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Large-Scale Mangrove Biomass Estimation Summary

Summary

In recent years, cloud computing and Earth Observation data has significantly grown to allow for
large-scale calculation of vital statistics, such as land cover and biomass, to facilitate for the moni-
toring of the health and development of ecosystems in light of climate change and the United Nations
Sustainable Development Goals. With the advancement of cloud computing platforms, such as Google
Earth Engine, and the data availability of remotely sensed data on said platforms, can machine learn-
ing by utilized in conjunction with high resolution data to estimate mangrove land covers as well as
above ground biomass in these threatened areas?

Previous studies estimating mangrove biomass (Simard et al., 2019), utilize data collected at lower
resolutions than what is currently available, and/or also collected during a period which is no longer
applicable to the conditions of the present. With global datasets, such as Sentinel-2’s global imagery
at 10m resolution, and active sensors such as NASA’s Ice, Cloud, and Elevation Satellite and Global
Ecosystem Dynamics Investigation LIDAR platforms sampling the elevation of key features on the
Earth’s surface at a fine resolution, derivation of high resolution mangrove health statistics, such as
area, height, and biomass, should be achievable utilizing GEE.

The workflow developed in this study (Listing 9), within a cloud computing environment, can eas-
ily be deployed in any region of the globe (at a country-wide scale) where mangroves may be present
with minimal changes in order to generate high resolution mangrove health statistics to facilitate the
reporting of these ecosystems and improving stewardship and development of the UN Sustainable De-
velopment Goals. Cloud computing and actively sensed data such as GEDI canopy height returns in
concert with machine learning techniques have proven to accurately predict key mangrove charac-
teristics, height and above ground biomass, at a large scale (country-wide), allowing for rapid and
detailed reporting and management of these ecosystems, proving that they are powerful tools in the
fight against future climate change. This study intends to build and develop upon the workflow and
techniques derived and utilized in the previous semester’s study by Boest-Petersen, 2022b.

Page 2 of 70



Large-Scale Mangrove Biomass Estimation Summary

Title:
Large Scale Mangrove Above-Ground Biomass Estimation using Remote Sensing (RS) & Earth Ob-
servation (EO) Data with Machine Learning.

Project Period:
January 2022 – June 2022

Authors:
Boest-Petersen, Alexander (#20201810)

Supervisor:
Prof. Dr. Jamal Jokar Arsanjani

Number of Pages:
70

Department:
Department of Development and Planning

Address:
A.C. Meyers Vænge 15, 2450 Copenhagen SW, DK

Study Secretary CPH:
Sille Sophia Johannsen

Page 3 of 70



Large-Scale Mangrove Biomass Estimation Preface

Preface

This report was written during the Spring 2022 Thesis Semester at Aalborg University Copen-
hagen for the Survey, Planning, and Land Management (Cand. Tech.) Masters program under the
supervision of Prof. Dr. Jamal Jokar Arsanjani. The semester took place from January 2022 to June
2022. During the course of the study, large amounts of remotely sensed data (imagery, backscatter,
LIDAR, etc.) was processed in custom Python tools or in cloud computing environments (see Ap-
pendix) in order to derive mangrove biomass estimations at large scales. The work done in this study
was based off of, and an evolution of, the 2021 Fall Semester internship report by Boest-Petersen,
2022b. As such, many similar topics and ideas are presented in this report, but with the aim of im-
proving and furthering the work done previously.

Note: All code listings, figures, and tables are made by Alexander Boest-Petersen specifically
for this report unless specified. Cloud computing environments and Python tools can be found in the
Appendix of this report.
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Glossary

Backscatter “is the portion of the outgoing radar signal that the target redirects directly back to-
wards the radar antenna. Backscattering is the process by which backscatter is formed”. (Eu-
ropean Space Agency, 2021a)

Blue Carbon “refers to organic carbon that is captured and stored by the oceans and coastal ecosys-
tems”. (Macreadie et al., 2019)

Cloud Computing “is the delivery of computing services—including servers, storage, databases,
networking, software, analytics, and intelligence—over the Internet”. (Microsoft, 2021)

Cryosphere “is the frozen part of the Earth system”. (NOAA, 2022)

Spatial Resolution “is a measure of the smallest object that can be resolved by the sensor, or the
ground area imaged for the instantaneous field of view (IFOV) of the sensor, or the linear di-
mension on the ground represented by each pixel”. (Liang et al., 2012)

Temporal Resolution “is defined as the amount of time needed to revisit and acquire data for the
exact same location”. (Théau, 2008)
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1 Introduction & Problem Analysis

1.1 Mangroves: Ecological Impact & Climate Change

Mangroves are regions of high productivity, and diverse habitats, for both plants and species,
that can be found in tropical and subtropical regions of the world where rivers, intertidal, and coastal
waters mix. (Kathiresan, 2021) When compared to other tropical ecosystems, they are relatively species-
poor, meaning that they do not support as large of a variety of plant life, and can be homogeneous in
structure and make-up. (Duke, 1984) However, mangroves can offer a host of benefits to local ecosys-
tems and communities, such as the storage of carbon via Above Ground Biomass (AGB). With a de-
forestation rate of 1-2% per year, many areas may disappear within a century, highlighting a need for
a detailed inventory to aid with management and restoration. (Alongi, 2002)

Figure 1: Mangrove locations across the world as per Ragavan et al., 2021.

There are a multitude of factors that can impact the future, as well as current, productivity of
mangrove forests on coastlines around the globe. Along with anthropogenic pressures imposed on
mangroves, climate change is impacting mangrove ecosystems negatively, compounding the impacts
of human-led issues. (Wong et al., 2014)

Anthropogenically induced climate change, that is mainly caused by humans, is a leading cause
of rising atmospheric temperatures and thermal Sea Level Rise (SLR). (Zickfeld et al., 2017) SLR is
responsible for the loss of land, habitats, and property along the coastlines of the world. Mangroves
are a significant ecosystem at the forefront of these recent developments.

SLR and changes in sediment supply to mangroves around the world pose the largest factors of
change in regards to mangroves vulnerability, leading to ecosystem regime shifts, often with nega-
tive consequences as detailed in Table 1. (Ellison, 2015) Mean sea levels are primarily rising due to
thermal expansion of water caused by higher water temperatures, as well as the melting of polar and
land ice due to higher atmospheric temperatures. (Stocker et al., 2013) Warmer temperatures and
higher sea levels can have varying impacts on mangroves depending on their location. Higher sea lev-
els can inundate mangroves close to the coastline, however, this can also promote the growth of the
ecosystems further inland. (López-Medelĺın et al., 2011) If mangroves are unable to raise surrounding
surface elevations via sediment accretion, then they will be submerged and lost. (Krauss et al., 2014)
As such, a high resolution (spatially and temporally) inventory of mangroves can prove beneficial to
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study the impacts of such events and how mangroves respond to them.

Table 1: Inputs and impacts to mangroves and their potential outcomes as per Ellison, 2015.

Future
Impacts

Processes
Impacted

Potential Outcomes

Rising Sea Level

Forest health
Forest productivity
Recruitment
Inundation period
Accretion rates

Forest mortality, dieback from the seaward edge,
migration landward, depending on sediment inputs,
topography and lack of barriers.

Increased waves, wind,
and extreme storms

Forest productivity
Recruitment
Accretion rates

Forests damaged or spatial area changed, surface
elevation change, erosion or excess sedimentation.

Increased air and sea
temperatures

Respiration
Photosynthesis
Forest productivity

Reduced productivity at low latitudes and increased
winter productivity at high latitudes.

Enhanced CO2

Photosynthesis
Respiration
Biomass allocation
Forest productivity

Increased productivity, subject to limiting factors of
salinity, humidity, nutrients. Soil elevation increase.

Increased rainfall and
freshwater availability

Sediment inputs
Ground water
Salinity
Productivity

Increased accretion and maintenance of surface
elevation, increased groundwater, diversity,
productivity and recruitment.

Reduced freshwater
availability

Sediment inputs
Ground water
Salinity
Photosynthesis
Forest productivity

Reduced ground water, diversity, photosynthesis,
productivity and accretion.
Mangrove migration landward, species change.

Coastal mangroves can also provide a natural barrier to combat the erosive and destructive forces
of worsening storms and their resulting waves. Evidence has highlighted that mangrove forest provide
a solution in reducing environmental risks and damages to areas that are particularly vulnerable to
coastal erosion via the mechanical transportation of sediment from waves. (Asari et al., 2021) This
done by reducing the height of wind and sell waves over short distances, however, this is dependent
on the structure, depth, and composition of the mangroves, as such, maintaining their health and size
can improve their performance as a natural coastal barrier. (Asari et al., 2021) Mangroves also pro-
vide an economic benefits to surrounding areas in the form of provisioning services; food, water, raw
materials, etc., as well as regulating services; air quality/climate regulation, disturbance moderation,
as well as a host of other factors. (de Groot et al., 2012)

Coastal mangrove areas have also proven to be effective carbon sinks; capturing, storing, and
transporting atmospheric Carbon Dioxide (CO2), a commonly produced Greenhouse Gas Emissions
(GHG), into a safer form as mangroves are extremely productive natural ecosystems even though
they have a simple forest structure with low diversity as mentioned before. (Lee et al., 2014) This is
done by collecting carbon via photosynthesis in the stems, leaves, roots, and branches, transforming it
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into the plant’s biomass. (Hashim and Suratman, 2021) As such, mangroves are extremely beneficial
in the fight against climate change. Mangroves are estimated to contribute approximately 10-15% of
carbon storage in coastal regions of the planet. (Simard et al., 2019)

Carbon sequestered and stored in coastal ecosystems is often referred to as Blue Carbon. (Rao
et al., 2021) It is estimated that mangrove forest are responsible for around 30% of global blue carbon
sequestration, outperforming other ecosystems around the world as shown in Figure 2. (Siikamäki et
al., 2012) The falling of foliage,or litterfall, is the principal factor in blue carbon storage and cycling
of carbon in mangrove ecosystems, as well as transporting nutrients within and between ecosystems.
(Kamruzzaman et al., 2019) With the degradation of mangrove ecosystems, sediment and carbon
sources may be transported to neighboring ecosystems, negatively altering the adjacent environments,
ultimately impacting a habitats’ carbon sinking capabilities in unknown manners. (Asplund et al.,
2021)

Figure 2: Carbon locating in soils at a depth of 1 meter, highlighting how mangroves are powerful
tools in climate change mitigation as per Sanderman et al., 2018.

Irrecoverable carbon is defined as carbon that can be directly influenced by local human action,
can be lost due to land use conversion, and is not recoverable within a specified time-frame. (Gold-
stein et al., 2020 & Bukoski et al., 2022) Mangroves are estimated to contain close to 225 tons of car-
bon per hectare across the globe with an estimated recovery time of 153 years to recover vulnerable
mangrove carbon sources alone. (Goldstein et al., 2020) It is estimated that human development will
continue to impact mangroves in the future due to anthropogenic disturbances, making clear a need
for consistent and accurate mangrove health measurement and monitoring. (Noon et al., 2021)

Many areas of the world are currently, and historically, experiencing mangrove area loss. Areas
of heavy losses can be seen in Malaysia due to rice farming, shrimp aquaculture, and coastal devel-
opment. (Ong, 1995 & Ong, 2003) Some species of mangroves, such as Bruguiera hainesii, are ex-
tremely rare with less than 250 matured individuals remaining, and propagate very slowly, headlining
the need for study and protection. (Polidoro et al., 2010) More general area loss statistics can be seen
in Table 2.
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Table 2: Mangrove loss statistics from 1996 to 2016 as per Worthington et al., 2019.

Region
Area (km2)

in 1996
Area (km2)

in 2016
Loss
(km2)

Gain
(km2)

Australia &
New Zealand

10,332 10,037 370 74

East &
Southern
Africa

7,630 7,329 424 122

East Asia 159 159 12 13
Middle East 334 319 19 4
North & Central
America & The
Caribbean

22,702 21,072 2,196 566

Pacific Islands 6,410 6,327 146 63
South America 19,632 19,063 1,106 537
South Asia 8,701 8,492 435 226
Southeast Asia 46,789 44,060 3,308 579
West & Central
Africa

20,107 19,857 422 171

Total 142,795 136,714 8,437 2,356

Mangroves require urgent research, management, and attention from the public in order to pre-
vent further losses and allow for rehabilitation of lost and/or damaged areas. (Feller et al., 2017)
Even with warming temperatures and higher levels of precipitation allowing for the mangrove ex-
pansion, these gains still do not outweigh anthropogenic losses, highlighting a need for detailed and
continuous study of mangrove area loss/gain as well as the health of the individual mangrove sites.
(Feller et al., 2017)

1.2 United Nations Sustainable Development Goals

The United Nations (UN) Sustainable Development Goals (SDG) are a set of goals adopted by
all participating parties that are a part of the 2030 Agenda for Sustainable Development that outlines
the targets for peace and prosperity for people and the planet starting now and going into the future.
(United Nations, 2021b) Even though mangroves are sensitive to climate change, they can prove to be
a valuable tool. Sequestering carbon, enhancing coastline stability, and protecting coastal settlements
from storm surges and wave damage are some ways that mangroves can help reduce or mitigate fu-
ture damages. (Chow, 2018)

Specifically, the conservation and preservation on mangroves falls under goal number 14, to con-
serve and sustainably use the ocean, seas and marine resources for sustainable development. (United
Nations, 2021a) Goals 13, combating climate change, and 15, sustainably manage forests, combat de-
sertification, halt and reverse land degradation, as well as halt biodiversity loss are goals that are di-
rectly concerned with the loss and monitoring of mangroves in the future as climate change occurs.
(Fakhruddin et al., 2018) Having a detailed, accurate, and up-to-date baseline of local, or global,
mangrove biomass stores can allow member nations and concerned stakeholders to have access to
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information to enact change to preserve, protect, and restore these critical coastal areas, as well as
better understand them and the impacts of anthropogenic pressures. (Rahman et al., 2021)

1.3 Previous Studies & Problem Analysis

In order to track the management, destruction, and changes in coastal mangrove ecosystems, an
accurate inventory of biomass is critical in order to properly manage and track the impacts of future
climate change and SLR. Previous studies have estimated global (or regional (Fatoyinbo and Simard,
2013)) AGB using sub-optimal elevation data to in order to derive general datasets for worldwide
tracking of mangroves. (Simard et al., 2019) Previous studies attempt to use high resolution data to
predict mangrove biomass for specific regions of interest ((Pham, Le, et al., 2020), (Suwa et al., 2021),
& (Pham, Yokoya, et al., 2020)), excluding impacted areas outside of the study area, or methods of
data collection that do not scale to global applications. (Jones et al., 2020) Such studies highlight
that an accurate, easily accessible, and regularly updated large-scale (country or countries) dataset
of mangrove biomass estimations is clear gap in the ever-important region of mangroves.

A multitude of new satellite and sensor systems such as; the European Space Agency (ESA) Sentinel-
1 and Sentinel-2 satellites capable of measuring RADAR Backscatter and high resolution optical im-
agery respectively, the National Aeronautics and Space Administration (NASA) Ice, Cloud, and El-
evation Satellite (ICESat-2) Light Detection and Ranging (LIDAR) system1, as well as the Global
Ecosystem Dynamics Investigation (GEDI) system2 upon the International Space Station, up-to-date,
accurate, and high resolution (Spatial Resolution and Temporal Resolution) data is easily and freely
accessible to use from an array of robust active and passive sensors within various cloud computing
environments. Such advancements in data availability and data processing platforms have allowed the
scientific community, as well as more intermittent users, the ability to perform large scale analysis
utilizing petabytes of remotely sensed Earth observation data in the realm of above ground biomass
alone in recent years quickly and efficiently. (Sanderman et al., 2018, Yang et al., 2019, Thieme et al.,
2020, Li et al., 2019, & Filippelli et al., 2020)

Traditionally, mangrove biomass estimates have been conducted using time-consuming and costly
field, in-situ, measurements. (Salum et al., 2020, Jachowski et al., 2013, Aslan et al., 2016, & Vaghela
et al., 2021) In-situ measurements include the destructive process of cutting mangrove samples (trees
and shrubs) in order to measure various attributes of the plant (such as height, diameter of trunk,
and overall weight of sample) to derive the carbon carrying capacity of a specific species or area. (Jones
et al., 2020) Previous studies have attempted to streamline this process by using Spatial Decision
Support Systems (SDSS) (Tang et al., 2017), data from active (e.g. LIDAR or RADAR) aerial or
space-borne sensors, as well as passive sensors to determine mangrove biomass estimations with dif-
fering levels of accuracy when compared to manual measurements. Such studies allow for the general
estimation of mangrove biomass on large scales, providing stakeholders with a clearer view of global
mangrove ecosystems. Or collection of high resolution elevation data is only possible at smaller re-
gional scales, prohibiting the detailed estimation of larger study areas. (Salim et al., 2020) This study
hopes to build upon large-scale work/studies and improve upon the derived results to generate a reli-
able biomass estimation at a large scale using freely available data and data processing platforms.

Using previous studies and research, this report intends to utilize high resolution, actively sensed,
Earth Observation (EO) data combined with Machine Learning (ML) techniques for classification and

1https://nsidc.org/data/ATL03
2https://gedi.umd.edu/data/products/
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Figure 3: ICESat-2 ATL03 return signal data (’gt2r’ track) and surface estimation for a scan of Jobos
Bay, Puerto Rico utilizing tool by Siegfried and Sutterley, 2022.

regression of surfaces. Talk about deriving better mangrove masks at smaller than global scales, and
better localized heights using multiple AGB formulas. Determining mangrove coverage at smaller-
than-global scales and at a resolution of up to 10 meters, mangrove area can be more accurately rep-
resented, allowing for more accurately biomass estimations. Combining high resolution actively sensed
EO data with regional specific allometric models in a cloud computing setting can allow users to
quickly and accurately derive meaningful statistics for their regions of interest. By deriving highly ac-
curate mangrove extent and above ground biomass estimates, at as large of a scale as possible, stake-
holders will be able to track the change in mangrove health and mangrove area loss in order to imple-
ment strategies of mangrove loss mitigation as well as tracking relevant UN Sustainable Development
Goals metrics.

1.4 Research Questions

1. Of the options of actively sensed and derived earth observation data, in regards to canopy heights
(ICESat-2 ATL03 & ATL08, and GEDI outlined in Table 3), which performs best when estimat-
ing canopy heights for above-ground biomass estimations in a cloud-computing setting?

2. At what scale is it feasible to derive such estimates and at what level (study site, regional, coun-
try) is feasible in a cloud-computing environment such as GEE?
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2 Data Sources & Platforms

Table 3: Canopy height information sources needed to calculate above-ground biomass. (Boest-
Petersen, 2022b)

Data Description Resolution Source
Availability/Temporal

Resolution

UAV(Drone) Based
Site/study specific. Costly and

not efficient for large
scale studies.

Sub-meter per
pixel depending
on sensor/mission

type.

Privately funded
research projects

from an aerial platform.

Single fly-
over. Multiple
scans if deemed

necessary.

ICESat-2
ATL03

Geolocated photon returns from the
Advanced Topographic Laser Altimeter

System (ATLAS) sensor aboard ICESat-2.
10,000 pulses per second. (NASA, 2022)

Dependent on terrain
type and atmospheric
conditions. Average
of 70cm resolution.

NASA and
OpenAltimetry

September 15, 2018 -
Current

ICESat-2
ATL08

Photon counting range estimates separating
noise and signal photons to estimate terrain
and canopy height from available ATL03

returns. (Neuenschwander and Pitts, 2019)

100 meter along-track
resolution.

NASA and UT Austin
Research Laboratories.

September 15, 2018 -
Current

GEDI
Global Ecosystem Dynamics Investigation

laser system (3 lasers) aboard the
International Space Station (ISS). (GEDI, 2022)

25 meter pixel
resolution.

NASA
December 5, 2018 -
2023 (Estimated)

In order to compare the performance and reliability of raw data (ATL03), as well as derived datasets
(ATL08 & GEDI), study areas will be chosen that have local detailed LIDAR scans (see Figures 9 &
13) to allow the generation of small scale Canopy Height Model (CHM)s that represent tree heights
to a high degree. These local level datasets will allow for the direct comparison of space-borne plat-
forms and their resulting data to what is actually present on the surface. Once a reliable dataset is
determined, a workflow will be developed to allow for the generation of mangrove masks and man-
grove canopy estimations using machine learning in a cloud computing environment at as large of a
scale as possible.

Existing studies use allometric equations (or regressions) to derive biomass estimates from man-
grove or other forested areas. (Fatoyinbo and Simard, 2013, Simard et al., 2019, Jones et al., 2020)
Biomass estimates are traditionally derived by incorporating individual tree diameter at breast height
(DBH) and canopy height metrics to determine a volumetric biomass statistic. (Kebede and Soromessa,
2018) Existing studies (such as Simard et al., 2019) have incorporated available in-situ measurements
to derive region-specific allometric regression equations as seen in Table 7, thus allowing for the esti-
mation of biomass utilizing remotely sensed data with only canopy height estimates. This is possible
as relationships between important factors such as tree stem diameter and wood density a linked in a
linear fashion to canopy height, facilitating the estimation of AGB with only canopy heights. (Fayad
et al., 2014) Allowing for the rapid classification and estimation of carbon stores using machine learn-
ing and cloud computing to provide a general estimate as well as track change of carbon stores over
time.

2.1 Processing Platforms Utilized

2.1.1 Cloud Computing & Google Earth Engine (GEE)

In previous years, Cloud Computing has enabled Earth Observation scientists to address process-
ing the daily delivery of terabytes of remotely sensed data, allowing for the rapid querying, acquisi-
tion, and processing of data in a single environment in some cases. Ultimately, cloud computing pro-
vides remote sensing users with services that allow them to leverage data processing and production
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Figure 4: GEE browser-based IDE user interface. (Gorelick et al., 2017)

computing/storage platforms, along with integrated spatial analysis tools, so as to provide solutions
in a single interface, such as GEE or the newly introduced Microsoft Planetary Computer platform3.
(L. Wang et al., 2019) These platforms are made even more accessible by the fact that they are freely
available for academic purposes, promoting the widespread use of the platforms, thereby allowing for
the monitoring of at-risk ecosystems as well as providing key stakeholders with critical data.

GEE4 is a web-based Integrated Development Environment (IDE) built upon the Earth Engine
JavaScript Application Program Interface (API). (Gorelick et al., 2017) GEE (refer to Figure 4) al-
lows users to query and import petabytes of remotely sensed data quickly and easily, create geospatial
data or importing custom shapefiles, tables. These features facilitate the development of algorithms
for geospatial analysis, and providing users with information to further conduct analysis outside of
the browser environment if needed. (Gorelick et al., 2017)

GEE allowed for the acquisition, pre-processing, and utilization of Sentinel-1 backscatter, Sentinel-
2 imagery, FABDEM elevation surfaces, GEDI global canopy height estimates, as well as other datasets
such as Copernicus’ Global 100m Land Cover to improve mangrove masking performance. Data which
was not available in the GEE Data Catalog, such as ICESat-2, was downloaded and pre-processed
outside of the GEE IDE and ingested into the editor as an asset in the form of shapefiles for vector
data (GMW known mangrove areas), or a tabular (csv) datasets such as ICESat-2 canopy height met-
ric data points.

2.1.2 Python

Python is a programming language that is popular in the realm of geospatial processing and data
science. It’s array of freely available packages and active community of users enables anyone to query,
download, and analyze vast amounts of geospatial information. For this study, Python in conjunction

3https://planetarycomputer.microsoft.com/
4https://earthengine.google.com/
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with various scientific, numerical, and geospatial focused packages, was heavily utilized to access and
process ICESat-2 data.

A virtual environment and package manager was used throughout the course of the report in the
form of Anaconda5 to streamline processing environments as many packages require specific depen-
dencies that can easily be cluttered by pre-existing packages. By utilizing virtual environments, work-
spaces can be streamlined, only having the necessary packages installed, as well as providing the op-
tion of easily sharing environments with others for further collaboration. For even leaner processing
environments in future studies, Miniconda, a free version of Anaconda, would prove a powerful alter-
native6.

2.2 Data Utilized

2.2.1 FABDEM

Traditional elevation datasets, such as the Copernicus GLO 30m elevation dataset, includes all
features on the surface of the Earth, such as trees or buildings, which can negatively impact the model
performance as it is receiving information that is not representative of what the surface is. Instead,
for this study, the Forests and Buildings Removed Copernicus DEM (FABDEM) elevation dataset
was utilized to supplement both the mangrove mask classification as well as mangrove canopy height
regression in an attempt to increase model performance and overall accuracy of results.

Figure 5: Comparison of elevation FABDEM elevation surface against the Multi-Error-Removed
Improved-Terrain (MERIT) DEM (tree removal) and LIDAR elevation surfaces for Houston, Texas.
(Fathom, 2022)

Elevation surfaces play a key role in ecology and soil science, allowing users to refine and adjust
machine learning or deep learning applications in order to better predict land cover type or other
statistics of interest. FABDEM is derived by utilizing machine learning techniques, such as random

5https://www.anaconda.com/
6https://docs.conda.io/en/latest/miniconda.html
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forest regression models, to remove building and tree height biases from the Copernicus COPDEM30
global (mostly) elevation dataset in order to achieve a more accurate Digital Elevation Model (DEM)
of the Earth’s surface at a global scale. (Hawker et al., 2022) This dataset is novel, with its intro-
duction for educational purposes only being made available in early 2022, with the asset (a 450+GB
raster file) being made available on GEE by the community of users. (Roy, 2022)

2.2.2 Copernicus Global Land Cover

The Copernicus Dynamic Global Land Cover is comprised of discrete and fractional land cover
layers for 2015 to 2019 at a 100 meter resolution. (Buchhorn et al., 2020) This dataset was used in
generating a local mangrove land cover mask. Specifically to provide a more accurate mask, where is-
sues with incorrect classifications of water pixels were experienced in such edge ecosystems by simpli-
fying the classification of water which can be extremely variable in appearance given the atmospheric
conditions.

The level 1 dataset utilized in this report is validated to an accuracy of 80.6+/-0.4%, with wa-
ter classes being mapped as the highest accuracies. (Tsendbazar et al., 2020) This dataset is available
in raster format in the GEE Data Catalog for rapid implementation into custom workflows and algo-
rithms.

2.2.3 Historical Mangroves

The Global Mangrove Watch (GMW) is a data portal that was initiated as part of the JAXA Ky-
oto & Carbon Initiative in 2011 made available by the Global Mangrove Alliance (GMA) to increase
access and visibility of possible mangrove habitat extents as seen in Figure 6. (Bunting et al., 2018)

Figure 6: Distribution of GMW project areas across the globe. (Bunting et al., 2018)

This data is made available via the UN’s World Conservation Monitoring Centre (WCMC) as
a shapefile, with updated annual mapping of mangroves planned from 2018 in to the future derived
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from JERS-1 SAR, ALOS PALSAR, and ALOS-2 PALSAR-2 EO platforms. (Bunting et al., 2018)
Potential mangrove extents are derived with ALOS PALSAR and Landsat optical data from 2010,
with the purpose of providing data to countries that may not have sufficient national mangrove moni-
toring systems. (Bunting et al., 2018)

A global baseline of areas classified as mangroves in the year 2016 by the GMW was utilized to
train ML classification models to generate a local mangrove mask of high-likelihood mangrove land
coverage. Classifying land cover on a local level can prove advantageous due to the fact that global
datasets are often optimized to meet the complex requirements needed to classify at a global scale
even if many study/training sites are taken employed in the overall model. By conducting a mangrove
classification, AGB estimates will be more accurate and representative in the study area.

2.2.4 ICESat-2

NASA’s Advanced Topographic Laser Altimeter System (ATLAS) instrument onboard the Ice,
Cloud, and Elevation Satellite (ICESat-2) satellite system launched in September 2018 and was de-
signed to measure the elevation of the glacial ice-sheets and measure the change in ice coverage/thick-
ness of the northern hemispheres. (NASA, 2021) Even though the sensor was intended to measure
frozen/non-vegetated surfaces, the photon returns can be, and have been, used for estimated canopy
height in comparison to surface elevation, adding a dataset to the arsenal of AGB estimation.

ICESat-2 can be processing in a Python environment to estimate ground returns and top of canopy
returns in order to estimate canopy height at a user-defined resolution (10 meters for this study).
Once pre-processed, the estimated canopy height points can be transferred into GEE to facilitate ML
regressions of canopy heights using ICESat-2 derived data as training input for the algorithms. With
the global coverage of ICESat-2, this sensor system can prove to be a powerful tool in measuring and
tracking mangrove ecosystems.

Figure 7: Spot and ground track naming convention utilized by ATLAS in the forward direction.
(Neuenschwander et al., 2021)

2.2.5 GEDI

NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission consists of a full-waveform LI-
DAR instrument mounted on the International Space Station (ISS) in late 2018 and is purposely de-
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signed to measure forest structure with its primary deliverable being mean aboveground biomass den-
sity over forested areas in the range of the ISS (51.6°N & 51.6°S latitudes). (Patterson et al., 2019)

Figure 8: GEDI canopy heights Zambezi River Delta in Mozambique.

One of the crucial datasets from GEDI, is the Level 2A Geolocated Elevation and Height Metrics
product (GEDI02 A) which includes ground elevation, canopy top height, and relative height (RH)
metrics as visualized in Figure 8. (Dubayah et al., 2021) This dataset is available in GEE in the form
of monthly composite rasters with a resolution of 25 meters per pixel and 136 bands of information.

2.2.6 Sentinel-1

Sentinel-1 backscatter data is generated from two polar-orbiting satellites utilizing C-band radar
imaging. (European Space Agency, 2021b) The synthetic aperture technique which Sentinel-1 utilizes
allows for consecutive time of transmission and reception measurements over a single study area from
differing angles incorporating the motion of the platform, essentially creating a large aperture than
what is physically aboard the satellite. (Moreira et al., 2013) Synthetic Aperture Radar (SAR), active
sensors, are powerful tools in EO as they do not require the Sun to illuminate a scene, or are depend-
ing on clear skies which allows for more frequent data collection and shorter return intervals, as well
as providing different data than existing sensors, allowing users to have more information for ML ap-
plications. (Lemoen, 2022) Sentinel-1 data is made available on GEE at 10 meter resolution for the
bands being utilized in this study.

2.2.7 Sentinel-2

Passive imagery, data that is collected from a sensor that relies on the photons emitted by a pow-
erful source (typically the sun) and reflected off of the surface of the Earth, are a popular form of ac-
quiring information about the surface of the Earth. One reliable platform is the Sentinel-2 constella-
tion, a pair of sensors that collect up to 10 meter resolution imagery with the aims of monitoring the
variability of surface conditions on our planet. (European Space Agency, 2021c) The bands available
from Sentinel-2 also allow for the calculation of a variety of spectral indices as seen in Table 6. These
bands, and their derived data, allow for increased information to feed machine learning models for
training purposes and prove to be a valuable addition for mangrove masking and height estimations
as seen later in this study. This study utilized both the 10 meter surface reflectance product in com-
bination with the cloud probability dataset in order to filter and mask cloudy datasets to provide a
clear time series for later calculations. Both of these datasets are freely available within GEE.
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2.3 Machine Learning Applications

Generating local-level mangrove masks utilizing global datasets allows users to employ power-
ful Machine Learning (ML) algorithms to quickly generate a higher accuracy mangrove mask to es-
timate heights from, as well as also provide the user with the option to monitor the change in man-
grove land cover from different time periods of interest. Utilizing GEE’s ML library, users have access
to many algorithms, such as the Random Forest (Breiman, 2001) and the Gradient Tree Boost (Fried-
man, 2002) algorithms, both being popular with Land Use Land Cover (LULC) applications. (Abdi,
2020) For this study, both RF and Gradient Tree Boost algorithms were tested in deriving a local-
level mangrove masks, with the validity of each model being validated against the previous GMW
2016 global mangrove baseline, as well as visually inspecting the results against Sentinel-2 imagery to
compare performance of the two datasets.

Using ML to classify land cover is a straightforward tasks it results in the discrete classification
of classes over a study area, resulting in distinct land cover classes. Employing ML algorithms for
canopy height estimations requires generating an interpolated, or continuous, surface of estimates of
the same type, that is numerical canopy heights, not individual classes (Segal, 2004), being a popular
tool for canopy height estimation and biomass prediction (Simard et al., 2011, Bourgine and Bagh-
dadi, 2005, Baccini et al., 2008, Powell et al., 2010, and Baghdadi et al., 2015). Canopy height is a
key data point for estimating AGB and thus will be the main form of information used to train a ML
regression algorithm to estimate canopy heights where no data exists. (Lang et al., 2022) Canopy
heights will be estimated utilizing the RF regression algorithm within GEE to generate a continu-
ous surface of canopy heights. Once heights for a study have been generated, allometric equations
will be utilized to estimate AGB based on canopy height for the area in terms of tonnes per hectare
(Mg/ha).

2.4 Study Area

In order to compare with performance of canopy height estimations, an area of southern Florida
in the United States was chosen as a study area. This area was chosen as it is rich in mangroves and
has detailed LIDAR data freely available at high resolutions for much of the state as seen in Figure 9.
Such data would allow for the processing and generation of a local CHM that could then be employed
to validate the performance of regression canopy height estimations and allow for tuning of parame-
ters to optimize performance to be used on other regions around the world.

A country along the eastern coast of Africa (refer to Figure 10), Mozambique is home to man-
groves along a majority of its 2,700km coastline, representing the third largest mangrove area in Africa.
(Fatoyinbo et al., 2008) Much of the coastal population of the county is dependent upon the man-
groves for food, building material, and fuel, highlighting the need for monitoring the coverage and
health of these critical ecosystems. (Fatoyinbo et al., 2008) Due to prevalence of mangroves, data
availability of the region, Mozambique was chosen as the study site for this report to refine local man-
grove masks, test machine learning algorithms and techniques, as well as estimate above ground biomass
for the entire coastline of the country. The sheer length of coastline and volume of data required to
be processed in order to generate AGB estimates would necessitate developing, tuning, and refining
workflows that can generate accurate estimates in a timely manner over such an extent.

The data utilized and workflows generated for the country of Mozambique, can easily be em-
ployed to other countries around the world with minimal changes or alterations to the original code
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within GEE, allowing for other users to easily and quickly conduct initial studies of mangrove cover-
age and health for their countries of interest.

Figure 9: Extensive LIDAR coverage for the state of Florida. (USGS, 2022)

Figure 10: Mozambique study area. Features an extensive coastline with many mangrove-rich areas.
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3 Theoretical & Methodological Framework

3.1 Data Processing & Data Fusion

There are many studies and code examples using ICESat-2 that use novel methods to detect sur-
face returns from the myriad of noise returned to the ATLAS sensor, allowing for the detailed map-
ping of surface elevation along ICESat-2 tracks around the globe outside the intended scope of the
mission. However, studies estimating canopy height from ATL03 returns at a higher resolution that
the 100 meter official ATL08 data set are few and far between, highlighting a potential gap, or im-
provement, for canopy height estimations at a fine resolution.

Figure 11: General workflow used. Refer to Figure 12 for canopy height estimation from ICESat-2
returns. (Boest-Petersen, 2022b)

As introduced in the previous section, such a study requires the querying, acquisition, and in-
tegration of multiple data types from various EO sensors. Methods will include using tools such as
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Python, and its host of geospatial collection and processing libraries as well as machine learning capa-
bilities; Google Earth Engine (GEE) for data collection, data processing, and machine learning capa-
bilities; as well as Geographic Information Systems (GIS) for any further data processing and visual-
ization.

Table 4: Primary data sources used for canopy height estimation. (Boest-Petersen, 2022b)

Data Source Purpose Resolution Notes

Sentinel-1
ESA Copernicus
Mission (through
GEE)

Backscatter showing
’texture’ of terrain.

10m, 25m, & 40m
C-Band synthetic aperture
radar imaging.

Sentinel-2
ESA Copernicus
Mission (through
GEE)

Visual and NIR bands.
Suitable for vegetation
indices.

10m to 60m High resolution imagery.

ICESat-2 ATL03
NASA ATLAS
Sensor (through
NSIDC)

Deriving ’ground’ and
’canopy’ elevation to
determine canopy height.

Dependent upon
ground coverage.

Active LIDAR system with
global coverage.

GEDI
NASA
(through GEE)

Monthly canopy height
composites.

25m Limited to ISS latitudes.

Data utilized for mangrove masks and canopy height estimates will be restricted to sources that
are easily and freely available via GEE or APIs accessed from Python libraries. Doing so will allow
for a general data processing framework to be developed and permit future estimates at varying scales
as data is made available. Data processing will be done in as few environments as possible, again lim-
ited to freely available, and easy-to-use platforms. These factors allow results to be recreated quickly,
or for a new area of interest, and easily from any user.

3.2 ICESat-2 Processing

Figure 12: General workflow used to derive canopy heights from raw ATL03 data at user-defined reso-
lution. (Boest-Petersen, 2022b)

In the initial stages of this report, one aim was to determine if ATL03 raw geolocated photon re-
turns could supplement, or replace the existing ATL08, canopy height estimates for a 100 meter seg-
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ment, dataset. As mangroves can be located in edge environments or deteriorating, height statistics
for a 100 meter segment may prove to be too course for accurately measuring canopy heights.

The ATL03 Raw Geolocated Photons and ATL08 Land and Vegetation Height dataset originate
from NASA’s Advanced Topographic Laser Altimeter System (ATLAS) sensor on board the ICESat-2
satellite system. It is designed to emit 10,000 laser pulse per site and capture the returns with rel-
evant statistics such as the photons geodetic longitude and latitude, allowing for the calculation of
elevations of features across the Earth’s surface. (Neuenschwander et al., 2021) This is accomplished
by using laser pulses along six tracks as seen in Figure 7, with the three pairs separated by a distance
of 14 meters.

In order to facilitate rapid querying, downloading, and processing of ICESat-2 data, a custom
Python tool was created for this study. This tool, icesat2 canopy heights7, allows users to down-
load ATL03, via the NASA Distributed Active Archive Center (DAAC), data for a region and time
period of interest and derives estimated canopy heights at a user-defined resolution on the track of
the dataset with the parameters of the tool visible in Table 5. Downloading of data is made possible
with the icepyx Python tool. (Scheick et al., 2019–) In order to make the data more consumable for
later processing steps, it was converted from the H5 file format, which can prove to be unwieldy, to a
lightweight spreadsheet using the Photon Research and Engineering Library (PhoREAL) developed
by the Applied Research Laboratories at the University of Texas at Austin. (Applied Research Lab-
oratories, UT Austin, 2022) icesat2 canopy heights also allows users to query and download raw
ATL08 Land and Vegetation Heights for further analysis as well.

Table 5: icesat2 canopy heights.py Python tool parameters for querying, downloading, and pro-
cessing ICESat-2 ATL03 and ATL08 data. (Boest-Petersen, 2022a)

Property Description

download

’True/False’. Download raw H5 files from NSIDC.
If true, tool will download data. If false, tool will
process files in specified working directory.
’False’ by default.

data type
’ATL03’ or ’ATL08’. Specify which ICESat-2 data-
set to download from NSIDC. ’ATL03’ by default.

spatial extent
Shapefile or coordinates. Extent to download
ICESat-2 data for.

date range
’YYYY-MM-DD, YYYY-MM-DD’ Data range
for data download. ’2018-10-13, today’ by default.

username NASA EarthData registered username.
email NASA EarthData registered email.
working directory Location for file storage/processing.

generate csv
’True/False’ Process raw H5 files with PhoREAL
preprocessing tool to generate csv file, True by
default.

track num
If processing ATL03, define which track to derive
canopy heights from, all by default.

7https://github.com/aboestpetersen/icesat2 canopy heights
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Table 5 continued from previous page

Property Description

along track res
Integer resolution at which to derive canopy heights
from. ’10’ meters by default.

Once the raw H5 ATL03 files have been converted into .csv files, the result spreadsheets were
loaded into the script as numpy dataframes, allowing for further processing of the datasets. These
dataframes are then split into bins whose sizes are dictated by the user-defined resolution they wish
to achieve for the end product, for this case, the bins were 10 meters. To remove erroneous photon
returns that are likely noise and can negatively skew processing results, only photons classified as
medium (3) and high (4) confidence returns were used for ground estimations. Once filtered by con-
fidence and bin size, the lowest elevation photon return was selected from each bin and determined to
be the ’ground’ elevation for that bin. As such, each 10 meter bin would be assigned a ground eleva-
tion of their respective lowest returns as seen in Figure 12.

For canopy height derivations for each bin, the low (2), and background (1), returns were in-
cluded for the calculations, as it is often the case that canopy returns are mis-classified as noise upon
closer inspection. To determine canopy height, the 95th percentile return in regards to maximum
height was selected to the be top of canopy elevation for the bin. The 95th percentile was selected
to remove returns that were unrealistically high in elevation to be classified as canopy.

Once the lowest, ground, elevation and highest, canopy, elevation was detected for each bin, these
two heights could then be subtracted from one-another in order to determine canopy height for each
bin along the ATL03 track to be used as training data for canopy height estimates within GEE.

3.3 Canopy Height Model Generation

Processing of local LIDAR datasets for Southern Florida were processed using LAStools8. Data
was queried and downloaded in bulk for the year 2018 using the freely accessible United States Geo-
logical Survey (USGS) National Map Download client v29 for the area of interest in .laz format.

In order to generate a CHM, the bare-earth surface must be extracted from the .laz dataset us-
ing the lasground tool, classifying LIDAR returns into ground points (class=12) and non-ground
points (class=1). Once the ground returns were located, the dataset was cleaned of noise using the
lasheight tool to remove low and high outliers, returns located 3 meters below, and 50 meters above
the recently derived surface. This removed any cloud, birds, or any other sources of noisy interference
within the LIDAR dataset and increases the accuracy of the resulting CHM.

Next, high vegetation returns (class=5) was identified in the cleaned dataset using the lasclassify
tool. With vegetation identified, the lasheight tool was used to create a normalized point cloud.
Normalizing the data allows for more consistent heights across the dataset.Finally, a CHM can be
derived by computing the difference between the DSM and DTM for the dataset. First, we thin the
datasets to the last (or highest) returns using the lasthin tool with creates a DSM, or the surface of
the area including canopies. Then, the las2dem tool is used to create a DTM of the terrain. These

8https://rapidlasso.com/lastools/
9https://apps.nationalmap.gov/downloader/
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Figure 13: Raw LIDAR data for Florida everglades visualized with LAStools.

two surfaces are subtracted from one-another in order to generate a CHM to be used for data valida-
tion. For this study, a CHM was derived at a resolution of 10 meters. Once heights were estimated in
GEE, the result was exported for further analysis in QGIS to compare height measurements.

3.4 Grid-Based Processing Areas

Due to large study areas and limitations of processing in GEE, large study areas, such as country-
scale, where split into gridded areas to allow the processing of the following workflows on a per-grid
basis, instead of the entire study area at once. Doing so allows the user to avoid encountering mem-
ory limitation restrictions, as well as avoiding long computation times which can likely time out. This
was done using the coveringGrid tool in GEE as seen in Listing 1. Using this tool facilitated the
study of very large study areas, such as the entire coastline of the country of Mozambique.

1 // Create Grids Over Study Area

2 var grids = (mozambique_coast.geometry ()).coveringGrid(’EPSG :4326’, 100000);

Listing 1: Function used to create a over the study area to allow for the processing of workflows on a
per-grid basis instead of the entire study area.

However, even sub-setting the study area into large cells can still offer challenges when process-
ing over such an extent. As with the case of Mozambique, 36 grids proved to be too much for GEE
to process in a single workflow. Due to this, only 30% of the created grids were selected for querying
imagery and creating training data for the remaining cells as visualized in Figure 14. Doing so, de-
creases the amount of strenuous tasks needing to be completed on the server-side of GEE and allows
for the classification and regression of much larger study areas.

3.5 Sentinel Processing

The approach taken for processing Sentinel 1 and 2 data in this report is outlined in Figure 11.
In order for cloud free visual imagery, particularly in equatorial regions, it is best practice to com-
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(a) Gridded area of Mozambique coastline. (b) Randomly selected grids (blue) used for training.

Figure 14: Comparison of original grids versus randomly selected grids used for training.

pile a time-series of data. This involves collecting imagery from multiple dates and merging them to-
gether in order to get a more practical dataset of imagery. For this study, imagery was obtained of
the course of an entire year as seen in Listing 9.

3.5.1 Sentinel-1

For this study, the vertical transmit/vertical receive (VV) and vertical transmit/horizontal receive
(VH) were utilized to allow for cross-band polarization from the interferometric swath product from
the Sentinel-1 sensor. After the date range was specified, the resulting imagery was filtered to the rel-
evant area of interest.

1 // S1 Backscatter

2 var imgVV = ee.ImageCollection(’COPERNICUS/S1_GRD ’)

3 .filter(ee.Filter.listContains(’transmitterReceiverPolarisation ’, ’VV’))

4 .filter(ee.Filter.eq(’instrumentMode ’, ’IW’))

5 .select(’VV’)

6 .map(function(image) {

7 var edge = image.lt( -30.0);

8 var maskedImage = image.mask().and(edge.not());

9 return image.updateMask(maskedImage);

10 });

11 var descChange_VV = (imgVV.filter(ee.Filter.eq(’orbitProperties_pass ’, ’DESCENDING ’)))

.filterDate(start , end).mean();

12 var ascChange_VV = (imgVV.filter(ee.Filter.eq(’orbitProperties_pass ’, ’ASCENDING ’))).

filterDate(start , end).mean();

13 var imgVH = ee.ImageCollection(’COPERNICUS/S1_GRD ’)

14 .filter(ee.Filter.listContains(’transmitterReceiverPolarisation ’, ’VH’))

15 .filter(ee.Filter.eq(’instrumentMode ’, ’IW’))

16 .select(’VH’)

17 .map(function(image) {

18 var edge = image.lt( -30.0);

19 var maskedImage = image.mask().and(edge.not());

20 return image.updateMask(maskedImage);

21 });
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22 var descChange_VH = (imgVH.filter(ee.Filter.eq(’orbitProperties_pass ’, ’DESCENDING ’)))

.filterDate(start , end).mean();

23 var ascChange_VH = (imgVH.filter(ee.Filter.eq(’orbitProperties_pass ’, ’ASCENDING ’))).

filterDate(start , end).mean();

Listing 2: Function used to create a Sentinel-1 ImageCollection within GEE.

Sentinel-1 backscatter was queried and obtained within GEE as seen in Listing 2. This resulted
in four bands of data; ’VV’, ’VV-1’, ’VH’, and ’VH-1’, with the ascending and descending pass for
each band. Once these bands were selected, they were then added to the stack of bands (see Listing
4) that will be used to train both machine learning models for the mangrove mask as well as canopy
height regression as seen in Figure 11. By using backscatter from a Synthetic Aperture Radar (SAR)
source such as Sentinel-1, the sensor is able to collect data at a resolution that is finer than tradition
radar imagery sources. (van Zyl and Kim, 2011)

3.5.2 Sentinel-2

The majority of raster data used in this study is derived from Sentinel-2 imagery. As stated with
Sentinel-1 imagery above, the imagery was collected over the course of a year in order to obtain a
cloud free composite image over the study area of interest.

Cloud-free composites were created in GEE by combining the Sentinel-2 Surface Reflectance dataset
with the Sentinel-2 Cloud Probability dataset. Merging these datasets allows the user to view the
level of cloud coverage in each Sentinel-2 image as well as which types of clouds are present over the
study area. Access to this information can allow the user to filter out images that contain cloud cover
over a user defined threshold. A threshold of 20% was utilized for this study, meaning that any image
that contained over this level of cloud coverage was filtered out and not included in the final year-long
composite used for training both ML algorithms. GEE allows users to construct custom functions to
apply to datasets, streamlining processing and increasing efficiency of analysis. As seen in Listing 3,
any image remaining after the sorting threshold for cloud cover then had this maskS2clouds function
applied to it, masking any remaining clouds, leaving only clearly visible areas for later training.

1 // Function to mask clouds using the Sentinel -2 QA band.

2 function maskS2clouds(image) {

3 var qa = image.select(’QA60’);

4

5 // Select bits 10 (clouds) and 11 (cirrus).

6 var cloudBitMask = 1 << 10;

7 var cirrusBitMask = 1 << 11;

8

9 // Both flags should be set to zero , indicating clear conditions.

10 var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(

11 qa.bitwiseAnd(cirrusBitMask).eq(0));

12

13 // Return the masked and scaled data , without the QA bands.

14 return image.updateMask(mask).divide (10000)

15 .select("B.*")

16 .copyProperties(image , ["system:time_start"]);

17 }

Listing 3: Function used to mask cloud cover present in any Sentinel-2 image.

By utilizing a function, the above formula is applied to every Sentinel-2 image as it is queried,
improving memory usage and accelerating processing times within the GEE JavaScript API. Before,
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clouds were masked separately, once all of the imagery and been queried and loading into the envi-
ronment. This often resulting in memory limits being exceed, or computations timing out after tak-
ing too long to process. This was due to the fact that the cloud mask was being applied to the entire
year-long mosaic of imagery at once, instead of each single image as it was loaded as done with the
function.

Once a cloud-free/cloud-masked mosaic was created for the area of interest, spectral indices were
calculated using the bands and formulas as seen in Listing 4 and Table 6.

1 // Stack Bands Function

2 function stackBands(i){

3 // S2 Indices

4 var selected = i.select(’B1’, ’B2’, ’B3’, ’B4’, ’B6’, ’B8’, ’B9’, ’B11’, ’B12’);

5 var SAVI = selected.expression(’((b(5)-b(3))/(b(5)+b(3))+0.428) *1.428 ’).rename(’SAVI

’);

6 var GNDVI = selected.expression(’(b(5)-b(2))/(b(5)+b(2))’).rename(’GNDVI’);

7 var EVI = selected.expression(’2.5*(b(5)-b(3))/(b(5) +6*b(3) -7.5*b(1) +1)’).rename(’

EVI’);

8 var NDMI = selected.expression(’(b(5)-b(7))/(b(5)+b(7))’).rename(’NDMI’);

9 var MSI = selected.expression(’(b(7))/(b(5))’).rename(’MSI’);

10 var GCI = selected.expression(’(b(6))/(b(2) -1)’).rename(’GCI’);

11 var BSI = selected.expression(’(b(7)+b(3)-b(5)+b(1))/(b(7)+b(3)+b(5)+b(1))’).rename(

’BSI’);

12 var NDWI = selected.expression(’(b(2)-b(5))/(b(2)+b(5))’).rename(’NDWI’);

13 var ARVI = selected.expression(’(b(5) -(2*b(3))+b(1))/(b(5) +(2*b(3)+b(1)))’).rename(’

ARVI’);

14 var MNDWI = selected.expression(’(b(7)-b(2))/(b(7)+b(2))’).rename(’MNDWI’);

15 var NDVI = selected.normalizedDifference ([’B8’, ’B4’]).rename(’NDVI’);

16 return i.addBands ([SAVI , GNDVI , EVI , NDMI , MSI , GCI , BSI , NDWI , ARVI , MNDWI , NDVI ,

descChange_VV , ascChange_VV , descChange_VH , ascChange_VH , elev])

17 .set(’system:footprint ’, i.geometry ());

18 }

Listing 4: Function used to calculate spectral indices per Sentinel-2 image and stack resulting
calculations into training dataset.

As with the cloud masking/removal function, calculating spectral indices in a function allows the
formulas to be applied to each Sentinel-2 image as it is queried, instead of the composited dataset as
a whole. This speeds up processing times, and lowers the risk of encountering memory errors or tim-
ing out the calculations. The inclusion of these additional bands of information provide data for the
machine learning algorithms to estimate land cover from as well as estimating canopy height based on
pixel value. After calculating the indices, the information was stacked into the training raster as seen
in Figure 11.

3.6 GEDI Pre-Processing

GEDI canopy height data was made available in GEE’s Data Catalog in early 2022. This facili-
tated rapid querying and collection of relevant data for the study area. To filter out any invalid data,
the ‘quality flag ’ attribute was utilized, values equal to 1 were determined to be valid waveforms re-
turned from the surface of the Earth. Next, the ‘degrade flag ’ attribute was set to 0, ensuring that
the data selected was not in a degraded state of pointing or positioning information. Finally, to limit
the negative impacts of the sun on the quality of data returning to the sensor, returns were limited to
those captured during the evening hours utilizing the ‘solar elevation’ attribute as seen in Listing 5.
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Table 6: Spectral indices for Sentinel-2 sensor. (Boest-Petersen, 2022b)

Statistic Band Calculation Importance

Atmospherically Resistant
Vegetation Index (ARVI)

(B8–(2×B2)+B2)
(B8+(2×B2)+B4)

Vegetation index that is
not prone to atmospheric
influence. (Tanre et al., 1992)

Bare Soil
Index (BSI)

(B11+B4)–(B8+B2)
(B11+B4)+(B8+B2)

Quantifies mineral content in soil.
(Rikimaru et al., 2002)

Enhanced Vegetation
Index (EVI)

2.5× ( B8–B4
B8+6×B4–7.5×B2+1)

Vegetation index which corrects
for some atmospheric influences and
canopy background noise for densely
vegetated regions.
(Somvanshi and Kumari, 2020)

Green Coverage
Index (GCI)

(B9
B3)− 1

Measure plant health by measuring
chlorophyll content in vegetation.
(Bian et al., 2020)

Green Normalized Difference
Vegetation Index (GNDVI)

B8–B3
B8+B3

NDVI that is more sensitive to
chlorophyll content. (Gitelson et al., 1996)

Moisture Stress
Index (MSI)

B11
B8 Canopy stress analysis. (Hunt and Rock, 1989)

Normalized Difference
Moisture Index (NDMI)

B8−B11
B8+B11

Measures vegetation water content.
(Wilson and Sader, 2002)

Normalized Difference
Vegetation Index (NDVI)

B8−B4
B8+4

Measures plant productivity.
(Weier and Herring, 2000)

Normalized Difference
Water Index (NDWI)

B3−B8
B3+B8

Water body analysis that is sensitive
to coastal environments. (McFeeters, 1996)

Soil Adjusted
Vegetation Index (SAVI)

( B8−B4
B8+B4+0.428)× 1.428

NDVI corrected for background soil
brightness in areas of low vegetation
cover. (Huete, 1988)
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For this study, the ‘rh98 ’ attribute was utilized as it describes relative canopy height metrics at
98% for each 25m pixel. Using this metric allows for the removal of any potential outlier heights that
can negatively skew the dataset and decrease accuracy of later estimations. Then the data was fil-
tered to the area and time period of interest to create a dataset of relevant canopy heights.

1 // GEDI Canopy Information

2 var qualityMask = function(im) {

3 return im.updateMask(im.select(’quality_flag ’).eq(1))

4 .updateMask(im.select(’degrade_flag ’).eq(0))

5 .updateMask(im.select(’solar_elevation ’).gt(0)); // Select data collected at

night

6 };

7 var gedi_data = ee.ImageCollection(’LARSE/GEDI/GEDI02_A_002_MONTHLY ’)

8 .filterDate(start , end)

9 .filterBounds(grids)

10 .map(qualityMask)

11 .select(’rh98’)

12 .mean()

13 .rename(’canopy_h ’);

Listing 5: Function used to filter GEDI data for canopy height training.

3.7 Copernicus Land Cover

To aid with the classification of mangroves and regression of height estimates by feeding the algo-
rithm more information, the Copernicus Global Land Cover dataset was utilized at 100 meter resolu-
tion. This was used in tandem with the GMW global mangrove dataset for 2016 to create pixels that
were classified as mangroves, non-mangroves, ocean, or forest as seen in Listing 6.

1 // Copernicus Land Cover

2 var cop_landclass = ee.Image("COPERNICUS/Landcover /100m/Proba -V-C3/Global /2019").

select(’discrete_classification ’).clip(grids.geometry ());

3 var cop_ocean = (cop_landclass.updateMask(cop_landclass.eq (200))).rename(’

mangrove_label ’); // Select ’ocean ’ pixels

4 cop_ocean = cop_ocean.reduceToVectors ({ geometry: grids.geometry (), maxPixels: 1e12});

5 var ocean_image = ee.Image (3).clip(cop_ocean); // Assign value of 3

6 var cop_forest = (cop_landclass.updateMask(cop_landclass.eq (112))).rename(’

mangrove_label ’); // Select ’forest ’ pixels

7 cop_forest = cop_forest.reduceToVectors ({ geometry: grids.geometry (), maxPixels: 1e12})

;

8 var forest_image = ee.Image (4).clip(cop_forest); // Assign value of 4

9

10 // Mangroves

11 var mangroves_image = ee.Image (0).clip(grids.geometry ());

12 var mangroves_image = mangroves_image.paint(gmw , 1).rename(’mangrove_label ’).clip(

grids.geometry ()); // Paint Mangroves

13 var training_mangroves = ee.Image.cat([ water_image , ocean_image , forest_image ,

mangroves_image ]).reduce(ee.Reducer.firstNonNull ()).rename(’mangrove_label ’).toByte

(); // Combine datasets

Listing 6: Function used to filter Copernicus Land Cover pixels and create training data for ML
applications.

By incorporating more land cover classes into the training data, the ML model can more accu-
rately predict land cover types. This was done by creating an uniform raster layer label as ’0’, or ar-
eas where mangroves where not present. Then the GMW dataset was converted from a vector to a
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raster and ’painted’ over the newly created image using the paint function in GEE. This essentially
burned areas of mangroves into the raster labeled as the value 1. This was also done with subsequent
ocean, and forests classes taken from the Copernicus Global Land Cover dataset at increasing values
as seen in Figure 15. To reduce data loads and speed up processing times, data was clipped to areas
that fell within the grids mentioned in Figure 14.

3.8 Land Cover Classification

A local land cover mask was generated in order to improve upon existing global datasets. Classi-
fying at the local level allows for the classification of areas that may have been missed as well as in-
creasing the resolution of the mask from 30 and 100 meters (GMW & Copernicus Global Land Cover
respectively) to 10 meters. Higher resolution allows for increased granularity in monitoring mangrove
habitat change. A resolution of 10 meters was selected as much of the training data is derived from
Sentinel-2 imagery, which has a resolution of 10 meters. A general overview comparing GMW’s man-
grove baseline and the derived mangrove mask can be seen in Figure 16.

1 // Stratified Sample Generation

2 var strat_sample = (compilation.clip(grids.geometry ())).stratifiedSample ({

3 numPoints: 100, // Points to be generated per land cover class

4 region: grids ,

5 classBand: ’mangrove_label ’,

6 scale: 100, // 100m resolution sampling

7 geometries: true ,

8 tileScale: 16 // Overcome memory limitation issues

9 });

10 strat_sample = strat_sample.randomColumn (); // Split data for training & validation

11 var training = strat_sample.filter(ee.Filter.lt(’random ’, 0.7)); // 70% for Training

12 var validation = strat_sample.filter(ee.Filter.gte(’random ’, 0.7)); // 30% for

Validation

13 // Define Classifier

14 var classifier = ee.Classifier.smileRandomForest (150).train({ features: training ,

classProperty: ’mangrove_label ’, inputProperties: bands_lc });

15 // Train Classifier

16 var trained = classifier.train(training , ’mangrove_label ’, bands_lc);

17

18 // Classify mangroves by grid

19 function classify_image(trained_model , img){

20 var classified = img.classify(trained_model);

21 var mangroves_masked = classified.updateMask (( classified.select(’classification ’)).

eq(1));

22 // Seive Classification

23 var mmu = 60;

24 mangroves_masked = mangroves_masked.connectedPixelCount(mmu , false);

25 mangroves_masked = mangroves_masked.updateMask(mangroves_masked.gte(mmu));

26 return mangroves_masked;

27 }

28

29 var classified_mangroves = classify_image(trained , compilation);

Listing 7: Function used to randomly sample land cover training classes and predict mangrove cover
for coastline of Mozambique.

To train ML models in GEE, training data must be ingested in the form of points. To obtain
these points, the stratifiedSample tool was utilized, mitigating the need to generate random points
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in a separate environment. The tool generates a user-specified number of points, in this case 10, per
unique band value. In this case of this study, 10 points were generated per land cover class (4 in to-
tal; non-mangroves, mangroves, ocean, and forest) per randomly selected grid in the study area. Due
to the large study area in each grid, the number of points able to be generated for training is rather
small, at 10 points per class in order to not overcome memory or computation limits of the GEE
JavaScript API. Another limitation is the scale of the training data. Instead of sample at 10 meter
resolution, that is 1 point per pixel of training data, points were sampled at a resolution of 100 me-
ters. This meant that each point had the values of the pixels in the surround 100 meters averaged
and then sampled to the point, saving memory space and shortening computation time. The resulting
product were points that contained information of every band in the training raster that lie beneath
the point to be used as training data for the mangrove classifier.

Figure 15: Land cover raster utilizing information from the 2016 GMW mangroves baseline as well
as the Copernicus Global Land Cover dataset for the mangrove mask classification for Mozambique
coast.

Once training points have been generated for the study area, the points were split into training
points, with 70% of the original points being used to train the dataset, and validation points, with
30% of the points used for measuring the performance of the land cover classification model over
the study area. In GEE, there a plenty of options in regards to ML algorithms. For this study, the
Random Forest algorithm was utilized for the land cover classification as it is proven to be a power-
ful, yet efficient, algorithm in terms of segmented land cover classification. This algorithm was fol-
lowed closely by, and even exceeded in alternative study areas, by the Gradient Boosted Decision
Trees. However, with GEE, these algorithms can easily replace each other, with the user being able to
test multiple algorithms quickly and efficiently. For this study, 150 trees were used to train the clas-
sifier as increasing the number of trees only results in marginal improvements in classification and
significant increases in processing time. By training the classifier from grids randomly selected over
the study area, the user can apply the trained classifier over larger, appropriate, study areas. As this
model was trained on random grids over the coastline of Mozambique, it was deemed appropriate to
use for the remaining areas of the Mozambique coastline that were not used for training due to com-
putation limitations.

As seen in Listing 7, as well as previous listings, the machine learning algorithm has been placed
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in a function in order to decrease computation time and reduce processing failures to due memory er-
rors. The function in question, classify image (Line 19 of Listing 7), requires only 2 inputs, the pre-
viously trained classifier model, and the images that are to be classified (the raster dataset of stacked
bands). By wrapping the classification in a function, the classifier is only working with a single im-
age at a time instead of attempting to classify the entire coastline in a single attempt which will likely
result in unnecessarily long processing times or even GEE failing to classify the area as a result of
memory errors.

After the image was classified for mangroves, the resulting data was seived, or a Minimum Map-
ping Unit (MMU) was defined. Doing so removes the classifications of areas that are too small reli-
able be defined as a mangrove ecosystem, as well as removing small erroneously classified pixels. For
this study, the MMU was defined to be 60m2. By using the connectedPixelCount tool on line 24 of
Listing 7, GEE sums any neighboring pixels which are connected to each other, locating groups of
pixels. Once these groups are located, the updateMask tool is used to remove groups that are below
the MMU threshold, resulting in a more cohesive, accurate mangrove mask dataset.

(a) GMW classification of mangrove areas. (b) ML classified mangrove mask.

Figure 16: Comparison of GMW mangrove areas versus ML derived mangrove mask for potion of the
Mozambique coast.

Once the classification is complete, the validation points can be employed to measure the perfor-
mance of the land cover classification. In combination with GEE’s band importance metrics, the user
can fine-tune the parameters of the ML algorithm for their study area of interest, in order to improve
the overall performance of the land cover classification, resulting in more accurate biomass estimates
over a region at a resolution of 10 meters per pixel instead of the existing 30 meters per pixel.

3.9 Canopy Height Estimation

GEE’s machine learning library also proved to be a powerful tool for estimating mangrove canopy
heights over large study areas. These canopy heights can then be employed to estimate AGB using
height-dependent allometric equations.

1 // Function to estimate heights and biomass

2 function mangrove_biomass (gridded_area) {

3 // Convert GEDI Raster to Points

4 var height_data = gedi_data.sample ({

5 region: gridded_area.geometry (),

6 scale: 25, // Resolution of GEDI data

7 geometries: true , // Maintain geometries

8 numPixels: 2500, // Limit # of samples

9 });

10 // Build Training Data to Join Band Info to GEDI Points

11 var training_height = compilation.select(bands_height).sampleRegions ({

Page 40 of 70



Large-Scale Mangrove Biomass Estimation Theoretical & Methodological Framework

12 collection: height_data.limit (1000) , // Limit points sampled

13 properties: [training_properties], // Attribute to sample ’canopy height ’

14 scale: 25, // Resolution of GEDI data

15 tileScale: 16, // Avoid memory limit

16 });

17 // Train a ML Classifier

18 var trained_height = ee.Classifier.smileRandomForest (150).setOutputMode(’regression ’

).train(training_height , training_properties , bands_height);

19 // Estimate Heights

20 var classified_heights = compilation.classify(trained_height);

21 // Mask Mangroves

22 var masked_heights = classified_heights.updateMask (( classified_mangroves.select(’

classification ’)).eq(60)); // Select sieved mangrove areas

23 // Calculate AGB from Simard et al. 2019 Supplemental Table 8

24 var agb = (masked_heights.expression(’0.44*( height)’, {’height ’: masked_heights.

select(’classification ’)})).pow(ee.Number (2.1578));

25 return agb;

26 }

27

28 // Apply function on gridded coastline

29 var mangrove_heights = mangrove_biomass(grids);

Listing 8: Function used estimate canopy height and subsequent AGB for coastline of Mozambique.

In order to estimate heights, the GEDI L2A Raster Canopy Height (Version 2) was employed as
it has more granular resolution than ICESat-2 ATL08 (25 meter versus 100 meter resolution), per-
formed better than derived ATL03 canopy heights, and is part of a mission that’s sole purpose is to
measure canopy heights and estimate biomass within the latitudes of the ISS with good coverage as
seen in Figure 8. In GEE, GEDI canopy heights are made available in raster format and therefore
must first be converted to points to allow for ingestion into a ML algorithm. This was accomplished
utilizing the sample tool, generating a point at the center of each canopy height pixel with the rel-
evant statistics required to train a model to predict canopy heights (can be seen on line 2 of Listing
8). To prevent performance issues, the number of canopy height points generated was limited to 2,500
measurements for the study area.

After obtaining GEDI points, these points were then sampled against the stack raster dataset
containing raw Sentinel-1 and 2 bands, spectral indices, elevation, and land cover types. Doing so
requires using the sampleRegions tool in GEE. As with the stratifiedSample tool, this collects
the band information from the stacked raster datasets per canopy height point generated from GEDI
data. This results in points with the measured canopy heights and band statistics as well that can be
employed to train a ML regression model for canopy height estimations. As with previous steps, sam-
pling over such a large area can easily overwhelm the users’ memory limits within GEE, as such, the
number of points sample was limited to the first 1,000 points from the 2,500 available canopy height
points.

Next, the Random Forest algorithm was used to train a classifier to estimate canopy heights
that could be employed on other images or grids. A continuous surface can be generated by setting
the setOutputMode parameter to ‘regression’, allowing the user to generate a range of estimated
heights over the study area instead of a discrete classification. To train the algorithm requires three
parameters; the sampled points with band statistics and canopy height data, the attribute to clas-
sify (canopy height), and which bands to use for training the classifier. The trained classifier was then
used to train each image in the gridded coastline dataset to estimate canopy heights an areas that
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were previous classified as mangroves using the classify tool in GEE as seen in line 20 in Listing 8.
Once canopy heights have been generated, an allometric equation can be applied to the area to gener-
ate a biomass estimate.

Canopy heights generated from the ML model are then exported from GEE as a raster to be
compared against locally measured CHM to compare the performance of the model estimations to
field data. Locally-sampled field measurements from Simard et al., 2019 were also utilized to measure
height estimate performance against in-situ data points.

3.10 Mangrove Biomass Estimation

3.10.1 Allometric Equations

Above Ground Biomass can be estimated using allometric equations and valuable tools that pro-
vide a cost-effect alternative to biomass estimates when compared to measuring the data in the field.
(Ravindranath and Ostwald, 2008).

Table 7: AGB calibration models. Where Hmax = 1.697 × HSRTM (with ICESat RH100) (Simard
et al., 2019).

Allometric Model R2 RMSE
(Mg ha-1)

Allometry name
Region Covered by

Model

AGB = 2.572 × Hmax
1.5191 0.70 180.0 Global Hmax power Global

AGB = 0.440 × Hmax
2.1578 0.85 66 East Africa Hmax power Somalia to South Africa

AGB = 0.745 × Hmax
1.6228 0.70 65 Americas Hmax power

North, Central and
South America

As seen in Listing 8, the AGB regressions visible in Table 7 can easily be implemented in a func-
tion within GEE once canopy heights have been estimated in order to derive AGB. With region spe-
cific, and global, formulas, the user can fine-tune the estimation of biomass depending on the location
of the study area in question.
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4 Results & Analysis

4.1 Results

Table 8: AGB Change statistics for the Eastern coast of Africa.

AGB (Mg/Ha)

2019 2020 2021

Somalia 361 361 370
Kenya 162,661 21,362 20,232
Tanzania 24,282 192,300 74,437
Mozambique 90,145,978 N/A N/A
South Africa 4,168 2,361 7,784

Simard et al., 2019 estimate that there is 261,387,504 Mg/Ha of carbon found in Mozambique
with there study in comparison to the results seen in Table 8. However, there are high levels of AGB
variability when exporting results from GEE, resulting in inconsistent results when working with de-
rived data outside of the browser API. Over such large study areas, it can prove challenging to obtain
AGB statistics for a study area, and thus it is recommended to work at smaller scales when possible
for more accurate figures and quicker processing times.

(a) Simard et al., 2019 AGB histogram. (b) Histogram derived in this study.

Figure 17: Comparison of mangrove histogram distribution for coastline of Mozambique. Pixel value
represents AGB in Mg/Ha.
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Figure 18: Comparison of Simard et al., 2019 AGB estimates (left), with AGB estimates derived from
this study for a portion of the Mozambique coastline.

4.2 Processing Method

As seen in the previous sections, and Listing 9, GEE is a powerful and capable tool for query-
ing, processing, and analyzing large amounts of remotely sensed EO data throughout the entire globe.
However, considerations must be made when processing over large study areas, such as the entire
coastline of the country of Mozambique. The use of functions, wrapping complex functions and cal-
culations in a format that allows for the implementation of efficient workflows, allows users to effec-
tively implement large-scale, high resolution spatial analysis over vast areas and incorporating many
different data sources and formats. Conducting analysis in GEE, also affords users the possibility of
generating workflows for a study area whilst have the flexibility of implementing their workflow over
different study areas with the change of a few parameters within the browser-based editor. Without
the use of functions, an analysis on a country-wide scale would not be possible.

4.3 Mangrove Mask

When using the stratifiedSample tool within GEE to generate 100 random points per four
land cover classes, a validation accuracy of 90-95% is consistently achieved for the coastline of Mozam-
bique depending on whether the Random Forest or Gradient Tree Boost (both with 150 trees) al-
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gorithm was utilized (results can be seen in Tables 9 & 10). As seen in Figure 19, the ML model is
able to catch significantly more detail along the coast of the study area, classifying small mangrove
ecosystems which the GMW fails to classify.

(a) Sentinel-2 yearly composite. (b) GMW 2016 baseline. (c) ML mangrove classification.

Figure 19: Comparison of mangrove masking for portion of Mozambique coastline.

As seen in Table 10, the Gradient Tree Boost algorithm slightly out-performs the Random Forest

algorithm for the coastline of Mozambique utilizing the same parameters. However, with the ease of
use allowing by operating in the GEE JavaScript API, algorithms can quickly and easily be swapped
for testing of performance given different study areas or input parameters. By generating a local-
level mangrove mask generated from a global baseline dataset, we can more accurately estimate the
amount of AGB within a study area, as the physical area of mangrove ecosystems on the surface is
more accurately represented. as this study generates a mask at a resolution of 10 meters, the edges of
such environments have more detail and can allow for higher detailed tracking of mangrove loss/gain.

Table 9: Confusion matrix for Random Forest mangrove mask for Mozambique coastline using Gra-
dient Tree Boost algorithm (92% Validation Accuracy). Actual classifications are represented on the
x-axis with predicted classifications on the y-axis.

Classification Non-Mangroves Mangroves Water Ocean Forest

Non-Mangroves 29 1 0 0 3
Mangroves 1 29 0 0 0
Water 2 1 26 0 0
Ocean 0 0 4 23 0
Forest 0 0 0 0 35

4.4 Canopy Height Measurements

In order to measure the performance of ATL03 canopy height derivations, they were directly
compared with CHM generated from locally sourced LIDAR scans. For this study, comparisons were
made in the area of Jobos Bay, Puerto Rico and in the coastal Everglades of southern Florida as there
is ample ICESat-2 coverage as well as readily available local LIDAR data. The performance for ATL03,
ATL03, and GEDI data against local CHMs can be seen below.

For this report, the CHM was generated at a resolution of 10 meters per pixel for efficient pro-
cessing times. Canopy heights were derived at a resolution of 10 meters along the track of the dataset
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Table 10: Confusion matrix for Gradient Tree Boost mangrove mask for Mozambique coastline using
Gradient Tree Boost algorithm (94% Validation Accuracy). Actual classifications are represented on
the x-axis with predicted classifications on the y-axis.

Classification Non-Mangroves Mangroves Water Ocean Forest

Non-Mangroves 28 0 0 0 2
Mangroves 1 30 1 0 0
Water 1 1 26 2 0
Ocean 0 0 0 22 0
Forest 2 0 0 0 29

(a) Derived canopy heights for Jobos Bay, Puerto
Rico.

(b) Scatter/density plot comparison of derived heights
for Southern Florida. Y axis: CHM, X axis: ATL03.

Figure 20: Performance of derived canopy heights from ATL03 compared against heights obtained
from local LIDAR datasets for Jobos Bay & Southern Florida.

represented by a point with the canopy statistics for the center of that 10 meter bin. This required
that zonal statistics be utilized within QGIS to measure performance. Once in QGIS, each point with
canopy information had a 10 by 10 meter polygon constructed around it. From these polygons the av-
erage canopy height pixel value of the CHM beneath was measured, allowing the user to compare the
derived measurements of the ATL03 custom workflow with ground measurements as can be seen in
Figure 20.

As seen in Figure 20, the derived canopy heights greatly over estimate the actual heights of the
canopy on the ground. Even when ICESat-2 returns are taken for the same period in which the local
LIDAR data was collect, 2018, and with only the 95th percentile of heights being chosen for canopy
heights in the ATL03 data, heights will still much higher than actual measurements with an R2 value
of 0.0074 for Jobos Bay, showing little correlation between the two datasets.

The same workflow was employed to compare ATL08 measurements with local data as was done
with ATL03 canopy height derivations. Instead of a 10 by 10 meter polygon being drawn around each
data point, ATL08 required different considerations. As canopy height metrics in ATL08 datasets
are average heights along a 100 meter segment, a line following the path of the along-track point col-
lection was drawn along the points. From this a 16 meter wide, corresponding with the width of an
ICESat-2 track, was drawn around all ATL08 points following the direction of the path. Finally, the
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line was split into 100 meter segments, with each ATL08 point being located at the center of the seg-
ment as seen in Figure 21.

Figure 21: ATL08 polygons against CHM used to collect zonal statistics to measure data perfor-
mance.

From polygons above, the average canopy height from the CHM for the area was taken in order
to compare the performance of ATL08 versus local LIDAR data for the area. As seen in Figure 22,
ATL08 performs relatively well compared to local measurements even when estimating height for a
100 meter segment. With an R2 value of 0.7577, ATL08 can prove to be a powerful alternative to pro-
vide estimated canopy heights for a region with quick turnaround time.

(a) Derived canopy heights for Jobos Bay, Puerto
Rico.

(b) Scatter/density plot comparison of derived heights
for Southern Florida. Y axis: CHM, X axis: ATL08.

Figure 22: Performance of derived canopy heights from ATL08 compared against heights obtained
from local LIDAR datasets for Jobos Bay & Southern Florida.

4.5 Canopy Height Estimates & AGB

Based on the performance of canopy heights that can be seen in the above section, as well as ease
of availability in GEE, the GEDI, canopy heights raster dataset was chosen for canopy height model
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(a) Derived canopy heights for Jobos Bay, Puerto
Rico.

(b) Scatter/density plot comparison of derived heights
for Southern Florida. Y axis: CHM, X axis: GEDI.

Figure 23: Performance of derived canopy heights from GEDI compared against heights obtained
from local LIDAR datasets for Jobos Bay & Southern Florida.

training in future processing and study areas.

The allometric equations presented in Table 7 allowed for the rapid derivation of AGB estimates
in GEE (as seen in Line 24 of Listing 8) when other ground-based tree measurements were not avail-
able and/or could not be acquired which would allow for more precise estimations.

(a) GEDI heights compared to field measurements. (b) GEDI height performance.

Figure 24: GEDI performance in Southern Florida (m).

With an R2 value of 0.731 as seen in Figure 24b, GEDI performs well (see Figure 30) in tandem
with the Gradient Tree Boost ML algorithm to estimate canopy heights for a sample area of south-
ern Florida. This score is followed closely by the Random Forest algorithm with an R2 score 0.724
with both algorithms being trained with 250 trees. Both results were trained with 726 points, and
validated against 338 GEDI points with the ’rh98 ’ canopy height return.

In the southern Florida study area, the derived canopy heights from ICESat-2 ATL03 performed
rather poorly, with an R2 of 0.075 with the Gradient Tree Boost algorithm and an R2 of 0.094 with
the Random Forest algorithm. In both scenarios the canopy height model was trained with 8,693
ICESat-2 ATL03 returns, and validated against 3,745 returns. Finally, using ATL08 ground and veg-
etation height returns, an R2 of 0.178 was achieved with the Gradient Tree Boost algorithm, and
an R2 of 0.147 was generated with the Random Forest algorithm with 1,674 returns for training and
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(a) ATL03 AGB estimations. (b) ATL08 AGB estimations.

(c) GEDI AGB estimations. (d) CHM AGB estimations.

Figure 25: Scatter plots comparing Simard et al., 2019 AGB estimations (Y axis) for southern Florida
against available canopy height datasets. Height datasets used in this study are represented along the
X axis.

768 returns for validation the models. Further AGB comparisons for southern Florida can be seen in
Figures 26, 27, 28, and 29 located in the Appendix.

From these results, we can see that GEDI derived canopy heights scored the highest when com-
pared to ICESat-2 ATL03 derived heights, and ATL08 out-of-the-box heights. With the ease of use
and accessibility of GEDI heights being available in a cloud platform such as GEE, these points were
opted for when generating biomass estimates for other study areas. Overall, the Gradient Tree Boost

algorithm scored slightly higher than the Random Forest algorithm, and was thus used in future sce-
narios. However, users can easily test and swap different algorithms within the GEE environment.

With canopy heights quickly and easily generated with the above-mentioned accuracy, allomet-
ric equations to estimate AGB can be applied in one line within GEE. As there are limited resources
available to compare large-scale mangrove biomass predictions against (i.e. single-plant biomass es-
timates vs. ecosystem biomass estimates), Simard et al., 2019 study of mangrove biomass estimates
will be utilized to compare with and gauge the performance of this study.

As seen in Figure 25, when compared to Simard et al., 2019’s global mangrove biomass estimates,
the different canopy height datasets, except when compared to a local LIDAR-derived CHM, all of
the datasets result in similar scatter plots. When compared to the Simard et al., 2019 dataset, we can
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see that course 30m resolution dataset results in gaps between canopy heights, where using ATL03,
ATL08, or GEDI canopy height estimates provides a more linear result range for biomass estimations.
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5 Discussion & Conclusion

Utilizing cloud-computing and remotely-sensed Earth observation data can allow interested par-
ties to quickly query, acquire, process, and analyze data to allow for the tracking and management
of at-risk ecosystems such as mangroves and their associated biomass. These tools also facilitate the
tracking and management of UN SDG progress, and if policy changes are positively impacting these
goals and at what scale, and pace, the management and rehabilitation of ecosystems is occurring, al-
lowing for stakeholders to manage SDGs in detail with regular updates. The tools and workflows uti-
lized and developed in this report will allow users and stakeholders to conduct analysis on large scales
with quick results, highlighting where issues lie or where improvements are being made.

Overall, Google Earth Engine has proven to be an invaluable tool when computing mangrove
area classifications and canopy height regressions for large-scale (up to country-wide) studies. This
study proves that, with minimal concessions, such computing and detailed analysis can be conducted
quickly and efficiently, allowing others to leverage the raw computing power of cloud services and
data to gap fill data poor regions or areas. Such data allows for the close monitoring of ecosystems
that are critical local economies as well as mitigating effects and impacts of future climate change
across the globe with these powerful carbon storage mangrove environments. Using this platform al-
lowed for the quick calculation of spectral indices over large time-series datasets which proved to be
crucial in both land cover masking and mangrove height estimations.

There are multiple canopy height estimates available for users to incorporate into biomass esti-
mate studies, some even at a global scale. Combined with new cloud-computing platforms, large-scale
predictions and estimations of parameters regarding the natural world have made large strides of
progress in recent years. One of these pivotal platforms is NASA’s ATLAS sensor aboard the ICESat-
2 satellite platform. Originally designed for measuring the Cryosphere, this LIDAR sensor has proven
that it is capable of providing elevation data on a global-scale, however some work is required to make
it competitive with other options. One of the goals of this study was to determine if the Raw Geolo-
cated Photon Returns (ATL03) dataset from ICESat-2 could be used to derive canopy heights for
training a machine learning regression algorithm. By using ATL03, the aim is to allow users to gener-
ate canopy height estimates at a very high resolution (user-defined in the custom Python tool) to pro-
vide as an alternative to GEDI 25m resolution estimates, or ATL08 (Ground and Vegetation Heights)
ICESat-2 points at a 100m resolution.

Raw ATL03 returns were downloaded and processed in a Python environment before being trans-
ferred to GEE, requiring some manual work before being ready for analysis. After preliminary results,
ATL03 derived canopy heights performed poorly compared to other datasets available to users (see
Boest-Petersen, 2022b). In an attempt to remove over-estimating of canopy heights and be rid of any
potential outliers from the derived dataset, the 95th percentile was selected from each 10 meter bin,
reducing the height estimates to a potentially more reasonable level. However, as seen in Figures 26,
26b, and 26a, the derived ATL03 dataset still did not outperform, or prove to be a reasonable atler-
native to existing datasets with the processing steps taken in Boest-Petersen, 2022a. Further work
has been done utilizing deep learning techniques to classify ground points from ATL03 returns in
Siegfried and Sutterley, 2022, as well as the processing techniques employed in ATL08 with Neuen-
schwander and Pitts, 2019. As of writing, there are still significant steps that need to be taken to
pre-process ATL03 returns in order derive canopy heights at high resolutions, and as such, other data
sources should likely be utilized for AGB estimates.

As an alternative to ATL03, Neuenschwander and Pitts, 2019 have made ATL08, Ground and
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Vegetation heights, returns freely available for users via the DAAC. Points can be easily queried and
downloaded in a Python environment and then brought into GEE for further processing. As seen in
Figures 22b, 21, and 28a, these points perform well and are comparable with GEDI returns as well
as in-situ data. These results show that the ICESat-2 platform has a promising future for elevation
measurements across the globe even though that is not its intended purpose. However, in edge envi-
ronments such as mangrove ecosystems, where there is rapid change or degradation, the 100 meter of
along-track resolution from ATL08 can prove to be too course for some regions of the globe. To sup-
plement this, GEDI data can fill the gap.

Another popular option for global scale canopy heights is the GEDI system aboard the ISS. As a
purpose built sensor for measuring canopy heights, the returns can prove to be a sound alternative for
canopy height data. As seen from Figures 23b, 24, and 30, regressions of canopy height and resulting
AGB perform well when compared to ATL08 and locally-derived CHM at a small scale. Another de-
velopment was made earlier in 2022, when the raster GEDI canopy height estimate dataset was made
available for all users globally on GEE from 2019 on-wards. With the ease of access of data across
large regions of the globe combined with its high performance, GEDI has proven to be a viable and
efficient alternative. The datasets availability also negates the need to pre-process EO data in a sepa-
rate environment before ingesting into GEE. When using the GEDI canopy heights, the only require-
ment for users is to supply data of known mangroves, such as the GMW 2016 baseline dataset that
is freely available and used in this study. Furthermore, utilizing data within GEE results in limited
amount of parameters required for tuning to improve performance and minimal coding for any area
across the globe at a large spatial scale, such as seen in Listing 9.

In some cases, the Gradient Tree Boost algorithm outperformed the Random Forest algorithm
for mangrove land cover masking. Gradient boosted decision trees can outperform traditional random
forests because the algorithm “builds the weak learner in the direction of the gradient to get the best
results in the least amount of time.” (J. Wang et al., 2018) With the rapid implementation of var-
ious classification algorithms in GEE, users can test which works best for their study area. In the
case of this study, Gradient Tree Boost had higher validation accuracies when validating against
the GMW 2016 baseline dataset compared to the Random Forest algorithm and as such was utilized
for the eastern coast of Africa for this study.

A popular global mangrove area and biomass dataset is detailed by Simard et al., 2019. This
study is conducted with reliable, but potentially outdated, data sources (such as SRTM elevation sur-
faces), or at a resolution which may result in the loss of granularity, such as 30m LANDSAT imagery.
This study aims to improve upon this by utilizing higher resolution data and more recent data. Com-
parisons between this study and the results from Simard et al., 2019 can be seen in Figure 25. When
comparing the AGB for southern Florida utilizing newer canopy height sources against previous stud-
ies, we can see that the general trend is the same, but we are now able to estimate the biomass of
large scale ecosystems with higher detail. Results are also more linear and nature, more accurately
representing the health of the ecosystem on the ground, instead of the grouping of results that can be
seen in previous studies in Figure 25.

With multiple new canopy height datasets becoming available, whether from specialized sensors
such as GEDI, or as a by-product of other missions, ICESat-2, scientists are now able to monitor
at-risk ecosystems to provide more information for stewardship and conservation in the age of cli-
mate change. When comparing to existing studies, two products stand out in terms of performance.
ATL08, ground and vegetation height and GEDI canopy heights are two options for readily available,
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global-scale data. With GEDI’s purpose-built sensor, higher resolution (25m vs. 100m), and data
availability within mangrove ecosystems and accessibility within cloud-computing platforms such as
GEE, makes it a powerful tool in the arsenal of studying and monitoring ecosystems at the forefront
of climate change mitigation.

Cloud-computing allows users to build a workflow (see Listing 9) and employ it on areas around
the globe given data-availability made possible by sensors such as Sentinel-1 & 2, FABDEM eleva-
tion, and high computing power afforded by commercial hardware and parallel-ization of processes.
By working in Python, users open up possibilities of working with alternative canopy height datasets,
such as ATL08 ground and vegetation heights and ATL03 raw geolocated photon returns. This study
was able to generate mangrove biomass estimations at a spatial resolution of 10 meters for the entire
eastern coastline of Africa utilizing cloud-computing. With the workflow developed from this study,
mangrove areas, heights, and AGB can be estimated anywhere in the equatorial mangrove region (re-
fer to Figure 1) with quick turn-around time. Measuring change can efficiently be accomplished by
conducting a time series analysis within GEE and utilizing the sensors employed in this study. All
of this culminates to provide relevant stakeholders with accurate and detailed information on how
these crucial ecosystems are being impacted by human development and climate change. However,
care needs to be taken when processing at such a large scale in order to maintain accuracy of derived
results, as well as optimizing processing times. As experienced in this study, working at country-wide
scales, especially for large coastline extents as seen in Mozambique, Somalia, and South Africa, sepa-
ration of the study into smaller, more manageable areas, may be beneficial at the cost of longer, most
intensive processing times.

5.1 Improvements & Future Studies

With the rapidly developing environment of climate change and available EO platforms and data,
tracking mangrove biomass and ecosystem health will constantly evolve at a rapid pace. As such,
there will be continual improvements in terms of processing and data in this field that can be incor-
porated into this study to improve results and the accuracy of the results.

Over the course of this study, multiple developments had been made in terms of EO data avail-
ability. One large advancement was the availability of GEDI data on GEE. Another was the sensor
issues experienced by Sentinel-1, resulting in decreased data availability, reliance on complex systems
can result in periods of decreased data, resulting in lower accuracies, or potentially no predictions due
to a lack of critical data.

GEE was the main tool utilized in this study for data querying and processing. However, alter-
natives are beginning to appear as the world of EO and cloud-computing becomes an attractive al-
ternative to local stored and processed information. Platforms such as Microsoft’s Planetary Com-
puter10 or ESA’s OpenEO Platform11 are some new additions that allow users to leverage petabytes
of remotely sensed data in a single line of code, as well as harnessing the power of commercial-grade
hardware and parallel-ization of computational processes to derive data for the sake of monitoring cli-
mate change and its impacts on the Earth’s ecosystems. Such platforms can be crucial in monitoring
the progress of the UN Sustainable Development Goals, ensuring that these goals are being met, or
quantifying what needs to be done to meet these goals in order to set the stage for climate change
mitigation. However, since many of these options are in their infancy compared to GEE, they do not

10https://planetarycomputer.microsoft.com/
11https://openeo.cloud/
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have as extensive of a data catalogue, and thus are limited in what they are able to provide to users.
However, this should be quickly resolved with the development speed of such projects, allowing users
to leverage the platforms with many dataset options. Implementations of GEE’s Python API, such as
GEEMap (Wu, 2020), are also becoming available and allowing users to quickly leverage GEE’s capa-
bilities within other environments.

Further processing of ATL03 in order to locate and identify ground and top of canopy returns can
be done in order to generate more precise training data for further height regressions. Future work
could involve using Convolutional Neural Networks (CNN) to apply an iterative process along-track
returns to locate such statistics over small areas given enough returns with similar work being done
by Siegfried and Sutterley, 2022 for ATL03 ground return locations, and Xie et al., 2021 for locating
returns that fall in shallow water for bathymetric mapping applications.

The interest in EO and RS has also led to a large expansion of the private satellite construction
and data providers. Active sensors, such as ICEYE’s12 constellation of high resolution SAR satellites,
or Norway’s International Climate and Forest Initiative (NICFI) high resolution passive monitoring of
the globes forests via their Planet program13, users now have a plethora of free and paid options for
high resolution, global scale data to employ in their workflows for monitoring mangroves and tracking
SDGs in the face of anthropogenic climate change and land development.

12https://www.iceye.com/
13https://www.planet.com/products/basemap/
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Appendix

ATL03 Comparisons:

(a) ATL03 heights compared to field measurements. (b) ATL03 height performance.

Figure 26: ATL03 performance in Southern Florida (m).

Figure 27: Scatter plot of ATL03 AGB compared with AGB derived from local CHM in Southern
Florida in Mg/Ha.
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ATL08 Comparisons:

(a) ATL08 heights compared to field measurements. (b) ATL08 height performance.

Figure 28: ATL08 performance in Southern Florida (m).

Figure 29: Scatter plot of ATL08 AGB compared with AGB derived from local CHM in Southern
Florida in Mg/Ha.

Page 64 of 70



Large-Scale Mangrove Biomass Estimation Appendix

Figure 30: Scatter plot of GEDI AGB compared with AGB derived from local CHM in Southern
Florida in Mg/Ha.

Mangrove Biomass Estimate GEE JavaScript Workflow

1 var start = ee.Date(’2019 -01 -01’);

2 var end = ee.Date(’2019 -12 -31’);

3 var bands_lc = [’B1’, ’B2’, ’B3’, ’B4’, ’B5’, ’B6’, ’B7’, ’B8’, ’B8A’, ’B9’, ’B10’, ’

B11’, ’B12’, ’SAVI’, ’GNDVI’, ’EVI’, ’NDMI’, ’MSI’, ’GCI’,

4 ’BSI’, ’NDWI’, ’ARVI’, ’MNDWI ’, ’NDVI’, ’VV’, ’VV_1’, ’VH_1’, ’fabdem ’]; // Bands to

train mangrove mask classifier

5 var bands_height = [’VV’, ’B3’, ’B6’, ’B9’, ’GCI’, ’BSI’, ’B2’]; // Bands to train

height regression model

6

7 // Function to mask clouds using the Sentinel -2 QA band.

8 function maskS2clouds(image) {

9 var qa = image.select(’QA60’); // Select Quality Band

10

11 // Define Cloud Types to be Masked Out

12 var cloudBitMask = 1 << 10;

13 var cirrusBitMask = 1 << 11;

14

15 // Set masks to zero to select clear conditions

16 var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(

17 qa.bitwiseAnd(cirrusBitMask).eq(0));

18

19 // Return masked image minus ’QA’ bands

20 return image.updateMask(mask).divide (10000)

21 .select("B.*")

22 .copyProperties(image , ["system:time_start"]);

23 }

24

25 // Load East Africa Coast Line Dataset (generated by Alexander Boest -Petersen)

26 var country_select = africa_east_coast.filter(’NAME == "Mozambique"’); // Select

Mozambique coastline
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27 var grids = (country_select.geometry ()).coveringGrid(’EPSG :4326’, 100000); // Generate

grids over coastline

28 print(’Number of Grids:’, grids.size()); // Print grid info

29 grids = grids.randomColumn (); // Assign random column to grid for random selection

30 grids = grids.filter(ee.Filter.lt(’random ’, 0.3)); // Select 30% of grids for large

Mozambique coastline

31 print(’Grids Test:’, grids); // Print total number of grids available

32 print(’Number of Grids to be Processed:’, grids.size()); // Print number of grids

selected for training models

33

34 // GEDI Canopy Information

35 var qualityMask = function(im) {

36 return im.updateMask(im.select(’quality_flag ’).eq(1)) // Select valid wave -forms

37 .updateMask(im.select(’degrade_flag ’).eq(0)) // Select data with no comments on

quality

38 .updateMask(im.select(’solar_elevation ’).gt(0)); // Select data collected at

night

39 };

40 var gedi_data = ee.ImageCollection(’LARSE/GEDI/GEDI02_A_002_MONTHLY ’)

41 .filterDate(start , end) // Filter by date for the year of 2019

42 .filterBounds(grids) // Filter to randomly selected grids

43 .map(qualityMask) // Map function to filter specific returns

44 .select(’rh98’) // Select 98th percentile heights

45 .mean() // Calculate mean to generate Image from ImageCollection for

later sampling

46 .rename(’canopy_h ’); // Rename height attribute for later training

47

48 // S1 Imagery

49 var imgVV = ee.ImageCollection(’COPERNICUS/S1_GRD ’)

50 .filter(ee.Filter.listContains(’transmitterReceiverPolarisation ’, ’VV’)) //

Filter out bands that are not of interest

51 .filter(ee.Filter.eq(’instrumentMode ’, ’IW’)) // Select bands collected in ’IW

’ mode

52 .select(’VV’) // Select ’VV’ Band

53 // Define function to calculate edge effects

54 .map(function(image) {

55 var edge = image.lt( -30.0);

56 var maskedImage = image.mask().and(edge.not());

57 return image.updateMask(maskedImage);

58 });

59 var descChange_VV = (imgVV.filter(ee.Filter.eq(’orbitProperties_pass ’, ’DESCENDING ’)))

.filterDate(start , end).mean(); // Filter by date and Descending pass and average

results for later training

60 var ascChange_VV = (imgVV.filter(ee.Filter.eq(’orbitProperties_pass ’, ’ASCENDING ’))).

filterDate(start , end).mean(); // Filter by date and Ascending pass and average

results for later training

61 var imgVH = ee.ImageCollection(’COPERNICUS/S1_GRD ’)

62 .filter(ee.Filter.listContains(’transmitterReceiverPolarisation ’, ’VH’)) //

Filter out bands that are not of interest

63 .filter(ee.Filter.eq(’instrumentMode ’, ’IW’)) // Select bands collected in ’IW

’ mode

64 .select(’VH’) // Select ’VH’ band

65 // Define function to calculate edge effects

66 .map(function(image) {

67 var edge = image.lt( -30.0);

68 var maskedImage = image.mask().and(edge.not());

69 return image.updateMask(maskedImage);
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70 });

71 var descChange_VH = (imgVH.filter(ee.Filter.eq(’orbitProperties_pass ’, ’DESCENDING ’)))

.filterDate(start , end).mean(); // Filter by date and Descending pass and average

results for later training

72 var ascChange_VH = (imgVH.filter(ee.Filter.eq(’orbitProperties_pass ’, ’ASCENDING ’))).

filterDate(start , end).mean(); // Filter by date and Ascending pass and average

results for later training

73

74 // FABDEM

75 var elev = fabdem.mosaic ().select(’b1’).rename(’fabdem ’); // Select elevation band

76

77 // Copernicus Land Cover

78 var cop_landclass = ee.Image("COPERNICUS/Landcover /100m/Proba -V-C3/Global /2019").

select(’discrete_classification ’).clip(grids.geometry ()); // Select land cover

classification band and clip to study area

79 var cop_water = (cop_landclass.updateMask(cop_landclass.eq(80))).rename(’

mangrove_label ’); // Select water class

80 cop_water = cop_water.reduceToVectors ({ geometry: grids.geometry (), maxPixels: 1e12});

// Convert raster to vector for burning of data intro training imagery

81 var water_image = ee.Image (2).clip(cop_water); // Create new image with water cover

equaling the value of 2

82 var cop_ocean = (cop_landclass.updateMask(cop_landclass.eq (200))).rename(’

mangrove_label ’); // Select ocean class

83 cop_ocean = cop_ocean.reduceToVectors ({ geometry: grids.geometry (), maxPixels: 1e12});

// Convert raster to vector for burning of data intro training imagery

84 var ocean_image = ee.Image (3).clip(cop_ocean); // Create new image with ocean cover

equaling the value of 3

85 var cop_forest = (cop_landclass.updateMask(cop_landclass.eq (112))).rename(’

mangrove_label ’); // Select forest class

86 cop_forest = cop_forest.reduceToVectors ({ geometry: grids.geometry (), maxPixels: 1e12})

; // Convert raster to vector for burning of data intro training imagery

87 var forest_image = ee.Image (4).clip(cop_forest); // Create new image with forest cover

equaling the value of 4

88

89 // Mangroves

90 var mangroves_image = ee.Image (0).clip(grids.geometry ()); // Create blank image with

pixels equaling 0 for the study area

91 var mangroves_image = mangroves_image.paint(gmw , 1).rename(’mangrove_label ’).clip(

grids.geometry ()); // Paint Mangroves into the newly created blank image with the

value of 1

92 var training_mangroves = ee.Image.cat([ ocean_image , mangroves_image , forest_image ]).

reduce(ee.Reducer.firstNonNull ()).rename(’mangrove_label ’).toByte (); // Add

previous land cover types to training image for model ingestion

93

94 // Stack Bands Function

95 function stackBands(i){

96 // S2 Indices

97 var selected = i.select(’B1’, ’B2’, ’B3’, ’B4’, ’B6’, ’B8’, ’B9’, ’B11’, ’B12’); //

Select relevant S2 bands

98 var SAVI = selected.expression(’((b(5)-b(3))/(b(5)+b(3))+0.428) *1.428 ’).rename(’SAVI

’); // Calculate SAVI

99 var GNDVI = selected.expression(’(b(5)-b(2))/(b(5)+b(2))’).rename(’GNDVI’); //

Calculate GNDVI

100 var EVI = selected.expression(’2.5*(b(5)-b(3))/(b(5) +6*b(3) -7.5*b(1) +1)’).rename(’

EVI’); // Calculate EVI

101 var NDMI = selected.expression(’(b(5)-b(7))/(b(5)+b(7))’).rename(’NDMI’); //

Calculate NDMI
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102 var MSI = selected.expression(’(b(7))/(b(5))’).rename(’MSI’); // Calculate MSI

103 var GCI = selected.expression(’(b(6))/(b(2) -1)’).rename(’GCI’); // Calculate GCI

104 var BSI = selected.expression(’(b(7)+b(3)-b(5)+b(1))/(b(7)+b(3)+b(5)+b(1))’).rename(

’BSI’); // Calculate BSI

105 var NDWI = selected.expression(’(b(2)-b(5))/(b(2)+b(5))’).rename(’NDWI’); //

Calculate NDWI

106 var ARVI = selected.expression(’(b(5) -(2*b(3))+b(1))/(b(5) +(2*b(3)+b(1)))’).rename(’

ARVI’); // Calculate ARVI

107 var MNDWI = selected.expression(’(b(7)-b(2))/(b(7)+b(2))’).rename(’MNDWI’); //

Calculate MDNWI

108 var NDVI = selected.normalizedDifference ([’B8’, ’B4’]).rename(’NDVI’); // Calculate

NDVI

109 return i.addBands ([SAVI , GNDVI , EVI , NDMI , MSI , GCI , BSI , NDWI , ARVI , MNDWI , NDVI ,

descChange_VV , ascChange_VV , descChange_VH , ascChange_VH , elev])

110 .set(’system:footprint ’, i.geometry ()); // Add calculated spectral indices to

imagery

111 }

112

113 // Training Data

114 var collection = ee.ImageCollection(’COPERNICUS/S2’)

115 .filterDate(start , end) // Filter by date

116 .filter(ee.Filter.lt(’CLOUDY_PIXEL_PERCENTAGE ’, 20)) // Select images that have

less than 20% cloud cover

117 .map(maskS2clouds) // Apply cloud masking function

118 .map(stackBands); // Calculate and stack spectral indices , and stack elevation

data

119 var compilation = collection.median (); // Calculate median value of each pixel

120 compilation = compilation.addBands(training_mangroves); // Add mangrove cover after to

preserve data type (remain as integer and not converted to float , need to have

discrete value for land cover classification)

121

122 // Display S2 imagery results.

123 var viz = {bands: [’B4’, ’B3’, ’B2’], min: 0, max: 0.2}; // Select visual bands

124 Map.addLayer(compilation , viz , ’S2 Imagery ’, false); // Add layer to GEE map

125

126 // Stratified Sample Generation for Land Cover Masking

127 var strat_sample = (compilation.clip(grids.geometry ())).stratifiedSample ({

128 numPoints: 100, // Generate 100 random points

129 region: grids , // Region for point generation

130 classBand: ’mangrove_label ’, // Generate 100 points per land cover class for a total

of 500 points per grid

131 scale: 100, // Average the cells in the surrounding 100m radius for training ,

required for memory limits

132 geometries: true , // Maintain geometries for later training

133 tileScale: 16 // Reduce size of calculation tiles on GEE servers to prevent

computation timed -out error , 16 is max value

134 });

135 print(’Stratified Sample:’, strat_sample.size()); // Print overall number of randomly

generated points

136 Map.addLayer(strat_sample , {}, ’Stratified Sample ’); // Add points to map for

visualization of point data

137 strat_sample = strat_sample.randomColumn (); // Add random column to point data for

filtering

138 var training = strat_sample.filter(ee.Filter.lt(’random ’, 0.7)); // 70% of points

reserved for training

139 var validation = strat_sample.filter(ee.Filter.gte(’random ’, 0.7)); // 30% of points

reserved for validation
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140 // Define Classifier

141 var classifier = ee.Classifier.smileRandomForest (150).train({ features: training ,

classProperty: ’mangrove_label ’, inputProperties: bands_lc }); // Can also use

smileGradientTreeBoost algorithm

142 // Train Classifier

143 var trained = classifier.train(training , ’mangrove_label ’, bands_lc);

144

145 // Classifier coastline by grid

146 function classify_image(trained_model , img , grids){

147 var classified = img.classify(trained_model); // Classify each image in each grid

148 var mangroves_masked = classified.updateMask (( classified.select(’classification ’)).

eq(1)); // Select pixels classified as mangroves

149 // Seive

150 var mmu = 60; // Define sieve size in square meters

151 mangroves_masked = mangroves_masked.connectedPixelCount(mmu , false); // Select

groups of pixels smaller than or equal to mmu variable connected using 4-connected

rules

152 mangroves_masked = mangroves_masked.updateMask(mangroves_masked.gte(mmu)); // Remove

areas below mmu threshold , leaving larger areas

153 return mangroves_masked;

154 }

155

156 var classified_mangroves = classify_image(trained , compilation , grids); // Apply

classification function defined above with provided parameters

157

158 var training_properties = ’canopy_h ’; // Define height training attribute

159

160 // Function to estimate heights and biomass

161 function mangrove_biomass (gridded_area) {

162 // Convert GEDI Raster to Points

163 var height_data = gedi_data.sample ({

164 region: gridded_area.geometry (), // Limit points to study area

165 scale: 25, // Resolution of GEDI raster dataset

166 geometries: true , // Maintain geometries of points for later training

167 numPixels: 2500, // Limit the number of pixels , required to avoid memory limit

error

168 });

169 // Build Training Data

170 var training_height = compilation.select(bands_height).sampleRegions ({

171 collection: height_data.limit (1000) , // Limit GEDI points further to 1000 returns ,

required to avoid memory error

172 properties: [training_properties], // Properties to copy from each input

173 scale: 25, // Resolution of GEDI point

174 tileScale: 16, // Reduce size of calculation tiles on GEE servers to prevent

computation timed -out error , 16 is max value

175 });

176 // Train a ML Classifier

177 var trained_height = ee.Classifier.smileGradientTreeBoost (250).setOutputMode(’

regression ’).train(training_height , training_properties , bands_height);

178 // Estimate Heights

179 var classified_heights = compilation.classify(trained_height);

180 // Mask Mangroves

181 var masked_heights = classified_heights.updateMask (( classified_mangroves.select(’

classification ’)).eq(60));

182 // Calculate AGB with formulas from Simard et al. 2019 Supplemental Table 8

183 var agb = (masked_heights.expression(’0.44*( height)’, {’height ’: masked_heights.

select(’classification ’)})).pow(ee.Number (2.1578));
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184 return agb;

185 }

186

187 var mangrove_heights = mangrove_biomass(grids); // Apply above biomass estimation

function to study area

188 print(’Mangrove Heights Regression:’, mangrove_heights);

189

190 // Add relevant layers to map for visualization of results

191 Map.addLayer(training_mangroves , {min: 0, max: 5, palette: [’#e41a1c ’, ’#4 daf4a’, ’

#377 eb8’, ’#984 ea3’, ’#ff7f00 ’]}, ’Training Mangroves ’, false); // Image for land

cover classification training

192 Map.addLayer(grids , {color: ’#5 ab4ac’}, ’Grids’, false); // Grids used to divide study

area

193 Map.addLayer(gmw.filterBounds(grids.geometry ()), {}, "GMW 2016", false); // GMW 2016

Baseline

194 Map.addLayer(classified_mangroves.select(’classification ’), {palette: ’green’}, ’

Mangroves Classification ’); // Classified mangroves

195 Map.addLayer(mangrove_heights , {min: 1, max: 5, palette: [’ffffcc ’, ’c2e699 ’, ’78c679’

, ’31a354’, ’006837 ’]}, ’Mangrove AGB’, true) // Estimated mangrove biomass

196 Map.centerObject(grids); // Center map to gridded study area

Listing 9: General workflow for mangrove mask and canopy height regression for the coastline of
Mozambique. Evolution of workflow from Boest-Petersen, 2022b.

GEE Environment

Link to GEE environment for AGB estimations of Mozambique coastline (refer to
Listing 9):

https://code.earthengine.google.com/6dabb48086adcfabd9baf8a34d0b7d8d

Python Environment

Link to Python code for querying, downloading and processing of ICESat-2 returns:
https://github.com/aboestpetersen/icesat2 canopy heights

Mozambique 2019 AGB GeoTiff File

Link to file via Aalborg University Sharepoint:
https://aaudk-my.sharepoint.com/:i:/g/personal/aboest20 student aau dk/EV901afL5txGjNvS3Zjdz1QBqgLYh-Wd6D7Mg5hOBDsQ5g?

e=pkt1mK
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