
Implementing full-body pose
estimation for Virtual Reality

applications
- A brief comparison among attainable tools -

Aalborg University
Architecture, Design and Media Technology

Copyright © Aalborg University 2022

The software used for typesetting the document, and creating figures was Overleaf, Google
forms and InVision.

Architecture, Design and Media
Technology

Aalborg University
http://www.aau.dk

Title:
Implementing full-body pose estimation
for Virtual Reality applications: A brief
comparison among attainable tools

Keywords:
Virtual Reality, Full-body tracking, Pose
estimation, Computer vision, Kinect,
BlazePose

Project Period:
Spring semester 2022

Participant(s):
Maciej Odrowąż-Sypniewski
Sofia Lamda

Supervisor(s):
Cumhur Erkut
Stefania Serafin

Copies: 1

Page Numbers: 84

Date of Completion:
May 24, 2022

Abstract:

The use of motion tracking for full
body motion in virtual reality enables
users to match their physical move-
ment with virtual avatars thereby mak-
ing the virtual experience more realis-
tic, which offers several benefits at a
plethora of applications. Today’s full-
body tracking systems are too com-
plex (for instance, requiring multiple
cameras or high-priced external tools)
and must undergo a lengthy calibra-
tion process, which contradicts the de-
sire to make VR more portable and in-
tegrated. The aim of this project is
to create a full body tracking solution
that is widely accessible. The paper
describes a number of tools used for
motion tracking. A comparison of dif-
ferent methods is made, along with
a discussion of their outcomes. This
leads to the development of an attain-
able computer vision-based solution.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 State of the art applications . 2

2 Background and literature review 5
2.1 Virtual Reality and Virtual Environment 5
2.2 Embodied Interaction in Virtual environments 5
2.3 Computer Vision . 6

3 Design choices 9
3.1 Choice of tools for the project . 9
3.2 Research on HMDs . 9
3.3 Research on full body tracking tools for VR applications 10

3.3.1 Computer vision . 10
3.3.2 AprilTags . 10
3.3.3 Kinect . 10
3.3.4 MocapForAll . 10
3.3.5 Wearable active trackers . 11
3.3.6 Motion capture rig . 11

3.4 Full body rigging in Unity . 11

4 Implementation 13
4.1 Tools . 13

4.1.1 Unity . 13
4.1.2 Oculus Quest 2 . 14
4.1.3 BlazePose . 14
4.1.4 Microsoft Kinect . 16
4.1.5 Avatar . 16
4.1.6 Skybox . 17

4.2 Scene Composition . 17
4.3 Pose estimation tools implementation 18
4.4 Combining HMD tracking with pose estimation 19

v

vi Contents

5 Evaluation 21
5.1 Participants . 21
5.2 Testing procedure . 22

5.2.1 Measurements . 23

6 Results 25
6.1 Quantitative Data . 25
6.2 Qualitative Data . 27

6.2.1 Oral and Written feedback . 29
6.2.2 Observed Actions . 29

7 Discussion 31
7.1 Methodology . 31
7.2 User Feedback . 31

8 Conclusion 33
8.1 Future work . 33

Bibliography 35

A Scripts 39
A.1 VNectModel.cs . 39
A.2 PoseVisualizer3D.cs . 57
A.3 BodySourceView.cs . 62
A.4 FaceManager.cs . 73

B Questionnaire 79

Maciej Odrowąż-Sypniewski
<modrow20@student.aau.dk>

Sofia Lamda
<slamda20@student.aau.dk>

vii

Chapter 1

Introduction

Healthcare, education, and entertainment are just a few fields where virtual real-
ity (VR) is applied. VR experiences utilizing head-mounted displays (HMDs) are
becoming increasingly popular as they become more affordable, immersive and
user-friendly over time. The most widely used HMDs, however, are only able to
offer head, eye, and hand tracking when in a virtual environment, providing a
virtual experience that focuses on upper body immersion.

At present, the most common full-body tracking systems are too complicated,
as they require multiple cameras, expensive external tools, and lengthy calibration
processes, with Microsoft Kinect being one of the most widely used external 3D
sensor for VR, mainly due to its affordability. Furthermore, the advancement of
computer vision in the last few years has inspired many exciting possibilities, such
as movement tracking, using a single monocular RGB camera, in conjunction with
neural network algorithms.

On this project, we present a widely accessible solution for full body tracking,
without the requirement for any passive or active wearable tracker or markers. The
tool works effectively in real time with HMD’s (we used the Oculus Quest 2), and
cooperates with Virtual Reality devices. Full body tracking was achieved using a
Microsoft Kinect V2 device in the first implementation, while the second used the
BlazePose 3D estimation model. To allow users to interact with their VR avatars, a
minimal virtual environment was developed in Unity platform.

By running a test session, in which users were able to interact with both imple-
mentations, we were able to analyze the current project’s results. Qualitative and
quantitative data were collected throughout an after-testing questionnaire as well
as a recording of observed actions and oral feedback was taken, in order to assess
the Kinect V2 and BlazePose implementations and compare them. The contribu-
tions of this project include:

• A thorough review of the existing approaches and tools for full body track-
ing.

1

2 Chapter 1. Introduction

• A VR application that includes two different methods of body tracking, one
using Microsoft Kinect V2 and the other using BlazePose. Presenting and an-
alyzing the results of both implemenations, as well as a comparison between
them.

• A result presentation of both implementations as well as a comparative anal-
ysis.

1.1 State of the art applications

HybridTrak

Figure 1.1: HybridTrak: Full-Body Tracking to VR tool [35].

HybridTrak (fig.1.1) is a real time full-body tacking tool introduced by Stanford
University in 2022. HybridTrak uses a single uncalibrated RGB camera for accurate
results instead of complex external tools such as RGBD cameras, converting 2D
upper body poses from RGB cameras into 3D poses by leveraging poses’ tracking
data. A neural network processes the converted data to produce the lower body
movement[35].

1.1. State of the art applications 3

KOS

Figure 1.2: KOS: VR game using Kinect V2 and
Oculus Rift [12].

Andong National University released
KOS (fig.1.2) in 2016. In order to in-
crease efficiency, the game uses three
different input devices: Kinect, Oculus
Rift, and a smartphone. Besides Kinect
for tracking hands, the smartphone
is also utilized for swiping, touching,
and dragging. KOS was developed in
three parts: the client side, which im-
plements the virtual reality game, the
smartphone part, which is the input
device, and the server, that hosts all

client-phone communication [12].

DUKE

Figure 1.3: DUKE: Enhancing Virtual Reality
based FPS Game with Full-body Interactions [1].

Duke (fig.1.3) is a VR first person
shooter (FPS) developed in 2016. It
combines technologies such as Oculus
Rift, Microsoft Kinect, and Leap Mo-
tion. The result of this project is a
fully immersive prototype is , which
involves foot and torso movement and
provides navigation and combat inter-
actions. Duke detects multiple joints of
the body, including the hands, head,
body, and feet, so that natural body
movements can be captured. Kinect sensors provide foot and spine data, while
Leap motion sensors provide hand recognition. The VR image can also be gener-
ated by tracking the user’s head position using the Oculus Rift. Game development
was done with Unity Engine[1].

4 Chapter 1. Introduction

ExerGame

Figure 1.4: Exergame: Promoting Physical Activ-
ity [26].

Exergame (fig.1.4), presented in 2022, is
a VR application that aims to prevent
WMSDs (work-related musculoskeletal
disorders). While in the virtual space,
users are able to control their full body
avatar. Through this kind of immer-
sive experience, users will be motivated
and encouraged to increase their phys-
ical activity levels. Using the Oculus
Rift VR headset and Microsoft Kinect
depth sensor, the full-body VR experi-
ence was achieved. Unity Engine was
used to develop the game application

[26].

Metaspace

Figure 1.5: MetaSpace: a VR immersive full-body
Tracking application [25].

Metaspace (fig.1.5) is a full body track-
ing multiperson tool introduced by
MIT Media Lab in 2015. Users can ex-
perience VR worlds together when they
are co-located. Participants own an
avatar controlled by their body move-
ments, thus they can see and interact
with each other in the Virtual Reality
world. Two major components make
up the Metaspace tool. The first one
contains two Oculus Rift HMDs simul-
taneously operating in a VR environ-
ment. In the second part, two Kinect
devices are used to recognize each individual’s full body. A four level client -
server architecture is used to allow simultaneous co-existence on the same VR
space[25].

Chapter 2

Background and literature review

Chapter two presents an explanation and evaluation of the concept of virtual reality
and virtual environments, embodied interaction in virtual environments as well as
computer vision.

2.1 Virtual Reality and Virtual Environment

In 1989, Lanier proposed the term "virtual reality" to describe computer simulation,
defining the term as "the idea that combines virtual worlds with networking, plac-
ing multiple participants in a virtual space using head-mounted displays"[11]. "A
computer system capable of creating a virtual world in which a user can immerse
himself, roam around, and operate objects" is referred to as virtual reality by the
IEEE standard protocol submitted by the work group on virtual reality. The first
virtual reality applications were in entertainment and simulation training. Today,
virtual reality projects are used in areas such as aeronautical research, architecture,
and scientific visualization in defense, medicine, and education[38].

Computer-generated virtual environments can describe objects within the sim-
ulation as well as the rules and relationships that govern them. A virtual reality
system creates a virtual presence by displaying objects in virtual environments and
allowing interaction. The content of the virtual environment such as objects and
character determines the virtual environment, while user perception of this content
may involve sight, hearing, and touch[17].

2.2 Embodied Interaction in Virtual environments

As Dourish defined in 2001 "embodied interaction" refers to interactions with tech-
nology that inhabits our “real world,” one that is physically, socially, and geo-
graphically situated, and in turn exploits this inhabitation as it interacts with us.

5

6 Chapter 2. Background and literature review

According to Dourish, embodied interaction refers to creating meaning through
engaging with artifacts and manipulating it, through the introduction of a phe-
nomenological framework[18].

Through the use of virtual self-avatars, virtual reality can offer a feeling of em-
bodiment. Immersive virtual reality experiences are character-based experiences in
which you represent yourself using your own avatar, acquiring self-location, body
ownership, and global motor control. When a mismatch occurs between the virtual
and the physical body in virtual worlds, the experience of immersion is shown to
cause inter-sensory conflict. As well as reducing implicit racial bias, immersion in
virtual worlds has been shown to affect negative interpersonal attitudes. Accord-
ing to Lobera et al., "a full body ownership illusion in VR leads to the unification
of the virtual and real bodies into one entity"[20].

As is indicated by Taylor, a key feature of avatars is embodiment, i.e., giving
participants a virtual body to perform daily body practices. It includes physical
acts such as sitting, gesturing, smiling, and touching objects and people as well
as social ones, for example appointing friends and dressing in a way that is in
line with the hierarchy of power in a community. By using these bodily practices,
avatars expand the range of possibilities for communication beyond explicit, tex-
tual interaction, thus recapturing some of the body’s capacity for non-conceptual
interaction[24]. As Becker and Mark stated, the way the user constructs their avatar
with regard to appearance, personality and behavior is embedded in a system of
meaning informed by the social norms and conventions shaped by both the ac-
tual and the virtual world. Nowak and Rauh highlight some of the social norms
of avatar appearance. In a study of people’s perceptions of avatars, they found
that the more anthropomorphic and gendered avatars looked, the more attractive,
credible and homophilous they were judged to be[24].

2.3 Computer Vision

As a branch of Artificial Intelligence, Computer Vision forms the basis for the au-
tomatic identification and analysis of parameters that provide useful information
with regard to an object or a scene with the implementation od deep learning mod-
els. A computer vision application has at least one of the following characteristics,
as articulated by Thomas S. Huang at the 1996 International Conference of Pattern
Recognition[33]: (1)By combining human and machine intelligence, maximum per-
formance can be achieved. (2) The application allows for some mistake flexibility.
Human beings play a crucial role in computer vision research. As a result, some
errors may occur. (3) Supplementary to vision, other modalities that can also be
used[9].

In its simplest form, a computer vision system can be comprised of a high-
resolution camera and a computer. An input device, such as a camera, receives

2.3. Computer Vision 7

input (frames) from the user. These frames are then processed by the interpreting
device (computer) before being analyzed. The next step involves analyzing the
input to find distinguishing information, a process called feature extraction. Using
the features extracted on the previous step, the final model predicts and classifies
the object based on its features[39].

The development of real time computer vision applications has been one of the
greatest challenges this scientific field has been facing over the years. Computer
vision applications that need to process real-time data are most likely to suffer from
a combination of factors, primarily the complicated definition of the human body,
and the speed at which the body moves[39]. There can be so many factors that
interfere with the viewing of a user’s body, including the intensity of the light and
the simplicity or not of the background. It is therefore necessary to bring together
a number of scientific study areas, such as artificial intelligence, image processing,
pattern recognition and machine learning, in order to succeed[10].

Chapter 3

Design choices

Chapter 3 explores the options for tracking the entire body and how it can be
accomplished. Furthermore, more detail will be provided on the functions and
features of the applications.

3.1 Choice of tools for the project

Thanks to recent advances in image analysis, particularly in computer vision tech-
nology, the field of motion tracking has become more and more accessible. Cur-
rently, tracking the entire human body can be achieved using no more than a
single RGB monocular camera and a medium-performance PC. Before this tech-
nology became accessible, tracking was achieved using either an array of cameras
and markers or by mounting a series of active trackers on the object.

On this project we have decided to aim for solutions that are most widely
accessible, especially in the terms of their costs. We also focused on solutions that
did not require any passive or active wearable trackers or markers to make it work.

3.2 Research on HMDs

The solution created during the completion of this project is intended to work
with any Head Mounted Display used for Virtual Reality. There is range of HMDs
currently available on the market among them products from HTC and Oculus
such as HTC Vive and Oculus Rift S. During the project development we have used
Oculus Quest 2. Even though it is capable of running VR on its own - without the
need for connecting it to a computer - we used it as a wearable display with the
intention of creating a PC VR type of application.

9

10 Chapter 3. Design choices

3.3 Research on full body tracking tools for VR applications

Below is a list of different types of tools that could be used to achieve full-body
tracking that were considered during the completion of this project. It is being
discussed which techniques were chosen and why.

3.3.1 Computer vision

In this group we have gathered all solutions that do not require the user to wear
any additional devices or markers and are based solely on computer vision. The
core of all those techniques is oriented around Machine Learning. It uses a pre-
trained neural network that analyses pictures from the camera in real-time and
returns a coordinate map of all visible human joints. Since we aimed at using
an open source technology, our possible solutions include: OpenPose (2016)[4],
Tensorflow’s PoseNet (2017)[30], MoveNet (2021)[31] and MediaPipe’s BlazePose
(2020)[2] amongst many. Since the project aims towards testing a technology that
could be used in Virtual Reality, we had to exclude options that return a two di-
mensional joints map and opt for those offering three dimensional maps. This
requirement narrowed our options down to OpenPose and BlazePose. We decided
to go with BlazePose because OpenPose did not feature a native support for single
RGB monocular camera.

3.3.2 AprilTags

The second category contained techniques where tracking was achieved using cam-
eras that would track fiducial markers - ArpilTags. Since one of our aims was to
implement a markerless solution we have decided not to include this in the final
assessment.

3.3.3 Kinect

Microsoft has released a line of motion controllers called Kinect. They were initially
released as peripherals for Microsoft’s Xbox game console[32]. Kinect is a motion
tracking solution that does not require any handheld trackers. A Kinect based
approach to full body tracking appeared promising to us since it was based on a
different technique (depth sensing based) unlike other considered solutions and its
price fulfilled our requirement for accessibility.

3.3.4 MocapForAll

Another open source motion capture technique based on computer vision but
working with pictures from multiple monocular cameras we came across in our

3.4. Full body rigging in Unity 11

research was MocapForAll[8]. It combines multiple two dimensional maps created
using MoveNet into a singular three dimensional map of joints.

3.3.5 Wearable active trackers

The fifth category contains tools that work with active trackers that are attached
to the user’s body. One of examples for this approach could be achieved using a
combination of Vive HMD with two controllers and three more trackers. Those
trackers would be attached to the user’s waist and feet. We have eliminated this
solution from our pool because of its high price.

3.3.6 Motion capture rig

The last group covers all industry grade tools used for motion capture. Those tools
are used in e.g. film production and game development[16]. An example would be
a Rokoko Smartsuit or system based on multiple OptiTrack brand cameras. Those
tools offer high precision full body motion capture, but the price range of those
products was out of the project scope.

3.4 Full body rigging in Unity

A significant part of this project is the solution used for full body rigging. The
project implements different pose estimation tools that return data in the form of
3D coordinates of each of the user’s joints in real time. This data is then being used
to control the position of the avatar’s joints in Unity. The position of the avatar’s
joints reflects the position of user’s joints. The project required a rigging solution,
a solution for controlling the avatar’s limbs movements. In character animation,
movement is achieved by rotating objects to predetermined angle values. The po-
sition of each child joint is calculated according to the position of its parent joint,
a technique called forward kinematics. When the reference system is inverted and
the position of the child joints is defined by their absolute position rather than by
their position subjective to the parent, it is called inverse kinematics[13].

After a thorough research we came to the conclusion that avatar rigging could
be done using two different approaches. One of them can be achieved using in-
verse kinematics based solution built into Unity. This would require to create a
dependency chain between each adjacent limb in the avatar prefab in the hierarchy
structure of the Unity’s project scene. Such process would be time-consuming and
it would require to be redone every time the avatar model was changed by the user
of the application.
The second option used a different approach; it was almost entirely code based[21].
It referenced each of the avatar joints by their names making use of the Avatar

12 Chapter 3. Design choices

Configuration tool build into Unity. This solution allowed for much quicker con-
figuration since an avatar following standard naming convention for joints could
be automatically mapped by the tool. This approach also speeds up the workflow
when the user wants to switch the avatar model.

Each utilized pose estimation tool returns the joints coordinates data in a dif-
ferent format. The positions of joints also differ between the tools. In order to
compensate for those differences the script containing the rigging solution behaves
differently depending on which pose estimation tool is selected.

Chapter 4

Implementation

This chapter describes how the application works. Details of how the design proce-
dure of the project was conducted and how the user interface and user experience
were taken into account will be addressed in more detail.

4.1 Tools

In this section the tools used in the project are described

4.1.1 Unity

Figure 4.1: Unity platform
logo[29].

Unity3D (fig.4.1) is a real time development environment
for creating games, interactive media and applications.
David Helgason, Unity CEO stated that “it is a toolset
used to build games, and it’s the technology that executes
the graphics, the audio, the physics, the interactions and
the networking.”. Unity’s first ever version was created
by Joachim Ante, Nicholas Francis and David Helgason,
and released in 2005 in Denmark. The first and main
goal of the platform was to create an affordable game
engine with professional tools for all levels of develop-
ers[6]. Unity3D supports platforms such as iOS, iOS Pro,
Android, Android Pro and Asset Server. Interesting fea-
tures, like internal encapsulated platform-related opera-

tions, provide an easy to use programming experience. Unity3d is famous for the
good cross platform ability that offers among its three main scripting languages:
C#, Javascript and Boo. As a result, application can be deployed on different plat-
forms including Windows, Mac, Xbox 360, PlayStation 3, Wii, iPad, iPhone and
Android[34].

13

14 Chapter 4. Implementation

4.1.2 Oculus Quest 2

Figure 4.2: The Oculus Quest 2 Headset [28].

Oculus Quest 2 (fig.4.2) is a Virtual Reality headset developed by Reality Labs,
officially presented on September 16, 2020. The Quest 2 is shiped with an Android
based operating system that allows it be used as a standalone headset, on top of
its ability to run on a desktop when connected over Wi-Fi or usb port, through an
Oculus compatible VR software. Using the Qualcomm Snapdragon XR2 Platform,
Quest 2 can provide higher AI capability. With regard to displaying capabilities,
1832 x 1920 pixels per eye and 50% more pixels than the original Quest, offer a
high end visual experience[3].

4.1.3 BlazePose

Figure 4.3: Examples of BlazePose track-
ing [23]

BlazePose (fig.4.3) is a real time convolu-
tional neural network architecture for hu-
man pose estimation introduced by Google re-
search in 2020. BlazePose can be used as
a valuable tool in a plethora of applications
such as sign language recognition, gestural
control and health tracking. BlazePose of-
fers an innovative pose tracking tool and a
lightweight body pose estimation neural net-
work. While running, 33 main body key
points (fig.4.4) 3D coordinates are being pro-
duced with the speed of 30 frames per sec-
ond.

4.1. Tools 15

The tool consists of a real time performance tracker - detector, responsible for
tasks like face and hand landmark prediction. First the tracker predicts 33 key
point coordinates, the human presence and the region of interest. If no human
presence is detected the whole set up reruns on the next frame. When it comes
to its neural network architecture, the result is the outcome of offset, heatmap
and regression approach. During the training stage, heatmaps and offset data are
used. Right after embedding supervision, in which heatmap data are also involved,
comes the utilisation of the network by the regression encoder network[2].

On this project BlasePose is implemented through the BlazePose Barracuda
Unity package which runs the BlazePose pipeline in the Unity projects[22].

Figure 4.4: BlazePose landmark [23] Figure 4.5: Kinect landamark [19].

16 Chapter 4. Implementation

4.1.4 Microsoft Kinect

Figure 4.6: Microsoft Kinect V2 [14].

Microsoft Kinect (fig.4.6) is a motion
sensing input device, originally devel-
oped for Xbox video game consoles, in-
troduced in 2010 by Microsoft. Kinect
V2 contains a certain number of sens-
ing hardware: a depth sensor, an RGB
camera and a four microphone ar-
ray, offering a full body capture, fa-
cial, gesture and voice recognition ca-
pabilities[37]. The RGB Kinect cam-
era provides 640 ×480 pixels, operating
at 30 Hz, with the ability to produce
1280 × 1024 pixels while running at 10
frames/s. With regard to the depth
sensor, Kinect incorporates an IR pro-
jector and an IR camera, ranging fron
0.8 to 3,5 meters distance, producing
640 ×480 pixels, with a 30 frames/s

rate[7].

In Kinect V2 depth maps are created using a method that measures the time
that the light needs to bounce back from a reflected object. This, combined with
the constant variable of light speed, can calculate the final distance from various
objects. One of the most significant characteristics Kinect V2 has, is the real time
automatic identification of anatomical human landmarks (fig.4.5), while using the
most common depth camera and a user friendly SDK, which is what makes it
the most popular method when it comes to kinematics calculations, spatiotempo-
ral movement and skeleton tracking. According to the Microsoft research team
the skeleton tracking is based on training a randomised decision forest algorithm,
implementing 100.000 different movement data samples[5].

4.1.5 Avatar

A humanoid avatar model was chosen for the project. It was intended that the
avatar would be neutral so that its features would not distract users during the
testing procedure. Having also computer’s performance in mind a lowpoly skele-
ton model was chosen[27].

4.2. Scene Composition 17

4.1.6 Skybox

A simple skybox depicting a blue sky with clouds was implemented as a scene
background in place of the Unity’s default skybox. The picture used is actu-
ally a rendering of artificially made clouds but it fits the chosen lowpoly avatar
model[36].

4.2 Scene Composition

The virtual scene is consisted of a 10x10m square monochromatic floor and a 6x3m
preview screen that is potitioned on the edge of the floor square. The screen could
either display live preview from the webcam or behave like a virtual mirror (fig.4.7)
(fig.4.8). The virtual mirror was used to help users in seeing their entire avatar
while performing movement routine during the test procedure (fig.4.9). The rest
of the scene was empty except of the visible skybox in the background.

Figure 4.7: Idle position: Scene View Figure 4.8: Idle position: First person view

Figure 4.9: Squating position: Scene view

18 Chapter 4. Implementation

4.3 Pose estimation tools implementation

Two different methods for full body tracking were implemented. First one of them
was achieved using BlazePose algorithm (fig.4.10) that was fed a live video feed
from a webcam. The second solution was based on the Kinect V2 and the Kinect
for Windows SDK 2.0 (fig.4.11)[15]. Even tough each implementation used different
methods to assess the user’s joints positions most part of the code that was used
to control the avatar was common for the two versions.

Figure 4.10: BlazePose’s human pose estimation pipeline overview.

Figure 4.11: Kinect’s body position detection pipeline.

4.4. Combining HMD tracking with pose estimation 19

4.4 Combining HMD tracking with pose estimation

A significant part of the project was to create a way for combining the tracking of
user’s head and hands coming in from HMD and controllers with the whole body
joints maps coming in from each of the pose estimation tools (fig.4.12). Each of
the tools: BlazePose, Kinect V2 and HMD returns coordinates in a different three
dimensional reference system. In order to make the avatar work it was crucial to
align orientations and compensate for eventual scaling differences between each of
those systems. HMD coordinate system is used as the main reference to which the
individuals are being adjusted to. A calibration routine has been implemented to
compensate for different heights and arms span of different users using the appli-
cation. During the calibration each user is asked to stand in T-pose and the scaling
multiplier is being calculated based on the difference between the corresponding
joint coordinates resulting from each of the references systems.

Figure 4.12: Tool’s main pipeline overview

Avatar’s head position is estimated using HMD tracking, hand controllers, el-
bows, chest, spine, hips and legs - using results retrieved from pose estimation
tools. Because the response of BlazePose estimation was slightly delayed compared
to the HMD tracking an additional fix was added. The position of the avatar’s el-
bows is calculated using both elbows coordinates from BlazePose algorithm as well
as the positions of the controllers.

Chapter 5

Evaluation

The present research aims to:

• Create affordable full body estimation tools working with Oculus Quest 2

• Test and compare the level of immersiveness between the different methods
of implementation.

• To test and compare a number of characteristics and constrains such as speed,
lagging, 360 turning and accuracy of movements in each direction.

To evaluate the outcome of this project, we have used a number of tests to examine
the quality of the developed tools, in terms of immersiveness, user interaction, the
overall experience as well as a comparison between the two methods. Testers were
encouraged to use the think-aloud method, and have been recorded during the
testing session, providing an abundant amount of qualitative data. Quantitative
data was collected through online questionnaires, which users were asked to fill in
right after their testing session.

5.1 Participants

The research testing was conducted at Aalborg University in Copenhagen, Den-
mark, with 20 subjects ages 18-34. No specific citeria were used to select the par-
ticipants for this study, since the aim is to reach people from diverse backgrounds
and ages.

21

22 Chapter 5. Evaluation

5.2 Testing procedure

Figure 5.1: Warm up routine testing

The pose estimation tools were tested
physically, while the questionnaire was
filled in on Google Forms. Partici-
pants were testing the application in-
dividually. In addition, they were
informed about the idea behind the
project and the enquiries of the re-
search.
Five short videos were shown to each
participant before the testing proce-
dure. Each of them showcased a dif-
ferent movement:

• Walk in place (30 seconds): This exercise aims to test how the tools react on
an above-average speed body movements.

• Neck rolls (30 seconds): head movement and rotation is being checked.

• Regular and side lunges (30 seconds): While users are doing lunges, depth
movement against the side movement is being tested.

• Limbs circulations (30 seconds): At this point, we test the way each one of
the tools behave.

• Squats (30 seconds): On the last exercise, an overall full body movement is
being tested with the focus on vertical movements.

Figure 5.2: Calibration position

After providing instructions regarding the
warm up routine, users were asked to wear
the Oculus Quest 2 and run the test twice
(Figs. 5.1 and 5.2), one time for each imple-
mented pose estimation method. Half of the
participant tested Kinect-based solution first,
before BlazePose. The second half of the group
tested the implementations in the opposite or-
der.

On the last stage of testing, the users were
asked to fill in an online questionnaire, pro-
viding answers about the overall experience of
each method, and compare between the two.

5.2. Testing procedure 23

The testing procedure was designed to last
no longer than 12 minutes for each user, in-
cluding both the testing and the questionnaire,
while 2-5 minutes were used in order to introduce the whole testing process to the
testers.

5.2.1 Measurements

An online questionnaire, recordings, and the think-aloud method were used to
collect the Qualitative and Quantitative data of the aforementioned evaluation pro-
cess.

There were three different sections on the online questionnaire: Kinect imple-
mentation, BlazePose implementation and a comparison between them. Testers
were asked to answer, choosing between an 1-7 point scale and open-ended ques-
tions.

On the first section there were questions concerning the Kinect implementation
method, as shown below:

• Do you believe that the avatar was accurately representing your body move-
ments? If not, which parts of your body you feel were less accurately repre-
sented.

• Did you notice any latency in the avatar’s movement while you were per-
forming the warm-up routine? If yes, which avatar body parts did you feel
were most affected?

• Where there any body parts that were glitching during the test? If yes, which
parts of the avatar’s body were affected.

• Which movement direction was represented accurately?

• Did you feel that movements of both upper and lower part of your body were
represented accurately by the avatar?

• How did you perceive the overall experience in sense of being in the virtual
environment?

On the second section, users were asked to answer to the exact same questions
with respect to the BlazePose implementation.

On the last section of the questionnaire, participants were asked to answer a
number of questions concerning the comparison between the two implementation
methods, listed bellow:

• In your opinion, which implementation was more accurately representing
your body movements?

24 Chapter 5. Evaluation

• In your opinion, which implementation had less latency in the avatar’s move-
ment while you were performing the warm-up routine?

• In your opinion, which implementation had less glitching incidents in the
avatar’s movement?

• In your opinion, which one of the implementations felt more realistic, if any?

• If neither felt realistic, please note why.

• Any additional comments on the overall experience?

Chapter 6

Results

Presented in the following section are the results gathered from user experiences.
As well as quantitative data collected from the open-ended questions in the ques-
tionnaire, qualitative data was acquired from the mini-interviews and from observ-
ing the subjects.

6.1 Quantitative Data

Self-report measurement analysis consists of four sections, concerning general
information, the Kinect implementation, the BlazePose implementation, and the
comparison between them.

User gender and age were asked in the first section.

Figure 6.1: Speed accuracy comparison between Kinect (1-3) and BlazePose (5-7)

The participants were asked in section two of the questionnaire to rate their
overall experience, on a 7-point scale from 1 (strongly disagree) to 7 (strongly
agree), according to their agreement or disagreement with it. The majority of

25

26 Chapter 6. Results

participants (80%, with 45% pitching the scale extreme), felt that their body is ac-
curately portrayed by their avatar, with the lower body being the part that is less
accurately represented. Most of the people (80%, including 45% who selected the
scale extreme) stated that they did not experience any latency in the avatar’s move-
ment, with the lower body being the part that shows latency in some cases. There
were some glitches on the lower part of the body observed by 55% of respon-
dents (with 15% picking scale extreme). In terms of movement representation,
75% agreed that right and left movement was accurately portrayed, 80% agreed
that up and down movement was correctly portrayed, and 55% said that back and
forth movement was accurately portrayed. Comparing the upper and lower body
(fig.6.5), 60% said the upper body was represented more accurately, while 35% said
the two parts were equally represented. Finally, according to the results of the sur-
vey, 70% of the participants felt their movement was realistic while on the virtual
environment, with 10% reaching the scale extreme.

Figure 6.2: Accuracy comparison between Kinect (1-3) and BlazePose (5-7)

Figure 6.3: Realistic movement comparison be-
tween Kinect and BlazePose

Participants were asked to rate on
a scale from 1 (strongly disagree) to
7 (strongly agree) their opinion on
BlazePose implementation in the third
part of the questionnaire. Overall, 55%
(none of which selected the scale ex-
treme) of the participants said that their
body is accurately represented by the
avatar, followed by a unanimous re-
sponse that the lower part felt less ac-
curately represented. Participants were

divided regarding their perception of latency when it came to noticing it; 50% were
not aware of any, and 50% were aware of it (with 20% picking the scale extremes)
and the lower body being the most affected part by this latency. Most of them

6.2. Qualitative Data 27

(85% - 10% choosing scale extreme) noticed several glitches on the lower part of
the avatar’s body as well as the elbows. According to 73.3% of the participants,
right and left movements were accurately portrayed, 60% said up and down move-
ments were accurately portrayed, and 46.7% said back and forth movements were
accurately portrayed. In comparison with the upper and lower body (fig.6.5), 85%
say the upper body is better represented, while 10% say the lower body is better
represented. Furthermore, 80% of the participants, with 5% reaching the scale ex-
treme, stated that overall, they felt that their movements were unrealistic while in
the virtual environment.

Figure 6.4: Less glitching comparison between Kinect (left side) and BlazePose (right side)

The fourth and final section of the questionnaire asked participants to indicate
in a 7-point from 1 (strongly disagree), to 7 (strongly agree) their agreement or
disagreement with the Kinect-BlazePose comparison(fig.6.6). Overall, 80% (50%
chose the scale extreme) of the participants stated that they felt their body is more
accurately represented by the avatar in Kinect (fig.6.2). With regard to latency
(fig.6.1), 90% of participants rated the Kinect implementation as more responsive
than Blazepose’s. About 80% of respondents said that Kinect’s implementation
was less glitchy compared to BlazePose (with 50% choosing the maximum scale)
(fig.6.4). Furthermore, 85% of respondents said that the Kinect implementation
made their movement more realistic (fig.6.3).

6.2 Qualitative Data

A questionnaire with open-ended questions, some oral feedback, and observed
actions during testing formed the qualitative data. The present section is divided
into two categories so that data documentation can be more precise: oral and
written feedback, and observed actions.

28 Chapter 6. Results

Figure 6.5: Upper-lower body accuracy comparison for Kinect (left side) and BlazePose (right side)

Figure 6.6: Impementations comparison: Accuracy, glitching, latency.

6.2. Qualitative Data 29

6.2.1 Oral and Written feedback

On the after testing questionnaire, open-stated questions were used to obtain writ-
ten feedback on the tool. Some participants felt that the Kinect implementation
was affected by latency issues in the lower body movement, while most did not
notice any latency in their overall experience. A few participants who noticed
some avatar glitching noted that the glitching was coming from the lower part
of the body, while two of them noticed some glitching in their arms and hands.
The majority of the participants who tested the Blazepoze implementation felt the
avatar’s lower body had a latency during the test. Among them, one reported la-
tency affecting moves in the avatar’s whole body and two reported delay in avatar
movements in its upper body. Almost all of the participants who noticed some
glitching in the avatar’s movement commented that it was mostly on the lower
body, while three said there was also glitching on the upper body. The Kinect im-
plementation throughout the questionnaire felt extremely realistic, though some
participants noticed some glitches on the ground as they decribed in the general
realistic movement open ended question. A participant described BlazePose im-
plementation as being similar to the early Kinect implementation.There were some
people who noticed their feet were hidden in the implementation of Kinect, with
Kinect implementation still being more accurate than the BlazePose.

Finally, when asked about their overall experience, most of the participants
stated that the the tool is pretty fun and has lots of potential. Many of them liked
the skeleton avatar while one stated that they would have preferred a different one.
There were also a couple of comments stating that the experience was smooth and
accurate, except for some glitching parts.

6.2.2 Observed Actions

Most of the participants have previously used Oculus Quest 2 or other head-
mounted displays, so they were more comfortable with using and wearing them,
while others were trying it for the very first time, so they needed a bit more time
to engage with the VR experience. Experience HMD users seemed to be thrilled
when they realized that they could move their entire bodies through their skeleton
avatars. Several of them commented on how great it was to see a virtual repre-
sentation of themselves, making nice comments about it when they first interacted
with them. We received a lot of feedback while testing the tool, which was re-
flected in the open ended questions of the questionnaire. Participants took some
time after the testing procedure to interact freely with their avatars, performing
different types of moving routines such as dancing and fighting, and they seemed
cheerful when the session ended.

Chapter 7

Discussion

7.1 Methodology

Gathered qualitative data and answers to open-ended questions help in increasing
the quality and value of the conducted study and user tests, since the low number
of test subjects may have a negative effect on the reliability of results.

The conducted user tests were simplistic, and have been designed so that they
could be completed in a short window of time by each subject. In order to achieve a
broader and more precise results the testing procedure would require much more
complex preparation. The virtual environments in which the test movement in-
teraction were conduced could have been made to resemble a more realistic room
for example one that would resemble a gym interior. Such approach could have
influenced the degree of immersion of the subjects.

The tool created during the completion of this study was only assessed sub-
jectively by the test group. The significance of the study could be increased by
conducting a range of objective tests involving a comparison between the obtained
human joints map and their actually physical counterparts. Inclusion of a profes-
sional grade tool like Rokoko suit in the comparison could also render the result
more scientifically valuable.

7.2 User Feedback

Feedback provided by the users who have tested the created application has been
valuable and provided interesting insights on its performance of the application.
Most participants have reported that their body movements are being reproduced
accurately. The result of the Kinect implementation was rated high in terms of
accuracy and less latency was noticed compared with the BlazePose implementa-
tion. In terms of the movement direction subjects have assessed that horizontal
and vertical movements were more precisely reproduced when compared to the

31

32 Chapter 7. Discussion

movements on the back-forth axis. On of the observed weak points of the Kinect
based pose estimation was the issue with users’ feet being clipped through the
virtual floor. This issue was more common among shorter participants. In both
implementations, most subjects found the upper body to be represented more ac-
curately than the lower body.

Chapter 8

Conclusion

The goal of the project was to create an accessible solution for full body tracking,
an objective that now has been fulfilled. Two different pose estimations tools were
implemented and assessed by a group of test subjects. Results obtained from so-
lution based on the depth camera (Kinect) has been shown to be preferred in term
of the quality of its results over a computer vision based solution (BlazePose).

As a result of the carried out test a number of weaknesses and strengths have
been observed. One of the limitations of the test solutions was occlusion. When
using a single point of view to analyse a movement in three dimensional space an
occlusion is almost impossible to avoid. Another issue was the slow response time
of the neural network based tool.

The overall result of the motion tracking were mostly satisfactory. Participants
were impressed that process as complex as full body pose estimation was achiev-
able with no more than a camera and a personal computer.

8.1 Future work

The created tool could be possibly used as a foundation for more complex applica-
tions making use of the implemented full body tracking. Some of those examples
could include: interactive applications, sport games or VR social platforms. Inter-
active applications like workplace training, interactive marketing campaigns, yoga
or physio therapy. Sport training applications measuring performance or games
e.g. football penalty shots or a VR obstacle course. Virtual social platforms such as
Microsoft Mesh for Teams, Meta Horizons, Roblox or VR chat.

When considering social interactions in VR, full body tracking offers a range
of advantages. One of them is the ability to utilize non verbal communication and
body language. This possibility could have a positive impact on the user presence
within the VR environment. In order to enhance the non verbal communication
capabilities further the tool could benefit from implementing a solution for face

33

34 Chapter 8. Conclusion

tracking.
There is space for improvement within the applications. Hopefully with more

efficient machine learning algorithms, the latency could be minimised and the re-
sponse time could be improved. With improved performance the solution could
also be ported in to mobile platforms such as smartphones so that the full body
tracking could be more portable and not bounded to stationary computers any
more.

Bibliography

[1] Mohd Hezri Amir et al. “Duke: enhancing virtual reality based FPS game
with full-body interactions”. In: Proceedings of the 13th International Conference
on Advances in Computer Entertainment Technology. 2016, pp. 1–6.

[2] Valentin Bazarevsky et al. “Blazepose: On-device real-time body pose track-
ing”. In: arXiv preprint arXiv:2006.10204 (2020).

[3] Oculus Blog. “"Introducing Oculus air link, A wireless way to play PC VR
games on Oculus Quest 2, plus infinite office updates, support for 120 Hz on
Quest 2, and more"”. In: https://developer.oculus.com/ (Retrieved 2022-04-22).

[4] Z. Cao et al. “OpenPose: Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2019).

[5] Ross A Clark et al. “Three-dimensional cameras and skeleton pose tracking
for physical function assessment: A review of uses, validity, current develop-
ments and Kinect alternatives”. In: Gait & posture 68 (2019), pp. 193–200.

[6] John Haas. “A history of the unity game engine”. In: Diss. Worsester Polytecnic
Institute (2014).

[7] Jungong Han et al. “Enhanced Computer Vision With Microsoft Kinect Sen-
sor: A Review”. In: IEEE Transactions on Cybernetics 43.5 (2013), pp. 1318–
1334. doi: 10.1109/TCYB.2013.2265378.

[8] Akiya Research Institute. url: https://vrlab.akiya-souken.co.jp/en/
product (visited on 05/22/2022).

[9] Branislav Kisacanin, Vladimir Pavlovic, and Thomas S Huang. Real-time vi-
sion for human-computer interaction. Springer Science & Business Media, 2005.

[10] Amit Krishan Kumar, Abhishek Kaushal Kumar, and Shuli Guo. “Two view-
points based real-time recognition for hand gestures”. In: IET Image Process-
ing 14.17 (2020), pp. 4606–4613.

[11] Jaron Lanier. “Virtually there”. In: Scientific American 284.4 (2001), pp. 66–75.

35

https://doi.org/10.1109/TCYB.2013.2265378
https://vrlab.akiya-souken.co.jp/en/product
https://vrlab.akiya-souken.co.jp/en/product

36 Bibliography

[12] D Lee et al. “A development of virtual reality game utilizing kinect, oculus
rift and smartphone”. In: International Journal of Applied Engineering Research
11.2 (2016), pp. 829–833.

[13] Unity Manual. url: https://docs.unity3d.com/Manual/InverseKinematics.
html (visited on 05/22/2022).

[14] Microsoft. url: https : / / docs . microsoft . com / el - gr / windows / apps /
design/devices/kinect-for-windows (visited on 05/23/2022).

[15] Microsoft. url: https://www.microsoft.com/en-us/download/details.
aspx?id=44561.

[16] Senay Mihcin et al. “Investigation of wearable motion capture system to-
wards biomechanical modelling”. In: 2019 IEEE International Symposium on
Medical Measurements and Applications (MeMeA). IEEE. 2019, pp. 1–5.

[17] Matjaž Mihelj, Domen Novak, and Samo Beguš. “Virtual reality technology
and applications”. In: (2014).

[18] Shaleph O’Neill. Interactive media: The semiotics of embodied interaction. Springer
Science & Business Media, 2008.

[19] Mehdi Ousmer, Jean Vanderdonckt, and Sabin Buraga. “An ontology for rea-
soning on body-based gestures”. In: Proceedings of the ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems. 2019, pp. 1–6.

[20] Dhaval Parmar. “Evaluating the effects of immersive embodied interaction
on cognition in virtual reality”. PhD thesis. Clemson University, 2017.

[21] Github repository. url: https://github.com/digital-standard/ThreeDPoseUnityBarracuda
(visited on 05/22/2022).

[22] Github repository. url: https://github.com/creativeIKEP/BlazePoseBarracuda
(visited on 05/23/2022).

[23] Google Research. url: https://ai.googleblog.com/2020/08/on-device-
real-time-body-pose-tracking.html (visited on 05/23/2022).

[24] Ulrike Schultze. “Embodiment and presence in virtual worlds: a review”. In:
Journal of Information Technology 25.4 (2010), pp. 434–449.

[25] Misha Sra and Chris Schmandt. “Metaspace: Full-body tracking for immer-
sive multiperson virtual reality”. In: Adjunct Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. 2015, pp. 47–48.

[26] Thomas Stranick and Christian Lopez. “Adaptive Virtual Reality Exergame:
Promoting Physical Activity Among Workers”. In: Journal of Computing and
Information Science in Engineering 22.3 (2022).

https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.microsoft.com/el-gr/windows/apps/design/devices/kinect-for-windows
https://docs.microsoft.com/el-gr/windows/apps/design/devices/kinect-for-windows
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://github.com/digital-standard/ThreeDPoseUnityBarracuda
https://github.com/creativeIKEP/BlazePoseBarracuda
https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html
https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html

Bibliography 37

[27] Polytope Studio. url: https : / / assetstore . unity . com / packages / 3d /
characters/humanoids/fantasy/lowpoly-medieval-skeleton-free-pack-
18188 (visited on 05/23/2022).

[28] Meta Technologies. url: https://about.facebook.com/ (visited on 05/23/2022).

[29] Unity Technologies. url: https://unity.com/ (visited on 05/23/2022).

[30] TensorFlow. url: https://blog.tensorflow.org/2018/05/real- time-
human-pose-estimation-in.html (visited on 05/22/2022).

[31] TensorFlow. url: https://blog.tensorflow.org/2021/05/next-generation-
pose-detection-with-movenet-and-tensorflowjs.html.

[32] Wikipedia. url: https : / / en . wikipedia . org / wiki / Kinect (visited on
05/22/2022).

[33] Di Wu and Da-Wen Sun. “Colour measurements by computer vision for food
quality control–A review”. In: Trends in Food Science & Technology 29.1 (2013),
pp. 5–20.

[34] Jingming Xie. “Research on key technologies base Unity3D game engine”. In:
2012 7th international conference on computer science & education (ICCSE). IEEE.
2012, pp. 695–699.

[35] Jackie Yang et al. “HybridTrak: Adding Full-Body Tracking to VR Using an
Off-the-Shelf Webcam”. In: CHI Conference on Human Factors in Computing
Systems. 2022, pp. 1–13.

[36] Yuki2022. url: https://assetstore.unity.com/packages/2d/textures-
materials/sky/free-stylized-skybox-212257 (visited on 05/23/2022).

[37] Zhengyou Zhang. “Microsoft kinect sensor and its effect”. In: IEEE multimedia
19.2 (2012), pp. 4–10.

[38] Ning-Ning Zhou and Yu-Long Deng. “Virtual reality: A state-of-the-art sur-
vey”. In: International Journal of Automation and Computing 6.4 (2009), pp. 319–
325.

[39] Yimin Zhou, Guolai Jiang, and Yaorong Lin. “A novel finger and hand pose
estimation technique for real-time hand gesture recognition”. In: Pattern Recog-
nition 49 (2016), pp. 102–114.

https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/lowpoly-medieval-skeleton-free-pack-18188
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/lowpoly-medieval-skeleton-free-pack-18188
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/lowpoly-medieval-skeleton-free-pack-18188
https://about.facebook.com/
https://unity.com/
https://blog.tensorflow.org/2018/05/real-time-human-pose-estimation-in.html
https://blog.tensorflow.org/2018/05/real-time-human-pose-estimation-in.html
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://en.wikipedia.org/wiki/Kinect
https://assetstore.unity.com/packages/2d/textures-materials/sky/free-stylized-skybox-212257
https://assetstore.unity.com/packages/2d/textures-materials/sky/free-stylized-skybox-212257

Appendix A

Scripts

A.1 VNectModel.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR;
using UnityEngine.SceneManagement;
using UnityEngine.UI;

/// <summary>
/// Position index of joint point
/// </summary>
public enum PositionIndex : int
{

Nose = 0,
lEyeInner,
lEye,
lEyeOuter,
rEyeInner,
rEye,
rEyeOuter,
lEar,
rEar,
mouthL,
mouthR,
lShoulder,
rShoulder,
lElbow,
rElbow,
lWrist,
rWrist,

39

40 Appendix A. Scripts

lPinky,
rPinky,
lIndex,
rIndex,
lThumb,
rThumb,
lHip,
rHip,
lKnee,
rKnee,
lAnkle,
rAnkle,
lHeel,
rHeel,
lFootIndex,
rFootIndex,
humanVisible,

//Calculated coordinates
head,
neck,
chest,
spine,
hips,
lController,
rController,
lPhantomElbow,
rPhantomElbow,
centerHead,
phantomNose,

Count,
None,

}

public static partial class EnumExtend
{

public static int Int(this PositionIndex i)
{

return (int)i;
}

}

public class VNectModel : MonoBehaviour
{

public class JointPoint

A.1. VNectModel.cs 41

{
public Vector3 Pos3D = new Vector3();
public float score3D;

// Bones
public Transform Transform = null;
public Quaternion InitRotation;
public Quaternion Inverse;
public Quaternion InverseRotation;

public JointPoint Child = null;
public JointPoint Parent = null;

}

public class Skeleton
{

public GameObject LineObject;
public LineRenderer Line;
public JointPoint start = null;
public JointPoint end = null;

}

private List<Skeleton> Skeletons = new List<Skeleton>();
public Material SkeletonMaterial;
public bool ShowSkeleton;
private bool useSkeleton;
public float SkeletonX;
public float SkeletonY;
public float SkeletonZ;
public float SkeletonScale;

// Joint position and bone
private JointPoint[] jointPoints;
public JointPoint[] JointPoints { get { return jointPoints; } }
private Vector3 initPosition; // Initial center position
private Vector3 jointPositionOffset = Vector3.zero;

// Avatar
public GameObject ModelObject;
public GameObject Nose;
private Animator anim;
private Vector3 avatarDimensions;
private Vector3 avatarCenter;

// HMD
private InputDevice hmdDevice;
private InputDevice leftController;

42 Appendix A. Scripts

private InputDevice rightController;
private bool lastPrimaryButtonValue = false;
private bool vrRunning = false;
private Vector3 hmdPosition;
private Vector3 leftControllerPosition;
private Vector3 rightControllerPosition;
private Quaternion hmdRotation;
private Quaternion leftControllerRotation;
private Quaternion rightControllerRotation;

private string sceneName;
private bool kinectScene = false;
public PoseVisualizer3D PoseVisualizer3D;
public FaceManager FaceManager;
public BodySourceView BodySourceView;
public GameObject Instruction;
private bool displayText = false;

void Awake()
{

sceneName = SceneManager.GetActiveScene().name;

if (sceneName == "KinectScene")
kinectScene = true;

Instruction.SetActive(displayText);
}

private void Update()
{

if (kinectScene)
{

if (!vrRunning)
{
// Head rotation
jointPoints[PositionIndex.head.Int()].Transform.rotation =

FaceManager.GetFaceRotation();
}
else
{

// Phantom nose position
jointPoints[PositionIndex.phantomNose.Int()].Pos3D = new

Vector3(jointPoints[PositionIndex.centerHead.Int()].Pos3D.x,
jointPoints[PositionIndex.centerHead.Int()].Pos3D.y,
jointPoints[PositionIndex.centerHead.Int()].Pos3D.z +
0.1f);

A.1. VNectModel.cs 43

}
}

if (hmdDevice.isValid)
{

hmdDevice.TryGetFeatureValue(CommonUsages.devicePosition, out
hmdPosition);

hmdDevice.TryGetFeatureValue(CommonUsages.deviceRotation, out
hmdRotation);

}
if (leftController.isValid)
{

leftController.TryGetFeatureValue(CommonUsages.devicePosition,
out leftControllerPosition);

leftController.TryGetFeatureValue(CommonUsages.deviceRotation,
out leftControllerRotation);

}
if (rightController.isValid)
{
rightController.TryGetFeatureValue(CommonUsages.devicePosition, out

rightControllerPosition);
rightController.TryGetFeatureValue(CommonUsages.deviceRotation,

out rightControllerRotation);
}

if(vrRunning)
{

// Head rotation
jointPoints[PositionIndex.head.Int()].Transform.rotation =

hmdRotation;
// Wrists positions
if (!kinectScene)
{

jointPoints[PositionIndex.lController.Int()].Pos3D =
leftControllerPosition - hmdPosition +
jointPoints[PositionIndex.Nose.Int()].Pos3D;

jointPoints[PositionIndex.rController.Int()].Pos3D =
rightControllerPosition - hmdPosition +
jointPoints[PositionIndex.Nose.Int()].Pos3D;

}
else
{

jointPoints[PositionIndex.lController.Int()].Pos3D =
leftControllerPosition - hmdPosition +
jointPoints[PositionIndex.phantomNose.Int()].Pos3D;

jointPoints[PositionIndex.rController.Int()].Pos3D =
rightControllerPosition - hmdPosition +

44 Appendix A. Scripts

jointPoints[PositionIndex.phantomNose.Int()].Pos3D;
}
// Wrists rotations
jointPoints[PositionIndex.lController.Int()].Transform.rotation

= leftControllerRotation * Quaternion.Euler(new
Vector3(-180f, -90f, -80f));

jointPoints[PositionIndex.rController.Int()].Transform.rotation
= rightControllerRotation * Quaternion.Euler(new Vector3(0f,
90f, -80f));

// Left elbow position
Vector3 lElbowProjection =

Vector3.Project((jointPoints[PositionIndex.lElbow.Int()].Pos3D
- jointPoints[PositionIndex.lShoulder.Int()].Pos3D),

(jointPoints[PositionIndex.lController.Int()].Pos3D -
jointPoints[PositionIndex.lShoulder.Int()].Pos3D)) +
jointPoints[PositionIndex.lShoulder.Int()].Pos3D;

Vector3 lElbowProjectionElbow =
jointPoints[PositionIndex.lElbow.Int()].Pos3D -
lElbowProjection;

Vector3 lPhantomElbowProjection =
Vector3.Lerp(jointPoints[PositionIndex.lShoulder.Int()].Pos3D,
jointPoints[PositionIndex.lController.Int()].Pos3D, 0.5f);

jointPoints[PositionIndex.lPhantomElbow.Int()].Pos3D =
lPhantomElbowProjection + lElbowProjectionElbow;

// Right elbow position
Vector3 rElbowProjection =

Vector3.Project((jointPoints[PositionIndex.rElbow.Int()].Pos3D
- jointPoints[PositionIndex.rShoulder.Int()].Pos3D),

(jointPoints[PositionIndex.rController.Int()].Pos3D -
jointPoints[PositionIndex.rShoulder.Int()].Pos3D)) +
jointPoints[PositionIndex.rShoulder.Int()].Pos3D;

Vector3 rElbowProjectionElbow =
jointPoints[PositionIndex.rElbow.Int()].Pos3D -
rElbowProjection;

Vector3 rPhantomElbowProjection =
Vector3.Lerp(jointPoints[PositionIndex.rShoulder.Int()].Pos3D,
jointPoints[PositionIndex.rController.Int()].Pos3D, 0.5f);

jointPoints[PositionIndex.rPhantomElbow.Int()].Pos3D =
rPhantomElbowProjection + rElbowProjectionElbow;

}

// Primary button on left controller triggers calibration
bool primaryButtonValue = false;
if

(UnityEngine.InputSystem.Keyboard.current.spaceKey.wasPressedThisFrame
||
(leftController.TryGetFeatureValue(CommonUsages.primaryButton,

A.1. VNectModel.cs 45

out primaryButtonValue) && primaryButtonValue !=
lastPrimaryButtonValue && primaryButtonValue))
RunCalibration();

lastPrimaryButtonValue = primaryButtonValue;

if (jointPoints != null)
PoseUpdate();

}

/// <summary>
/// Initialize joint points
/// </summary>
/// <returns></returns>
public JointPoint[] Initialize()
{

vrRunning = isVrRunning();
hmdDevice = InputDevices.GetDeviceAtXRNode(XRNode.CenterEye);
leftController = InputDevices.GetDeviceAtXRNode(XRNode.LeftHand);
rightController = InputDevices.GetDeviceAtXRNode(XRNode.RightHand);

jointPoints = new JointPoint[PositionIndex.Count.Int()];
for (var i = 0; i < PositionIndex.Count.Int(); i++)

jointPoints[i] = new JointPoint();

anim = ModelObject.GetComponent<Animator>();

avatarDimensions.x =
Vector3.Distance(anim.GetBoneTransform(HumanBodyBones.RightHand).position,
anim.GetBoneTransform(HumanBodyBones.LeftHand).position);

avatarDimensions.y = Nose.transform.position.y;
avatarCenter = GetCenter(gameObject);

// Right Arm
jointPoints[PositionIndex.rShoulder.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.RightUpperArm);
if(!vrRunning)
{

jointPoints[PositionIndex.rElbow.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightLowerArm);

jointPoints[PositionIndex.rWrist.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightHand);

jointPoints[PositionIndex.rThumb.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightThumbIntermediate);

jointPoints[PositionIndex.rPinky.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightLittleIntermediate);

}
else

46 Appendix A. Scripts

{
jointPoints[PositionIndex.rPhantomElbow.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.RightLowerArm);
jointPoints[PositionIndex.rController.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.RightHand);
}

// Left Arm
jointPoints[PositionIndex.lShoulder.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.LeftUpperArm);
if(!vrRunning)
{

jointPoints[PositionIndex.lElbow.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftLowerArm);

jointPoints[PositionIndex.lWrist.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftHand);

jointPoints[PositionIndex.lThumb.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftThumbIntermediate);

jointPoints[PositionIndex.lPinky.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftLittleIntermediate);

}
else
{

jointPoints[PositionIndex.lPhantomElbow.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftLowerArm);

jointPoints[PositionIndex.lController.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftHand);

}

// Head
if (kinectScene && vrRunning)

jointPoints[PositionIndex.phantomNose.Int()].Transform =
Nose.transform;

else
{

jointPoints[PositionIndex.lEar.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.Head);

jointPoints[PositionIndex.lEye.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.LeftEye);

jointPoints[PositionIndex.rEar.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.Head);

jointPoints[PositionIndex.rEye.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightEye);

jointPoints[PositionIndex.Nose.Int()].Transform = Nose.transform;
}

// Right Leg

A.1. VNectModel.cs 47

jointPoints[PositionIndex.rHip.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightUpperLeg);

jointPoints[PositionIndex.rKnee.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightLowerLeg);

jointPoints[PositionIndex.rAnkle.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightFoot);

jointPoints[PositionIndex.rFootIndex.Int()].Transform =
anim.GetBoneTransform(HumanBodyBones.RightToes);

// Left Leg
jointPoints[PositionIndex.lHip.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.LeftUpperLeg);
jointPoints[PositionIndex.lKnee.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.LeftLowerLeg);
jointPoints[PositionIndex.lAnkle.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.LeftFoot);
jointPoints[PositionIndex.lFootIndex.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.LeftToes);

// Spine
jointPoints[PositionIndex.head.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.Head);
jointPoints[PositionIndex.neck.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.Neck);
jointPoints[PositionIndex.chest.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.Chest);
jointPoints[PositionIndex.spine.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.Spine);
jointPoints[PositionIndex.hips.Int()].Transform =

anim.GetBoneTransform(HumanBodyBones.Hips);

// Parent-Child Setup
// Right Arm
if(!vrRunning)
{

jointPoints[PositionIndex.rShoulder.Int()].Child =
jointPoints[PositionIndex.rElbow.Int()];

jointPoints[PositionIndex.rElbow.Int()].Child =
jointPoints[PositionIndex.rWrist.Int()];

jointPoints[PositionIndex.rElbow.Int()].Parent =
jointPoints[PositionIndex.rShoulder.Int()];

}
else
{

jointPoints[PositionIndex.rShoulder.Int()].Child =
jointPoints[PositionIndex.rPhantomElbow.Int()];

jointPoints[PositionIndex.rPhantomElbow.Int()].Child =
jointPoints[PositionIndex.rController.Int()];

48 Appendix A. Scripts

jointPoints[PositionIndex.rPhantomElbow.Int()].Parent =
jointPoints[PositionIndex.rShoulder.Int()];

}

// Left Arm
if(!vrRunning)
{

jointPoints[PositionIndex.lShoulder.Int()].Child =
jointPoints[PositionIndex.lElbow.Int()];

jointPoints[PositionIndex.lElbow.Int()].Child =
jointPoints[PositionIndex.lWrist.Int()];

jointPoints[PositionIndex.lElbow.Int()].Parent =
jointPoints[PositionIndex.lShoulder.Int()];

}
else
{

jointPoints[PositionIndex.lShoulder.Int()].Child =
jointPoints[PositionIndex.lPhantomElbow.Int()];

jointPoints[PositionIndex.lPhantomElbow.Int()].Child =
jointPoints[PositionIndex.lController.Int()];

jointPoints[PositionIndex.lPhantomElbow.Int()].Parent =
jointPoints[PositionIndex.lShoulder.Int()];

}

// Right Leg
jointPoints[PositionIndex.rHip.Int()].Child =

jointPoints[PositionIndex.rKnee.Int()];
jointPoints[PositionIndex.rKnee.Int()].Child =

jointPoints[PositionIndex.rAnkle.Int()];
jointPoints[PositionIndex.rAnkle.Int()].Child =

jointPoints[PositionIndex.rFootIndex.Int()];
jointPoints[PositionIndex.rAnkle.Int()].Parent =

jointPoints[PositionIndex.rKnee.Int()];
// Left Leg
jointPoints[PositionIndex.lHip.Int()].Child =

jointPoints[PositionIndex.lKnee.Int()];
jointPoints[PositionIndex.lKnee.Int()].Child =

jointPoints[PositionIndex.lAnkle.Int()];
jointPoints[PositionIndex.lAnkle.Int()].Child =

jointPoints[PositionIndex.lFootIndex.Int()];
jointPoints[PositionIndex.lAnkle.Int()].Parent =

jointPoints[PositionIndex.lKnee.Int()];

// Spine
jointPoints[PositionIndex.spine.Int()].Child =

jointPoints[PositionIndex.chest.Int()];

A.1. VNectModel.cs 49

jointPoints[PositionIndex.chest.Int()].Child =
jointPoints[PositionIndex.neck.Int()];

jointPoints[PositionIndex.neck.Int()].Child =
jointPoints[PositionIndex.head.Int()];

useSkeleton = ShowSkeleton;
if (useSkeleton)
{

// Skeleton Lines
// Right Arm
if(!vrRunning)
{

AddSkeleton(PositionIndex.rShoulder, PositionIndex.rElbow);
AddSkeleton(PositionIndex.rElbow, PositionIndex.rWrist);
AddSkeleton(PositionIndex.rWrist, PositionIndex.rThumb);
AddSkeleton(PositionIndex.rWrist, PositionIndex.rPinky);

}
else
{

AddSkeleton(PositionIndex.rShoulder,
PositionIndex.rPhantomElbow);

AddSkeleton(PositionIndex.rPhantomElbow,
PositionIndex.rController);

}

// Left Arm
if(!vrRunning)
{

AddSkeleton(PositionIndex.lShoulder, PositionIndex.lElbow);
AddSkeleton(PositionIndex.lElbow, PositionIndex.lWrist);
AddSkeleton(PositionIndex.lWrist, PositionIndex.lThumb);
AddSkeleton(PositionIndex.lWrist, PositionIndex.lPinky);

}
else
{

AddSkeleton(PositionIndex.lShoulder,
PositionIndex.lPhantomElbow);

AddSkeleton(PositionIndex.lPhantomElbow,
PositionIndex.lController);

}

// Head
if (kinectScene && vrRunning)

AddSkeleton(PositionIndex.centerHead,
PositionIndex.phantomNose);

else
{

50 Appendix A. Scripts

AddSkeleton(PositionIndex.lEar, PositionIndex.lEye);
AddSkeleton(PositionIndex.lEye, PositionIndex.Nose);
AddSkeleton(PositionIndex.rEar, PositionIndex.rEye);
AddSkeleton(PositionIndex.rEye, PositionIndex.Nose);

}

// Right Leg
AddSkeleton(PositionIndex.rHip, PositionIndex.rKnee);
AddSkeleton(PositionIndex.rKnee, PositionIndex.rAnkle);
AddSkeleton(PositionIndex.rAnkle, PositionIndex.rFootIndex);
// Left Leg
AddSkeleton(PositionIndex.lHip, PositionIndex.lKnee);
AddSkeleton(PositionIndex.lKnee, PositionIndex.lAnkle);
AddSkeleton(PositionIndex.lAnkle, PositionIndex.lFootIndex);

// Torso
AddSkeleton(PositionIndex.hips, PositionIndex.spine);
AddSkeleton(PositionIndex.spine, PositionIndex.chest);
AddSkeleton(PositionIndex.chest, PositionIndex.neck);
AddSkeleton(PositionIndex.neck, PositionIndex.head);
AddSkeleton(PositionIndex.chest, PositionIndex.rShoulder);
AddSkeleton(PositionIndex.chest, PositionIndex.lShoulder);
AddSkeleton(PositionIndex.hips, PositionIndex.rHip);
AddSkeleton(PositionIndex.hips, PositionIndex.lHip);

}

// Set Inverse
var forward =

TriangleNormal(jointPoints[PositionIndex.hips.Int()].Transform.position,
jointPoints[PositionIndex.lHip.Int()].Transform.position,
jointPoints[PositionIndex.rHip.Int()].Transform.position);

foreach (var jointPoint in jointPoints)
{

if (jointPoint != null)
{

if (jointPoint.Transform != null)
{

jointPoint.InitRotation = jointPoint.Transform.rotation;
}
if (jointPoint.Child != null && jointPoint.Child.Transform !=

null && jointPoint.Child.Transform.position != null)
{

jointPoint.Inverse = GetInverse(jointPoint,
jointPoint.Child, forward);

jointPoint.InverseRotation = jointPoint.Inverse *
jointPoint.InitRotation;

}

A.1. VNectModel.cs 51

}
}

// Hips Rotation
var hips = jointPoints[PositionIndex.hips.Int()];
initPosition =

jointPoints[PositionIndex.hips.Int()].Transform.position;
hips.Inverse = Quaternion.Inverse(Quaternion.LookRotation(forward));
hips.InverseRotation = hips.Inverse * hips.InitRotation;

// Head Rotation
var head = jointPoints[PositionIndex.head.Int()];
head.InitRotation =

jointPoints[PositionIndex.head.Int()].Transform.rotation;
if(kinectScene && vrRunning)
{

var gaze =
jointPoints[PositionIndex.phantomNose.Int()].Transform.position
- jointPoints[PositionIndex.head.Int()].Transform.position;

head.Inverse = Quaternion.Inverse(Quaternion.LookRotation(gaze));
head.InverseRotation = head.Inverse * head.InitRotation;

}
else
{

var gaze =
jointPoints[PositionIndex.Nose.Int()].Transform.position -
jointPoints[PositionIndex.head.Int()].Transform.position;

head.Inverse = Quaternion.Inverse(Quaternion.LookRotation(gaze));
head.InverseRotation = head.Inverse * head.InitRotation;

}

if(!vrRunning)
{

// Wrists rotation
var lWrist = jointPoints[PositionIndex.lWrist.Int()];
var lf = TriangleNormal(lWrist.Pos3D,

jointPoints[PositionIndex.lPinky.Int()].Pos3D,
jointPoints[PositionIndex.lThumb.Int()].Pos3D);

lWrist.InitRotation = lWrist.Transform.rotation;
lWrist.Inverse =

Quaternion.Inverse(Quaternion.LookRotation(jointPoints[PositionIndex.lThumb.Int()].Transform.position
-
jointPoints[PositionIndex.lPinky.Int()].Transform.position,
lf));

lWrist.InverseRotation = lWrist.Inverse * lWrist.InitRotation;

var rWrist = jointPoints[PositionIndex.rWrist.Int()];

52 Appendix A. Scripts

var rf = TriangleNormal(rWrist.Pos3D,
jointPoints[PositionIndex.rThumb.Int()].Pos3D,
jointPoints[PositionIndex.rPinky.Int()].Pos3D);

rWrist.InitRotation =
jointPoints[PositionIndex.rWrist.Int()].Transform.rotation;

rWrist.Inverse =
Quaternion.Inverse(Quaternion.LookRotation(jointPoints[PositionIndex.rThumb.Int()].Transform.position
-
jointPoints[PositionIndex.rPinky.Int()].Transform.position,
rf));

rWrist.InverseRotation = rWrist.Inverse * rWrist.InitRotation;
}

return JointPoints;
}

public void PoseUpdate()
{

// movement and rotatation of the center
var forward =

TriangleNormal(jointPoints[PositionIndex.hips.Int()].Pos3D,
jointPoints[PositionIndex.lHip.Int()].Pos3D,
jointPoints[PositionIndex.rHip.Int()].Pos3D);

if(!vrRunning)
jointPoints[PositionIndex.hips.Int()].Transform.position =

jointPoints[PositionIndex.hips.Int()].Pos3D + initPosition -
jointPositionOffset;

else
{

if (kinectScene)
jointPoints[PositionIndex.hips.Int()].Transform.position =

jointPoints[PositionIndex.hips.Int()].Pos3D -
jointPoints[PositionIndex.phantomNose.Int()].Pos3D +
hmdPosition - jointPositionOffset;

else
jointPoints[PositionIndex.hips.Int()].Transform.position =

jointPoints[PositionIndex.hips.Int()].Pos3D -
jointPoints[PositionIndex.Nose.Int()].Pos3D + hmdPosition
- jointPositionOffset;

}
jointPoints[PositionIndex.hips.Int()].Transform.rotation =

Quaternion.LookRotation(forward) *
jointPoints[PositionIndex.hips.Int()].InverseRotation;

// rotation of each of the bones
foreach (var jointPoint in jointPoints)
{

A.1. VNectModel.cs 53

if (jointPoint.Parent != null)
{

var fv = jointPoint.Parent.Pos3D - jointPoint.Pos3D;
jointPoint.Transform.rotation =

Quaternion.LookRotation(jointPoint.Pos3D -
jointPoint.Child.Pos3D, fv) * jointPoint.InverseRotation;

}
else if (jointPoint.Child != null)
{

jointPoint.Transform.rotation =
Quaternion.LookRotation(jointPoint.Pos3D -
jointPoint.Child.Pos3D, forward) *
jointPoint.InverseRotation;

}
}

if(!vrRunning || (!kinectScene && !vrRunning))
{

// Head Rotation
var gaze = jointPoints[PositionIndex.Nose.Int()].Pos3D -

jointPoints[PositionIndex.head.Int()].Pos3D;
var f =

TriangleNormal(jointPoints[PositionIndex.Nose.Int()].Pos3D,
jointPoints[PositionIndex.rEar.Int()].Pos3D,
jointPoints[PositionIndex.lEar.Int()].Pos3D);

var head = jointPoints[PositionIndex.head.Int()];
head.Transform.rotation = Quaternion.LookRotation(gaze, f) *

head.InverseRotation;
}

if(!vrRunning)
{

// Wrist rotation
var lWrist = jointPoints[PositionIndex.lWrist.Int()];
var lf = TriangleNormal(lWrist.Pos3D,

jointPoints[PositionIndex.lPinky.Int()].Pos3D,
jointPoints[PositionIndex.lThumb.Int()].Pos3D);

lWrist.Transform.rotation =
Quaternion.LookRotation(jointPoints[PositionIndex.lThumb.Int()].Pos3D
- jointPoints[PositionIndex.lPinky.Int()].Pos3D, lf) *
lWrist.InverseRotation;

var rWrist = jointPoints[PositionIndex.rWrist.Int()];
var rf = TriangleNormal(rWrist.Pos3D,

jointPoints[PositionIndex.rThumb.Int()].Pos3D,
jointPoints[PositionIndex.rPinky.Int()].Pos3D);

54 Appendix A. Scripts

rWrist.Transform.rotation =
Quaternion.LookRotation(jointPoints[PositionIndex.rThumb.Int()].Pos3D
- jointPoints[PositionIndex.rPinky.Int()].Pos3D, rf) *
rWrist.InverseRotation;

}

foreach (var sk in Skeletons)
{

var s = sk.start;
var e = sk.end;

sk.Line.SetPosition(0, new Vector3(s.Pos3D.x * SkeletonScale +
SkeletonX, s.Pos3D.y * SkeletonScale + SkeletonY, s.Pos3D.z
* SkeletonScale + SkeletonZ));

sk.Line.SetPosition(1, new Vector3(e.Pos3D.x * SkeletonScale +
SkeletonX, e.Pos3D.y * SkeletonScale + SkeletonY, e.Pos3D.z
* SkeletonScale + SkeletonZ));

}
}

Vector3 TriangleNormal(Vector3 a, Vector3 b, Vector3 c)
{

Vector3 d1 = a - b;
Vector3 d2 = a - c;

Vector3 dd = Vector3.Cross(d1, d2);
dd.Normalize();

return dd;
}

private Quaternion GetInverse(JointPoint p1, JointPoint p2, Vector3
forward)

{
return

Quaternion.Inverse(Quaternion.LookRotation(p1.Transform.position
- p2.Transform.position, forward));

}

/// <summary>
/// Add skelton from joint points
/// </summary>
/// <param name="s">position index</param>
/// <param name="e">position index</param>
private void AddSkeleton(PositionIndex s, PositionIndex e)
{

var sk = new Skeleton()

A.1. VNectModel.cs 55

{
LineObject = new GameObject("Line"),
start = jointPoints[s.Int()],
end = jointPoints[e.Int()],

};

sk.Line = sk.LineObject.AddComponent<LineRenderer>();
sk.Line.startWidth = 0.025f;
sk.Line.endWidth = 0.005f;

// define the number of vertex
sk.Line.positionCount = 2;
sk.Line.material = SkeletonMaterial;

Skeletons.Add(sk);
}

private static bool isVrRunning()
{

var xrDisplaySubsystems = new List<XRDisplaySubsystem>();
SubsystemManager.GetInstances<XRDisplaySubsystem>(xrDisplaySubsystems);
foreach (var xrDisplay in xrDisplaySubsystems)
{

if (xrDisplay.running)
{

return true;
}

}
return false;

}

private Vector3 GetCenter(GameObject obj)
{

Vector3 sumVector = Vector3.zero;

foreach (Transform child in obj.transform)
{

sumVector += child.position;
}

Vector3 groupCenter = sumVector / obj.transform.childCount;
return sumVector;

}

private void RunCalibration()
{

Instruction.SetActive(true);

56 Appendix A. Scripts

if (!vrRunning)
{

Debug.Log("Avatar calibration will begin in 5 seconds, please
stand in T-pose!");

if (kinectScene)
{

StartCoroutine(BodySourceView.KinectCalibrationRoutine(vrRunning,
kinectTDimensionsCalculated => {
ScaleAvatar(kinectTDimensionsCalculated);
Debug.Log("Avatar calibration done!");
Instruction.SetActive(false);

}));
}
else
{

StartCoroutine(PoseVisualizer3D.PoseCalibrationRoutine(vrRunning,
poseTDimensionsCalculated => {
ScaleAvatar(poseTDimensionsCalculated);
Debug.Log("Avatar calibration done!");
Instruction.SetActive(false);

}));
}

}
else
{

Debug.Log("VR calibration will begin in 5 seconds, please stand
in T-pose!");

StartCoroutine(VrCalibrationRoutine(vrTDimensionsCalculated => {
Vector3 vrTDimensions = vrTDimensionsCalculated;
if (kinectScene)
{

StartCoroutine(BodySourceView.KinectCalibrationRoutine(vrRunning,
kinectTDimensionsCalculated => {
BodySourceView.ScaleKinect(vrTDimensions,

kinectTDimensionsCalculated);
Debug.Log("VR calibration done!");
Instruction.SetActive(false);

}));
}
else
{

StartCoroutine(PoseVisualizer3D.PoseCalibrationRoutine(vrRunning,
poseTDimensionsCalculated => {
PoseVisualizer3D.ScalePose(vrTDimensions,

poseTDimensionsCalculated);
Debug.Log("VR calibration done!");
Instruction.SetActive(false);

A.2. PoseVisualizer3D.cs 57

}));
}

}));
}

}

private IEnumerator VrCalibrationRoutine(System.Action<Vector3>
callback = null)

{
yield return new WaitForSeconds(5);
Vector3 vrTDimensions = Vector3.zero;
vrTDimensions.x = Vector3.Distance(leftControllerPosition,

rightControllerPosition);
vrTDimensions.y = hmdPosition.y;
ScaleAvatar(vrTDimensions);
callback (vrTDimensions);

}

/// <summary>
/// Scale the avatar based on the physical dimensions of the user’s body
/// </summary>
private void ScaleAvatar(Vector3 bodyTDimensions)
{

Vector3 scaling;
scaling.x = bodyTDimensions.x / avatarDimensions.x;
scaling.y = bodyTDimensions.y / avatarDimensions.y;
scaling.z = (scaling.x + scaling.y) / 2f;
transform.localScale = scaling;
jointPositionOffset.y = avatarCenter.y - avatarCenter.y * scaling.y;
Debug.Log("Avatar scaling done");

}
}

A.2 PoseVisualizer3D.cs

using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using Mediapipe.BlazePose;
using System.Collections;
using System.Linq;

public class PoseVisualizer3D : MonoBehaviour
{

58 Appendix A. Scripts

[SerializeField] Camera mainCamera;
[SerializeField] WebCamInput webCamInput;
[SerializeField] RawImage inputImageUI;
[SerializeField] Shader shader;
[SerializeField, Range(0, 1)] float humanExistThreshold = 0.5f;

Material material;
BlazePoseDetecter detecter;

// Lines count of body’s topology.
const int BODY_LINE_NUM = 35;
// Pairs of vertex indices of the lines that make up body’s topology.
// Defined by the figure in

https://google.github.io/mediapipe/solutions/pose.
readonly List<Vector4> linePair = new List<Vector4>
{

new Vector4(0, 1), new Vector4(1, 2), new Vector4(2, 3), new
Vector4(3, 7), new Vector4(0, 4),

new Vector4(4, 5), new Vector4(5, 6), new Vector4(6, 8), new
Vector4(9, 10), new Vector4(11, 12),

new Vector4(11, 13), new Vector4(13, 15), new Vector4(15, 17), new
Vector4(17, 19), new Vector4(19, 15),

new Vector4(15, 21), new Vector4(12, 14), new Vector4(14, 16), new
Vector4(16, 18), new Vector4(18, 20),

new Vector4(20, 16), new Vector4(16, 22), new Vector4(11, 23), new
Vector4(12, 24), new Vector4(23, 24),

new Vector4(23, 25), new Vector4(25, 27), new Vector4(27, 29), new
Vector4(29, 31), new Vector4(31, 27),

new Vector4(24, 26), new Vector4(26, 28), new Vector4(28, 30), new
Vector4(30, 32), new Vector4(32, 28)

};

public VNectModel VNectModel;

/// <summary>
/// Coordinates of joint points
/// </summary>
private VNectModel.JointPoint[] jointPoints;
private Vector3 scaling = Vector3.one;
public bool showSkeleton;

void Start()
{

material = new Material(shader);
detecter = new BlazePoseDetecter();
jointPoints = VNectModel.Initialize();

A.2. PoseVisualizer3D.cs 59

}

void Update()
{

inputImageUI.texture = webCamInput.inputImageTexture;

// Predict pose by neural network model.
detecter.ProcessImage(webCamInput.inputImageTexture);

// Output landmark values(33 values) and the score whether human
pose is visible (1 values).

for(int i = 0; i < detecter.vertexCount + 1; i++)
{

/*
0~32 index datas are pose world landmark.
Check below Mediapipe document about relation between index and

landmark position.
https://google.github.io/mediapipe/solutions/pose#pose-landmark-model-blazepose-ghum-3d
Each data factors are
x, y and z: Real-world 3D coordinates in meters with the origin

at the center between hips.
w: The score of whether the world landmark position is visible

([0, 1]).

33 index data is the score whether human pose is visible ([0,
1]).

This data is (score, 0, 0, 0).
*/
// Debug.LogFormat("{0}: {1}", i,

detecter.GetPoseWorldLandmark(i));
if (detecter.GetPoseWorldLandmark(i).w > humanExistThreshold)
{

jointPoints[i].Pos3D.x = -1f *
detecter.GetPoseWorldLandmark(i).x * scaling.x;

jointPoints[i].Pos3D.y = detecter.GetPoseWorldLandmark(i).y *
scaling.y;

jointPoints[i].Pos3D.z = -1f *
detecter.GetPoseWorldLandmark(i).z * scaling.z;

jointPoints[i].score3D = detecter.GetPoseWorldLandmark(i).w;
}

}
// Debug.Log("---");

// Calculate head position
Vector3 earCenter =

Vector3.Lerp(jointPoints[PositionIndex.rEar.Int()].Pos3D,
jointPoints[PositionIndex.lEar.Int()].Pos3D, 0.5f);

60 Appendix A. Scripts

Vector3 eyeCenter =
Vector3.Lerp(jointPoints[PositionIndex.rEye.Int()].Pos3D,
jointPoints[PositionIndex.lEye.Int()].Pos3D, 0.5f);

Vector3 earCenterEyeCenter = eyeCenter - earCenter;
Vector3 leftEarRightEar =

jointPoints[PositionIndex.rEar.Int()].Pos3D -
jointPoints[PositionIndex.lEar.Int()].Pos3D;

Vector3 earCenterHead = Vector3.Cross(leftEarRightEar,
earCenterEyeCenter);

Vector3 normalizedEarCenterHead = Vector3.Normalize(earCenterHead);
earCenterHead = normalizedEarCenterHead * 0.1f;
jointPoints[PositionIndex.head.Int()].Pos3D = earCenter +

earCenterHead;
// Calculate head score
float[] headScores3D = {

jointPoints[PositionIndex.rEar.Int()].score3D,
jointPoints[PositionIndex.lEar.Int()].score3D,

jointPoints[PositionIndex.rEye.Int()].score3D,
jointPoints[PositionIndex.lEye.Int()].score3D };

jointPoints[PositionIndex.head.Int()].score3D = headScores3D.Min();

// Calculate neck position
Vector3 shoulderCenter =

Vector3.Lerp(jointPoints[PositionIndex.rShoulder.Int()].Pos3D,
jointPoints[PositionIndex.lShoulder.Int()].Pos3D, 0.5f);

jointPoints[PositionIndex.neck.Int()].Pos3D =
Vector3.Lerp(shoulderCenter,
jointPoints[PositionIndex.head.Int()].Pos3D, 0.3f);

// Calculate neck score
float[] neckScores3D = {

jointPoints[PositionIndex.rShoulder.Int()].score3D,
jointPoints[PositionIndex.lShoulder.Int()].score3D,
jointPoints[PositionIndex.head.Int()].score3D };

jointPoints[PositionIndex.neck.Int()].score3D = neckScores3D.Min();

// Calculate hips position
Vector3 hipCenter =

Vector3.Lerp(jointPoints[PositionIndex.rHip.Int()].Pos3D,
jointPoints[PositionIndex.lHip.Int()].Pos3D, 0.5f);

jointPoints[PositionIndex.hips.Int()].Pos3D =
Vector3.Lerp(hipCenter, shoulderCenter, 0.125f);

// Calculate hips score
float[] hipsScores3D = {

jointPoints[PositionIndex.rShoulder.Int()].score3D,
jointPoints[PositionIndex.lShoulder.Int()].score3D,

A.2. PoseVisualizer3D.cs 61

jointPoints[PositionIndex.rHip.Int()].score3D,
jointPoints[PositionIndex.lHip.Int()].score3D};

jointPoints[PositionIndex.hips.Int()].score3D = hipsScores3D.Min();

// Calculate spine position
jointPoints[PositionIndex.spine.Int()].Pos3D =

Vector3.Lerp(hipCenter, shoulderCenter, 0.28f);
// Calculate spine score
jointPoints[PositionIndex.spine.Int()].score3D = hipsScores3D.Min();

// Calculate chest position
jointPoints[PositionIndex.chest.Int()].Pos3D =

Vector3.Lerp(hipCenter, shoulderCenter, 0.7f);
// Calculate chest score
jointPoints[PositionIndex.chest.Int()].score3D = hipsScores3D.Min();

}

void OnRenderObject()
{

if(showSkeleton)
{

// Use predicted pose world landmark results on the
ComputeBuffer (GPU) memory.

material.SetBuffer("_worldVertices",
detecter.worldLandmarkBuffer);

// Set pose landmark counts.
material.SetInt("_keypointCount", detecter.vertexCount);
material.SetFloat("_humanExistThreshold", humanExistThreshold);
material.SetVectorArray("_linePair", linePair);
material.SetMatrix("_invViewMatrix",

mainCamera.worldToCameraMatrix.inverse);

// Draw 35 world body topology lines.
material.SetPass(2);
Graphics.DrawProceduralNow(MeshTopology.Triangles, 6,

BODY_LINE_NUM);

// Draw 33 world landmark points.
material.SetPass(3);
Graphics.DrawProceduralNow(MeshTopology.Triangles, 6,

detecter.vertexCount);
}

}

void OnApplicationQuit()
{

// Must call Dispose method when no longer in use.

62 Appendix A. Scripts

detecter.Dispose();
}

public IEnumerator PoseCalibrationRoutine(bool vrRunning,
System.Action<Vector3> callback = null)

{
if (!vrRunning)

yield return new WaitForSeconds(5);
Vector3 poseTDimensions = Vector3.zero;
poseTDimensions.x =

Vector3.Distance(detecter.GetPoseWorldLandmark(15),
detecter.GetPoseWorldLandmark(16));

float floor = Mathf.Min(detecter.GetPoseWorldLandmark(29).y,
detecter.GetPoseWorldLandmark(30).y,
detecter.GetPoseWorldLandmark(31).y,
detecter.GetPoseWorldLandmark(32).y);

poseTDimensions.y = detecter.GetPoseWorldLandmark(0).y - floor;
callback (poseTDimensions);

}

/// <summary>
/// Scale BlazePose based on the physical dimensions of the user’s body

measured using HMD and controllers
/// </summary>
public void ScalePose(Vector3 vrTDimensions, Vector3 poseTDimensions)
{

scaling.x = vrTDimensions.x / poseTDimensions.x;
scaling.y = vrTDimensions.y / poseTDimensions.y;
scaling.z = (scaling.x + scaling.y) / 2f;
Debug.Log("BlazePose scaling done");

}
}

A.3 BodySourceView.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Kinect = Windows.Kinect;

public class BodySourceView : MonoBehaviour
{

public Material BoneMaterial;
public GameObject BodySourceManager;

A.3. BodySourceView.cs 63

public GameObject FaceManager;
public VNectModel VNectModel;

/// <summary>
/// Coordinates of joint points
/// </summary>
private VNectModel.JointPoint[] jointPoints;
private Vector3 spineMid;
private Vector3 footLeft;
private Vector3 footRight;
private Vector3 spineShoulder;
private Vector3 handLeft;
private Vector3 handRight;
private Vector3 handTipLeft;
private Vector3 handTipRight;
private Dictionary<ulong, GameObject> _Bodies = new Dictionary<ulong,

GameObject>();
private BodySourceManager _BodyManager;
private FaceManager _FaceManager;
private Vector3[] kinectJoints = new Vector3[47]; // Kinect’s joints

data (with rotation, without scaling)
private Vector3 scaling = Vector3.one;
float kinectOffset = 0;
public bool showSkeleton;

private Dictionary<Kinect.JointType, Kinect.JointType> _BoneMap = new
Dictionary<Kinect.JointType, Kinect.JointType>()

{
{ Kinect.JointType.FootLeft, Kinect.JointType.AnkleLeft },
{ Kinect.JointType.AnkleLeft, Kinect.JointType.KneeLeft },
{ Kinect.JointType.KneeLeft, Kinect.JointType.HipLeft },
{ Kinect.JointType.HipLeft, Kinect.JointType.SpineBase },

{ Kinect.JointType.FootRight, Kinect.JointType.AnkleRight },
{ Kinect.JointType.AnkleRight, Kinect.JointType.KneeRight },
{ Kinect.JointType.KneeRight, Kinect.JointType.HipRight },
{ Kinect.JointType.HipRight, Kinect.JointType.SpineBase },

{ Kinect.JointType.HandTipLeft, Kinect.JointType.HandLeft },
{ Kinect.JointType.ThumbLeft, Kinect.JointType.HandLeft },
{ Kinect.JointType.HandLeft, Kinect.JointType.WristLeft },
{ Kinect.JointType.WristLeft, Kinect.JointType.ElbowLeft },
{ Kinect.JointType.ElbowLeft, Kinect.JointType.ShoulderLeft },
{ Kinect.JointType.ShoulderLeft, Kinect.JointType.SpineShoulder },

{ Kinect.JointType.HandTipRight, Kinect.JointType.HandRight },
{ Kinect.JointType.ThumbRight, Kinect.JointType.HandRight },

64 Appendix A. Scripts

{ Kinect.JointType.HandRight, Kinect.JointType.WristRight },
{ Kinect.JointType.WristRight, Kinect.JointType.ElbowRight },
{ Kinect.JointType.ElbowRight, Kinect.JointType.ShoulderRight },
{ Kinect.JointType.ShoulderRight, Kinect.JointType.SpineShoulder },

{ Kinect.JointType.SpineBase, Kinect.JointType.SpineMid },
{ Kinect.JointType.SpineMid, Kinect.JointType.SpineShoulder },
{ Kinect.JointType.SpineShoulder, Kinect.JointType.Neck },
{ Kinect.JointType.Neck, Kinect.JointType.Head },

};

void Start()
{

jointPoints = VNectModel.Initialize();
}

void Update ()
{

if (BodySourceManager == null)
{

return;
}

if (FaceManager == null)
{

return;
}

_BodyManager = BodySourceManager.GetComponent<BodySourceManager>();
if (_BodyManager == null)
{

return;
}

_FaceManager = FaceManager.GetComponent<FaceManager>();
if (_FaceManager == null)
{

return;
}

Kinect.Body[] data = _BodyManager.GetData();
if (data == null)
{

return;
}

List<ulong> trackedIds = new List<ulong>();

A.3. BodySourceView.cs 65

foreach(var body in data)
{

if (body == null)
{

continue;
}

if(body.IsTracked)
{

trackedIds.Add (body.TrackingId);
}

}

List<ulong> knownIds = new List<ulong>(_Bodies.Keys);

// First delete untracked bodies
foreach(ulong trackingId in knownIds)
{

if(!trackedIds.Contains(trackingId))
{

Destroy(_Bodies[trackingId]);
_Bodies.Remove(trackingId);

}
}

foreach(var body in data)
{

if (body == null)
{

continue;
}

if(body.IsTracked)
{

if(!_Bodies.ContainsKey(body.TrackingId))
{

_Bodies[body.TrackingId] =
CreateBodyObject(body.TrackingId);

}

RefreshBodyObject(body, _Bodies[body.TrackingId]);

// Calculations of the missing joints
jointPoints[PositionIndex.lFootIndex.Int()].Pos3D = footLeft;
jointPoints[PositionIndex.rFootIndex.Int()].Pos3D = footRight;
jointPoints[PositionIndex.neck.Int()].Pos3D =

Vector3.Lerp(spineShoulder,

66 Appendix A. Scripts

jointPoints[PositionIndex.neck.Int()].Pos3D, 0.5f);
Vector3 hipCenter =

Vector3.Lerp(jointPoints[PositionIndex.rHip.Int()].Pos3D,
jointPoints[PositionIndex.lHip.Int()].Pos3D, 0.5f);

jointPoints[PositionIndex.hips.Int()].Pos3D =
Vector3.Lerp(hipCenter, spineMid, 0.25f);

jointPoints[PositionIndex.chest.Int()].Pos3D =
Vector3.Lerp(spineMid, spineShoulder, 0.2f);

jointPoints[PositionIndex.spine.Int()].Pos3D =
Vector3.Lerp(jointPoints[PositionIndex.hips.Int()].Pos3D,
spineMid, 0.3f);

Vector3 lMiddleProximal = Vector3.Lerp(handLeft, handTipLeft,
0.5f);

Vector3 lThumbMiddleProximal = lMiddleProximal -
jointPoints[PositionIndex.lThumb.Int()].Pos3D;

jointPoints[PositionIndex.lPinky.Int()].Pos3D =
jointPoints[PositionIndex.lThumb.Int()].Pos3D + 1.5f *
lThumbMiddleProximal;

Vector3 rMiddleProximal = Vector3.Lerp(handRight,
handTipRight, 0.5f);

Vector3 rThumbMiddleProximal = rMiddleProximal -
jointPoints[PositionIndex.rThumb.Int()].Pos3D;

jointPoints[PositionIndex.rPinky.Int()].Pos3D =
jointPoints[PositionIndex.rThumb.Int()].Pos3D + 1.5f *
rThumbMiddleProximal;

}
}

// Face points
jointPoints[PositionIndex.Nose.Int()].Pos3D =

_FaceManager.GetFacePointsPosition(0);
jointPoints[PositionIndex.lEye.Int()].Pos3D =

_FaceManager.GetFacePointsPosition(1);
jointPoints[PositionIndex.rEye.Int()].Pos3D =

_FaceManager.GetFacePointsPosition(2);
jointPoints[PositionIndex.lEar.Int()].Pos3D =

_FaceManager.GetFacePointsPosition(3);
jointPoints[PositionIndex.rEar.Int()].Pos3D =

_FaceManager.GetFacePointsPosition(4);
}

private GameObject CreateBodyObject(ulong id)
{

GameObject body = new GameObject("Body:" + id);

// Skeleton visualizer
if (showSkeleton)

A.3. BodySourceView.cs 67

{
for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <=

Kinect.JointType.ThumbRight; jt++)
{

GameObject jointObj =
GameObject.CreatePrimitive(PrimitiveType.Cube);

LineRenderer lr = jointObj.AddComponent<LineRenderer>();
lr.positionCount = 2;
lr.material = BoneMaterial;
lr.startWidth = 0.05f;
lr.endWidth = 0.05f;

jointObj.transform.localScale = new Vector3(0.1f, 0.1f, 0.1f);
jointObj.name = jt.ToString();
jointObj.transform.parent = body.transform;

}

}

return body;
}

private void RefreshBodyObject(Kinect.Body body, GameObject bodyObject)
{

for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <=
Kinect.JointType.ThumbRight; jt++)

{
Kinect.Joint sourceJoint = body.Joints[jt];
Kinect.Joint? targetJoint = null;

// Skeleton visualizer
if (showSkeleton)
{

if(_BoneMap.ContainsKey(jt))
{

targetJoint = body.Joints[_BoneMap[jt]];
}

Transform jointObj = bodyObject.transform.Find(jt.ToString());
jointObj.localPosition = new Vector3 (sourceJoint.Position.X,

sourceJoint.Position.Y, (sourceJoint.Position.Z * -1f) +
2f);

LineRenderer lr = jointObj.GetComponent<LineRenderer>();
if(targetJoint.HasValue)
{

68 Appendix A. Scripts

lr.SetPosition(0, jointObj.localPosition);
lr.SetPosition(1, new Vector3 (sourceJoint.Position.X,

sourceJoint.Position.Y, (sourceJoint.Position.Z *
-1f) + 2f));

lr.startColor = GetColorForState
(sourceJoint.TrackingState);

lr.endColor =
GetColorForState(targetJoint.Value.TrackingState);

}
else
{

lr.enabled = false;
}

}

// Mapping of Kinect joints to VNectModel joints
if (jt.ToString().Equals("SpineMid"))
{

spineMid = GetVector3FromJoint(sourceJoint,
PositionIndex.spine.Int());

}

if (jt.ToString().Equals("Neck"))
{

jointPoints[PositionIndex.head.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.head.Int());

}

if (jt.ToString().Equals("Head"))
{

jointPoints[PositionIndex.centerHead.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.centerHead.Int());

}

if (jt.ToString().Equals("ShoulderLeft"))
{

jointPoints[PositionIndex.lShoulder.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lShoulder.Int());

}

if (jt.ToString().Equals("ElbowLeft"))
{

A.3. BodySourceView.cs 69

jointPoints[PositionIndex.lElbow.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lElbow.Int());

}

if (jt.ToString().Equals("WristLeft"))
{

jointPoints[PositionIndex.lWrist.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lWrist.Int());

}

if (jt.ToString().Equals("HandLeft"))
{

handLeft = GetVector3FromJoint(sourceJoint,
PositionIndex.lController.Int());

}

if (jt.ToString().Equals("ShoulderRight"))
{

jointPoints[PositionIndex.rShoulder.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rShoulder.Int());

}

if (jt.ToString().Equals("ElbowRight"))
{

jointPoints[PositionIndex.rElbow.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rElbow.Int());

}

if (jt.ToString().Equals("WristRight"))
{

jointPoints[PositionIndex.rWrist.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rWrist.Int());

}

if (jt.ToString().Equals("HandRight"))
{

handRight = GetVector3FromJoint(sourceJoint,
PositionIndex.rController.Int());

}

if (jt.ToString().Equals("HipLeft"))
{

70 Appendix A. Scripts

jointPoints[PositionIndex.lHip.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lHip.Int());

}

if (jt.ToString().Equals("KneeLeft"))
{

jointPoints[PositionIndex.lKnee.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lKnee.Int());

}

if (jt.ToString().Equals("AnkleLeft"))
{

jointPoints[PositionIndex.lAnkle.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lAnkle.Int());

}

if (jt.ToString().Equals("FootLeft"))
{

footLeft = GetVector3FromJoint(sourceJoint,
PositionIndex.lFootIndex.Int());

}

if (jt.ToString().Equals("HipRight"))
{

jointPoints[PositionIndex.rHip.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rHip.Int());

}

if (jt.ToString().Equals("KneeRight"))
{

jointPoints[PositionIndex.rKnee.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rKnee.Int());

}

if (jt.ToString().Equals("AnkleRight"))
{

jointPoints[PositionIndex.rAnkle.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rAnkle.Int());

}

if (jt.ToString().Equals("FootRight"))

A.3. BodySourceView.cs 71

{
footRight = GetVector3FromJoint(sourceJoint,

PositionIndex.rFootIndex.Int());
}

if (jt.ToString().Equals("SpineShoulder"))
{

spineShoulder = GetVector3FromJoint(sourceJoint,
PositionIndex.chest.Int());

}

if (jt.ToString().Equals("HandTipLeft"))
{

handTipLeft = GetVector3FromJoint(sourceJoint,
PositionIndex.lIndex.Int());

}

if (jt.ToString().Equals("ThumbLeft"))
{

jointPoints[PositionIndex.lThumb.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.lThumb.Int());

}

if (jt.ToString().Equals("HandTipRight"))
{

handTipRight = GetVector3FromJoint(sourceJoint,
PositionIndex.rIndex.Int());

}

if (jt.ToString().Equals("ThumbRight"))
{

jointPoints[PositionIndex.rThumb.Int()].Pos3D =
GetVector3FromJoint(sourceJoint,
PositionIndex.rThumb.Int());

}
}

}

private static Color GetColorForState(Kinect.TrackingState state)
{

switch (state)
{
case Kinect.TrackingState.Tracked:

return Color.green;

case Kinect.TrackingState.Inferred:

72 Appendix A. Scripts

return Color.red;

default:
return Color.black;

}
}

private Vector3 GetVector3FromJoint(Kinect.Joint joint, int jointNumber)
{

kinectJoints[jointNumber] = new Vector3(joint.Position.X,
joint.Position.Y, (joint.Position.Z * -1f) + 2f);

return Vector3.Scale(kinectJoints[jointNumber], scaling) - new
Vector3(0f, kinectOffset, 0f);

}

public IEnumerator KinectCalibrationRoutine(bool vrRunning,
System.Action<Vector3> callback = null)

{
if (!vrRunning)

yield return new WaitForSeconds(5);
Vector3 kinectTDimensions = Vector3.zero;
kinectTDimensions.x =

Vector3.Distance(kinectJoints[PositionIndex.lController.Int()],
kinectJoints[PositionIndex.rController.Int()]);

Vector3 hipCenter =
Vector3.Lerp(kinectJoints[PositionIndex.rHip.Int()],
kinectJoints[PositionIndex.lHip.Int()], 0.5f);

Vector3 hips = Vector3.Lerp(hipCenter,
kinectJoints[PositionIndex.spine.Int()], 0.25f);

float floor =
Mathf.Min(kinectJoints[PositionIndex.lFootIndex.Int()].y,
kinectJoints[PositionIndex.rFootIndex.Int()].y);

if (vrRunning)
kinectOffset = -floor + hips.y;

kinectTDimensions.y = kinectJoints[PositionIndex.centerHead.Int()].y
- floor;

callback (kinectTDimensions);
}

/// <summary>
/// Scale Kinect based on the physical dimensions of the user’s body

measured using HMD and controllers
/// </summary>
public void ScaleKinect(Vector3 vrTDimensions, Vector3

kinectTDimensions)
{

scaling.x = vrTDimensions.x / kinectTDimensions.x;

A.4. FaceManager.cs 73

scaling.y = vrTDimensions.y / kinectTDimensions.y;
scaling.z = (scaling.x + scaling.y) / 2f;
Debug.Log("Kinect scaling done");

}
}

A.4 FaceManager.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Windows.Kinect;
using Microsoft.Kinect.Face;
using System.Linq;

public static partial class EnumExtend
{

public static int Int(this HighDetailFacePoints i)
{

return (int)i;
}

}

public class FaceManager : MonoBehaviour
{

private KinectSensor kinectSensor;
private int bodyCount;
private Body[] bodies;
private BodySourceManager bodySourceManager;
private FaceFrameSource[] faceFrameSources;
private FaceFrameReader[] faceFrameReaders;
private BodyFrameSource _bodySource = null;
private BodyFrameReader _bodyReader = null;
private HighDefinitionFaceFrameSource _hdFaceFrameSources = null;
private HighDefinitionFaceFrameReader _hdFaceFrameReaders = null;
public BodySourceManager bodyManager;
private FaceAlignment _faceAlignment = null;
private FaceModel _faceModel = null;
private Quaternion faceRotation;
private Vector3 leftEyeMidTop;
private Vector3 leftEyeMidBottom;
private Vector3 rightEyeMidTop;
private Vector3 rightEyeMidBottom;
private Vector3 leftCheekCenter;

74 Appendix A. Scripts

private Vector3 rightCheekCenter;
private Vector3 leftCheekBone;
private Vector3 rightCheekBone;
private Vector3[] facePointsPosition = new Vector3[5];

void Start()
{

// one sensor is currently supported
kinectSensor = KinectSensor.GetDefault();

// set the maximum number of bodies that would be tracked by Kinect
bodyCount = kinectSensor.BodyFrameSource.BodyCount;

// allocate storage to store body objects
bodies = new Body[bodyCount];

// get bodies either from BodySourceManager object get them from a
BodyReader

bodySourceManager = bodyManager.GetComponent<BodySourceManager>();

// specify the required face frame results
FaceFrameFeatures faceFrameFeatures =

FaceFrameFeatures.BoundingBoxInColorSpace
| FaceFrameFeatures.PointsInColorSpace
| FaceFrameFeatures.BoundingBoxInInfraredSpace
| FaceFrameFeatures.PointsInInfraredSpace
| FaceFrameFeatures.RotationOrientation
| FaceFrameFeatures.FaceEngagement
| FaceFrameFeatures.Glasses
| FaceFrameFeatures.Happy
| FaceFrameFeatures.LeftEyeClosed
| FaceFrameFeatures.RightEyeClosed
| FaceFrameFeatures.LookingAway
| FaceFrameFeatures.MouthMoved
| FaceFrameFeatures.MouthOpen;

// create a face frame source + reader to track each face in the FOV
faceFrameSources = new FaceFrameSource[bodyCount];
faceFrameReaders = new FaceFrameReader[bodyCount];
for (int i = 0; i < bodyCount; i++)
{

// create the face frame source with the required face frame
features and an initial tracking Id of 0

faceFrameSources[i] = FaceFrameSource.Create(kinectSensor, 0,
faceFrameFeatures);

// open the corresponding reader

A.4. FaceManager.cs 75

faceFrameReaders[i] = faceFrameSources[i].OpenReader();
}

_bodySource = kinectSensor.BodyFrameSource;
_bodyReader = _bodySource.OpenReader();

_bodyReader.FrameArrived += BodyReader_FrameArrived;

_hdFaceFrameSources =
HighDefinitionFaceFrameSource.Create(kinectSensor);

_hdFaceFrameReaders = _hdFaceFrameSources.OpenReader();
_hdFaceFrameReaders.FrameArrived += FaceReader_FrameArrived;

_faceModel = FaceModel.Create();
_faceAlignment = FaceAlignment.Create();

}

void Update()
{

bodies = bodySourceManager.GetData();

if (bodies == null)
{

return;
}

// iterate through each body and update face source
for (int i = 0; i < bodyCount; i++)
{

// check if a valid face is tracked in this face source
if (faceFrameSources[i].IsTrackingIdValid)
{

using(FaceFrame frame = faceFrameReaders[i].AcquireLatestFrame())
{

if(frame != null)
{

if (frame.TrackingId == 0)
{

continue;
}

// do something with the result
var result = frame.FaceFrameResult;

var faceRotationVector4 = result.FaceRotationQuaternion;
faceRotation.Set(faceRotationVector4.X,

faceRotationVector4.Y, faceRotationVector4.Z,

76 Appendix A. Scripts

faceRotationVector4.W);
}

}
}
else
{

if (bodies[i] == null)
return;

// check if the corresponding body is tracked
if (bodies[i].IsTracked)
{

// update the face frame source to track this body
faceFrameSources[i].TrackingId = bodies[i].TrackingId;

}
}

}

RetriveFacePoints();
}

public Quaternion GetFaceRotation()
{

return faceRotation;
}

private void BodyReader_FrameArrived(object sender,
BodyFrameArrivedEventArgs e)

{
using (var frame = e.FrameReference.AcquireFrame())
{

if (frame != null)
{

Body[] bodies = new Body[frame.BodyCount];
frame.GetAndRefreshBodyData(bodies);

Body body = bodies.Where(b => b.IsTracked).FirstOrDefault();

if (!_hdFaceFrameSources.IsTrackingIdValid)
{

if (body != null)
{

_hdFaceFrameSources.TrackingId = body.TrackingId;
}

}
}

}

A.4. FaceManager.cs 77

}

private void FaceReader_FrameArrived(object sender,
HighDefinitionFaceFrameArrivedEventArgs e)

{
using (var frame = e.FrameReference.AcquireFrame())
{

if (frame != null && frame.IsFaceTracked)
{

frame.GetAndRefreshFaceAlignmentResult(_faceAlignment);
}

}
}

private void RetriveFacePoints()
{

if (_faceModel == null) return;

var vertices =
_faceModel.CalculateVerticesForAlignment(_faceAlignment);

if (vertices.Count > 0)
{
for (int index = 0; index < vertices.Count; index++)
{

// Get face points positions

if (index == HighDetailFacePoints.NoseTip.Int())
facePointsPosition[0] = GetVerticePosition(vertices[index]);

if (index == HighDetailFacePoints.LefteyeMidtop.Int())
leftEyeMidTop = GetVerticePosition(vertices[index]);

if (index == HighDetailFacePoints.LefteyeMidbottom.Int())
leftEyeMidBottom = GetVerticePosition(vertices[index]);

facePointsPosition[1] = Vector3.Lerp(leftEyeMidTop,
leftEyeMidBottom, 0.5f);

if (index == HighDetailFacePoints.RighteyeMidtop.Int())
rightEyeMidTop = GetVerticePosition(vertices[index]);

if (index == HighDetailFacePoints.RighteyeMidbottom.Int())
rightEyeMidBottom = GetVerticePosition(vertices[index]);

facePointsPosition[2] = Vector3.Lerp(rightEyeMidTop,
rightEyeMidBottom, 0.5f);

78 Appendix A. Scripts

if(index == HighDetailFacePoints.LeftcheekCenter.Int())
leftCheekCenter = GetVerticePosition(vertices[index]);

if(index == HighDetailFacePoints.Leftcheekbone.Int())
leftCheekBone = GetVerticePosition(vertices[index]);

Vector3 leftCheek = Vector3.Lerp(leftCheekCenter, leftCheekBone,
0.5f);

Vector3 noseLeftCheek = leftCheek - facePointsPosition[0];
facePointsPosition[3] = leftCheek + noseLeftCheek;

if(index == HighDetailFacePoints.RightcheekCenter.Int())
rightCheekCenter = GetVerticePosition(vertices[index]);

if(index == HighDetailFacePoints.Rightcheekbone.Int())
rightCheekBone = GetVerticePosition(vertices[index]);

Vector3 rightCheek = Vector3.Lerp(rightCheekCenter,
rightCheekBone, 0.5f);

Vector3 noseRightCheek = rightCheek - facePointsPosition[0];
facePointsPosition[4] = rightCheek + noseRightCheek;

}
}

}

private Vector3 GetVerticePosition(Windows.Kinect.CameraSpacePoint
vertice)

{
return new Vector3(vertice.X, vertice.Y, (vertice.Z * -1f) + 2f);

}

public Vector3 GetFacePointsPosition(int index)
{

return facePointsPosition[index];
}

}

Appendix B

Questionnaire

Figure B.1: Questionnaire part1:General Information

79

80 Appendix B. Questionnaire

81

Figure B.2: Questionnaire part2:Kinect Implementation

82 Appendix B. Questionnaire

83

Figure B.3: Questionnaire part3:BlazePose implementation

84 Appendix B. Questionnaire

Figure B.4: Questionnaire part4: Kinect-BlazePose comparison

	Front page
	English title page
	Contents
	1 Introduction
	1.1 State of the art applications

	2 Background and literature review
	2.1 Virtual Reality and Virtual Environment
	2.2 Embodied Interaction in Virtual environments
	2.3 Computer Vision

	3 Design choices
	3.1 Choice of tools for the project
	3.2 Research on HMDs
	3.3 Research on full body tracking tools for VR applications
	3.3.1 Computer vision
	3.3.2 AprilTags
	3.3.3 Kinect
	3.3.4 MocapForAll
	3.3.5 Wearable active trackers
	3.3.6 Motion capture rig

	3.4 Full body rigging in Unity

	4 Implementation
	4.1 Tools
	4.1.1 Unity
	4.1.2 Oculus Quest 2
	4.1.3 BlazePose
	4.1.4 Microsoft Kinect
	4.1.5 Avatar
	4.1.6 Skybox

	4.2 Scene Composition
	4.3 Pose estimation tools implementation
	4.4 Combining HMD tracking with pose estimation

	5 Evaluation
	5.1 Participants
	5.2 Testing procedure
	5.2.1 Measurements

	6 Results
	6.1 Quantitative Data
	6.2 Qualitative Data
	6.2.1 Oral and Written feedback
	6.2.2 Observed Actions

	7 Discussion
	7.1 Methodology
	7.2 User Feedback

	8 Conclusion
	8.1 Future work

	Bibliography
	A Scripts
	A.1 VNectModel.cs
	A.2 PoseVisualizer3D.cs
	A.3 BodySourceView.cs
	A.4 FaceManager.cs

	B Questionnaire

