
problem definition for FSOD. Let the base dataset Dbase

be a dataset with abundant annotated instances of the base
classes Cbase and let the novel dataset Dnovel be a dataset
with limited annotated instances of the novel classes Cnovel,
where Cbase ∩ Cnovel = ∅. Since we operate in the M-way
K-shot object detection setting, the support set for Dnovel

contains M classes with exactly K examples for each class.
The objective is to leverage the data from Dbase to train a
robust model and generalize it using Dnovel, resulting in a
final model Ffinal that can classify and localize objects of
the Cnovel classes. Using a two-stage fine-tuning approach,
the following equation summarizes the problem definition:

Finit
Dbase⇝ Fbase

Dnovel⇝ Ffinal (3)

where Finit and Fbase is the initial and base trained model
respectively, and Dbase⇝ and Dnovel⇝ represents base training
using Dbase and novel fine-tuning using Dnovel respec-
tively.

4. Hyperbolic and Contrastive Embedding us-
ing Decoupling with Baby Learning

Figure 2 presents the architecture of Contrastive Embed-
ding using Decoupling with Baby Learning (HyCo-DeB).

Our model’s overall architecture extends the widely used
Faster R-CNN [45] architecture which takes an input image
and uses a backbone to extract features generating a feature
map that represents the image. We insert two GDLs [41],
one GDL is placed between the backbone and RPN, and the
other GDL between the backbone and RCNN head. The
two GDLs are used to decouple the conflict between the
class-agnostic RPN and class-relevant RCNN head and will
be further described in Section 4.1.

Taking the output from the GDL placed before the
RCNN head, the RCNN head combines it with the propos-
als from the RPN and first employs Region of Interest (RoI)
pooling for each of the proposals followed by a CNN to
generate fixed-sized feature vectors known as RoI features.

The RoI features are then passed to two heads during
base training and three heads during novel fine-tuning: (1)
a hyperbolic classification head that performs classifica-
tion. This head replaces the standard Euclidean classifi-
cation head, allowing the model to optimize the utilization
of the features due to hyperbolic space’s ability to capture
complex hierarchical relations between data points, this is
described in more detail in Figure 5; (2) a localization head
that predicts the coordinates; (3) a contrastive head, only
used during novel fine-tuning. The contrastive head allows
the model to optimize the feature space such that instances
of the same class should be more alike, while instances of
different classes should be more dissimilar, which is de-
scribed in more detail in Section 4.3.

During inference, the class scores from the hyperbolic
classification head are combined with the class scores from
an offline HEPUT module [37] to improve the classification
performance as the classification and localization within the
model are conflicting tasks, further described in Section 4.1.
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Figure 3. The details of HEPUT. HEPUT is only utilized during inference as indicated by the dashed lines, where the exponential mapping
is given by Eq. (2).

We add Baby Learning which gradually exposes the
model to higher variability in the training data while us-
ing previous knowledge, simplifying the complexity in the
beginning, and slowly increasing its generalization ability,
which is explained in more detail in Section 4.4.

4.1. Decoupling

We perform decoupling on the model by inserting two
GDLs, one between the backbone and the RPN, and one
between the backbone and the RCNN head. We also insert a
HEPUT module to decouple the classification task from the
localization task. The purpose of decoupling our model is to
separate conflicts between modules, which negatively affect
the training of the model and thus might negatively impact
the performance of HyCo-DeB’s realization of the unused
potential in the data. This decoupling is based on DeFRCN
[41] and HEPUT-DeFRCN [37]. We refer to those papers
for the complete details on the two decoupling modules.

GDL, as seen in Figure 4, performs multi-stage decou-
pling on the model, separating conflicts between the class-
agnostic RPN and the class-relevant RCNN head. The
GDL performs a learnable affine transformation on the fea-
ture maps during the forward propagation (the black ar-
rows). During the backward propagation (the red arrows),
the GDL performs gradient decoupling by multiplying the
gradient from subsequent layers with a decoupling coeffi-
cient λ ∈ [0, 1] before passing it to the preceding layer.

The HEPUT module, seen in Figure 3, performs multi-
task decoupling, separating conflicts between the classifi-
cation and localization heads. That is, the position of the
object should have no impact on the classification head but
should have an impact on the localization head. HEPUT is
an offline prototype-based classification module that takes
the proposals and query images from the RCNN head as
input. In a M-way K-shot setting HEPUT takes a support
set consisting of M class labels and K images for each M
class, with one object of the class. Using the support set,
HEPUT uses a feature extractor to generate a feature rep-
resentation of the objects, which are then embedded into
hyperbolic space, using the exponential mapping function
Eq. (2). HEPUT then builds a hyperbolic prototype bank
with one prototype for each of the classes in the support

Affine
Transformation 

Layer

 Gradient

GDL

Feature
Maps

Affine
Feature
Maps

GradientDecoupled
Gradient

Figure 4. The details of the GDL. The black and red arrows indi-
cate forward and gradient flow respectively, and the yellow module
is trainable. λ is the decoupling coefficient.

set. Given a query image and proposals, HEPUT generates
query features using the feature extractor followed by ex-
ponential mapping Eq. (2). The cosine similarity is then
calculated between the hyperbolic query feature and the
corresponding hyperbolic prototype. The cosine similarity
SHEPUT that HEPUT produces is then combined with the
hyperbolic classification head’s score SCLS using weighted
aggregation to obtain the final classification score SFINAL,
defined as:

SFINAL = α · SCLS + (1− α) · SHEPUT (4)

where α is the weighted value for aggregation between
SHEPUT and SCLS .

4.2. Hyperbolic Classification Head

The hyperbolic classification head, shown in Figure 5,
takes the RoI features from the RCNN head and maps them
into the hyperbolic space in which it performs classification.
The hyperbolic space allows our model to better encode the
complex hierarchical structure of the data, in contrast to the
more standard approach that performs classification in Eu-
clidean space.

The Poincaré ball model is used as a representation of
the hyperbolic space, defined as Dn

c = {x ∈ Rn : c||x||2 <
1, c ≥ 0} with a conformal factor of λc

x = 2
1−c||x||2 , where

c is a hyper-parameter used to adjust the degree of negative
curvature.
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Figure 5. Details of the hyperbolic classification head. The yellow
modules are trainable, and the exponential mapping denotes the
function given by Eq. (2).

Our model, more specifically, takes the RoI features and
first applies a linear layer with a hyper-parameter D to
adjust the dimension of the layer. Next, the features are
mapped into hyperbolic space using Eq. (2), where we en-
sure the numerical stability to make the training more stable
following [22]. We specifically restrict the norm to not ex-
ceed 1√

c(1−10−3)
by clipping the norm after applying an ex-

ponential mapping. The model then uses a hyperbolic MLR
layer [10] on the hyperbolic features to perform classifica-
tion, where the Poincaré ball model’s dimension is equal to
D. The output of the hyperbolic classification head is soft-
max class scores.

4.3. Contrastive Head

The contrastive head is parallel to the hyperbolic classifi-
cation head and the localization head and serves to perform
contrastive learning in HyCo-DeB. It optimizes the embed-
ding space resulting in a more robust feature representation
with a tighter cluster for objects of the same class and in-
creased distance between clusters of different classes.

The contrastive head, seen in Figure 6, first takes the
feature vector from the RCNN head and applies a 1-layer
multi-layer-perceptron (MLP) to encode the feature vector
x ∈ R2048 into contrastive feature z with dimension DC ,
which is a hyper-parameter. This is performed since the
similarity between RoI feature vectors can not be measured
directly, because a Rectified Linear Unit (ReLU) activation
function is applied to the RoI feature, and values are there-
fore truncated at zero. Afterward, the model calculates the
CPE loss, Eq. (5), and uses it to improve the intra-class sim-
ilarity and the inter-class difference of the object proposals.
The contrastive head is based on FSCE [47], and we refer
the reader to that paper for the complete details.

Our model only uses the contrastive head during fine-
tuning, where the CPE loss is included in the model’s loss.
The CPE loss is defined as:

LCPE =
1

N

N∑
i=1

f(ui) · Lzi (5)

where f(ui) controls the consistency of proposals using an
Intersection over Union (IoU) threshold, ui denotes the IoU
score with a matched ground-truth bounding box for i-th
region proposal, and Lzi is the supervised contrastive loss,
defined as:

Lzi =
−1

Nyi
− 1

N∑
j=1,j ̸=i

I{yi = yj} ·

log
exp(z̃i · z̃j/τ)∑N

k=1 Ik ̸=i · exp(z̃i · z̃k/τ)
(6)

where N is the number of proposals, τ is the hyper-
parameter temperature, z̃i · z̃j is the cosine similarity be-
tween i-th and j-th region proposal, z̃ denotes the normal-
ized features of z, and yi denotes the label of the ground
truth for i-th region proposal.

4.4. Baby Learning

Inspired by [49], HyCo-Deb is fine-tuned using Baby
Learning. The idea, shown in Figure 7, behind Baby Learn-
ing is to fine-tune a model by training it on a subset of
the available examples, taking the trained model and fur-
ther training it on a larger subset. This process is then re-
peated, gradually increasing the size of the subset until it
contains all the examples in the novel dataset Dnovel. Each
of these subsets contains the same amount of examples for
each class, and a larger subset is a superset of the previous
subset.

Gradually increasing the amount of data, and reusing ex-
isting learned knowledge, allows the model to first adjust
to a new concept without much variability in the data. Af-
ter the model has adapted to the new task, the step-wise
increase in the complexity allows the model to better gen-
eralize. Increasing the total complexity of the novel dataset
Dnovel gradually also deals with the extra introduced com-
plexity of adding the novel hyperbolic classification head
and a contrastive head to HyCo-DeB.

We train by gradually increasing the size of the subsets,
using the subset sizes {1, 2, 3, 5, 10, 30} ≤ K examples of
each class, for a K-shot task. This implies that no Baby
Learning is taking place for a 1-shot task. Our model im-
plements Baby Learning, for K > 1 by using the previous
shot’s model to implement the gradually increasing sets.
For instance, for 2-shot we use the 1-shot trained model,
and for 3-shot we use a 2-shot trained model, and so on.

4.5. Loss Function

The loss function for HyCo-DeB is defined as the fol-
lowing equation:

L = Lrpn(Frpn(Grpn(Fb(x; θb)); θrpn); yrpn) + η ·
Lrcnn(Frcnn(Grcnn(Fb(x; θb)); θrcnn); yrcnn) (7)

where Fb, Frpn, and Frcnn are the backbone, RPN, and
RCNN respectively. The Grpn and Grcnn are the two GDLs
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Figure 6. Details of the contrastive branch. The contrastive head takes the RoI features and encodes them into contrastive RoI features.
To calculate the loss the distances between objects are measured, where objects of the same class are pulled closer together and objects of
different classes are repelled from each other. This results in improving the intra-class similarity and the inter-class difference.
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(b) With Baby Learning
Figure 7. Fine-tuning without (a) or with Baby Learning (b). In normal fine-tune the model is initialized and trained on the whole support
set. In fine-tune with Baby Learning, the model is first trained on a initial model in a 1-shot setting, then this model is retrained on
increasing number of shots.

inserted between either the RPN or the RCNN and the back-
bone, which performs an affine transformation during for-
ward propagation. The yrpn along with yrcnn are ground
truths and θb, θrpn, and θrcnn are learnable parameters for
the backbone, RPN, and RCNN respectively.

Lrpn is the loss of the proposals for the localization
and classification, where classification is whether or not
a proposal is an object. Lrcnn is during base training
Lrcnn = Lcls+Lloc, while during fine-tuning it is Lrcnn =
Lcls+Lloc+LCPE . Lcls and Lloc are the loss of the hyper-
bolic classification head and localization head respectively,
both are regression losses, and LCPE is the loss of the con-
trastive head described in Section 4.3. The hyper-parameter
η controls the balance between Lrpn and Lrcnn.

5. Experiments

5.1. Datasets

For a fair comparison, we use the well-established
benchmarks for FSOD and evaluate our model on the Pas-
cal VOC [8, 7] and MS COCO [31] datasets following the
standard [20]. Moreover, the reported results of our model
are also averaged over 10 runs.

Pascal VOC. We follow the standard setup, dividing the
overall 20 classes in Pascal VOC into 15 base classes and 5
novel classes, using the same 3 base/novel splits. For each
run, we sample K = 1, 2, 3, 5, 10 objects for each novel
class, where K is the number of shots. The model is trained
on VOC07+12 training and validation datasets and evalu-
ated on the VOC07 test dataset. We first train the model
using the base data and then fine-tune on the novel data.
For the evaluation, we follow the standard taking the mean
Average Precision (mAP) at an IoU threshold of 0.5 for the
novel classes, which we refer to as mAP50.

MS COCO. Following the standard approach, out of MS
COCO’s 80 classes, the 60 classes that are disjoint with
Pascal VOC are used as base classes while the remaining
20 are used as novel classes with K = 1, 2, 3, 5, 10, 30.
The model is evaluated using 5,000 images from the MS
COCO 2014 validation set, while the remaining validation
set combined with the MS COCO 2014 training set is used
for training the model. We first train on the base data
and then fine-tune on novel data. The evaluation follows
the standard MS COCO evaluation metric, which takes the
mAP, for the novel classes, averaged over the IoU thresh-
olds 0.5, 0.55, ..., 0.95 and we refer to this as mAP.
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Novel Set 1 Novel Set 2 Novel Set 3Method / Shots Avg. over
multiple runs 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [20] ✗ 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
Meta R-CNN [58] ✗ 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
FSOD-KT [23] ✗ 27.8 41.4 46.2 55.2 56.8 19.8 27.9 38.7 38.9 41.5 29.5 30.6 38.6 43.8 45.7
TFA w/ cos [51] ✗ 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
TFA w/cos + Halluc [62] ✗ 45.1 44.0 44.7 55.0 55.9 23.2 27.5 35.1 34.9 39.0 30.5 35.1 41.4 49.0 49.3
Retentive R-CNN [9] ✗ 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
CORPNs w/ cos [63] ✗ 44.4 38.5 46.4 54.1 55.7 25.7 29.5 37.3 36.2 41.3 35.8 41.8 44.6 51.6 49.6
NP-RepMet [59] ✗ 37.8 40.3 41.7 47.3 49.4 41.6 43.0 43.4 47.4 49.1 33.3 38.0 39.8 41.5 44.8
CoRPNs w/ cos + Halluc [62] ✗ 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6
MPSR [54] ✗ 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
cos-FRCN+CGDP+FRCN [29] ✗ 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6
CME w/ F-RCNN [27] ✗ 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
SRR-FSD [65] ✗ 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
FSODup [53] ✗ 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5
QA-FewDet [15] ✗ 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
FADI [1] ✗ 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6
MetaDet [52] ✓ 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
FSDetView [57] ✓ 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
TIP [26] ✓ 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
DCNet [19] ✓ 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
FSCE [47] ✓ 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0
Meta-DETR [60] ✓ 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2
DeFRCN [41] ✓ 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
HEPUT-DeFRCN [37] ✓ 55.4 52.3 60.3 65.7 63.4 35.0 38.3 47.6 54.0 52.8 49.0 53.1 56.8 59.7 61.2
HyCo-DeB (Our) ✓ 55.6 58.3 62.0 65.1 63.8 37.0 39.3 48.6 54.0 52.5 50.1 56.7 60.6 61.1 62.8

Table 1. FSOD performance (mAP50) on Pascal VOC, with the results in red and blue being the best and second best respectively. We
only include the performance not averaged over multiple runs, if there are no reported results over multiple runs.

HEPUT-DeFRCN

Cat 95%

Sheep 43%

Sofa 38%

Cat 85%
Boat 66%

motorbike 19%

Boat 51% Boat 34%

Boat 28%

HyCo-DeB (Our)

Cat 98%

Sofa 89%

Cat 95%

Cat 13%

Cat 10%

Sofa 15%

Boat 95%

Boat 41%

Boat 80% Boat 94% Boat 86%

Boat 35% Boat 15%
Boat 13%

Figure 8. We show examples of predictions on images for HyCo-Deb compared to HEPUT-DeFRCN. We observe that HyCo-Deb, com-
pared to HEPUT-DeFRCN, is more certain in its class prediction, and does not miss-classify. For clarity, we only include proposals with a
minimum confidence threshold of 0.1. Images from left to right are modified versions of [38, 24, 39, 48], as they display the predictions.

5.2. Implementation Settings

HyCo-Deb uses Faster R-CNN [45] as the base detec-
tor using ResNet-101 [18] pre-trained on ImageNet [46] as
the backbone. The network is optimized using SGD with
a mini-batch size of 16, a momentum of 0.9, and a weight
decay of 5e−5. A learning rate of 0.02 is used during base
training and 0.01 during few-shot fine-tuning for the novel
classes. For the HEPUT module, we follow the setup from

[37], which sets c to 1. Similarly to [41], we set α to 0.5,
λ in the GDL between the backbone and RPN to 0, and the
λ in the GDL between the backbone and RCNN head to
0.75 during base training. The λ in the GDL between the
backbone and RCNN head is set to 0.01 during fine-tuning
for MS COCO, and following [41]’s later optimization we
set it to 0.001 for Pascal VOC [40] similar to [37]. For
the hyperbolic classification head, we set c to 0.005 and the
embedding dimension, D, to 2048, which is the size of the
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Method / Shots
Avg. over

multiple runs 1 2 3 5 10 30

FSRW [20] ✗ - - - - 5.6 9.1
Meta R-CNN [58] ✗ - - - - 8.7 12.4
TFA w/ cos [51] ✗ - - - - 10.0 13.7
TFA w/cos + Halluc [62] ✗ 3.8 5.0 6.9 - - -
Retentive R-CNN [9] ✗ - - - 8.3 10.5 13.8
CORPNs w/ cos [63] ✗ 4.1 5.4 7.1 8.8 10.6 13.9
CoRPNs w/ cos + Halluc [62] ✗ 4.4 5.6 7.2 - - -
MPSR [54] ✗ - - - - 9.8 14.1
cos-FRCN+CGDP+FRCN [29] ✗ - - - - 11.3 15.1
CME w/ F-RCNN [27] ✗ - - - - 15.1 16.9
SRR-FSD [65] ✗ - - - - 11.3 14.7
FSODup [53] ✗ - - - - 11.0 15.6
QA-FewDet [15] ✗ 4.9 7.6 8.4 9.7 11.6 16.5
FADI [1] ✗ 5.7 7.0 8.6 10.1 12.2 16.1
DAnA-FasterRCNN [4] ✗ - - - - 18.6 21.6
MetaDet [52] ✗ - - - - 7.1 11.3
FSDetView [57] ✓ - - - - 12.5 14.7
TIP [26] ✓ - - - - 16.3 18.3
DCNet [19] ✓ - - - - 12.8 18.6
FSCE [47] ✓ - - - - 11.1 15.3
Meta-DETR [60] ✓ 7.5 - 13.5 15.4 19.0 22.2
DeFRCN [41] ✓ 9.3 12.9 14.8 16.1 18.5 22.6
HyCo-DeB (Our) ✓ 9.1 13.0 14.8 15.9 18.7 22.7

Table 2. FSOD performance (mAP) on MS COCO, with the results in red and blue being the best and second best respectively. The
performance not averaged over multiple runs is only included if there are no results over multiple runs. A ’-’ means there is no reported
result for that shot.

RCNN head’s output vector. For the contrastive head, we
use the same settings as [47], setting the dimension of the
MLP, DC , to 128, weights the contrastive loss by 0.5, have
a temperature, τ , of 0.2, and uses an IoU threshold of 0.7.

The RCNN head is frozen during novel fine-tuning, and
we reset the weights and biases of the hyperbolic classifi-
cation head and localization head learned during base train-
ing when performing novel fine-tuning for 1-shot. We per-
form novel fine-tuning on k-shot, where k > 1, using Baby
Learning. Our model’s modules are trained jointly in an
end-to-end manner.

5.3. Comparison Results

Pascal VOC. Table 1 shows the results of HyCo-DeB’s
performance on all three Pascal VOC novel class sets, in
comparison to other methods. Firstly, we observe that, out
of the five different shots for the three different novel sets,
that is, from the 15 different settings our model outperforms
the state-of-the-art in 11 of these by up to 3.8% mAP50 and
achieves second best results on the remaining four. How-
ever, on two of those settings our model is second best, we
are only 0.3% mAP50 and 0.6% mAP50 from the best, and
for the model that outperforms us on the last 2 settings, we
significantly outperform it in all of the other 13 settings by
up to 20.8% mAP50. This happens as our model succeeds
in realizing the unused information in the data, in terms
of the object embeddings’ inter-class difference and intra-
class similarity and also in regards to the hierarchical in-
formation. We can also observe that our model achieves

the highest result for all shots in novel set 3, surpassing all
other models. We also observe that our model outperforms
the previous state-of-the-art model HEPUT-DeFRCN, as
HyCo-DeB is more certain in its predictions and at distin-
guishing between classes as can be seen in Figure 8.

MS COCO. Table 2 shows the results of our model’s
performance on the MS COCO benchmark. We observe
that HyCo-DeB’s overall performance is on par with the ex-
isting state-of-the-art method. Specifically, it achieves the
best performance on 2-shot, 3-shot, and 30-shot and sec-
ond best on 1-shot, 5-shot, and 10-shot. Compared to De-
FRCN, our model achieves better results on four of the dif-
ferent shots and is only behind by 0.2 % mAP in the last
two shots. Meta-DETR, which outperforms HyCo-DeB on
10-shot, gets outperformed by our model on all the other
settings by up to 1.6% mAP.

5.4. Ablation Study

We verify the effectiveness of our design choices through
extensive ablation studies. All the results are averaged over
five different runs on Pascal VOC’s novel set 3.

Effectiveness of the different additions. Table 3 shows
the effect of our different additions, specifically, row 1
shows the model without any additions and row 16 shows
all additions where the performance is increased by 32.5-
37.1% mAP50. Compared to all other possible combina-
tions, we observe that combining all the additions results in
the best performance compared to any other use or combi-
nations of the additions, except for 1-shot where the model
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Row
Hyperbolic

Classification
Head

Contrastive
Head Decoupling

Baby
Learning 1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

1 15.4 19.7 26.0 28.0 30.3
2 ✓ 13.2 17.4 19.0 24.7 27.5
3 ✓ 26.6 25.1 25.6 32.9 32.8
4 ✓ 48.4 53.0 55.1 59.8 61.6
5 ✓ 19.1 19.8 21.2 23.7 29.4
6 ✓ ✓ 20.0 21.1 23.2 30.0 29.3
7 ✓ ✓ 46.9 53.2 56.4 58.9 60.6
8 ✓ ✓ 13.1 15.3 21.8 22.7 27.2
9 ✓ ✓ 47.8 50.8 54.4 58.9 61.1

10 ✓ ✓ 23.7 19.4 22.0 25.5 29.6
11 ✓ ✓ 48.2 52.9 58.5 59.4 61.4
12 ✓ ✓ ✓ 50.6 54.3 54.7 59.9 62.4
13 ✓ ✓ ✓ 18.5 19.0 20.0 25.4 29.1
14 ✓ ✓ ✓ 46.2 50.0 58.4 59.7 61.1
15 ✓ ✓ ✓ 48.9 51.4 57.4 57.3 60.4
16 ✓ ✓ ✓ ✓ 50.4 56.8 60.7 61.3 62.8

Table 3. Effectiveness of the different additions and all the possible combinations of these. Best and second best results are shown in red
and blue respectively.

without Baby Learning (row 12) is slightly better by 0.2%
mAP50, however, is worse for all the other shots. However,
Baby Learning is not applied on 1-shot and thus the models
for 1-shot are similar, therefore, the performance decrease
is due to unlucky worse runs.

Looking at the impact of the decoupling, it is clear to
see how big an impact this addition has on the model’s to-
tal performance. For instance, comparing the model with
all additions except decoupling (row 13) to having all addi-
tions (row 16), the performance is increased by 31.9-40.7%
mAP50 when adding the decoupling. This shows that de-
coupling has a great impact on the model and indicates that
it indeed addresses the conflict between the class-agnostic
RPN and class-relevant RCNN, and also the conflict be-
tween localization and classification.

We observe that a model with decoupling and Baby
Learning (row 11) performs better compared to one that also
includes the hyperbolic classification head (row 14) or the
contrastive head (row 15). However, when using both of
these heads (row 16) the performance is increased by 1.4-
3.9% mAP50 compared to having none of these (row 11).
This indicates that the contrastive head’s optimization of the
object features in the hyperbolic classification head indeed
improves the embeddings and that this enrichment is us-
able for the hyperbolic classification head. This shows the
combination of our novel hyperbolic classification head and
contrastive head realizes some unused potential in the data.

Table 3 shows the model with all additions except Baby
Learning (row 12) to the model that in addition has Baby
Learning (row 16), besides the slight decrease in 1-shot,
the model shows an increased performance on all the other
shots by up to 6.0% mAP50. This shows that performance
increases by using Baby Learning to gradually expose the
model to more data, and thus greater complexity.

c 1-Shot 2-Shot 3-Shot 5-Shot 10-Shot
0.0005 48.2 51.7 56.7 57.3 60.2
0.001 48.5 51.7 55.3 57.3 59.7
0.005 50.4 56.8 60.7 61.3 62.8
0.05 47.8 49.4 55.6 56.7 58.6
0.2 48.5 51.8 56.4 58.6 59.8
0.5 50.2 50.9 55.1 58.5 57.9
1.0 47.7 46.5 52.0 53.9 56.5

Table 4. Performance of different c values in the hyperbolic clas-
sification head. The results in red and blue being the best and
second best respectively.

D 1-Shot 2-Shot 3-Shot 5-Shot 10-Shot
32 46.5 49.8 56.5 57.7 59.8
64 46.7 53.1 56.8 57.9 59.7

128 46.5 50.0 54.7 57.3 59.2
256 47.1 50.1 54.9 57.6 60.2
512 47.1 50.5 56.7 58.1 59.9
1024 49.1 52.5 57.3 59.5 61.4
2048 50.4 56.8 60.7 61.3 62.8

Table 5. Performance of different dimension sizes in the hyper-
bolic classification head. Best and second best results are shown
in red and blue respectively.

Ablation for hyperbolic classification head’s hyper-
parameters. The hyper-parameter c is used to adjust the
degree of negative curvature for the hyperbolic space in
the hyperbolic classification head. We perform an ablation
study of different c values to explore the influence of the
negative curvature, which is shown in Table 4. We observe
that the lower c value, and thus a lower degree of negative
curvature, the better until it reaches beyond 0.005, where
the performance drops. When going below a c value of
0.005 the performance drops by 1.9-5.4% mAP50 depend-
ing on the shot and c value. Using a c value of 0.005 out-
performs the other c values by 0.2-10.3% mAP50.
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We also perform an ablation study on the dimension of
the hyperbolic classification head, that is, its linear layer
and the Poincaré ball model’s dimension, D, to examine
the impact of the size of the dimension, and if reducing it
from the size of the RoI features, which have a dimension of
2048, improve the model’s performance. From the results,
shown in Table 5, the performance in general increases as
the dimension increase, and the model achieves the best per-
formance at a dimension of 2048, outperforming the other
dimensions’ different shots by 1.3-7.0% mAP50.

6. Conclusion
This paper presents HyCo-DeB to tap into the unused

potential in the data for FSOD. This is achieved by using a
combination of hyperbolic space’s property to better encode
the hierarchical information of the data, compared to Eu-
clidean space, and contrastive learning’s ability to optimize
the embedding’s intra-class similarity and inter-class differ-
ence. As the model is based on the Faster R-CNN architec-
ture it applies decoupling to address the inherent conflicts of
the different modules. Besides this, it also uses Baby Learn-
ing to cope with the transition to novel data in the transfer-
learning approach and the increased complexity of the hy-
perbolic classification head and contrastive head, allowing
it to first transition to the new classes and then gradually
increase the total complexity. We show that HyCo-DeB
achieves state-of-the-art performance on the Pascal VOC
benchmark and is on par with state-of-the-art on the MS
COCO benchmark.
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