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Notation

In this report, j is used (in its non-italicized form) to denote the imaginary number
p−1. (·)T is

used to denote transpose, (·)∗ is used to denote complex conjugate and (·)H is used to denote

complex conjugate transpose.Vectors will be denoted by bold lowercase letters and matrices

will be denoted by bold capital letters. Indices will be ordered as (r ow,column) and denoted

by subscript.If the name of a matrix or vector already contains a subscript (as is often the case

for time-indexed vectors), this subscript will be separated from the entry indices by a semi-

colon when denoting entries of the matrix or vector. For example, the (i , j )th entry of a matrix

Ak will be denoted ak;i , j .

Parentheses are used to indicate the argument of functions on a continuous space (e.g. f (t )),

while indices of a sequence will be indicated by subscript (e.g. xn). Entries of multivariate

time series are specified according to the convention established in the previous paragraph;

the time index precedes the vector index, and the two are separated by a semicolon. Sets of

indexed elements are denoted by brackets followed by a subscript indicating the domain of the

index variable; if the order of the elements is unimportant, curly brackets are used, e.g. {xi }i∈Z.

If the set is a sequence of ordered elements, one of two conventions are followed; the ordering

is indicated either by the use of parentheses, e.g. (xn)n∈Z, or, if the sequence is left-bounded,

by explicitly writing out the elements of the sequence in order its starting point, e.g. x0, x1, . . . .

V



Whether a subscript specifies an entry of a time series or an entry of a vector should always

be clear from the context, but generally, the subscript n is used to indicate time (often in Z
or N), while i and j , when used as subscripts, are commonly used to specify indices of vec-

tors and matrices or to distinguish between elements of a set, in which there are no temporal

characteristics.

Random variables, functions and time series will be indicated by capitalized letters. Whether

a bold capitalized letter is used denote a matrix or a random vector should be clear from the

context.

The second parameter of the Gaussian distribution denotes the variance, which is not to be

mistaken for the standard deviation, i.e. N (µ,σ2) has mean µ, standard deviation σ and vari-

ance σ2. In the context of random variables, iid. is used as shorthand for independent and

identically distributed.

Throughout this report, the norm operator || · || will denote the euclidean norm, unless stated

otherwise by subscript. Likewise, the term normalized should be taken to mean l2-normalized,

unless otherwise specified.
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Introduction 1
This thesis is titled ’Analysis of scale-invariance in EEG microstates due to acoustic stimuli’.

The title is sure to raise some questions for readers unfamiliar with the field of neuroscience.

First, what are EEG microstates? Second, in what way do they exhibit scale-invariance?

This intro aims to answer the first question by introducing the fundamentals of EEG signals and

microstates. Once the basics of the EEG microstate model have been established, the central

problem of this thesis will be stated in Section 1.4.

1.1 Electroencephalography

Electroencephalography is a method for monitoring electrical activity in the brain, and has

primarily been used to diagnose epilepsy and other seizure disorders. It has also been used to

monitor the brain activity of comatose or sedated patients as well as patients suffering from

sleep disorders.

The brain consists of billions of electrically excitable cells known as neurons. The neurons are

able to communicate with other cells through synapses - structures that allow neurons to pass

electrical signals to the target cell. The purpose of EEG is to monitor voltage fluctuations re-

sulting from these electric signals.

EEG is most commonly used in a noninvasive way, by placing electrodes along the scalp in

order to record cerebral electrical potentials. These potentials can appear both as action po-

tentials, which are brief and limited in spread, and as slower and more widespread postsy-

naptic potentials [Binnie and Prior, 1994]. The potential recorded by a single electrode from a

neural generator depends on the solid angle subtended at the electrode - meaning that elec-

trodes placed on the scalp are too distant to record the activity of a single neuron [Binnie and

Prior, 1994]. Synchronous activity in groups of neurons, however, may form a neural generator

of sufficient magnitude to be recorded on the scalp [Binnie and Prior, 1994]. Thus, the EEG

records the spatiotemporal averages of synchronous postsynaptic potentials across a range of

cone-shaped cells.

While isolated groups of interconnected neurons adopt synchronous patterns, sensory inputs
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like sight and hearing stimulate individual neurons. In turn, arousal and cognitive activity re-

duce synchrony [Binnie and Prior, 1994]. When monitoring brain activity, patients are often at

rest with their eyes closed, in which case a higher degree of synchrony is achieved.

The various frequency ranges of EEG signals correspond to different activities. The range of

frequencies 0.5−4 [Hz] is called the delta band, which shows higher activity during deep sleep

[Teplan, 2002]. The range 4−7.5 [Hz] is called the theta band and the range 7.5−13 [Hz] is called

the alpha band. The alpha band is the dominant frequency band (in terms of EEG power) in

EEG of alert human adults, and is the most extensively studied EEG frequency band [Klimesch,

1999; Teplan, 2002]. Research suggests that comparatively large alpha band activity with small

theta and delta band activity characterize good cognitive performance [Klimesch, 1999]. It is

assumed that alpha band activity decreases and delta and theta band activity increases in the

transition from alertness to sleep [Klimesch, 1999]. The range of frequencies > 13 is called the

beta band. The beta band is dominant in alert humans with open eyes. Beta band activity sig-

nificantly decreases when eyes are closed, in which case the wave pattern changes into alpha

waves [Teplan, 2002].

There are multiple ways to analyze EEG signals. One approach to doing so is to characterize the

temporal frequency distribution of the recordings at preselected electrodes, which provides in-

sight into the electrophysiology of the brain, but neglects to account for the multivariate char-

acteristics of the signal [Poulsen et al., 2018, Sec. 1]. Another approach is to characterize the

EEG signal by the spatial configuration of the electric fields recorded on the scalp, which can be

achieved through the use of independent component analysis [Poulsen et al., 2018, Sec. 1]. The

approach that will be of greatest interest to this report, however, is called microstate analysis

and is based on topographic analysis [Poulsen et al., 2018, Sec.1].

1.1.1 EEG Topographies

The aim of this subsection is to give a brief introduction to what is meant by ’EEG topographies’,

by showing how EEG signals are illustrated.

EEG signals are recorded by electrodes placed on the scalp. The location of these electrodes

can intuitively be communicated by means of a top-down view of the scalp. An example of a

map of EEG channel locations is given in Figure 1.1a.

With each channel in the EEG signal being linked to a location on the top-down map of the

scalp, each time instance of the signal can be illustrated by a topographical map Figure 1.1b,

with red colors indicating high power in nearby electrodes and blue colors indicating low power

in nearby electrodes. We refer to this representation of the EEG recording as an EEG topogra-

phy.
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(a) Illustration of channel locations.
(b) Topographical map of an EEG reading at a single time
instance.

Figure 1.1. Examples of how EEG signals are commonly visualized.

1.1.2 Preprocessing of EEG Signals

EEG recordings may contain several unwanted elements, which need to be addressed in pre-

processing.

At several points during the preprocessing, the EEG data can be average-referenced, such that

the data point is a zero-sum vector. For a non-average-referenced data point y n ∈RNs , whose

i th entry yn;i contains the recording at the i th electrode at time n, the average-referenced

recording xn ∈RNs is given as [Pascual-Marqui et al., 1995]

xn =
(

I − 1

Ns
11⊺

)
y n ,

where I is the Ns ×Ns identity matrix and 1 is a Ns ×1 vector of ones. Throughout this thesis,

when considering EEG recordings, it is assumed that they are average-referenced.

First and foremost, EEG signals contain noise, which is often modeled as a sequence of iid.

Gaussian variables. Since the EEG records, each of which is prone to various errors during

setup and recording. Because of this, the variance of the noise may vary between the individ-

ual channels. Channels that display extreme levels of noise relative to the other channels are

referred to as bad channels, and are often removed from the data while preprocessing.

Noise can span the entire frequency spectrum of the signal. Since - in the context of EEG sig-

nals - different sections of the frequency spectrum correspond to different neural activities, a

bandpass filter can be applied to the signal in order to remove some of the noise and to isolate

the frequency bands of interest to the analysis. Additionally, if the signal were to be downsam-

pled, applying a low-pass filter to the signal prior to the downsampling could act as a means to

avoid aliasing.

Other unwanted elements in EEG signals include artifacts; patterns in the signal unrelated to

brain activity that are nonetheless recorded. The causes of these artifacts are often of a physio-

logical nature (e.g. eye movement, pulse, shivering).
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A popular tool used to remove artifacts from EEG signals is independent component analysis

(abbr. ICA). It is a computational method used to separate a multivariate signal into a set of

source signals, which are assumed to be non-Gaussian and statistically independent. By iden-

tifying and removing source signals related to artifacts, the signal can be reconstructed without

these artifacts.

The recorded signals are first arranged in an Ns ×N matrix X = [x0, x1, . . . , x N−1]. ICA assumes

that X (corresponding to an EEG channel) is a mix of M ≤ Ns independent source signals. In

other words, ICA is a latent variable model, in which it is assumed that the observed variables

are linearly related to the set of latent variables Z ∈RM×N as [Tharwat, 2018, Eq. (2)]

X = AZ ,

where A ∈RNs×M is called the mixing matrix. The aim of ICA is to obtain the source signals in

the rows of Z , but neither Z or A are known.

To obtain estimates of the source signals, it is assumed that they are non-Gaussian and - by

assuming the source signals independent - factorize, so that [Bishop, 2009, Eq. (12.89)]

p(Z ) =
M−1∏
i=0

pi (z⊺i ), (1.1)

where p(Z ) denotes the joint probability distribution of the source signals z⊺0 , z⊺1 , . . . , z⊺M−1, and

pi (z⊺i ), i = 0,1, . . . , M −1 denotes the marginal distributions of the indicated rows of Z .

We now consider the case where the observed variables X and the source signals Z are of the

same dimension, i.e. Ns = M . Since - in the context of EEG signals - each row of X correspond

to the recording across a single electrode, this assumption implies that the recorded signal is at

most composed of a number of independent components equal to the number of electrodes.

We say that X is in the electrode space and that Z is in the independent component space. As-

suming that the transformation from the latent variables to the observed variables is invertible,

the observed variables X can be mapped to the independent component space by the trans-

formation given as [Tharwat, 2018]

Z =W X +V , (1.2)

where W ∈RNS×Ns is referred to as the unmixing matrix. It is the inverse of A, and obtaining

W is the central problem of ICA. The added term V ∈ RNS×N is additive noise and essentially

functions as an error term for the estimation. While the topic of how the mixing matrix W and

source signals Z are obtained is not one of great importance to this thesis, it is worth addressing

it briefly.

Some approaches to the ICA estimation problem are based on information-theoretical results.

Minimizing the mutual information between the source signals z⊺i , i = 0,1, . . . , Ns −1 increases

their independence, and entropy is larger for Gaussian variables than for any other random

variable with the same variance [Cover and Thomas, 2006, Th. 8.6.5]. Thus, minimizing the

mutual information and entropy should produce non-Gaussian independent source signals. A
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popular choice for ICA estimation is the FastICA algorithm, which seeks to maximize the ne-

gentropy of Z in (1.2) [Tharwat, 2018]. The negentropy is non-negative and zero only for for

Gaussian random variables, so this approach should produce non-Gaussian source signals.

Once W and Z have been obtained, the independent components may be observed from the

columns of W −1. By identifying which independent components are associated with different

artifacts, their corresponding source signals can be set to zero. Afterwards, the original signal

can be reconstructed with artifacts removed as a new matrix X ′ given as [Jung et al., 2000]

X ′ =W −1Z ′, (1.3)

in which Z ′ is Z with the rows corresponding to artifactual components set to zero. This can

be done manually; for example, by analyzing which independent components exhibit activity

on electrodes near the eyes, artifactual components related to blinking or eye movement can

be identified and removed.

The EEGLAB toolbox for Matlab ([Delorme and Makeig, 2004]) includes ICA decomposition

functionality, using the FastICA algorithm as the default option. It allows for both manual and

automatic flagging of independent components as artifacts,. For this thesis, the ICA framework

included in EEGLAB will be used in the preprocessing.

One notable made apparent by (1.3) is that removing independent components makes X ′ rank-

deficient. This may not be an issue; the information missing was presumably of an artifactual

nature. Additionally, the microstate representation of the EEG signal, which will be introduced

in the following section, assumes the existence of a sparse representation of EEG signals re-

gardless.

1.2 EEG Microstates

Within the field of EEG analysis, microstate analysis is an alternative representation for EEG

signals. The concept of microstates originates from research by D. Lehmann and collabora-

tors, who observed that the topographies of EEG signals are comprised of a small discrete set

of topographies that remain stable for 80-120 milliseconds before transitioning to a different

topography [Lehmann, 1971; Lehmann et al., 1987]. The term microstate refers to these brief

periods of quasi-stable topographies, while the term microstate classes refers to the small dis-

crete set of topographies, which the signal cycles between. It is commonly assumed that dif-

ferent topographies of EEG signals reflect different configurations of neural generators. Thus,

studying the dynamics of the microstates should provide insight into the changes in the neural

activity of the brain.

In mathematical terms, the fundamental assumption of the microstate-representation of an

EEG signal is that the (average-referenced) EEG signal at time n, xn ∈ RNs , with Ns denoting

the number of electrodes used for each measurement, can be expressed as [Pascual-Marqui
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et al., 1995]

xn =
K∑

i=1
ai ,nmi +v n , n ∈Z, (1.4)

where K ∈N is the number of microstate classes, the ai ,n ∈R denote the intensities of the i th

microstate class at time n, the mi ∈RNs are the i th microstate class template and v n ∈RNs is

zero-mean additive noise. Furthermore, the microstates are assumed to be non-overlapping,

i.e.

ai ,n a j ,n = 0, ∀i ̸= j ,

and it is assumed that at any time, one of the K microstate classes must be active, i.e.

K∑
i=1

a2
i ,n > 0, ∀n.

Throughout this thesis, cn ∈ {1,2, . . . ,K } will be used to denote the microstate class label at time

n, i.e. the discrete number for which acn ,n ̸= 0. The sequence c0,c1, . . . will be referred to as the

microstate sequence. A ’microstate class’ is defined by the combination of a ’microstate class

label’, k ∈ {1,2, . . . ,K }, with its associated ’microstate class template’, mk ∈RNs . When specifying

one of the two, the former is called the and the latter is called the .

The validity of the non-overlapping assumption of microstates has been debated, with one

study by Mishra et al. [2020] arguing that microstates are not as discretely isolated as is com-

monly assumed, and that the assumption of discreteness is less valid for points of the EEG

recording with low power and low signal-to-noise ratio. Nonetheless, the assumption is com-

monplace in the relevant litterature.

An analysis of microstate sequences typically involves analyzing how the dynamics of microstates

change under different experimental conditions. The dynamics of each microstate class in-

clude their mean duration, their frequency of occurence and the percentage of analysis time

occupied by them. Examples include Koenig et al. [2002], in which the interaction between

microstate dynamics and age was investigated in order to gain a better understanding of the

maturation of the brain; their findings suggested a complex evolution of microstate dynamics

with age, compatible with brain developmental stages proposed by developmental psycholo-

gists.

Another approach to analyzing microstate sequences is to estimate the transition probabilities

between different microstate classes and analyze how they change under different experimen-

tal conditions. The estimated transition probabilities typically take the form of a transition

matrix, in which the entry pi , j is the probability that the microstate sequence transitions from

microstate class i to microstate class j . Al Zoubi et al. [2019], for example, analyzed how the

dynamics of microstate sequences differed for individuals with mood and anxiety disorders

versus healthy control subjects. They found that while the microstate class topographies and

microstate dynamics showed little to no significant difference between the two groups, some

transition probabilities showed significant differences between the two groups. However, in
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estimating the transition probabilities between microstate classes as a transition matrix, it is

implicitly assumed that the microstate sequence is a first order Markov chain (as defined later

in Definition A.28), and that the probabilities are stationary and do not change over time.

von Wegner et al. [2017] tested microstate sequences for the Markov property of orders 0, 1

and 2, corresponding to the three hypotheses P (cn |cn−1,cn−2, . . . ) = P (cn), P (cn |cn−1,cn−2, . . . ) =
P (cn |cn−1) and P (cn |cn−1,cn−2, . . . ) = P (cn |cn−1,cn−2), respectively. They found that the mi-

crostate sequences fulfilled none of the three properties, concluding that the memory effect

of microstate transitions extends further than two steps into the past. Additionally, when test-

ing for stationarity of the transition matrix (whether the transition probabilities are indepen-

dent of time), the results suggested that the transition matrix was non-stationary and change

over time. Finally, when testing for symmetry of the transition matrix (the hypothesis that

P (cn = j |cn−1 = i ) = P (cn = i |cn−1 = j )), they found that the transition matrix was asymmet-

ric in a majority of cases. The study by Al Zoubi et al. [2019] used earlier in this section as an

example also applied the methodology of von Wegner et al. [2017] to their data, obtaining sim-

ilar findings. This suggests that microstate sequences are not low-order Markovian, have nei-

ther time-invariant nor symmetric transition probabilities and may exhibit long-term memory

properties.

Identifying and classifying the sequences of microstates is a post-hoc process. The microstate

classes must first be identified before each point of an EEG signal can be assigned a microstate

class. Clustering algorithms are commonly used for this task. A popular example of such an

algorithm is the K -means algorithm, which iteratively assigns each point to the cluster whose

mean is the shortest distance from the point, after which it updates the mean of each clus-

ter based on the points assigned to it. Another example is a polarity-invariant version of the

K -means algorithm called the modified K-means or N-microstates algorithm [Pascual-Marqui

et al., 1995]. The assumption (1.4) is consistent with this algorithm. Both algorithms will be

introduced in Section 1.3.

While they won’t be considered for this thesis, popular alternatives to K-means and modified

K-means for microstate estimation do exist. An example is the Topographic Atomize and Ag-

glomerate Hierarchical Clustering, which is a hierarchical clustering method. Unlike K -means,

it does not require a preset number of clusters. The algorithm starts with each point being as-

signed its own cluster and iteratively removing the cluster with the lowest sum of correlations

between it and its members, before reassigning the points in the removed cluster to their most

similar cluster [Poulsen et al., 2018]. Probabilistic alternatives such as the fuzzy C -means have

also been suggested [Dinov and Leech, 2017], since these allow for a single topographical map

be assigned a ’degree of membership’ for each microstate class, as opposed to being assigned

only one microstate class. As such, the fuzzy C -means algorithm agrees more with analysises

that reject the non-overlapping assumption of the microstate model.

In order to avoid using noisy measurements when estimating the prototype microstates, it is
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common practice to only use the data points which correspond to the maximal signal-to-noise

ratio. For EEG data, these points are generally found at the peaks in the global field power (abbr.

GFP) [Dinov and Leech, 2017], which is defined as follows:

Definition 1.1 (Global Field Power)

For an average-referenced measurement xn = [
xn;0, xn;1, . . . , xn;NS−1

]⊺, where Ns is the number

of electrodes used for the measurement, the GFP is defined as [Murray et al., 2008]

GFPn =
√√√√ 1

Ns
·

Ns−1∑
i=0

x2
n;i . (1.5)

▲

Mathematically, the GFP is identical to taking the root mean square across all channels of an

average-referenced EEG reading at a given time instance.

After having found the peaks of the GFP and used them to estimate the microstate class pro-

totypes, the microstate classes must be ’backfitted’ onto the original signal. A measure often

used for assigning data points to microstate classes is global map dissimilarity (abbr. GMD)

[Poulsen et al., 2018, Eq. (18)]. It is a distance measure, and can be defined as follows:

Definition 1.2 (Global Map Dissimilarity)

For two EEG samples xm , xn ∈ RNs , the global map dissimilarity is defined as [Poulsen et al.,

2018, Eq. (18)]

GMDn =
∥ xm

GFPm
− xn

GFPn
∥

p
c

, (1.6)

where GFPn is the GFP of the signal at time n and c is a normalizing constant. ▲

1.2.1 Canonical EEG Microstates

In resting state subjects with eyes closed, four specific microstate topographies appear consis-

tently (e.g. [Van De Ville et al., 2010; Al Zoubi et al., 2019]), and in [Koenig et al., 2002], a study of

496 subjects, they were found to account for 79% of the variance in the data on average. Since

microstates are hypothesized to be a set of ’building blocks’ for brain electric activity, each in-

corporating different modes or steps of information processing [Lehmann et al., 1998], these

four microstates, shown in Figure 1.2, are likely to play a significant role in human thought.

Hence, they are often called the canonical microstates.

While Figure 1.2 shows the four canonical microstates obtained from real EEG data, there is

bound to be some difference due to randomness in the data.Additionally, since the clustering

methods used for microstate class estimation do not assume any prior knowledge of the four

canonical microstates, the order in which the microstates are sorted is not consistent and la-

beling estimated microstate classes as one of the canonical microstates is a manual process.

Figure 1.2 shows this issue; while the classes have been rearranged to match the litterature,

the microstate classes were originally sorted according to frequency of occurrence (indicated

by the number above each class). To ensure a consistent characterization of the four canonical

microstates, A, B, C and D, they can be defined by their topographical characteristics as follows:
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Figure 1.2. The four microstate classes obtained from EEG data using EEGLAB. The top num-
bers indicate the order of frequency of appearance, while the bottom letters indicate the la-
bels used in the relevant litterature [Koenig et al., 1999; Britz et al., 2010].

(A) Right anterior-left posterior orientation.

(B) Left anterior-right posterior orientation.

(C) Anterior-posterior orientation.

(D) Central extremum.

1.3 Clustering Algorithms

Microstates are defined using clustering algorithms. One of the simplest ways to interpret

clusters is to think of them as groups of multidimensional data points in which the distance

between two points within the same group is small compared to the distance between two

points not within the same group. The aim of a clustering algorithm is to identify clusters of

data points in a multidimensional space. K-means is one such algorithm and aims to sepa-

rate points from a set of data into K clusters, each of which has a mean (also referred to as

the cluster center). Each point in the dataset is assigned to the cluster with the nearest mean.

The aim of this section is to introduce the K-means algorithm as well as alternatives to the al-

gorithm; a modified variant of the K-means algorithm introduced by [Pascual-Marqui et al.,

1995] - dubbed the N-microstates algorithm by the authors.

1.3.1 K -Means

Unless otherwise stated, this section is based on [Bishop, 2009, Sec. 9.1].

We start by considering how a set of NT Ns-dimensional data points {x0, x1, . . . , x NT −1} ⊂ RNs

can be individually classified as belonging to one of K different clusters. The K -means algo-

rithm aims to characterize each of K clusters by their own mean vector, µk ∈ RNs , hence the

name of the algorithm. In the context of EEG, the size Ns corresponds to the number of elec-

trodes used for the recording, NT corresponds to the number of temporal samples used and K

corresponds to the number of microstates considered in the model.

The initial goal of the K -means is to find the assignment of data points to clusters and the set

of vectors µ0,µ1, . . . ,µK−1 that minimizes the sum of squares of the distance between each data
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point and its closest vector µk . The reasons as to why the set of vectors µ0,µ1, . . . ,µK−1 can be

thought of as mean vectors will become apparent soon. For now, this initial goal can be stated

as the optimization problem [Bishop, 2009, Eq. (9.1)]

minimize
{µk },{rk,n}

∑NT −1
n=0

∑K−1
k=0 rk,n

∥∥xn −µk

∥∥2
, (1.7)

where rk,n is 1 if xn is assigned to cluster k and 0 otherwise.

In the K -means algorithm, the objective function in (1.7) is minimized by an iterative proce-

dure, in which we alternate between minimizing the objective function with respect to
{
rk,n

}
while keeping

{
µk

}
fixed, and minimizing the objective function with respect to

{
µk

}
while

keeping
{
rk,n

}
fixed.

Using superscript to denote iteration number, we start by choosing some initial values for the

set of vectors
{
µ(0)

0 ,µ(0)
1 , . . . ,µ(0)

K−1

}
. In practice, this can be achieved by use of a pseudo-random

number generator.

We now keep
{
µ(0)

0 ,µ(0)
1 , . . . ,µ(0)

K−1

}
fixed and seek to minimize the objective function in (1.7)

with respect to
{
rk,n

}
. By utilizing the fact that the objective function in (1.7) is a linear func-

tion of rk,n while noting that the terms involving different n are independent, we can optimize

for each n separately, by simply letting rk,n be 1 for whichever value of k yields the minimum

value of ∥xn −µk∥2. This step can be written as [Bishop, 2009, Eq. (9.2)]

r (i+1)
k,n =


1 if k = argmin

j
∥xn −µ(i )

j ∥2

0 otherwise.

(1.8)

Next, keeping rk,n fixed, we seek to minimize the objective function in (1.7) with respect to{
µ(0)

0 ,µ(0)
1 , . . . ,µ(0)

K−1

}
. We consider this optimization separately for each µk . This turns the opti-

mization problem into that of a quadratic program, meaning that a minimum solution can be

obtained on closed form by setting the derivative of the objective function with respect to µk

to zero and solving for µk , yielding [Bishop, 2009, Eq. (9.3)]

µ(i+1)
k =

∑NT −1
n=0 r (i+1)

k,n xn∑NT −1
n=0 r (i+1)

k,n

. (1.9)

Since the numerator in the sum of all data points in cluster k and the denominator counts the

number of data points in cluster k, µ(i )
k is the mean of all data points assigned to cluster k at

the i th iteration.

While the K -means is guaranteed to converge to a minimum since the value of the objective

function is reduced at each iteration, it may converge to a local minimum rather than a global

one. Nonetheless, the K -means algorithm has been popular in computing EEG microstates.

An example of microstates obtained from EEG data using K -means clustering with different

values of K is shown in Figure 1.3. One thing to note in this figure is that the K-means algo-

rithm is not polarity invariant; topographical maps that are (approximately) identical up to a
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Figure 1.3. Topographical view of examples of microstates obtained from EEG data using K-
means with K=3,4,...,8 as indicated by each row. The microstates were computed using the
Microstate toolbox ([Poulsen et al., 2018]) for EEGLAB ([Delorme and Makeig, 2004]).

negative scalar are assigned to different clusters by the K -means algorithm. This means that

microstates that are virtually identical in terms of their topography are treated as being unre-

lated to one another. This issue is addressed in the modified K -means algorithm.

1.3.2 Modified K -Means

The aim of this subsection is to introduce the modified K-means or N-microstates algorithm

of [Pascual-Marqui et al., 1995], which is similar to K -means in multiple ways. Throughout

the rest of this thesis, it will be referred to by the shortened name ’mod-K -means’. In order to

avoid excessive redundancy, this subsection serves to only briefly introduce the algorithm and

highlight how it differs from the regular K -means.

Similarly to K -means, the aim of mod-K -means is to assign each data points to one of K clus-

ters, each characterized by their own vector, γk . Note that the number of clusters is still de-

noted by K , but the characteristic vector is now denoted byγk rather thanµk , as to not confuse

it with a mean vector.

The mod-K -means algorithm is specifically tailored for EEG signals, so the data point x t ∈RNs

can be thought of as containing the scalp potential measurements at time n. Ns denotes the

number of electrodes used for the EEG recording.

For the K -microstates algorithm, the optimization problem is given as [Pascual-Marqui et al.,
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1995, Eq. (2),(4)]

minimize
{γk },{ak,n}

1
NT (Ns−1)

∑NT −1
t=0

∥∥xn −∑K−1
k=0 ak,nγk

∥∥2
,

subject to ak,n ·a j ,n = 0,∀k ̸= j ,∑K−1
k=0 a2

k,n ≥ 0,∀n,

. (1.10)

At first, the ak,n appear to be very similar to the rk,n from K -means, since the first constraint

ensures that for any given t , ak,n ̸= 0 for only one value of k. This in turn means that the sum

over k in the objective function in (1.10) reduces to a single term at each n, in which case the

objective functions of (1.7) and (1.10) are nearly identical up to a constant scalar. One notable

difference between the two, however, is that the value of the nonzero ak,n need not be 1. In-

stead, ak,n is a measure of the kth microstate intensity at time instant n. In turn, this means

that the method of obtaining solutions for this optimization problem differs from that of K -

means.

We start by choosing a normalized and linearly independent set of initial vectors
{
γ(0)

0 ,γ(0)
1 , . . . ,γ(0)

K−1

}
and seek to minimize the objective function of (1.10) with respect to ak,n under the given con-

straints, while keeping γk fixed. To do so, we use Ln to denote the microstate label associated

with the data point xn and label each data point as belonging to the microstate to which it is

closest in terms of the orthogonal squared distance. This can be expressed as follows [Pascual-

Marqui et al., 1995, Eq. (5)]

L(i+1)
n = argmin

k
x H

n xn −
(

x H
n γ

(i )
k

)2
.

The microstate intensity ak,n can now be estimated as [Pascual-Marqui et al., 1995, Eq. (7)]

a(i+1)
k,n =

x H
n γ

(i )
k if k = L(i+1)

n

0 otherwise.
(1.11)

Next, we seek to minimize the objective function of (1.10) with respect to γk , while keeping

the labels Ln and microstate intensities ak,n fixed. The minimum of the objective function is

obtained as the normalized eigenvector corresponding to the largest eigenvalue of the matrix

given as [Pascual-Marqui et al., 1995, Eq. (8)]

S(i+1)
k = ∑{

n:L(i+1)
n =k

} xn x H
n .

The estimate of γ(i+1)
k can be obtained as [Pascual-Marqui et al., 1995, Eq. (9)]

γ(i+1)
k = argmax

{e:∥e∥=1}
e H S(i+1)

k e (1.12)

An example of microstates obtained from EEG data using the mod-K -means with various choices

of K is shown in Figure 1.4. In this figure, it is clear that the mod-K -means topographies are

polarity-invariant (i.e. proportional but opposite topographies are assigned to the same clus-

ter), as opposed to those obtained by use of K -means in Figure 1.3.
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Figure 1.4. Topographical view of examples of microstates obtained from EEG data using
mod-K -means with K =3,4,...,8 as indicated by each row. The microstates were computed us-
ing the Microstate toolbox ([Poulsen et al., 2018]) for EEGLAB ([Delorme and Makeig, 2004]).

1.4 Problem Statement

In recent years, the microstate representation of EEG signals has received significant attention.

The reason behind its popularity is two-fold: it has been hypothesized that microstate dynam-

ics reflect changes in neural activity, and the microstate representations of EEG signals provide

a significant dimensionality reduction, since every point in time takes a discrete value from a

finite set rather than a vector of continuous variables.

Studies have indicated that microstate sequences exhibit fractal properties [Van De Ville et al.,

2010]; specifically, temporally scaled versions of the microstate sequences have been found

to be statistically similar across a range of scales, suggesting that neural activity occurs across

multiple temporal scales. This implies that microstates could exhibit some form of scale-invariance

- being statistically identical under any rescaling in time. However, since the processed EEG

signals are discrete in time and finite in length, the hypothesized scale-invariance must be in-

vestigated by using a less restrictive fractal property related to scale-invariance as proxy. This

related property is self-similarity, which is invariant to a discrete set of scalings; it can be char-

acterized by the Hurst exponent.

The nature of the self-similar behavior of microstate sequences is central to this thesis. Since

changes in microstate dynamics are assumed to reflect changes in neural activity, a question

could be raised as to which characteristics of neural behavior are revealed from changes in the

Hurst exponent, which is frequently used in assessing long-range dependence of a signal.

One could speculate whether low levels of long-range dependence suggest that the neural cir-
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cuit operates in a rapid and volatile manner, indicating some level of distress or arousal in the

subject. The most direct approach to affecting the mental state of the subject is by introduc-

ing external stimuli - with a natural choice of stimuli being those of an acoustic nature. Under

various types of acoustic stimuli, changes in the Hurst exponent can be observed, potentially

revealing new information about the dynamics of the brain. Ultimately, the neuroscientific

interest in this issue is largely tangential to the field of engineering mathematics; therefore,

this thesis adopts an exclusively model-driven approach to the issue instead. This discussion

motivates the following statement, which, from here on, will act as the central problem of the

thesis:

This thesis investigates changes in the self-similar behavior of EEG microstates due to acoustic

stimuli.

The acoustic stimuli in this thesis (introduced later in Chapter 4) includes music and speech,

specifically, each of which has two subgroups. The music signals include piano pieces or pieces

of an electronic nature; neither contain vocals. The speech signals are obtained from either a

male or a female speaker. The subject was presented with an attention task, in which they

were asked to focus on one of two concomittant sounds played on two separate loudspeakers,

during which their scalp potentials were recorded with an EEG.

The task stated above composed of multiple steps, as depicted in Figures 1.5 and 1.6. Figure 1.5

provides a general overview of the process, emphasizing the steps that have already been dis-

cussed in this section. Figure 1.6 expands upon the fractal analysis segment of Figure 1.5, which

will be the main concern of this thesis moving forward.

Acoustic Stimuli

EEG Preprocessing
Estimation

of Microstate
Classes

Backfitting
Microstates

to EEG

Fractal
Analysis

Figure 1.5. The system diagram of the central problem of this thesis.

Fractal Analysis
Random-Walk
Embedding of

Microstates

Wavelet
Transform of

Random-Walk

Wavelet-Based
Estimation of

Hurst Exponent

Convolutional Neural
Network-Based Hurst
Exponent Estimation

Analysis of Hurst
Exponent versus
Acoustic Stimuli

Figure 1.6. The system diagram for the fractal analysis.

While the fundamentals of EEG recordings were introduced in the beginning of this chapter,

the problem of recording EEG is not central to this thesis.
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The Preprocessing step concerns the steps introduced in Section 1.1.2, including bandpass-

filtering and removal of artifacts using ICA.

Estimation of Microstates is a two-step process; first, the peaks in the GFP (Definition 1.1) are

identified. Next, microstate classes are estimated based on the data points corresponding to

peaks in the GFP using mod-K-means (Section 1.3.2).

The Backfitting of Microstates to EEG is the process of assigning each point of the original signal

a specific microstate class.

The last step, Fractal Analysis, includes the substeps in Figure 1.6, the majority of which will be

introduced and discussed in Chapter 2. The first step of the fractal analysis is transforming the

EEG microstate sequences into a series suitable for fractal analysis using a technique referred

to as random-walk embedding. This will be discussed in Section 2.3.

The second step is to assess the self-similarity of the transformed series of EEG microstates

from a Hurst exponent analysis, either by application of an existing wavelet-based analysis or

by a convolutional neural network-based approach. The concept of statistical self-similarity

will be introduced in Section 2.2. While general theory of wavelets has been relegated to Ap-

pendix B, the wavelet-based method, by which self-similarity of the microstate sequences can

be assessed, will be introduced in Section 2.4. Similarly, general theory of deep learning and

artificial neural networks can be found in Appendix C, while the topic of a deep learning-based

analysis of self-similarity will the main focus of Chapter 3.

The final step includes the experimental aspect of this thesis; the analysis of whether changes

occur in the Hurst exponents for different types of acoustic stimuli. Chapter 4

The field of EEG microstate estimation and classification has been extensively studied, and

there are tools available for easy application of microstate estimation and classification [Poulsen

et al., 2018]. Moving forward, the process of microstate estimation and classification will not

receive much attention. Instead, the focus will be on the fractal analysis, which - to the extent

of the author’s knowledge - is less extensively researched and more open to innovation.

Specifically, this thesis aims to address the following points:

• Application of a convolutional neural network-based approach to assessing fractal prop-

erties of microstate sequences.

• Assessment of changes in the Hurst exponent of microstate sequences in subjects ex-

posed to acoustic stimuli.
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Fractals and Statistical

Self-Similarity 2
In [Van De Ville et al., 2010], it was proposed that EEG microstate sequences exhibit scale-free

dynamics and statistical self-similarity. The purpose of this chapter is to introduce the fun-

damental theory of fractal theory with an emphasis on the concept of statistical self-similarity

and discuss how the degree of self-similarity of a stochastic process can be assessed.

Figure 2.1. A popular example often used in fractal theory is the Mandelbrot set, the bound-
ary of which is a fractal curve.

2.1 Fractals

The aim of this section is to introduce the definition of a fractal. Informally, a fractal is a subset

of a topological space which appears to be the same regardless of the scale at which it is viewed.

The property of similar patterns appearing at different scales is referred to as self-similarity,

and will be the main topic of Section 2.2. While fractals can exist in any topological space, the

theory introduced in this section will be restricted to fractals onRn . In order to provide context,
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important observations from the early works on fractals by mathematician Benoit Mandelbrot

and the concept of a non-integer dimension will first be introduced. Later, in Section 2.1.2, a

formal definition of fractals will be introduced.

Figure 2.2. The first three iterations of the Koch snowflake.

Example 2.1 (Koch Snowflake)

Consider the first three iterations of the Koch snowflake illustrated in Figure 2.2. Starting with a

simple equilateral triangle, the Koch snowflake is obtained by iteratively adding a smaller equi-

lateral triangle to each side of the shape. The sides of these smaller equilateral triangles are

one third the length of those of the previous iteration. At each iteration, the number of trian-

gles added increases by a factor of four, while the area of each of the added triangles decreases

by a factor of 9. Assuming that the first triangle has unit area, the area A of the Koch snowflake

can be expressed as the geometric series

A = 1+
∞∑

i=0

1

3

(
4

9

)i

.

This is an infinite geometric series, which converges to 1+
1
3

1− 4
9

= 8
5 . The perimeter of the Koch

snowflake, on the other hand, increases by a factor of 4/3 at each iteration. This means that the

Koch snowflake is a geometric shape of finite area and infinite perimeter. ▲

2.1.1 Fractional Dimensions

The term ’fractal’ originates from Mandelbrot [1967], which considered the issue of measuring

the length of the coastline of Britain by approximating it as the perimeter of a polygon with

sides of equal length, whose corners lie on the coastline. Decreasing the length of each side

leads to finer details of the coastline being taken into account and causes the approximated

length to increase. Since the concept of length is undefinable for geographical curves, Mandel-

brot [1967] argued that the traditional concept of dimension should be expanded to allow for

fractional dimensions when dealing with ’rough’ curves such as the British coastline.

To provide an intuitive interpretation of a fractional dimension, recall that the perimeter of a

polygon is simply given as the sum of the lengths of each side. This can be seen as raising the

lengths to the power 1, which is the Euclidean dimension of a straight line [Mandelbrot, 1982,

Ch. 5]. Similarly, the surface area of a closed polygon is calculated by covering the surface of

the polygon with squares and adding together the sides of the squares raised to the power 2,

which is the Euclidean dimension of a plane [Mandelbrot, 1982, Ch. 5]. In general, we have
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that a length of size ϵ results in a measure (e.g. the linear measure or the surface area) of size

ϵD , where D is the dimension. The measure only has a meaningful interpretation when the

correct value of D is considered, which will be elaborated upon below.

Consider now a polygonal approximation of a complicated geometrical curve (for example, a

coastline) by means of several connected line segments, each of which has length ϵ. The most

intuitive way to approximate the length of the geometrical curve is to multiply the number of

line segments, N , by the length of each line segment, ϵ, in which case we implicitly assume

that we have the dimension D = 1. In order to generalize this approach to be applicable to

any choice of dimension, one may choose to use the estimate L(ϵ) = Nϵd instead, where d de-

notes the dimension chosen for the estimation, as opposed to the true dimension D . When

estimating a curve by use of connected lines, the number of line segments used for such an

approximation has been found to be [Mandelbrot, 1982, Ch. 5]

N = Fϵ−D , (2.1)

where F is some scalar related to the size of the geometric curve and D is the true dimension.

Intuitively, this makes sense for simple geometric curves where D = 1, since the number of line

segments should be inversely proportional to the length of each individual segment.

When estimating geometric curves, the dimension d is conventionally considered to be integer-

valued (as is the case for the Euclidean dimension). However, this assumption may result in the

measure tending to ∞ for ϵ→ 0 when dealing with rough geometric curves (for example, the

coastline mentioned earlier). To circumvent this issue, we allow the dimension d to be any

positive value and assume that the true dimension D can be any positive value as well. For the

linear measure, we have from (2.1) that L(ϵ) = Nϵd = Fϵd−D . We see that [Mandelbrot, 1982,

Ch. 5]

lim
ϵ→0

L(ϵ) =


F, d = D

∞, d < D

0, d > D.

(2.2)

This indicates that the approximate measure L(ϵ) behaves reasonably if and only if d = D , in

which case, the approximate measure is independent of ϵ [Mandelbrot, 1982, Ch. 5]. The dis-

cussion of the linear measure L(ϵ) in this section is the intuitive motivation behind the Haus-

dorff dimension, which will be introduced in the next subsection.

2.1.2 Fractal Definition

In [Mandelbrot, 1982], Mandelbrot defined a fractal as "a set for which the Hausdorff-Besicovitch

dimension strictly exceeds its topological dimension." For fractals on Rn , the topological di-

mension is simply the Euclidean dimension.

In order to obtain a formal definition of the Hausdorff-Besicovitch dimension, we first intro-

duce a definition for the Hausdorff measure [Hutchinson, 1981, Sec. 2.6]:
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Definition 2.1 (Hausdorff Measure)

Let d ≥ 0 be a fixed real number. For every r > 0 and S ⊂Rn , we define

H d
r (S) = inf

{ ∞∑
i=1

αd 2−d (diam(Si ))d : S ⊂
∞⋃

i=1
Si ,diam(Si ) ≤ r

}
, (2.3)

in which d is used as superscript and αd is a normalizing constant and diam(·) is the diameter

of a set (Definition A.3). The d-dimensional Hausdorff measure is given as

H d (S) = lim
r→0

H d
r (S) (2.4)

▲

The Hausdorff measure is related to the approximated linear measure L(ϵ) from the previous

subsection. In fact, (2.3) can be considered a generalization of the approximated linear mea-

sure L(ϵ). Using this measure, we can define the Hausdorff-Besicovitch dimension of a set

[Hutchinson, 1981, Sec. 2.6]:

Definition 2.2 (Hausdorff-Besicovitch Dimension)

The Hausdorf-Besicovitch dimension dimH (S) of a set S ⊂ Rn , is the smallest value of d for

which the d-dimensional Hausdorff measure (Definition 2.1) is zero. In other words,

dimH (S) = inf
{

d ≥ 0 : H d (S) = 0
}

. ▲

Informally, the Hausdorff-Besicovitch dimension can be interpreted as a measure of the rough-

ness of a set. While it agrees with the Euclidean dimension for smooth shapes such as line seg-

ments, squares or cubes, it exceeds the Euclidean dimension for sets which exhibit roughness,

for example the boundaries of the Mandelbrot set Figure 2.1 and Koch snowflake Figure 2.2.

The latter example will be introduced in Example 2.2.

With the Hausdorff-Besicovitch dimension defined, Mandelbrot’s definition of a fractal can be

restated in a formal manner.

Definition 2.3 (Fractal)

A fractal is a set (in Rn) for which the Hausdorff-Besicovitch dimension (Definition 2.2) strictly

exceeds its Euclidean dimension [Mandelbrot, 1982, Ch. 3]. ▲

To the extent of the author’s knowledge, there is no straightforward method for determining the

Hausdorff-Besicovitch dimension of an arbitrary set. Nonetheless, the following example pro-

vides an intuitive approach to assessing the Hausdorff-Besicovitch dimension of a geometric

curve.

Example 2.2 (Koch Curve)

Consider the Koch curve in Figure 2.3, which depicts a section of the Koch snowflake depicted

in Figure 2.2. The Koch curve in this figure is obtained using a straight horizontal line as the

initiator for the Koch curve. From Figure 2.3, we see that, by scaling the Koch curve on the left

by a factor 3, we obtain the segment on the right. Due to the self-similarity of the Koch curve,

the segment on the right can be constructed as the original segment repeated four times. Thus,
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Figure 2.3. Scaling a Koch curve by a factor 3 increases its length by a factor 4.

the length of the scaled segment is four times that of the original segment. By letting D denote

the dimension of the curve, we have 3D = 4, and we have that D = log3 4 ≈ 1.26. This number

is larger than the Euclidean dimension of the curve, which is 1 [Mandelbrot, 1982, Ch. 6]. By

Definition 2.3, this makes the Koch curve a fractal. ▲

The example above leveraged the fact that the scaled version of the Koch curve consists of re-

peats of the original version in order to infer the Hausdorff-Besicovitch dimension. This prop-

erty is what we refer to as self-similarity. While not all fractals exhibit strict self-similarity, it

is one of the most significant features associated with fractals, especially in the context of mi-

crostate sequences.

2.2 Self-Similarity

While the terms self-similarity and scale-invariance have both been addressed in a rather su-

perficial manner earlier in this thesis, no formal definition have been provided for either of the

two terms.

’Scale-invariance’ is the more restrictive of the two properties, since it implies that the scale-

invariant object is identical to its scaled counterpart for any scaling. Homogenous functions

are an example of scale-invariant functions, since f (st ) = sd f (t ) for a homogeneous function

of degree d . The fractals used as examples in this chapter are not scale-invariant, and since the

recordings used are ultimately discrete in time, the self-similarity property, which requires the

fractal to be invariant to only a discrete set of scalings, is more relevant to this thesis.

The aim of this section is to provide a definition of self-similarity. which is a fundamental fea-

ture that characterizes most fractals. Self-similar fractals are fractals for which a subset of the

fractal, when scaled to the size of the whole, is indistinguishable from the whole [Mandelbrot,

1967]. This feature was leveraged in Example 2.2, in which the right figure of Figure 2.3 was

identical to the left figure repeated four times. Formally, self-similarity is defined as follows:

Definition 2.4 (Self-Similarity)

A set K ⊂ Rn is self-similar (with respect to S) if K is invariant with respect to a finite set of

contraction maps S (see Definition A.13) and [Hutchinson, 1981, Sec. 5]

H d (K ) > 0, H d (Ki ∩K j ) = 0, for i ̸= j , (2.5)
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where K =⋃N
i=1 Ki , d = dimH (K ) (with dimH (·) denoting the Hausdorff-Besicovitch dimension

Definition 2.2) and H d (·) denotes the d-dimensional Hausdorff measure (Definition 2.1). ▲

In definition 2.4, the condition that K is invariant with respect to S ensures that K can be con-

structed as a finite union of contractions of K . The second condition (2.5) can be seen as a

"minimal overlap" condition.

The property of self-similarity (Definition 2.4) is often too idealized to be applicable to fractals

found in nature. Rather than the strict self-similarity introduced earlier, these fractals are more

likely to exhibit a statistical form of self-similarity.

For a stochastic process, either continuous in time or discrete in time, self-similarity is defined

as follows:

Definition 2.5 (Self-Similar Process)

A continuous-time stochastic process X (t ) is said to be self-similar if the process itself is distri-

butionally indistinguishable from its scaled version τH X ( t
τ ), where H is the Hurst exponent or

self-similarity parameter, and τ> 0. In other words, X (t ) is self-similar if

X (t ) ∼ τH X

(
t

τ

)
.

The discrete-time analogue case of this condition for a stochastic process (Xn)n∈Z can be stated

as

Xτn ∼ τH Xn ,

with τ ∈N. ▲

Note that a process X (t ) being statistically self-similar implies that both the mean function

µX (t ) and autocovariance function ρX (t1, t2) are homogeneous of degree H and 2H , respec-

tively, since

µX (τt ) =E
[

f (τt )
]=E

[
τH f (t )

]= τHµX (t )

and

ρX (τt1,τt2) =E
[

f (τt1) f (τt2)
]=E

[
τH f (t1)τH f (t2)

]= τ2HρX (t1, t2).

Having introduced the fundamentals of fractals and defined the Hurst exponent H in defini-

tion 2.5, the manner in which EEG microstate sequences exhibit fractal properties can now

be described. The second half of this chapter is structured as follows: Section 2.3 introduces

a method for embedding EEG microstate sequences into random walks in order to allow for

a Hurst-based analysis of self-similarity. To this end, random walks will be introduced along

with their statistical and fractal properties. Section 2.4 introduces a wavelet-based method for

estimating the Hurst exponent of a random walk-embedded microstate sequence.
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2.3 Random Walk Embedding of EEG Microstates

The aim of this section is to introduce a means of transforming a microstate sequence - a time

series on {1,2, . . . ,K } - into a time series on Z in order to assess its fractal properties. A method

used in existing studies [Van De Ville et al., 2010] does this by embedding microstate sequences

into random walks. The method by which to do so will be the main topic of this section.

In a broad sense, random walks refer to a family of random processes that consists of a succes-

sion of random steps on some space, e.g. Z or R2. For the purposes of this thesis, however, the

definition of random walks is restricted to one that is more narrow, in which the random walk

is a discrete-time sequence consisting of integer-valued elements, starting with a value of 0 at

the origin and taking unit-length steps at each time index. Specifically, the following definition

is used:

Definition 2.6 (Random Walk)

Let Uk ∈ {−1,1},k = 1,2, . . . be a sequence of random variables referred to as the steps or step

sequence. A Random Walk is defined as the process

Xn =
n∑

k=1
Uk , n = 1,2, . . . ,

with X0 = 0. ▲

The steps U1,U2, . . . are commonly assumed either iid. or stationary. In this thesis, however, the

distribution of the step sequence is deliberately left unaccounted for in Definition 2.6. While

making assumptions on U1,U2, . . . would yield a more manageable model, leaving the distri-

bution of the steps unknown allows for the microstate sequence to be "embedded" in the ran-

dom walk by letting U1,U2, . . . carry information about the microstate sequence. Following the

method used by Van De Ville et al. [2010], the microstate classes are first partitioned into two

sets. For example, with K = 4 microstate classes, a possible partition is S1 = {1,2} and S2 = {3,4}.

Next, given an estimated sequence of microstates cn ∈ {1,2,3,4},n = 1,2, . . . , let Un = 1 if cn ∈ S1

and Un = −1 if cn ∈ S2 and compute the random walk as it has been defined in Definition 2.6.

The resulting random walk increases by one at every value of n where cn ∈ S1 and decreases by

one at every value of n where cn ∈ S2. The method will be referred to as the random walk em-

bedding of microstate sequences (abbr. RW-MS) in this thesis. It is summarized in the following

definition:

Definition 2.7 (Random Walk Embedding of EEG Microstates)

Let (Cn)n∈1,...,N−1 be an EEG microstate sequence whose codomain S ⊂ N is bounded and of

size K . Let S1 and S2 be partitions of S satisfying S1 ⊕ S2 = S. The random walk embedding

of the microstate sequence (RW-MS) is a discrete process (Xn)n∈0,...,N−1 with X0 = 0 and, for

n = 1,2, . . . , N −1,

Xn =
n∑

k=1
Uk , Uk =

1, Ck ∈ S1,

−1, Ck ∈ S2.
(2.6)

▲
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While the RW-MS allows for microstate sequences to be subjected to a Hurst exponent-based

analysis of statistical similarity (see Definition 2.5), the question of how the microstate classes

should be grouped is one without any apparent answer. Thus, the method involves some arbi-

trary choice, unless all possible assignments are analyzed in parallel, in which case the data size

would increase drastically for larger numbers of microstate classes [von Wegner et al., 2017].

Nonetheless, this method provides a framework for mapping microstate sequences to a metric

space, where the concept of statistical self-similarity, as defined in Definition 2.5, can be ap-

plied. Understanding some basic properties of random walks will make it more clear how the

RW-MS behaves. It will also prove useful later, in Section 2.4, where a wavelet-based method for

Hurst exponent estimation will be introduced. Figure 2.4 shows an example of a RW-MS, where

a section of the random walk has been scaled to illustrate its similarity to the whole signal.

Figure 2.4. Example of a RW-MS along with a scaled version of one of its segment. The re-
semblance of the two are intended to illustrate statistical self-similarity.

2.3.1 Properties of Random Walks

In the previous section, it was argued that the distribution of the step sequence should be left

ambiguous to account for the characteristics of microstate sequences being unknown. This

makes it difficult to introduce properties of random walks in an in-depth manner. In order to

have a point of comparison, this subsection aims to first introduce two commonly used models

for the step sequence before discussing some general properties relating to discrete stochastic

processes that will become relevant later, when the Hurst exponent estimation is discussed.

Firstly, one can assume each of the steps U1,U2, . . . iid., in which case any given Uk has a prob-

ability mass function given as

P (Uk = i ) =
p, i = 1

1−p, i =−1
, i ∈ {−1,1} ,k = 1,2, . . . ,

with p ∈ [0,1]. The mean of the step sequence is given as µ=E [Uk ] = p − (1−p) for k = 1,2, . . . .
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The resulting random walk has first and second moments

E [Xn] =
n∑

k=1
µ= nµ, n = 1,2, . . . ,

Var[Xn] =
n∑

i=k
Var[Uk ] = nVar[U1]

= n
(
E

[
U 2

1

]−E [U1]2)= n(1−µ2), n = 1,2, . . . .

Noting that Var[Xτn] = τn(1−µ2) = τVar[Xτn], it appears that, when µ = 0, this random walk

is self-similar with Hurst exponent 1/2. Of course, τ1/2Xn and Xτn are not truly identical in

distribution, as can easily be seen from the fact that the state space of Xτn is of size τn + 1,

while the state space of τ1/2Xn is of size n +1 and contains integers scaled by τ1/2. This is an

inevitable consequence of using fixed step sizes. Since the distance between possible states of

τXn is τ1/2 for any n, this issue becomes less apparent at large n, where a distance of τ1/2 can

be considered negligible.

To obtain a slightly more sophisticated model for the step sequence, U1,U2, . . . could be as-

sumed a Markov Chain (Definition A.28), as depicted in Figure 2.5. This implies that the steps

Uk have conditional probabilities given as

P (Uk = j |Uk−1 = i ) = pi , j , 0 < pi , j = 1−pi ,− j < 1, i , j =±1,

for k = 2,3, . . . .

1 -1

p1,−1

p−1,1

p1,1 p−1,−1

Figure 2.5. Example of steps of a Random Walk modeled as a Markov chain. The numbers
indicate transition probabilities.

This Markov chain is irreducible (Definition A.31) and positive recurrent (Definition A.32).

Thus, it has a stationary distribution π j = limk→∞ P (Un+k = j |Un = i ) for i , j = ±1 (Theo-

rem A.34). Assume that the first step of the Markov chain has the probability distribution

P (U1 = i ) =πi for i =±1. Then, by the law of total probability,

P (U2 = j ) = ∑
i=±1

P (U2 = j |U1 = i )P (U1 = i ) = ∑
i=±1

pi , jπi ,

which, by definition of the stationary distribution (Definition A.30), is equal to π j . This indi-

cates that the Markov chain has constant mean µ= π1 −π−1. Letting p(k)
i , j = denote the k-step

transition probability, the autocovariance of the Markov chain is

Cov[Uk ,Uk+m] =E [UkUk+m]−µ2 = ∑
i±1

∑
j±1

j p(m)
i , j iπi −µ2

= ∑
i=±1

πi

(
p(m)

i ,i −p(m)
i ,−i

)
−µ2, (2.7)
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which is independent of k. Thus, the Markov chain is stationary (Definition A.26). Note also

that since p(m)
i , j → π j for m →∞, we have

∑
i=±1πi

(
p(m)

i ,i −p(m)
i ,−i

)
→ (π1 −π−1)2 = µ2, meaning

the covariance approaches zero.

The mean of a random walk with the Markov chain step sequence is

E [Xn] =
n∑

k=1
µ= nµ, n = 1,2, . . . ,

The variance is slightly more involved, so outlining the general form will suffice. Let ρi =
Cov[U0,Ui ], given as in (2.7). The variance is given as

Var[Xn] = Var[Xn−1]+Var[Un]+2
n−1∑
i=1

ρi

= Var[Xn−2]+Var[Un]+Var[Un−1]+2

(
n−1∑
i=1

ρi +
n−2∑
j=1

ρ j

)

=
n∑

k=1
Var[Uk ]+2

n−1∑
i=1

(n − i )ρi ,

= n(1−µ2)+2
n−1∑
i=1

(n − i )ρi .

Regardless of the model used for the step sequence, random walks are non-stationary (Defini-

tion A.26). Not only does this make intuitive sense, since the state space increases over time,

but it can also be easily verified; the mean of a random walk at time n ∈N is
∑n

k=0E [Uk ], which

is only constant over all n if the step sequence Uk is a zero-mean process. Given that the step

sequence has zero-mean, the variance of Xn is

Var[Xn] =E
[
(Xn−1 +Un)2] ,

= Var[Xn−1]+Var[Un]+2
n−1∑
i=1

Cov[Un ,Ui ], n = 1,2, . . . ,

which suggests that, in order for the variance to be time invariant, Var[Uk ]+2
∑k−1

i=1 Cov[Uk ,Ui ] =
0 for any k. This is clearly not possible, since if E [U1] = 0 and Var[U1] = 0, we would have

Cov[U2,U1] = 0 and thus Var[U2] = 0, implying that V ar [Uk ] = 0 for all k. Hence the random

walk is non-stationary, regardless of the manner in which we define the step sequence Uk .

Consider the incremental process ∆k Xn given as

∆k Xn = Xn −Xn−k , k ∈N,

with k ≤ n. While random walks are non-stationary, the incremental process ∆k Xk can be sta-

tionary.

Definition 2.8 (Stationary Increments)

A discrete stochastic process X0, X1, . . . is said to possess stationary increments if its incremen-

tal process ∆k Xn is stationary (Definition A.26), i.e. if the distribution of ∆k Xn = Xn − Xn−k is

independent of n for any positive integer k ≤ n. ▲

26



In order to ensure that a random walk has stationary increments, some requirements can be

imposed on the step sequence. The mean of the incremental process is

E [∆k Xn] =E
[

n∑
i=1

Ui −
n−k∑
j=1

Ui

]
=

n∑
i=n−k+1

E [Ui ] .

If Xn has stationary increments, this expression must be constant over n for any 0 < k ≤ n.

This implies that the step sequence U1,U2, . . . must have constant mean. The covariance of the

incremental sequence is

Cov[∆k Xn ,∆k Xn+m] =
n∑

i=n−k+1

n+m∑
j=n+m−k+1

Cov
[
Ui ,U j

]
,

=
k∑

i=1

k∑
j=1

Cov
[
Ui+n−k ,U j+n+m−k

]
.

For this to be independent of n, the covariance terms must all be independent of n, i.e. Cov[U1,U1+m] =
Cov[Un ,Un+m] for all n. In other words, a random walk X0, X1, . . . has stationary increments if

its step sequence is stationary.

Another property that random walks may exhibit is stability, which is defined as follows [Pipiras

and Taqqu, 2017].

Definition 2.9 (Stable Process)

A discrete stochastic process is said to be stable if it is identical in distribution to linear com-

binations of independent realizations of the process, up to location and scale parameters. In

other words, let X1;1, X1;2, . . . and X2;1, X2;2, . . . be two independent copies of the stochastic pro-

cess X1, X2, . . . . The process is said to be stable if, for any n ∈N,

X1;n +X2;n ∼ cn Xn +dn , (2.8)

with ∼ denoting equality in distribution, cn > 0 and dn ∈R. If dn = 0, the process is said to be

strictly stable. For symmetric α-stable processes (see Definition A.27), the stability condition

(2.8) takes the form[Pipiras and Taqqu, 2017, Eq. (1.5)]

X1;n +X2;n ∼ 2
1
α Xn , ∀n ∈Z, ▲

The inclusion of α-stable processes in the definition above may seem to be of little relevance

at the moment. The wavelet-based method used for Hurst exponent estimation, however, is

designed specifically for self-similar symmetric α-stable processes.

In this section, the RW-MS method was introduced as a means of obtaining self-similar se-

quences from microstate sequences. Random walks and a number of their statistical properties

were subsequently discussed. It is now time to introduce the main method for Hurst exponent

estimation used in this thesis.
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2.4 Wavelet-Based Estimation of the Hurst Exponent

The Hurst exponent was briefly introduced in Definition 2.5, albeit not in an in-depth manner.

The aim of this subsection is to introduce a method by Abry et al. [1999] used for determining

the Hurst exponent using the wavelet transform and discuss how it may be used to assess the

fractal properties of a non-stationary time series. While it may seem as if substantial amounts

of wavelet fundamentals are glossed over in this section, relevant theory about the wavelet

transform has been relegated to Appendix B to avoid getting sidetracked from the main topic

of assessing the fractal properties of microstates.

A process that is statistically self-similar exhibits the scaling formula from Definition 2.5. It

follows that since a self-similar process X (t ) is identical in distribution to the scaled process

τH X
( t
τ

)
, the wavelet transform (see Definition B.1) of X (t ) is identical in distribution to that of

τH X
( t
τ

)
. From (B.1), we have [Simonsen et al., 1997, Eq. (6)]

X̃ (a,b) = 1p|a|
∫ ∞

−∞
ψ∗

(
t −b

a

)
X (t )d t

∼ 1p|a|
∫ ∞

−∞
ψ∗

(
t −b

a

)
τH X

(
t

τ

)
d t

(a)= τH 1p|a|
∫ ∞

−∞
τψ∗

(
t ′τ−b

a

)
X

(
t ′

)
d t ′

= τH+ 1
2

1p|a/τ|
∫ ∞

−∞
ψ∗

(
t ′−b/τ

a/τ

)
X

(
t ′

)
d t ′

= τH+ 1
2 X̃

(
a

τ
,

b

τ

)
, (2.9)

where (a) is a result of integration by substitution with t ′ = t
τ . (2.9) indicates that

X̃

(
a

τ
,

b

τ

)
∼ τ−

(
H+ 1

2

)
X̃ (a,b). (2.10)

This means that for a self-similar process X (t ) with Hurst exponent H , its wavelet transform is

also self-similar with Hurst exponent H + 1
2 . Note that the 1

2 -term is due to the choice of nor-

malization, and that other choices of normalization could result in a different Hurst exponent

of the transformed process.

For the discrete wavelet transform (See Definition B.3), a similar result can be obtained. When

applying the discrete wavelet transform on discrete-time signals of finite length, the wavelet

coefficients are indexed by two sequences of non-negative integers, called the octave and trans-

lation, respectively. Using 2 as the base for the scale parameter and a translation step size of 1,

the discrete wavelet transform of a function X (t ) can be stated as

X̃ j ,k = 1
p

2
j

∫ ∞

−∞
ψ∗

(
t

2 j
−k

)
X (t )d t , j = 0,1, . . . , k ∈Z. (2.11)
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Letting τ= 2 j , we see that

X̃ j ,k = 1
p

2
j

∫ ∞

−∞
ψ∗

(
t

2 j
−k

)
X (t )d t

∼ 1
p

2
j

∫ ∞

−∞
ψ∗

(
t

2 j
−k

)
2 j H X

(
t

2 j

)
d t

= 2 j H 1
p

2
j

∫ ∞

−∞
2 jψ∗ (

t ′−k
)

X (t ′)d t ′

= 2 j (H+ 1
2 )X̃0,k , (2.12)

where we again make use of integration by substitution with t ′ = t
2 j . From (2.12), we see that

[Abry et al., 1999, Eq. (4)]

E
[
log2

(|X̃ j ,k |
)]= j

(
H + 1

2

)
+E

[
log2

(|X̃0,k |
)]

,

which indicates that an estimate of H can be obtained as the slope of a linear fit ofE
[
log2

(|X̃ j ,k |
)]

versus j , provided that E
[
log2

(|X̃ j ,k |
)]

is either known or can be estimated. Since the variances

of log2

(|X̃ j ,k |
)

varies across different octaves j , the weighted least squares is likely to provide

better results than the ordinary least squares method. The issue of how the weighted least

squares should be applied will be addressed later in this section. First, the issue of obtaining

an estimate of E
[
log2

(|X̃ j ,k |
)]

will be introduced. Although the property of self-similarity in

multifractal time series is not central to this thesis, a method that has proven effective in mul-

tifractal analysis will be introduced later in Section 2.4.2, such that the monofractality of the

random-walk embedded microstate sequences can be assessed.

2.4.1 Averaging Models for Wavelet-Based Hurst Exponent Estimation

Obtaining an accurate estimate ofE
[
log2

(|X̃ j ,k |
)]

is straightforward forα-stable processes with

stationary increments. If the process X (t ) has stationary increments (Definition 2.8), then,

at any octave j , the wavelet coefficients X̃ j ,0, X̃ j ,1, . . . form a stationary sequence [Abry et al.,

1999]. In this case, a simple estimate of E
[
log2

(|X̃ j ,k |
)]

can be obtained at any octave j by per-

forming an average along the translation index k. Since the number of wavelet coefficients is

limited in practice, we let N j denote the number of available coefficients at scale j and define

[Abry et al., 1999]

Y j = 1

N j

N j−1∑
k=0

log2

(|X̃ j ,k |
)

, (2.13)

which has the expectation

E
[
Y j

]= j

(
H + 1

2

)
+ 1

N j

N j−1∑
k=0

E
[
log2

(|X̃0,k |
)]

= j

(
H + 1

2

)
+E

[
log2

(|X̃0,0|
)]

=E
[
log2

(|X̃ j ,k |
)]

, k = 0,1, . . . , N j −1,

which suggests that this average is an unbiased estimator for E
[
log2

(|X̃ j ,k |
)]

when X (t ) has

stationary increments.
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When X (t ) is also a symmetric α-stable process (Definition 2.9), log2

(|X̃ j ,k |
)

has finite second-

order statistics [Abry et al., 1999]. The estimator has been found to be applicable to any α-

stable self-similar process for wavelets with finite order statistics.

Another example of a wavelet-based Hurst estimator is that of Veitch and Abry [1999], which is

often used in wavelet-based analysis of processes with long-range dependence. It is based on

the observation that (2.12) implies

E
[|X̃ j ,k |2

]= 22 j (H+ 1
2 )E

[|X̃0,k |2
]

, j ∈N, and k = 1,2, . . . , N j .

In view of this, one could choose to estimate E
[|X̃ j ,k |2

]
by averaging across k.

Z j = 1

N j

N j−1∑
k=0

|X̃ j ,k |2,

for which the expected value is

E
[

Z j
]= 1

N j

N j−1∑
k=0

E
[|X̃ j ,k |2

]= 2 j (2H+1)E
[|X̃0,k |2

]
. (2.14)

This provides a log-linear relationship between Z j and the octave j , from which H can be esti-

mated.

While (2.14) might seem to indicate that H can be estimated from the slope of a linear fit of

log2(Zq ; j ) against j , there is one notable issue in taking this approach to the estimation, namely

that

E
[
log2(Z j )

] ̸= log2

(
E

[
Z j

])
,

which means that the estimate of H obtained from observations of log2(Zq ; j ) is biased [Wu,

2020]. In fact, since log2 is a concave function, Jensen’s inequality (See Theorem A.25) implies

that E
[
log2(Z j )

]≤ log2

(
E

[
Z j

])
, meaning that the estimator tends to underestimate H . To ad-

just for this bias, one can define [Veitch and Abry, 1999]

V j = log2

(
Z j

)− g ( j ),

where g ( j ) is defined such that E
[
V j

] = log2(E
[

Z j
]
). Veitch and Abry [1999] found that the

following function g ( j ) ensures that E
[
V j

]= log2

(
E

[
Z j

])
[Veitch and Abry, 1999, eq. (17)]:

g ( j ) =
Γ′

(
N j

2

)
Γ′

(
N j

2

)
log(2)

− log2

(
N j

2

)
, (2.15)

where Γ′(z)/Γ(z) is the digamma function, i.e. Γ(z) is the gamma function and Γ′(z) its derivate.

To summarize, (2.13) and (2.14) yields two different models that average the wavelet transform

of a stochastic process across different translations at fixed octaves. The expected value of both
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models provide valuable insight into the Hurst exponent H , provided that the stochastic pro-

cess has stationary increments. The models and their expected values are given as

Y j = 1

N j

N j−1∑
k=0

log2

(|X̃ j ,k |
)

, with E
[
Y j

]= j

(
H + 1

2

)
+E

[
log2

(|X̃0,0|
)]

, (2.16)

V j = log2

(
1

N j

N j−1∑
k=0

|X̃ j ,k |2
)
− g ( j ), where g ( j ) =

Γ′
(

N j

2

)
Γ′

(
N j

2

)
log(2)

− log2

(
N j

2

)
,

and E
[
V j

]= j (2H +1)+ log2

(
E

[|X̃0,0|2
])

.

(2.17)

The two approaches are unnamed in the litterature. To make it easier to distinguish between

them, Y j will be called the average log model and V j will be called the average square model

throughout this thesis.

Both the average log model, Y j , and the logarithm of the average square model, log(Z j ), can

be computed and plotted against j to obtain an estimate of H . Due to the different variances

at different octaves j , however, the weighted least squares method should be chosen over the

ordinary least squares method. Since the weights of the weighted least squares should be cho-

sen as the reciprocal of the variances at each octave j , the variances of Y j and Z j must first be

obtained.

Under the hypothesis that the wavelet coefficients are uncorrelated with each other, Abry et al.

[1999] provided a closed-form relationship for the variance of Y j :

Var
[
Y j

]= Var

[
1

N j

N j−1∑
k=0

log2

(|X̃ j ,k |
)]

(a)= 1

N 2
j

Var

[
N j−1∑
k=0

log2

(
|2 j (H+ 1

2 )X̃0,k |
)]

(b)= 1

N j
Var

[
log2

(|X̃0,0|
)]

, (2.18)

where (a) follows from using the distributional identity (2.12), and (b) is true if the original

process X (t ) has stationary increments and the wavelet coefficients are uncorrelated across k.

Var
[
log2

(|X̃0,0|
)]

can be estimated by the sample variance. Note that since Var
[
log2

(|X̃0,0|
)] =

Var
[
log2

(|X̃ j ,0|
)]

for any j , one may also sample the variance at any other scale.

The variance of the average square model V j is identical to that of log2(Z j ), since the variance

is unaffected by the addition of a deterministic term g ( j ). However, due to log2(Z j ) having the

order of logarithm and summation reversed relative to Y j , obtaining the variance of log2(Z j ) is

more complicated. Under the assumption that the wavelet coefficients are uncorrelated across

both time and scale, Veitch and Abry [1999] found that

Var
[
V j

]= Var
[
log2

(
Z j

)]= ζ
(
2,

N j

2

)
log2(2)

, (2.19)

where ζ(·) is the generalized Riemann Zeta function ζ(z,n) =∑∞
k=0(n +k)−z .
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In practice, the wavelet coefficients can rarely be considered truly uncorrelated; instead, the

covariances between different wavelet coefficients are assumed negligible when they vanish

sufficiently rapidly. As a result, the performance of the estimator is negatively affected by the

long-range dependence exhibited by self-similar processes with Hurst exponents H > 1
2 . A

value of H close to 1 suggests a significant level of long-range dependence of the signal, which,

at any fixed octave j , could introduce correlation between the log2

(
X̃ j ,k |

)
, k = 0,1, . . . , N j −1.

In order to reduce the effect of long-range dependence on the wavelet coefficients and strengthen

the validity of the decorrelation hypothesis used in (2.18), one can choose to use a mother

wavelet for which the number of vanishing moments (See Definition B.6) is large [Abry et al.,

1999], i.e. wavelets φ(·) for which∫ ∞

−∞
t jφ(t )d t = 0, j = 0,1, . . . , N −1,

in which case we say that the wavelet φ(·) has N ∈ N vanishing moments if N is the largest

value for which the equation holds. The Daubechies wavelets, which can be implemented as

a series of filters with a finite number of taps, achieve the maximal amount of vanishing mo-

ments for a given support width - with 2N taps N vanishing moments. This makes them ideal

for wavelet-based Hurst estimation.

Having obtained a closed form expression of the variances of both Y j and V j , the Hurst expo-

nent can now be estimated. The weighted least squares Hurst exponent estimators ĤY and ĤV

- based on the average log model Y j and the average square model V j , respectively - are defined

over a range of octaves j0 ≤ j ≤ j1 as [Abry et al., 1999; Veitch and Abry, 1999]

ĤY =
j1∑

j= j0

w j Y j − 1

2
, (2.20)

ĤV =
∑ j1

j= j0
w j V j −1

2
, (2.21)

where, in either model, the weights w j take the general form

w j = S0 j −S1

Var
[

X j
]

(S0S2 −S1
2)

with Sm =
j2∑

i= j1

i m

Var[Xi ]
, m = 0,1,2,

where X j is either Y j or W j , depending on which estimator is chosen. The performance of the

two models will be assessed on a simple example later, in Section 3.1.

2.4.2 Wavelet-Based Multifractal Analysis

This thesis is primarily concerned with monofractal time series, for which the Hurst exponent

is a constant. For monofractal time series, the power-law X (τt ) = τH X (t ), imposed by the

self-similarity property, is independent of There are cases in which the self-similar scaling of a

fractal

Testing the time series for multifractal behavior would provide an argument for the validity of

the monofractal assumption - or lack thereof. If the process does exhibit multifractality, the
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monofractal assumption should be reevaluated; if it does not, the Hurst exponent sufficiently

captures the fractal properties of the process.

A model commonly used for assessing multifractal properties is one similar to Z j from (2.17),

in which the exponent can take any non-zero integer power q rather than being limited to 2.

In practice, such a model would be unstable for q < 0, since any wavelet coefficient could ran-

domly take a value close to zero, and subsequently be raised to a negative power. To mitigate

this issue, the model is computed from the wavelet leaders of a signal; they are defined as fol-

lows [Jaffard, 2004, Defs. 10-11]:

Definition 2.10 (Wavelet Leaders)

Let X (t ) ∈ L2(R) be a real-valued function with a discrete wavelet transform X̃ j ,k , whose basis

functions have compact support (see Definition A.7) and form an orthonormal basis of L2(R).

Let λ j ,k = [
2 j k, (k +1)2 j

)
and, with slight abuse of notation, 3λ j ,k = λ j ,k−1 ∪λ j ,k ∪λ j ,k+1. The

wavelet leader at octave j = 0,1, . . . and location k ∈ Z is given as [Jaffard, 2004; Wendt et al.,

2007]

L X̃ ; j ,k = sup
λ j ′ ,k′⊂3λ j ,k

|X̃ j ′,k ′ |. ▲

From (2.11) we see that within the subinterval t ∈ λ j ,k of the convolution, the mother wavelet

φ∗(t ′) takes arguments t ′ ∈ [0,1) for any j ,k ∈Z. This suggests that wavelet functions, φ j ,k (t ) =
φ(2− j t −k), and their corresponding coefficient, X̃ j ,k , can be considered ’localized’ within the

interval λ j ,k - albeit only in a heuristic sense, since the support of the mother wavelet φ∗(t )

may not be [0,1).

Note that the set of intervals that satisfy λ j ′,k ′ ⊂ 3λ j ,k in Definition 2.10 includes not only

λ j ,k−1, λ j ,k and λ j ,k+1, but also a number of wavelet coefficients at octaves lower than j , since

λ j ,k = λ j−1,2k ∪λ j−1,2k+1. Thus, the wavelet leader L X̃ ; j ,k is the largest absolute wavelet coeffi-

cient among all X̃ j ′,k ′ localized within 3λ j ,k , including those at finer resolutions, where j ′ ≤ j

[Wendt et al., 2007].

Letting NL; j denote the number of wavelet leaders available at at octave j , the wavelet leader-

based approach considers the structure function given as

S j ,q = 1

NL; j

NL; j∑
k=0

|X̃ j ,k |q , (2.22)

with q, j ∈Z. Note that if (2.22) had been computed on wavelet coefficients rather than wavelet

leaders, any wavelet coefficient close to zero could affect the sum drastically for negative pow-

ers q . By using the wavelet leaders rather than the wavelet coefficients in (2.22), the structure

function can be computed in a stable manner for negative powers q [Jaffard, 2004, Sec. 4.4].

In the limit j →∞, the structure function is [Wendt et al., 2007; Jaffard, 2004]

S j ,q = cq 2 jξ(q),
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where cq ∈R is some scalar and the scaling function ξ(q) is concave for multifractal processes

[Jaffard et al., 2007] and affine for monofractal processes. Thus, when the characteristics of the

time series are largely unknown, an estimation of ξ(q) using log-linear regression provides a

means of assessing whether the time series is likely to be monofractal; if the estimate of ξ(q)

follows a strong linear trend, the time series is likely monofractal.

Although the microstate sequences and their random-walk embeddings are discrete in time,

the process X (t ) has been assumed a continuous-time signal in this section. While the discrete

wavelet transform maps a continuous function to a discrete set of coefficients using a family of

continuous-time basis functions, the findings of Daubechies [1988] provides a discrete scheme

of filters with a finite number of taps that is equivalent to a discrete wavelet transform with or-

thonormal basis functions. This scheme is entirely discrete by design; it can be applied to sam-

pled signals without compromising its theoretical framework. Additionally, the Daubechies

wavelets are designed as to have the highest number of vanishing moments for a given num-

ber of filter taps, which should mitigate the extent to which long-range dependence affects the

performance of the wavelet-based Hurst estimator. The topic of Hurst exponent estimation us-

ing Daubechies wavelets will be addressed in the following subsection. An in-depth summary

of Daubechies wavelets and multiresolution analysis can be found within Appendix B.

2.4.3 Hurst Exponent Estimation with Daubechies Wavelets

Section 2.4.1 introduced a method for estimating the Hurst exponent of a process from its

wavelet transform, provided the process and its wavelet coefficients fulfill a set of conditions.

The method leverages the fact that the wavelet coefficients of a self-similar process with sta-

tionary increments are identical in distribution across octaves j ∈Zup to a scale factor 2 j (H+1/2).

Thus, from the log-linear behavior exhibited by the means of the wavelet coefficients at differ-

ent octaves, an estimate of H can be obtained by performing a linear fit on the logarithm of the

wavelet mean across a range of octaves. This requires an estimate of the means; two models,

(2.16) and (2.17), were introduced for this purpose.

Until this point, any coefficient of the discrete wavelet transform has been introduced without

reference to any specific choice of wavelet function; for future sections, however, the chosen

wavelet will be of the Daubechies family (see Appendix B.2), first introduced in Daubechies

[1988]. This subsection aims to fill in gaps in earlier sections caused by the lack of specificity

on the choice of wavelets.

The fundamentals of Daubechies wavelets will first be summarized, before delving into their

implementation. Afterwards, the entire process of estimating the Hurst exponent will be sum-

marized in a step-by-step guide to wavelet-based Hurst estimation. This section provides only

a simplified overview of Daubechies wavelets; the topic of wavelets is discussed in more detail

in Appendix B, where Appendix B.2 concerns the construction of Daubechies wavelets.
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2.4.3.1 Summary of Daubechies Wavelets and Multiresolution Analysis

The Daubechies wavelets are based on the multiresolution analysis framework of Mallat [1989].

Multiresolution analysis allows for L2(R)-functions to be written as the limit of successive smoothed

versions of the function, where an increasingly concentrated smoothing function gradually in-

troduces more fine-scale features of the original function. While Appendix B.1.1 provides a

more detailed description of multiresolution analysis, an abridged version will suffice here.

A multiresolution analysis of the set of square-integrable functions, L2(R) (Definition A.2), con-

sists of a sequence V j , j ∈Z of closed subspaces of L2(R), for which

L2(R) = ⋃
j∈Z

V j , (2.23)

where the overline denotes the closure operator. The ’multiresolution’ aspect is introduced by

imposing certain conditions on V j ; most notably, that V j ⊂V j−1 and f (t ) ∈V j =⇒ f (2t ) ∈V j−1

for all j . These two conditions (heuristically) suggest that the orthogonal projections of an

L2(R)-function onto V j and V j−1 yield approximations of the function at different resolutions,

with the latter being at a level of detail ’twice’ that of the former. Additional conditions are listed

in Definition B.4, but skipped here.

Since V j ⊂ V j−1, we have V j−1 = V j
⊕

W j , with W j denoting the orthogonal projection of V j−1

onto the complement of V j . W j contains the additional information provided by an approxi-

mation at the ( j −1)th octave compared to one at j th octave. The subspaces W j , j ∈Z allow us

to restate (2.23) in terms of the orthogonal subspaces starting from Vi , for any given i ∈Z:

L2(R) =Vi ⊕
i⊕

j=−∞
W j , (2.24)

where the overline denotes the closure operator.

For the asymptotic case of (2.24) when i →∞ and V∞ = {0}, Mallat [1989] proved the existence

of a function ψ(t ) for which
{
2− j /2φ(2− j t −k)

}
j ,k∈Z is an orthonormal basis of L(R). As will be

shown shortly, however, the bounded model (2.24) lends itself well to understanding some of

the practical aspects of Daubechies wavelets.

The discrete wavelet transformation by Daubechies [1988] decomposes the signal of interest

by iteratively projecting its component from one space, V j , onto its two orthogonal subspaces,

V j+1 and W j+1. The method is designed for discrete-time signals, (xn)n∈Z ∈ ℓ2(Z); multires-

olution analysis requires these signals to be ’translated’ into functions on R. This is achieved

by first redefining (c(0)
n )n∈Z = (xn)n∈Z and choosing the spaces V j and functions φ(·) such that{

2− j /2φ(2− j t −k)
}

k∈Z is an orthonormal basis of V j . Next, consider the function [Daubechies,

1988, Sec. 2.C]

f (t ) = ∑
n∈Z

c(0)
n φ(t −n), (2.25)

which is a linear combination of the basis vectors of V0, meaning f (·) ∈ V0. The function f (·)
can be decomposed into its components in V1 and W1, and its component in V1 can be further
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decomposed into its components in V2 and W2. After i > 0 repeated steps of this procedure, f (·)
has been separated into its components in the subspaces listed in (2.24), albeit with non-zero

components only at octaves j < 0.

At every j < 0, sequences (c( j )
n )n∈Z and (d ( j )

n )n∈Z can be defined, respectively, from f (·) ∈ V j

and f (·) ∈W j analogues to (2.25). Expressing the (c( j )
n )n∈Z and (d ( j )

n )n∈Z in terms of (c( j−1)
n )n∈Z

reveals how the discrete wavelet transform is implemented with Daubechies wavelets: For a

given signal (c(0)
n )n∈Z and sequences (hn)n∈Z and (gn)n∈Z with finite support, the Daubechies

wavelet coefficients are obtained as [Daubechies, 1988, Eq. (2.47),(2.48)]

c( j )
k = ∑

n∈Z
hn−2k c( j−1)

n ,

d ( j )
k = ∑

n∈Z
gn−2k c( j−1)

n ,
(2.26)

where the previous sequence, (c( j−1)
k )k∈Z, can be discarded after any step, j . The filter taps

(hn)n∈Z and (gn)n∈Z are defined according to a set of conditions that impose an underlying

wavelet transform with an orthonormal basis of compactly supported wavelets, whose order

of regularity increases linearly with the support width. One of these conditions relates (gn)n∈Z
to (hn)n∈Z as gn = (−1)nh(−n +1), allowing both functions to be defined by a common set of

coefficients. Some of the other conditions are described in Appendix B.2.

The filter taps are computed such that they guarantee the maximal number K of vanishing mo-

ments for the given filter length. It has been found that, when the filters (hn)n∈Z and (gn)n∈Z
are both of length 2K , the wavelet transform has K vanishing moments [Daubechies, 1988].

For the sake of convenience, it is assumed that the filters are supported on n = 0,1, . . . ,2N −1.

2.4.3.2 Practical Considerations

For the purposes of this thesis, Daubechies wavelets with five vanishing moments are used via

the PyWavelets package [Lee et al., 2009] for the programming language Python 3.8.

Since the real signals are finite length signals on a bounded set of integers N = 0,1, . . . , N −1,

the length N j of the sequence at the j th step of the decomposition is finite as well. Since the

2k-terms in (2.26) effectively introduce a downsampling by a factor 2 at each step, it follows

that the lengths of the signal at different j should also decrease approximately by a factor 2 at

each step. When disregarding edge cases and assuming the original signal is of length N = 2i k

for some k ∈N, the Daubechies wavelet transform of the signal, terminated at the i th step, has
N
2 + N

4 +·· ·+ N
2i + N

2i = N coefficients, where the final term is repeated twice due to i being the

only octave j where (c( j )
n )n is not discarded. Thus, the Daubechies wavelet transform of a signal

preserves (in theory) the number of entries, as was to be expected from a decomposition onto

an orthonormal basis [Daubechies, 1988].

Due to the edge effects caused by applying a filter of length 2K to a finite-length signal, the

length of either sequence given in (2.26), denoted N j , is equal to the number of entries for
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which the filter does not, at any point during the convolution, exceed the boundaries of the

previous sequence, (c( j−1)
n )n=0,1,...,N j−1 . In other words, N j is the total number of integers k that

satisfy [2k,2(K + k)− 1] ⊆ [0, N j−1 − 1]; the condition is satisfied by k = 0,1, . . . ,⌊N j−1/2−K ⌋,

which implies N j = ⌊N j−1/2−K +1⌋ (assuming, of course, that N j is positive).

Neglecting to account for the edge cases of a signal results in information being lost during

the decomposition, making exact reconstruction impossible. The aim of this thesis is to assess

general characteristics of potentially self-similar signals from their wavelet representations; lo-

cal features at either end of the signals are negligible, and signal reconstruction quality is a

non-issue, since In other words, the amount of lost information is unlikely to cause any major

issues.

To account for edge effects, signals are often extended past their end points using padding prior

to the decomposition, resulting in the number of wavelet coefficients being equal to or greater

than the length of the original signal. This generally introduces some redundancy in the signal,

and could - depending on the extension mode chosen - greatly affect how the dynamics of the

sequence are observed, especially at later steps, where the number of coefficients is lower. Py-

wavelets implements the discrete wavelet transform using a cascading filter banks algorithm,

which is computationally efficient for inputs whose length is a power of 2. Thus, the wavelet

decomposition in PyWavelets requires the use of extension modes.

The extension mode should be chosen as to best emulate the behavior of the signal. For this

thesis, a potential candidate is the ’antireflect’ mode [Lee et al., 2009]

. . . , (2x0 −x2), (2x0 −x1) | x0, x1, . . . , xN j−1 | (
2xN j−1 −xN j−2

)
,
(
2xN j−2 −xN j−3

)
, . . . . (2.27)

At every step, a discrete wavelet transform (with filter length 2K ) using this mode outputs

N j = ⌊1
2

(
N j−1 +−1

)⌋ coefficients.

To explain why this mode is an intuitive choice, recall the nature of the random walks from

Section 2.3, in which Xn = Xn−1 +Un for some random step Un . Consider the right-side exten-

sion; if we assume (xn)n=0,1,... is an observation of a random walk with steps (un)n=0,1,..., then

2xN j−1 − xN j−2 = xN j−1 +uN j−1. Furthermore, if the steps are iid., then E
[

XN j−1 +UN j−1
] =

E
[

XN j

]
. This suggests that the mode yields a unbiased estimate of XN j , with respect to the

prior probability; when conditioned on an observation, xN j−1, the unbiased estimate would

be xN j−1 +E
[
UN j

]
. The variance of the padded value do not match that of XN j−1+U j , since

Var
[
UN j−1

] = Cov
[

XN j−1,UN j−1
] ̸= Cov

[
XN j−1,UN j

] = 0. The left-side extension imposes an-

tisymmetry about x0, but it cannot be meaningfully linked to random-walks, since random-

walks are left-bounded at zero. Nonetheless, this mode has been chosen for this thesis.

2.4.4 Final Wavelet-Based Model for Hurst Estimation

Having discussed several topics related to the implementation of the wavelet-based Hurst ex-

ponent estimator, it is time to conclude this chapter by summarizing the steps involved in ob-

taining a Hurst estimate using the wavelet transform.
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The procedure can be summarized as follows:

1. Let (xn)n=0,1,...,N−1 denote the observed self-similar (Definition 2.5) time series.

a) Assume it is stable (Definition 2.9) and has stationary increments (Definition 2.8).

b) For a microstate sequence (cn)n∈1,...,N−1 with elements in a set S ⊂ N of size K , a

random-walk embedding, (2.6), is first applied by computing xn = ∑n
k=1 uk , where

uk = (−1)i−1 for cn ∈ Si , with S1 ⊕S2 = S and x0 = 0.

2. The discrete wavelet transform of (xn)n=0,1,... is obtained by iterating

c( j )
k =∑

n
hn−2k c( j−1)

n , d ( j )
k =∑

n
gn−2k c( j−1)

n ,

over a range of steps j = 1,2, . . . .

a) The taps hn−2k = (1)g−n−2k are supported on 0,1, . . . ,2K , for a filter length 2K .

b) The sequences (c( j−1)
k )k=0,1,...,N j can be discarded after step j .

c) Since both outputs from each iteration is of length N j ≈ N j−1/2, the process must

be terminated while N j > 0.

d) The use of signal extension modes is required for optimal computational efficiency.

3. From the set of wavelet coefficients at levels j1 ≤ j ≤ j2,
{

(d ( j )
k )k=0,1,...,N j

}
j1≤ j≤ j2

, one of

the two following models can be computed:

Y j = 1

N j

N j−1∑
k=0

log2

(
|d ( j )

k |
)

, V j = log2

(
1

N j

N j−1∑
k=0

|d ( j )
k |2

)
−

 Γ′
(

N j

2

)
Γ′

(
N j

2

)
log(2)

− log2

(
N j

2

) .

4. From either Y j or V j , an estimate of the Hurst exponent can be obtained as, respectively,

ĤY =
j1∑

j= j0

w j Y j − 1

2
, ĤV =

∑ j1

j= j0
w j V j −1

2
.

a) For X j denoting either Y j or V j , the weights are w j =
(
S0 j −S1

)/(
Var

[
X j

]
(S0S2 −S1

2)
)

with Sm =∑ j2

i= j1
i m

/
Var[Xi ].

b) Computing the weights requires an estimate of the variances, which is obtained for

Y j by using (2.18) (on sample variances of |d ( j )
k |), and for V j by using (2.19).
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Simulation Studies 3
The previous chapter introduced a Hurst exponent estimation scheme for discrete-time sig-

nals based on the discrete wavelet transform, but the performance of the transform was not

assessed. Additionally, no other estimation methods were introduced to serve as a point of

comparison. This chapter aims to remedy both of these issues, by introducing a deep learning-

based approach to Hurst exponent estimation and comparing it to the wavelet-based approach.

First, the performance of the wavelet-based estimators will be applied to a simple family of

self-similar processes known as the discrete Wiener process, whose Hurst exponent is H = 5.

By analyzing the MSE, bias and variance of the estimator over different pairings of observed

scale boundaries j0 ≤ j ≤ j1 and averaging models Y j and VJ (introduced in Section 2.4.1),

model parameters will be chosen.

Section 3.2 concerns the issue of designing a deep learning-based model using supervised

learning. An immediate issue of using supervised learning for Hurst estimation is that no

ground truth is available for microstate sequences; the network would require training labels

from the wavelet-based method, presumably causing it to replicate the biases and inaccuracies

of the wavelet-based method. Additionally, a sizable amount of microstate sequences would

be required to train such a network; a much easier approach would be to train a model on

simulated data and compare its performance against the wavelet-based model on sets of data,

whose Hurst exponents are known. For this purpose, a neural network is instead designed

for Hurst exponent estimation of fractional Brownian motion - a generalized Wiener process

whose Hurst exponent can take any value H ∈ [0,1).

The last section, Section 3.3, seek to better understand the underlying dynamics of the EEG

microstate model. The aim of Section 3.3 is to obtain a model that can be used to generate

synthetic EEG data from a given microstate sequence. This section is driven by inductive rea-

soning and conjecture, and some known characteristics of EEG microstates are disregarded in

the interest of obtaining a model, whose statistics are adjustable or easily determined.
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3.1 Hurst Exponent Estimation of a Wiener Process

The aim of this section is to provide an example of Hurst exponent estimation using the wavelet-

based method introduced in the previous chapter. From the results of this section, the model

is fine-tuned for use in later chapters.

In order to assess the performance of the wavelet-based Hurst estimation scheme, a discrete-

time self-similar stochastic process is required. One of the most simple models for such a pro-

cess is the discrete Wiener process, which can be defined as follows [Kay, 2006, Example 20.3]:

Definition 3.1 (Discrete Wiener Process)

The discrete Wiener process (Xn)n∈N is a sequence of random variables given as

Xn =
n∑

k=0
Uk , n = 0,1, . . . ,

where Uk
i i d .∼ N (0,σ2). ▲

Clearly, the discrete Wiener process has zero mean. Its autocovariance is

Cov
[

Xn1 , Xn2

]=E
[

n1∑
j=0

U j

n2∑
k=0

Uk

]

=E
[

n1∑
j=0

n2∑
k=0

U jUk

]

=
min(n1,n2)∑

k=0
E

[
U 2

k

]
=σ2 min(n1,n2).

It is also self-similar, since, for any positive integer τ, we have

Cov
[

Xτn1 , Xτn2

]=σ2τmin(n1,n2) = τ 1
2 Cov

[
Xn1 , Xn2

]
,

indicating that the process has a Hurst exponent H = 1/2.

The discrete Wiener process is easily generated from partial sums of N Gaussian variables.

While its Hurst exponent being fixed at 1/2 may affect the comprehensiveness of the test, the

model provides a simple method for parameter adjustments.

For the experiment in this section, 212 signals of length 214 were used, and the variance σ2 of

Definition 3.1 was set to 1. An example of one of the generated Wiener processes is shown in

Figure 3.1. Daubechies wavelets with 5 vanishing moments were used for this test. Both of the

wavelet average models introduced in Section 2.4.1 were used for the wavelet-based method

during this test.

The two models were the average-log model, Y j , whose associated Hurst exponent estimate

was named ĤY , and the average-square model V j , whose Hurst exponent estimate was named
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ĤV . The mean squared error, sample bias and sample variance were computed for both mod-

els, using every possible combination of boundaries, j0 and j1, for the set of octaves included

in the linear regression. The results are given in Table 3.1 and Table 3.2 for ĤY and ĤV , respec-

tively. Each row shows the optimal result in terms of MSE, at the given lower bound of observed

octaves, j0.

Figure 3.1. A realization of a Wiener process.

Table 3.1. Hurst exponent estimates ĤY were computed for 212 signals of length 214 for ev-
ery possible pair of bounds j0 and j1 of the range of octaves j0, j0 +1, . . . , j1 over which H is
estimated. At each j0, the j1 of the estimate with minimal MSE is given along with averages
of MSE, bias and variance across the estimates. Absolute minimum within each category is
marked.

j0 j1 MSE Bias Variance

1 10 7.548×10−3 −8.614×10−2 1.273×10−4

2 9 9.467×10−4 −2.638×10−2 2.508×10−4

3 9 7.860×10−4 −1.523×10−2 5.542×10−4

4 9 1.459×10−3 −1.361×10−2 1.273×10−3

5 9 3.423×10−3 −1.035×10−2 3.315×10−3

6 10 8.260×10−3 3.053×10−3 8.251×10−3

7 10 1.880×10−2 2.070×10−2 1.837×10−2

8 10 4.855×10−2 4.476×10−2 4.655×10−2

9 10 1.996×10−1 8.595×10−2 1.922×10−1
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Table 3.2. Hurst exponent estimates ĤV were computed for 212 signals of length 214 for ev-
ery possible pair of bounds j0 and j1 of the range of octaves j0, j0 +1, . . . , j1 over which H is
estimated. At each j0, the j1 of the estimate with minimal MSE is given along with averages
of MSE, bias and variance across the estimates. Absolute minimum within each category is
marked.

j0 j1 MSE Bias Variance

1 10 6.612×10−3 −8.088×10−2 7.100×10−5

2 10 4.039×10−4 −1.529×10−2 1.700×10−4

3 9 3.120×10−4 −3.661×10−3 2.986×10−4

4 8 6.475×10−4 −1.713×10−3 6.446×10−4

5 8 1.843×10−3 4.204×10−3 1.825×10−3

6 9 5.442×10−3 2.363×10−2 4.884×10−3

7 9 1.686×10−2 4.309×10−2 1.500×10−2

8 10 5.022×10−2 1.145×10−1 3.712×10−2

9 10 1.487×10−1 1.774×10−1 1.173×10−1

The results in Table 3.1 and ?? indicate that including the wavelet coefficients of octaves j0 = 3

through j9 in the Hurst exponent estimation for signals of length 214 appears to provide the

optimal performance for both ĤY and ĤY . The subpar performance at low values of j0 is likely

related to the fact that wavelet coefficients at the lower range of octaves are not as heavily pro-

cessed, and cover narrow time intervals, making them more vulnerable to noise and errors.

At larger octaves, most of the noise present in the original signal has likely been reduced by

successive application of the filter used in the Daubechies wavelet decomposition.

These results are mostly in line with what has been found in other studies; Wu [2020] also found

that an increase in j0 yielded a decrease in performance, and argued that the loss of informa-

tion caused by discretely sampling a continuous function introduces errors that are significant

at smaller octaves, but decreases at higher octaves.

Moving forward, j0 = 3 and j1 = 9 are chosen as boundaries for both the average-log model and

average-squares model when the data is of length 214. If need be, the lower boundaries will be

the first to be adjusted, should the method cause problems in the future.

3.2 Convolutional Neural Network-Based Hurst Exponent

Estimation of Fractional Brownian Motion

This section delves into the issue of how well a convolutional neural network (abbr. CNN, see

Appendix C) performs compared to the wavelet-based method in estimating the Hurst expo-

nent of a time series. For this purpose, fractional Brownian motion provides a means of gener-

ating a time series for which the Hurst exponent is easily controlled. The following subsection

serves the purpose of introducing the basics of fractional Brownian motion, including how it is

simulated.
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3.2.1 Fractional Brownian Motion

A fractional Brownian motion (abbr. fBm) with Hurst exponent H is a zero-mean Gaussian

process BH (t ) for which - when standardized - the autocovariance is on the form [Dieker and

Mandjes, 2003]

ρB (t1, t2) =E [BH (t1)BH (t2)] = 1

2

(
t1

2H + t2
2H −|t1 − t2|2H )

, t1, t2 ≥ 0.

Since the autocovariance of this process is homogeneous of degree 2H (for positive scalars),

the fBm is self-similar (Definition 2.4). Additionally, by the continuous-time analogue of Defi-

nition 2.9, the process is stable (specifically, it is symmetric α-stable, see Definition A.27), since

the linear combination aBH1(t )+bBH2(t ), a,b > 0 of two independent fBms with autocovari-

ances σ2
1ρB and σ2

2ρB , respectively, is itself an fBm with autocovariance
(
(aσ1)2 + (bσ2)2

)
ρB .

In order to determine how to generate discrete samples of a fractional Brownian motion, con-

sider the discrete incremental process ∆BH ;0,∆BH ;1, . . . given by

∆BH ;n = BH (n)−BH (n −1), n = 1,2, . . . (3.1)

with ∆BH ;0 = BH (0). This process is called fractional Gaussian noise (abbr. fGn). It is clear

from (3.1) that BH (t ) = ∑t
k=0∆BH ;k , t ∈ N and that ∆BH ;n is Gaussian with zero-mean. The

autocovariance of ∆BH ;n , however, is slightly more involved. We have

Cov
[
∆BH ;n+k ,∆BH ;n

]=E [(BH (n +k)−BH (n +k −1))(BH (n)−BH (n −1))]

= ρB (n +k,n)−ρB (n +k,n −1)−ρB (n +k −1, t )+ρB (n +k −1,n −1)

= 1

2

(|n − (n +k)|2H −|(n −1)− (n +k)|2H −|n − (n +k −1)|2H +|(n −1)− (n +k −1)|2H )
= 1

2

(−2|k|2H +|k +1|2H +|k −1|2H )
, k ∈Z,

which depends on a single parameter k, implying that (3.1) is wide-sense stationary (see Defi-

nition A.26).

Leveraging that the covariance of ∆BH ;n depends only on the distance k, we choose to define

the autocorrelation sequence as

ρB ;k =E
[
∆BH ;n∆BH ;n+k

]
, k ∈Z, (3.2)

in which the value of n > 0 used is arbitrary.

[Hosking, 1984] provides an algorithm for recursively simulating samples x0, x1, . . . , xN of a

stationary process with a given ACS ρX ;k and a normal marginal distribution. By using this

method to simulate the fGn given by (3.1), the kth entry of an equidistantly spaced sampling

of the fBm BH (t ) can be obtained as the cumulative sum of the first k entries of the simulated

fGn.

The algorithm, as described in [Hosking, 1984, Algorithm A], is as follows: First, a starting value

x0 is generated from the distribution N (0,σ2
0), where σ2

0 is the stationary variance chosen for
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the xn . We define N0 = 0 and D0 = 1 and let ρn be defined by (3.2). Next, for n = 1, . . . , N −1, the

xn are recursively generated by first computing the means mn and variancesσ2
n of the marginal

distributions

γn = ρn −
n−1∑
k=1

φn−1,kρn−k ,

Dn = Dn−1 −
γ2

n−1

Dn−1
,

φn,n = γn

Dn
, φn,k =φn−1,k −φn,nφn−1,n−k , k = 1, . . . ,n −1,

mn =
n∑

k=1
φn,k xn−k , σ2

n = (
1−φ2

n,n

)
σ2

n−1,

from which xn can be generated from the distribution N (mn ,σ2
n).

Hosking’s method is rather slow. It is of complexity N 2, whereas Davies and Harte’s method

- an alternative to Hosking’s method described in [Davies and Harte, 1987] - has complexity

N log(N ) [Dieker and Mandjes, 2003]. However, the Davies Harte method does not work when

H is close to 1, while Hosking’s method simulates the required process exactly regardless of the

choice of H .

3.2.2 Designing the Neural Network

In order to assess whether a deep learning-based approach yields any benefit over the wavelet-

based method when it comes to estimating the Hurst exponent of a fractal time series, a convo-

lutional neural network (See Appendix C.2) for Hurst exponent estimation of fractional Brow-

nian motion was designed. It was implemented in the Python 3.7, using the keras module

included in the tensorflow package.

The dataset used for training, validation and testing consisted of 215 discretely sampled stan-

dardized fractional Brownian motions, each of length 214 and with Hurst exponents drawn uni-

formly from the open interval (0,1). Among the 215 signals, 75% were used for training, 12.5%

were used for validation between training epochs, and 12.5% were used for testing after train-

ing had concluded. The network was intended to yield a single output, corresponding to the

Hurst parameter estimate, and the network was provided with the true Hurst parameters as

labels for the training.

A convolutional neural network is a network with at least one convolutional layer. Whereas

fully connected layers assign weights between every input node and every output node, all of

which must be adjusted through training, convolutional layers convolves the inputs with a set

of kernels, whose weights are adjusted through training. This means that convolutional layers

are suitable for problems in which there is spatial of temporal correlation between neighboring

inputs; such is the case for this thesis.

Pooling functions are often used in combination with convolutional layers. The most notable

pooling function is max pooling, which divides the signal into sections of equal size and out-
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puts the maximum value of each section. Pooling layers are used to reduce the dimension of

the data, and are often inserted following a convolutional layer; the concolutional layer extracts

local features across the inputs, and the max pooling layer passes the most significant values

to the next layer, discarding the rest.

The goal of designing the network was to obtain a model that based on an input signal of length

214 outputs a single parameter, the Hurst exponent. This is a problem of regression, in which

the output is between 0 and 1. For this reason, the logistic sigmoid, which outputs values be-

tween 0 and 1 was used as the output activation function. A number of different networks were

designed for this task prior to arriving at the final model.

Sequential networks with fully connected layers were quickly ruled out; the loss function never

came close to the MSE observed for the wavelet-based method, and the training of the net-

work was time-consuming, due to the abundance of weights that required training. Sequential

implementations of convolutional neural networks were also attempted; they achieved better

results, albeit not at the level of the wavelet-based method.

Inspired in part by the Daubechies wavelet decomposition, the neural network used in this

thesis applies convolutional layers with varying kernel sizes to the data in parallel. The convo-

lutional layers filter the data and the max pooling layers reduce the data in size; the combina-

tion of the two operates in a manner similar to that of the Daubechies wavelet decomposition.

Thus, by running the convolutional layers and max poolings in parallel with various kernel sizes

and pool sizes, the network is able to observe the data at different scales. The observations at

different scales can later be concatenated and processed by a fully connected layer, in order

to extract relevant features. The network is depicted in Figure 3.2; two variants of the same

general model are included, with one including four parallel segments, and a smaller variant

including three parallel segments. The two variants will be referred to by the number of ’scales’

they each consider; the larger network will be called the 4-scales CNN or CNN4 and the smaller

network will be called the 3-scales CNN or CNN3.

For the training of the two models, the stochastic gradient descent (see Appendix C.1.2) was

used with the mean squared error as loss function and a batch size of 16, meaning that the

weights of the network were iteratively updated in the opposite gradient of the MSE computed

on 16 time series per iteration. The network was trained on the data for a total of 200 epochs -

in other words, the entire set of training data was cycled through 200 times.

Dropout layers - which randomly excludes outputs at a rate 0.3 during the training - were in-

cluded after each max pooling layer convolutional layers to avoid overfitting. Batch normaliza-

tion layers were included at the input and between the fully connected layer and the output. To

avoid overfitting the model, the weights used in the test were chosen as to correspond roughly

to the epoch with the minimum MSE of the validation data. The MSE is plotted against the

epochs in ??, from which it appears that the validation error generally decreases along with

the training error throughout the duration of the training, which suggests that the model is not
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Figure 3.2. A model depicting the structures of the two parallel CNNs designed in this sec-
tion. The full model depicts the structure of the 4-scales CNN, while the elements marked
with blue are the layers included in the 3-scales CNN

overfitted.

3.2.3 Performance Comparison with Wavelet-Based Estimator

In order to assess the performance of both networks designed in this section and the wavelet-

based Hurst estimator, a new set of 216 realizations of fBm, each of length 216, were gener-

ated. The models included in this performance analysis include both the 3-scale CNN and

4-scale CNN from the previous subsection, as well as the two variants of the wavelet-based

Figure 3.3. MSE of the 4-scales CNN across epochs of the training. The gap between training
loss and validation loss is likely due to dropout being active during training only.
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Hurst exponent estimator, previously referred to as the average-log and average-square mod-

els. The MSE and bias was computed for each model. To gain further insight into the model

performances, the MSE was computed on four smaller intervals of the true Hurst exponent;

0 < H < 0.2, 0 < H < 0.4, 0.6 < H < 1 and 0.8 < H < 1. Hurst exponents close to zero have been

known to cause issues for the wavelet-based estimators [Wu, 2020].

The results of the performance analysis are given in Table 3.3

Table 3.3. The bias and MSE of each estimator in the performance analysis of fBm Hurst
estimation. The MSE for specific ranges is also given. The marked cells indicate the best per-
formance in each category.

Ĥ Bias MSE MSE(H<0.2) MSE(H<0.4) MSE(H>0.6) MSE(H>0.8)

CNN3 2.667×10−2 1.682×10−3 1.580×10−3 9.746×10−4 2.880×10−3 1.624×10−3

CNN4 3.121×10−3 2.036×10−4 2.124×10−4 1.233×10−4 3.578×10−4 4.431×10−4

ĤY −3.427×10−2 3.842×10−3 1.557×10−2 8.176×10−3 1.112×10−3 1.254×10−3

ĤV −5.753×10−3 1.329×10−3 5.090×10−3 2.899×10−3 2.899×10−3 3.108×10−4

The 4-scales parallel CNN model outperforms the other models in all categories except the es-

timation of Hurst exponents close to 1, where the average-square variant of the wavelet-based

estimator achieved a lower MSE.

Interestingly, the results suggest that while the performance of the wavelet-based estimator

decreases as the Hurst exponent decreases, the CNN-based method does not experience this

problem; in fact it performs better at the lowest range than at the highest range. One possible

explanation for this

Admittedly, the comparison of the two methods is not entirely fair, since the superior perfor-

mance of the CNN could also be explained by the fact that the data used for this test is sta-

tistically identical to its training data. It is entirely possible that, if given a self-similar process

with a covariance structure different from that of fBm, the output of the network would con-

vey no meaningful information about the self-similarity of the input process. Regardless, the

performance results of this chapter indicates that

3.3 Simulation of EEG Microstate Signals

When developing methods for signal processing, synthetic data is often a useful tool for data-

driven learning in cases where a large amount of data is difficult to obtain or when labels for

the data are impossible to obtain. Additionally, for synthetic data, the true parameters of the

simulated model are readily available, and the model can be adjusted if needed. In order to

generate synthetic EEG data, a mathematical model that mimics the behavior of EEG signals

reasonably well is required. The aim of this section is to construct such a model.

Recall (1.4), which expressed the fundamental assumption of the microstate model and was
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given as

xn =
K∑

i=1
ai ,nmi +v n , n ∈Z,

with K ∈ N denoting the number of microstate classes, ai ,n ∈ R denoting the intensity of the

i th microstate class at time n, mi ∈ RNs denoting the i th microstate class template and v n ∈
RNs being zero-mean additive noise. Furthermore, in order for the microstates be be non-

overlapping with one active microstate at a time, we assume

ai ,n a j ,n = 0, ∀i ̸= j ,

K∑
i=1

a2
i ,n > 0, ∀n.

By deciding on a set of K microstate class templates mi and making some assumptions on the

statistics of the intensities ai ,n and the noise process v n , the model could be used to gener-

ate synthetic microstate data with relative ease. Depending on which assumptions are made,

this model may only represent a very idealized subset of possible EEG recordings and might

be inadequate in applications where the data needs to be representative of real-world data, as

can be the case for data-driven learning. Regardless, the model is consistent with the modified

K-means algorithm and should be sufficient for demonstrative use.

A natural choice for the microstate class templates is to either take inspiration from the canon-

ical microstate classes from Section 1.2.1 or simply import the results from a microstate es-

timation performed on real EEG data. Since the real-world nature of the noise process v n is

largely unknown, modeling the noise process as a set of iid. Ns-variate Gaussian distributed

random vectors seems a natural choice. This results in a model depicting an idealized case,

since this assumption neglects to account for artifacts present in real EEG recordings, such as

eye movements, which are clearly non-Gaussian in nature, causing heavy spikes in recordings,

disproportionally targeting anterior sensors and spanning several samples. However, since ar-

tifacts are removed through preprocessing of the signal, their absence should not be an issue.

Further assumptions on the intensity parameters ai ,n are now all that remains for the model to

function as a basis for synthetic data generation. First we assume that the intensity of the signal

is independent of which microstate is active. This means noticeable jumps between two sub-

sequent samples will occur whenever the model transitions from one microstate to the next,

but this is an inevitability, given the assumption of non-overlapping microstates. Now, by in-

troducing the total intensity process αn and the class label, cn ∈ {1,2, . . . ,K }, we can make the

substitution
∑K

i=1 ai ,nmi =αnmcn . This yields the model

xn =αnmcn +v n , n ∈Z, (3.3)

based upon which we may decide on the simulation of the intensity process αn and the simu-

lation of the sequence of microstate classes separately.

One significant benefit of separating the microstate class from the intensity parameters is that

the microstate sequence (cn)n∈Z consisting of the class labels, can be treated separately from
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the rest of the model. Throughout the rest of this section, it is sufficient to assume that cn is a

sequence of elements from the set {1,2, . . . ,K } that is "piece-wise constant" in the sense that cn

cycles between intervals within which its value is constant, with the length of these intervals

corresponding to the duration of each microstate.

3.3.1 Modeling of the Intensity Process

Deciding on a sensible choice for how the sequence αn should be generated is perhaps the

biggest challenge of generating simulated EEG signals. The polarity of EEG microstates has

been found to repeatedly invert [Lehmann, 1971], which suggests thatαn occasionally switches

polarity in a periodic manner. When examining fluctuations in EEG recordings of alpha-wave

activity (activity in the frequency range of 7.5−13 [Hz]), [Lehmann, 1971] found that succes-

sive peaks of inverted polarity generally appeared at intervals of approximately 50 [ms], which

corresponds to half of one alpha cycle. This suggests that αn should be modeled as a 100[ms]-

periodic function with varying amplitude.

Before delving into how to model the function, it might be illuminating to examine how large

the peaks of αn should be, by observing real EEG data. Since peaks in the GFP (Definition 1.1)

are known to correspond to the points of highest SNR [Lehmann et al., 1987] and since we have

assumed the noise process v n of (3.3) to be independent of αn and cn , the process v n may be

considered negligible when observing peaks in the GFP. From the GFP of an average-referenced

data point xn , we see that

GFPn =
√√√√ 1

Ns

Ns−1∑
i=0

(
xn;i

)2

≈
√√√√ 1

Ns

Ns−1∑
i=0

(
αnmcn ;i

)2

= |αn |p
Ns

√√√√Ns−1∑
i=0

(
mcn ;i

)2

= |αn |p
Ns

, (3.4)

where the last equation follow from the microstate template vectors mk being normalized.

The result (3.5) indicates that the peaks of the GFP scaled by a factor
p

Ns can be used as a basis

for deciding the absolute magnitude of the peaks ofαn . Note that this only applies to the peaks

of the GFP, where the noise process can be considered negligible. Additionally, since the studies

used in this section to justify the model concerned alpha band activity (8−13 [Hz]), their data

was bandpass-filtered as to attenuate other frequency bands. Thus, the real EEG data used to

determine peak magnitudes for this model should be bandpass-filtered as well. While the EEG

microstate model is generally used to account for a broader bandwidth of EEG data in more

recent studies (e.g. [Van De Ville et al., 2010],[Al Zoubi et al., 2019]), restricting the model to

alpha band activity allows for easier simulation.
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A simple model that allows for simulation of a periodic function of varying amplitude is one

which consists of a sinusoid function with time varying amplitudes. When modeling alpha

band EEG signals, it can be assumed that the peaks of αn are spaced at distances kp given as

half the length of one alpha-wave period, i.e. kp ≈ 50 [ms]. Choosing to simulate EEG signals

recorded at a sample rate fs (in [Hz]) implies that the distance between successive peaks in

samples should be kp = fskp , which may be rounded to the nearest integer for convenience.

Consider the model given as

αn =βn cos

(
π

kp
n

)
,

which is a sinusoid with an amplitude modulation defined by the discrete process βn . The pur-

pose of βn is to model the transition from the peak at time i kp to the peak at time (i +1)kp for

i ∈ Z. To avoid introducing additional peaks, βn should be monotonous between peaks. De-

noting the peak at time n = 0 by y[0] and neighboring peaks at time n = i kp by yi , this βn can

be modeled by means of the piece-wise affine model given as

βn = y⌊n/kp⌋+
y⌊n/kp⌋+1 − y⌊n/kp⌋

kp
n, n ∈Z,

with ⌊n/kp⌋ denoting the integer division of n by kp . All that remains now before the final

model can be obtained is to assess how to model the peak amplitudes yn should be modeled

by using ??. This will be the focus of the following subsection.

3.3.2 Estimation of GFP Peak Amplitude Distribution

Before the final model can be stated, the statistical properties of the varying amplitudes of the

GFP of real EEG data should be examined in order to provide a bassi for deciding on the ampli-

tude of the peaks of αn .

The sample data used for the estimation was recorded at 512 [Hz] using Ns = 27 electrodes. It

is of length 29323 in samples, corresponding to approximately 57 seconds. The data contains

both a wildly oscillating segment in the beginning of the recording and multiple segments of

inactivity. While the first 2000 samples were removed to account for the former abnormality,

the data was not trimmed further to account for inactive segments, as the GFP peaks resulting

from these segments were assumed to be easily rejected as outliers. Using the built-in functions

of EEG lab [Poulsen et al., 2018], the data was first downsampled to 128 [Hz] and subsequently

bandpass-filtered using a FIR filter with cutoff frequencies at 5 and 15 [Hz] to remove frequency

content outside the alpha band (8−13 [Hz]).

The filtered data was exported and analyzed in Python 3.8. The GFP was first computed. Peaks

were found using the find_peaks function from the signal subpackage of scipy. GFP

values outside the range [0.5,30] were excluded from the set of GFP peaks. While GFP peaks

< 0.5 accounted for approximately 1% of the peaks, these peaks were located exclusively within

segments of inactivity. GFP peaks > 30 accounted for only 2 cases among the 3969 peaks in the

GFP and were classified as extreme outliers. These point are indicated by vertical lines over

the estimated cumulative density function in Figure 3.4a. After removing outliers in the data,
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the data was scaled by
p

Ns in accordance with (3.4). A histogram depicting the distribution

of the scaled amplitude of the GFP peaks is shown in Figure 3.4b. The GFP peak amplitudes

are non-negative and appear to exhibit skewness. Examples of distribution models that exhibit

these characteristics include the lognormal distribution Definition A.21 and gamma distribu-

tion Definition A.22. These distributions have been fitted to the set of scaled GFP peak ampli-

tudes using the stats subpackage of scipy. They are shown in Figure 3.4b along with the

Gaussian distribution, which is used to provide a baseline.

(a) The empirical cumulative density function for
the GFP peak amplitudes prior to scaling and re-
moval of outliers.

(b) Histogram of scaled GFP peak amplitudes with
outliers removed. The bin width is 1.5. Fitted proba-
bility density functions are scaled to match the max
bin height and overlaid for illustrative purposes.

Figure 3.4. Plots of empirical cumulative density function and histogram of GFP peaks.

Section 3.3.2 show Q-Q plots for each of the fitted models, with the theoretical quantiles of the

fitted model on the x-axis being plotted against the corresponding quantiles of the set of sam-

ples on the y-axis. The red lines indicate the optimal fit, where the quantiles of the theoretical

distribution align perfectly with those of the samples. From these plots, it appears the models

either underestimate or overestimate the most extreme quantiles of the observed data. The

Kolmogorov-Smirnov test can be used to give a more substantiated indication of which model

provides the better fit.

Figure 3.5. Q-Q plots of the fitted Gaussian, lognormal and gamma distributions.

The Kolmogorov-Smirnov test (Definition A.24) provides a simple means of comparing a set of

samples to a continuous reference distribution function. It is used to test the hypothesis that

the reference distribution is the true distribution of the samples. The Kolmogorov-Smirnov

test statistics for the fitted lognormal and gamma distributions were 0.0131 and 0.0325, re-

spectively. This corresponds to a p-value of 0.5038 for the lognormal model and 0.0005 for the
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gamma model, which indicates that the latter model is clearly rejected on the 0.05-level. Thus,

among these options, a lognormal distribution seems to provide the best model for modeling

peaks in the amplitude of GFP and, by extension, peaks in the process |αn |.

The assumption that GFP peak sizes are independent is unlikely to hold for real EEG data. It

seems probable that neighboring GFP peaks should be correlated, since the GFP quantifies the

level of brain activity. The level of brain activity is likely to change relatively slowly, as it de-

pends on factors such as the task the brain is engaged in or the mental state of the subject.

However, drawing each peak amplitude independently provides a much simpler model than

one that takes correlation between into account, making for easier simulation, especially for

signals of large length.

3.3.3 Final Model and Summary

The final model for generating synthetic EEG data can be summarized as follows: Given a set

of K different microstate classes mk ∈RNs k ∈N and a sequence of integers cn ∈ {1,2, . . . ,K } in-

dicating the microstate class active at time n, a synthetic EEG signal xn ,n ∈Z is obtained from

xn =αnmcn +v n , n ∈Z, (3.5)

where vn
i i d .∼ N (0,σ2

v ) and

αn =βn cos

(
π

kp
n

)
, n ∈Z

in which kp denotes the chosen distance between successive peaks of α in samples and

βn = Y⌊n/kp⌋+
Y⌊n/kp⌋+1 −Y⌊n/kp⌋

kp
n, n ∈Z

with ⌊n/kp⌋ denoting the integer division of n by kp and Yk
i i d .∼ logN (µy ,σ2

y ),k ∈Z.

Ideally, by letting fs denote the sampling frequency (in [Hz]) and tp denote the time (in [s])

between successive peaks, kp should be chosen as to satisfy kp = fs tp . However, this is very

likely to yield a non-integer value for kp , which means that the peaks are never guaranteed to

be exactly ±βn . Choosing fs = 512 and recalling that tp = 0.05 for alpha band activity (10 [Hz]),

we have kp = 25.6. Rounded off, we have kp = 26.

The specific parameters used for the model are given in Table 3.4.

Table 3.4. The parameters chosen for the model (3.5).

Parameter Value

σ2
v 10

µy 3.5
σ2

y 0.20
kp 26
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3.3.4 Microstate Estimation and Classification on Simulated EEG Signal

To test the synthetic data model introduced in this section, some of the features of the synthe-

sized signals were investigated in EEGLAB.

First, a set of example microstates prototypes were imported to be used as a template for the

synthetic data; they are depicted in Figure 3.6. Next, a set of microstate labels were created to

act as synthethic microstate sequences. For this test, the synthetic microstate sequences were

deterministic, cycling through each microstate in order, remaining at each for 64 samples. This

way, it should be easy to verify the accuracy of the microstate backfitting. The synthetic model

was obtained using (3.5) with the parameters given in Table 3.4, and imported into EEGLAB.

Channel locations were imported from the same dataset as the template microstate prototypes.

Figure 3.6. The microstate prototypes imported for this test

Figure 3.7 shows a section of the synthesized data along with a section of real EEG data for com-

parison. While the real EEG data appears natural and stationary, the synthesized data appear

to behave much more wildly with several noticeable vertical lines, presumably located at the

transitions between microstates. The lack of smoothing of the signal has likely contributed to

this behavior; the real signal appears much more correlated.

Figure 3.7. Snippets of EEG data scrolls, depicting EEG recordings over time (x-axis) across
all channels (y-axis) for real EEG data (left) and synthesized EEG data (right).

The microstate estimates in fig. 3.8a behaved oddly for the synthetic data, with several mi-

crostates being estimated. Nonetheless, the backfitting of the microstates, depicted in Fig-
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ure 3.8b, performed comparatively well. As was to be expected, it produces some errors at low

GFP. The jaggedness of the GFP is also quite noticeable in this figure.

(a) The estimated microstate maps for the synthe-
sized data.

(b) Backfitting of the estimated microstates to the synthesized
data.

In conclusion, the synthesized model produced mixed results. In terms of providing simple

EEG substitutes on which microstate estimation can be performed, it performs reasonably

well. In terms of generating EEG data that more closely resembles real EEG, however, it falls

short. It is easy to model a sequence in a way that ensures that the right vectors are chosen as

microstate prototypes by the mod-K-means algorithm; it is another thing entirely to accurately

model the constantly changing and unfamiliar characteristics of neural generators in the brain.

If the model were to be improved upon in the future, a decent starting point would be to in-

clude for frequencies, and to potentially introduce some smoothing of the signal, in order to

mitigate the jaggedness of the current model. Regardless of the performance of the model,

it has provided new insight into some characteristics of EEG signals that was previously left

unconsidered.
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Analysis of Self-Similarity

Parameter Changes due to

Acoustic Stimuli 4
Motivated by recent findings suggesting that EEG microstates are scale-invariant, the aim of

this thesis has been to assess whether acoustic stimuli affects the Hurst exponent of random-

walk embedded microstate sequences. For this purpose, an analysis has been conducted on

EEG microstates obtained from real EEG data. First, the data used in the analysis will be out-

lined, along with the main properties that will be covered in the analysis.

4.1 Analysis Outline

The data used in this thesis is part of a larger set of data from Simon et al. [2022], and provided

by Aalborg University. While the original set of data included 35 subjects, the data is restricted

to a single subject for this thesis. The subject, a 24-year old male, was placed in front of two

separate speakers playing different sounds simultaneously. The subject was tasked with focus-

ing on one of the sounds while ignoring the other, and their scalp potentials were measured by

an EEG with 64 channels. This is illustrated in Figure 4.1

The test consisted of 32 successive trials, covering various combinations of target sound genre,

distractor sound genre, and target direction of arrival. The sounds used in the experiment

can be divided into two groups, each of which had two subgroups; music signals (either piano

pieces or electronic) and speech signals (either a male or a female speaker).

The available data was sampled with a sampling frequency of 512 Hz. In each trial, the target

sound starts playing at 2 s, while the distractor sound started playing at 4 s. At 64 s, the target

sound stopped, and at 66 s, the distractor sound stopped. In samples, the distance between

the start of the target sound and the end of the distractor signal is 64 ·512 = 215, which is ideal.

Additionally, by splitting the microstate sequences of each trial into two sets, separated at the

middle, the Hurst exponent could be estimated twice for each trial, and the CNN introduced in

Section 3.2, which was trained on signals of length 214, could be applied.
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L R

EEG

T
D

M(P) M(E) S(F) S (M)
∑

M(P) - 4 (2:2) 1 (1:0) 2 (1:1) 7 (4:3)
M(E) 3 (2:1) - 2 (0:2) 2 (2:0) 7 (4:3)
S(F) 2 (0:2) 2 (1:1) - 4 (2:2) 8 (3:5)

S(M) 2 (1:1) 2 (1:1) 4 (1:3) - 8 (3:5)∑
7 (3:4) 8 (4:4) 7 (2:5) 8 (5:3) 30 (14:16)

Figure 4.1. Left: Illustration of the test setup. Right: Overview of number of trials within each
group. Rows/columns indicate the type of target/distractor signal; music (’M’), piano/elec-
tronic (’P’/’E’), and speech (’S’), female/male speaker(’F’/’M’). Bracketed numbers indicate
the target signal direction of arrival in the indicated group as ’(left : right)’.

Naturally, when using any interval that includes either of the 2-4 s or 64-66 s intervals, one as-

sumes that a lack of one of the two signals does not significantly affect the Hurst exponent. To

assess whether this is true, the estimated microstate sequences were split into 32 sections of

length 2 s in time (2 in samples), and the Hurst exponent was compared between the set of

exponents within each group. Previous studies have indicated (e.g. [Wu, 2020]) that while the

empirical bias of the wavelet-based estimator is mostly unaffected by sample length, the vari-

ance of the estimator increases as the sample length decreases. Thus, when analyzed over all

groups, the likelihood that Hurst exponents of boundary sections are distributed identically to

those not at the boundaries was obtained.

Most studies on EEG microstates focus on neural activity in the the alpha band (7.5-13 Hz).

While this thesis has not specified any one band of frequencies to be of greater interest than

any other, a significant portion of the referenced litterature has. For this reason, an additional

analysis was performed, in whiuch the set of EEG data was downsampled by a factor 2 and

bandpass-filtered to exclude most frequencies outside the alpha band.

The tests mentioned in this section will be elaborated upon in their respective sections.

4.2 Methodology

This section concerns the methodology used for the Hurst analysis. There are a number of

steps involved with obtaining Hurst parameter estimates that must be addressed before the

analysis itself can be introduced.

The first step (Section 4.2.1) is the preprocessing of the EEG signals; some relevant aspects of

preprocessing were originally discussed in Section 1.1.2. This step is followed by the estimation

and classification of microstates in the data (Section 4.2.2), a topic originally introduced in Sec-

tions 1.2 and 1.3. Next, the microstate sequences obtained from the estimation are embedded

into random walks (Section 4.2.3) using the approach introduced in Section 2.3. After obtain-

ing the RW-MS, the Hurst exponents must be estimated for each of the signals (Section 4.2.4),
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using either the wavelet-based method from Section 2.4.1

4.2.1 Preprocessing

The test data had been preprocessed in advance, having had been uniformly sampled at 512

Hz, average-referenced and divided into separate signals for each trial. Each trial was synchro-

nized such that at sample 1025, the target signal started, and at sample 33793, the distractor

signal had ended.

While the data did not appear to require much cleaning in general, the utility frequency at 50

Hz was very prominent when observing the power spectral density, and had to be removed in

preprocessing. There were also a number of noisy channels, and indications that some artifacts

related to eye or muscle movement were present in the data.

All steps in the preprocessing of the EEG data were performed within EEGLAB, primarily using

its built-in functions. The preprocessing scheme of this thesis consists of seven steps for the

main analysis; they are summarized here; clarifications on the individual steps follow.

1. Removal of the DC component by highpass-filtering the EEG signals with cutoff at 1 Hz.

2. Removal of the utility frequency at 50 Hz using the CleanLine plugin.

3. Rejection of noisy channels using the built-in tools for removing bad channels.

4. Artifact removal using the built-in tools for automatic ICA component classification and

removal.

5. Interpolation of rejected channels based on orgininal channel locations.

6. Removal of data outside the 2 - 66 s interval.

7. Manual removal of artifacts based on ICA computed across all data sets.

Steps 2 through 6 are performed on each signal separately; these steps all use automated algo-

rithms with fixed hyperparameters, in order to ensure that the data is processed in a consistent

manner, and to streamline the process in a way that minimizes the amount of manual labor re-

quired. For steps 1 and 7 the data is processed in a single batch; step 7 is performed manually

to account for potential oversights of the automated part of the scheme. Average-referencing

was applied prior to steps 1,4 and 7.

The CleanLine function used in step 2 seeks to reduce the frequency content near the utility

frequency, while leaving the rest of the frequency spectrum unaffected. It may require some

parameter adjustments to function as intended. Figure 4.2 shows an example of the effect of

applying the function to an EEG signal. Note that the spike at 100 Hz, a harmonic of the util-

ity frequency, remains. While reapplying the CleanLine function, the spike at 1000 Hz was

deemed negligible
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Figure 4.2. Log power spectral densities of EEG channels before and after applying
CleanLine.

For step 3, the clean_rawdata function of EEGLAB iss used to reject channels based on

recordings from neighboring channels. Let xn;i denote the EEG recorded at the i th electrode

at time n. Based on neighboring electrodes, an estimate x̂n;i can be obtained. If the correla-

tion between xn;i and x̂n;i consistently falls below a given threshold within a length of time, the

behavior of the i th channel is considered abnormal enough to warrant rejection.

The ICA and subsequent flagging and removal of artifactual components in step 4 are handled

by the built-in functions of EEGLAB. Thresholds were set for rejection of artifacts related to

eye movements only; artifacts related the utility frequency or channel noise is assumed to be

removed or sufficiently mitigated due to being addressed in the previous steps. An example

of automated is given in Figure 4.3, where the topographical map of each independent com-

ponent is obtained by mapping the corresponding row of the mixing matrix onto the channel

locations)

Figure 4.3. The first 7 independent components of an example signal, sorted by their root
mean power spectrum. Red and green boxes indicate components to be rejected/accepted,
respectively.

Some artifactual components may evade the automated flagging; this is part of the reason

step 7 is included in the preprocessing scheme. Figure 4.4 contains further details of the first,

second and third components of Figure 4.3, including the power spectral densities and time-

frequency spectra of their source signals. Eye artifacts arise ,

4.2.2 Microstate Estimation and Classification

The microstate estimation and classification part of the analysis was performed within EEGLAB,

using the Microstate toolbox [Poulsen et al., 2018]. After preprocessing, data had to have its
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Figure 4.4. Examples of independent components from Figure 4.3, plotted with their power
spectral density and time-frequency spectrum. From top-left, clockwise; a potentially arti-
factual component not flagged as such; a likely artifactual component, flagged as such; a
non-artifactual component, likely related to brain activity.

microstates estimated and classified.

The steps included in the microstate classification and estimation were as follows:

1. Concatenation of 1000 data points from each of the 30 trials corresponding to peaks in

the GFP.
2. Segmentation of data into K microstates over multiple choices of K .
3. Choice of K based on measures of fit.
4. Backfitting of microstates to each trial.
5. Smoothing of microstate labels.
6. Calculation of Microstate Statistics

Most of the steps listed here have been addressed in earlier sections; step 3 has not. In order

to choose the number of microstates for the analysis, EEGLAB includes a number of measures

of fit used to describe how well the data is described by the microstates. The three used in this

thesis were the global explained variance, cross-validation criterion and the dispersion [Poulsen

et al., 2018].

K = 6 scored the highest in the measures of fit and was chosen as the number of microstates.

K = 4 was also included, since it is the amount most popular in the litterature.

Smoothing of the microstate labels were included as fifth step. The effect of smoothing is il-

lustrated on Figure 4.5; by rejecting small segments and redistributing their points, a smoother

version of the microstate sequence is obtained.
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Figure 4.5. An illustrative example of backfitting. The area above the dotted line depicts
the backfitted microstates prior to smoothing; the area below the dotted line depicts the
smoothed segmentation

In the final step, several microstate statistics are computed. The most notable include the du-

ration, frequency of occurrence and total coverage of every microstate in each signal.

4.2.3 Random Walk Embedding of Microstates

The random-walk embedding of microstates (RW-MS) is applied as per its introduction in Def-

inition 2.7:

Xn =
n∑

k=1
Uk , Uk =

1, Ck ∈ S1,

−1, Ck ∈ S2.

The random walk was computed for every possible set of partitions S1 and S2 of equal size. The

results were passed on to the Hurst exponent estimation.

4.2.4 Hurst Exponent Estimation

The Hurst Exponents were estimated using the wavelet-based estimators ĤY and ĤV summa-

rized in Section 2.4.4 as well as the 4-scales CNN from Section 3.2.

Since no baseline was available to compare against, the outputs of the various Hurst exponent

estimators were compared against each other using one-way ANOVA; provided they were in

agreement, their estimations were assumed to be reasonable.
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4.2.5 Hurst Exponent Analysis

The final step of this analysis was to address the main question asked in this thesis; whether or

not changes occur in the Hurst exponent due to acoustic stimuli. The most important factors

in this regard were the target signal and distractor signal. If either factor was found to be signif-

icant, it would indicate that the type of To examine whether the interaction between the target

signal and distractor signal was significant, a two-way ANOVA with an interaction was applied

to a linear fit with the factors shown in Figure 4.6, using the statsmodel package for Python

3.8.

I T ×D

T

D

O

Figure 4.6. Diagram of the factors of the two-way ANOVA.

Since the data used in this analysis does not include cases in which both the target and distrac-

tor signal are of the same group, the subgroups were concatenated such that there was only

one speech groups and music group, each.

The ANOVA was computed from the Hurst estimates from the two wavelet-based models sep-

arately. Only a single par of partition sets, S1 and S2, were used, being the one corresponding

to the most even partition in terms of average probability of cn ∈ S1.

4.3 Results

Having described the methodology of the individual steps of the analysis in the previous sec-

tion, this section aims to summarize the results. The results are divided between three cate-

gories.

Section 4.3.1 contains the results obtained from the microstate estimation and classification.

Section 4.3.2 includes observations on the various models applied to the Hurst exponent esti-

mation problem.

Section 4.3.3 contains the main results of this thesis.

4.3.1 Microstates

Figure 4.7 depicts the microstates estimated from the data. They generally appear to be uanaf-

fected by noise.
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Figure 4.7. The microstates computed for the analsysis.

4.3.2 Hurst Estimation

The wavelet-based Hurst performed well, with one exception; the lower boundary j0 = 3 could

not be used in the Hurst estimation of the random walks, since the wavelet coefficients had

almost exclusively zero values at low scales. The lower bounds where increased to 5 and 4 for

ĤY and ĤV , respectively.

The CNN-based estimator generally performed inconsistently and was thus excluded from the

analysis.

4.3.3 Hurst Exponent Analysis

The tables below show the ANOVA computed across every Hurst estimate obtained by either of

the two wavelet-based methods for Hurst exponent analysis. The results included are the sum

of squares, F statistic and their corresponding p values.

Table 4.1. The ANOVA results obtained from the average log Wavelet Hurst Estimator for 6
and 4 microstates, respectively.

Factor SoS F p(>F) SoS F p(>F)

T 0.000 0.002 0.963 6.946 0.022 0.882
D 0.021 5.011 0.029 4.968 0.000 0.999

TxD 0.010 2.493 0.120 2.663 0.009 0.927
Res 0.233 1.753

Table 4.2. The ANOVA results obtained from the average squares Wavelet Hurst Estimator
with 6 and 4 microstates, respectively.

Factor SoS F p(>F) SoS F p(>F)

T 0.011 13.002 0.001 0.012 13.540 0.001
D 0.001 1.595 0.212 0.001 1.396 0.242

TxD 0.000 0.526 0.471 0.000 0.246 0.622
Res 0.048 0.050
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4.4 Discussion

This section will discuss the results of the analysis in order to address the problem statement,

which was whether accoustic stimuli affect the Hurst exponent.

The preprocessing, microstate estimation and classification, and RW-MS faced no major is-

sues.

In the estimation of the Hurst exponent that followed, however, both the wavelet-based meth-

ods and the CNN-based method ran into some problems. The problems with the former was

due to the RW-MS having wavelet coefficients close to zero at a significant portion of the lower

range of octaves octaves. This issue was fixed by adjusting boundaries of the observed octaves.

The CNN-based Hurst estimator, however, was not as easily fixed.

In the future, performance could likely be optimized by including more relevant self-similar

sequences in the training data. Training a network on various random walks could be a place

to start.

As for the main results, of Table 4.1 and Table 4.2, there do appear to be indications that the

type of sound signals played are significant, though the specific factor that is implied to be

significant changes between the methods used.

Due to time constraints, a portion of the data has not been considered in this thesis. Future

work on this topic is needed to either justify or reject the claim that acoustic stimuli affect the

Hurst exponent of microstate sequences.
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Conclusion 5
The topic of this thesis has been analyzing and assessing changes in the fractal characteris-

tics of EEG microstate sequences due to acoustic stimuli. Specifically, the EEG microstate se-

quences were embedded into a random walk, so that an estimate of the Hurst exponent could

be obtained based on its scaling properties.

The topic of estimating the Hurst exponent played a significant role in this thesis. Two meth-

ods were introduced for the purpose of estimating the Hurst exponent; one was an established

method based on the wavelet transform; the was through the implementation of a convolu-

tional neural network.

Using the two methods, an ANOVA was performed on EEG data recordings of a listening task to

assess whether the type of sound was significant. Ultimately, the results of the analysis proved

inconclusive, and further work is needed on the topic.
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Definitions and Theorems A
This chapter contains relevant definitions and results not introduced in the main chapters of

the report. As this chapter is intended only as a reference work, the following sections are only

loosely structured.

A.1 Set Theory and Functions on Rn

Definition A.1 (L2-norm)

The L2-norm of a function f :R→C is defined as

∥ f ∥2 =
√∫ ∞

−∞
| f (t )|2d t ▲

Definition A.2 (Square-Integrable Function)

A square-integrable function (or L2-function) is a function f : R→C for which the integral of

the square of the absolute value of f is finite, i.e.∫ ∞

−∞
| f (t )|2d t <∞.

The set of all square-integrable functions on R is denoted by L2(R). ▲

A product of two square-integrable functions f (t ) and g (t ) is also integrable. Since || f (t )||2 +
||g (t )||2−2| f (t )||g (t )| = (| f (t )|−|g (t )|)2 ≤ 0 for all t , it follows that | f (t )g (t )| ≤ 1

2 (| f (t )|2+|g (t )|2)

for all t . Since | f (t )|2 + |g (t )|2 acts as an upper bound for | f (t )g (t )| and by Definition A.2 has

a bounded integral, the product | f (t )g (t )| must also have a bonded integral [Folland, 2009, p.

74].

Definition A.3 (Diameter of a Set)

The diameter of a set S ⊂Rn is the largest distance between any two points in the set, i.e.

diam(S) = sup
x ,y∈S

(∥y −x∥) ,

where ∥ ·∥ is the L2-norm Definition A.1. ▲
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Definition A.4 (Square-Summable Sequence)

A square-summable sequence (or l 2-sequence) is a sequence
{

xi ∈Cn : i ∈Zk
}

for which the

sum of the squares of the absolute values of each entry of xi is finite, i.e.∑
i∈Zk

|xi |2d x <∞.

The set of all square-summable sequences on Zk is denoted l 2(Zk ). ▲

Definition A.5 (Support)

The support of a function f : Rn → C is the closure of the set of all points for which f (x) ̸= 0

[Folland, 2009, p. 304]. In other words,

supp( f ) = {
x : f (x) ̸= 0

}
,

in which the overline is used to denote the closure of the set, i.e. S is the smallest closed set

containing S. If supp( f ) ⊆ S, we say that f is supported in S. ▲

Definition A.6 (Compact Subset)

A compact subset of Rn is a subset S ⊂Rn which is closed and bounded. ▲

Definition A.7 (Compact Support)

A function f :Rn →C has compact support if its support supp( f ) is a compact subset of Rn . ▲

Definition A.8 (Isometry)

Let X and Y be metric spaces with metrics dX and dY . A map f : X → Y is called an isometry if

it preserves distance between any two a and b from X . More formally, f is called an isometry if

dY ( f (a), f (b)) = dX (a,b), ∀a,b ∈ X . ▲

Definition A.9 (Orthonormal Family)

An orthonormal family of functions onR is a set of N square-integrable functions fi , i = 1,2, . . . , N

which are orthogonal to one another and of unit length. In other words,

∫ ∞

−∞
fi (t ) f ∗

j (t )d t =
1, i = j

0, i ̸= j
, 1 ≤ i , j ≤ N ▲

Definition A.10 (Orthonormal Basis of L2)

An orthonormal basis of L2(R) is an orthonormal family (Definition A.9) that spans L2(R). ▲

Definition A.11 (Dense Set)

We say a set S ⊂ X is dense in X if its closure constitutes the whole set X , i.e. if every point in X

either belongs to S or is a limit point of S. ▲

Definition A.12 (Contraction Mapping)

A contraction mapping on Rn is a function f : Rn → Rn for which there exists a number

0 ≤ k < 1 such that

∥ f (x)− f (y)∥ ≤ k, ∀x , y ∈Rn ,

where || · || is the L2-norm (Definition A.1). ▲
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Definition A.13 (Invariant Set)

We say a set K ⊂Rn is invariant with respect to S if there exists a finite set of contraction maps

S = {S1,S2, . . . ,SN } (Definition A.12) on K such that [Hutchinson, 1981, p.2]

K =
N⋃

i=1
Si K . ▲

Definition A.14 (Lipschitz Constant)

For a function f :Rn →Rn , the Lipschitz constant is defined as [Hutchinson, 1981, p. 4]

Lip( f ) = sup
x ̸=y

∥ f (x)− f (y)∥
∥x − y∥ .

We say that f is Lipschitz continuous if Lip( f ) <∞. ▲

Definition A.15 (Regular Function)

We say that a function f ∈ L2(R) is regular if and only if it is continuously differentiable and

satisfies [Mallat, 1989, Eq. (15)]

∃C > 0∀t ∈R : | f (t )| ≤ C

1+ t 2 and | f ′(t )| ≤ C

1+ t 2

where f ′ denotes the derivative of f . ▲

Theorem A.16 (Poisson Summation Formula)

If f : Rn → R is a function with Fourier transform f̂ (·) for which | f (t )| ≤ C |t |−1−ϵ and | f̂ (ϵ)| ≤
C |ϵ|−1−ϵ for some ϵ> 0, then [Folland, 2009, Eq. (9.38)]∑

k∈Z
f (k) = ∑

k∈Z
f̂ (2πk). ▲

Proof

Proof of this theorem can be found in [Folland, 2009, p.337]. ■

Lemma A.17

Let A be a positive trigonometric polynomial consisting only of cosines, i.e. A(ω) =∑
n=0 an cos(nω),

with an ∈R for 0 ≤ n ≤ N . Then there exists a trigonometric polynomial B of order N , B(ω) =∑N
n=0 bne jnω, with bn ∈R for 0 ≤ n ≤ N , such that [Daubechies, 1988, Lemma 4.2]

|B(ω)|2 = A(ω) ▲

Proof

This proof is due to [Daubechies, 1988].

Using that cos(nω) = 1
2

(
e jnω−e jnω

)
, we have

A(ω) = a0 + 1

2

N∑
n=1

an
(
e jnω+e jnω)

= e−jNω

(
a0e jNω+ 1

2

N∑
n=1

an
(
e j(n−N )ω+e−j(n+N )ω))

= e−jNω

(
1

2

N−1∑
n=0

aN−ne jNω+ 1

2

N∑
n=1

ane j(N+n)ω

)
.
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Let P A be defined as the polynomial

P A(z) = 1

2

N−1∑
n=0

aN−n zn +a0zN + 1

2

N∑
n=0

an zN+n ,

which has 2N zeros. Since P A(e jω = e jNωA(ω) and P A(e−jω = e−jNωA(ω), we have that P A(z) =
z2N P A(z−1) for |z| = 1. Since the two polynomials P A(z) and z2N P A(z−1) agree on the unit cir-

cle, they agree on the entire complex plane and have the same zeros. Thus, if P A(z0) = 0, then

P A(z−1
0 ) is zero. Additionally, due to the coefficients an being real, (P A(z))∗ = P A(z∗), implying

that any complex conjugate of a zero of P A is also a zero of P A . Thus, complex zeros of P A ap-

pears in groups of four (z0, z∗
0 , z−

0 1,(z−1
0 )∗), while complex zeros of P A appears as pairs (z0, z−1

0 ).

Arranging P A in terms of its pairs of real zeros rk ,r−1
k 1 ≤ k ≤ K and its groups of complex

zeros z j , z∗
j , z−1

j , (z−1
j )∗, 1 ≤ j ≤ J , we have

P A(e jω) = 1

2
aN

(
K∏

k=1
(e jω− rk )(e jω− r−1

k )

)(
J∏

j=1
(e jω− z j )(e jω− z∗

j )(e jω− z−1
j )(e jω− (z−1

0 )∗)

)
.

Note that

|(e jω− z0)(e jω− (z−1
0 )∗)| = |z0|−1|e jω− z0|2.

Consequently, leveraging that A(ω) is a positive trigonometric polynomial, we have

A(ω) = |A(ω)|
= |P A(e jω)|

=
(

1

2
|aN |

K∏
k=1

|rk |−1
J∏

j=1
|z j |−2

)∣∣∣∣∣ K∏
k=1

(e jω− rk )
J∏

j=1
(e jω− z j )(e jω− z∗

j )

∣∣∣∣∣
2

= |B(ω)|2,

in which B(ω) is the trigonometric polynomial of order N given as

B(ω) =
(

1

2
|aN |

K∏
k=1

|rk |−1
J∏

j=1
|z j |−2

) 1
2 K∏

k=1
(e jω− rk )

J∏
j=1

(e jω− z j )(e jω− z∗
j ),

with Re(z j ) denoting the real part of z j . ■

A.2 Fourier Analysis

Definition A.18 (Continuous Fourier Transform)

Given a real-valued integrable function f (t ), the (continuous) Fourier transform of f (t ) is [Fol-

land, 2009, p. 213]

f̂ (ω) =
∫ ∞

−∞
e−jωt f (t )d t ,

provided that the integral exists. ▲
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Definition A.19 (Discrete Fourier Transform)

Given a sequence of N complex numbers xn , the discrete Fourier transform (abbr. DFT) of xn

is

x̂k =
N−1∑
n=0

e−j 2π
N kn xn ▲

A.3 Probability and Stochastic Processes

Theorem A.20 (Bayes’ Theorem)

Consider a random variable with sample space S. Let B1,B ,2, . . . ,K be a sequence of events

such that

P (Bk ) > 0, k = 1,2, . . . ,K .

Bi ∩B j =;, i ̸= j .

S =
K⋃

k=1
Bk .

Then, given an event A with P (A) > 0, for any of the events B j , we have [Olofsson and Anders-

son, 2012, Prop. 1.11]

P (B j |A) = P (A|B j )P (B j )∑K
k=1 P (A|Bk )P (Bk )

. (A.1)
▲

Proof

By the law of total probability [Olofsson and Andersson, 2012, Th. 1.1], the denominator of

(A.1) is P (A). To show that (A.1) holds, we start by rearranging it:

P (B j |A) = P (A|B j )P (B j )

P (A)

P (B j |A)P (A) = P (A|B j )P (B j ),

and see that the latter equation is true, since both sides equal P (A∩B j ). ■

Definition A.21 (Lognormal Distribution)

Let X ∼N (µ,σ2). The random variable Y = e X is said to have a lognormal distribution with pa-

rameters µ and σ2 [Olofsson and Andersson, 2012, Def. 2.19]. Its probability density function

is given as [Olofsson and Andersson, 2012, Corr. 2.6]

fY (x) = 1

xσ
p

2π
e

(log(x)−µ)2

2σ2 , x > 0.

The shorthand used for this distribution is logN (µ,σ2). ▲

Definition A.22 (Gamma Distribution)

If a random variable X has a probability density function given as [Olofsson and Andersson,

2012, Def. 2.20]

fX (x) = e−λxλα
xα−1

Γ(α)
, x ≥ 0,

with Γ(α) = ∫ ∞
0 e−t tα−1d t , the random variable X is said to have a gamma distribution with

shape parameters α> 0 and λ> 0. ▲
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Definition A.23 (Empirical Distribution Function)

The empirical distribution function or empirical cumulative density function is used to esti-

mate the cumulative density function of a distribution based on samples from that distribu-

tion. Given a set of N random variables X1, X2, . . . , XN , the empirical distribution function is

defined as [Olofsson and Andersson, 2012, p.369]

F̂N (x) = 1

N

N∑
n=1

1≤x (Xn),

where 1≤x (Xn) = 1 when Xn ≤ x and 0 otherwise. In other words, the empirical distribution

function of x is the proportion of samples in the sample set less than or equal to x. ▲

Definition A.24 (Kolmogorov-Smirnov Test)

The Kolmogorov-Smirnov test is used to assess whether a set of samples is likely to come from a

particular distribution. Assuming that we have a set of random samples X1, X2, . . . , XN with cu-

mulative density function F (x), we want to test the hypothesis [Olofsson and Andersson, 2012,

p. 369]

H0 : F (x) = F0(x) ∀x,

HA : F (x) ̸= F0(x) for some x,

for a given F0(x). Letting F̂n(x) denote the empirical distribution function Definition A.23, the

Kolmogorov-Smirnov test statistic is given as

Dn = max
x

∥F̂n(x)−F0(x)∥. ▲

Theorem A.25 (Jensen’s Inequality)

Let X be a random variable and φ(·) be a convex function. Then [Bishop, 2009, Eq. (1.116)]

φ (E [X ]) ≤E
[
φ(X )

]
.

If φ(·) is concave, the direction of the inequality is flipped. The distance between the two sides,

|E[
φ(X )

]−φ (E [X ]) |, is called the Jensen gap. ▲

Definition A.26 (Wide Sense Stationarity)

A (discrete) stochastic process (Xn)n∈Z is said to be wide sense stationary if it has constant mean

and

E
[

Xn1 Xn2

]= f (|n2 −n1|),

i.e. if the covariance of Xn1 and Xn2 depends only on the difference between n1 and n2. [Kay,

2006, p. 550] ▲

Definition A.27 (Symmetric Alpha-Stable Process)

a (discrete) stochastic process (Xn)n∈Z is called symmetric α-stable with stability parameterα ∈
(0,2) if, for any finite set of indices n = [n0,n1 . . . ,nN−1] and constants θ = [θ0,θ1 . . . ,θN−1] ∈RN ,

we have [Pipiras and Taqqu, 2017, Def. 1.2]

E
[

e jθ
∑N−1

k=0 θk Xnk

]
= e−σ

α(θ,n)|θ|α ,

where σ(θ,n) > 0 is a scale parameter. ▲
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A.3.1 Markov Chains

Definition A.28 (Discrete-Time Markov Chain)

Let X0, X1, . . . be a sequence of discrete random variables taking values from a set S and let

P (Xn+1 = j |X0 = i0, X0 = i1 . . . , Xn = in) = P (Xn+1 = j |Xn = in),

for all n ∈N and all j , i0, i1, . . . , in ∈ S. The sequence X0, X1, . . . is called a Markov chain [Olofs-

son and Andersson, 2012, Def. 8.1]. In other words, a Markov chain is a sequence of values for

which future entries, when conditioned on the current entry, are independent of past entries.▲

Definition A.29 (Transition Matrix of Markov Chain)

Let the state space S be a discrete set with a cardinality of N . Let X0, X1, . . . be a Markov chain

taking values from S and let the transition probabilities pi , j be defined as

pi , j = P (Xn+1 = j |XN = i ), j , i ∈ S.

The transition matrix of the Markov chain X0, X1, . . . is defined as the matrix P ∈RN×N , whose

(i , j )th entry is pi , j [Olofsson and Andersson, 2012, p. 446]. In theory, N may be infinite, but

for this thesis it is sufficient to assume that N is finite. ▲

Definition A.30 (Stationary Distribution of Markov Chain)

Let S be a discrete set with a cardinality of N . Let X0, X1, . . . be a Markov chain with state space

S and transition matrix P . A probability distribution π ∈RN satisfying

πT P =πT

is called a stationary distribution of the Markov chain [Olofsson and Andersson, 2012, Def.

8.5]. ▲

Definition A.31 (Irreducibility)

Let X0, X1, . . . be a Markov chain with state space S and n-step transition probabilities p(n)
i , j =

P (Xk+n = j |Xk = i ). If pi , j > 0 for some n, we say that j is accessible from i . If i is also accessible

from j , we say that i and j communicate. If all states in S communicate, the Markov chain is

said to be irreducible. [Olofsson and Andersson, 2012, Defs. 8.2, 8.3] ▲

Definition A.32 (Recurrent and Transient States)

Let X0, X1, . . . be a Markov chain with state space S. Consider a state i ∈ S and let τi denote the

number of steps before the Markov chain first visits state i , i.e.

τi = min{n ≥ 1 : Xn = i },

with τi =∞ if i is never visited. If P (τi <∞) = 1, i is said to be recurrent. Otherwise, it is said to

be transient. Furthermore, if E [τi ] <∞, i is said to be positive recurrent, and if E [τi ] =∞, it is

said to be null recurrent. [Olofsson and Andersson, 2012, Defs. 8.4, 8.6] ▲
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Definition A.33 (Periodicity)

Let X0, X1, . . . be a Markov chain with n-step transition probabilities p(n)
i , j = P (Xk+n = j |Xk = i ).

The period of a state i is given as

d(i ) = gcd{n ≥ 1 : p(n)
i ,i > 0},

with gcd denoting the greatest common denominator. If d(i ) > 1, state i is said to be periodic,

and if d(i ) = 1, state i is said to be aperiodic. If all states in the state space are aperiodic, the

Markov chain is said to be aperiodic. [Olofsson and Andersson, 2012, Def. 8.8] ▲

Theorem A.34 (Convergence to Stationary Distribution)

Consider an irreducible, positive recurrent and aperiodic Markov chain with stationary distri-

butionπ and transition matrix P . Let the n-step transition matrix P (n) denote the nth "power"

of P , i.e. the matrix product of P with itself n −1 times. Then

lim
n→∞p(n)

i , j =π j ,

for all i , j [Olofsson and Andersson, 2012, Th. 8.1]. ▲
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The Wavelet

Transformation B
The wavelet transformation is a useful tool in assessing the fractal properties of functions onR.

While the next chapter will delve into the meaning of ’fractal properties’, fundamental theory

about the wavelet transformation will prove useful later when assessing the fractal properties

of time series.

B.1 The Wavelet Transform

The Fourier transform (Definition A.18) of a real-valued continuous function of time is a complex-

valued continuous function of frequency that expresses the function of time in terms of a set

of basis functions on the form e jωt , where t ∈R is the time variable and ω ∈R is the frequency

variable. The Fourier transform of a function is purely in the frequency domain and does not

provide location information for the occurrences of different frequencies. In some cases, such

information could prove valuable. For example, if the function of time represented a sound

signal, both frequency and temporal information would be of interest. In these cases, an alter-

native to the Fourier transform may be needed.

The wavelet transform of a function of time is a real or complex-valued function of two vari-

ables, a > 0 and b ∈R, which expresses the function of time in terms of basis functions called

wavelets, which are on the form 1p
a
ψ( t−b

a ). The functionψ(t ) - referred to as the mother wavelet

- is an oscillating function that begins and ends with an amplitude of zero. The choice of

mother wavelet depends on the application and will be discussed later in this section. The

value of a controls the dilation of the wavelet. Large values of a yield large-scale wavelets

of longer duration and lower frequency. The variable b is called the translation. It shifts the

wavelet linearly in time, allowing for the wavelet transform to be localized in time. The wavelet

transform is localized in both time and frequency as opposed to the Fourier transform, which

is only localized in frequency. More accurately, we say that the wavelet transform is localized

in time and scale. Formally, the wavelet transform is defined as follows:

Definition B.1 (Continuous wavelet transform)

Given a real-valued function f (t ) and a mother waveletψ(t ), the continuous wavelet transform
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of f (t ) is [Simonsen et al., 1997, Eq. (3),(4)]

f̃ (a,b) = 1p|a|
∫ ∞

−∞
ψ∗

(
t −b

a

)
f (t )d t , (B.1)

provided that the integral exists. The parameters a > 0 and b ∈R are referred to as the dilation

and translation, respectively. ▲

The choice of mother waveletψ(t ) in (B.1) depends on the application. Firstly, in order to guar-

antee that the integral in (B.1) exists, ψ(t ) must be square integrable (See the remark following

Definition A.2). A square integrable function ψ(t ) can be used as a mother wavelet if it de-

creases rapidly toward 0 for t →±∞ or has compact support (Definition A.7). To ensure this,

wavelets are chosen as to satisfy the admissibility condition.

Definition B.2 (Admissibility Condition)

Letting ψ̂(ω) denote the Fourier transform (Definition A.18) of ψ(t ), ψ(t ) is said to satisfy the

admissibility condition if ∫ ∞

−∞
|ψ̂(ω)|2
ω

dω<∞.

holds true [Daubechies, 1988, Eq. (1.3)]. ▲

The admissibility condition Definition B.2 can only hold true if ψ̂(ω) vanishes at ω = 0, i.e. if

|ψ̂(0)|2 = 0. This implies that the function ψ(t ) is zero-mean. In other words, [Daubechies,

1988, Eq. (1.4)] ∫ ∞

−∞
ψ(t )d t = 0. (B.2)

Hence, the function ψ(t ) will have some oscillations.

(a) The Ricker wavelet. (b) The Fourier transform of the Ricker wavelet.

Figure B.1. The Ricker wavelet - also known as the Mexican hat wavelet - and its Fourier trans-
form.

Depending on the application, it may be necessary to restrict the parameters a,b to a discrete

subset of R̸=0×R (where R ̸=0 =R\{0}). This can be achieved by fixing a dilation step α> 1 and

a translation step β ̸= 0, and considering a discrete set of parameters a and b given as am =αm
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and bm,n = nβαm , respectively, where m,n ∈ Z [Daubechies, 1988]. The family of wavelets

related to this choice of discretization of a and b are on the form

ψm,n(t ) = 1p
α

m ψ(α−m t −nβ), m,n ∈Z. (B.3)

This discretization of a and b gives rise to the discrete wavelet transform.

Definition B.3 (Discrete Wavelet Transform)

Given a real-valued function f (t ), a mother waveletψ(t ), a dilation stepα> 1 and a translation

step β ̸= 0, the discrete wavelet transform of f (t ) is [Daubechies, 1988, Eq. (1.7)]

f̃ [m,n] = 1p
α

m

∫ ∞

−∞
ψ∗

(
t

αm −nβ

)
f (t )d t

The value of f̃ [m,n] is referred to as the m,nth wavelet coefficient. ▲

In general, the discrete wavelet transform is not guaranteed to have a bounded inverse, i.e. it is

not guaranteed that

A
∫ ∞

−∞
| f (t )|2d t < ∑

m,n∈Z
| f̂ [m,n]|2 < B

∫ ∞

−∞
| f (t )|2d t , (B.4)

for some A > 0 and B <∞. In case (B.4) holds for all square-integrable functions f (t ) ∈ L2(R),

the set {ψm,n : m,n ∈ Z} is called a frame [Daubechies, 1988]. In this case, f (t ) can be recon-

structed from its wavelet coefficients as

f (t ) = 2

A+B

∑
m,n

ψm,n(t ) f̃ [m,n]+R(t ),

in which R(t ) is the error term and satisfies

∥R∥2 ≤O

(
B

A
−1

)
∥ f ∥2

2,

where ∥ ·∥2 denotes the L2-norm (Definition A.1).

For values of α and β in Definition B.3 very close to 1 and 0, respectively, the discrete wavelet

transform is similar to the continuous case defined in Definition B.1. In this case, it is possible

that the functions ψm,n(t ) are linearly dependent and that, consequently, there is a significant

amount of redundancy in the set of functions {ψm,n : m,n ∈Z} [Daubechies, 1988]. Depending

on the application, redundancy may or may not be desirable. For the purposes of this project,

we focus on applications in which redundancy is undesirable. In order to reduce the amount

of redundancy in the discrete wavelet transform, the mother wavelet ψ(t ) and the parameters

α and β can be chosen such that the set {ψm,n : m,n ∈Z} constitutes an orthonormal basis for

L2(R) (Definition A.10). A simple example of an orthonormal basis of wavelets is the Haar basis

in Example B.1.
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Example B.1 (Haar basis)

One example of an orthonormal basis of wavelets is the Haar basis, in which the mother wavelet

ψH (t ) is given as [Folland, 2009, p. 202]

ψH (t ) =


1, 0 ≤ t < 1

2 ,

−1, 1
2 ≤ t < 1,

0, otherwise.

We immediately see that ψH (t ) has compact support (specifically, it is supported in [0,1]) and

satisfies the admissibility condition Definition B.2. Choosing α = 2 and β = 1 yields a dis-

cretized set of wavelet functions on the form of (B.3) given as

ψH ;m,n(t ) = 1p
2

m ψH (2−m x −n), m,n ∈Z.

These wavelet functions constitute an orthonormal basis for L2(R). To show this, we must show

that the L2-norm ofψH ;m,n is 1 for any m,n, that the inner product between any two functions

ψH ;m1,n1 and ψH ;m2,n2 is zero whenever m1 ̸= m2 or n1 ̸= n2 and that
{
ψH ;m,n ,m,n ∈Z}

span

L2(R). We start by showing the former:∫ ∞

−∞

∣∣∣∣ 1p
2

m ψH (2−m t −n)

∣∣∣∣2

d t =
∫ 2m (n+1)

2m n

1

2m d t = 1

where we use that |ψH (t )|2 = 1 for t ∈ [0,1] and 0 otherwise. Having shown that the functions

ψH ;m,n are of unit length, we will now assess whether they are orthogonal and consider the

inner product of two functions ψH ;m1,n1 (t ) and ψH ;m2,n2 , which we choose to denote by ψ1(t )

and ψ2(t ), respectively, for ease of notation.∫ ∞

−∞
ψ1(t )ψ∗

2 (t )d t =
∫

supp(ψ1)∩supp(ψ2)
ψ1(t )ψ∗

2 (t )d t , (B.5)

since the product of the two functions is only non-zero at the intersection of their support, the

bounds of the integral are changed to reflect this. To proceed, we consider the intersection for

the two different cases: m1 = m2,n1 < n2 and m1 < m2.

The first case (m1 = m2,n1 < n2) is trivial, since supp(ψ1) = [2mn1,2m(n1 +1)] and supp(ψ2) =
[2mn2,2m(n2 +1)] are disjoint, i.e. supp(ψ1)∩ supp(ψ2) =;.

For the second case (m1 < m2), the functionsψ1(t ) andψ2(t ) are supported on [2m1 n1,2m1 (n1 +1)]

and [2m2 n2,2m2 (n2 +1)], respectively. The two supports are joint only when 2m2−m1 n2−1 < n1 <
2m2−m1 (n +1). In this case, we have that supp(ψ1)∩ supp(ψ2) = supp(ψ1). Since the bounds of

supp(ψ1) are located at 2m1 scaled by an integer n1 or n1 +1 and since 2m1 < 2m2 , supp(ψ1) is

contained entirely within one half of supp(ψ2). Thus, ψ2(t ) is constant in the integral in (B.5).

Since ψ1 integrates to zero over its support, the integral (B.5) is zero.

Finally, to show that
{
ψH ;m,n ,m,n ∈Z}

is a basis of L2(R), we note that since the functions

ψH ;m,n are dyadic step functions, the space of linear combinations of ψH ;m,n with m < M

equals the space of functions onR that are constant on each interval [2−M k,2−M (k+1)],0 ≤ k <
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2M [Folland, 2009, p.200]. Thus, the set of all finite linear combinations of the Haar wavelets is

the set of all step functions on R with discontinuities at 2−mk,m ∈Z,k ≥ 0. This space is dense

(Definition A.11) in L2(R) and thus, the set
{
ψH ;m,n ,m,n ∈Z}

is a basis of L2(R) [Folland, 2009,

p.200]. ▲

Orthonormal wavelet bases for function spaces are traditionally used as an intermediate step in

obtaining a discrete wavelet transform (Definition B.3) that is essentially a discrete algorithm.

Daubechies wavelets, which will be introduced in Appendix B.2, circumvent this intermediate

step by imposing a set of necessary and sufficient conditions on the discrete side of the trans-

formation to obtain an algorithm that is fully discrete. The Daubechies discrete wavelet trans-

form is applied as a discrete scheme using filters with a finite number of taps. The Daubechies

wavelets are based on a multiresolution analysis framework, which will be the topic of the next

subsection.

B.1.1 Construction of Orthonormal Wavelet Basis using Multiresolution Analysis

Multiresolution analysis is a valuable tool in the construction of orthonormal wavelet bases

and the design of discrete wavelet transforms. We will delve into why this is the case later in

this subsection. First, we introduce the multiresolution approximation of L2(R) as introduced

in [Mallat, 1989].

Definition B.4 (Multiresolution Approximation)

A multiresolution approximation of L2(R) is a sequence {Vm : m ∈Z} of closed subspaces of

L2(R) such that the following hold [Mallat, 1989]:

1. Vm ⊂Vm+1, ∀m ∈Z.

2. Completeness:
⋂

m∈ZVm = {0} and
⋃

m∈ZVm = L2(R) (The union of the subsets Vm is dense

(Definition A.11) in L2(R)).

3. Self-similarity in scale: f (t ) ∈Vm ⇐⇒ f (2t ) ∈Vm+1,∀m ∈Z.

4. Self-similarity in time: f (t ) ∈Vm =⇒ f (t −2−mk) ∈Vm ,∀k ∈Z.

5. There exists an isomorphism I : V0 → l 2(Z) (see Definition A.4), which commutes with

the action of Z. ▲

By "commutes with the action of Z" in property (5), we mean that the isomorphism commutes

with translation of integers, i.e. for an isomorphism I : V0 → l 2(Z), a function f (t ) ∈ V0 and an

l 2-sequence I
(

f (t )
)= x[n], we have [Mallat, 1989, p.71]

I ( f (x −k)) = x[n −k], k ∈Z.

Before delving into how orthonormal wavelet bases may be constructed using multiresolu-

tion analysis, a brief summary of some properties of the multiresolution approximation will
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be necessary. Given a regular (Definition A.15) function φ(t ) for which the family of functionsp
2mφ(2m t −n), k ∈ Z is an orthonormal family for all m ∈ Z, we let Vm denote the vector

space generated by this family of functions, such that the set of vector spaces Vm , m ∈ Z is a

multiresolution approximation of L2(R). Property (2) of Definition B.4 implies

1

2
φ

(
t

2

)
∈V−1 ⊂V0,

and hence, the function can be decomposed in terms of the basis functionsφ(t −n) of V0 [Mal-

lat, 1989, Eq. (16)]:

1

2
φ(

t

2
) = ∑

n∈Z
h[n]φ(t +n), where h[n] = 1

2

∫ ∞

−∞
φ(

t

2
)φ∗(t +n)d t .

Since φ(t ) is regular, we have asymptotic decay of h[n] with |h[n]| =O(1+k2)−1 [Mallat, 1989].

Taking the Fourier transform (Definition A.18) yields [Mallat, 1989, Eq. (17)]

φ̂(2ω) = h(ω)φ̂(ω), where h(ω) = ∑
n∈Z

h[n]e−jnω, (B.6)

where h(ω) satisfies |h(ω)|2 +|H(ω+π)|2 and |H(0)| = 1. Proof of this can be found in [Mallat,

1989, Th. 1].

Consider again the multiresolution approximation Definition B.4. The larger m is, the more ac-

curately the projection of a function f (t ) ∈ L2(R) onto Vm approximates the original function.

The amount of additional information available at resolution 2m+1 compared to resolution 2m

is the orthogonal complement of Vm in Vm+1, which we choose to denote by Wm . In other

words, Wm is defined by the following relation for m ∈Z:

Vm+1 =Vm ⊕Wm , Vm⊥Wm . (B.7)

We aim to show that there exists a function ψ(t ) such that the family of functions
p

2mψ(2m t −
n), k ∈Z is an orthonormal basis of Wm and, by extension, that the family of functions

p
2mψ(2m t−

n), m,n ∈Z is an orthonormal basis of L2(R).

From (3) of Definition B.4 and (B.7), it follows that it must hold true for the function ψ(t ) that

ψ( t
2 ) ∈ W−1 ⊂ V0. Since a scaling in time corresponds to an inversely proportional scaling in

frequency, the Fourier transform (Definition A.18) of ψ(t ) can be written as [Mallat, 1989, Eq.

63]

ψ̂(2ω) = g (ω)φ̂(ω), (B.8)

where φ(t ) ∈V0 and g (ω) is a 2π-periodic L2([0,2π])-function.

Recalling (B.7), we have that the Fourier transform of any f (t ) ∈V0 can be decomposed in terms

of the spaces V−1 and W−1, i.e. [Mallat, 1989, Eq. (64)]

f̂ (ω) = a(ω)φ̂(ω) = b(ω)φ̂(2ω)+ c(ω)ψ̂(2ω),
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where a(ω) is a 2π-periodic L2([0,2π])-function and b(ω) and c(ω) are π-periodic L2([0,π])-

functions. By inserting (B.6) and (B.8) into the equation above, we see that

a(ω) = b(ω)h(ω)+ c(ω)g (ω). (B.9)

The orthogonality condition for this decomposition can be stated as∫ 2π

0
|a(ω)|2dω=

∫ π

0
|b(ω)|2dω+

∫ π

0
|c(ω)|2dω,

which is satisfied if and only if [Mallat, 1989, Eq. (66)]

|h(ω)|2 +|g (ω)|2 = 1,

h(ω)g∗(ω)+h(ω+π)g∗(ω+π) = 0.
(B.10)

Under these conditions on g (ω),ψ(t ) can be constructed from (B.8). One possible choice for G

given in [Mallat, 1989, Eq. (69)] is

g (ω) = e−jωh∗(ω+π).

All that remains to be shown now is that the family of wavelets
p

2mψ(2m t −n), m,n ∈Z spans

L2(R). Recall that
⋃

m∈ZVm is dense in L2(R) due to property (2) of Definition B.4. Since the

vector space Vm can be obtained as a direct sum of all vector spaces W j with j < m,
⊕

m∈ZWm

is also dense in L2(R). Thus, the family of functions
p

2mψ(2m t −n), m,n ∈Z is an orthonor-

mal basis of L2(R) [Mallat, 1989].

B.2 Daubechies Wavelets

The Daubechies wavelets are a family of wavelets used to define a discrete wavelet transform.

They skip the intermediate step of constructing an orthonormal basis of continuous basis func-

tions. Instead, the Daubechies wavelet transform is a completely discrete algorithm, essen-

tially operating as a series of filters. Because of this, the Daubechies wavelet functions can-

not be written in closed form. The aim of this subsection is to summarize the main points of

Daubechies [1988] regarding the discrete wavelet transform with Daubechies wavelets.

The Daubechies wavelets were motivated by a desire to decompose a square-summable (Def-

inition A.4) sequence c0[n] ∈ l 2(R) into multiple levels corresponding to various frequency

bands.

This can be done by use of multiresolution analysis, so assume that spaces Vm have been cho-

sen as to that satisfy the properties of Definition B.4 and that a function φ(t ) ∈ Vm for which

the family of functions φm,n(t ) = p
2mφ(2m t −n), k ∈ Z is an orthonormal family whose clo-

sure spans Vm for all m ∈Z. We let
{
ψm,n ;m,n ∈Z}

denote the associated orthonormal wavelet

basis. Additionally, we assume that both φ and ψ are real.
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We start by constructing a function f (t ) given as

f (t ) = ∑
n∈Z

c0[n]φ(t −n), (B.11)

which is an element of V0 [Daubechies, 1988]. Recall that since V0 =V−1⊕W−1, we can decom-

pose f into its components in V−1 and W−1 as

f = P1 f +Q1 f , (B.12)

where P1 f and Q1 f denote the projections of f onto V−1 and W−1, respectively. The first term

of (B.12) can be written in terms of the orthonormal basis φ−1,n as

P1 f (t ) = ∑
k∈Z

c1[k]φ−1,k (t ). (B.13)

Since P1 f is a version of f at a lower resolution, the sequence c1[k] represents a smoothed

version of c0[n].

Note that since the φ−1,k , k ∈ Z form an orthonormal basis, the inner product between the

projection of f onto V−1 (B.13) and a basis function φ−1,k can be used to compute the coeffi-

cient c1[k] associated with φ−1,k . Specifically, we have that [Daubechies, 1988, p. 935]

c1[k] = 〈φ−1,k ,P1 f 〉 = 〈φ−1,k , f 〉 = ∑
n∈Z

c0[n]〈φ−1,k ,φ0,n〉, k ∈Z, (B.14)

where the second equation follows from (B.12) and the fact that φ−1,k ∈ V−1 is orthogonal to

Q1 f ∈ W−1. The third equation follows from using the definition of f in (B.11) to express the

inner product as a linear combination of smaller inner products.

By defining

h(n) = 1p
2

∫ ∞

−∞
φ

(
t

2

)
φ(t −n)d t , (B.15)

we can restate (B.14) as [Daubechies, 1988, Eq. (2.47)]

c1[k] = ∑
n∈Z

c0〈φ−1,k ,φ0,k〉

= ∑
n∈Z

c0

∫ ∞

−∞
φ−1,k (t )φ0,n(t )d t

= ∑
n∈Z

c0

∫ ∞

−∞
1p
2
φ(

t

2
−k)φ(t −n)d t

(a)= ∑
n∈Z

c0
1p
2

∫ ∞

−∞
φ(

t ′

2
)φ(t ′− (n −2k))d t

= ∑
n∈Z

h(n −2k)c0[n], (B.16)

where (a) follows from a change of variables t ′ = t −2k.

The second term of (B.12) can - in a manner similar to the first term - be written in terms of the

orthonormal basis ψ−1,n as

Q1 f (t ) = ∑
k∈Z

d1[k]ψ−1,k (t ). (B.17)
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Since the projection of f onto W−1 can be considered as the information ’lost’ by projecting f

onto V−1 from V0, the sequence d1[k] represents the difference in information between c0[n]

and c1[k]. By a process similar to that leading to (B.16), we see that

d1[k] = ∑
n∈Z

g (n −2k)c0[n], (B.18)

where

g (n) = 1p
2

∫ ∞

−∞
ψ

(
t

2

)
φ(t −n)d t . (B.19)

This procedure of obtaining c1[k] and d1[k] from c0[n] can be iterated upon. Since V−1 =
V−2 ⊕W−2, P1 f can be further decomposed into its components in V−2 and W−2. These com-

ponents, P2 f and Q2 f , can in turn be written on forms similar to (B.13) and (B.17). By an ap-

proach similar to those previously described in this section, it follows that [Daubechies, 1988,

p. 937]

c2[k] = ∑
n∈Z

h(n −2k)c1[n],d2[k] = ∑
n∈Z

g (n −2k)c1[n],

where h(·) and g (·) are as defined in (B.15) and (B.19), respectively.

The procedure may be generalized as follows: Given an initial sequence c0[n], the decomposi-

tion can be performed by iterating

c j [k] = ∑
n∈Z

h(n −2k)c j−1[n], (B.20)

d j [k] = ∑
n∈Z

g (n −2k)c j−1[n], (B.21)

starting from j = 1. In theory, (B.20) and (B.21) can be iterated infinitely. In practice, however,

we are limited by the number of available samples.

Assume that we have decomposed a sequence c0[k] into a set of ’difference’ sequences d1[k],d2[k], . . . ,dL[k]

obtained from repeated iteration of (B.20), and a single smoothed sequence cL[k] obtained

from the Lth iteration of (B.20). To reconstruct the original sequence c0[k], we recall that

since P j−1 f = ∑
k∈Z c j [k]φ j ,k +∑

k∈Zd j [k]ψ j ,k , we have (from (B.14), (B.13) and (B.17)) that

[Daubechies, 1988, p.938]

c j−1[n] = 〈φ−( j−1),n ,P j−1 f 〉 = ∑
k∈Z

h(n −2k)c j [k]+ ∑
k∈Z

g (n −2k)d j [k]. (B.22)

The original sequence c0[n] can be obtained by repeated iteration of (B.22) starting with j = L

and decreasing it at each step.

The sequence c0[n] can be decomposed according to (B.20) and (B.21), which only requires

knowledge of the values of the functions h and g at integer intervals. Thus, this decomposition

algorithm lends itself well to being completely discretized. By defining the digital filter taps

hn = h(n), n ∈ Z and gn = g (n), n ∈ Z, a wavelet decomposition algorithm that is entirely

discrete can be obtained by imposing certain conditions on the filter taps hn−2k and gn−2k .
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This will be the main topic of the following subsection. To round of this section, we denote the

Daubechies wavelet coefficients as

f̃ [m,n] = dm[n], (B.23)

to match the notation of Definition B.3. From (B.20) and (B.21) and the discussion following

them, it is clear that the wavelet coefficients (B.23) are only defined for 0 ≤ m ≤ L, where L is

the number of iterations of (B.20) and (B.21) performed. Additionally, in practical applications,

the wavelet coefficients are non-zero for only a finite number of values of n.

B.2.1 Filter Coefficients of the Daubechies Wavelet Transform

This subsection will provide a brief summary of the main results of [Daubechies, 1988]. The

conditions that must be imposed on the sequences hn and gn to obtain a completely discrete

wavelet algorithm are stated in the following theorem. This theorem is stated without proof.

For proof, see [Daubechies, 1988].

Theorem B.5

Let hn be a sequence such that [Daubechies, 1988, Th. 3.6]

1.
∑

n∈Z
|hn ||n|ϵ <∞ for some ϵ> 0,

2.
∑

n∈Z
hn−2k hn−2l =

1, k = l

0, k ̸= l

3.
∑

n∈Z
hn =p

2.

Suppose also that m0(ω) = 1p
2

∑
n∈Zhne jnω can be written as

m0(ω) =
(

1

2

(
1+ϵjω))N

( ∑
n∈N

f (n)e jnω

)
, (B.24)

where

4.
∑

n∈Z
| f (n)||n|ϵ <∞ for some ϵ> 0,

5. sup
ω

∣∣∣∣∣ ∑
n∈Z

f (n)e jnω

∣∣∣∣∣< 2N−1

Define

gn = (−1)nh−n+1, (B.25)

φ̂(ω) = 1p
2π

∞∏
i=1

m0(2−iω), (B.26)

ψ(t ) =p
2

∑
n∈Z

gnφ(2t −n), (B.27)
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where φ̂(·) denotes the Fourier transform (Definition A.18) ofφ. Then, theφm,n(t ) = 2−m
2 φ(2−m x−

n), m,n ∈Zdefine a multiresolution analysis (Definition B.4). The functionsψm,n(t ) = 2−m
2 ψ(2−m x−

n), m,n ∈Z are the associated wavelet basis. ▲

Condition 1 of Theorem B.5 ensures pointwise convergence of (B.26) for allω ∈R [Daubechies,

1988, Lemma 3.1]. Condition 2 imposes orthogonality on the sequence hn (and gn , through its

definition in (B.25)) [Daubechies, 1988]. Condition 3 ensures that hn acts as an averaging oper-

ator when applied as in (B.20) [Daubechies, 1988]. Conditions 4 and 5 ensure that the function

φ is continuous [Daubechies, 1988, Lemma 3.2, Remark 1].

Note that using Theorem B.5 as a recipe for constructing orthonormal wavelet bases does not

guarantee that the wavelets have compact support. We can ensure that the wavelets have com-

pact support by having the sequence hn take nonzero values only within a finite interval, while

still satisfying the conditions of Theorem B.5 [Daubechies, 1988, Eq. (4.1)-(4.3)].

Assuming that the sequence hn , n ∈Zhas a finite set of non-zero entries, the function m0(ω) =
1p
2

∑
n∈Zhne jnω will contain a finite amount of non-zero terms in the sum and (B.24) can be

rewritten as [Daubechies, 1988, Eq. (4.8)]

m0(ω) =
(

1

2

(
1+e jω))N

Q
(
e j) , (B.28)

where Q(·) is a polynomial whose coefficients are real. Taking the power of (B.28) yields

|m0(ω)|2 =
∣∣∣∣(1

2

(
1+e jω))N

Q
(
e j)∣∣∣∣2

=
(
cos2

(ω
2

))∣∣Q (
e j)∣∣2

. (B.29)

Condition 2 of Theorem B.5 can also be stated as [Daubechies, 1988, Eq. (4.7)]

|m0(ω)|2 = |m0(ω+π)|2 = 1. (B.30)

Using (B.29) and by introducing z = cos2
(
ω
2

)
and P

(
sin2

(
ω
2

)) = P (1− z) = |Q(e jω)|2, this be-

comes

zN P (1− z)+ (1− z)N P (z) , z ∈ [0,1], (B.31)

with P (z) ≥ 0, z ∈ [0,1]. It follows that any function m0 that satisfies (B.30) corresponds to a

polynomial P that solves (B.31). Conversely, it has been shown that every polynomial P that

satisfies (B.31) corresponds to solutions of (B.30) with a real-valued hn , n ∈ Z [Daubechies,

1988, Lemma 4.2].

One possible solution to (B.31) is a polynomial on the form [Daubechies, 1988, Eq. (4.13)]

PN (z) =
N1∑

i=0

(
N −1+ j

j

)
z j , z ∈ [0,1]. (B.32)

Furthermore, it can be shown that any polynomial is on the form [Daubechies, 1988, Eq. (4.15)]

P (z) = PN (y)+ zN R(z), z ∈ [0,1], (B.33)
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with R being a polynomial that satisfies [Daubechies, 1988, p. 976]

R(1− z)+R(z) = 0, z ∈ [0,1].

This polynomial is antisymmetric around 1
2 and by introducing

S

(
1

2
− z

)
= R(z), z ∈ [0,1]

(B.33) can be rewritten in terms of the odd polynomial S as

P (z) = PN (z)+ zN S

(
1

2
− z

)
, z ∈ [0,1]. (B.34)

Using the equation above, m0 can be constructed by choosing a positive integer N and choos-

ing an odd polynomial S that guarantees that (B.34) satisfies that P (z) ≥ 0, z ∈ [0,1] as well as

condition 5 of Theorem B.5.

For the Daubechies family of wavelets, the polynomial Q is chosen to be of minimal order, such

that for any choice of integer N ≥ 1, we have S = 0 and |Q(e jω)|2 = PN (1− z) (with z = cos2
(
ω
2

)
).

From (B.32) it is clear that P (z) ≥ 0, z ∈ [0,1] is satisfied. It can also been shown that it

satisfies condition 5 of Theorem B.5 [Daubechies, 1988, Eq. (4.23)]. With |Q(e jω)|2 known,

Q((e jω) can be constructed (see either Lemma A.17 or [Daubechies, 1988, Lemma 4.2]). From

Q, m0 can be constructed according to (B.24). From m0, the hn are determined as to satisfy

m0(ω) = 1p
2

∑2N−1
n=0 hne jnω. For larger N , the hn are determined numerically.

A beneficial feature of the Daubechies wavelet functions is that they have a high number of

vanishing moments, which are defined as follows:

Definition B.6 (Vanishing moment)

We say a wavelet function ψ(t ) has k vanishing moments if it satisfies [Daubechies, 1988]∫ ∞

−∞
t jψ(t )d t = 0, j = 0,1, . . . ,k −1 ▲

By using a wavelet function with k vanishing moments, the wavelet coefficients will be zero for

polynomials of degree ≤ k −1. Wavelet functions with a higher number of vanishing moments

generally yield a more sparse set of wavelet coefficients. Note that due to the zero-mean prop-

erty (B.2) of the mother wavelet, any wavelet function has at least one vanishing moment.
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Deep Learning C
The aim of this chapter is to introduce the general theory behind neural networks. First, the

most basic family of neural network - feed-forward networks - will be introduced to allow for

a discussion of the fundamentals of neural networks. In the main text of this thesis, another

type of network called convolutional neural networks were used - these will be introduced in

Appendix C.2.

C.1 Feed-Forward Networks

The aim of this section is to introduce fundamental theory of artificial neural networks by us-

ing the most straightforward class of neural networks - known as feed-forward networks - as a

learning example. The class of convolutional neural networks (abbr. CNN) will be introduced

later in Appendix C.2. This section is based on [Bishop, 2009, Sec. 5.1].

Artificial neural networks are a family of machine learning methods inspired by the informa-

tion processing systems of biological neural networks. They are commonly used for regression

or classification problems, in which the aim of regression is to estimate the value of one or more

continuous variables given a vector x ∈RN of input variables, and the aim of classification is to

assign an input vector x to one of a discrete set of classes, which are commonly assumed to be

disjoint. A common model used for both regression and classification problems is one based

on linear combinations of nonlinear basis functions h j (x), j = 1,2, . . . , M given as [Bishop, 2009,

Eq. (5.1)]

y(x , w ) = f

(
M∑

j=1
)w j h j (x)

)
, (C.1)

where the entries of w = [w1, w2, . . . , wM ]⊺ are called weights and the function f (·) is called an

activation function. Generally, the activation function is a nonlinear differentiable function;

a notable exception to this is for regression problems in which the range of a variables to be

estimated spans the entirety of R, in which case the identity is used.

The feed-forward network model can be considered a natural extension of (C.1); by making the

basis functions h(x) themselves dependent on adjustable parameters, which are fitted along-
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side the weights wi , i = 1,2, . . . , M during training. This is achieved by using basis functions

that follow the same form as (C.1) - nonlinear functions of linear combinations of the inputs x .

The basic feed-forward neural network model can be described as a series of linear combina-

tions followed by functional transformations. The first step in the neural network is to con-

struct M linear combinations of the input variables x [Bishop, 2009, Eq. (5.2)]:

a(1)
j =

N∑
i=1

w (1)
j ,i xi +w (1)

j ,0, j = 1,2, . . . , M , (C.2)

where we use the superscript (1) for the parameters to indicate that they are in the first layer of

the network. We call the dependent variables a j activations. By applying an activation function

to the activations, we obtain the hidden units given as [Bishop, 2009, Eq. (5.3)]

z(1)
j = h1(a(1)

j ), j = 1,2, . . . , M . (C.3)

The choice of activation function depends on the application and will be discussed in Ap-

pendix C.1.1. For now, we’ll simply note that the activation functions must be nonlinear and

differentiable. We require nonlinearity since any linear function of a linear combination is just

a linear combination. The reason behind the requirement of differentiability will become ap-

parent in Appendix C.1.3.

By a linear combination of the hidden units, the output unit activations are obtained [Bishop,

2009, Eq. (5.4)]:

a(2)
k =

M∑
j=1

w (2)
k, j z(1)

j +w (2)
k,0, k = 1,2, . . . ,K . (C.4)

To obtain a model similar to (C.1), these activations can be transformed by an appropriate ac-

tivation function to produce outputs yk ,k = 1,2, . . . ,K :

yk = f (a(2)
k ), k = 1,2, . . . ,K . (C.5)

Alternatively, another layer of hidden units can be added to the model before producing the

outputs by making use of (C.3) and (C.3), substituting layers 1 and 2 for layers 2 and 3, respec-

tively. The outputs and hidden units are collectively referred to as the neurons of the neural

network.

Combining (C.2), (C.3) and (C.4) and applying an output activation function f (·), we obtain the

overall network function as

yk (x , w ) = f

(
M∑

j=1
w (2)

k, j h1

(
N∑

i=1
w (1)

j ,i xi +w (1)
j ,0

)
+w (2)

k,0

)
, k = 1,2, . . . ,K , (C.6)

in which w contains all the weights
{

wm ,n(i )
}
. This model is simply a nonlinear function of

the inputs x parameterized by the weights w , which may be adjusted during the fitting of the

model. The adjustment of the weights w will be discussed in Appendix C.1.3.
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The neural network model (C.6) can be simplified by defining an additional input parameter

x0 = 1 (referred to as the bias parameter), allowing for (C.2) to be written as

a(1)
j =

N∑
i=0

w (1)
j ,i xi , j = 1,2, . . . , M . (C.7)

Similarly, we may define an additional hidden unit z(1)
0 = 1, so that (C.4) can be written as

a(2)
k =

M∑
j=0

w (1)
k, j z j , k = 1,2, . . . ,K . (C.8)

resulting in the complete model (C.6) being given as

yk (x , w ) = f

(
M∑

j=0
w (2)

k, j h1

(
N∑

i=0
w (1)

j ,i xi

))
, k = 1,2, . . . ,K . (C.9)

The neural network model is commonly illustrated as in Figure C.1, where the different nodes

indicate the different units in the network, as well as their associated weights.

x0
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xN

z0

z1

zM

y1

yK

w (1)
1,0

w (1)
1,1

w (1)1,N

w
(1

)

M
,0

w
(1)

M ,1

w
(1)
M ,N

w
(2)
1,0

w (2)
1,1

w (2)1,M

w
(2

)

1,0
w

(2)

1,1

w (2)
1,M

Figure C.1. Illustration of the neural network. Information propagates from left to right. After
[Bishop, 2009, Fig. 5.1]

When disregarding the bias parameter, every node from one layer passes information to ev-

ery node in the next layer; whenever this is the case between two layers, we say they are fully

connected. While fully connected layers increase the complexity of the network, allowing for

more complex interactions between features to be modeled, they introduce a large amount of

weights, many of which may be unnecessary. The time needed to fit the model scales with

the number of weights, and in many applications, nodes interact mostly with local nodes, hav-

ing little, if any, relations to distant nodes. Convolutional neural networks handle these cases

in a more computationally effecient manner and will be introduced in Appendix C.2. Further

discussion on these topics requires some elaboration on the topic of activation functions.
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C.1.1 Activation Functions

As mentioned briefly earlier in this section, the choice of activation function h1(·) in (C.3) and

output activation function f (·) from (C.5) are dependent on the application. For reasons that

will be made clear in Appendix C.1.3, these functions are required to be differentiable. In this

subsection, three commonly used activation functions will be introduced; one used in the hid-

den layers of the network and two output activation functions used in classification.

The rectifying linear unit (abbr. ReLU) function is an activation function commonly applied in

the hidden layers of a neural network. It is defined as follows:

hReLU (a) = max{0, a} (C.10)

Some benefits of the ReLU function include that it is computationally efficient due to its sim-

plicity and the fact that it outputs zero for any negative input, which is likely to result in sparse

activations in subsequent layers of the network. Note that the ReLU function is not differen-

tiable at zero, which means that it is not technically a differentiable function. In practice, the

derivative of the ReLU function at zero is often defined to be either its left derivative, zero, or

its right derivative, one. In this case, any numerical errors that may occur as a result of this are

assumed negligible.

For classification problems, a probabilistic approach can be used to argue in favor of certain

output activation functions. Consider the posterior probability P (C j |x) of a data point x be-

longing to class C j . By Bayes’ theorem (Theorem A.20), we have

P (C j |x) = P (x |C j )P (C j )∑K
k=1 P (x |Ck )P (Ck )

, j = 1,2, . . . ,K . (C.11)

For multiple binary classifications, we have that x ∈ {C1,C2} with C1 ∩C2 =; and we can write

(C.11) for class C1 as [Bishop, 2009, Eq. (4.57)]

P (C1|x) = P (x |C1)P (C1)

P (x |C1)P (C1)+P (x |C2)P (C2)

= 1

1+P (x)P (C2) (P (x |C1)P (C1))−1

= 1

1+e−a , (C.12)

in which

a = ln

(
P (x |C1)P (C1)

P (x |C2)P (C2)

)
.

The function in (C.12) is the logistic sigmoid. When used as an output activation function on

an activation ak , we write it as follows [Bishop, 2009, Eq. (5.6)]:

fsi g m(ak ) = 1

1+e−ak
. (C.13)

Due to its ties to the posterior probability P (Ck |x), the output of a neural network using the lo-

gistic sigmoid as an output activation function can heuristically be considered the probability

that the input x belongs to class Ck .
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Figure C.2. Examples of activation functions include the Rectifying Linear Unit (ReLU, left)
and the logistic sigmoid (right).

For classification problems with a number of classes K greater than two, Bayes’ formula (C.11)

can be written as [Bishop, 2009, Eq. (4.62)]

P (C j |x) = P (x |C j )P (C j )∑K
k=1 P (x |Ck )P (Ck )

= ea j∑K
k=1 eak

(C.14)

where

ak = log(P (x |Ck ) , k = 1,2, . . . ,K .

If taken as a function of a j , (C.14) is known as the softmax function. When used as an output

activation function, we write it as follows:

hsmax (ak ) = eak∑K
j=1 ea j

(C.15)

C.1.2 Gradient Descent Methods

The final fundamental topic in the theory of feed-forward networks that will be adressed in this

section is how the weights w of (C.9) are adjusted through the process of training. The aim of

the training is to minimize the error (often the sum of squares) of the model (C.9) based on ex-

ample data. Due to the large number of parameters, neural networks do not have closed-form

solutions, and the weights are iteratively updated using numerical methods, with the initial set

of weights generated by a pseudorandom number generator.

A commonly applied and simple approach to updating the weights is the gradient descent ap-

proach, in which the weights w are updated iteratively by taking a step of length η in the neg-

ative gradient of the error function taken over the entire set of example data, which we denote

E(w ). Formally, given a fixed η> 0, we obtain the weights at time τ+1 from the weights at time

τ as [Bishop, 2009, Eq. (5.41)]

w (τ+1) = w (τ) −η∇E(w (τ)), (C.16)
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where superscript is used to denote iteration step. By use of this method, the weights are up-

dated at each step in the direction of greatest rate of decrease of the error function.

The error function used in (C.16) is taken over all data points in the set of example data before

the weights are updated, which results in the training being a slow process. Alternatively, by

separating the data set into disjoint subsets that are assumed independent, the error function

of the data set can be written as a sum of terms [Bishop, 2009, Eq. (5.42)]

E(w ) =
N∑

n=1
En(w ), (C.17)

where En(w ) denotes the error function taken over the nth subset of data. By applying the

gradient descent method (C.16) with randomly selected subsets of the data set rather than the

entire data set, we obtain the stochastic gradient descent method given by [Bishop, 2009, Eq.

(5.43)]

w (τ+1) = w (τ) −η∇En(w (τ)), 1 ≤ n ≤ N , (C.18)

which has been found to better deal with redundancy in the data set and to more easily escape

local minima [Bishop, 2009, p. 241].

C.1.3 Error Backpropagation

For the stochastic gradient descent method (C.18) to be applicable in practical applications,

∇En(w ) must be able to be evaluated in an efficient manner. For feed-forward networks, a

technique called error backpropagation is used for this exact purpose.

The task of evaluating ∇En(x) comes down to evaluating each element of the gradient, i.e. each

partial derivative ∂En

∂w (l )
j ,i

, where w (l )
j ,i is an element of w . While there are multiple possible choices

for the error function En , a popular candidate is the sum of squares, which is given as [Bishop,

2009, Eq. (5.46)]

En = 1

2

K∑
k=1

(
yn;k − tn;k

)2 , (C.19)

where y n is the vector containing the outputs of the neural network applied to the nth subset

of the data and t n is the corresponding set of labeled data, i.e. the "true values" that we want

the model to predict. For the remainder of this section, the subscript n is omitted for ease of

notation.

Consider a neural network consisting of L layers with output activation function f (·). We use

Nl to denote the number of neurons in layer l . In error backpropagation, we start by consider-

ing the partial derivatives ∂En

∂w (L)
k, j

for the weights w (L)
k, j connecting the (L−1)th layer to the output

layer. Recalling that the outputs of the neural network are given as

yk (x , w ) = f (a(L)
k ), a(L)

k =
M∑

j=1
w (L)

k, j z(L−1)
j , k = 1,2, . . . , NL , (C.20)
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we see that he chain rule can be applied [Bishop, 2009, Eq. (5.50)]:

∂E

∂w (L)
k, j

= ∂E

∂a(L)
k

∂a(L)
k

∂w (L)
k, j

, k = 1,2, . . . ,K , j = 1,2, . . . , NL−1. (C.21)

From (C.20) we see that
∂a(L)

k

w (L)
k, j

= z j , j = 1,2, . . . , NL−1 (C.22)

Introducing the notation [Bishop, 2009, Eq. (5.51)]

δ(L)
k = ∂E

∂a(L)
k

, k = 1,2, . . . , NL (C.23)

which are referred to as errors in the context of error backpropagation and should not be con-

fused with the error function. Due to the requirement that the activation function f (·) is differ-

entiable, these errors can easily be evaluated for layer L. In case the error function is the sum

of squares (C.19), the error (C.23) is

δ(L)
k = ∂

∂a(L)
k

(
1

2

NL∑
k=1

(
f (a(L)

k )− tk

)2
)
=

(
f (a(L)

k − tk

)
f ′(a(L)

k ), k = 1,2, . . . , NL ,

where f ′(a(L)
k ) denotes the derivative of f (·) evaluated at a(L)

k .

Next, we turn our attention to the evaluation of ∂E
∂w (L−1)

j ,i

, where w (L−1)
j ,i is a in the (L −1)th layer.

Recall the activations ai given (C.7) as well as the hidden units zi given in (C.3). For layer (L−1)

of the network, they can be stated as

z(L−1)
j = hL−1

(
a(L−1)

j

)
, a(L−1)

j =
NL−2∑
i=1

w (L−1)
j ,i z(L−2)

i , j = 1,2, . . . , NL−1. (C.24)

By an approach identical to that of equations (C.21), (C.22) and (C.23), we see that ∂E
∂w (L−1)

j ,i

can

be expressed as

∂E

∂wL−1
j ,i

= ∂E

∂a(L−1)
j

∂a(L−1)
j

∂w (L−1)
j ,i

= δ(L−1)
j z(L−2)

i , j = 1,2, . . . , NL−1, i = 1,2, . . . , NL−2,

in which the error δ(L−1)
j can be written as

δ(L−1)
j = ∂E

∂a(L−1)
j

(a)=
NL∑

k=1

∂E

∂a(L)
k

∂a(L)
k

∂a(L−1)
j

(b)=
NL∑

k=1

∂a(L)
k

∂z(L−1)
j

∂z(L−1)
j

∂a(L−1)
j

δ(L)
k

(c)=
∂z(L−1)

j

∂a(L−1)
j

NL∑
k=1

w (L)
k, jδ

(L)
k

(d)= h′
L−1

(
a(L−1)

j

) NL∑
k=1

w (L)
k, jδ

(L)
k , j = 1,2, . . . , NL−1 (C.25)
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where h′
L−1

(
a(L−1)

j

)
denotes the derivative of hL−1(·) evaluated at a(L−1)

j . In the equations above,

(a) follows from application of the chain rule, (b) follows from another application of the chain

rule and from (C.23), (c) follows from (C.20) and (d) follows from (C.24). We see from (C.25)

that by passing error information (δ(L)
k ) ’backwards’ through the network, we obtain a simple

method of evaluating the error at each neuron of the network and - by application of (C.21)

- evaluating each entry of ∇En . This is the main result of error backpropagation; by utilizing

knowledge of the errors of layer l +1, the errors of layer l can be efficiently computed.

C.2 Convolutional Neural Networks

The aim of this section is to introduce convolutional neural networks (abbr. CNN), a class of

neural networks which are invariant to certain transformations of the input data. Convolu-

tional neural networks are often applied to classification of image data, where the identity of

the input data is invariant under translations, scaling and small rotations. Using classification

of digital image data as an example, one could simply construct a simple feed-forward network

as discussed in Appendix C.1 with the pixel intensities as inputs and the softmax function (C.15)

as an output activation function. However, such an approach ignores the fact that nearby pixels

are more strongly correlated than distant pixels [Bishop, 2009, Sec. 5.5.6].

Convolutional neural networks make use of the convolution operator in place of a general ma-

trix product in at least one of their layers in order to extract local features rather than global

features [Goodfellow et al., 2016, Ch. 9]. How exactly this changes the model (C.9) will be the

main topic of Appendix C.2.1. Additionally, most convolutional networks also apply pooling in

order to reduce variability. This operation will be introduced in Appendix C.2.2.

C.2.1 Convolutional Layer

In order to introduce the concept of convolutional layers, it is first necessary to understand the

discrete convolution operator.

Definition C.1 (Discrete Convolution)

The discrete convolution of two sequences xn ∈R and wn ∈R, denoted (x ∗w)n is defined as

(x ∗w)n = ∑
k∈Z

xk wn−k , (C.26)

provided that the sum exists. ▲

In the context of neural networks, the signal xn is usually a multidimensional array of data

and the sequence wn is called a kernel. The position of the two within the convolution can be

interchanged freely, since the convolution is a commutative operation.

Lemma C.2

The discrete convolution is commutative, i.e. (x ∗w)n = (w ∗x)n . ▲
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Proof

By introducing a substitute variable k̂ = n −k, we see that

(x ∗w)n = ∑
k∈Z

xk wn−k = ∑
k̂∈Z

xn−k̂ wk̂ = (w ∗x)n

■

While the commutative property might be useful in other applications, it is generally not an

important property of neural network implementations [Goodfellow et al., 2016, Ch. 9.1]. In-

stead, by "flipping" the kernel wn relative to the input xn , such that their indices both increase

as in (C.26), we obtain the cross-correlation sequence. It is defined as follows:

Definition C.3 (Cross-Correlation)

The (1-dimensional) cross-correlation between sequences xn and wn is defined as [Goodfellow

et al., 2016, Eq. (9.6)]

Sx,w ;n = ∑
k∈Z

xn+k wk

provided that the sum exists. ▲

The discrete convolution and cross-correlation can be seen as a multiplication of the input by

a matrix in which several entries are equal to other entries. More specifically, the matrix is a

Toeplitz matrix, i.e. every row of the matrix is equal to the row above shifted by one element.

In order to apply the concept of cross-correlation sequences to neural networks, one may be-

gin by noting that the input vector x has a finite number of entries. Thus, the kernel is similarly

restricted to having a finite number of entries, with this number being smaller than that of the

input. This allows for the output of the cross-correlation function to provide information about

local features of the input. The output is commonly restricted to positions for which the kernel

is contained within the input.

Next, recall that the activations in the simple feed forward network were given by (C.7), i.e.

a(1)
j =

N∑
i=0

w (1)
j ,i xi , j = 1,2, . . . , M .

We see that with an input vector of length N , the network has N +1 weights (one for each input

and an additional bias parameter) for each of the M outputs, resulting in a total of (N +1)M

weights which would have to be adjusted through training. On the other hand, if we were to

relate the input and activation by a cross-correlation function as defined in Definition C.3 be-

tween the input and a sequence of weights wn ,n = 1,2, . . . , Nw of length Nw < N , we would

have

a(1)
j =

Nw∑
i=1

x j+i−1wi +w0, j , j = 1,2, . . . , N −Nw +1, (C.27)

in which case the weights are shared between different activations. We call a layer in which the

activations are on the form of (C.27) a convolutional layer and disregard the fact that a more
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technically correct name would be a cross-correlation layer. We call any neural network that

includes one or more convolutional layers a convolutional neural network (abbr. CNN).

There are some benefits to using CNNs over simple feed-forward networks. Due to the weights

being shared between activations, there are fewer parameters that require fitting. As a result,

the training should be faster and require less storage. Additionally, while each input in a tra-

ditional neural network layer interacts with each output, convolutional neural networks have

sparse interactions, which improves the efficiency of the model [Goodfellow et al., 2016]. While

a traditional neural network layer with N inputs and M outputs require a matrix multiplication

with O(N ·M) operations, each of the M = N −Nw +1 outputs of a convolutional layer interact

with only Nw inputs (Nw being the length of the kernel), resulting in a O(Nw ·M) operations.

Provided that Nw is several orders of magnitude smaller than N , this can yield a significant

reduction in runtime [Goodfellow et al., 2016].

While the error backpropagation method cannot be directly applied in the same manner as

shown earlier when dealing with backpropagation through convolutional layers, some small

adjustments can be applied to (C.25) to make error backpropagation applicable again. Con-

sider a network, whose output layer (L) is a convolutional layer in which the output activations

a(L)
k are given by a model on the form (C.27) with a kernel of length Nw . The choice of output

activation function is unimportant. We seek to determine the partial derivative of the error

function with respect to an activation in layer (L − 1) and begin by considering equation (a)

from (C.25):

δ(L−1)
j =

NL−1∑
k=0

∂a(L)
k

∂z(L−1)
j

∂z(L−1)
j

∂a(L−1)
j

δ(L)
k

(a)=
∂z(L−1)

j

∂a(L−1)
j

NL−1∑
k=0

δ(L)
k

∂

∂z(L−1)
j

(
Nw∑
i=1

z(L−1)
k+i w (L)

i +w (L)
0,k

)

(b)=
∂z(L−1)

j

∂a(L−1)
j

NL−1∑
k=0

δ(L)
k w j−k 1[0,Nw−1]( j −k), (C.28)

where 1[0,Nw−1](·) is used to denote the indicator function that is one when the argument is in

the interval [0, Nw −1] and zero otherwise. In the equations above, (a) follows from the fact that

the activations a(L)
k follow a model on the form (C.27), and (b) follows from noting that the j th

entry of z(L−1)
j appears in the rightmost sum only if j = k + i is in the interval [0, NL −1] - if it is,

the j th entry is multiplied by the weight w (L)
j−k .

In many applications, we may want to apply cross-correlation to multi-dimensional signals.

In particular, when dealing with data arranged as a 2-dimensional grid such as images, the

cross-correlation is a 2-dimensional sequence defined as follows:

Definition C.4 (2-Dimensional Cross-Correlation)

The 2-dimensional cross-correlation between sequences xm,n ∈R and wm,n ∈R, denoted Sx,w (m,n),
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is defined as [Goodfellow et al., 2016, Eq. (9.6)]

Sx,w (m,n) = ∑
i , j∈Z

xm+i ,n+ j wi , j , (C.29)

provided that the sum exists. ▲

The analogue to (C.27) for 2-dimensional inputs with a kernel matrix of size N1×N2 is given as

a(1)
m,n =

N1∑
i=1

N2∑
j=1

xm+i−1,n+ j−1wi , j , j = 1,2, . . . , M ,

An example of a cross-correlation is shown in Figure C.3.
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x3,1 x3,2 x3,3
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x1,1w1,1 +x1,2w1,2+
x2,1w2,1 +x2,2w2,2

x1,2w1,1 +x1,3w1,2+
x2,2w2,1 +x2,3w2,2

x2,1w1,1 +x2,2w1,2+
x3,1w2,1 +x3,2w2,2

x2,2w1,1 +x2,3w1,2+
x3,2w2,1 +x3,3w2,2

Input

Kernel

Output

Figure C.3. Illustration of a 2-D cross-correlation on matrix form. The dashed squares indi-
cates the elements of the input and kernel from which the upper-left entry of the output is
formed. After [Goodfellow et al., 2016, Fig. 9.1]

C.2.2 Pooling

Convolutional networks typically employ convolutional layers as part of a three-stage process

[Goodfellow et al., 2016]. First, several cross-correlations are performed in parallel, yielding a

set of activations. In the second stage, a nonlinear activation function such as the ReLU func-

tion mentioned in Appendix C.1.1 is applied to each of the activations. In the final stage, the

output of the layer is further modified by the use of a pooling function, which replaces the out-

put of the layer with a summary statistic of local outputs [Goodfellow et al., 2016]. Examples

of such summary statistics include taking local averages or the L2-norm (Definition A.1). The

summary statistic of greatest interest to this project, however, is the maximum, whose associ-

ated pooling function is called max pooling.
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For each input, the max pooling operator outputs the maximum input value from a region

around the input. This is illustrated in Figure C.4. Max pooling can help make the model ap-

proximately invariant to small translations, which is a useful property if the presence of a fea-

ture in the input is more important than its exact location [Goodfellow et al., 2016]. An example

of this is shown in Figure C.4, in which the inputs to the bottom example are those of the top

example shifted by one unit. Despite every input being shifted by one unit, only three of the

eight outputs differ between the two examples.

1 0.8 0.5 0.2 0.6 0.3 0.8 0.6

1 1 0.8 0.6 0.6 0.8 0.8 0.8

. . .

. . .

. . .

. . .

Input

Output

1 0.8 0.5 0.2 0.6 0.3 0.80.4

1 1 1 0.8 0.6 0.6 0.8 0.8

. . .

. . .

. . .

. . .

Input

Output

Figure C.4. Illustration of max pooling. Lines are used to indicate which inputs interact with
which outputs. The input units in the bottom figure are the same as those of the top figure
shifted by one unit to the right. After [Goodfellow et al., 2016, Fig. 9.8]

.

Max pooling can also be used to reduce the number of units in the network by simply out-

putting the maximum in the neighborhood of every k input units rather than every input unit,

resulting in the next layer having approximately 1/k times the number of units of the previous

layer [Goodfellow et al., 2016]. This can be used to increase the computational efficiency of the

network.
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