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Dansk Resumé

Ved trådløs kommunikation over en kanal med pakketab kan der opleves store for-
sinkelser, som skyldes et behov for retransmission af tabte pakker. I applikationer,
såsom trådløse mikrofoner og højtalere samt trådløs transmission af tale mellem høre-
apparater på hver sit øre, kan der ofte være krav til lav eller næsten ingen forsinkelse.
Til at fjerne forsinkelser på grund af pakketab betragter vi i denne afhandling zero-
delay multiple-descriptions (ZDMD) kodning. Specifikt betragter vi indkodning af
stationære skalare AR(p) kilder med mean square error (MSE) distortion ved brug
af ZDMD kodning.

ZDMD kodning er en kombination af multiple-descriptions (MD) kodning og zero-
delay (ZD) kodning. Med ZD kodning kræves det, at dekoderen kan producere rekon-
struktioner så snart beskrivelsen er modtaget. ZD kodning er kausal, hvilket betyder,
at rekonstruktioner kun afhænger af det nuværende og tidligere samples af kilden. I
MD kodning indkodes kilden til flere forskellige beskrivelser. Disse beskrivelser trans-
mitteres over hver sin kanal. På dekodersiden kombineres de modtagne beskrivelser
til en rekonstruktion af kilden. Beskrivelserne designes sådan, at hver beskrivelse kan
bruges hver for sig som rekonstruktion af kilden, og hvis alle beskrivelser er modtaget,
opnås en bedre rekonstruktion.

I denne afhandling betragter vi symmetrisk ZDMD kodning med to beskrivelser,
hvilket betyder, at den samme rate bruges til begge beskrivelser, og at nøjagtighe-
den af rekonstruktionen kun afhænger af hvor mange beskrivelser, der er modtaget
og ikke hvilke. Vi foreslår et nyt operationel ZDMD kvantiseringssystem baseret på
index assignment og differential pulse code modulation (DPCM). Systemet består i,
at en prædiktionsfejl af kilden indkodes ved brug af uniform kvantisering, hvorefter
to beskrivelser er formet ved brug af en ikke-lineær index assignment funktion. Hvis
begge beskrivelser modtages af dekoderen, bruges den inverse index assignment funk-
tion til at fremskaffe den kvantiserede prædiktionsfejl, ellers bruges den modtagne
beskrivelse som estimat af den kvantiserede prædiktionsfejl.

Vi vurderer den teoretiske rate-distortion performance og sammenligner med eksi-
sterende ZDMD kvantiseringssystem samt den teoretiske nedre grænse. Derudover
demonstreres den praktiske rate-distortion performance gennem simuleringer af ind-
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kodning af stationære skalare AR(2) kilder. Dette viser, at det foreslåede ZDMD
kvantiseringssystem, ved brug af den optimale prædiktor for AR(1) modellering af
kilden, opnår en operationel distortion performance omkring 3.5 dB fra den teoretiske
nedre grænse for ZDMD kodning af AR(1) kilder. Desuden demonstreres det, at ved
at bruge AR(2) prædiktoren i kvantiseringssystemet opnås en lavere distortion end
ved brug af AR(1) prædiktoren.

Endeligt demonstreres kvantiseringssystemets robusthed over pakketab gennem
simuleringer.
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Nomenclature

Symbols in boldface denote vectors or matrices, e.g. x ∈ Rn or A ∈ Rn×m. All vec-
tors are considered as column vectors unless otherwise specified. We use uppercase
letters to denote random variables. However, matrices will also be denoted with up-
percase letters even if the elements are not random. It will be clear from the context
whether a uppercase boldface symbol denotes a random vector a deterministic matrix.

List of Symbols

E [·] Expected value operator.
Var (·) Variance operator.
N (N0) The set of natural numbers (including 0).
Z The set of integers.
R The set of real numbers.
AR(p) Autoregressive process of order p.
log(·) Logarithm to base 2.
ln(·) Natural logarithm.

List of Abbreviations

ACF Autocorrelation function.
AWGN Additive white Gaussian noise.
dB Decibel.
i.i.d. Independent and identically distributed.
MD Multiple-descriptions.
MSE Mean square error.
MMSE Minimum mean square error.
RDF Rate-distortion function.
ZD Zero-delay.
ZDMD Zero-delay multiple-descriptions.
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1. Introduction

Wireless communication over unreliable channels can lead to arbitrarily long delays
due to the need of retransmission of lost packets. In applications where near real-
time communication is desired such as wireless speakers or wireless microphones [1]
or audio transmission between microphones in an hearing aid [2], small delays are
required. To decrease the delay, the bandwidth of the channel code can be increased
to ensure the desired delay and performance, which on the other hand will increase
the cost.

Alternatively, the type of joint source and channel coding known as multiple de-
scriptions (MD) coding can be applied [3]–[5]. In MD coding, the source is encoded
into L ≥ 2 descriptions or representations and sent over L separate channels. Let us
conceptualize with L = 2 descriptions which is illustrated in Fig. 1.1. Each of the
two descriptions represents the source to a certain level of distortion, and when the
two descriptions are combined, the distortion should be lower. In this way, if a packet
is lost in one of the channels, the receiver decodes the source using only one of the
descriptions. Thus no further delay occurs due to packet loss. [6]

The problem is to design a coding scheme such that distortion of the center re-
construction is smaller than the distortion of the side reconstructions [6]. How this is
done, depends on the situation. E.g., if the packet loss probability is high, then good
representations should be available using the side decoders, but if the packet loss
probability is low, the information can be spread across the two channels, meaning
that each side reconstruction would have a larger distortion.

In general, the source coding schemes that achieves the best performance are compu-
tationally expensive, non-causal, and tends to impose long delays on the end-to-end
processing of information [7]. In order to remove the delays and achieve near in-
stantaneous encoding and decoding, it is necessary that the encoder and decoder of
a communication system are causal, meaning that the reconstruction of the current
source sample only depends on past and present source samples [7]. In the ideal case,
where both instantaneous encoding and decoding are required, it is common to use
the term zero-delay (ZD) source coding [7].

1



2 Chapter 1. Introduction

X Encoder Decoder 0

Decoder 1

Decoder 2

Y (1)

Y (2)

Y (0)

B(1)

B(2)

Figure 1.1: MD communication system. The source symbol X is encoded into two descriptions
B(1), B(2) which are transmitted over separate channels. Each side decoder (Decoder 1 and Decoder
2) reconstruct the source using only one of the descriptions, while the central decoder (Decoder 0)
uses both descriptions. [4]

Recently, in [8], they proposed to combine MD coding with ZD coding referred
to as zero-delay multiple-descriptions (ZDMD) coding. They developed a theoretical
lower bound of ZDMD codes and illustrated the applicability using a simple scheme
based on staggered quantization [9]. In particular, the two description case with
feedback of the side reconstructions was considered with stationary scalar first or-
der autoregressive (AR(1)) sources subject to mean square error (MSE) distortion
constraints. The setup is illustrated in Fig. 1.2.

The main results of [8] constitute a lower bound on the sum-rate and a charac-
terization of this lower bound for the symmetric case, i.e., both side channels operate
at the same rate. Furthermore, a test-channel realization scheme was derived. The
operational achievable results were obtained using a simple quantization scheme de-
veloped in [9] in a high-rate scenario.

This thesis is concerned with the development of operational ZDMD coders achieving
better performance than the simple quantization scheme. Furthermore, when encod-
ing audio or speech signals, it is common to assume local stationarity and model
the signals as AR(p) processes of order p = 2 or order p = 10 [10, pp. 270-271].
Therefore, we will develop an operational ZDMD coding scheme which can use the
modeling of the source.

1.1 Research Question

Only a single operational ZDMD coding scheme has been proposed [8]. Furthermore,
the development in [8] restricted the source to first order AR sources. In this thesis,
we will extend upon the work in [8] by designing an operational ZDMD coding scheme
which can exploit the structure of AR(p) sources. In addition, since MD coding is
designed to combat packet losses without inducing delay due to packet losses, the
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X Encoder Decoder 0

Decoder 1

Decoder 2

Y (1)

Y (2)

Y (0)

B(1)

B(2)

Figure 1.2: ZDMD communication system. The source symbol X is encoded into two descriptions
B(1), B(2) which are transmitted over separate channels. Each side decoder (Decoder 1 and Decoder
2) reconstruct the source using only one of the descriptions, while the central decoder (Decoder 0)
uses both descriptions. The previous side reconstructions are available at the encoder through a
feedback channel. [8]

performance under packet loss will be studied. Hence, the thesis work around the
following research question:

How can an operational ZDMD source coding scheme be designed for scalar autore-
gressive sources subject to MSE distortion constraints such that the optimal rates are
achieved? Furthermore, how does such a scheme perform when packet losses occur?

To answer the research question, the follow questions will be treated throughout
the thesis.

• What is an operational quantization scheme that extends upon the optimum
test-channel developed in [8] which provides achievable rates and distortions?

• What is the gab between the theoretical lower bound and operational achievable
rates and distortions, and what can be attributed to such a gab?

• How does the operational quantization scheme perform under packet losses?

1.1.1 Delimitations

To simplify the problem, we will consider the two-descriptions case of MD coding and
further restrict the design of operational ZDMD coding schemes to be symmetric,
i.e., the rate is the same for both descriptions and the distortion does not depend on
which packets are received, but the number of packets. Throughout the thesis, we
will assume stationary sources.





2. Multiple-Descriptions Coding

While for the classical single description communication, we are interested in find-
ing the achievable rate-distortion pairs (R,D), we are for the MD coding in the
two-descriptions case interested in characterizing the region of achievable quintuples
(R1, R2, D0, D1, D2), referred to as the MD region, where Ri, i = 1, 2 denote the rate
per description while D0 and D1, D2 denote central distortion and side distortions,
respectively. It is however only in very few cases that the MD region is characterized.

The achievable region for two-descriptions and memoryless sources is presented
in [5]. This region was shown to be tight for white Gaussian sources and squared
error distortion in [4]. In [11], the MD region is characterized for time-correlated
stationary Gaussian sources. It was shown in [11] that the MD region forms a closed
and convex set and the minimal description rates can be found by minimizing over
all distortion spectra satisfying the side and central distortion constraints [6].

In this chapter, we first define MD coding in the two-descriptions case. Then we
present a characterization of the MD region for a white Gaussian source and the
MSE distortion. Finally, we will simplify the problem to the symmetric distortions
case, meaning that both descriptions are communicated with the same rate R yielding
the same side distortion DS .

2.1 Multiple-Descriptions Source Code

In this section, we define MD source coding for a scalar zero-mean discrete-time
stationary sources. Therefore, consider a zero-mean discrete-time stationary process
{Xt}t∈N = {Xt} with Xt ∈ X . A sequence of source variables is denoted by Xt

r =
(Xr, Xr+1, . . . , Xt), (r, t) ∈ Z×Z and r ≤ t. For simplicity, if r = 1 we use Xt

1 = Xt.
In a MD coding scheme with L = 2 descriptions, we have two side reconstruction
processes denoted {Y (i)

t }t∈N, i = 1, 2 and one central reconstruction process denoted
{Y (0)

t }t∈N. The samples of the reconstruction processes takes values in the alphabets
Y

(i)
t ∈ Y(i), i = 0, 1, 2. We denote by E [·] the expectation operator.

5



6 Chapter 2. Multiple-Descriptions Coding

Definition 2.1 (Multiple-Descriptions Source Code [6])
Let {Xt} be a scalar zero-mean discrete-time stationary process and let di : X ×
Y(i) → R+, i = 0, 1, 2 be distortion measures. A rate-(R1, R2) two-descriptions
source code consists of two encoding functions and three decoding functions. The
encoding functions maps from an n-block Xn = (X1, . . . , Xn) to a set of indices,
i.e.,

f
(n)
i : X n → {1, 2, . . . , 2nRi}, i = 1, 2. (2.1)

The two decoding functions

g
(n)
i : {1, 2, . . . , 2nRi} → Y(i),n, i = 1, 2, (2.2)

are referred to as side decoding functions and

g
(n)
0 : {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR2} → Y(i),n (2.3)

is the central decoding function. The resulting n-block reconstructions are Y (i),n =

g
(n)
i

(
f

(n)
i (Xn)

)
for i = 1, 2 and Y (0),n = g

(n)
0

(
f

(n)
1 (Xn), f

(n)
2 (Xn)

)
. The distor-

tion associated with the rate-(R1, R2) two-descriptions source code is the triplet
(D0, D1, D2), where

Di =
1

n

n∑

t=1

E
[
di

(
Xt, Y

(i)
t

)]
i = 0, 1, 2. (2.4)

The sets of indices {1, 2, . . . , 2nRi}, i = 1, 2 can be associated with the codebooks
Bi, i = 1, 2, with cardinality |B(i)

n | = 2nRi . Each codeword B(i)
n has a corresponding

length `(i)n in bits which may vary between the codewords. The rates Ri describes the
average expected codeword length, i.e.,

Ri = lim
n→∞

1

n

n∑

t=1

E
[
`(i)n

]
. (2.5)

The two-descriptions problem consists of determining the achievable rate pairs (R1, R2)
subject to the distortion constraints (D0, D1, D2) for a given source. The formal def-
inition of achievability is as follows:

Definition 2.2 (Achievability [6])
Given a zero-mean discrete-time stationary source {Xt}, a rate pair (R1, R2) is said
to be achievable with respect to the distortion triple (D0, D1, D2) if there for a
sufficiently large n exists a coding scheme

(
f

(n)
1 , f

(n)
2 , g

(n)
0 , g

(n)
1 , g

(n)
2

)
such that

1

n

n∑

t=1

E
[
di

(
Xt, Y

(i)
t

)]
≤ Di i = 0, 1, 2. (2.6)
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The convex closure of all achievable quintuples (R1, R2, D0, D1, D2) is referred to
as the MD region, denoted by RX(R1, R2, D0, D1, D2).

Since the MD region is a closed convex set, a characterization of the region can
be obtained by determining the bounds of the region. These bounds are typically
given in terms of lower bounds on the marginal rates Ri, i = 1, 2 and the sum-rate
R1 +R2 [5], [11].

As mentioned, characterizations of the MD region has been developed for both
white Gaussian sources and stationary Gaussian sources with memory. However, for
this thesis, it suffices to cover the results for white Gaussian sources.

2.2 Gaussian Source and Squared Error Distortion

For the remainder of this chapter, we will consider a white Gaussian process {Xt}
with Xt

i.i.d.∼ N (0, σ2
X). Furthermore, we will restrict the distortion measure to the

squared-error distortion measure

d(x, y) = (x− y)2. (2.7)

When the squared error distortion and a stationary source process is considered, we
will always consider distortions smaller than the variance of source process, since a
distortion equal to the variance is achieved by letting the reconstructions be the mean
of the process. This can be seen from

1

n

n∑

t=1

E
[
(Xt − Yt)2

]
=

1

n

n∑

t=1

E
[
(Xt − µx)2

]

=
1

n

n∑

t=1

σ2
X

= σ2
X .

(2.8)

Since the mean of the source does not tell anything of a given realization of the
source, we will restrict the distortions to be less than the variance of the process, i.e.,
Di ≤ σ2

X . Furthermore, as mentioned, we also want the central distortion to be less
than either the side distortions, as the combination of the two reconstructions should
refine the estimate of the source and therefore decrease the distortion. Therefore, we
will consider distortions 0 < D0 ≤ Di ≤ σ2

X for both i = 1, 2.
In [5], El Gamal and Cover presented an information theoretic characterization

of the MD region in the case of memoryless sources and two descriptions. The char-
acterization was given as bounds on the marginal rates Ri, i = 1, 2 and the sum-rate
R1 +R2. These bounds are given the following theorem.
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Theorem 2.3 (Information Theoretic Bounds on MD Region [5], [4])
Consider a white Gaussian process {Xt} with Xt = X

i.i.d.∼ N (0, σ2
X) and let

(U (1), U (2)) be a pair of arbitrary random variable jointly distributed given X by
p(u(1), u(2)|x). Then, an achievable rate region for distortions (D0, D1, D2) is given
by the convex closure of all rate pairs (R1, R2) satisfying

Ri ≥ I
(
X;U (i)

)
, i = 1, 2, (2.9a)

R1 +R2 ≥ I
(
X;U (1), U (2)

)
+ I

(
U (1);U (2)

)
, (2.9b)

such that

Di ≥ E
[(
X − E

[
X|U (i)

])2
]
, i =, 1, 2,

D0 ≥ E
[(
X − E

[
X|U (1), U (2)

])2
]
.

For general sources, these bounds are not tight, but in the case of a memoryless
Gaussian source subject to MSE distortion constraints, the bounds are shown to be
tight in [4]. The characterization of the MD region for memoryless Gaussian source
subject to MSE distortion constraints is given in the following theorem.

Theorem 2.4 (MD Region for White Gaussian Source [4], [11])
Consider a white Gaussian process {Xt} with Xt

i.i.d.∼ N (0, σ2
X) and the MSE dis-

tortion constraints. The MD region RX(R1, R2, D0, D1, D2) is the set of points
(R1, R2, D0, D1, D2) given by

R(σ2
X , D0, D1, D2) =

{
(R1, R2) :Ri ≥

1

2
log

(
σ2
X

Di

)
, i = 1, 2,

R1 +R2 ≥
1

2
ψ(σ2

X , D0, D1, D2)

}
,

(2.11)

where

ψ =





log

(
σ2
X

D0

)
D0 < D1 +D2 − σ2

X

log

(
σ4
X

D1D2

)
D0 >

(
1

D1
+

1

D2
− 1

σ2
X

)−1

log




σ2
Xπ0

D0

(
π2

0 −
(√

π1π2 −
√
λ
)2
)


 otherwise

(2.12)
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with

πi = (σ2
X −Di), i = 0, 1, 2 (2.13)

λ = (D1 −D0)(D2 −D0) (2.14)

When the logarithms in Theorem 2.3 are to base 2, the rates are in bits. If not
otherwise stated, log(·) denotes the logarithm to base 2 throughout this thesis.

A proof of Theorem 2.4 is given in [4]. We will address the essentials of the forward
part of the proof, i.e., the constructions of a reconstruction distribution achieving the
lower bound. Such a reconstruction distribution is referred to as a test-channel [12].

2.2.1 Test-Channel

We will now present a test-channel which achieves the lower bound of the MD region
for the white Gaussian source. We consider the test-channel developed in [4], and
this is depicted in the block diagram in Fig. 2.1.

The white Gaussian source Xt
i.i.d.∼ N (0, σ2

X) is given as input to two additive
white Gaussian noise (AWGN) channels, where the noises of the two channels are
correlated. The two descriptions of the test-channel are the output of the two AWGN
channels

U (i) = X + Z(i), i = 1, 2 (2.15)

X

+

+

Z(1)

Z(2)

E
[
X|U (1)

]

E
[
X|U (2)

]

E
[
X|U (1), U (2)

]

Y (1)

Y (2)

Y (0)

U (1)

U (2)

Figure 2.1: Illustration of the test-channel for two-description coding described in [4].
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where Z(1) and Z(2) are jointly distributed by
[
Z(1)

Z(2)

]
∼ N

(
0,

[
σ2
Z(1) ρσZ(1)σZ(2)

ρσZ(1)σZ(2) σ2
Z(2)

])
. (2.16)

The reconstructions are given by the minimum MSE (MMSE) estimate given the
respective descriptions, i.e.,

Y (i) = E
[
X|U (i)

]
, i = 1, 2 (2.17a)

Y (0) = E
[
X|U (1), U (2)

]
. (2.17b)

Since (X,U (i)), i = 1, 2 and (X, (U (1), U (2))) are jointly Gaussian, the MMSE esti-
mates are linear [13, p. 447]. Thus, if we let U =

[
U (1), U (2)

]T

Y (i) = θiU
(i), i = 1, 2 (2.18a)

Y (0) = ΘCU , (2.18b)

where

θi = E
[
XU (i)

]
E
[
U (i)

]−1
=

σ2
X

σ2
X + σ2

Z(i)

, i = 1, 2 (2.19)

ΘC =
[
θC,1 θC,2

]
= E

[
XUT

]
E
[
UUT

]−1 (2.20)

with

θC,i =
σ2
X(σ2

Z(j) − ρσZ(1)σZ(2))

(σ2
X + σ2

Z(1))(σ
2
X + σ2

Z(2))− (σ2
X + ρσZ(1)σZ(2))2

, i, j ∈ {1, 2}, i 6= j. (2.21)

Computing the MSE distortions yields

Di =
σ2
Xσ

2
Z(i)

(σ2
X + σ2

Z(i))
, i = 1, 2, (2.22)

D0 =
σ2
Xσ

2
Z(1)σ

2
Z(2)(1− ρ2)

σ2
Z(1)σ

2
Z(2)(1− ρ2) + σ2

X(σ2
Z(1) + σ2

Z(2) − 2ρσZ(1)σZ(2))
. (2.23)

Then computing the mutual informations in Theorem 2.3, the bound in Theorem 2.4
is obtained if we during the derivation, choose [4], [14]

ρ = −

√
D1D2 − σ4

X2−2(R1+R2)

√
D1D2

. (2.24)

As seen in (2.12), the MD region for white Gaussian sources is partitioned into
three three distortion regions. The first two cases are so-called degenerate. These
are the trivial lower bounds on the sum-rate [14]. We illustrate these cases in the
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following two examples. First we note that, we can formulate the bounds in terms of
the distortions such that the MD region for a white Gaussian source consists of the
points (R1, R2, D0, D1, D2) satisfying

Di ≥ σ2
X2−2Ri , i = 1, 2 (2.25)

D0 ≥ σ4
X2−2(R1+R2)γD(R1, R2, D1, D2), (2.26)

where γD = 1 if D1 +D2 > σ2
X +D0 and

γD =
1

1−
(√

(1−D1)(1−D2)−
√
D1D2 − 2−2(R1+R2))

)2 (2.27)

otherwise [4].

Example 2.5 (First case of (2.12))
In this case we assume that σ2

X = 1 and that the coding scheme ensures that the
central decoder provide the best performance as possible, i.e., D0 = 2−2(R1+R2). By
(2.26),

1−
(√

(1−D1)(1−D2)−
√
D1D2 − 2−2(R1+R2))

)2
= 1 (2.28)

which implies that

(1−D1)(1−D2) = D1D2 − 2−2(R1+R2). (2.29)

Expanding the right hand side and isolating D1 +D2 yields

D1 +D2 = 1 + 2−2(R1+R2). (2.30)

As mentioned in the beginning of this section, a distortion of D = σ2
X = 1 can be

achieved by always estimating the source by its mean. By (2.30) which is plotted
in Fig. 2.2b, if either D1 or D2 is small, the other side distortion will be close to
one, which means that the latter reconstruction. [4, p. 1913]

Example 2.6 (Second case of (2.12))
We consider the symmetric case (which we will focus on later) where R = R1 = R2

and DS = D1 = D2 and we consider a source with σ2
X = 1. Furthermore, we let

DS = σ2
X2−2R = 2−2R, i.e., we let the side distortions be on the rate-distortion
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DS [dB]
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D2

S

(a) Central distortion as function of side distortion
in the case of Example 2.6

0.0 0.2 0.4 0.6 0.8 1.0
D1
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0.6

0.8

1.0

D
2

(b) Second side distortion as function of first side
distortion in the case of Example 2.5

Figure 2.2: Plots of the lower bounds on the distortion described in Examples 2.5 and 2.6.

curve for a single description coding scheme. In this case the central distortion is

D0 ≥ 2−4R 1

1−
(

(1−DS)−
√
D2
S − 2−4R

)2

= D2
S

1

1− (1−DS)2

= D2
S

1

2DS −D2
S

=
DS

2−DS
. (2.31)

This means that the central distortion is greater than half the side distortion. Hence
when using the central decoder, which corresponds to doubling the rate compared
to the side decoders, the distortion is at best halved compared to the side distortion.

The achievable distortion using single description coding with rate 2R is

D ≥ 2−2(2R) = D2
S (2.32)

which for small values of DS is much better than (2.31) [4, p. 1912]. This is
illustrated in Fig. 2.2a.

In the cases described in the examples, the rate is not affected by all the distortion
constraints simultaneously. This is however the case in the non-degenerate case, i.e.,
the third case of (2.12). Therefore, we will focus on the non-degenerate case for the
remainder of the thesis. Using the expressions for the distortion in (2.22) and (2.23),
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the bound on the sum-rate can be expressed as [4]

R1 +R2 ≥
1

2
log

(
σ4
X

D1D2

)
− 1

2
log
(
1− ρ2

)
, (2.33)

for non-degenerate distortions. From (2.23), it is seen that when ρ→ −1, the central
distortion becomes smaller. However, from (2.33) it can be seen that when ρ→ −1,
the sum-rate becomes larger. Therefore, it is not possible to obtain a smaller central
distortion D0 by making the descriptions more correlated, without sacrificing the
fidelity on the side descriptions or using a higher rate. This illustrate the trade-
off between the side distortions and the central distortion. Good descriptions of the
same source are similar, and therefore the combination of these do not add much. The
fundamental problem of MD coding can be framed as making individual descriptions
good, yet not to similar. [3, p. 81]

How to deal with the trade-off between the central distortion and the side dis-
tortions depends on the situation. If for example the probability of packet losses is
high, then it may be a good idea to sacrifice on the central distortion to make the
side reconstructions more accurate. If on the other hand, the packet loss probability
is low, it may be not be necessary with highly accurate side reconstructions, and the
fidelity of these can be sacrificed on behalf of a better central distortion.

The test-channel developed in [4] suggests how to construct optimal operational MD
coding schemes. In an operational MD coding scheme, the quantization noise should
be approximately distributed as Z(i), i = 1, 2. However, it is not an easy task to
generate highly negatively correlated quantization noises in practice [15]. We will in
Chapter 5 consider the design of operational ZDMD quantization schemes. To this
end we will consider the use of staggered uniform quantization and index assignment.
With the staggered uniform quantizers, it not possible to obtain correlations below
−1

2 , but index assignment can achieve a high negative correlation by using a fine-
grained uniform quantizer together with a non-linear function, mapping each point
in the fine-grained quantizer to a pair of outputs of two coarser identical quantizers
[15], [16]. We will elaborate further on these methods in Chapter 5.

2.3 Symmetric Distortions

In a special case of two-descriptions coding, the source is encoded at the same rate
in both encoders which yields the same distortion of the side reconstructions. This
coding scheme is referred to as the symmetric case. This means that the symmetric
two-descriptions coding can be described by a single rate R = R1 = R2 and a pair of
distortions (D0, DS) where DS = D1 = D2.

Definition 2.7 (Symmetric MD RDF)
The symmetric MD rate-distortion function (RDF) is defined as the minimum rate
R, which is achievable with respect to the distortion pair (D0, DS).
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In the case of a white Gaussian source process, we get from Theorem 2.4 the
following symmetric MD RDF in the non-degenerate case.

Corollary 2.8
The symmetric MD RDF for a white Gaussian source process with variance σ2

X with
respect to the MSE distortions (D0, DS) is given the minimum achievable rate and
it is given by

R(σ2
X , DC , DS) =

1

4
log

(
σ2
X(σ2

X −DC)

4DC(DS −DC)(σ2
X −DS)

)
. (2.34)

Proof.
We will prove that the third case of (2.12) has the form of (2.34) in the symmetric
case. This follows from substitution of D1 and D2 with DS . Making the substitu-
tions in the last case of (2.12) and expanding the quadratic terms we obtain

ψ = log




σ2
X(σ2

X −D0)

D0

(
(σ2

X −D0)2 −
(√

(σ2
X −D1)(σ2

X −D2)−
√

(D1 −D0)(D2 −D0)
)2)




= log


 σ2

X(σ2
X −DC)

DC

(
(σ2

X −DC)2 − ((σ2
X −DS)− (DS −DC))

2
)




= log

(
σ2
X(σ2

X −DC)

DC (4DSσ2
X + 4DSDC − 4D2

S − 4σ2
XDC)

)

= log

(
σ2
X(σ2

X −DC)

4DC (DS −DC) (σ2
X −DS)

)
. (2.35)

Since the sum-rate in the symmetric case is 2R, we have by (2.11) that

R ≥ 1

4
ψ, (2.36)

�

and since the MD RDF is the minimum of the rates, the result follows.



3. Zero-Delay Coding

In this chapter we will review the basic theory concerning zero-delay (ZD) coding.
This includes the relevant definitions and the results regarding the rate-distortion
function for zero-delay coding schemes. First we define ZD source coding stationary
vector valued AR(1) source processes. Then we present the information theoretic
zero-delay rate-distortion function (ZD RDF) as well as a the test-channel realization
scheme developed in [7]. Finally, we cover the special case of a scalar stationary
AR(1) source.

When designing a coding scheme, the lower bound on the rate-distortion performance
is described by the RDF, for a given source and distortion measure. In general, the
source coding schemes that get close to achieving the RDF are generally computa-
tionally expensive, non-causal, and tends to impose long delays on the end-to-end
processing of information [7, p. 841]. If we require near instantaneous encoding and
decoding, the coding scheme must be causal. It is common to use the term ZD source
coding in applications where both instantaneous encoding and decoding are required
[7]. We will in the following define ZD source codes and discuss some necessities on
these codes.

In general non-causal source coding, when establishing the achievability of a cer-
tain rate-distortion performance, the technique is often based on random codebooks,
which requires asymptotically large source vector dimensions [7, p. 841]. This tech-
nique is however in general not applicable in the case of ZD source coding.

3.1 Zero-Delay Source Code

We will in this chapter consider ZD source coding of a vector valued source. To this
end, we let {Xt}t∈N0 = {Xt} denote the stochastic process modeling a source and a
realization of the process is denoted by {xt}. The elements of the process are random
vectors Xt ∈ X ⊆ Rp with X being the alphabet of Xt. As in Chapter 2, we use the
notation Xt = (X0,X1, . . . ,Xt).

The source process we will consider in this worksheet is the vector-valued AR(1)
source process described by the following discrete-time linear time-invariant Gaussian
state-space model

Xt = AXt−1 +CW t, t ∈ N, (3.1)

15
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Vector-valued
AR(1) Source Encoder Decoder Y t

Xt Noiseless Binary Channel

Bt ∈ {0, 1}lt

Figure 3.1: Illustration of the ZD source coding scenario. [7]

where A ∈ Rp×p and C ∈ Rp×q are deterministic matrices, X0 ∈ Rp ∼ N (0,ΣX1) is
the initial state and W t ∈ Rq ∼ N (0,ΣW ), ΣW = I is an i.i.d. Gaussian sequence,
independent of X0. We will further assume that the source process is stationary. In
[7] they assume that the process is asymptotic stationary and state a result in the
asymptotic regime. By assuming stationarity, this result applies for the entire source
process.

The setting for the ZD source coding is depicted in Fig. 3.1. At each time t ∈ N0,
the encoder observers Xt, i.e., the random sequence observed by the encoder grows
with time. The encoder produces a single binary codeword Bt of length `t (in bits)
from a predefined set of codewords Bt of at most a countable number of codewords.
The codeword Bt and its length `t are assumed random since the source is random.
At the decoder side, the decoder receives Bt assuming that it has already received
Bt−1 ∈ Bt−1 = ×t−1

i=0Bi. Given Bt, the decoder produces an estimate Y t ofXt, under
the assumption that Y t−1 has already been produced. It is assumed that the encoder
and decoder process information without delay.

We will in the following formally define a ZD source code.

Definition 3.1 (Zero-Delay Source Code [7])
Consider the source process {Xt} given by (3.1). The encoder is specified by a
sequence of functions {ft}t∈N0 given by

ft : Bt−1 ×Xt → Bt, t ∈ N0, (3.2)

i.e., the function ft maps the sequence of past codewords and the current source
vector to the current codeword, such that the output at time t ∈ N0 is Bt =
ft(B

t−1,Xt) with B0 = f0(X0). Likewise, the decoder is specified by a sequence of
functions {gt}t∈N0 given as

gt : Bt → Yt, (3.3)

i.e., the decoding function maps the sequence of all previous and the current code-
word to the current estimate of the source vector such that the output of the decoder
at time t ∈ N0 is Y t = gt(B

t) under the assumption that Y t−1 has already been
produced.

As is the goal of classical rate-distortion theory, we want to establish the RDF,
which is the minimum of achievable rates given a distortion. However, the RDF is
hard to establish for ZD source codes and it has not been found for general Gaus-
sian sources subject to squared error distortion [7]. However, in [7], the operational
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ZD RDF has been lower bounded by the so-called nonanticipative RDF (NRDF) for
which the characterization also was given in [7]. If the source satisfies conditional
independence given by (3.10), the NRDF is specified in terms of directed informa-
tion, which will be introduced in the next section. We will however first define the
operational ZD RDF for a Gaussian source subject to the following asymptotic MSE
distortion constraint.

The goal of the design of the system in Fig. 3.1 is to achieve an asymptotic aver-
age expected distortion that satisfies

lim
n→∞

1

n+ 1

n∑

t=0

E
[
‖Xt − Y t‖22

]
≤ D, (3.4)

where D > 0 is a predefined level of MSE distortion [7]. The operational ZD RDF, in
the asymptotic regime, is the minimum over all ZD source codes of expected average
codeword length, i.e.,

lim sup
n→∞

1

n+ 1

n∑

t=0

E [`t] . (3.5)

The accumulated number of bits received by the decoder at time n ∈ N0 is denoted
Ln =

∑n
t=0 `t.

Definition 3.2 (Operational Vector-Valued Gaussian ZD RDF [7])
For the source process defined by (3.1) and MSE distortion constraint D, the oper-
ational Gaussian ZD RDF is given by the following optimization problem

RopZD(D) = inf
Bt=ft(Bt−1,Xt),t∈N0

Y t=gt(Bt)

lim sup
n→∞

1

n+ 1
E [Ln]

s.t. lim
n→∞

1

n+ 1

n∑

t=0

E
[
‖Xt − Y t‖22

]
≤ D

(3.6)

As the optimization is over all ZD codes, the solution is very hard to find. Later,
a lower bound will be found in terms of information theoretic quantities.

3.2 Directed Information

We will in this section define directed information which is a measure of the informa-
tion that causally flows from one random sequence to another [17]. The definition is
as follows:
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Definition 3.3 (Directed Information [18])
The directed information between sequences Xn and Y n is defined by

I(Xn → Y n) =
n∑

t=0

I(Xt;Y t|Y t−1) (3.7)

Comparing the definition of directed information with mutual information, the
causality of (3.7) is evident. By the chain rule for mutual information [12, Theo.
2.5.2], the mutual information between Xn and Y n can be written as

I(Xn;Y n) =
n∑

t=0

I(Xn;Y t|Y t−1). (3.8)

While the terms in (3.8) capture the mutual information between the whole sequence
Xn and Y t given the past observations of the second sequence Y t−1, it is only the
past and current samples of Xn, i.e., Xt which is considered in the terms in the
directed information [17].

One of the properties of directed information is that I(Xn → Y n) ≤ I(Xn;Y n),
with equality if and only if Y n is causally related to Xn [17], [18]. Another property,
known as the conservation law of mutual and directed information, states that

I(Xn → Y n) + I(0 ∗ Y n−1 →Xn) = I(Xn;Y n), (3.9)

where 0 ∗ Y n−1 denotes the concatenation 0,Y 0, . . . ,Y n−1 [19].

3.3 Lower Bound on Gaussian ZD RDF

In this section, the lower bounds to the operational Gaussian ZD RDF presented in
[7] will be presented. The key result of [7] is presented in Theorem 3.5 where RIZD(D)
denotes an information theoretic lower bound to the operational rate-distortion func-
tion which is specified in terms of directed information.

We assume that the source distribution satisfies conditional independence of the
past reconstructions, i.e.,

PXt|Xt−1,Y t−1 = P (xt|xt−1), t ∈ N0. (3.10)

This implies that W t in (3.1) is independent of Y t−1.

Definition 3.4 (Information Theoretic ZD RDF [7])
Consider a Gaussian source of the form (3.1) with the property in (3.10). Then the
Gaussian information theoretic ZD RDF subject to an asymptotic MSE distortion
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constraint is defined by

RIZD(D) = inf lim
n→∞

1

n+ 1
I(Xn → Y n)

s.t. lim
n→∞

1

n+ 1

n∑

t=0

E
[
‖Xt − Y t‖22

]
≤ D,

(3.11)

where the infimum is over all sequences of conditional probability distributions
{P (yt|yt−1,xt) : t ∈ N0}.

For a Gaussian source, the MSE is minimized if (Xt,Y t) is jointly Gaussian for
t ∈ N0. Thus, the infimum in (3.11) can be restricted to be over Gaussian conditional
probability distributions {PGP (yt|yt−1,xt) : t ∈ N0} [7].

The next theorem, states that the operational ZD RDF is lower bounded by the
information theoretic ZD RDF.

Theorem 3.5 (Lower Bounds on Operational ZD RDF [7], [20])
For Gaussian sources with an asymptotic MSE constraint, the following bounds
holds

R(D) ≤ RIZD(D) ≤ RopZD(D), (3.12)

where R(D) is the classical non-causal RDF, i.e., the minimum achievable rate using
any source coding scheme as defined in Definition C.6.

The first inequality follows from the definitions of R(D) and RIZD(D) in Defini-
tion C.6 and Definition 3.4 and from the relation I(Xn → Y n) ≤ I(Xn;Y n). The
second inequality is established in [20].

3.4 Test-Channel Realization

In [7, Lemma 1, Theorem 2, Theorem 3], they give a characterization of the Gaussian
information theoretic ZD RDF and a method to find the optimal test-channel distri-
bution. In [7, Theorem 3], they consider the asymptotic characterization of the result
in [7, Theorem 2]. They consider both characterizations as they assume the source is
asymptotic stationary. We will in this worksheet consider sources of the form (3.1)
which are stationary, thus the characterization of the Gaussian information theoretic
ZD RDF reduces to the asymptotic characterization of [7, Theorem 3].
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Xt + H
AWGN

Channels
+ Y t

Zt ∼ N (0,ΣZ)
z−1

A

+

U t Ũ t

−

AY t−1

Figure 3.2: Block diagram of ZD test-channel.

Theorem 3.6 (ZD Test-Channel Distribution [7])
Consider the setup in Definition 3.4 with the additional assumption that the source
is stationary. Assume either A has full rank or C is square and has full rank in
(3.1). Then the optimal test-channel distribution P (yt|yt−1,xt) is realized by

Y t = HXt + (I −H)AY t−1 +Zt, (3.13)

where Zt ∈ Rp ∼ N (0,ΣZ) is a white Gaussian process independent of {W t}

H = I −ΠΛ−1 � 0, Π � 0, Λ � 0, (3.14)

ΣZ = ΠHT � 0, (3.15)

Λ = AΠAT +BBT , (3.16)

Π = E
[
(Xt − Y t) (Xt − Y t)

T
]

(3.17)

The characterization of RIZD(D) is

RIZD(D) = min
Π

1

2
log

( |Λ|
|Π|

)

s.t. 0 ≺ Π � Λ

tr(Π) ≤ D,

(3.18)

where | · | denotes the determinant.

As it figures from the test-channel realization (3.13), in order to achieve the mini-
mum rate, feedback is needed as Y t−1 is used to obtain Y t. In Fig. 3.2, the realization
scheme is illustrated. As it figures from the illustration, rather than directly trans-
mitting the source samples Xt, t ∈ N0, the encoder transmit the prediction error
process

U t = Xt − E
[
Xt|Y t−1

]
= Xt −AY t−1, t ∈ N0 (3.19)
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which is Gaussian and has zero-mean and covariance

E
[
U tU

T
t

]
= E

[
(Xt −AY t−1) (Xt −AY t−1)T

]

= E
[
(AXt−1 −AY t−1 +CW t) (AXt−1 −AY t−1 +CW t)

T
]

= E
[
A (Xt−1 − Y t−1) (Xt−1 − Y t−1)AT +CW tW

T
t C

T
]

= AΠAT +BBT

= Λ. (3.20)

The process {Ũ t} is called the innovation process [7] and is given as

Ũ t = HU t +Zt = H(Xt −AY t−1) +Zt, (3.21)

which is also Gaussian with zero-mean and covariance

E
[
Ũ tŨ

T
t

]
= E

[
(HU t +Zt) (HU t +Zt)

T
]

= HΛHT + ΣZ

= HΛHT + ΠHT . (3.22)

We can consider {Ũ t} as the reconstruction process of {U t} and we obtain the
reconstruction of the source process by adding AY t−1 to Ũ t, i.e.,

Y t = Ũ t +AY t−1

= H(Xt −AY t−1) +Zt +AY t−1. (3.23)

The error between the source and the source reconstruction Y t is equal to the error
between U t and Ũ t, as seen from

Xt − Y t = Xt −HXt − (I −H)AY t−1 −Zt

= Xt −AY t−1 −HXt +HAY t−1 −Zt

= U t − Ũ t. (3.24)

Thus,

Π = E
[
(Xt − Y t) (Xt − Y t)

T
]

= E
[(
U t − Ũ t

)(
U t − Ũ t

)T]
. (3.25)

The minimization in (3.18) can be solved by e.g. semidefinite programming [21]. In [7]
they found an approach of pre- and post scaling which reveals the reverse-waterfilling
solution in the dimension of U t.
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3.4.1 Test-Channel for Scalar Source

In this section, we consider the special case of a stationary scalar AR(1) source on
the form

Xt = aXt−1 +Wt, t ∈ N, (3.26)

where |a| < 1, and Wt
i.i.d.∼ N (0, σ2

W ) is a white Gaussian process independent of
X0 ∼ N (0, σ2

X) where σ2
X =

σ2
W

1−a2 is the stationary variance of the process. In the
scalar case, Π = π and Λ = λ are scalars, and they are given by the quantities π = D
and λ = a2D + σ2

W . The fact that π = D follows from (3.18) as the value of π that
minimizes (3.18) is the maximum possible value of π which is D for D ≤ σ2

W
1−a2 . With

these values of π and λ, (3.18) becomes

RIZD(D) =
1

2
log

(
a2D + σ2

W

D

)
=

1

2
log

(
a2 +

σ2
W

D

)
. (3.27)

The optimal test-channel is realized by

Yt = hXt + (1− h)aYt−1 + Zt, (3.28)

where Zt ∼ N (0, σ2
Z) and

h = 1− D

a2D + σ2
W

, (3.29)

σ2
Z = hD = D − D2

a2D + σ2
W

. (3.30)

In Fig. 3.3 we compare RIZD(D) to the non-causal RDF of the AR(1) source, which
is given by [22]

R(D) =
1

2
log

(
σ2
W (1− a2)

D

)
. (3.31)

As seen from the figure, a loss in rate occurs when restricting the coding to be zero-
delay. This rate loss can be explained by three factors, namely space-filling loss of
causal encoders, increased distortion due to non-causal filtering, and entropy coding
with memory [7], [8].
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Figure 3.3: Non-causal RDF (blue) and Gaussian information theoretic ZD RDF (orange) for an
AR(1) source with a = 0.7 and σ2

W = 0.51 with MSE distortion constraint D.





4. Zero-Delay Multiple-Descriptions

In this chapter, we cover zero-delay multiple-descriptions (ZDMD) coding, which was
recently developed in [8]. As the name suggests, ZDMD coding is the combination
of MD coding and ZD coding, i.e., we are considering MD encoders and decoders
which are causal and has zero delay. First we define ZDMD coding in the case of
two descriptions. Then, an information theoretic lower bound is presented and the
bound will be characterized for stationary scalar AR(1) sources and MSE distortion
constraints in the symmetric case. In relation to this, a test-channel realization
scheme is presented. The content of this chapter is based on [8].

4.1 ZDMD Source Coding

We consider the setup for ZDMD coding described in [8], which is depicted in Fig. 4.1.
The setup includes feedback from the side decoders. These feedback channels are
assumed to be noiseless digital channels with a one-sample delay such that the oper-
ational feasibility of the system is ensured, i.e., the encoder output does not depend
on current or future decoder output.

We will consider a stationary scalar AR(1) source process given by the discrete-
time model in (3.26), i.e.,

Xt = aXt−1 +Wt, t ∈ N, (4.1)

where |a| < 1, X0 ∈ R ∼ N (0, σ2
X) is the initial state, Wt ∈ R i.i.d.∼ N (0, σ2

W ) is a
white Gaussian process independent of X0, and σ2

X =
σ2
W

1−a2 .
At each time step t ∈ N0, the encoder observesXt assumingXt−1 = (X0, . . . Xt−1)

has already been observed. The encoder then produces descriptions B(1)
t and B

(2)
t

of length `
(1)
t and `

(2)
t from two predefined sets of binary codewords B(1)

t ,B(2)
t of

at most a countable number of codewords. The two descriptions are sent over two
separate instantaneous digital noiseless channels and decoded without delay at three
decoders. At the i’th side decode, i = 1, 2, the reconstruction Y

(i)
t is produced

when receiving B(i)
t assuming that Y (i),t−1 has already been produced. Similar, at

the central decoder, the reconstruction Y
(0)
t is produced when B

(1)
t and B

(2)
t are

received assuming Y (0),t−1 has already been produced. Before the next descriptions

25
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X

SE
Encoder g(0)

g(1)

g(2)

Y (1)

Y (2)

Y (0)

S(1)

S(2)

B(1)

B(2)

Figure 4.1: Block diagram of the ZDMD coding setup. [8]

are produced, the encoder receives Y (1)
t−1 and Y

(2)
t−1 through the feedback channels,

assuming that Y (1),t−2 and Y (2),t−1 has already been received. [8, pp. 4-5]
As it appears from Fig. 4.1, the central reconstruction is not fed back to the

encoder. This is due to that all information about Y (0)
t is contained in

(
Y

(1)
t , Y

(2)
t

)

given the side information.
It is assumed that each sample is processed immediately for each time step t ∈ N0

[8].
In the setup, StE denotes side information available at the encoder at time t and

S(i),t, i = 1, 2, denotes the side information available at the decoders. The encoder
and decoders are made dependent on the side information in order to allow for proba-
bilistic encoding and decoding. Therefore, the side information processes are random
processes independent of the source. This could for example be dithering signals. [8]

The setup is formalized in the following definition for scalar stationary sources.

Definition 4.1 (ZDMD Source Code [8])
Consider a stationary source process {Xt}. A ZDMD code consist of a encoder and
three decoders. The encoder is specified by a sequence of functions {ft : t ∈ N0}
given by

ft : X t × Y(1),t−1 × Y(2),t−1 × StE → B(1)
t × B

(2)
t , t ∈ N0, (4.2)

and at each time step t ∈ N0, the encoder produces
(
B

(1)
t , B

(2)
t

)
= ft

(
Xt, Y (1),t−1, Y (2),t−1, StE

)
(4.3)
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with B(i)
t ∈ B

(i)
t where `(i)t is the length of the codeword in bits. For the encoding of

the first source symbol, no past reconstructions are available, hence
(
B

(1)
0 , B

(2)
0

)
=

f0 (X0, SE,0). The three decoders are specified by three sequences of functions {g(i)
t :

t ∈ N0}, where the side decoders are given by

g
(i)
t : B(i),t × S(i),t → Y(i)

t , t ∈ N0, i = 1, 2 (4.4)

and the central decoder is given by

g
(0)
t : B(1),t × B(2),t × S(1),t × S(2),t → Y(0)

t , t ∈ N0, (4.5)

and at time step t ∈ N0, the decoders produce

Y
(i)
t = g

(i)
t

(
B(i),t, S(i),t

)
, i = 1, 2 (4.6a)

Y
(0)
t = g

(0)
t

(
B(1),t, B(2),t, S(1),t, S(2),t

)
, (4.6b)

under the assumption that Y (i),t−1, i = 0, 1, 2 have already been produced.

The rates associated with a ZDMD coding scheme is given by the asymptotic
average of the expected codeword length for each description.

Definition 4.2 (Rate Pair for ZDMD Code [8])
Let `(i)t be the length of the ith description, i = 1, 2 to time step t ∈ N0 for a ZDMD
code, then the rate pair (R1, R2) for the ZDMD code is defined by

Ri = lim
n→∞

1

n+ 1

n∑

t=0

E
[
`
(i)
t

]
. (4.7)

In [8], the following asymptotic MSE distortion constraint is considered.

Definition 4.3 (Asymptotic MSE Distortion Constraint [8])
An (R1, R2) rate pair is said to be achievable with respect to the MSE distortion
constraints Di > 0, i = 0, 1, 2 if there exist a (R1, R2)-rate ZDMD code satisfying

lim
n→∞

1

n+ 1

n∑

t=0

E
[(
Xt − Y (i)

t

)2
]
≤ Di, i = 0, 1, 2. (4.8)
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As for the general non-causal MD coding, we wish to characterize the region of
achievable rate pairs for ZDMD codes.

Definition 4.4 (ZDMD Region [8])
For a stationary source {Xt}, the ZDMD regionRZDX (R1, R2, D0, D1, D2) is the con-
vex closure of all achievable ZDMD rate pairs (R1, R2) satisfying the MSE distortion
constraints (D0, D1, D2).

A full characterization of the ZDMD region can be given by determining the
bound between the sets of achievable and non-achievable rate-pairs, i.e., determining
the fundamental smallest rates for given distortion constraints [8]. As mentioned
in Chapter 2, the region can be partitioned into regions of degenerate and non-
degenerate distortions. The distortion constraints we are interested in are the non-
degenerative distortion constraints, i.e., distortion triplets (D0, D1, D2) satisfying

D1 +D2 − σ2
X ≤ D0 ≤

(
1

D1
+

1

D2
− 1

σ2
X

)−1

, (4.9)

where σ2
X is the variance of the stationary source. Also, we restrict the distortions to

be less than the source variance, i.e., Di ≤ σ2
X .

We will in this thesis mainly consider the symmetric case of ZDMD coding, i.e.,
R1 = R2 = R andD1 = D2 = DS . In this case the ZDMD region can be characterized
by an MD equivalent to the RDF.

Definition 4.5 (Symmetric ZDMD RDF [8])
The ZDMD rate-distortion function for a stationary source {Xt} subject to MSE
distortion constraints DS , D0 ≥ 0 is the infimum of achievable rates R per descrip-
tion with respect to (D0, DS), i.e.,

RopZD(D0, DS) = inf R

s.t. (R,R) ∈ RZDX (R,R,D0, DS , DS),
(4.10)

where the infimum is over all ZDMD codes.

The operational symmetric ZDMD RDF can be characterized in terms of the
sum-rate, R1 +R2, as R = 1

2(R1 +R2) as follows:
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Definition 4.6 (Operational Symmetric ZDMD RDF)
For the scalar stationary source {Xt} and non-degenerative MSE distortion con-
straints D0, DS > 0, the operational symmetric ZDMD RDF is given by

RopZD(D0, DS) = inf lim
n→∞

1

2(n+ 1)

(
E
[
L(1)
n

]
+ E

[
L(2)
n

])

s.t. lim
n→∞

1

n+ 1

n∑

t=0

E
[(
Xt − Y (0)

t

)2
]
≤ D0,

lim
n→∞

1

n+ 1

n∑

t=0

E
[(
Xt − Y (i)

t

)]
≤ DS , i = 1, 2,

(4.11)

where L(i)
n =

∑n
t=0 l

(i)
t , i = 1, 2, and where the infimum is over all symmetric ZDMD

encoder and decoder sequences, i.e., sequences {ft}t∈N0 , {g
(i)
t }t∈N0 , i = 0, 1, 2 given

by Definition 4.1.

The operational symmetric ZDMDRDF is the infimum of the mean of the marginal
rates over all possible ZDMD codes. This infimum is hard to find, since the mini-
mization is over all possible ZDMD codes. As described in Chapter 3, the general
non-causal RDF is a lower bound on the operational ZD RDF. Likewise, the MD re-
gion for non-causal codes is a outer bound on the ZDMD region. However, the ZDMD
region does not in general span the MD region due to spacefilling losses, memoryless
entropy coding, and causal filters at the ZD decoders as described in Chapter 3 for
the single description case [8].

Therefore, in [8], they developed a novel information theoretic lower bounds on
the operational ZDMD coding rates.

4.2 Lower Bounds on Average Rates

In this section, we present the information theoretic lower bounds on the ZDMD
coding rates developed in [8] where the lower bounds are provided in the general non-
symmetric case, but they are used to develop the information theoretic counterpart
to the operational symmetric Gaussian ZDMD RDF.

We will first present the assumptions on the distribution of the source and the
reconstructions which are considered in [8] and which we will consider in this work-
sheet.

4.2.1 Distributions

We consider the reconstruction of a stationary source sequence Xt = xt, t ∈ N0, with
reconstructions Y (i)

t = y
(i)
t , t ∈ N0, i = 0, 1, 2. On the source, we assume that the
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current source symbol is not related to the previous reconstructions, i.e., the source
satisfies the conditional independence given by

P
(
xt|xt−1, y(0),t−1, y(1),t−1, y(2),t−1

)
= P

(
xt|xt−1

)
, t ∈ N0. (4.12)

Hence the source is unaffected by the feedback from the reconstructions. For the
AR(1) source in (4.1), the conditional independence of the past reconstructions in
(4.12) implies that Wt is independent of the past reconstructions Y (i),t−1, i = 0, 1, 2,
t ∈ N0 [7].

We assume that X0 ∼ P (x0) and by Bayes rule, we the joint distribution of the
n+ 1 first symbols is given by [7]

P (xn) =

n∏

t=0

P (xt|xt−1). (4.13)

Since we work under the constraint of zero-delay, the MD encoder-decoder pairs
(ft, g

(i)
t ), i = 0, 1, 2 must be causal [7]. The MD encoder-decoder pairs are causal if

and only if the following Markov chain holds [8], [20]

Xn
t+1 −Xt −

(
Y (0),t, Y (1),t, Y (2),t

)
, ∀t ∈ {0, . . . , n− 1}. (4.14)

Hence, we assume that the first n+1 reconstructions are randomly generated accord-
ing to the collection of conditional distributions

P
(
y

(0)
t , y

(1)
t , y

(2)
t |y(0),t−1, y(1),t−1, y(2),t−1, xt

)
, t ∈ {0, . . . , n}. (4.15)

If causality was not required, the reconstructions could be generated from the collec-
tion of conditional distributions

P
(
y

(0)
t , y

(1)
t , y

(2)
t |y(0),t−1, y(1),t−1, y(2),t−1, xn

)
t ∈ {0, . . . , n} (4.16)

where the current reconstruction can depend on future source samples. However, as
we require causality, we assume that reconstructions are generated from (4.15), where
for t = 0 the distribution reduces to

P
(
y

(0)
0 , y

(1)
0 , y

(2)
0 |y(0),−1, y(1),−1, y(2),−1, x0

)
= P

(
y

(0)
0 , y

(1)
0 , y

(2)
0 |x0

)
. (4.17)

4.2.2 Lower Bounds

In this subsection, the information theoretic lower bounds on the general non-symmetric
ZDMD codes developed in [8] are presented.

One of the assumptions made in [8] is that the decoders are invertible.
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Definition 4.7 (Invertible Decoder [8], [23])
The decoders g(i)

t , i = 0, 1, 2, t ∈ N0 defined in (4.4) and (4.5) is said to be invertible
if and only if ∀t ∈ N0 there exist deterministic mappings g̃(i)

t , i = 0, 1, 2 such that

B(i),t = g̃
(i)
t

(
Y

(i)
t , S(i),t

)
, i = 1, 2

(
B(1),t, B(2),t

)
= g̃

(0)
t

(
Y

(0)
t , S(1),t, S(2),t

)
.

When the decoders are invertible, knowledge about the message and side infor-
mation at each of the side decoders, e.g.

(
B(1),t, S(1),t

)
is equivalent to knowledge

about the reconstruction and the side information, i.e.,
(
Y

(1)
t , S(1),t

)
[8], [23]. In [23]

it was shown that we without loss of generality can restrict our attention to invertible
decoders in the single description case. Furthermore, it is optimal to use invertible
decoders when minimizing the average data-rate in causal source coding schemes [8],
[23].

As mentioned, both lower bounds on the marginal rates and the sum-rate are
needed in order to establish the outer bound on the ZDMD rate-region. The lower
bounds on the marginal rates can be established by considering the side reconstruc-
tions as single descriptions ZD coding. These are therefore derived from the results
of [7], [23]. In the following theorem we state the lower bounds on the marginal rates
together with the lower bound on the sum-rate as developed in [8].

Theorem 4.8 (Lower Bounds on ZDMD rates [7], [8])
Consider the ZDMD coding of a discrete-time stationary scalar source process {Xt}
with non-degenerative MSE distortion constraints D0, D1, D2 > 0. If the systems
f, g(i) i = 0, 1, 2 are causal, described by Definition 4.1, the side information is in-
dependent of the source, i.e., ({S(1)}, {S(2)}) ⊥⊥ {Xt}, the decoder side information
is mutually independent, and the decoders are invertible, then the achievable rates
R1 and R2 for any ZDMD code is lower bounded by

Ri ≥ lim
n→∞

1

n+ 1
I
(
Xn → Y (i),n

)
, i = 1, 2, (4.19a)

R1 +R2 ≥ lim
n→∞

1

n+ 1
I
(
Xn → Y (1),n, Y (2),n

)
+ I

(
Y (1),n;Y (2),n

)
(4.19b)

Proof.
For the marginal rates, the result follows from [23, Theorem 4.1] by considering the
side reconstructions as individual systems. For a proof of the lower bound on the
sum-rate, we refer to [8, Appendix A]. �
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4.2.3 Gaussian Lower Bound for Scalar Gaussian Sources

As mentioned in Chapter 3, Gaussian reconstructions minimizes the information the-
oretic ZD RDF. A similar result was shown in [8] for the ZDMD region under some
technical assumptions. i.e., for a Gaussian source, Gaussian reconstructions mini-
mizes (4.19b). The result is derived under the assumptions that sequential greedy
coding is used and that the reconstructions satisfies conditional prediction residual
independence. In this section we will define sequential greedy coding and conditional
prediction residual independence and afterwards present the result from [8]. Finally,
we will consider the symmetric case of ZDMD coding with Gaussian reconstructions.

Definition 4.9 (Sequential Greedy Coding [8])
Consider the ZDMD source coding problem in Fig. 4.1. The problem is said to be
solved using sequential greedy coding if for each t ∈ N0, we minimize the bit-rate
such that the MSE distortion constraints Di > 0, i = 0, 1, 2 are satisfied for each
t ∈ N0.

Specifically, for each t ∈ N0, choose the codewords B(i)
t , i = 1, 2 with the

minimum codeword length `(i)t , i = 1, 2 such that

E
[(
Xt − Y (i)

t

)2
]
≤ Di, i = 0, 1, 2. (4.20)

When we assume sequential greedy coding, we find the reconstruction distribu-
tions that minimizes (4.19b) for each time step t ∈ N0 and fix this distribution for all
following t′ > t.

It is reasonable to assume sequential greedy coding for the ZDMD coding prob-
lem since at each time step, the optimum description that minimizes the rate while
achieving the desired distortion must be transmitted. The downside of assuming
sequential greedy coding is a potential increase in rate, as the desired performance
must be achieved in each time step and not just in an asymptotic average [8]. How-
ever, the assumption is necessary in proof given in [8] for the result that Gaussian
reconstructions minimizes the sum-rate.

We will now define conditional prediction residual independence for the MMSE pre-
dictors.

Definition 4.10 (Conditional Prediction Residual Independence [8])
Let {Xt} be a stationary source process and let {Y (1)

t } and {Y (2)
t } be stationary

arbitrarily distributed MMSE reconstruction processes. The MMSE reconstruction
processes is said to have conditional prediction residual independence if, for all
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t ∈ N0, the MMSE prediction residuals satisfy

Y
(i)
t − E

[
Y

(i)
t |Y (1),t−1, Y (2),t−1

]
⊥⊥
(
Y (1),t−1, Y (2),t−1

)
, i = 1, 2 (4.21)

Y
(i)
t − E

[
Y

(i)
t |Y (i),t−1

]
⊥⊥ Y (i),t−1, i = 1, 2 (4.22)

Y
(i)
t − E

[
Y

(i)
t |Y (j),t−1

]
⊥⊥ Y (j),t−1, i 6= j, i, j ∈ {1, 2}, (4.23)

that is, the residuals are independent of the conditioning prediction variables.

If {Y (i)
t }, i = 1, 2 is jointly Gaussian, then by the orthogonality principle [24,

p. 45], the conditional prediction residual independence is satisfied by the MMSE
predictors [8].

We now state the result derived in [8] that Gaussian reconstructions minimizes the
sum-rate. For a proof, we refer to [8, Appendix B].

Theorem 4.11 (Gaussian Lower Bound [8])
Let {Xt} be a stable stationary scalar Gauss-Markov process (4.1) with non-
degenerative MSE distortion constraints Di > 0, i = 0, 1, 2. Then, under the
assumption of sequential greedy coding Definition 3.4 and the assumption that the
reconstruction sequences {Y (i)

t }, i = 1, 2 satisfies conditional prediction residual
independence Definition 4.10, the following inequality holds

lim
n→∞

1

n+ 1

(
I
(
Xn → Y (1),n, Y (2),n

)
+ I

(
Y (1),n;Y (2),n

))

≥ lim
n→∞

1

n+ 1

(
I
(
Xn → Y

(1),n
G , Y

(2),n
G

)
+ I

(
Y

(1),n
G ;Y

(2),n
G

))
, (4.24)

where Y (i)
G , i = 1, 2 are jointly Gaussian random variables with first and second

moment equal to those of Y (i), i = 1, 2.

Symmetric Case

Using the result on the sum-rate in Theorem 4.8, we now define the information-
theoretic symmetric ZDMD RDF in terms of directed information and mutual infor-
mation.
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Definition 4.12 (Information Theoretic Symmetric ZDMD RDF [8])
The information theoretic symmetric ZDMD RDF for a stationary Gaussian source
process {Xt}, with MSE distortion constraints D0, DS > 0, is

RIZD(D0, DS) = inf lim
n→∞

1

2(n+ 1)

(
I
(
Xn → Y (1),n, Y (2),n

)
+ I

(
Y (1),n;Y (2),n

))

s.t. lim
n→∞

1

n+ 1

n∑

t=0

E
[(
Xt − Y (0)

t

)]
≤ D0 (4.25)

lim
n→∞

1

n+ 1

n∑

t=0

E
[(
Xt − Y (i)

t

)]
≤ DS , i = 1, 2,

where the infimum is over all processes {Y (i)
t }, i = 0, 1, 2 that satisfy the Markov

chain
X∞t+1 −Xt −

(
Y (0),t, Y (1),t, Y (2),t

)
, ∀t ∈ N0. (4.26)

Note, that the minimization over all processes that satisfy (4.26) is equivalent to
the minimization over all sequences of conditional test-channel distributions [8]

{P
(
Y

(0)
t , Y

(1)
t , Y

(2)
t |Y (0),t−1, Y (1),t−1, Y (2),t−1, xt

)
: t ∈ N}. (4.27)

If we restrict the reconstructions to be Gaussian, the solution to (4.25) is the Gaussian
symmetric information theoretic ZDMD RDF, RIZD,GM (D0, DS).

It follows by Theorems 4.8 and 4.11, that the Gaussian symmetric ZDMD RDF
is a lower bound to the operational symmetric ZMDM RDF in Definition 4.6.

Corollary 4.13 ([8])
Let {Xt} be a stationary scalar Gaussian process (4.1) with MSE distortion con-
straints DS ≥ D0 > 0. Then, under the assumption of sequential greedy cod-
ing (Definition 4.9) and the assumption that the reconstruction processes {Y (i)

t },
i = 1, 2, satisfy conditional prediction residual independence (Definition 4.10), the
following inequalities hold:

RIZD,GM (D0, DS) ≤ RIZD(D0, DS) ≤ RopZD(D0, DS). (4.28)

In [8], they derived an optimal test-channel realization scheme that achieves the
Gaussian symmetric ZDMD RDF for stationary scalar AR(1) sources and MSE dis-
tortion constraints, thus characterizing the symmetric ZDMD RDF for this source
and distortion. We will in the following present this characterization.
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Figure 4.2: Overall feedback realization of the optimum test-channel for RIZD,GM (D0, DS). [8]

4.3 Characterization of Symmetric ZDMD RDF

The test-channel derived in [8] is an extension of the feedback realization scheme
derived in [7], which is presented in Chapter 3 to the MD setup depicted in Fig. 4.1.
In Figs. 4.2 and 4.3, the feedback realization of the test-channel is illustrated. We
will first discuss the side reconstructions and thereafter the central decoder.

4.3.1 Side Reconstructions

We consider the stationary scalar AR(1) source given by (4.1). For both side recon-
structions, the test-channel realization follows the feedback realization scheme in [7].
That is, the reconstruction process for the optimum test-channel realized by

Y
(i)
t = hXt + (1− h)aY

(i)
t−1 + Z

(i)
t , i = 1, 2, (4.29)

where Z(i)
t ∼ N (0, σ2

Z) and

h = 1− πSλ−1, (4.30)

σ2
Z = πSh, (4.31)

λ = a2πS + σ2
W . (4.32)

Furthermore, πS is the MSE of the side reconstructions of Xt, i.e.,

πS = E
[(
Xt − Y (i)

t

)2
]

i = 1, 2. (4.33)
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Ũ
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Ũ
(2)
t

1
2

Decoder 2 z−1

+ Θ0 Y
(0)
t

Y
(1)
t−1

Y
(2)
t−1

VC,t

Figure 4.3: Central decoder of the optimum test-channel for RIZD,GM (D0, DS). [8]

As is the case of feedback realization scheme in [7], it is not the source which is
directly encoded, but it is the error processes

U
(i)
t = Xt − E

[
Xt|Y (i),t−1

]

= Xt − aY (i)
t−1, i = 1, 2, (4.34)

which has variance λ. The decoders observe the two innovation processes

Ũ
(i)
t = hU

(i)
t + Z

(i)
t , i = 1, 2, (4.35)

and these can be seen as the side decoder estimate of U (i)
t . Both processes have

variance
σ2
Ũ

= h2λ+ σ2
Z = h2λ+ πSh = hλ. (4.36)

The side reconstructions are then obtained by

Y
(i)
t = Ũ

(i)
t + aY

(i)
t−1, i = 1, 2 (4.37)

Considering the additive noise processes {Z(i)}, i = 1, 2, we have the following
independence assumptions:

Z
(1)
t ⊥⊥ Z(2)

t′ ∀t 6= t′ (4.38a)

Z
(i)
t ⊥⊥ Z

(i)
t′ ∀t 6= t′, i = 1, 2 (4.38b)

Z
(i)
t ⊥⊥ U

(j)
t′ ∀t ≥ t′, i, j ∈ {1, 2}. (4.38c)

As described in Chapter 2, the quantization noise samples Z(i)
t , i = 1, 2 must be

correlated such that the central decoder can refine the reconstruction ofX. Therefore,
the test-channel noises are jointly distributed as

[
Z

(1)
t

Z
(2)
t

]
∼ N (0,ΣZ), ∀t ∈ N0, (4.39)
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where

ΣZ =

[
πSh ρπSh
ρπSh πSh

]
. (4.40)

In contrast to the test-channel for non-causal MD coding, the correlated test-channel
noise is added to the two prediction error samples U (i)

t , i = 1, 2, rather and the source
directly. For t > 0, the two prediction error samples U (1)

t , U (2)
t are correlated since the

reconstructions Y (1)
t−1, Y

(2)
t−1 are correlated. Therefore, the correlated noises is added

to two correlated variables rather than the same variable Xt.

4.3.2 Central Decoder

As it figures from Fig. 4.2, the two innovation processes are produced by prescaling the
two prediction error processes and adding Gaussian noise to these prescaled processes,
i.e., the encoder output consists of two descriptions created by prescaling and adding
noise to U (i)

t , i = 1, 2. The two noise processes Z(1)
t , Z

(2)
t are correlated as it figures

from (4.40). Since the two noise processes are correlated, we can provide a better
estimate of Xt by using both innovation processes Ũ (1)

t , Ũ
(2)
t . Therefore, the central

decoder takes both innovation processes as input. An illustration of the central
decoder is shown in Fig. 4.3.

At each time step t ∈ N0, the central decoder takes Ũ
(1)
t , Ũ

(2)
t as input and creates

the central description VC,t by averaging the innovation samples, i.e.,

VC,t =
1

2

(
Ũ

(1)
t + Ũ

(2)
t

)
. (4.41)

Since the system works with zero delay, the previous side reconstructions Y (1)
t−1 and

Y
(2)
t−1 are available when the central decoder produces Y (0)

t . These are therefore used

together with VC,t to produce Y (0)
t . Let Ωt =

[
VC,t, Y

(1)
t−1, Y

(2)
t−1

]T
, then the central

MMSE estimate of Xt is given by

Y
(0)
t = E [Xt|Ωt] = Θ0Ωt

= ΣXΩΣ−1
Ω Ωt, (4.42)

where

ΣXΩ = E
[
XΩT

]
∈ R1×3 (4.43)

ΣΩ = E
[
ΩΩT

]
∈ R3×3. (4.44)

The covariances can be computed using the definition of Ω and the covariances listed
in [8, Lemma 2].

With this central reconstruction, the central distortion is

π0 = σ2
X −ΣXΩΣ−1

Ω ΣT
XΩ, (4.45)
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4.3.3 Rates

Finally, the achievable sum-rate for the test-channel is computed. By definition of
directed information rate, RIZD,GM (D0, DS) is given as

RIZD,GM (D0, DS) = inf
1

2
lim
n→∞

1

n+ 1

n∑

t=0

[
I
(
Xt;Y

(1)
t , Y

(2)
t |Y (1),t−1, Y (2),t−1

)

+I
(
Y

(2)
t ;Y (1),t|Y (2),t−1

)
+ I

(
Y

(1)
t ;Y (2),t−1|Y (1),t−1

)]
(4.46)

Each summand can be expressed in terms of differential entropy as [8]

I
(
Xt;Y

(1)
t , Y

(2)
t |Y (1),t−1, Y (2),t−1

)
+I

(
Y

(2)
t ;Y (1),t|Y (2),t−1

)
+I

(
Y

(1)
t ;Y (2),t−1|Y (1),t−1

)

= h
(
Y

(2)
t |Y (2),t−1

)
+ h

(
Y

(1)
t |Y (1),t−1

)
− h

(
Y

(1)
t , Y

(2)
t |Y (1),t−1, Y (2),t−1, Xt

)

We can express

h
(
Y

(i)
t |Y (i),t−1

)
= h

(
Ũ

(i)
t

)
=

1

2
log(2πeλh), (4.47)

where the first equality follows from (4.37), translation invariance of differential en-
tropy [12, Theorem 8.6.3], and conditional prediction residual independence Defini-
tion 4.10, and where the second equality follows from the differential entropy of a
Gaussian random variable. Likewise, using (4.29) and the independence assumptions
on Z(1)

t and Z(1)
t , we have that

h
(
Y

(1)
t , Y

(2)
t |Y (1),t−1, Y (2),t−1, Xt

)
= h

(
Z

(1)
t , Y

(2)
t

)

=
1

2
log
(
(2πe)2|ΣZ |

)

=
1

2
log
(
(2πe)2π2

Sh
2(1− ρ2)

)
. (4.48)

Since neither of (4.47) and (4.48) depend on the time t, the achievable symmetric
sum-rate is

R1 +R2 =
1

2
log(2πeλh) +

1

2
log(2πeλh)− 1

2
log
(
(2πe)2π2

Sh
2(1− ρ2)

)

= log

(
2πeλh

2πeπSh
√

1− ρ2

)

= log

(
λ

πS

)
− 1

2
log
(
1− ρ2

)
. (4.49)

Summarizing the above derivations, the characterization of symmetric ZDMD
RDF is given by the following theorem:
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Theorem 4.14 (Characterization of Symmetric ZDMD RDF [8])
Consider the stationary scalar AR(1) source given by (4.1) and non-degenerate
MSE distortion constraints (D0, DS) where 0 < D0 ≤ DS ≤ σ2

X . The Gaussian
information theoretic symmetric ZDMD RDF RIZD,GM (D0, DS) is characterized by
the following minimization problem:

min
{πS ,ρ}

1

2
log

(
λ

πS

)
− 1

4
log
(
1− ρ2

)

s.t. − 1 ≤ ρ ≤ 0

0 ≤ πS ≤ λ
0 ≤ πi ≤ Di, i = 0, S

(4.50)

where

λ = a2πS + σ2
W (4.51)

π0 = σ2
X −ΣXΩΣ−1

Ω ΣT
XΩ, (4.52)

and ΣXΩ, ΣΩ are defined in (4.43) and (4.44).

We will in the following chapters design operational ZDMD coding schemes and
simulate the performance. The symmetric ZDMD RDF will provide a lower bound
for the operational ZDMD coding schemes, which assumes AR(1) sources.





5. Operational ZDMD coding

In this chapter, we present operational ZDMD coding schemes. In [8], they presented
the scheme developed in [9], and showed that this scheme can be used as an op-
erational ZDMD coding scheme. The scheme assume AR(1) sources, and thus the
developed operational ZDMD scheme is restricted to assume this model order. In
this chapter we will present novel ZDMD coding schemes, which are able to assume
AR(p) sources of any order p.

We will consider encoding of a stationary scalar AR(p) source, i.e.

Xt =

p∑

i=1

aiXt−i +Wt, t = p, p+ 1, . . . , (5.1)

where Wt ∼ N (0, σ2
W ). We can compactly write (5.1) as

Xt = aTXt−1 +Wt, t = p, p+ 1, . . . , (5.2)

where a =
[
a1, . . . , ap

]T ∈ Rp and Xt−1 =
[
Xt−1, . . . , Xt−p

]T ∈ Rp. We present
schemes that assume AR(p) sources and therefore uses that the source is AR(p), but
we will also present a scheme assuming an AR(1) source. To obtain the parameters,
we use the Yule-Walker equation as described in e.g. [25, pp. 69-70].

As described in Chapter 4, the quantization noise of the two descriptions must be
correlated such that a smaller MSE distortion can be obtained when combining the
two descriptions in the central reconstruction. It is however not a straight-forward
task to construct descriptions with correlated noises [16]. We will present two ap-
proaches to obtain correlated noises. The first one is based on staggered quantization
as described in [9], and the second one is based on index assignment as described in
[16]. Furthermore, all schemes presented in this chapter is based on differential pulse
code modulation (DPCM) quantization.

In a DPCM encoder of the source in (5.1), the source sample at time t is predicted
by aTY t−1, where Y t−1 =

[
Yt−1, . . . , Yt−p

]T ∈ Rp and Yt−i is the reconstructions of
Xt−i for i = 1, 2, . . . , p. In stead of quantizing the source directly, the prediction error
Ut = Xt − aTY t−1 is quantized and transmitted to the decoder. The reconstruction
of Xt at the decoder is then Yt = Q(Ut) + aTY t−1, where Q(Ut) is the quantitation
of Ut.

41
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The use of DPCM encoders in the ZDMD schemes is motivated by the test-
channel realization described in Chapter 4. As described, the optimal test-channel
realization is based on the innovations approach, where the prediction error sequence
is quantized, which is exactly the idea behind DPCM encoding.

Note, that we assume feedback from the decoder. This is done in order to syn-
chronize the encoder and decoder.

5.1 Schemes Based on Staggered Quantizers

In this section, we present schemes based on staggered quantization. The schemes
varies in how the predictor is defined. We present a scheme using the optimal predictor
under the AR(p) assumption and a scheme using a sub-optimal predictor. The scheme
using the sub-optimal predictor is only applicable when assuming AR(1) sources,
whereas the scheme using the optimal predictor can be applied for any model order,
p. The optimal and sub-optimal schemes are described in [9] and [8] for AR(1) sources.

Before we present the ZDMD coding schemes, we will introduce to staggered
quantization.

5.1.1 Staggered Quantization

The main idea behind the use of staggered quantizers for a MD coding scheme, is
to use two identical uniform quantizers, which are shifted compared to each other.
In this way, when the output of both quantizers are combined, a finer quantization
is accomplished. For now, consider a white Gaussian source process {Xt}, with
Xt ∼ N(0, σ2

X). The two staggered scalar uniform quantizers are given by

Q1,∆(x) = Round
( x

∆

)
∆ (5.3a)

Q2,∆(x) = Round
(
x+ δ

∆

)
∆− δ, (5.3b)

where the Round(·) function rounds to the nearest integer, ∆ is the bin size of the
quantizers and δ is the shift or stagger between the two quantizers. When Q1,∆ and
Q2,∆ is applied to the source Xt with sufficiently high rates, corresponding to small
∆, then the source is approximately uniformly distributed within each quantizer bin
[12]. Therefore the optimal reconstruction of Xt given the output of the staggered
quantizers is the mean of the outputs [9]. To minimize the MSE of the central recon-
struction, the shift should be half the quantizer bin size, i.e., δ = ∆/2, which ensures
that Q1,∆(Xt) − Q2,∆(Xt) = ±∆/2 [9]. Using staggered quantizers, the central re-
construction has 6 dB better MSE performance compared to the side reconstructions,
i.e., the output of each staggered quantizer [26].
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5.1.2 Staggered DPCM Quantization

We will now present the staggered DPCM quantization schemes. As mentioned, we
consider DPCM quantization as this resembles the test-channel realization scheme in
the way that the a prediction error process is quantized instead of the source samples
directly. We will first consider the schemes presented in [9] for AR(1) sources, and
then extend the approach to AR(p) sources.

The general approach of the staggered ZDMD schemes is use two DPCM encoders
with staggered quantizers Q1,∆S

and Q2,∆S
, referred to as the first stage quantizers,

together with a refinement quantizer Q0,∆0 in a second layer. Let X̂(i)
t , i = 1, 2

denote the predictors of Xt used to obtain the prediction error samples in the DPCM
encoders. Then at each time step t, the prediction error sample for each of the first
stage quantizers is obtained by

U
(i)
t = Xt − X̂t. (5.4)

Then the prediction error at each side is quantized using staggered quantizers, i.e.,

U
∆S ,(1)
t = Q1,∆S

(
U

(1)
t

)
= Round

(
U

(1)
t

∆S

)
∆S (5.5a)

U
∆S ,(2)
t = Q2,∆S

(
U

(2)
t

)
= Round

(
U

(2)
t + δ

∆S

)
∆S − δ. (5.5b)

The quantized prediction error samples are encoded using lossless entropy coding,
and the codeword is included in packet i, i = 1, 2.

In addition to the entropy coded output of the quantizers Q1,∆S
and Q2,∆S

,
the packets also include information from the refinement quantizer Q0,∆0 . First the
central prediction error sample EC,t is computed by

EC,t = Xt −
1

2

(
Y

(1)
t + Y

(2)
t

)
, (5.6)

where Y (i)
t , i = 1, 2 are the side reconstructions at time t. The prediction error

sample is then quantized using Q0,∆0 with quantization step size ∆0 followed by
lossless entropy coding. The bits of codeword is separated into two sub-codewords,
and one of these is included in each of the packets.

The packets are transmitted over erasure channels with packet loss probability pl
on both channels.

Assuming that both packets are received at the decoder, the central reconstruction
serves as the estimate of Xt. If a packet is lost on either of the two channels, Y (1)

t or
Y

(2)
t will be used as the estimate for Xt. The side reconstructions are obtained by

Y
(i)
t = U

∆S ,(i)
t + X̂

(i)
t−1, i = 1, 2 (5.7)
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Xt ∈ R

+ Q1,∆S

+Prediction 1/2

+ Q2,∆S

+Prediction 1/2

+ Q0,∆0 EC 1 : 2

EC
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(1)
t
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(1)
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−
Y

(1)
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−

U
∆S ,(1)
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Packet 1
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U
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U
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t
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+ EC,t

Figure 5.1: Illustration of the DPCM scheme using staggered quantizers. Here EC denotes lossless
entropy coding and 1 : 2 means that the bits of the codeword for the refinement quantizer is split in
two such that each packet contains half of the bits of this codeword.

while the central reconstruction is obtained using the side reconstructions as

Y
(0)
t = E∆0

C,t +
1

2

(
Y

(1)
t + Y

(2)
t

)
. (5.8)

The scheme is depicted in Fig. 5.1.
The schemes presented in this section differs in how the predictors X̂(i)

t , i = 1, 2 are
defined. The considerations when defining the predictors include the optimality of the
predictors as well the resulting quantizer partitions. As mentioned in Section 5.1.1,
the desired quantizer partitions should imply Y (1)

t −Y
(2)
t = ±∆S/2. However, since we

use the prediction error samples as input to the staggered quantizers, the quantizer
partitions for Xt and U

(i)
t are shifted by X̂

(i)
t . Thus, the optimal shift between

the quantizers δ depends on how the predictors are defined. One way to guarantee
Y

(1)
t − Y (2)

t = ±∆S/2, is to let X̂(1)
t − X̂

(2)
t = ±∆S/2. [9]

Later in this section, we will cover the difference between the cases of optimal
predictors for AR(1) and AR(p) as well as a sub-optimal predictor for AR(1).

Rates and Distortion

We will in the following assess the rate and distortion performance of the staggered
ZDMD scheme.

To each of the quantizers in the scheme, a rate is associated and this rate is related
to the quantizer step size. Let RS be the rate of the quantizers Q1,∆S

and Q2,∆S
in

the first stage and let R0 be the rate of Q0,∆0 . Then the sum-rate per sample of the
scheme is given by

R = 2RS +R0. (5.9)
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If the rate of the quantizers is sufficiently high, the input to the quantizer is ap-
proximately uniformly distributed within each quantizer bin [27]. Therefore, we can
model the quantization error as a sample of white process with uniformly distributed
samples. The quantization error of the first stage quantizers is therefore modeled as

U
(i)
t − U

∆S ,(i)
t = Z

(i)
t ∼ U

(
−∆S

2
,
∆S

2

)
(5.10)

which means that the variance of the first stage quantizers is approximately

σ2
ZS
≈ ∆2

S

12
. (5.11)

By modeling the quantization as uniformly distributed noise, we can analyze the
variance of the input to the quantizer, which is relevant in relation to determining
the rates and distortion of the scheme. First we note that

Y
(i)
t = U

∆S ,(i)
t + X̂t

= U
(i)
t − Z

(i)
t + X̂t

= Xt − X̂t + X̂t − Z(i)
t

= Xt − Z(i)
t , i = 1, 2, (5.12)

which means that the side distortion is

DS = E
[(
Xt − Y (i)

t

)2
]

= E
[(
Z

(i)
t

)2
]
≈ ∆2

S

12
, i = 1, 2. (5.13)

In the high-rate case, the coding rate is approximated by,

RS = H
(
U

∆S ,(i)
t

)
≈ h

(
U

(i)
t

)
− log(∆S)

=
1

2
log(2πeλ)− log(∆S), (5.14)

where the approximation follows from [12, Theorem 8.3.1] and where the last equation
follows from the differential entropy of a Gaussian random variable with λ being the
variance of U (i)

t , i = 1, 2. The rate of the second stage decoder is likewise given as

R0 = H
(
E∆0
C,t

)
≈ h (EC,t)− log(∆0), (5.15)

where EC,t is given by (5.6). As mentioned, the error in the first stage quantizers
is approximately uniform for high rates. Furthermore, for high rates, the central
prediction error EC,t is also uniformly distributed with variance σ2

EC
= DS/4 [9].

Therefore, the differential entropy of EC,t is

h (EC,t) = log
(√

12σ2
EC

)
= log

(√
3DS

)
. (5.16)
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by isolating ∆0 in (5.15), we obtain

∆0 ≈ 2−R0

√
12σ2

EC
= 2−R0

√
3DS . (5.17)

The central distortion is in the high rate scenario is therefore

D0 =
∆2

0

12
= 2−2R0

DS

4
. (5.18)

Sub-Optimal AR(1) Predictor

In [9] and [8], they consider a sub-optimal predictor for an AR(1) source. Specifically,
they let X̂(i)

t = Y
(i)
t−1, i = 1, 2, thus the prediction error sample at time step t is

U
(i)
t = Xt − Y (i)

t−1, i = 1, 2, (5.19)

and the reconstructions are given by

Y
(i)
t = U

∆S ,(i)
t + Y

(i)
t−1, i = 1, 2. (5.20)

In order to minimize the MSE, the predictors must be offset by ∆S/2, i.e. X̂
(1)
t −

X̂
(2)
t = ±∆S/2, which in this case requires Y (1)

t−1 − Y
(2)
t−1 = ±∆S/2. Hence, if Y (1)

t−1 −
Y

(2)
t−1 = ±∆S/2, then Y

(1)
t − Y

(2)
t = ±∆S/2. Therefore, to achieve the optimal

offset for all samples, it is only necessary to ensure the offset for t = 0. Letting the
reconstructions for t < 0 be zero, we have that

U
(i)
0 = X0 (5.21)

and we use the staggered quantizers of (5.3) with step size ∆S and with a shift of
δ = ∆S/2 for t = 0, and for t > 0, Q1,∆S

and Q2,∆S
are two identical uniform

quantizers with step size ∆S . [9]
Finally, the variance of U (i)

t , i = 1, 2 using these predictors is

λ = Var
(
U

(i)
t

)
= Var

(
Xt − Y (i)

t−1

)

= Var
(
Xt −Xt−1 + Z

(i)
t−1

)

= Var
(
a1Xt−1 +Wt −Xt−1 + Z

(i)
t−1

)

= (a1 − 1)2σ2
X + σ2

W + σ2
ZS

=
2

1 + a1
σ2
W +

∆2
S

12
, i = 1, 2, (5.22)

where the last equality follows from the stationary variance of an AR(1), which is
σ2
X =

σ2
W

1−a2
1
.
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Optimal AR(1) Predictor

The variance of U (i)
t , i = 1, 2 can decreased by using another definition for the

predictors X̂(i)
t , i = 1, 2. When assuming an AR(1) source, the optimal predictor is

[10, p. 276]
X̂

(i)
t = a1Y

(i)
t−1, i = 1, 2. (5.23)

Using the optimal predictors, the prediction error samples are given by

U
(i)
t = Xt − a1Y

(i)
t−1, i = 1, 2, (5.24)

and the reconstructions are given by

Y
(i)
t = U

∆S ,(i)
t + a1Y

(i)
t−1, i = 1, 2. (5.25)

The variance of U (i)
t , i = 1, 2 using this predictor is

λ = Var
(
U

(i)
t

)
= Var

(
Xt − a1Y

(i)
t−1

)

= Var
(
Xt − a1

(
Xt−1 + Z

(i)
t−1

))

= Var
(
a1Xt−1 +Wt − a1

(
Xt−1 + Z

(i)
t−1

))

= Var
(
Wt − a1Z

(i)
t−1

)

= a2
1σ

2
ZS

+ σ2
W

= a2
1

∆2
S

12
+ σ2

W , i = 1, 2. (5.26)

Comparing the variance of U (i)
t using the optimal predictor to using the sub-optimal

predictor, it it also apparent, that the optimal predictor yields a smaller variance of
U

(i)
t . Let λsub denote the variance in (5.22) and let λop variance using the optimal

predictor, then

λsub − λop =
2

1 + a1
σ2
W + σ2

ZS
− a2

1σ
2
ZS
− σ2

W

=
1− a1

1 + a1
σ2
W + (1− a2

1)σ2
ZS

> 0, (5.27)

since, σ2
ZS

> 0, σ2
W > 0, and |a1| < 1 for a stationary AR(1) source, and it follows

that λsub > λop. Hence for the same ∆S , the optimal predictor obtains a smaller rate
RS compared to the sub-optimal predictor.

However, using the optimal predictor, we have to use some bits on information
about the shift between the first stage quantizers Q1,∆S

and Q2,∆S
. When an AR(1)

source is assumed, the shift between the first stage quantizers at time t must be

δt = sign
(
Y

(1)
t−1 − Y

(2)
t−1

)
(1− a)

∆S

2
. (5.28)
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This can be seen from the difference between the two reconstructions in (5.25). We
want this difference to be ±∆S

2 . Assuming that Y (1)
t−1−Y

(2)
t−1 = sign

(
Y

(1)
t−1 − Y

(2)
t−1

)
∆S
2 ,

we have that

±∆S

2
= Y

(1)
t − Y (2)

t = U
∆S ,(1)
t + aY

(1)
t−1 − U

∆S ,(2)
t − aY (2)

t−1

= U
∆S ,(1)
t − U∆S ,(2)

t + a
(
Y

(1)
t−1 − Y

(2)
t−1

)

= δt + a

(
sign

(
Y

(1)
t−1 − Y

(2)
t−1

) ∆S

2

)
(5.29)

where the last equality follows since the difference between prediction error samples
is the shift between the staggered quantizers and since we assume that the previous
difference between the predictions is sign

(
Y

(1)
t−1 − Y

(2)
t−1

)
∆S
2 . Isolating δt yields (5.28).

As pointed out in [9], an extra bit indicating the sign of Y (1)
t − Y

(2)
t must be

transmitted at every time step over the second channel, since this information is
needed if the packet transmitted over the first channel is lost. At low rates, this will
reduce the efficiency.

Optimal AR(p) Predictor

We now extend the scheme to use the optimal predictors when assuming an AR(p)
source. When assuming an AR(p) source, the optimal predictor is [10, p. 276]

X̂
(i)
t = aTY

(i)
t−1, i = 1, 2 (5.30)

where a =
[
a1, . . . , ap

]T ∈ Rp are the p source coefficients and Y (i)
t−1 =

[
Y

(i)
t−1, . . . , Y

(i)
t−p

]T

∈ Rp are the p previous reconstructions. The extension of the staggered ZDMD
scheme to use this predictor is straight forward. The prediction error samples are
given by

U
(i)
t = Xt − aTY (i)

t−1, i = 1, 2, (5.31)

and the reconstructions are given by

Y
(i)
t = U

∆S ,(i)
t + aTY

(i)
t−1, i = 1, 2. (5.32)
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Letting Z(i)
t−1 =

[
Z

(i)
t−1, . . . , Z

(i)
t−p

]T
∈ Rp, i = 1, 2 be the collection of the quantization

errors (5.10), the variance of the prediction error U (i)
t is given by

λ = Var
(
U

(i)
t

)
= Var

(
Xt − aTY (i)

t−1

)

= Var
(
Xt − aT

(
Xt−1 +Z

(i)
t−1

))

= Var
(
aTXt−1 +Wt − aT

(
Xt−1 +Z

(i)
t−1

))

= Var
(
Wt − aTZ(i)

t−1

)

= aTσ2
ZS
Ia+ σ2

W

=
∆2
S

12
‖a‖22 + σ2

W , i = 1, 2, (5.33)

When we assume an AR(2) source, the shift between the two first stage quantizers
depends on the sign of the difference between the predictions of the p previous time
steps. For p = 2, this is can seen by

∆S

2
= U

∆,(1)
t + aTY

(1)
t−1 − U

∆,(2)
t − aTY (2)

t−1

= δt + aT
(
Y

(1)
t−1 − Y

(2)
t−1

)
(5.34)

= δt +
∆S

2
aT


sign

(
Y

(1)
t−1 − Y

(2)
t−1

)

sign
(
Y

(1)
t−2 − Y

(2)
t−2

)

 .

Isolating δt yields

δt =


1− aT


sign

(
Y

(1)
t−1 − Y

(2)
t−1

)

sign
(
Y

(1)
t−2 − Y

(2)
t−2

)



 ∆S

2
. (5.35)

In the worst case we, first lose two samples from the second quantizer and then we
lose the next sample from the first quantizer. This means that any information sent
over the second channel regarding the sign of the differences of the predictions for
the two previous steps are lost. We therefore need to include sign

(
Y

(1)
t−1 − Y

(2)
t−1

)
and

sign
(
Y

(1)
t−2 − Y

(2)
t−2

)
in the packet for the second quantizer at time t in order to decode

Y
(2)
t . This is two bits of extra information we must include for every sample over the

second channel. For general p, we need p bits of extra information.
We can reduce the extra information per sample by letting the packets include

multiple samples. If a packet includes T samples, we need T+p−1 bits of information
regarding the sign difference of the predictions in each packet, which means we have
and extra T+p−1

T > 1 bits per sample of information regarding the sign.
As a final remark about the rates, it should be noted, that due to the necessity of

transmitting the information of the sign of the difference of the side reconstructions,
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Xt ∈ R + Q∆C φ

EC
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Packet 1

Packet 2

φ−1+

z−1
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z−1

+ a1

...

ap−1

ap

...

+
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+ Ut U∆C
t

q
(1)
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q
(2)
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∆C

t

aTY t−1

+

−

Figure 5.2: Illustration of DPCM index assignment scheme. Here EC denotes lossless entropy
coding and ED denotes entropy decoding. The inverse index assignment symbol denotes the recovery
of U∆C

t and the feedback is information from the receiver about which descriptions are received.

the setup is not balanced in the sense that the rates over the two channels are not the
same. As mentioned, we need a rate of R2 = RS+ T+1

T > RS+1 on the second channel
to transmit the necessary information of the sign. This means that the average rate
per description is about 0.5 larger, compared to a scheme which does not need to
send this extra information, for example the scheme in [9].

5.2 DPCM Index Assignment

In this section we present a index assignment scheme assuming AR(p) sources based
on DPCM. In Chapter 6, we simulate the performance of the scheme when assuming
both AR(1) and AR(2). Consider the AR(p) in (5.1). The main idea is to apply
the index assignment method described in [16, Section IV-C] to the prediction error
process

Ut = Xt − aTY t−1, t = N0, (5.36)

where a =
[
a1, . . . , ap

]T ∈ Rp is a vector collecting the AR coefficients and

Y t−1 =
[
Yt−1 . . . Yt−p

]T ∈ Rp (5.37)

is a vector collecting the reconstructions of Xt to the p previous time steps. We
choose Yt = 0 for t < 0. The scheme is illustrated in Fig. 5.2.

At each time step t, first the prediction error sample Ut is determined by (5.36).
Then the prediction error sample is quantized using the central quantizer Q∆C

which
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is a fine-grained scalar uniform quantizer with step size ∆C . That is

U∆C
t = Q∆C

(Ut) = Round
(
Ut
∆C

)
∆C ∈ ∆CZ. (5.38)

Then, a one-to-many index assignment map φ : ∆CZ → ∆SZ2 is applied to U∆C
t to

obtain the tuple

qt =
(
q

(1)
t , q

(2)
t

)
= φ

(
U∆C
t

)
∈ ∆SZ×∆SZ, (5.39)

where ∆S/∆C ∈ N denotes the nesting ratio. Note, that each element q(i)
t , i = 1, 2

of the tuple is a coarser quantization of Ut than U∆C
t . The two quantized values

q
(i)
t , i = 1, 2 are individually entropy coded and transmitted over separate erasure
channels [16].

By separate entropy decoding, we recover qt. If both descriptions are received,
qt = qt, but if only the i’th description is received, qt = q

(i)
t and if none of the

descriptions are received, qt = ∅. We denote by U∆C

t the recovery of U∆C
t . If both

descriptions are received, U∆C
t can be recovered from qt using the inverse index-

assignment map φ−1, i.e.,

U
∆C

t = U∆C
t = φ−1

(
q

(1)
t , q

(2)
t

)
. (5.40)

If only one of the descriptions is received, we use the received value U∆C

t = q
(i)
t and if

non of the descriptions are received, we use U∆C

t = E [Ut] = 0 as the estimate of Ut.
When the estimate of Ut is obtained, we reconstruct Xt by adding aTY t−1. Hence,
the central and side reconstructions are given by

Y
(0)
t = φ−1

(
q

(1)
t , q

(2)
t

)
+ aTY t−1 = U∆C

t + aTY t−1 (5.41a)

Y
(i)
t = q

(i)
t + aTY t−1, i = 1, 2. (5.41b)

The used reconstruction Yt depends on which descriptions are received. That is,

Yt =





Y
(0)
t if both descriptions are received
Y

(i)
t if only the i’th description is received
aTY t−1 if no descriptions are received.

(5.42)

5.2.1 Design of Index Assignment Map

With the approach described, what remains is to design the index assignment map
φ. This can be done by solving a bipartite graph matching problem [16], [28]. We
will in the following describe this, based on the description in [16].
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−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
Λc

−9 −6 −3 0 3 6 9
Λs

−9 0 9
Λk

V = {−4,−3, ..., 4}

Figure 5.3: Illustration of the sets used in the definition of the index assignment map.

Let the nesting ratio r = ∆S/∆C be a non-negative odd integer and define the
three sets

Λc = ∆CZ, (5.43a)
Λs = ∆SZ, (5.43b)

Λk = r2Z. (5.43c)

Then it follows that Λk ⊆ Λs ⊆ Λc. As an example, consider the sets when ∆C = 1
and ∆S = 3 as depicted in Fig. 5.3. Now, define the set

V = {q ∈ Λc : |q| ≤ |q − q′|,∀q′ ∈ Λk}. (5.44)

The set V contains the r2 points in Λc which are closer to 0 compared to any other
point in Λk.

Let
(
q(1), q(2)

)
∈ Λ2

s be a tuple with q(i) ∈ Λs, i = 1, 2. Then, let the set S
(
q(1)
)

be defined as

S
(
q(1)
)

= {
(
q(1), q(2)

)
∈ Λ2

s :
∣∣∣q(1) − q(2)

∣∣∣ ≤ ϕr}, (5.45)

that is, the set of all distinct tuples in Λ2
s, where the first element is q(1) and the

distance between q(1) and q(2) is less than ϕr. The value of ϕr depends on r and it is
chosen such that

∣∣S
(
q(1)
)∣∣ ≥ r. Using S(q(1)), construct the superset

S = {S
(
q(1)
)

: q(1) ∈ V ∩ Λs}. (5.46)

Since |V ∩ Λs| = r, S contains at least r2 tuples, where the first element belongs to
V.

The index assignment map φ is defined by assigning the r2 elements in V to
tuples of the set S such that the mapping is invertible and such that a cost function
is minimized. As the elements of the tuple

(
q(1), q(1)

)
serves as estimates of Ut when

only one of the descriptions is received and since we want to minimize the MSE, we
define the cost function as

c(q, λ) =
1

2

2∑

i=1

(
λ− q(i)

)2
. (5.47)
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The optimal index assignment map is the map that minimizes

min
φ

∑

λ∈V
c(φ(λ), λ), (5.48)

where the minimization is over all possible one-to-many maps φ : V → S where
φ−1(φ(λ)) = λ, ∀λ ∈ V.

Example 5.1 (Index Assignment Map)
As an example, let ∆C = 1 and ∆S = 3, thus r = 3. Then the set V contains the
r2 = 9 points in the column with the title B in Table 5.1. The two last columns of
Table 5.1 show the tuples assigned to each of the points in V. The assignment is
found using the method described in [28].

U∆C q(1) q(2)

-4 -3 -6
-3 -3 -3
-2 0 -3
-1 -3 0
0 0 0
1 0 3
2 3 0
3 3 3
4 3 6

Table 5.1: Index assignment map for ∆C = 1 and ∆S = 3.

We conclude this section about the index assignment map design with a couple
of useful properties of the index assignment map. First, the tuples are shift-invariant
with respect to translations by λk ∈ Λk, i.e., φ(λ + λk) = φ(λ) + λk, ∀λk ∈ Λk [16].
This means, that we only need to construct and store the table corresponding the
r2 points closest to 0, e.g. Table 5.1 for r = 3. When U∆C is not in V, we find the
required shift s, e.g. by dividing U∆C by r2 and rounding to the nearest integer and
then multiplying by r2. Then we can find the index assignment by

(
q(1), q(2)

)
= φ(U∆C − s) + s, s ∈ Λk, (5.49)

where the addition is understood as s is added to all elements of the index assignment
tuple. As an example, let U∆C = 7 and r = 3, then the shift is

s = Round
(

7

9

)
· 9 = 9. (5.50)

We then have that
(
q(1), q(2)

)
= φ(7− 9) + 9 = φ(−2) + 9 = (0,−3) + 9 = (9, 6). (5.51)



54 Chapter 5. Operational ZDMD coding

If we want ∆C to be different from 1, we can multiply the table in Table 5.1
with the desired ∆C [16]. In this way, the nesting ratio stays the same and the
shift-invariance property is still maintained, but with λk ∈ ∆CΛk.

5.2.2 Rates and Distortion Performance

Since the quantization in the index assignment scheme is deterministic, it is only pos-
sible to analyze the rate and quantization noise in the asymptotic limit of ∆C ,∆S → 0
and ∆S/∆C → ∞. However, good estimates of the rate and the quantization error
variance can be obtained for moderate to high rates [16].

First, let us consider the distortion induced by the central reconstructions, Y (0)
t .

The central reconstruction sample at time step t is given by (5.41a). For sufficiently
high rates, the quantization error samples

Zt = Ut − U∆C
t , t ∈ N0 (5.52)

can be modeled as a white process with uniformly distributed samples [10, p. 158],
i.e. Zt ∼ U

(
−∆C

2 , ∆C
2

)
. Hence, the central reconstruction sample can be modeled as

Y
(0)
t = U∆C

t + aTY t−1

= Ut − Zt + aTY t−1

= Xt − aTY t−1 + aTY t−1 − Zt
= Xt − Zt (5.53)

and the central distortion is

D0 = E
[(
Xt − Y (0)

t

)2
]

= E
[
Z2
t

]
≈ ∆2

C

12
. (5.54)

Next, we consider the side distortion. Recall, that the quantization of Ut is q
(i)
t for the

i’th side description. Therefore, the quantization error for the i’th side description is

Z
(i)
t = Ut − q(i)

t , t ∈ N0, i = 1, 2. (5.55)

By [16, Eq. (39)], the variance of Z(i)
t is approximately

var
(
Z

(i)
t

)
≈ ∆2

C

12
+

∆2
C

48

(
∆S

∆C

)4

=
∆2
C

12
+

∆4
S

48∆2
C

. (5.56)

Like for the central reconstruction, we can write the side reconstruction as

Y
(i)
t = q(i) + aTY t−1

= Ut − Z(i)
t + aTY t−1

= Xt − aTY t−1 + aTY t−1 − Z(i)
t

= Xt − Z(i)
t , (5.57)



5.3. Theoretical Rate-Distortion Performance 55

and we obtain the following side distortion approximation

DS = E
[(
Xt − Y (i)

t

)2
]

= E
[(
Z

(i)
t

)2
]
≈ ∆2

C

12
+

∆4
S

48∆2
C

. (5.58)

Finally, by [16, Eq. (40)], the sum-rate of the index assignment scheme can be
approximated by

R ≈ 2h(Ut)− 2 log(∆S) = log
(
2πeσ2

U

)
− 2 log(∆S), (5.59)

where h(Ut) is the differential entropy of Ut and the last equality follows from the
differential entropy of a Gaussian random variable [16]. If we assume that Yt in (5.42)
is always the central reconstruction Y (i)

t , then we can determine the variance of Ut as

var(Ut) = var
(
Xt − aTY t−1

)

= var
(
aTXt−1 +Wt − aT (Xt−1 −Zt−1)

)

= var
(
Wt − aTZt−1

)

(a)
= σ2

Z‖a‖22 + σ2
W

=
∆2
C

12
‖a‖22 + σ2

W , (5.60)

where Xt−1 =
[
Xt−1, . . . , Xt−p

]T , Zt−1 =
[
Zt−1, . . . , Zt−p

]T , and where (a) follows
from independence between Wt and Zt−1.

5.3 Theoretical Rate-Distortion Performance

In this section, we will compare the theoretical rate-distortion performance for the
schemes presented in this chapter. To this end we plot side distortion against central
distortion for different choices of fixed sum-rates R = 8, 10, 12 bits. The curves will be
referred to as distortion trade-off curves. We compare the distortion trade-off curves
for both an AR(1) and AR(2) source. The AR(2) source has the parameters

a1 = 1.421, a2 = −0.579, σ2
W = 0.126. (5.61)

and the AR(1) source parameters are obtained by the Yule-Walker equations using
the autocorrelation function (ACF) of the AR(2) source. This is described in more
details in Chapter 6. The distortion trade-off curves for the AR(1) source is the
distortion trade-off curve for assuming an AR(1) source, when the source is actually
AR(2). Therefore, the difference between the distortion trade-off curves for AR(1)
and AR(2) sources is the theoretical loss of assuming an AR(1) source when it is
actually AR(2).

If the schemes e.g. were to be used for transmission of audio signals, we would
have to transmit the source coefficients a1, a2. However, we will assume that the
source parameters are known to both the encoder and decoder, thus no rate is spend
on communicating the source parameters.
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5.3.1 Theoretical Lower Bound

We compare the performance of the schemes to the theoretical lower bound on the
performance of ZDMD coding schemes assuming AR(1) sources given by (4.50). For
a fixed sum-rate R, we let

R = log

(
a2

1πS + σ2
W

πS

)
− 1

2
log
(
1− ρ2

)
(5.62)

and determine the corresponding side distortion πS for a grid of correlations ρ, with
ρ ∈ (−1; 0). We then calculate π0 using (4.52).

Within the time frame of the project, it has not been possible to develop the lower
bound of ZDMD coding schemes assuming AR(2) sources. Therefore, we cannot lower
bound the performance of the AR(2) schemes.

5.3.2 Schemes Using Staggered Quantizers

First we consider the theoretical performance of schemes using staggered quantization.
For the schemes using staggered quantizers, the curves are obtained by varying the
first stage rate RS and the refinement rate R0 such that (5.9) is satisfied. Then ∆S

is determined by isolating it in (5.14) using the relevant expression of λ depending
on the predictor. We then compute the side and central distortion by

DS =
∆2
S

12
(5.63)

D0 = 2−2R0
DS

4
. (5.64)

As mentioned, for the scheme using the optimal predictors, at least 1 bit must be
spend on the sign of the difference of the previous predictions. Therefore, we subtract
1 from the sum-rate when computing the distortion trade-off curve when using the
optimal predictors.

In Fig. 5.4, the distortion trade-off curves are shown for the staggered quantization
schemes. From the figure, it is seen that the scheme using the sub-optimal predictors
obtains the best performance for a given sum-rate. Hence, no gain in performance is
achieved by using the optimal predictors. The reason is the extra 1 bit used for the
sign. This is seen by comparing Fig. 5.4 with Fig. 5.5, which shows the performance
assuming that we do not need to spend 1 bit on the sign. Due to the superiority of
the scheme using sub-optimal predictors in the staggered scheme, we will not consider
the use of the optimal predictors further.

5.3.3 Index Assignment Schemes

For the scheme using index assignment, we vary the side and central distortion for
each sum-rate by varying the nesting ratio r = ∆S/∆C . For each sum-rate we
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Figure 5.4: Central distortion D0 versus side distortion DS for the ZDMD coding scheme using
staggered quantization with sub-optimal predictor (green), optimal AR(1) predictor (purple), and
optimal AR(2) predictor (red). The different line styles represent different sum-rates. Specifically
solid is R = 8, dashed is R = 10 and dashdotted (-.-) is R = 12. It is assumed that one bit is used
for communicating the sign of the difference between side reconstructions.

compute ∆C by (5.59), using that ∆S = r∆C . Then we compute the central and side
distortion by

D0 =
∆2
C

12
(5.65)

DS =
∆2
C

12
+

∆4
S

48∆2
C

. (5.66)

In Fig. 5.6, the distortion trade-off curves are shown for the index assignment
scheme assuming AR(1) and AR(2) as well as the staggered scheme using the sub-
optimal predictor. It is seen that, the index assignment scheme assuming AR(1)
source has a small gain in performance compared to the scheme using staggered
quantization. Furthermore, it is seen that when assuming an AR(2) source, the per-
formance of the index assignment scheme increases by roughly 3.5 dB. It is also worth
noting, that for this source, the index assignment scheme achieve performance be-
low the lower bound for AR(1) sources when an AR(2) source is assumed. Therefore,
when we consider an AR(2) source, we can obtain better performance using the index
assignment scheme for AR(2) sources than for any ZDMD coding scheme assuming
AR(1) source.

In the next chapter, we will by simulations further investigate the performance of
the ZDMD schemes presented in this chapter.
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Figure 5.5: Side distortion DS versus central distortion D0 for the ZDMD coding scheme using
staggered quantization with sub-optimal predictor (green), optimal AR(1) predictor (purple), and
optimal AR(2) predictor (red). The different line styles represent different sum-rates. Specifically
solid is R = 8, dashed is R = 10 and dashdotted (-.-) is R = 12.
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Figure 5.6: Side distortion DS versus central distortion D0 for the ZDMD coding scheme using
staggered quantization with sub-optimal predictor (green) as well as using index assignment assuming
AR(1) (orange), and AR(2) (blue). The different line styles represent different sum-rates. Specifically
solid is R = 8, dashed is R = 10 and dashdotted (-.-) is R = 12. The black curve represents the
theoretic lower bound assuming AR(1).



6. Simulation Study

In this chapter, we will present simulated results regarding the performance of the
schemes presented in Chapter 5. The performance is evaluated realizations of an
AR(2) source. We will use the ZDMD coding schemes assuming both the source is
AR(1) and AR(2). Recall that we assume feedback from the decoder, in order to
synchronize the encoding and decoding.

We will simulate the performance of the developed schemes in terms of the average
MSE of the central and side reconstructions to different rates. The performance will
be compared to the theoretical lower bound on the MSE distortion for ZDMD coding
assuming an AR(1) source.

Before we present the simulation results, we cover the setup for the simulations.
Afterwards, we present results with zero packet loss probability followed by results
with non-zero packet loss probability. The simulation results are discussed in Chap-
ter 7.

6.1 Simulation Setup

In all simulations, we consider scalar stationary AR(2) sources of the form

Xt =

2∑

i=1

aiXt−i +Wt, t = 2, 3, . . . , (6.1)

where Wt ∼ N (0, σ2
W ). The parameters of the source is chosen such that the sta-

tionary variance of the source σ2
X = 1 and such that the parameters resembles linear

predictive coding (LPC) parameters of an AR(2) modeling of an audio signal. There-
fore, the source parameters used in all simulations are

a1 = 1.421, a2 = −0.579, σ2
W = 0.126. (6.2)

When the source is assumed to be AR(2), we use the parameters in (6.2) in schemes.
When an AR(1) source is assumed, we calculate the AR(1) source parameters using
the Yule-Walker equations for an AR(1) source. First, the first three samples of
the autocorrelation function (ACF) RX(k) can be computed using the AR(2) source
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parameters by solving the set of equations

RX(0) =
2∑

i=1

aiRX(i) + σ2
W (6.3)

RX(k) =
2∑

i=1

aiRX(k − i), k = 1, 2. (6.4)

Using the parameters in (6.2), the first three samples of the ACF is

RX(0) = 1, RX(1) = 0.9, RX(2) = 0.7, (6.5)

and the source parameters when assuming AR(1) is

a1 = RX(1)/RX(0) = 0.9, σ2
W = 0.19. (6.6)

For all simulations we use N = 100000 time samples and average the performance
over M = 4 Monte-Carlo simulations. That is, we generate 4 realizations of the
AR(2) source, apply the ZDMD coding schemes each of the realizations, and average
the performance for each schemes over the 4 realizations.

In all simulations we fix the sum-rate R and determine the respective step sizes of
the quantizers in the schemes. For each sum-rate we then calculate the operational
distortions for each scheme. We simulate the sum-rates R ∈ {5, 5.5, . . . , 12}. Due to
the fact, that the rates in (5.14) and (5.59) are only approximations, the operational
rates will be larger than R, especially for small rates. When we compare the perfor-
mance for different rates, we will use the operational rates and we will compute the
theoretical lower bound to rates close to the operational rates of the schemes.

We will describe the setup in detail for both types of schemes in the following.

6.1.1 Index Assignment Scheme

When simulating the performance of the index assignment scheme, we fix the sum-
rate R and the nesting ratio r and determine the corresponding step size of the central
quantizer by isolating ∆C in (5.59), i.e.,

∆C ≈

√
12 · 2πeσ2

W√
12 · 2R · r2 − 2πe‖a‖22

. (6.7)

The operational rates are obtained from estimates of the entropy of the elements
of the index assignment tuples

(
q

(1)
t , q

(2)
t

)
. The estimates are determined by estimates

of the distributions of q(i)
t , i = 1, 2, which are obtained from histograms of

{
q

(i)
t

}N−1

t=0
,

i = 1, 2. The operational sum-rate is the sum of the estimated entropies of q(i)
t ,

i = 1, 2.
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U∆C q(1) q(2)

1 0 3
2 3 0
3 3 3
4 3 6
-4 -3 -6
-3 -3 -3
-2 0 -3
-1 -3 0
0 0 0

Table 6.1: Index assignment map
for ∆C = 1 and ∆S = 3.

U∆C q(1) q(2) U∆C q(1) q(2)

0 0 0 -12 -15 -10
1 -5 5 -11 -5 -15
2 5 0 -10 -15 -5
3 0 5 -9 -10 -10
4 5 5 -8 -10 -5
5 0 10 -7 -5 -10
6 10 0 -6 -5 -5
7 10 5 -5 0 -10
8 5 10 -4 -10 0
9 10 10 -3 -5 0
10 5 15 -2 0 -5
11 15 5 -1 5 -5
12 15 10

Table 6.2: Index assignment map for ∆C = 1
and ∆S = 5.

As mentioned, we will simulate the performance of the schemes for different packet
loss probabilities. When the packet loss probability is zero, we calculate the central
and side distortions as

Di =
1

N

N−1∑

t=0

(
Xt − Y (i)

t

)2
i = 0, 1, 2 (6.8)

DS =
D1 +D2

2
, (6.9)

where Y (i)
t , i = 0, 1, 2 are the reconstructions of the source sample Xt given by (5.41a)

and (5.41b).
When the packet loss probability is non-zero, we determine the average MSE

distortion of the used reconstruction samples, i.e.,

D =
1

N

N−1∑

t=0

(Xt − Yt)2 , (6.10)

where Yt is the used reconstruction given the received packets and it is given by (5.42).

We simulate the performance using nesting ratios of r = 3, 5, 7. The tables for the
index assignment mappings for each nesting ratio is determined using the procedure
described in [28], using the cost function in (5.47). The resulting index assignment
maps are shown in Tables 6.1 to 6.3.
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U∆C q(1) q(2) U∆C q(1) q(2) U∆C q(1) q(2)

0 -7 7 17 21 14 -15 -7 -21
1 7 -7 18 14 21 -14 -21 -7
2 14 -7 19 7 28 -13 -14 -14
3 7 0 20 14 28 -12 -21 0
4 -7 14 21 28 14 -11 -14 -7
5 0 7 22 21 21 -10 -7 -14
6 0 14 23 14 35 -9 0 -21
7 14 0 24 28 21 -8 0 -14
8 7 7 -24 -14 -35 -7 -14 0
9 21 0 -23 -28 -21 -6 -7 -7
10 14 7 -22 -28 -14 -5 7 -14
11 7 14 -21 -21 -21 -4 -7 0
12 0 21 -20 -14 -28 -3 -14 7
13 7 21 -19 -7 -28 -2 0 -7
14 21 7 -18 -21 -14 -1 0 0
15 14 14 -17 -14 -21
16 28 7 -16 -28 -7

Table 6.3: Index assignment map for ∆C = 1 and ∆S = 7.

6.1.2 Staggered Quantization Schemes

As we saw in Section 5.3, the best performance using the staggered quantization
scheme is obtained using the sub-optimal predictors. Therefore, we will only simulate
the performance using the sub-optimal predictor assuming an AR(1) source. For each
fixed sum-rate R, we vary RS , R0 such that R = 2RS+R0. Specifically, we for a given
sum-rate R, we let RS ∈ [1.5;R/2] and R0 ∈ [0;R − 3]. For each rate pair RS , R0,
we determine the corresponding quantizer step sizes by isolating ∆S in (5.14), using
the prediction error variance for in (5.22), and by using (5.17) for ∆0.

The operational rates are obtained from estimates of the entropy of the quantizer
outputs U∆S ,(i)

t , i = 1, 2 and E∆0
Ct

, which are based on histograms of
{
U

∆S ,(i)
t

}N−1

t=0
,

i = 1, 2 and
{
E∆0
Ct

}N−1

t=0
. Let Ropi , i = 1, 2, and Rop0 be the estimated entropy of

U
∆S ,(i)
t , i = 1, 2 and E∆0

Ct
, respectively. Then the operational sum-rate is the sum of

the estimated entropies, Rop =
∑2

i=0R
op
i .

For the distortions, we calculate the central and side distortions as

Di =
1

N

N−1∑

t=0

(
Xt − Y (i)

t

)2
i = 0, 1, 2 (6.11)

DS =
D1 +D2

2
, (6.12)
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when the packet loss probability is zero, where Y (i)
t , i = 0, 1, 2 are the reconstructions

of the source sample Xt given by (5.8) and (5.20).
When the packet loss probability is non-zero, we determine the average MSE

distortion of the used reconstruction samples, i.e.,

D =
1

N

N−1∑

t=0

(Xt − Yt)2 , (6.13)

where Yt is the used reconstruction given the received packets and it is given by

Yt =





Y
(0)
t if both descriptions are received
Y

(i)
t if only the i’th description is received

1
2(Y

(1)
t−1 + Y

(2)
t−1) if no descriptions are received.

(6.14)

6.1.3 Lower bound

We compare the performance of the schemes to the theoretical lower bound on the
performance of ZDMD coding schemes assuming AR(1) sources given by (4.50). As
described in Section 5.3.1, for each fixed sum-rate R, we let

R = log

(
a2

1πS + σ2
W

πS

)
− 1

2
log
(
1− ρ2

)
(6.15)

and determine the corresponding side distortion πS for a grid of correlations ρ, with
ρ ∈ (−1; 0). We then calculate π0 using (4.52). For each rate, we can then plot the
side distortion against the central distortion.

We will also consider the smallest possible central distortion for a given sum-rate.
To this end, for each fixed sum-rate we find the minimum of the obtained central
distortions π0 by the determination described above.

When we simulate packet losses, it is possible that both packets are lost. Specif-
ically, if the probability of losing a packet over either channel is pl, we have the
following four possible cases





Both descriptions received with probability (1− pl)2

Only packet i received , i = 1, 2 with probability pl − p2
l

Both packets lost with probability p2
l ,

(6.16)

where it is assumed that packet losses on each channel is independent of packet losses
on the other.

When both packets are lost, we use the MMSE estimate of Xt given the previous
side reconstructions, i.e.

Yt = E
[
Xt|Y (1)

t−1, Y
(2)
t−1

]
= ΘlY t−1, (6.17)
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Figure 6.1: Sum-rate versus minimum central distortion.

where Y t−1 =
[
Y

(1)
t−1, Y

(2)
t−1

]T
and

Θl = ΣXY Σ−1
Y (6.18)

with ΣXY = E
[
XtY

T
t−1

]
and ΣY = E

[
Y tY

T
t

]
. The distortion when no packets are

received be expressed as

πl = E [(Xt −ΘlY t−1)] = σ2
X −ΣXY Σ−1

Y ΣT
XY . (6.19)

The distortion associated to a given packet loss probability is then the weighted sum
of the four cases, i.e.,

D(pl) = (1− pl)2π0 + 2(pl − p2
l )πS + p2

l πl. (6.20)

6.2 Rate-Distortion Performance with no Packet Loss

First we consider the rate-distortion performance of the schemes when packet loss
probability is zero. In Fig. 6.1 the sum-rate is plotted against the smallest central
distortion obtained for the specific sum-rate. Notice, that the scheme using staggering
achieves distortions below the theoretical lower bound. This is due to the refinement
quantization in scheme. Specifically, for all sum-rates R, the maximum possible
rate is used in the refinement quantizer. This means that staggered quantization
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Figure 6.2: Side distortion DS versus central distortion D0 for the ZDMD coding scheme using
staggered quantization with sub-optimal predictor (green) as well as using index assignment assuming
AR(1) (orange), and AR(2) (blue). The black curve represents the theoretical lower bound assuming
AR(1). The different line styles represent different sum-rates.

scheme approaches a single description quantization, since most of the rate is used
on quantizing EC,t.

For the index assignment schemes, the nesting ratio that minimizes the central
distortion for a given sum-rate is r = 7 of the used nesting ratios. It is seen, that
we obtain a gain in performance of when using the AR(2) predictor compared to the
AR(1) predictor. In particular, the average gain is 3.5 dB.

The plots in Fig. 6.1 only tells half of the story about the performance of the schemes,
since the side distortions does not figure from these plots. Therefore, consider Fig. 6.2
where the side distortion is plotted against the central distortion for three different
rates. From, Fig. 6.2 we see, that for all the simulated cases, the index assignment
scheme using assuming AR(1) sources obtains a slightly better performance compared
to the scheme using staggering. Both schemes assuming AR(1) sources has about 3.5
to 4 dB larger central distortion for a given side distortion compared to the theoretical
lower bound. The index assignment scheme assuming AR(2) achieves a performance
near the lower bound for a ZDMD scheme assuming AR(1) sources. This is in line
with what was seen in Section 5.3.
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IA r = 3 IA r = 5 IA r = 7 Staggering
ρ −0.73 −0.91 −0.96 −0.5

Table 6.4: Quantization noise correlations for different nesting ratio r in the index assignment
scheme (IA) and for the scheme using staggering.

IA AR(1) Sub-optimal stag. IA AR(2)
D −Dtheo [dB] 0.38 0.68 −1.33

Table 6.5: Average deviation from the theoretical lower bound for ZDMD coding of AR(1) sources
for the different schemes.

6.2.1 Correlation of Quantization Noise

As presented in Chapter 2, it is desirable to have quantization noises which are
highly negatively correlated. The correlations between the quantization noises over
the two channels are shown in Table 6.4. It is seen that we get a higher correlation
between the quantization noises when using the index assignment scheme compared
to the scheme using staggering. Actually, the correlation for scheme using staggering
is the minimum quantization noise correlation for a scheme using staggering [15].
Furthermore, it is seen that the correlation goes towards −1 when increasing the
nesting ratio for the index assignment schemes.

6.3 Performance Versus Packet Loss Probability

In this section, we investigate the performance of the ZDMD schemes in terms of
MSE distortion against packet loss probability. The MSE distortion is the average
distortion of used reconstruction which depends on how many packets are received. In
Figs. 6.3 and 6.4, the average MSE distortion is plotted against packet loss probability
for the different schemes with a operational sum-rate of about 10 bits.

It is seen, that the scheme using staggering and the index assignment scheme
assuming AR(1) has similar performance, and that the average distortion is close
to the theoretic achievable distortion. In Table 6.5, the average deviation from the
theoretical lower bound for ZDMD coding of AR(1) sources for the different schemes
is shown, where the average is over packet loss probabilities pl ≥ 1%.

Furthermore, the index assignment scheme assuming AR(2) achieves a better
average MSE distortion than the AR(1) schemes. On average, the average MSE
of the AR(2) scheme is 1.7 and 2.0 bits smaller than the index assignment scheme
assuming AR(1) and the scheme using staggering, respectively.
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Figure 6.3: Average MSE performance for the different ZDMD schemes as a function of packet
loss probability.
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Figure 6.4: Average MSE performance for the different ZDMD schemes as a function of packet
loss probability.





7. Discussion

In this chapter we discuss the design of the operational ZDMD schemes as well as the
simulation results presented in Chapter 6.

7.1 Operational ZDMD Coder Design

In Chapter 5, we presented a quantization scheme based on staggered quantizers,
which was described in [8], [9] for AR(1) sources. The design of the staggered quan-
tization scheme resembles the structure of the test-channel for ZDMD coding, which
can be seen by comparing Fig. 5.1 to Figs. 4.2 and 4.3. As the test-channel adds
Gaussian noise to two prediction error sequences, the similarity lies in the fact the
staggered quantization scheme uses staggered quantizers on two prediction error sam-
ples.

We have extended the scheme to use the optimal predictor for an AR(2) source,
such that the scheme could exploit the source structure. However, as pointed out in
[8], [9], when using the optimal predictor, bits must be used on communicating the
sign of the difference between the previous reconstruction samples, which increases
the sum-rate. This is necessary, since the difference cannot be computed at the de-
coder, if one of the packets was lost in the previous time step. It turns out, as can be
seen in Section 5.3, that the gain of using the optimal predictor is no greater than the
loss of having to transmit the sign bit. Hence, the best rate-distortion performance is
obtained by using the sub-optimal predictor when using the staggered quantization
scheme.

To overcome the difficulty in using the optimal predictor in a DPCM quantizer for
ZDMD coding, we have developed a novel ZDMD quantization scheme using index
assignment. With the index assignment scheme, we are able to use the optimal predic-
tor of any model order without having to spend bits on information not regarding the
prediction error sequence directly. In contrast to the staggered quantization scheme,
the index assignment scheme does not resemble the test-channel by quantizing two
prediction error samples. Rather, a single prediction error sample is quantized, and
this quantized value is mapped to two coarser quantizations of the prediction error
sample.

Even though, the index assignment scheme does not resemble the test-channel,
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we have seen from the theoretical rate-distortion performance in Section 5.3 and in
the simulations that the index assignment scheme assuming AR(1) achieves a better
performance compared to the staggered quantization scheme using the sub-optimal
predictor. The slight gain in rate-distortion performance can be attributed to the use
of the optimal predictor. This can be seen if we compare the plots in Fig. 5.5 and
Fig. 5.6. In Fig. 5.5, the distortion performance is shown for staggered quantization
assuming that the sign bit is not necessary. For both the index assignment scheme
and the staggered quantization scheme using the optimal AR(1), it is seen that a sim-
ilar gain is achieved compared to staggered scheme using the sub-optimal predictor.

Since we assume that the source parameters are known to the decoder, no rate has
been used on transmitting information about the source parameters. However, if
schemes should be used for encoding of speech signals, we would have to estimate
the parameters from small segments of the source samples assuming an AR model
order p. This means that the source parameters are not known at the decoder and
bits have to used on communicating the parameters to the decoder.

To reduce the overhead when transmitting the source parameters, we can transmit
packets including more samples. This will naturally introduce a delay. Thus, there
would be a trade-off between the rate used for the source parameters per packet and
the delay.

7.1.1 Trade-off between Central and Side Distortion

A key feature for MD coding, is the trade-off between the central and side distortion.
For the ZDMD test-channel, this trade-off is controlled by the quantization noise
correlation ρ. This does also apply to the index assignment scheme. In particular,
choosing a higher nesting ratio implies that the quantization noise correlation gets
closer to −1. As seen in Section 5.3, a higher nesting ratio is associated with a lower
central distortion but a higher side distortion.

In contrast, for the staggered quantization scheme, the distortion trade-off is con-
trolled by the amount of the sum-rate used in the central quantizer. Allocating more
or less of the sum-rate to the central quantizer does not change the correlation between
the side description quantization noises. In this regard, the staggered quantization
scheme differs from the test-channel. Furthermore, the bits used for the refinement
is only used if both packets are received. Thus, if one of the packets is lost, the bits
spend on refinement in the received packet cannot be used.

7.1.2 Feedback Assumption

In both the scheme using staggering and the scheme using index assignment we as-
sume that the encoder receives information about which packets are received at the
decoder. This is assumed, such that the reconstructions at the encoder are identical
to the reconstructions at the decoder, or in other words, the encoder and decoder
reconstruct the source samples in synchrony. The feedback is essential when packet
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losses occur, since the decoder cannot produce the same reconstructions as the en-
coder if packets are lost. However, the reconstruction of the previous time step is
required to generate the reconstruction to the current time step. By letting the en-
coder know which packets are lost, the encoder can produce prediction error samples
using the reconstructions that the decoder produce in the event of a packet loss.

The synchronicity is obtained through a noiseless feedback channel with 1 sample
delay. Such a feedback channel may not be feasible in a practical setup of wireless
transmission of speech or audio. Therefore, in order to make these schemes practical
applicable, it is desirable investigate whether the synchronicity between the encoder
and decoder can be removed.

Naively removing the feedback channel without modification of the schemes may
result in a huge degradation in performance under packet losses, since at a time
step following a packet loss, the encoder and decoder does not use the same predic-
tion in the prediction error and the reconstruction. In order to facilitate the use of
ZDMD coding for speech or audio transmission, designing ZDMD schemes without
the feedback channel is a topic for future research.

7.2 Simulation Results

7.2.1 Using AR(1) Predictors

From the simulations, it is seen that the best rate-distortion performance using AR(1)
predictors is obtained by the index assignment scheme. For the rates plotted in
Fig. 6.2, the loss in MSE distortion of the AR(1) index assignment scheme compared
to the theoretical lower bound is about 3.5 dB. Some of this loss can be attributed
to the space-filling loss of uniform quantization, which is about 1.5 dB [8].

7.2.2 Using AR(2) Predictors

The proposed design for a ZDMD scheme using index assignment has made it possible
to use the optimal predictor for an AR(p) source of any order p without having to
spend bits not related directly to the source. When comparing the rate-distortion
performance of the index assignment scheme using the optimal AR(2) predictor to the
schemes using AR(1) predictors, we see that a better rate-distortion performance is
obtained. This is due to the fact that the AR(2) predictor minimizes the MSE of the
prediction, when the source is an AR(2) source, hence the variance of the prediction
error samples are minimized when using the AR(2) predictor. Since rates are directly
related to the variance of the prediction error samples, we can achieve a smaller sum-
rate using the same quantizer step sizes, or equivalently, we can use smaller quantizer
step sizes for the same rate, thus achieving a smaller MSE distortion.
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7.2.3 Packet Loss

When different packet loss probabilities are experienced, different levels of central and
side distortion is optimal. E.g., when the packet loss probability is zero, we always
use the central decoder. For the staggered quantizer this means that the maximum
amount of rate is spend on the central quantizer and for the index assignment scheme
it means that the highest possible nesting ratio is chosen. When the packet loss
probability increases, the side reconstructions are used more often. Therefore, for
higher packet loss probabilities we require smaller side distortions.

From the simulation results concerning packet loss, it is seen from Figs. 6.3 and 6.4,
that the performance of the schemes assuming AR(1) are similar to the lower bound
with an average deviation from the lower bound of 0.38 dB and 0.68 dB for the
index assignment scheme and scheme using staggered quantization, respectively. Thus
we have demonstrated the robustness against packet loss of the operational ZDMD
coding scheme.



8. Conclusion

We have in this work studied ZDMD coding for the two-descriptions case with perfect
feedback from the decoder as well as the design of operational ZDMD coding schemes.
We have considered the symmetric case of ZDMD coding. To this end, we have
developed a novel operational ZDMD coding scheme for stationary scalar AR(p)
sources based on index assignment and DPCM quantization under the assumption of
feedback from the decoder.

The proposed index assignment scheme uses the MMSE predictor of the source
sample Xt given the previous reconstructions Yt−1 under the assumption of an sta-
tionary scalar AR(p) source. The trade-off between central and side distortion is
controlled varying the so-called nesting ratio r = ∆S/∆C .

In addition, we studied the generalization of the scheme developed in [9] which
uses staggered quantization and sub-optimal prediction of Xt assuming model order
p = 1 in the DPCM quantization. We generalized the scheme to use the MMSE pre-
dictor of any order p. By the theoretical central and side distortion of the staggered
ZDMD scheme, it was shown that the scheme using sub-optimal predictors has the
best performance among schemes of this structure. This is due to the necessity of
spending a bit on the sign of the difference between previous reconstructions when
using the MMSE predictor.

Using the MMSE predictor to for order p = 1, the operational MSE performance
of the index assignment scheme achieves a gain of 0.5 dB in MSE performance com-
pared to the scheme developed in [9]. We argue that the gain can be attributed to
the use of the MMSE prediction instead of the sub-optimal.

Compared to the theoretical lower bound for ZDMD coding of AR(1) sources with
MSE distortion constraints, simulations showed a loss in MSE distortion of about 3.5
dB for the index assignment scheme assuming model order p = 1.

By analysis of the of the operational coding scheme, we have showed that for a
stationary scalar AR(2) source, a gain in MSE error performance of about 3.5 dB
is obtained when using the MMSE predictor for the AR(2) compared to the MMSE
predictor for the corresponding AR(1) modeling of source.

Finally, by simulation of the average MSE distortion under i.i.d. packet losses, we
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have demonstrated the robustness of the operational ZDMD coding schemes com-
pared to the theoretical lower bound on the average MSE distortion.

8.1 Future Work

We have studied the design of operational ZDMD coders, but further research about
ZDMD coding still remains.

We compare the performance of the operational ZDMD coding schemes to the the-
oretical lower bound for an AR(1) source and MSE distortion constraints developed
in [8]. During the time frame of the project, it has not been possible to extend the
theoretical lower bound to scalar AR(p) sources for p > 0. Since the information
theoretic symmetric ZDMD RDF Theorems 4.8 and 4.11 holds for any stationary
source, we speculate that the extension to scalar AR(p) sources for p > 0 can be
obtained by expressing the scalar AR(p) source as a vector AR(1) source following
the approach in [29].

It may also be possible to generalize Theorems 4.8 and 4.11 to vector AR(1)
sources using the results of [30] and [7] and then obtain a characterization similar
to Theorem 4.14. Then similar to [29], express the scalar AR(p) source as a vector
AR(1) source and use the characterization of the symmetric ZDMD RDF for vector
AR(1) sources as the lower bound on the scalar AR(p) source.

Since the feedback channel from the decoder is infeasible in e.g. practical wireless
transmission of audio, it would be interesting to study ZDMD coding under packet
loss without assuming feedback from the decoder. In particular, the design of opera-
tional ZDMD coding schemes would be relevant in this case.
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A. Information Theory

In this appendix, we will present the basic definitions and results regarding informa-
tion and coding theory. The content of this chapter is based on [12].

A.1 Entropy and Mutual Information

In this section, the notion of entropy and mutual information will be presented. We
will initially present the definitions and results regarding discrete random variables.
Let X be a discrete random variable with alphabet X and probability mass function
(PMF) p(x) = P{X = x}, for x ∈ X .

Definition A.1 (Entropy [12])
The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑

x∈X
p(x) log(p(x)). (A.1)

Unless otherwise stated, the logarithm is to base 2 and the entropy is expressed
in bits. By convention, we let 0 log(0) = 0, which is justified by continuity since
x log(x) → 0 as x → 0. This means, that adding terms of zero probability does not
affect the entropy.

We denote by E the expected value operator, e.g., for a random variableX ∼ p(x),
the expected value of g(X) is

Ep [g(X)] =
∑

x∈X
g(x)p(x). (A.2)

When the PMF is understood from the context, we write E [g(X)] instead. From
Definition A.1, it is seen that the entropy can be understood as the expected value
of the random variable log

(
1

p(X)

)
, where X ∼ p(x). Thus

H(X) = Ep
[
log

(
1

p(X)

)]
. (A.3)
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From the fact that log
(

1
p(x)

)
≥ 0 since 0 ≤ p(x) ≤ 1, it follows that the entropy is

non-negative, i.e., H(X) ≥ 0.
Additionally, it is possible to change the base of the logarithm in the definition of

entropy by multiplying by an appropriate factor, as seen from

Hb(X) = −
∑

x∈X
p(x) logb(p(x))

= −
∑

x∈X
p(x) logb

(
aloga(p(x))

)

= −
∑

x∈X
p(x) logb(a) loga(p(x))

= logb(a)Ha(X). (A.4)

The definition of entropy is extended to the entropy of two discrete random variables
in the following definition.

Definition A.2 (Joint Entropy [12])
The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) ∼ p(x, y)
is defined by

H(X,Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x, y)) = −E [log(p(X,Y ))] . (A.5)

Definition A.3 (Conditional Entropy [12])
For (X,Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X) = −
∑

x∈X

∑

y∈Y
p(x, y) log(p(y|x)) = −E[log(p(Y |X))]. (A.6)

The joint entropy of the pair of random variables (X,Y ) can be decomposed into
the sum of the entropy of X and the conditional entropy of Y given X.

Theorem A.4 (Chain Rule [12])

H(X,Y ) = H(X) +H(Y |X). (A.7)
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Proof.

H(X,Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x, y))

= −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x)p(y|x))

= −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x))−

∑

x∈X

∑

y∈Y
p(x, y) log(p(y|x))

= −
∑

x∈X
p(x) log(p(x))−

∑

x∈X

∑

y∈Y
p(x, y) log(p(y|x))

= H(X) +H(Y |X). (A.8)
�

Corollary A.5

H(X,Y |Z) = H(X|Z) +H(Y |X,Z). (A.9)

The entropy of a random variable is a measure of the uncertainty of the random
variable, thus it is a measure of the amount of information required on average to
describe a random variable [12].

Example A.6
Consider the two random variables

X =





a with probability 1
4

b with probability 1
4

c with probability 1
4

d with probability 1
4

Y =





a with probability 1
2

b with probability 1
4

c with probability 1
8

d with probability 1
8

The entropy of these random variables is

H(X) = −4

4
log

(
1

4

)
= − log

(
1

4

)
= 2 bits (A.10)

and
H(Y ) = −1

2
log

(
1

2

)
− 1

4
log

(
1

4

)
− 2

8
log

(
1

8

)
=

7

4
bits. (A.11)
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The example suggests that when the distribution of a discrete random variable is
uniform, the entropy is maximized. This can be interpreted as the uncertainty of
the random variable X is greater than the uncertainty of Y . This means on average,
fewer bits are required to describe Y than X. The fact that the uniform distribu-
tion maximizes the entropy will be shown later in Theorem A.12. But first we will
introduce relative entropy and mutual information

The relative entropy is a measure of the distance between two distributions.

Definition A.7 (Relative Entropy [12])
The relative entropy between two PMF’s p(x) and q(x) is defined as

D(p‖q) =
∑

x∈X
p(x) log

(
p(x)

q(x)

)
= Ep

[
log

(
p(X)

q(X)

)]
. (A.12)

In the relative entropy, the convention is that 0 log
(

0
0

)
= 0, 0 log

(
0
q

)
= 0, and

p log
(p

0

)
= ∞. Thus the D(p‖q) = ∞ if there is any symbol x ∈ X with p(x) > 0

and q(x) = 0.
The relative entropy is always non-negative, but it is not a true distance since it

is not symmetric and it does not satisfy the triangle inequality. However, it can be
useful to think of relative entropy as the distance between distributions. [12]

Theorem A.8 (Non-negativity of Relative Entropy [12])
Let p(x), q(x), x ∈ X be two PMF’s. Then

D(p‖q) ≥ 0 (A.13)

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof.
Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p‖q) = −Ep
[
log

(
p(X)

q(X)

)]

= Ep
[
log

(
q(X)

p(X)

)]
. (A.14)

Since log(t) is a strictly concave function, we have by Jensen’s inequality [12, The-
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orem 2.6.2] that Ep [log(X)] ≤ log(Ep [X]). Hence

Ep
[
log

(
q(X)

p(X)

)]
≤ log

(
Ep
[
q(X)

p(X)

])
(A.15)

= log

(∑

x∈A
p(x)

q(x)

p(x)

)

= log

(∑

x∈A
q(x)

)

≤ log

(∑

x∈X
q(x)

)
(A.16)

= log(1)

= 0.

Again since log(t) is strictly concave, we have by [12, Theorem 2.6.2] equality in
(A.15) if and only if q(x)

p(x) is constant for all x, i.e., q(x) = cp(x) for all x. Thus

∑

x∈A
q(x) = c

∑

x∈A
p(x) = c. (A.17)

In (A.16), we have equality only if
∑

x∈A
q(x) =

∑

x∈X
q(x) = 1. (A.18)

This implies that c = 1 and therefore D(p‖q) = 0 if and only if p(x) = q(x) for all
x ∈ X . �

We now introduce mutual information as a special case of relative entropy. Mutual
information is a measure of the reduction in uncertainty of one random variable due
to knowledge of another.

Definition A.9 (Mutual Information [12])
Let X and Y be two discrete random variables with joint PMF p(x, y) and marginal
PMF’s p(x) and p(y). The mutual information I(X;Y ) is the relative entropy
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between the joint PMF and the product of the marginals, i.e.,

I(X;Y ) = D(p(x, y)‖p(x)p(y))

=
∑

x∈X

∑

y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)

= Ep(x,y)

[
log

(
p(X,Y )

p(X)p(Y )

)]
(A.19)

As mutual information is a special case of the relative entropy, it is also non-
negative.

Corollary A.10 (Non-negativity of Mutual Information)
For two random variables X and Y ,

I(X;Y ) ≥ 0, (A.20)

with equality if and only if X and Y are independent.

Proof.
I(X;Y ) = D(p(x, y)‖p(x)p(y)) ≥ 0, with equality if and only if p(x, y) = p(x)p(y),
which is only the case if X and Y are independent. �

Mutual information is related to the entropy of the random variables through the
following relations.

Theorem A.11
For the random variables X and Y , we have the following relations:

I(X;Y ) = H(X)−H(X|Y ) (A.21)
I(X;Y ) = H(Y )−H(Y |X) (A.22)
I(X;Y ) = H(X) +H(Y )−H(X,Y ) (A.23)
I(X;Y ) = I(Y ;X) (A.24)
I(X;X) = H(X) (A.25)
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Proof.
By rewriting the mutual information we obtain (A.21)

I(X;Y ) =
∑

x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

=
∑

x,y

p(x, y) log

(
p(x|y)

p(x)

)

= −
∑

x,y

p(x, y) log(p(x)) +
∑

x,y

p(x, y) log(p(x|y))

= H(X)−H(X|Y ). (A.26)

Since p(x|y)p(y) = p(x, y) = p(y|x)p(x), we obtain (A.22) with the same argument.
The relation in (A.23) follows from (A.21) andH(X,Y ) = H(X)+H(Y |X) as stated
in Theorem A.4. The symmetry property in (A.24) follows from the definition of
mutual information. For the last relation in (A.25), note that

I(X;X) = H(X)−H(X|X) = H(X). (A.27)
�

With the definitions of relative entropy and mutual information we state that the
uniform distribution over X is the maximum entropy distribution over this range.
Furthermore, we will show that conditioning reduces entropy.

Theorem A.12 (Maximum Entropy Distribution is Uniform [12])
Let |X | denote the number elements in the range of the discrete random variable
X, then

H(X) ≤ log(|X |), (A.28)

with equality if and only if X has uniform distribution over X .

Proof.
Let u(x) = 1

|X | be the uniform PMF over X and let p(x) be the PMF of X. Then

D(p‖u) =
∑

x∈X
p(x) log

(
p(x)

u(x)

)

=
∑

x∈X
p(x) log(p(x))−

∑

x∈X
p(x) log

(
1

|X |

)

= log(|X |)−H(X), (A.29)
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and by the non-negativity of relative entropy we have

0 ≤ D(p‖u) = log(|X |)−H(X). (A.30)
�

We conclude the treatment of entropy with a result on the conditional entropy.

Theorem A.13 (Conditioning Reduces Entropy [12])

H(X|Y ) ≤ H(X)

with equality if and only if X and Y are independent.

Proof.
0 ≤ I(X;Y ) = H(X) − H(X|Y ), and with X ⊥⊥ Y , the equality follows from
Corollary A.10. �

A.2 Differential Entropy

The focus has until now been on discrete random variables, but in many cases we
consider continuous random variables. In this section we therefore introduce the
differential entropy, which is the entropy of a continuous random variable.

Definition A.14 (Differential Entropy [12])
The differential entropy h(X) of a continuous random variable X with density f(x)
is defined as

h(X) = −
∫

S
f(x) log(f(x)) dx, (A.31)

where S is the support of f(x).

In contrast to the entropy of a discrete random variable, the differential entropy
can be negative. Consider for example a random variable with density f(x) = 1

a for
x ∈ [0; a], i.e, a uniformly distributed random variable. Then the differential entropy
is

h(X) = −
∫ a

0

1

a
log

(
1

a

)
dx = log(a). (A.32)
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If 0 < a < 1, then h(X) < 0. Another property of differential entropy is that for
a given variance, the Gaussian distribution maximizes the entropy. As an indicative
example lets consider the entropy of a zero-mean Gaussian random variable X ∼
φ(x) = 1√

2πσ2
e
−x2

2σ2 with variance σ2 = a2

12 . We will calculate the entropy in nats.

h(X) = −
∫
φ(x) ln(φ(x)) dx

= −
∫
φ(x)

(
− x2

2σ2
− 1

2
ln
(
2πσ2

))
dx

= E
[
x2

2σ2
+

1

2
ln
(
2πσ2

)]

=
E
[
X2
]

2σ2
+

1

2
ln
(
2πσ2

)

=
1

2
+

1

2
ln
(
2πσ2

)

=
1

2
ln(e) +

1

2
ln
(
2πσ2

)

=
1

2
ln
(
2πeσ2

)
, (A.33)

where ln(·) denotes the logarithm to base e. Changing the base of the logarithm
yields the entropy in bits given by

h(X) =
1

2

ln
(
2πeσ2

)

ln(2)
=

1

2
log
(
2πeσ2

)
. (A.34)

Now if the variance is σ2 = a2

12 we have that

h(X) =
1

2
log

(
2πe

a2

12

)
=

1

2
log

(
2πe

12

)
+ log(a), (A.35)

which is larger than the entropy of the uniform distribution with the same variance
since 1

2 log
(

2πe
12

)
> 0. It will be shown later in Theorem A.21 that the Gaussian

distribution maximizes the entropy over distributions with the same variance.

Before introducing joint differential entropy and mutual information for continuous
random variables, we consider the relation between differential entropy and discrete
entropy.

Theorem A.15
Let X be a random variable with Riemann integrable density f(x). Suppose the
range of X is divided into bins of length ∆. Let X∆ be the quantized random
variable defined as

X∆ = xi, if i∆ ≤ X < (i+ 1)∆, (A.36)
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where xi is the value in the ith bin satisfying

f(xi)∆ =

∫ (i+1)∆

i∆
f(x) dx. (A.37)

Then
H(X∆) + log(∆)→ h(X), as ∆→ 0. (A.38)

Thus, the entropy of an n-bit quantization of a continuous random variable X is
approximately h(X) + n.

We now extend the differential entropy to the differential entropy of several ran-
dom variables.

Definition A.16 (Joint Differential Entropy [12])
The differential entropy of the set of random variables Xn = (X1, X2, . . . , Xn) with
the joint density f(x1, x2, . . . , xn) is defined by

h(Xn) = −
∫
f(xn) log(f(xn)) dxn. (A.39)

Definition A.17 (Conditional Differential Entropy [12])
For the random variables X and Y with joint density f(x, y), the conditional dif-
ferential entropy h(X|Y ) is defined as

h(X|Y ) = −
∫
f(x, y) log(f(x|y)) dx dy. (A.40)

The chain rule of Theorem A.4 also apply for differential entropy, i.e.,

h(X,Y ) = H(X) +H(Y |X) (A.41)

since by definition of conditional density f(y|x) = f(x, y)/f(x).
As for discrete entropy we define the relative entropy and mutual information.

Definition A.18 (Relative Entropy [12])
The relative entropy D(f‖g) between two densities f and g is defined by

D(f‖g) =

∫
f(x) log

(
f(x)

g(x)

)
dx. (A.42)
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We let 0 log
(

0
0

)
= 0. Note that the relative entropy is only finite if the support

set of f is contained in the support set of g.

Definition A.19 (Mutual information [12])
The mutual information between two random variables X and Y with joint density
f(x, y) is defined as

I(X;Y ) = D(f(x, y)‖f(x)f(y)) =

∫
f(x, y) log

(
f(x, y)

f(x)f(y)

)
dx dy (A.43)

We will conclude the section about differential entropy by proving that the Gaus-
sian distribution maximizes differential entropy.

Theorem A.20 (Differential Entropy of Multivariate Gaussian [12])
Let Xn = (X1, X2, . . . , Xn) ∼ N (µ,Σ). Then

h(Xn) =
1

2
log(2πe)n|Σ|, (A.44)

where |Σ| denotes the determinant of Σ.

Proof.
See [12, p. 250] �

Theorem A.21 (Maximum Differential Entropy, [12])
Let the random vector X ∈ Rn have zero mean and covariance K = E[XXT ].
Then

h(X) ≤ 1

2
log((2πe)n|K|), (A.45)

with equality if and only if X ∼ N (0,K).

Proof.
Let g(x) be any density satisfying Eg[XXT ] = K. Let φK be the density of
N (0,K). Note that log(φK(x)) is a quadratic form and by definition EφK (XXT ) =
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K. Then

0 ≤ D(g‖φK)

=

∫
g(x) log

(
g(x)

φK(x)

)
dx

= −h(X)−
∫
g(x) log(φK(x)) dx

= −h(X)−
∫
φK(x) log(φK(x)) dx

=
1

2
log((2πe)n|K|)− h(X), (A.46)

where the substitution
∫
g(x) log(φK(x)) dx =

∫
φK(x) log(φK(x)) dx follows from

the fact that
Eg[log(φK(X))] = EφK [log(φK(X))]. (A.47)

�



B. WS: Source Coding

In this appendix, we will describe the basics of source coding. The primary task
of source coding is to represent a source signal by the smallest possible number of
bits while ensuring reconstruction with an acceptable level of distortion, which is
application specific [22, p. 6]. In general, we distinguish between two types of source
coding, namely lossless source coding and lossy source coding. As the names suggest,
no distortion is introduced using lossless coding, while distortion is introduced using
lossy coding. In this section we will focus on the lossless source coding and lossy
coding will be introduced in Appendix C.

We begin with a formal definition of a source code.

Definition B.1 (Source Code [12])
A source code C for a random variable X is a mapping from the range of X to a
set D∗ of finite-length strings of symbols from a D-ary alphabet, i.e., C : X → D∗.
Furthermore, C(x) denotes the codeword corresponding to x and `(x) denotes the
length of C(x).

We will in this thesis only focus on the source codes using the binary alphabet
D = {0, 1}.

In lossless coding, we must be able to uniquely decode a codeword C(x) to its
corresponding source symbol x. Therefore it is necessary that the source code is
non-singular.

Definition B.2 (Non-singular Source Code [12])
A code is said to be non-singular if every element x ∈ X maps to a different codeword
in D∗, i.e., for any x, x′ ∈ X with

x 6= x′ ⇒ C(x) 6= C(x′).

However, Non-singularity does not suffice for unique decodability if a sequence of
codewords is sent, which is usually the case in many practical situations.

91
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X Code A Code B Code C Code D
1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111

Table B.1: Examples of codes

Definition B.3 (Uniquely Decodability [12])
The extension C∗ of a code C is the mapping from finite-length strings of symbols
from X to finite-length stings of symbols from D, defined by

C(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn), (B.1)

where C(x1)C(x2) . . . C(xn) indicates concatenation of the corresponding code-
words.

A code is called uniquely decodable if its extension is non-singular.

If a code is uniquely decodable, then there is not two finite-length strings of source
symbols which yields the same codeword. However, one may need the entire codeword
in order to decode even first source symbol.

Definition B.4 (Instantaneous Code [12])
A code is called a prefix code or instantaneous code if no codeword is a prefix of
any other codeword.

Since no codeword is a prefix of another in an instantaneous code, a source symbol
can be decoded as soon as the end of the corresponding codeword is reached. There-
fore, instantaneous codes is also categorized as self-punctuating codes. In Table B.1,
four examples of codes are given. Here code A is singular, code B is non-singular
but not uniquely decodable, code C is uniquely decodable but not instantaneous, and
code D is an instantaneous code.

The goal when designing a lossless code is to minimize the expected length of the
codeword while ensuring unique decodability [22, p. 22].

Definition B.5 (Expected Length [12])
The expected length L(C) of a source code C for a random variable X with PMF
p(x) is given by

L(C) =
∑

x∈X
p(x)`(x), (B.2)
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where `(x) denotes the length of C(x).

The following inequality limits the set of codewords lengths possible for instanta-
neous codes.

Theorem B.6 (Kraft Inequality [12])
For any instantaneous code over the binary alphabet D = {0, 1}, the codeword
lengths l1, l2, . . . , lm must satisfy the inequality

m∑

i=1

2−li ≤ 1.

Conversely, for any set of codeword lengths satisfying this inequality, there exists
an instantaneous code with these codeword lengths.

Proof.
For a proof see [12, pp. 107-109] �

Actually, the Kraft inequality must also be satisfied for any uniquely decodable
code, as shown in [12, Theorem 5.5.1]. Thus, even though the set of uniquely de-
codable codes is larger than the set of instantaneous codes, we can always find a
instantaneous code with the same codeword lengths as any uniquely decodable code.
Hence, instantaneous codes are the ones used in practice [22, p. 27].

In the following we will find bounds on the expected codeword length for optimal
instantaneous codes, where optimal refers to the instantaneous codes with minimum
expected codeword length.

Theorem B.7
The expected length L of any instantaneous binary code for a random variable X
is greater than or equal to the entropy H(X), i.e.,

L ≥ H(X), (B.3)

with equality if and only if 2−li = pi, where li and pi is the length of the codeword
and the probability, respectively, for the ith symbol in X .
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Proof.
By Definition B.5

L =
∑

pili =
∑

pi log2

(
2li
)
. (B.4)

We can now write the difference L−H(X) as

L−H(X) =
∑

pi log2

(
2li
)

+
∑

pi log2(pi)

=
∑

pi log2

(
2lipi

)

=
1

ln(2)

∑
pi ln

(
2lipi

)
, (B.5)

where the last equality follows from the same argument as in (A.4). By Lemma B.8

L−H(X) ≥ 1

ln(2)

∑
pi

(
1− 1

2lipi

)
(B.6)

=
1

ln(2)

(
1−

∑
2−li

)

≥ 1

ln(2)
(1− 1) = 0, (B.7)

where the last inequality follows from Kraft inequality Theorem B.6.
In (B.6) equality is obtained if 2lipi = 1 by Lemma B.8 which equivalent to

2−li = pi. If 2−li = pi, (B.6) reduced to

1

ln(2)

∑
pi

(
1− 1

2lipi

)
=

1

ln(2)

∑
pi(1− 1) = 0, (B.8)

thus L = H(X) if 2−li = pi. �

In Theorem B.7, the equality is obtained if and only if 2−li = pi. The code-
word lengths li must be integers, thus the lower equality is only obtained if pi ∈
{1/2, 1/4, 1/8 . . . }. In this case we can choose the length of the codewords as li =
− log(pi) and L will equal H(X). When − log(pi) is not an integer, we can choose

li =

⌈
log

(
1

pi

)⌉
, (B.9)

where dxe is the smallest integer ≥ x. With these lengths, the Kraft inequality is still
satisfied as ∑

2
−
⌈
log
(

1
pi

)⌉
≤
∑

2
− log

(
1
pi

)
=
∑

pi = 1. (B.10)

Furthermore, we can show that with these codeword lengths

H(X) ≤ L < H(X) + 1 (B.11)
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since when we round up to the nearest integer

log

(
1

pi

)
≤ li < log

(
1

pi

)
+ 1. (B.12)

By multiplying by pi and summing over i, we obtain the bounds on the expected
length. Since the expected length of an instantaneous code with the minimum ex-
pected codeword length cannot be larger than L with this choice of codeword length,
we can conclude that the optimal expected codeword length L∗ satisfies [12, pp.
112-113]

H(X) ≤ L∗ < H(X) + 1. (B.13)

The upper bound can be lowered by encoding an n-length string of source symbols
from X instead of each source symbol. In fact, if Ln denotes the expected length per
source symbol, then

H(X) ≤ Ln < H(X) +
1

n
(B.14)

if the source symbols are drawn i.i.d with respect to p(x). [12, p. 113]

B.1 Bound on Natural Logarithm

Lemma B.8

ln(a) ≥ 1− 1

a
, ∀a > 0, (B.15)

with equality if and only if a = 1.

Proof.
Let

f(x) = ln(x)− 1 +
1

x
, ∀x > 0. (B.16)

We want to show that f(x) ≥ 0 for all x > 0. First we find the derivative of f

f ′(x) =
1

x
− 1

x2
=
x− 1

x2
(B.17)

which only is zero at x = 1. Evaluating f in x = 1 yields f(1) = ln(1)− 1 + 1
1 = 0,

and since the derivative is negative for x ∈ (0; 1) and positive for x ∈ (1;∞), we
can conclude that f(x) ≥ 0 for all x > 0 with equality if and only if x = 1. �
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In many practical situations of communication where the source is the result of some
physical event, the source take on a value from a continuous range. Therefore it is not
possible to transmit such source with a finite amount of bits, since the description of
an arbitrary real number requires an infinite amount of bits. To enable a finite rate,
some distortion must be introduced to the representation of the continuous random
variable. The distance from the source to the representation is measured by a so-
called distortion measure. Given a source distribution and a distortion measure, in
rate-distortion theory we seek to find the minimum expected distortion achievable
for a specific rate. Or equivalently, find the minimum rate required to achieve a
particular distortion. [12, p. 301]

In order to encode a continuous random variable into a finite set of codewords
with a finite number of bits, quantization must be applied. As described in [12,
pp. 301-303], quantization of blocks of n realizations of a random variable using nR
bits achieves a lower distortion than quantization of each individual sample using R
bits, even if the realizations are i.i.d. Therefore, we will consider the encoding of a
sequence of source symbols Xn = (X1, X2, . . . , Xn) with Xi

i.i.d.∼ p(x) for x ∈ X .

Definition C.1 (Rate-Distortion Code [12])
Let Xn = (X1, X2, . . . , Xn) be a sequence of random variables with Xi

i.i.d.∼ p(x) for
x ∈ X . A (2nR, n)-rate distortion code consists of an encoding function

fn : X n → {1, 2, . . . , 2nR} (C.1)

and a decoding function
gn : {1, 2, . . . , 2nR} → Yn (C.2)

where Y is the reconstruction alphabet.

C.1 Distortion

As mentioned, for continuous random variables, the encoding is not invertible, thus
distortion is introduced. Distortion is also introduced when encoding discrete random

97
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variables with a rate less than the entropy. We present the notion of distortion
through the definitions in this section. We first introduce the distortion measure.

Definition C.2 (Distortion Measure [12])
A distortion function or distortion measure is a mapping from the pairs of source
symbols and reconstruction symbols to the non-negative real numbers, i.e.,

d : X × Y → R+. (C.3)

The distortion d(x, y) is a measure of the cost of representing x by y.

Examples of commonly used distortion measures are the Hamming distortion
given by

d(x, y) =

{
0 if x = y

1 if x 6= y
, (C.4)

and the squared-error distortion given by

d(x, y) = (x− y)2. (C.5)

The squared-error distortion is the most common used distortion measure for contin-
uous source alphabets, and we will also use this distortion measure throughout this
thesis. However, it is worth noting that the squared-error distortion is not an ap-
propriate distortion measure for speech or sound coding, as two identical waveforms
slightly shifted in time can result in a large squared-error distortion, even though
these would sound identical to a human listener. [12, p. 305]

In order to extend the distortion measure to distortion between sequences, we use
the following definition.

Definition C.3 (Average Distortion Measure [12])
The distortion between sequences xn and yn is given by

d(xn, yn) =
1

n

∑

i=1n

d(xi, yi). (C.6)

That is, the distortion between sequences is the average per symbol distortion of
the elements in the sequences. With this extension, using the squared-error distortion,
the distortion between sequences is the mean squared error (MSE). Other appropriate
extensions can be used, for example letting the distortion between sequences be the
maximum per symbol distortion. However, we will restrict us to the the average per
symbol distortion.
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Definition C.4 (Distortion [12])
The distortion of a (2nR, n)-code is defined as the expected value of the distortion
measure between the source sequence and the reconstruction sequence, where the
expectation is with respect to probability distribution on X, i.e.,

D = E [d(Xn, gn(fn(Xn)))] (C.7)

C.2 Rate-Distortion Function

As mentioned, the rate-distortion theory seeks to answer what is the minimum achiev-
able rate for a given distortion.

Definition C.5 (Rate-Distortion Region [12])
A rate-distortion pair (R,D) is said to be achievable if there exist a sequence of
(2nR, n)-rate-distortion codes (fn, gn) such that

lim
n→∞

E [d(Xn, gn(fn(Xn)))] ≤ D. (C.8)

The closure of the set of achievable rate-distortion pairs is called the rate-distortion
region.

Definition C.6 (Rate-Distortion Function [12])
The rate-distortion function R(D) is the infimum of all rates such that (R,D) is in
the rate-distortion region of the source for a given D.

The infimum in Definition C.6 is over all rate-distortion codes and it is therefore
not feasible to use the definition directly to find the rate-distortion function for a
source and distortion measure. Instead, we can use the information rate-distortion
function, which is equal to the operational rate-distortion function of Definition C.6.

Theorem C.7
For a source X with distribution p(x) and a distortion measure d, the information
rate-distortion function is defined as

RI(D) = inf I(X;Y ), (C.9)

where the infimum is over all conditional distributions p(y|x) such that
∑

(x,y)

p(x)p(y|x)d(x, y) ≤ D. (C.10)



100 Appendix C. WS: Rate-Distortion Theory

For an i.i.d source and bounded distortion measure

R(D) = RI(D) = inf I(X;Y ). (C.11)

Proof.
For a proof see [12, pp. 316-318, 321–324] �

As an example, the rate-distortion function of a white Gaussian source with vari-
ance σ2

X is

R(D) =

{
1
2 log

(
σ2
X
D

)
0 ≤ D ≤ σ2

X

0 D > σ2
X

(C.12)

and it is achieved with the test-channel described in [12, pp. 310-311].
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