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1 | Introduction

In this master’s thesis, we study causal inference with a view towards longitudinal data anal-
ysis. Causal inference is the process of determining whether a treatment has an effect on an
outcome of interest. If this is the case, we refer to such an effect as a causal effect, that is, the
treatment has a causal effect on the outcome. The focus of this master’s thesis is to study the
theory of causal inference and various methods used to estimate causal effects in practice. In
particular, for the practical aspect of this master’s thesis, we examine a subset of a data set called
the Framingham Heart Study. The Framingham Heart Study is a longitudinal study which exam-
ines cardiovascular diseases among a population in Framingham (Massachusetts, USA). When
examining this study, we analyse whether smoking has a causal effect on stroke within 24 years
in both a non longitudinal and a longitudinal setting. In order to estimate a possible causal effect,
we first present the theory of causal inference for both non longitudinal and longitudinal studies
and outline various methods which can be used to estimate causal effects in practice.

Hence, we first outline fundamental theory of causal inference in Chapter 2 for a non longitudinal
study. In this chapter, we define a causal effect for an individual and for a population more
precisely and clarify the difference between causation and association. Notice that we restrict
this thesis to binary treatments and outcomes. Also we present study designs for which we can
identify possible causal effects. Moreover, we present the identifiability conditions which are
conditions required in order to identify causal effects in observational studies. Furthermore, we
use directed acyclic graphs to illustrate possible biases which we need to adjust for in order to
identify possible causal effects. In addition, we present methods which can be used to adjust for
such biases.

In Chapter 3, we present a method for estimating causal effects in a non longitudinal study.
First, we present structural models which we use to define the target parameter, that is, the
measure for the causal effect of interest. Having defined the parameter of interest, we present
the method consider in this chapter namely targeted maximum likelihood estimation (TMLE).
This method consists of two steps where we in the first step obtain an initial estimator of the
parameter of interest by using the super learner method. Then in step two, we target the initial
estimator towards the parameter of interest in order to obtain an optimal bias-variance trade off
for the parameter of interest. However, it has been observed in practice that when using too data
adaptive methods in the super learner method, the TMLE method suffers which motivates the
use of a more robust method.

Thus, we in Chapter 4, consider an extension of the TMLE method, that is, cross validated
targeted maximum likelihood estimation (CV-TMLE). This method adds an additional layer of
cross validation to the TMLE method in order to obtain a more robust method. Hence, the CV-
TMLE method can also be used to estimate causal effects in practice. Having presented the
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method, we then show that the estimator obtained from the CV-TMLE method is asymptotically
linear. This yields a method which is asymptotically unbiased and also provides a method of
obtaining confidence intervals for the estimator. In order to show the asymptotic linearity of this
estimator, we first present influence functions.

In Chapter 5, we then extend the theory of causal inference to longitudinal studies. Specifically,
for longitudinal studies, we consider time-varying treatments and hence, we extend the definition
of a causal effect in order to incorporate the changes in the treatment over time. Moreover, we
also present study designs where causal effects of time-varying treatments on an outcome can be
identified. Furthermore, we extend the identifiability conditions to longitudinal settings in order
to identify causal effect in observational longitudinal studies. Having extended the theory of
causal inference to longitudinal studies, we then extend the TMLE method to longitudinal studies
which is called the longitudinal targeted maximum likelihood estimation (L-TMLE) method.

In Chapter 6, we estimate causal effects in practice by considering the beforehand mentioned
Framingham Heart Study. For the non longitudinal setting, we apply the TMLE method as
well as the CV-TMLE method in order to analyse the following question: "Does smoking at
the time of the first examination have a causal effect on stroke within a period of 24 years".
Hence, in this case we consider smoking at the time of the first examination as the treatment
and stroke within 24 years as the outcome. For the longitudinal setting, that is, for a time-
varying treatment, we analyse the following question: "Does smoking at the time of each of
the examinations have a causal effect on stroke within a period of 24 years compared to not
smoking at any of the examinations". Thus, the treatment in this setting is smoking at the time
of each of the examinations of the Framingham Heart Study. Moreover, based on the asymptotic
linearity, we also provide 95% confidence intervals for the estimators obtained from the TMLE
and the CV-TMLE methods for the non longitudinal setting and for the L-TMLE method for the
longitudinal setting.
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2 | Causal Effects

In this chapter, we present the fundamental theory of causal inference. Specifically, we define
a causal effect and an average causal effect as well as study designs where such average causal
effects can be identified. Moreover, we present the conditions required to identify these effects
in observational studies. Furthermore, we use graph theory to illustrate the relations between the
variables and later present methods to identify an average causal effect.

Let Y and A be random variables denoting an outcome and a treatment, respectively. In this
master’s thesis, we restrict Y and A to binary variables which attain values zero and one since
this aligns with the data set examined in Chapter 6. Furthermore, in this chapter, we assume that
there is no random variation. Moreover, in this master’s thesis, we assume that all variables are
perfectly measured, that is, there is no measurement bias. Measurement bias is out of scope for
this master’s thesis and we refer to [Miguel A. Hernán, 2020, Chapter 9].

2.1 Causation and Association
This section is based on [Miguel A. Hernán, 2020, pp. 3–5, 11–12]. In this section, the aim is
to determine when a treatment has a causal effect on an outcome. Moreover, we in this section
clarify the distinction between causation and association. In order to do so, we first define the
potential outcomes for an individual.

Definition 2.1.1. Potential Outcomes
Consider the outcome Yi for individual i as a function of treatment A. Then the potential out-
comes for individual i are defined as Yipaq for all a which are realisations of A. ⇣

Notice that Yi is a deterministic function. Hence, the potential outcomes consist of the outcomes
under every value of treatment for an individual. Having defined the potential outcomes, we now
define a causal effect for an individual.

Definition 2.1.2. Causal Effect for an Individual
The treatment A has a non-zero causal effect on the outcome for individual i if Yip1q ‰ Yip0q.

⇣

Thus, if for an individual, the potential outcomes differ for different values of treatment then the
treatment has a causal effect on the outcome for this individual. However, the fundamental issue
of causal inference is that, for each individual, we only observe one of the potential outcomes
since every individual only receives one treatment. Hence, we are unable to determine whether
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or not the potential outcomes differ and thus identify causal effects for an individual. Therefore,
we instead focus on the average causal effect in a population.

Definition 2.1.3. Average Causal Effect in a Population
The treatment A has a non-zero average causal effect on the outcome Y if ErY p1qs ‰ ErY p0qs.

⇣

When considering causal effects, it is important to distinguish between causation and association.
We say that A and Y are associated if ErY | A “ 1s ‰ ErY | A “ 0s. Thus, association is
determined based on the actual treatment of the individuals in the population, that is, we have
two disjoint populations based on the values of A while causation is determined based on the
same population under the two different values of A. Hence, in general, association does not
imply causation, that is,

ErY p1qs ´ ErY p0qs ‰ ErY | A “ 1s ´ ErY | A “ 0s. (2.1)

In the following, we present an example where association is not causation.

Example 2.1.4. Association is not Causation
Consider the case where all potential outcomes of the individuals in a population are known.
These potential outcomes are shown in Table 2.1 which also includes two possible assignments
of the treatment denoted as A and A1.

Table 2.1: Potential outcomes for each individual in the population and two possible assignments of treatment.

Individual Y(0) Y(1) A A’
1 0 1 1 0
2 1 0 1 0
3 0 0 1 1
4 0 1 1 1
5 1 0 1 0
6 1 1 0 1
7 0 1 0 0
8 1 1 0 1
9 1 0 0 0
10 0 0 0 1

Hence, since the potential outcomes are known, we can calculate the average causal effect as

ErY p1qs ´ ErY p0qs “ 0.5 ´ 0.5 “ 0. (2.2)

Thus, the average causal effect is zero which implies that there is no average causal effect.
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Now assume that given a treatment, the actual outcome coincides with the corresponding poten-
tial outcome. Hence, if we assume that the treatment assignment of the individuals is A of Table
2.1, then we can compute the association as

ErY | A “ 1s ´ ErY | A “ 0s “ 2

5
´ 3

5
‰ 0. (2.3)

Therefore, there is an association between treatment and outcome while there is no causation.
Hence, in this case, association is not causation. ⇣

In the above example, we illustrated a case for which association is not causation. However, if
we had assigned treatment A1 instead of treatment A in Table 2.1, causation would have been
association since

ErY | A1 “ 1s ´ ErY | A1 “ 0s “ 3

5
´ 3

5
“ 0. (2.4)

Hence, the assignment of the treatment affects the relation between association and causation.
Therefore, we want to determine for which cases association is causation since the association
can be determined based on the observed treatment. Thus, we in the following section present
two study designs where association is causation.

2.2 (Conditionally) Randomised Experiments
This section is based on [Miguel A. Hernán, 2020, pp. 4, 13–18, 31–35]. In a randomised exper-
iment, that is, an experiment where the treatment is assigned randomly, association is causation
by design which we clarify in the following. If treatment is randomised then, for any realisation
a of A, PpY “ 1 | A “ aq would be independent of which group receives which value of the
treatment. Thus, the groups are exchangeable which implies that

PpY p1q “ 1 | A “ 1q “ PpY p1q “ 1 | A “ 0q “ PpY p1q “ 1q. (2.5)

Analogously, we can derive PpY p0q “ 1q. Therefore, exchangeability implies that Y paq KK A
for all a which are realisations of A. Hence, in randomised experiments, association is causation
since for binary A and Y , we get

ErY p1qs ´ ErY p0qs “ PpY p1q “ 1q ´ PpY p0q “ 1q
“ PpY p1q “ 1 | A “ 1q ´ PpY p0q | A “ 0q
“ ErY p1q “ 1 | A “ 1s ´ ErY p0q | A “ 0s
“ ErY | A “ 1s ´ ErY | A “ 0s,

(2.6)

where exchangeability is used in the second equality and the last equality holds under the as-
sumption of consistency. Consistency is the case where for each individual

Yipaq “ YipAq “ Yi if A “ a. (2.7)
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That is, the consistency assumption ensures that the actual outcome Y coincides with the po-
tential outcome Y pAq under the corresponding treatment. Hence, under consistency Y “ Y pAq.
Notice that, consistency is not always fulfilled. Consistency depends on a precise definition of the
treatment levels in order to obtain well-defined potential outcomes. This is the case since, if the
treatment levels are not specified precisely, then we can have multiple versions of the treatment.
We can illustrate this by considering a study where we examine the causal effect of the treatment
heart transplant on the outcome death within five years. Then if the treatment heart transplant
is not specified in further details, then the heart transplants given in the study may differ based
on various pre-operative procedures, surgical technique etc. That is, we have multiple versions
of the treatment heart transplant. If the multiple versions of the treatment have different causal
effects on the outcome, then the potential outcomes are not well-defined since for each individual
Yipaq can attain multiple values based on the specific version of the treatment. In the particular
example, consider the case where two different surgical techniques were used and one of them
had a causal effect on the outcome and the other did not. Then for an individual in this study, its
potential outcome under the treatment value heart transplant is not well-defined since it depends
on the particular surgical technique. Hence, a precise specification of the causal question, that
is, the formulated question of whether treatment has an average causal effect on the outcome or
not, is needed in order to ensure consistency.

Moreover, notice that, do to the fundamental issue of causal inference then, in practice, both
potential outcomes of an individual are not available. Therefore, we are generally unable to
determine if exchangeability holds for a specific study. Furthermore, in some studies, it might
be impossible or unethical to randomise treatment and thus we are interested in how to identify
the causal effect in such cases. If the treatment is not randomised, then there exist factors which
affect the assignment of treatment. An example could be when considering the causal effect of
heart transplant on death within five years, there can be factors such as the individuals condition
which affect whether the individual receives a heart transplant or not. In such a case, if we were
to assign treatment with a relatively large probability to those in critical condition and with a
lower probability to those not in critical condition, then the experiment would be a conditionally
randomised experiment. This is the case since we used multiple randomisation probabilities
conditional on the individuals condition.

Conditionally randomised experiments, generally, do not produce exchangeability by design.
However, conditionally randomised experiments can be viewed as a combination of multiple
randomised experiments. For example, in the previous example of heart transplant where the
probability of treatment was dependent on the condition of the individual, then we could divide
the population into subsets based on whether or not the individual was in critical condition.
Thus, in each of these subsets, we assign the treatment based on one randomisation probability
and hence the experiment within a subset can be seen as a randomised experiment. Therefore, if
we denote the individuals condition by W then, for all w which are realisations of W and for all
a which are realisations of A, it holds that

PpY paq “ 1 | A “ 1,W “ wq “ PpY paq “ 1 | A “ 0,W “ wq. (2.8)

6
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Hence, it holds that Y paq KK A | W “ w. Thus, conditionally randomised experiments produce
conditional exchangeability.

Moreover, assuming that consistency holds, then conditionally randomised experiments are also
cases of study designs where association is causation since

ErY p1qs ´ ErY p0qs
“ E

“
ErY p1q | W “ ws

‰
´ E

“
ErY p0q | W “ ws

‰

“ E
“
PpY p1q “ 1 | W “ wq

‰
´ E

“
PpY p0q “ 1 | W “ wq

‰

“ E
“
PpY p1q “ 1 | A “ 1,W “ wq

‰
´ E

“
PpY p0q “ 1 | A “ 0,W “ wq

‰

“ E
“
ErY p1q | A “ 1,W “ ws

‰
´ E

“
ErY p0q | A “ 0,W “ ws

‰

“ E
“
ErY | A “ 1,W “ ws

‰
´ E

“
ErY | A “ 0,W “ ws

‰

(2.9)

where we apply the Law of Total Expectation in the first equality, conditional exchangeability in
the third equality and consistency in the last equality.

In the following section, we present which conditions are required in order to identify average
causal effects in observational studies.

2.3 Identifying Average Causal Effects in Observational Stud-
ies

This section is based on [Miguel A. Hernán, 2020, pp. 25–31] and [Neal, 2020, pp. 11–13]. In
practice, most studies are not randomised experiments or conditionally randomised experiments
but observational studies. Thus, the treatment is not necessarily randomly assigned in observa-
tional studies and hence we need a method for handling such studies for causal inference. In
these cases, we analyse an observational study as if the treatment was randomised conditional
on a set of covariates W . Notice that the result of the analysis relies on this assumption to be
true and thus causal inference from observational studies is less convincing than causal inference
from (conditionally) randomised experiments. Hence, in order to analyse an observational study,
we consider the study as a conditionally randomised experiment. In order to do so, we require
three conditions to hold which we refer to as the identifiability conditions. These identifiability
conditions are:

(i) consistency see Equation (2.7),

(ii) conditional exchangeability see Equation (2.8),

(iii) positivity.

7
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Positivity is the condition that for each realisation w of W with PpW “ wq ° 0 then

PpA “ 1 | W “ wq P p0, 1q. (2.10)

The identifiability conditions ensure that we can identify average causal effects from an observa-
tional study since

ErY p1q ´ Y p0qs “ ErY p1qs ´ ErY p0qs
“ E

“
ErY p1q | W “ ws ´ ErY p0q | W “ ws

‰

“ E
“
ErY p1q | A “ 1,W “ ws ´ ErY p0q | A “ 0,W “ ws

‰

“ E
“
ErY | A “ 1,W “ ws ´ ErY | A “ 0,W “ ws

‰
(2.11)

where the third equality follows from conditional exchangeability and the fourth equality fol-
lows from consistency and positivity. Specifically, when assuming that W is discrete and finite,
positivity ensures that the expression is well-defined since

E
“
ErY | A “ 1,W “ ws ´ ErY | A “ 0,W “ ws

‰

“
ÿ

w

PpW “ wq
`
PpY “ 1 | A “ 1,W “ wq ´ PpY “ 1 | A “ 0,W “ wq

˘

“
ÿ

w

PpW “ wq
ˆ

PpY “ 1, A “ 1,W “ wq
PpA “ 1 | W “ wqPpW “ wq ´ PpY “ 1, A “ 0,W “ wq

PpA “ 0 | W “ wqPpW “ wq

˙ (2.12)

where we applied the definition of conditional probability in the last equality. Thus, positivity
guarantees that the denominator of each of the terms in the last equality in Equation (2.12) is
non-zero.

However, in practice, we cannot test whether conditional exchangeability holds. This is due to
the fact that there might be additional unmeasured covariates which we need to condition on in
order for the treatment and the potential outcomes to be conditionally independent. Thus, we
cannot verify that the identifiability conditions hold in observational studies.

In order to be more certain that conditional exchangeability holds, then, in general, the more co-
variates we condition on, the more likely we are to obtain conditional exchangeability. However,
the more covariates we condition on, the less likely it is that positivity holds. This is the case
since positivity requires that, conditioned on each covariate value or a combination of covariate
values, the probability of each treatment value occurring needs to be positive. However, dividing
the population into smaller and smaller subsets increases the probability of receiving one subset
where the probability of receiving one of the treatment values is zero. Hence, this is due to the
curse of dimensionality. Therefore, there is a trade-off between the fulfilment of the identifiabil-
ity conditions conditional exchangeability and positivity which further emphasizes the issue of
fulfilling the identifiability conditions in observational studies.

8
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In the next section, we consider directed acyclic graphs for visualising the relations between the
variables as well as determining whether conditional independence holds.

2.4 Causal Directed Acyclic Graphs
This section is based on [Højsgaard et al., 2012, pp. 7–8, 13], [Miguel A. Hernán, 2020, pp.
70, 83–86, 93–94, 98–101] and [Neal, 2020, pp. 37–39]. In this section, we present a method
to determine whether (conditional) exchangeability holds using graphs. Moreover, we consider
various biases which arise in the cases where conditional exchangeability is not fulfilled.

Consider a graph G “ pV,Eq where V denotes the set of vertices and E denotes the set of edges.
Here the vertices represent both the observed and unobserved variables while the edges represent
the relations between the variables. A directed acyclic graph (DAG) is a graph G “ pV,Eq
where the edges are directed and there are no directed cycles within the graph. Specifically, we
focus on causal DAGs. In this case, the directed edges represent causal effects in the direction of
the edge, that is, for variables V1, V2 P V where V1 has a causal effect on V2 then there is an edge
from V1 to V2. Notice that, we in this case refer to V1 as a cause of V2 and we refer to V2 as an
effect of V1. Furthermore, we note that the acyclic property ensures that a variable cannot cause
itself.

An advantage of applying DAGs is that marginal as well as conditional independence can be
inferred based on the DAGs. The sets B,C Ä V are marginally independent if they are sepa-
rated in the graph, that is, there is no path between the sets. In order to determine conditional
independence, we first define the ancestral graph of a set B Ä V which is the subgraph of G
induced by the union of B and its ancestors. Furthermore, we define moralisation which is to
add an undirected edge between each pair of parents and replace all directed edges in the DAG
with undirected edges. Thus, this forms an undirected graph. We can now define d-separation.

Definition 2.4.1. d-separation
Let B,C,D Ä V . Then B and C are d-separated by D if and only if B and C are separated by
D in the moralised ancestral graph of B

î
C

î
D. ⇣

The sets B,C Ä V are conditionally independent given D Ä V if B and C are d-separated by
D since d-separation yields conditional independence by the directed global Markov property
[Lauritzen, 1996, pp. 32–47].

In the following, we present an example of applying d-separation for determining conditional
independence.

9
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Example 2.4.2. d-separation and Conditional Independence
Consider the causal DAG in Figure 2.1.

A

W

Y

Z

Figure 2.1: Causal DAG where A is the treatment, Y is the outcome, W is a common effect of A and Y and Z is a
descendent of the common effect W .

The aim is to determine whether A KK Y | W “ w based on the causal DAG in Figure 2.1. This
is done by applying d-separation from Definition 2.4.1. The procedure is shown in the following
figures.

A

W

Y

Figure 2.2: The ancestral graph of
A

î
Y

î
W .

A

W

Y

Figure 2.3: Moralised ancestral
graph of A

î
Y

î
W .

A Y

Figure 2.4: Removal of W and its
edges.

First, we determine the ancestral graph of A
î
Y

î
W which is shown in Figure 2.2. Then we

moralise this ancestral graph of A
î
Y

î
W in Figure 2.3. At last we remove W and its cor-

responding edges in Figure 2.4 in order to determine if A and Y are separated in the resulting
graph. Since A and Y are not separated in Figure 2.4, then A and Y are not d-separated by W
and hence they are not conditionally independent given W . Therefore, in general, conditioning
on a common effect of two variables V1, V2 P V does not yield conditional independence of V1

and V2 given the common effect. Furthermore, in general, conditioning on any descendent of
a common effect of the treatment and the outcome such as Z in Figure 2.1 also does not yield
conditional independence. ⇣

We want to use causal DAGs to determine whether exchangeability or conditional exchange-
ability holds. However, we note that the causal DAGs do not include the potential outcomes
explicitly. Thus, in order to determine (conditional) exchangeability, we introduce a single-
world intervention graph (SWIG) which is a causal DAG which include the potential outcomes
explicitly. Specifically, SWIGs consider the case where all individuals are assigned to a partic-
ular treatment value, that is, we intervene on the treatment. We describe interventions in further

10
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details in Section 3.1. In the following, we present an example of applying a SWIG in order to
determine whether conditional exhangeability holds in a particular case.

Example 2.4.3. SWIGs and Conditional Exchangeability
Consider the causal DAG and corresponding SWIG in Figures 2.5 and 2.6.

A

W

Y

Figure 2.5: Causal DAG where W is a common
cause of the treatment A and the out-
come Y .

A

W

a Y paq

Figure 2.6: The SWIG corresponding to the causal
DAG in Figure 2.5 under treatment as-
signment A “ a.

On Figure 2.6, a denotes the assignment of all individuals to treatment A “ a and W is a common
cause of the treatment A and the potential outcome Y paq. Using d-separation, we can conclude
that, Y paq KK A | W “ w, that is, conditional exhangeability holds. Hence, conditioning on
the common cause of the treatment and the potential outcome blocks the association caused
by this non-causal path between the treatment and the potential outcome. Thus, if we assume
that positivity and consistency hold, then since conditional exchangeability holds, association is
causation and we can identify the average causal effect. ⇣

Having illustrated how conditional exchangeability can be determined based on a SWIG, we
in the remainder of this master’s thesis apply causal DAGs where the relation to the potential
outcomes is as illustrated in Example 2.4.3.

We note that when (conditional) exchangeability does not hold, then association is not causation
and we cannot identify the average causal effect. In these cases biases such as selection bias and
confounding are introduced. Selection bias is the case where we condition on a common effect or
a descendant of a common effect as in Example 2.4.2. As we saw in the example, conditioning
on a common effect W or a descendant of the common effect Z does not yield conditional
independence of A and Y and therefore conditional exchangeability is not fulfilled. Moreover,
selection bias can also occur in more general cases. Specifically, selection bias of the treatment
and the outcome can be defined as the bias introduced by conditioning on (a descendent of) a
common effect of two variables. Here one of the variables is either the treatment or associated
with the treatment and the other variable is either the outcome or associated with the outcome.
Associated with for example the treatment in this context refers to the cases:

i) an ancestor of the treatment,

ii) a descendent of an ancestor of the treatment.
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In the figures below, we illustrate examples of more general cases of selection bias of the treat-
ment, A, and the outcome, Y , when conditioning on a variable C.

W

A C

L

U

Y

Figure 2.7: Selection bias of A and Y where C is a
common effect of W which is a cause
of A and L which is an effect of a cause
U of Y .

L

A

C

U

Y

Figure 2.8: Selection bias of A and Y where C is
an effect of L which is a common effect
of A and U which is a cause of Y .

A

C

L

U

Y

Figure 2.9: Selection bias of A and Y where C is a
common effect of A and L which is an
effect of U which is a cause of Y .

A

W

L

C

U

Y

Figure 2.10: Selection bias of A and Y where C is
an effect of the common effect L of W
which is a cause of A and U which is
a cause of the Y .

Figures 2.7–2.10 illustrate cases of selection bias of A and Y when conditioning on C. Ap-
plying d-separation, we conclude that A and Y are not d-separated by C in any of the Figures
2.7–2.10 and thus A and Y are not conditionally independent given C. Therefore, conditional
exchangeability does not hold. Hence, when conditioning on C, a selection bias is introduced
which implies that association is not causation.

Confounding is the bias caused by a common cause of two variables V1, V2 P V . When con-
founding of the treatment and the outcome is present, exchangeability does not hold since the
treatment is not randomised. However, by conditioning on the common cause, we get conditional
exchangeability as shown in Example 2.4.3.

Since we require conditional exchangeability to be fulfilled in observational studies, we are inter-
ested in determining whether there exists a set of covariates W for which conditional exchange-
ability holds. That is, we want to block the paths of association corresponding to the confounding
variables. These path are called back-door paths. A back-door path is a non-causal path between
the treatment and the outcome where treatment is an effect of a variable on this path. If all back-
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door paths between A and Y are blocked by conditioning on W where W does not contain any
descendants of A, then we say that W satisfies the back-door criterion. In such a case, we refer
to W as a sufficient set of confounding adjustments since it is sufficient to adjust for the variables
in W in order to block all confounding. Hence, when considering an observational study, the
aim is to determine a sufficient set of confounding adjustments in order to obtain conditional
exchangeability such that the average causal effect can be identified. In this case, the average
causal effect can be identified using the back-door adjustment.

Proposition 2.4.4. Back-door Adjustment
Let W be a sufficient set of confounding adjustment. Then for all a which are realisations of A
and for all y which are realisations of Y , it holds that

PpY paq “ yq “
ÿ

w

PpY “ y | A “ a,W “ wqPpW “ wq. (2.13)

⇣

The proof of this proposition is omitted here since the back-door adjustment coincides with the
standardisation method derived in Section 2.5.

When we have unmeasured confounding, we cannot use the methods presented in Section 2.5 to
adjust for confounding. In this case, we rely on other methods depending on the causal DAG.
Consider for example the causal DAG in the following figure where M denotes measured vari-
ables and U denotes unmeasured variables.

A M Y

U

Figure 2.11: Unmeasured confounding in a causal DAG.

In Figure 2.11, we have unmeasured confounding of the treatment and the outcome while also
having measured effects of treatment which are causes of the outcome. In such a case, we can
use the front-door criterion in order to identify the average causal effect.

Proposition 2.4.5. Front-Door Criterion
Consider the causal DAG in Figure 2.11 and assume that positivity and consistency hold for M
and Y . Then, for all a which are realisations of A, the front-door criterion yields

PpY paq “ 1q “
ÿ

m

PpM “ m | A “ aq
ÿ

a1
PpY “ 1 | M “ m,A “ a1qPpA “ a1q. (2.14)

⇣

13
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Proof. By the Law of Total Probability, it holds that

PpY paq “ 1q “
ÿ

m

PpMpaq “ mqPpY paq “ 1 | Mpaq “ mq. (2.15)

Since there is no confounding of A and M then A KK Mpaq. Thus, we can write the first factor
on the right hand side in Equation (2.15) as

PpMpaq “ mq “ PpMpaq “ m | A “ aq “ PpM “ m | A “ aq (2.16)

where the last equality follows from consistency of M .

Now, Y paq “ Y pmq for Mpaq “ m since A only affects Y through M . Thus, the second factor
on the right hand side of Equation (2.15) can be written as

PpY paq “ 1 | Mpaq “ mq “ PpY pmq “ 1 | Mpaq “ mq
“ PpY pmq “ 1q (2.17)

where the last equality follows from Y pmq KK Mpaq which follows from considering the SWIG
corresponding to the causal DAG in Figure 2.11 under assignments A “ a and M “ m. Fur-
thermore, we note that there exists a back-door path between M and Y where A is a sufficient
set for confounding adjustments. Hence, Y pmq KK M | A. Thus, we can apply the Back-door
Adjustment 2.4.4 since A is a sufficient set for confounding adjustments which yields

PpY pmq “ 1q “
ÿ

a1
PpY “ 1 | M “ m,A “ a1qPpA “ a1q. (2.18)

Thus, combining Equations (2.16)–(2.18) with Equation (2.15) yields the desired result. ⌅

In the following section, we present methods which can be used to adjust for measured con-
founding and identify the average causal effect.

2.5 The Standardisation and Inverse Probability Weighting
Methods

This section is based on [Pearl, 2010, pp. 3–4, 18–19], [Miguel A. Hernán, 2020, pp. 19–24]
and [Neal, 2020, pp. 68–70]. In this section, we present two methods for identifying a possible
average causal effect in a conditionally randomised experiment or an observational study where
the identifiability conditions hold.

In order to measure a causal effect of a treatment on an outcome, we first consider the causal risk
difference in stratum W “ w which is given by

PpY p1q “ 1 | W “ wq ´ PpY p0q “ 1 | W “ wq. (2.19)
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Then applying the identifiability conditions yields

PpY p1q “ 1 | W “ wq ´ PpY p0q “ 1 | W “ wq
“ PpY p1q “ 1 | A “ 1,W “ wq ´ PpY p0q “ 1 | A “ 0,W “ wq
“ PpY “ 1 | A “ 1,W “ wq ´ PpY “ 1 | A “ 0,W “ wq

(2.20)

which we call the risk difference in stratum W “ w. Notice that the risk difference in stratum
W “ w does not depend on the potential outcomes.

Now we present the standardisation method which can be used to identity the average causal
effect. By applying the Law of Total Probability and the identifiability conditions, then for all a
which are realisations of A and for all y which are realisations of Y , it holds that

PpY paq “ yq “
ÿ

w

PpY paq “ y | W “ wqPpW “ wq

“
ÿ

w

PpY paq “ y | A “ a,W “ wqPpW “ wq

“
ÿ

w

PpY “ y | A “ a,W “ wqPpW “ wq.

(2.21)

Thus, the average causal effect can be identified as

PpY p1q “ 1q ´ PpY p0q “ 1q
“

ÿ

w

`
PpY “ 1 | A “ 1,W “ wq ´ PpY “ 1 | A “ 0,W “ wq

˘
PpW “ wq. (2.22)

Thus, when using the standardisation method, we can identify the average causal effect as a
weighted average of the risk differences in each stratum W “ w.

Another method for identifying the average causal effect is the inverse probability weighting
(IP-Weighting) method. Expanding on Equation (2.21), we obtain

PpY paq “ yq “
ÿ

w

PpY “ y | A “ a,W “ wqPpW “ wq

“
ÿ

w

PpY “ y, A “ a,W “ wq
PpA “ a,W “ wq

PpA “ a,W “ wq
PpA “ a | W “ wq

“
ÿ

w

PpY “ y, A “ a,W “ wq
PpA “ a | W “ wq

(2.23)

where the second equality follows from the definition of conditional probability. The fractions
PpA “ a | W “ wq´1 are called the inverse probability weights and thereby the name inverse
probability weighting. Thus, we can identify the average causal effect by

PpY p1q “ 1q ´ PpY p0q “ 1q

“
ÿ

w

ˆ
PpY “ 1, A “ 1,W “ wq

PpA “ 1 | W “ wq ´ PpY “ 1, A “ 0,W “ wq
PpA “ 0 | W “ wq

˙
.

(2.24)
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We note that Equation (2.23) shows that the IP-Weighting method and standardisation method
are equivalent methods.

The intuition behind the IP-Weighting method is that we create a pseudo-population by weighting
the original population in order to adjust for confounding. A pseudo-population is a population
twice the size of the original population, where each individual has received both values of
treatment. Thus, we are able to identify a possible average causal effect in the pseudo population.

We note that if conditional exchangeability holds in the original population, then exchangeability
holds in the pseudo-population. We illustrate this by the causal DAGs in Figures 2.12 and 2.13.

A

W

Y

Figure 2.12: Causal DAG for the original population.

A

W

Y

Figure 2.13: Causal DAG for the pseudo-population.

In Figure 2.12, conditional exchangeability holds by Example 2.4.3. If we as mentioned weigh
the original population with the inverse probability weight, then PpA | W q “ PpAq such that A
and W are independent in the pseudo-population, which implies that exchangeability holds, see
Figure 2.13.

By using the standardisation and the IP-Weighting methods, we now show how to identify a
possible average causal effect through two examples where we also clarify how the methods
differ.

Example 2.5.1. The Standardisation Method
Assume that we have observed the data in Table 2.2.

Table 2.2: Covariate W , treatment A and outcome Y values for each individual.

Individual W A Y
1 1 1 1
2 1 1 1
3 1 1 0
4 1 0 1
5 1 0 1
6 1 0 0
7 0 1 1
8 0 0 1
9 0 1 0
10 0 0 0
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We now use the standardisation method to identify a possible average causal effect. First, from
Table 2.2, we determine the probabilities

PpW “ 0q “ 2

5
, (2.25)

PpW “ 1q “ 3

5
(2.26)

and for all a which are realisation of A, we obtain

PpY “ 1 | A “ a,W “ 1q “ 2

3
(2.27)

and

PpY “ 1 | A “ a,W “ 0q “ 1

2
. (2.28)

Thus, we can identify the average causal effect, that is,

PpY p1q “ 1q ´ PpY p0q “ 1q
“

ÿ

w

`
PpY “ 1 | A “ 1,W “ wq ´ PpY “ 1 | A “ 0,W “ wq

˘
PpW “ wq

“
ˆ
2

3
´ 2

3

˙
3

5
`

ˆ
1

2
´ 1

2

˙
2

5

“ 0.

(2.29)

Hence, we can conclude that treatment A has no average causal effect on the outcome Y . ⇣

Example 2.5.2. The IP-weighting Method
Consider again the population in Table 2.2. From this table, for all a which are realisations of A
and w which are realisations of W , we determine the probabilities

PpA “ a | W “ wq “ 1

2
(2.30)

and

PpY “ 1, A “ a,W “ 1q “ 1

5
(2.31)

and

PpY “ 1, A “ a,W “ 0q “ 1

10
. (2.32)
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Hence, we obtain the average causal effect

PpY p1q “ 1q ´ PpY p0q “ 1q

“
ÿ

w

PpY “ 1, A “ 1,W “ wq
PpA “ 1 | W “ wq ´

ÿ

w

PpY “ 1, A “ 0,W “ wq
PpA “ 0 | W “ wq

“ 2

˜
ÿ

w

PpY “ 1, A “ 1,W “ wq ´
ÿ

w

PpY “ 1, A “ 0,W “ wq
¸

“ 2

ˆ
1

5
` 1

10
´ 1

5
´ 1

10

˙

“ 0

(2.33)

where the second equality follows from Equation (2.30). Hence, the treatment A has no average
causal effect on the outcome Y . Moreover, we notice that we obtain the same result as when
using the standardisation method in Example 2.5.1. ⇣
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3 | Targeted Maximum Likelihood Estimation

In this chapter, we present the targeted maximum likelihood estimation (TMLE) method. The
TMLE method consists of two steps which aim to obtain an optimal bias-variance trade-off for
a parameter of interest. Thus, we first present structural causal models in order to define this
parameter of interest. Then we present the two steps of the TMLE method in order to estimate
the average causal effect. The following is based on [van der Laan and Rose, 2011, pp. 7–9,
21–22].

Let O “ pY,A,W q „ P0 be a random vector with true distribution P0. Furthermore, let M
consist of the candidate distributions of O and let W denote a random vector consisting of co-
variate information. In addition, assume that for the random vector O, we have an i.i.d. sample
o1, . . . , on. We want to define a function  : M Ñ Rd where  pP0q is called the target param-
eter. Thus, in Section 3.1, we define this function and in Sections 3.2 and 3.3, we describe how
to obtain an estimator of the target parameter. Notice that, the target parameter is the parameter
of interest.

Statistical models are in practice often misspecified which introduces a bias. In this case, the tar-
get parameter is not defined as a parameter of any of the possible probability distributions since it
is defined within the parametric statistical models assuming that the model is correctly specified.
Hence, in the first step of the TMLE method, the initial estimator obtained in this step is esti-
mated using only semi-parametric and non-parametric models. Moreover, notice that the Food
and Drug Administration (FDA) does not allow parametric statistical models for causality as-
sessments. Specifically, it is required that the statistical model reflects true knowledge and since
parametric statistical models rely on assumptions of the underlying distribution of the observed
data, the use of such models is troublesome.

In the following section, we describe how to use structural causal models to specify the causal
question and define the target parameter.

3.1 Structural Causal Models
This section is based on [van der Laan and Rose, 2011, Chapter 2], [Pearl, 2009, Section 1.4.1]
and [Neal, 2020, Section 4.5.2]. In this section, we present structural causal models which can
be viewed as statistical models with possible additional non-testable assumptions. We refer to
such a statistical model with these additional assumptions as a model. This model will be used
to specify the causal question and define the target parameter  pP0q. Furthermore, we restrict
this class of models in order to identify the causal parameter by assuming that the identifiability
conditions hold.
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Let pU,Xq be the full data where X “ pX1, . . . , XJq and U “ pUX1 , . . . , UXJ q are random
vectors with entries Xj and UXj for j “ 1, . . . , J which are called the endogenous and exogenous
variables, respectively. An exogenous variable is unobserved and causes Xj , thus the notation
UXj , and is not caused by any other variables. An endogenous variable, Xj , is a function of
its causes, that is, its parents among the endogenous variables, which we denote as papXjq, and
UXj . Thus, we can write Xj as

Xj “ fXjppapXjq, UXjq (3.1)

where fXj is a deterministic function. We call such an equation a structural equation. Having
defined a structural equation, we now define a structural causal model.

Definition 3.1.1. Structural Causal Model
Let pU,Xq be the full data. Then a model is called a structural causal model (SCM) if the
endogenous variables can be expressed as a distinct structural equations. ⇣

We now present an example which illustrates the relation between causal DAGs and SCMs.

Example 3.1.2. Causal DAG and SCM
Consider the SCM for the full data pU,Xq “ pUW , UA, UY ,W,A, Y q with the following struc-
tural equations for the endogenous variables

W “ fW pUW q, (3.2)
A “ fApW,UAq, (3.3)
Y “ fY pA,W,UY q. (3.4)

For this SCM, we can illustrate the relations between the exogenous and endogenous variables
by using a causal DAG. The corresponding causal DAG for this SCM is shown in Figure 3.1.

A

W

UW

Y

UY

UA

Figure 3.1: Causal DAG for the SCM with structural equations given by Equations (3.2)–(3.4).

⇣
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In the following, we assume that the exogenous variables have the joint distribution PU and
that the distribution PU,X of pU,Xq implies the distribution P of O. Since we for the SCM
have assumed that the distribution of pU,Xq implies the distribution of O, we use the following
notation P :“ P pPU,Xq. The sets of possible distributions of pU,Xq and O are denoted MF and
M “ tP pPU,Xq : PU,Xu, respectively. Specifically, MF is restricted to the models for which the
possible additional non-testable assumptions hold. Examples of such non-testable assumptions
could be assumptions on PU and that there is no unmeasured confounding of the treatment and
the outcome. Note that since the true distribution of pU,Xq, that is, PU,X,0, implies the true
distribution of O, that is, P0, it is possible to specify the SCM such that we obtain the true
distribution of O.

In order to determine the distribution of O from the SCM, we need to specify the relation between
O and X . In general, we assume that O “ �pXq for some function �. By the Law of Total
Probability, we obtain

PXpX “ xq “
ÿ

u

Pf pX “ x | U “ uqPUpU “ uq (3.5)

where f “ tfXj
: j “ 1, . . . , Ju.

If we consider the special case O “ IpXq, where I is the identity function, it follows that

P pX “ oq “
ÿ

u

Pf pX “ o | U “ uqPUpU “ uq. (3.6)

Notice that O “ X corresponds to the case where we for each observation of O observe all the
endogenous variables.

As mentioned in Section 2.1, we cannot observe both potential outcomes for an individual. How-
ever, we note that we can use SCMs to determine all possible potential outcomes for an individ-
ual. In order to do so, we first introduce the notation dopA “ aq which indicates that we assign
each individual to treatment a. Notice that using this notation then

P
`
Y paq “ a

˘
“ P

`
Y “ a | dopA “ aq

˘
. (3.7)

An assignment, dopA “ aq, is called an intervention and, in this case, A is called an intervening
variable. We note that other observed endogenous variables than the treatment also can be inter-
vening variables. In order to compute the potential outcomes, we assume the modularity assump-
tion for SCMs. That is, we assume that intervening on a variable, for example dopA “ aq, does
not change the form of the structural equations for the remaining variables for the correspond-
ing SCM denoted Ma. By assuming the modularity assumption, we have that Yipaq “ Yi,Mapaq
which is called the law of potential outcomes. That is, the potential outcome in the original SCM
equal the potential outcome for the SCM corresponding to the intervention dopA “ aq. In this
setup, we now use the notation Yapiq “ YMapiq.
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Interventions can be used to specify the target parameter since, as mentioned above, we can
determine the potential outcomes based on the SCM. The potential outcomes for the SCM in
Example 3.1.2 can for example be expressed as

YapUq “ fY pa,W,UY q (3.8)

for all a which are realisations of A. In the following, we present interventions in a more general
setup. Let X “ pA,Lq where A “ pA1, . . . , ASq and L “ pL1, . . . , LJ´Sq where As for s “
1, . . . , S and Lr for r “ 1, . . . , J ´ S denote the intervening variables and non-intervening
variables, respectively, and where J is the number of variables in X . An intervention is said to
fulfil a static intervention rule if we assign treatment A “ a and a dynamic intervention rule if
the intervention is determined by its parents. Thus, we let d “ tds : s “ 1, . . . , Su denote the set
of rules for each intervention.

Under one or more interventions, we denote the non-intervening endogenous variables by Lr,dpUq
for r “ 1, . . . , J ´ S which are called post-intervention random variables. An example of a
post-intervention random variable is the potential outcome in Equation (3.8) where the static
intervention rule is dopA “ aq. By applying the Law of Total Probability, the distribution of
Lr,dpUq is given by

P pLr,dpUq “ lq “
ÿ

u

Pf pLr,dpuq “ l | U “ uqPUpU “ uq

“
ÿ

u

rLr,dpuq “ lsPUpU “ uq.
(3.9)

Thus, we note that we can define the target parameter to be a function of P pLr,dpUq “ lq.

Now, let  F : MF Ñ Rd where  F pPU,X,0q is the target parameter for PU,X,0 P MF . By
assuming that the identifiability conditions hold and applying that the distribution of pU,Xq
implies the distribution of O, we obtain

 F pPU,Xq “  pP q @PU,X P MF˚ (3.10)

where MF˚ Ñ MF is a restricted set of models where the identifiability conditions hold and
 : M Ñ Rd for M “ tP pPU,Xq : PU,X P MF˚u. Thus, we can define the target parameter
 pP0q as  F pPU,X,0q “  pP0q.

If we want to obtain an estimator of the average causal effect then we consider  : M Ñ R
where the target parameter is given by

 pP0q “ EW,0

“
E0rY | A “ 1,W “ ws ´ E0rY | A “ 0,W “ ws

‰
. (3.11)

We call the estimator of the target parameter the target maximum likelihood estimator which
we refer to as the TML estimator. Notice that the notation E0 refers to the expected value with
respect to P0 and thus the target parameter depends on P0 through these expected values.

In the following section, we present the first step of the TMLE method when the target parameter
is given as in Equation (3.11).
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3.2 Initial Estimator and the Super Learner Method
This section is based on [van der Laan and Rose, 2011, Chapter 3]. In this section, we describe
the first step of the TMLE method. The first step of the TMLE method consists of determining
an initial estimator Q̄0

n of Q̄0 :“ E0rY | A “ a,W “ ws where

Q̄0 :“ argmin
Q̄

´
E0

“
LpO, Q̄q

‰¯
(3.12)

where L is a uniformly bounded loss function and Q̄ are the candidates of Q̄0. We note that for
o “ py, a, wq being a realisation of O, then if Y is binary we can use either the negative log loss
function given by

Lpo, Q̄q “ ´ log
´
Q̄pa, wqy

`
1 ´ Q̄pa, wq

˘1´y
¯

(3.13)

or the squared error loss function given by

Lpo, Q̄q “
`
y ´ Q̄pa, wq

˘2
. (3.14)

The initial estimator is obtained by applying the super learner method. In the following, we
show how to obtain an initial estimate of Q̄0 using this method.

Consider m different regression methods to be applied in the super learner method. Notice that
when considering methods containing tuning parameters then different tuning parameters result
in different methods in this context. For instance consider the elastic nets method which is a
convex sum of the Lasso and Ridge methods. Thus, the Lasso and Ridge methods are considered
as different methods since they are special cases of the elastic nets method for different tuning
parameter values.

Let Zp1q
p , . . . , Zpkq

p for p “ 1 . . . ,m be the predictions for the m methods by applying k-fold cross
validation for each of the methods. The k-fold cross validation risks for the m methods are then
calculated as follows

Z̄p “ 1

k

kÿ

i“1

Zpiq
p (3.15)

for p “ 1, . . . ,m. Then the super learner method determines the initial estimate by a weighted
average of the cross validation risks, that is,

mÿ

p“1

↵pZ̄p (3.16)
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where ↵p • 0 is an entry in ↵ “ p↵1, . . . ,↵mq with a sum to one constrain,
m∞
p“1

↵p “ 1. This is

obtained by applying k-fold cross validation again which yields

↵̂ :“ argmin
↵

¨

˚̋ 1

n

nÿ

i“1

L

¨

˝oi,
mÿ

p“1

↵pZ̄p

˛

‚

˛

‹‚ (3.17)

where ↵̂ “ p↵̂1, . . . , ↵̂pq.

At last, the m methods are fitted on the complete data set in order to obtain predictions Z̄comp
p for

p “ 1, . . .m. Thus, the super learner method obtains the initial estimate

Q̄0
npa, wq “

mÿ

p“1

↵̂pZ̄
comp
p . (3.18)

We note that the super learner method can be computationally heavy. By applying parallel pro-
gramming when using k-fold cross validation for the m methods, we can separate the calculations
for each of the m methods such that the super learner method becomes more computationally
efficient.

Having obtained an initial estimator, we note that this initial estimator is not targeted towards
the target parameter. The aim of the super learner method is to obtain an overall optimal fit of
E0rY | A “ a,W “ ws. Hence, this can result in a non-optimal bias-variance trade-off for the
target parameter. Thus, in the following section, we describe how to update the initial estimator
in order to obtain a more optimal bias-variance target parameter.

3.3 Targeting the Initial Estimator
This section is based on [van der Laan and Rose, 2011, pp. 37–39, Chapters 4–5, p. 459]. In this
section, we present the second step of the TMLE method. Specifically, we in this step update the
initial estimator obtained in the first step.

Recall that the target parameter for an average causal effect is given by

 pP0q “ EW,0

“
E0rY | A “ 1,W “ ws ´ E0rY | A “ 0,W “ ws

‰
. (3.19)

The expected value over W can be estimated using the empirical mean which yields

 ̂pQnq “ 1

n

nÿ

i“1

`
Q̄np1, wiq ´ Q̄np0, wiq

˘
(3.20)

where Qn “ pQ̄n, QW,nq where Q̄n is an estimator of Q̄0 and QW,n is the empirical distribution
for the marginal distribution of W .

24



Targeted Maximum Likelihood Estimation Aalborg University

Now in the second step of the TMLE method, the aim is to obtain Q̄n by updating the initial
estimator of Q̄0 obtained in the first step of the TMLE method. Notice that, we only need to
update the initial estimator Q̄0

n since Q0
W,n is estimated as the sample mean which is an unbiased

estimator and thus cannot produce bias for the target parameter.

Hence, the initial estimator Q̄0
n is updated by targeting the estimator toward the parameter of

interest. In the first step of the TMLE method, we estimated E0rY | A “ a,W “ ws as the
overall optimal estimate. However, considering the causal question, we are only interested in the
average causal effect of the treatment on the outcome. Thus, considering the treatment and the
covariates W on equal terms does not exploit the fact that the treatment is the only variable of
interest. Hence, we target the estimation towards treatment, and thus, we can obtain a less biased
estimator for the parameter of interest while possibly obtaining more biased estimators for W .

In order to do so, we need to estimate P0pA “ a | W “ wq where we denote the estimator as
gnpA | W “ wq. Specifically, we estimate gnp1 | W “ wq and gnp0 | W “ wq, that is, we
estimate the probability of treatment given the covariates W “ w under both values of treatment
for all individuals. These estimators can be used to target the estimation towards the target
parameter. This is done through the clever covariate. The expression of the clever covariate
depends on the target parameter. For the target parameter for the average causal effect then the
clever covariate is defined as

H˚
npA,W q “ rA “ 1s

gnp1 | W “ wq ´ rA “ 0s
gnp0 | W “ wq . (3.21)

Note for each individual with A “ 1, then

H˚
np1,W q “ 1

gnp1 | W “ wq (3.22)

and, analogously, for each individual with A “ 0, then

H˚
np0,W q “ ´ 1

gnp0 | W “ wq . (3.23)

Hence, the clever covariate serves as a combined covariate of the (negative) reciprocal of the
estimator of the probability of treatment given the additional covariates W “ w. Furthermore,
we note that we estimate gn using the super learner method.

When updating the initial estimator Q̄0
n, we apply a parametric model of the outcome Y on the

clever covariate where we use the initial estimator or a transformation of the initial estimator
as the intercept. The parameter, ", of this model is called the fluctuation parameter since it
represents the fluctuation of the initial fit. For example, if the parametric model was a logistic
regression, we get

logit
`
Q̄1

npA,W q
˘

“ logit
`
Q̄0

npA,W q
˘

` "0nH
˚
npA,W q (3.24)
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where "0n is the coefficient of the clever covariate from the logistic regression and an estimator of
the fluctuation parameter. Notice that since the outcome Y is assumed to be binary with values
zero and one, then using the logistic regression ensures that the estimator is within the range of
Y . Hence, we have updated the estimator of Q̄0 and this process is iterated until convergence,
that is, "kn “ 0 where k denotes the k’th iteration.

If we were to update the estimator Q̄1
n from Equation (3.24) then the update is

logit
`
Q̄2

npA,W q
˘

“ logit
`
Q̄1

npA,W q
˘

` "1nH
˚
npA,W q (3.25)

which yields "1n “ 0 since we have already included the information of the clever covariate in
the first update of Q̄0

n and thus, there is no additional information in the clever covariate for
next update Q̄1

n. Thus, we have convergence in one step. Hence, in order to estimate the target
parameter, we now determine Q̄1

np1,W q and Q̄1
np0,W q by computing

logit
`
Q̄1

np1,W q
˘

“ logit
`
Q̄0

np1,W q
˘

` "0nH
˚
np1,W q (3.26)

and

logit
`
Q̄1

np0,W q
˘

“ logit
`
Q̄0

np0,W q
˘

` "0nH
˚
np0,W q. (3.27)

Here the values of H˚
np1,W q and H˚

np0,W q were determined by setting A “ 1 and A “ 0 for
all individuals. Thus, the final estimate of the target parameter in Equation (3.19) for the average
causal effect is

 ̂pQ1
nq “ 1

n

nÿ

i“1

`
Q̄1

np1, wiq ´ Q̄1
np0, wiq

˘
. (3.28)

Moreover, the TML estimator is an asymptotically linear estimator under regularity conditions.
We omit the proof of this property since, in practice, it has been observed that the TMLE method
suffers if the initial estimator is too adaptive. Thus, we now present an extension of the TMLE
method where an additional layer of cross validation is introduced in order to overcome this
issue. Furthermore, we show asymptotic linearity of the estimator obtained by this particular
method.
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4 | Cross Validated Targeted Maximum Likelihood
Estimation

In this chapter, we present the cross validated targeted maximum likelihood estimation (CV-
TMLE) method. Specifically, we outline how the TMLE method presented in Chapter 3 is ex-
tended to the CV-TMLE method. Furthermore, we show asymptotic linearity of the estimator
obtained from the CV-TMLE method. Moreover, in order to show the asymptotic linearity of
this estimator, we also present influence functions.

4.1 Extending the Targeted Maximum Likelihood Estimation
Method

This section is based on [Zheng and van der Laan, 2010]. In this section, we present the CV-
TMLE method which is an extension of the TMLE method. Specifically, an additional layer of
cross validation is added to the TMLE method in order to obtain a more robust estimator in the
sense that we avoid the issue of a too adaptive initial estimator.

In the following, we outline how cross validation is used in the CV-TMLE method. Let the
random vector Bn P t0, 1un correspond a split of the n individuals, that is, the set t1, . . . , nu,
into training and validation data sets. We let T “ ti : Bnpiq “ 0u and V “ ti : Bnpiq “ 1u
denote the training and validation data sets, respectively. That is, the i’th individual belongs to
the training data set if Bnpiq attains the value zero or the validation data set if Bnpiq attains the
value one. Furthermore, we let Pn, P 0

n,Bn
and P 1

n,Bn
denote the empirical distributions for O, T

and V , respectively. Given a cross validation scheme and a parametric model, we define

"0n :“ argmin
"

˜
EBn

„
P 1
n,Bn

L
´
Q̂pP 0

n,Bn
qp"q

¯⇢¸
(4.1)

where EBn denotes the expected value of each split into training and validation data sets and
where the initial estimators Q̂pP 0

n,Bn
q are obtained by using a super learner method on the training

data set for each Bn. Moreover, notice that we use the notation that for a distribution P then
PS “

≥
SpoqdP poq for an integrable function S which for an empirical distribution reduces to

the corresponding sum. Thus, in the next iteration, we obtain the estimators Q̂pP 0
n,Bn

qp"0nq for
each split Bn.

Hence, the additional layer of cross validation in the CV-TMLE method is applied such that we
fit the initial estimator on the training data set and use the validation data set when targeting the
initial estimator. Hence, if a highly adaptive method is used in the super learner method then
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since the fluctuation parameter " is determined based on the validation data set, we avoid the
issue of too adaptive methods.

Hence, in general, the k’th update of "0n is determined by

"kn :“ argmin
"

˜
EBn

„
P 1
n,Bn

L
´
Q̂pP 0

n,Bn
qp"k´1

n q
¯⇢¸

(4.2)

where, for all Bn, the k’th update of the initial estimator is Q̂pP 0
n,Bn

qp"knq. We denote the final
update as Q̂˚pP 0

n,Bn
qp"k´1

n q where "kn “ 0. Thus, the CV-TML estimator of  pP0q is then given
by

 ̂ pPnq “ EBn

„
 

´
Q̂˚pP 0

n,Bn
qp"k´1

n q
¯⇢

. (4.3)

Notice that in the case where "1n “ 0, we have one step convergence where the CV-TML estimator
is given by

 ̂ pPnq “ EBn

„
 

´
Q̂˚pP 0

n,Bn
qp"nq

¯⇢
(4.4)

where "n “ "0n. We later refer to this estimator as the one step CV-TML estimator.

If the target parameter is the average causal effect, then the CV-TMLE method yields the follow-
ing estimate

 ̂pPnq “ 1

K

Kÿ

k“1

1

nk

nÿ

i“1

rBnpi, kq “ 1s
´
Q̂˚pP 0

Bnp¨,kqqp1, wiq ´ Q̂˚pP 0
Bnp¨,kqqp0, wiq

¯
(4.5)

where K denotes the number of folds used in cross validation, nk “ ∞n
i“1 Bnpi, kq and P 0

Bnp¨,kq
denotes the empirical distribution of the training data set for fold k.

In Section 4.3, we prove asymptotic linearity of the one step CV-TML estimator. In order to do
so, we first present influence functions in the following section.

4.2 Influence Functions
This section is based on [Fisher and Kennedy, 2018, pp. 4–12, 20, 27–28] and [van der Laan
and Rose, 2011, p. 89]. In this section, we define influence functions in a general setting.
Furthermore, we define the score-based influence function and the efficient influence function.
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Assume that for a random vector Z „ P , we have observed an i.i.d. sample z1, . . . , zn. We are
interested in a target of the distribution P which we can write as a functional T of P . In this
context, the term functional indicates that the input of T is a distribution and the output is in
Rd. An example of a functional or target could be the expected value of Z which we denote as
TmeanpP q :“ EP rZs. In order to estimate T pP q, we can estimate P , that is, the plug-in estimate
is T pP̃ q where P̃ is an estimate of P .

Now we are interested in how T pP̃ q changes in response if P̃ is slightly improved. Here "slightly
improved" refers to the accuracy of the estimator which we clarify in the following. Let p and p̃
be the densities of P and P̃ , respectively. Furthermore, let P" be the distribution with the density

p"pzq “ p1 ´ "qppzq ` "p̃pzq (4.6)

where " P r0, 1s. We later write this distribution as P" :“ P ` "pP̃ ´ P q. Hence, for " “ 0 the
distribution P" reduces to the true distribution and for " “ 1 then P" reduces to the estimate P̃ .
Thus, we say that the accuracy of P" improves as " approaches zero. That is, a slight improvement
in P̃ can be viewed as letting " approach zero for P".

Now let P “ tP"u"Pr0,1s. Thus, P is a set of possible distributions which we refer to as the path
that connects P̃ to P . An example of a path P is illustrated in Figure 4.1.

Figure 4.1: A path P between P̃ and P [Fisher and Kennedy, 2018, p. 8].

Notice that T pP"q exists for each P" along this path but, in practice, T pP"q can only be computed
for " “ 1. We illustrate the values of T of the path P as the solid curve on Figure 4.2.
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Figure 4.2: T pP"q against " where the solid curve represents the values of T pP"q on the path P , the dashed line
represents the one step update of P̃ and R2 is the residual [Fisher and Kennedy, 2018, p. 8].

Consider Figure 4.2. As mentioned above, the solid curve represents the value for T for the path
P . We refer to the corresponding function as v, that is,

vp"q “ T pP"q. (4.7)

Since we are interested in T pP q, this corresponds to determining the intercept with the y-axis
for v since vp0q “ T pP0q “ T pP q. However, v is unknown and can only be evaluated in " “ 1.
Thus, we want to approximate v and evaluated this approximation in " “ 0. Specifically, by
assuming that T is pathwise differentiable along P , we can approximate the slope of v at " “ 1,
that is,

v1p1q “ B
B"T pP"q

ˇ̌
ˇ̌
"“1

. (4.8)

Using this slope, we can approximate v as a linear function and thus, by evaluating at " “ 0,
approximate T pP q. This is also illustrated as the dashed line in Figure 4.2. This one step update
can be motivated by applying a Taylor expansion of v, that is,

T pP0q “ vp0q “ vp1q ` v1p1qp0 ´ 1q ´ R2

“ T pP1q ` B
B"T pP"q

ˇ̌
ˇ̌
"“1

p0 ´ 1q ´ R2

(4.9)
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where R2 is the remainder term which often can be shown to converge to zero. In Section 4.3, we
show one example where the remainder term converges to zero by proving asymptotic linearity
of the CV-TML estimator.

Now assume that Z is discrete with values in tz1, . . . , zKu. We can approximate v1p1q by apply-
ing the chain rule such that

B
B"T pP"q

ˇ̌
ˇ̌
"“1

“
Kÿ

k“1

BT pP"q
Bp"pzkq

Bp"pzkq
B"

ˇ̌
ˇ̌
"“1

“
Kÿ

k“1

BT pP"q
Bp"pzkq

ˇ̌
ˇ̌
"“1

`
p̃pzkq ´ ppzkq

˘
.

(4.10)

However, notice that in Equation (4.10), we slightly abuse notation of the partial derivative of
T pP"q with respect to p"pzkq since marginal increases to p"pzkq for some zk must result in equal
marginal decreases in p"pzk1q for some zk1 in order for p" to be a valid density function. Thus,
if this is not fulfilled, then BT pP"q

Bp"pzkq is ill-defined. In order to avoid this issue, we instead use the
influence function defined in the following definition. Notice that, we consider Z as an arbitrary
continuous random vector in the following definition.

Definition 4.2.1. Influence Function
Let L2

0pP q be the subspace of the Hilbert space L2pP q of mean zero function of Z and let T be a
functional. Then the influence function for T is the function IF P L2

0pP q which satisfies

B
B"T

`
G ` "pQ ´ Gq

˘ ˇ̌
ˇ̌
"“0

“
ª
IF pz,Gq

`
qpzq ´ gpzq

˘
dz (4.11)

for any two distributions G and Q with densities g and q, respectively. ⇣

Notice that since IF P L2
0pP q then, by definition, the influence function has mean zero, that is,

ª
IF pz,Gqgpzqdz “ 0, (4.12)

and is square integrable which in combination implies that it has finite variance.

Moreover, notice that for any two distributions G and Q with densities g and q, then G`"pQ´Gq
in Equation (4.11) is a distribution with density gpzq ` "

`
qpzq ´ gpzq

˘
.

Consider again the setup of Z being a discrete variable with values in tz1, . . . , zKu. We can
isolate the influence function in Equation (4.11) by letting Q be the point mass distribution at
point z which is denoted as �z with density �z. Notice that, if Z is discrete the integral in
Equation (4.11) is a sum over the possible values of Z. Hence, Equation (4.11) reduces to

B
B"T

`
G ` "p�z ´ Gq

˘ ˇ̌
ˇ̌
"“0

“
Kÿ

k“1

IF pzk, Gq�zpzkq “ IF pz,Gq. (4.13)
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where the first equality follows from Z being discrete and applying Equation (4.11) in combina-
tion with Equation (4.12).

Hence, the influence function measures the effect on T for infinitesimally small changes in G.
Thus, the influence function can measure the influence of an additional observation (at point z)
on the estimator of interest.

Returning to the approximating of v1p1q and Z being a random vector where we have observed
z1, . . . , zn, we can use the influence function for this approximation which yields

B
B"T pP"q

ˇ̌
ˇ̌
"“1

“ B
B"T

´
P ` "pP̃ ´ P q

¯ ˇ̌
ˇ̌
"“1

“ ´ B
B"̃T

´
P̃ ` "̃pP ´ P̃ q

¯ ˇ̌
ˇ̌
"̃“0

“ ´
ª
IF pz, P̃ q

`
ppzq ´ p̃pzq

˘
dz

“ ´
ª
IF pz, P̃ qppzqdz

« ´ 1

n

nÿ

i“1

IF pzi, P̃ q

(4.14)

where the second equality follows from rearranging P and P̃ in the expression for P" and the
fourth equality follows from Equation (4.12). Thus, using this approximation in combination
with Equation (4.9) yields

T pP q « T pP̃ q ` 1

n

nÿ

i“1

IF pzi, P̃ q ´ R2. (4.15)

Therefore, the one step estimator is

T̂1 :“ T pP̃ q ` 1

n

nÿ

i“1

IF pzi, P̃ q. (4.16)

Until now we have considered the case in which no prior knowledge or restrictions are assumed
about P . However, we might consider semi parametric models when applying the (CV-)TMLE
method and thus, we now expand the concept of the influence function. In particular, when some
parameters of P are known, then some distributions along P may not fulfil these requirements.
Hence, we encode these restrictions in a likelihood model Lpz, eq for e P r0, 1s and with distri-
bution We and density we. This implies that we no longer need to define the influence function
for any G and Q but instead we the define the influence function in terms of the score of this
likelihood shown in the following definition.
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Definition 4.2.2. Score-based Influence Function
Let L2

0pP q be the subspace of the Hilbert space L2pP q of mean zero function of Z and let T be a
functional. The influence function for T is the function IF P L2

0pP q which satisfies

B
BeT pWeq

ˇ̌
ˇ̌
e“0

“ EW0rIF pZ,W0qs0pZqs (4.17)

and

EW0rIF pZ,W0qs “ 0 (4.18)

for any We, where se is the score function given by

sepzq “ B
Be log

`
wepzq

˘
. (4.19)

⇣

If a function IF satisfies the conditions in Definition 4.2.2, it also satisfies the conditions in
Definition 4.2.1. This holds since if we define We :“ G ` epQ ´ Gq for any two distributions G
and Q then the score function for e “ 0 is given by

s0pzq “ B
Be log

´
gpzq ` e

`
qpzq ´ gpzq

˘¯ ˇ̌
ˇ̌
e“0

“ qpzq ´ gpzq
gpzq .

(4.20)

Moreover, notice that W0 “ G. Hence, from Definition 4.2.2, we get

B
BeT pWeq

ˇ̌
ˇ̌
e“0

“ EW0rIF pZ,W0qs0pZqs

“
ª
IF pZ,Gqs0pZqgpzqdz

“
ª
IF pZ,Gq

ˆ
qpzq ´ gpzq

gpzq

˙
gpzqdz

“
ª
IF pZ,Gq

`
qpzq ´ gpzq

˘
dz.

(4.21)

Thus, by Equation (4.21), the influence function also satisfies Definition 4.2.1.
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Notice that, the score-based influence function in Definition 4.2.2 does not need to be defined
for any G and Q as opposed to the influence function in Definition 4.2.1. Thus, the conditions
will be fulfilled by a set S of score-based influence functions. Therefore, we define the efficient
influence function D˚ as

D˚pz, P q :“ argmin
ÄIFPS

Var
´

ÄIF pZ, P q
¯
. (4.22)

Thus, the efficient influence function is the score-based influence function among the possible
score-based influence functions which fulfil the requirements in Definition 4.2.2 with the smallest
variance. Therefore, we can estimate the derivative along allowed P" of P more efficiently.

Having presented influence function as well as score-based influence function and the efficient
influence function, we in the following section show asymptotic linearity of the one step CV-
TML estimator presented in Section 4.1. Notice that, we refer to both influence functions and
score-based influence functions as influence functions in the following section.

4.3 Asymptotic Linearity and Efficiency
This section is based on [Zheng and van der Laan, 2010, pp. 2–11, 43], [van der Laan and Rose,
2011, p. 137, Chapter 27], [Herbrich, 2002, pp. 220–221] and [van der Vaart and Wellner, 1996,
pp. 80–84]. In this section, we show that the one step CV-TML estimator is an asymptotic linear
and efficient estimator. Moreover, based on the asymptotic distribution of the one step CV-TML
estimator obtained in this section, we also determine 95% confidence intervals.

Specifically, we show that

 ̂pPnq ´  0 “ pPn ´ P0qIF pP0q ` Rn (4.23)

where  0 denotes the target parameter, that is,  0 “  pP0q and Rn denotes the remainder term.
Notice that we again use the notation introduced in Section 4.1, that is,

PIF pP q “
ª
IF po, P qdP poq. (4.24)

for a distribution P . For the remaining of this section, we denote IF po, P q “ IF pP q for all
influence functions including the efficient influence function. Furthermore, notice that we now
consider the random vector O „ P0 compared to Z „ P in Section 4.2 and thus also L2

0pP q now
denotes the subspace of the Hilbert space L2pP q of mean zero function of O.

In order for the influence function to be well-defined, we assume that  : M Ñ Rd is a pathwise
differentiable function at each P P M. Moreover, assume that Q : M Ñ Q is chosen such that
for some  1 : Q Ñ Rd then

 pP0q “  1
`
QpP0q

˘
. (4.25)
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Notice that, we abuse notation and refer to both mappings  and  1 as  and thus write
 

`
QpP q

˘
and  pP q interchangeably. Furthermore, for all P P M, let

D˚pP q “ D˚ `
QpP q, gpP q

˘
, (4.26)

that is, D˚ depends on P through the relevant part Q of P and a nuisance parameter gpP q for
g : M Ñ G. Moreover, the efficient influence function is double robust, that is,

P0D
˚pQ, gq “ 0 if Q “ Q0 or g “ g0. (4.27)

However, the proof of this property is out of scope for this master’s thesis.

In addition, let L8pKq be the class of function of O with bounded supremum norm over a set K
such that P0pO P Kq “ 1. Then assume that there exists a loss function L : Q Ñ L8pKq which
is uniformly bounded and for which it holds that

QpP0q :“ argmin
QPQ

`
P0LpQq

˘
. (4.28)

Moreover, assume for each P P M, for a parametric model tP p"q : "u Ä M, that the corre-
sponding D˚pP q fulfils

xD˚pP qy Ä
C

B
B"L

´
Q

`
P p"q

˘¯ ˇ̌
ˇ̌
"“0

G
(4.29)

where xhy denotes the set of linear combinations of the components of h “ ph1, . . . , hdq. Fur-
thermore, given the initial estimators Q̂ of Q0 “ QpP0q and ĝ of g0 “ gpP0q where we let
tQ̂pPnqp"q : "u Ä M then we let Pn fiÑ Q̂pPnqp"q such that it fulfils

xD˚pQ̂pPnq, ĝpPnqy Ä
C

B
B"L

´
Q̂pPnqp"q

¯ ˇ̌
ˇ̌
"“0

G
. (4.30)

Now we present some definitions and lemmata which we use to show asymptotic linearity of the
one step CV-TML estimator.

Definition 4.3.1. "-cover and Covering Number
Let pX, dq be a normed space. Moreover, let A Ñ X and " ° 0. Then B Ñ X is an "-cover of A
if

@a P A Db P B : dpa, bq § ". (4.31)

Or equivalently,

A Ñ
§

bPB
B̄"pbq. (4.32)
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Let B denote the set of all "-covers of A. The covering number Np", A, dq is the minimal cardi-
nality of an "-cover of A, that is,

Np", A, dq “ min
BPB

tn : |B| “ nu. (4.33)

⇣

We note that the center of the balls do not need to belong to A and the balls do not need to be
disjoint. In Figure 4.3, we illustrate an example on an "-cover of a set A.

Figure 4.3: An "-cover of a set A [Herbrich, 2002, p. 221] .

We now consider the covering number for a specific class of functions F :“ tf | f : O Ñ Ru
where we use the L2pQq norm given by

kfkQ,2 “
ˆª

|f |2dQ
˙ 1

2

(4.34)

where Q is a probability measure. Moreover, we consider the uniform number given by

log

˜
sup
Q

ˆ
N

´
"kFkQ,2 ,F , L2pQq

¯˙¸
(4.35)

where " ° 0 and 0 † QF 2 † 8 for an envelope function F of F which is a function that fulfils
that |fpoq| § F poq for all o P O and for all f P F .
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Definition 4.3.2. Entropy Integral
Let F “ tf | f : O Ñ Ru and let F be an envelope function of F . The entropy integral is
defined as

EntropFq “
8ª

0

gffelog

˜
sup
Q

ˆ
N

´
"kFkQ,2 ,F , L2pQq

¯˙¸
d". (4.36)

⇣

We now present a lemma which we use to prove Lemma 4.3.4.

Lemma 4.3.3.
Let F “ tf | f : O Ñ Ru and F be an envelope function of F . Furthermore, let Gn “?
npPn ´ P0q. Then it holds that

E
«
sup
fPF

|Gnf |
�

§ EntropFq
a
P0F 2. (4.37)

⇣

The proof of Lemma 4.3.3 is beyond the scope of this master’s thesis but can be found in [van der
Vaart and Wellner, 1996, Section 2.14.1].

In order to prove asymptotic linearity of the one step CV-TML estimator, we use Lemma 4.3.4
which we now present.

Lemma 4.3.4.
Let "0 :“ argmin

"

ˆ
P0L

´
Q̂pP0qp"q

¯˙
and let "n be defined as in Section 4.1. Furthermore,

suppose that ||"n ´ "0|| PÑ 0. For each Bn, we condition on P 0
n,Bn

and consider the class of
measurable functions of O given by

FpP 0
n,Bn

q “ tf"pP 0
n,Bn

q “ fp", P 0
n,Bn

q ´ fp"0, P0q : "u. (4.38)

For a deterministic sequence t�nun•1 where �n Ñ 0 for n Ñ 8, we define

F�npP 0
n,Bn

q “ tf" P FpP 0
n,Bn

q : ||" ´ "0|| † �nu. (4.39)

If it holds that

E
„

Entro
´
F�npP 0

n,Bn
q
¯ b

P0F�npP 0
n,Bn

q2
⇢

Ñ 0 for n Ñ 8, (4.40)
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where F�npP 0
n,Bn

q is the envelope function of F�npP 0
n,Bn

q, then

?
npP 1

n,Bn
´ P0q

´
fp"n, P 0

n,Bn
q ´ fp"0, P0q

¯
“ opp1q. (4.41)

⇣

Proof. Let G1
n,Bn

“ ?
npP 1

n,Bn
´ P0q. We want to show that G1

n,Bn
f"npP 0

n,Bn
q “ opp1q for

f"npP 0
n,Bn

q P FpP 0
n,Bn

q which holds if G1
n,Bn

f"npP 0
n,Bn

q PÑ 0 or equivalently

P
´

|G1
n,Bn

f"npP 0
n,Bn

q| ° �
¯

Ñ 0 for n Ñ 8 (4.42)

for all � ° 0.

We have that

P
´

|G1
n,Bn

f"npP 0
n,Bn

q| ° �
¯

“ E
„
P

´
|G1

n,Bn
f"npP 0

n,Bn
q| ° � | P 0

n,Bn

¯⇢

“ E
„
P

´
|G1

n,Bn
f"npP 0

n,Bn
q

“
||"n ´ "0|| † �n

‰
| ° � | P 0

n,Bn

¯⇢

` E
„
P

´
|G1

n,Bn
f"npP 0

n,Bn
q r||"n ´ "0|| • �ns| ° � | P 0

n,Bn

¯⇢

§ E

»

—–P

¨

˝ sup
fPF�n pP 0

n,Bn
q

´
|G1

n,Bn
f |

¯
° � | P 0

n,Bn

˛

‚

fi

�fl

` E
„
P

´
||"n ´ "0|| • �n | P 0

n,Bn

¯⇢

“ E

»

—–P

¨

˝ sup
fPF�n pP 0

n,Bn
q

´
|G1

n,Bn
f |

¯
° � | P 0

n,Bn

˛

‚

fi

�fl ` P
`
||"n ´ "0|| • �n

˘

(4.43)

where we in the first and last equality apply the Law of Total Expectation. The inequality follows
since fork"n ´ "0k † �n then f"npP 0

n,Bn
q P F�npP 0

n,Bn
q where the supremum of such functions,

f , only increases the probability of
���G1

n,Bn
f
��� being greater than �. In addition, we apply that for

two events A and B where A Ñ B then PpAq § PpBq.
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We have assumed that ||"n ´ "0|| PÑ 0 and thus, by definition of convergence in probability, we
have that Pp||"n ´ "0|| • �nq Ñ 0 for n Ñ 8. Thus, we consider

E

»

—–P

¨

˝ sup
fPF�n pP 0

n,Bn
q

´
|G1

n,Bn
f |

¯
° � | P 0

n,Bn

˛

‚

fi

�fl

§ 1

�
E

»

—–E

»

– sup
fPF�n pP 0

n,Bn
q

´
|G1

n,Bn
f |

¯
| P 0

n,Bn

fi

fl

fi

�fl

§ 1

�
E

„
Entro

´
F�npP 0

n,Bn
q
¯ b

P0F�npP 0
n,Bn

q2
⇢

(4.44)

where we in the first inequality apply Markov’s inequality and in the second inequality apply
Lemma 4.3.3. By the assumption in Equation (4.40), we obtain that

1

�
E

„
Entro

´
F�npP 0

n,Bn
q
¯ b

P0F�npP 0
n,Bn

q2
⇢

Ñ 0 for n Ñ 8. (4.45)

Thus, we have shown the convergence in probability in Equation (4.42). ⌅

In the following theorem, we show the asymptotic linearity of the one step CV-TML estimator.

Theorem 4.3.5. Asymptotic Linearity for the One Step CV-TML Estimator
Let Q̂pPnq and ĝpPnq be initial estimators of Q0 and g0, respectively, and let Q̂pP0q and ĝpP0q
denote their respective limits. Moreover, suppose that Bn is uniformly distributed over a finite
support. Furthermore, consider

 ̂pPnq “ EBn

„
 

´
Q̂pP 0

n,Bn
qp"nq

¯⇢
. (4.46)

If P fiÑ  
`
QpP q

˘
fulfils

A1:

 
`
QpP q

˘
´ pQ0q “ ´P0D

˚ `
QpP q, g0

˘
` Op

ˆ��� 
`
QpP q

˘
´ pQ0q

���
2
˙

(4.47)
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then
 ̂pPnq ´  0

“ EBn

«́
P 1
n,Bn

´ P0

¯
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯ �̇

` EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙ fi̧

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

fi̧

fl

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙
.

(4.48)

Now consider "0 :“ argmin
"

ˆ
P0L

´
Q̂pP0qp"q

¯˙
such thatk"n ´ "0k

PÑ 0. Assume that

A2: For each Bn, condition on P 0
n,Bn

and consider the class of functions

FpP 0
n,Bn

q “
"
O fiÑ D˚

´
Q̂pP 0

n,Bn
qp"q, ĝpP 0

n,Bn
q
¯

´ D˚
´
Q̂pP0qp"0q, ĝpP0q

¯
: "

*
(4.49)

where we choose the set for which " varies such that this set contains "n with a probability
approaching one. Furthermore, for a deterministic sequence t�nu8

n“1 where �n Ñ 0 for n Ñ 8,
we define

F�npP 0
n,Bn

q “
!
f" P FpP 0

n,Bn
q :k" ´ "0k † �n

)
. (4.50)

Moreover, assume that for t�nu8
n“1, it holds that

E
„

Entro
´
F�npP 0

n,Bn
q
¯ b

P0F�npP 0
n,Bn

q2
⇢

Ñ 0 for n Ñ 8 (4.51)

where F�npP 0
n,Bn

q is the envelope function of F�npP 0
n,Bn

q. Then

 ̂pPnq ´  0 “ pPn ´ P0qD˚
´
Q̂pP0qp"0q, ĝpP0q

¯
` op

ˆ
1?
n

˙

` EBn

«
P0

ˆ
D˚

´
Q̂pP 0

n,Bn
qp"q, ĝpP 0

n,Bn
q
¯

´ D˚
´
Q̂pP 0

n,Bn
qp"q, g0

¯˙�

´ EBn

«
P0

ˆ
D˚

´
Q0, ĝpP 0

n,Bn
q
¯

´ D˚pQ0, g0q
˙�

` Op

ˆ��� ̂pPnq ´  0

���
2
˙
.

(4.52)
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In addition, suppose that ĝpPnq “ g0. Then

 ̂pPnq ´  0 “ pPn ´ P0qD˚
´
Q̂pP0qp"0q, g0

¯
` op

ˆ
1?
n

˙
. (4.53)

If also Q̂pP0qp"0q “ Q0 then  ̂pPnq is asymptotically efficient, that is,

 ̂pPnq ´  0 “ pPn ´ P0qD˚pQ0, g0q ` op

ˆ
1?
n

˙
. (4.54)

More generally, assume that ĝpP0q “ g0. Let the limit of Q̂pPnqp"nq be Q̃ and assume that

A3:

EBn

«
P0

ˆ
D˚

´
Q̂pP 0

n,Bn
qp"nq, ĝpP 0

n,Bn
q
¯

´ D˚
´
Q̂pP 0

n,Bn
qp"nq, g0

¯˙�

´ EBn

«
P0

ˆ
D˚

´
Q̃, ĝpP 0

n,Bn
q
¯

´ D˚pQ̃, g0q
˙�

“ op

ˆ
1?
n

˙
.

(4.55)

A4: For a function ÄIF pP0q P L2
0pP0q , it holds that

EBn

«
P0

ˆ
D˚

´
Q̃, ĝpP 0

n,Bn
q
¯

´ D˚
´
Q̃, g0

¯˙�

´ EBn

«
P0

ˆ
D˚

´
Q0, ĝpP 0

n,Bn
q
¯

´ D˚pQ0, g0q
˙�

“ pPn ´ P0q ÄIF pP0q ` op

ˆ
1?
n

˙
.

(4.56)

Then  ̂ pPnq is asymptotically linear, that is,

 ̂ pPnq ´  0 “ pPn ´ P0q
ˆ
D˚

´
Q̂pP0qp"0q, g0

¯
` ÄIF pP0q

˙
` op

ˆ
1?
n

˙
. (4.57)

⇣

Proof. Since D˚ is double robust, see Equation (4.27), then

P0D
˚pQ0, gq “ 0 @g. (4.58)
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Moreover, by the definition of "n and the one-step convergence of Q̂pP 0
n,Bn

qp"nq, we get

EBn

„
P 1
n,Bn

D˚
´
Q̂pP 0

n,Bn
qp"nq, ĝpP 0

n,Bn
q
¯⇢

“ 0. (4.59)

Applying these results in combination with A1 yields

 ̂pPnq ´  0

“ EBn

„
 

´
Q̂pP 0

n,Bn
qp"nq

¯
´  0

⇢
(4.60)

“ EBn

»

–́ P0D
˚

´
Q̂pP 0

n,Bn
qp"nq, g0

¯
` Op

�̃��� 
´
Q̂pP 0

n,Bn
qp"nq

¯
´  0

����
2

fi̧

fl (4.61)

“ EBn

„
´P0D

˚
´
Q̂pP 0

n,Bn
qp"nq, g0

¯⇢
´ EBn

„
P0D

˚
´
Q0, ĝpP 0

n,Bn
q
¯⇢

` EBn

»

–Op

�̃��� 
´
Q̂pP 0

n,Bn
qp"nq

¯
´  0

����
2
¸fi

fl (4.62)

“ EBn

«´
P 1
n,Bn

´ P0

¯
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙�

` EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

¸fi

fl

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙

(4.63)

where we use the definition of the estimator  ̂pPnq in the first equality, the assumption in A1
in the second equality, Equation (4.58) in the third equality and Equation (4.59) in the fourth
equality. This verifies Equation (4.48) of A1.
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The first term in Equation (4.63) can we rewritten as

EBn

«´
P 1
n,Bn

´ P0

¯
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙�

“ EBn

»

–
´
P 1
n,Bn

´ P0

¯̃
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̂ pP0qp"0q , ĝ pP0q

¯
fi̧

fl

` EBn

„´
P 1
n,Bn

´ P0

¯
D˚

´
Q̂ pP0q p"0q , ĝ pP0q

¯⇢
. (4.64)

Now notice that the assumptions in A2 coincide with the assumptions of Lemma 4.3.4 for

fp", P 0
n,Bn

q “ D˚
´
Q̂pP 0

n,Bn
qp"q, ĝpP 0

n,Bn
q
¯
. (4.65)

Thus, Lemma 4.3.4 implies that for each Bn

´
P 1
n,Bn

´ P0

¯ ˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̂ pP0q p"0q , ĝ pP0q

¯¸

“ op

ˆ
1?
n

˙
.

(4.66)

Moreover, since Bn uniformly distributed over a finite support, then in fact

EBn

»

–
´
P 1
n,Bn

´ P0

¯̃
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̂ pP0qp"0q , ĝ pP0q

¯¸fi

fl

“ op

ˆ
1?
n

˙
.

(4.67)

Using this result in combination with Equation (4.64) yields

EBn

«´
P 1
n,Bn

´ P0

¯
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙�

“ EBn

„´
P 1
n,Bn

´ P0

¯
D˚

´
Q̂ pP0q p"0q , ĝ pP0q

¯⇢
` op

ˆ
1?
n

˙
.

(4.68)
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Thus, Equation (4.63) can be written as

 ̂pPnq ´  0 “ EBn

„´
P 1
n,Bn

´ P0

¯
D˚

´
Q̂ pP0q p"0q , ĝ pP0q

¯⇢
` op

ˆ
1?
n

˙

` EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

¸fi

fl

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙

(4.69)

“ pPn ´ P0qD˚
´
Q̂ pP0q p"0q , ĝ pP0q

¯
` op

ˆ
1?
n

˙

` EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

¸fi

fl

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙
. (4.70)

This verifies Equation (4.52) of A2.

Moreover, if ĝpPnq “ g0, that is, the initial estimator of g0 is exactly g0, then Equation (4.70)
reduces to

 ̂ pPnq ´  0 “ pPn ´ P0qD˚
´
Q̂ pP0q p"0q , g0

¯
` op

ˆ
1?
n

˙

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙ (4.71)

since if the initial estimator is g0, that is, the initial estimator is correct, the limit of this estimator
would also be g0 which corresponds to ĝpP0q “ g0 which is used in the first term in Equation
(4.70). Furthermore, the third and fourth terms in Equation (4.70) equal zero since for any Q
then

EBn

„
P0D

˚
´
Q, ĝpP 0

n,Bn
q
¯⇢

“ P0D
˚pQ, g0q (4.72)

when ĝpPnq “ g0. Notice that for the third term in Equation (4.70), Q̂ also depend on P 0
n,Bn

but
since both the Q̂’s in this term depend P 0

n,Bn
in the same way, the terms cancel.
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Furthermore, taking the norm on both sides of Equation (4.71) yields
��� ̂ pPnq ´  0

��� “ op

ˆ
1?
n

˙
(4.73)

where we refer to [Zheng and van der Laan, 2010, p. 10] for this result.

This yields asymptotic linearity of  ̂pPnq since

 ̂ pPnq ´  0 “ pPn ´ P0qD˚
´
Q̂ pP0q p"0q , g0

¯
` op

ˆ
1?
n

˙
. (4.74)

Moreover, if Q̂pP0qp"0q “ Q0, then we obtain the efficient influence function D˚pQ0, g0q.

Now consider a more general case, that is, ĝpP0q “ g0. Furthermore, let Q̃ be the limit of
Q̂pPnqp"nq. Then Equation (4.70) can be written as

 ̂ pPnq ´  0

“ pPn ´ P0qD˚
´
Q̂ pP0q p"0q , g0

¯
` op

ˆ
1?
n

˙

` EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙̧ fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q̃, ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̃, g0

¯¸fi

fl

` EBn

»

–P0

˜
D˚

ˆ
Q̃, ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̃, g0

¯¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

¸fi

fl

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙
.

(4.75)

Then consider the assumption in A3, that is,

EBn

»

–P0

˜
D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , ĝ

´
P 0
n,Bn

¯˙
´ D˚

ˆ
Q̂

´
P 0
n,Bn

¯
p"nq , g0

˙¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q̃, ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̃, g0

¯¸fi

fl “ op

ˆ
1?
n

˙ (4.76)
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and the assumption in A4, that is, for ÄIF pP0q P L2
0pP0q then

EBn

»

–P0

˜
D˚

ˆ
Q̃, ĝ

´
P 0
n,Bn

¯˙
´ D˚

´
Q̃, g0

¯¸fi

fl

´ EBn

»

–P0

˜
D˚

ˆ
Q0, ĝ

´
P 0
n,Bn

¯˙
´ D˚ pQ0, g0q

¸fi

fl

“ pPn ´ P0q ÄIF pP0q ` op

ˆ
1?
n

˙
.

(4.77)

Hence, applying Equations (4.76) and (4.77) to Equation (4.75) yields

 ̂ pPnq ´  0 “ pPn ´ P0q
ˆ
D˚

´
Q̂ pP0q p"0q , g0

¯
` ÄIF pP0q

˙
` op

ˆ
1?
n

˙

` Op

ˆ››› ̂ pPnq ´  0

›››
2
˙
.

(4.78)

By taking the norm on both sides, we get
��� ̂ pPnq ´  0

��� “ op

ˆ
1?
n

˙
. (4.79)

Thus, we obtain the desired result, that is,

 ̂ pPnq ´  0 “ pPn ´ P0q
ˆ
D˚

´
Q̂ pP0q p"0q , g0

¯
` ÄIF pP0q

˙
` op

ˆ
1?
n

˙
. (4.80)

Hence, we have shown asymptotic linearity of the one step CV-TML estimator. ⌅

Notice that Equation (4.57) can be rewritten as
?
n

´
 ̂ pPnq ´  0

¯
“ ?

n pPn ´ P0q
ˆ
D˚

´
Q̂ pP0q p"0q , g0

¯
` ÄIF pP0q

˙
` opp1q. (4.81)

Analogously, we can derive similar expressions for Equations (4.53) and (4.54).

Furthermore, oP p1q converges to zero in probability as the sample size goes to infinity. Moreover,
recall that the influence function and thus also the efficient influence function has mean zero and
finite variance. Then since the mean and variance of  ̂ pPnq ´  0 coincide with the mean and
variance of the influence function, then by the Central Limit Theorem

?
n

´
 ̂pPnq ´  0

¯
dÑ N

´
0,Varr ̂pPnqs

¯
. (4.82)

Thus, we can derive 95% confidence intervals by using the asymptotic normal distribution of
 ̂pPnq where we note that the variance of  ̂pPnq is well approximated by the variance of the
influence function.
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5 | Causal Inference for Longitudinal Studies

In this chapter, we extend theory of causal inference presented in Chapter 2 to longitudinal stud-
ies in order to identify (average) causal effects in such studies. In particular, we consider causal
inference for a time-varying treatment and how (conditionally) randomised experiments and the
identifiability conditions generalise to observational longitudinal studies. Furthermore, we out-
line how the TMLE method extends to longitudinal studies. Moreover, we assume that there is
no random variation in Sections 5.1 and 5.2.

5.1 Treatment Strategies and Causal Effects
This section is based on [Miguel A. Hernán, 2020, pp. 235–237] and [Robins and Hernán, 2009,
pp. 560–561]. In previous chapters, we have considered the case of identifying and estimating
average causal effects of a treatment on an outcome where the treatment was only measured once.
We refer to such a treatment as a fixed treatment. In many cases, including the data set considered
in Chapter 6, the treatment varies over time which we refer to as a time-varying treatment. Thus,
we need a more general definition of (average) causal effects that incorporate time explicitly.

Consider a binary time-varying treatment Ak for k “ 0, 1, . . . , K where K denotes the number
of times the treatment has been measured in a longitudinal study. Hence, we can denote the
treatment history from time zero to time k for k P t0, 1, . . . , K ´ 1u as Āk “ pA0, A1, . . . , Akq
while we denote the entire treatment history as Ā. Since we only have defined the (average)
causal effect for a fixed treatment, we can based on Definitions 2.1.2 and 2.1.3 only identify the
(average) causal effect at a single time k P t0, 1, . . . , Ku and thus not the (average) causal effect
of the time-varying treatment over the entire period of the longitudinal study. Hence, we first
consider various treatment strategies which are presented in the following.

Treatment strategies are rules to assign the treatment at each time k P t0, 1, . . . , Ku. An example
of such a treatment strategy could be assigning the treatment at every k P t0, 1, . . . , Ku, that is,
ā1 “ p1, 1, . . . , 1q. Another treatment strategy could be ā0 “ p0, 0, . . . , 0q, that is, an individual
with this treatment strategy never receives the treatment. Thus, we now have two treatment
strategies and hence, we can identify a non-zero causal effect of the time-varying treatment on
the outcome for an individual i if YipĀ “ ā1q ‰ YipĀ “ ā0q.

However, there are many other possible treatment strategies for a time-varying treatment. In par-
ticular, we have at least 2K`1 treatment strategies for a binary treatment Ak for k “ 0, 1, . . . , K.
Moreover, further treatment strategies can be defined when considering a treatment which de-
pends on covariates, that is, a dynamic treatment rule as defined in Section 3.1. Hence, we now
define a causal effect of multiple treatment strategies for an individual in the following definition.
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Definition 5.1.1. Causal Effect of Multiple Treatment Strategies for an Individual
Consider the treatment strategies ā1, . . . , ām for m • 2. If for an individual i, Yipālq ‰ Yipājq
for at least one pair pl, jq such that l ‰ j and l, j P t1, . . . ,mu then Ā has a non-zero causal
effect on Y for individual i. ⇣

However, as explained in Chapter 2, we consider average causal effects due to the fundamental
issue of causal inference. Thus, in the following, we define an average causal effect of multiple
treatment strategies of a population.

Definition 5.1.2. Average Causal Effect of Multiple Treatment Strategies of a Population
Consider the treatment strategies ā1, . . . , ām for m • 2. If for at least one pair pl, jq such that
l ‰ j and l, j P t1, . . . ,mu it holds that

ErY pālqs ´ ErY pājqs ‰ 0 (5.1)

then Ā has a non-zero average causal effect on Y . ⇣

Notice that we only consider the treatment strategies which are relevant for examining the spe-
cific causal question.

Hence, when conducting causal inference with a time-varying treatment, we are considering the
contrast between the expected values of the potential outcomes under two or more treatment
strategies. Thus, the (average) causal effect is only well-defined if the treatment strategies are
specified. Therefore, the definition of an (average) causal effect of a time-varying treatment on
an outcome is dependent on the treatment strategies. Hence, the (average) causal effect of a
time-varying treatment is not uniquely defined.

In the following section, we present cases where the average causal effect of a time-varying
treatment can be identified.

5.2 Sequentially Randomised Experiments and the Identifia-
bility Conditions for Observational Longitudinal Studies

This section is based on [Miguel A. Hernán, 2020, pp. 237–241] and [Robins and Hernán,
2009, p. 561]. In Section 2.2, we presented randomised experiments as well as conditionally
randomised experiments which were study designs where the average causal effect of a fixed
treatment could be identified. Now we generalise these study designs to longitudinal studies in
order to identify average causal effects of time-varying treatments.

Consider a longitudinal study and let Lk denote the measured time-varying covariates and Uk

denote the unmeasured time-varying covariates for k “ 0, 1, . . . , K where K denotes the number
of times the time-varying variables have been measured in the specific study. A sequentially
randomised experiment is an experiment where the treatment is randomly assigned at each time
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k for k “ 0, 1, . . . , K to each individual in the study with known randomisation probabilities that
may depend on Āk´1 and L̄k for k ° 0 and on L0 for k “ 0. Notice that, L̄k “ pL0, L1, . . . , Lkq
which we refer to as the history of the measured time-varying covariates. On the following
figures, we present examples of sequentially randomised experiments where K “ 1 using causal
DAGs.

L0 A0 L1 A1 Y

U0 U1

Figure 5.1: Causal DAG of a sequentially randomised experiment where the treatment is assigned at random at each
time k “ 0, 1.

L0 A0 L1 A1 Y

U0 U1

Figure 5.2: Causal DAG sequentially randomised experiment where the treatment is randomly assigned conditioned
on the measured time-varying covariates Lk at each time k “ 0, 1.
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Figure 5.1 shows the causal DAG for a sequentially randomised experiment where the treatment
is assigned at random at each time k “ 0, 1 since the treatment is not affected by any covariates at
any time. This example corresponds to the generalisation of randomised experiments for a fixed
treatment. On the other hand, Figure 5.2 represents an example of a sequentially randomised
experiment where the treatment is randomly assigned conditioned on the measured time-varying
covariates Lk at each time k “ 0, 1. Thus, Figure 5.2 corresponds to the generalisation of
conditionally randomised experiments for a fixed treatment.

However, as for fixed treatments, we often want to identify average causal effects in observational
longitudinal studies. In order to do so, we consider such a study as a sequentially randomised
experiment by requiring sufficient identifiability conditions to hold. Thus, we generalise the
identifiability conditions to observational longitudinal studies as follows:

(i) Consistency:
Y pāq “ Y pā˚q if ā˚ “ ā,

Y pāq “ Y if Ā “ ā,

L̄kpāq “ L̄kpā˚q if ā˚
k´1 “ āk´1,

L̄kpāq “ L̄k if Āk´1 “ āk´1.

(5.2)

(ii) Sequential exchangeability:

Y pāq KK Ak | Āk´1 “ āpĀk´2, L̄k´1q, L̄k “ l̄k (5.3)

for all treatment strategies ā which may depend on Āk´2 and L̄k´1 for k “ 0, 1, . . . , K.

(iii) Positivity:
For PpĀk´1 “ āk´1, L̄k “ l̄kq ° 0 then

PpAk “ ak | Āk´1 “ āk´1, L̄k “ l̄kq ° 0 (5.4)

for all āk and for all l̄k.

Hence, the consistency conditions are now required for both the outcome and the measured time-
varying covariates. Specifically, considering the first equation in Equation (5.2), we assume that
for two treatment strategies which coincide, then the potential outcomes of the outcome Y also
coincide. Moreover, we assume in the second equation in Equation (5.2) that given a treat-
ment strategy then the actual outcome equals the potential outcome corresponding to the given
treatment strategy. Notice that this condition is the time-varying extension of the consistency
condition in Equation (2.7). Furthermore, we assume consistency conditions for the measured
time-varying covariates. In particular, in the third equation in Equation (5.2), we assume that
given two treatment strategies which coincide until time k ´ 1 then the potential outcomes of the
history of the measured time-varying covariates coincide until time k. Moreover, in the fourth
equation in Equation (5.2), the condition is that given a treatment strategy until time k´1 then the
actual history of the measured time-varying covariates until time k equals the potential outcome
corresponding to the given treatment strategy.
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For sequential exchangeability first notice that āpĀk´2, L̄k´1q denotes a treatment strategy until
time k where the k’th value of the treatment depends on Āk´2 and L̄k´1. Thus, this notation
includes dynamic treatment strategies explicitly since the assignment of treatment depends on
the values of the measured time-varying covariates until time k ´ 1. Sequential exchangeability
hence states that for any treatment strategy ā, the treated and the untreated at each time k are
exchangeable conditioned on the history of the measured time-varying covariates L̄k and any
treatment strategy āpĀk´2, L̄k´1q.

The positivity condition requires that if there is a positive probability of Āk´1 and L̄k to occur
simultaneously, then we assume that conditional on these two events occurring, there is a positive
probability of a realisation ak of Ak occurring for all ak such that pak, āk´1q is a valid treatment
strategy.

Thus, for two treatment strategies ā and ā˚, we can identify the average causal effect based on
similar derivations as for the fixed treatment derived in Equation (2.11).

Having extended the theory of causal inference for fixed treatments to time-varying treatments
and outlined the conditions to identify average causal effects in observational longitudinal stud-
ies, we now present how the TMLE method extends to longitudinal studies.

5.3 Longitudinal Targeted Maximum Likelihood Estimation
This section is based on [Lendle et al., 2017] and [Schomaker et al., 2019]. In this section, we
present the longitudinal TMLE (L-TMLE) method which is an extension of the TMLE method
for longitudinal studies.

Consider a longitudinal study. Let Lk, Ak and Yk denote the measured time-varying covari-
ates, the binary time-varying treatment and the binary time-varying outcome at time k for k “
0, 1, . . . , K, respectively, and let O “ pL0, A0, Y0, . . . , LK , AK , YKq „ P0. Moreover, if right
censoring is present in the longitudinal study, then let Ck denote right censoring at time k. Notice
that the ordering of Ak and Ck depends on the particular longitudinal study which we describe
in further detail in Section 6.4. Moreover, let Sk,i be a binary variable of whether individual i is
alive at time k or not where Sk,i “ 1 refers to the individual being alive. Then we let Sk denotes
the vector with entries Sk,i for all i. This binary variable is not needed in all cases and depends
on the censoring mechanism.

First, we note that the structural equations for longitudinal studies are given as in Equation (3.1)
and the SCM is defined as in Definition 3.1.1. Moreover, the target parameter for the average
causal effect of two treatment strategies is given as for non longitudinal studies.
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We now present the L-TMLE method. In the L-TMLE method we apply the sequential g-formula
given by

E
“
YKpāq

‰

“E
«
E

„
¨ ¨ ¨E

”
E

“
YK | ĀK´1 “ āK´1, L̄K

‰
| ĀK´2 “ āK´2, L̄K´1

ı
¨ ¨ ¨ |A0 “ a0, L̄1

⇢
|L0

�

(5.5)

Consider Equation (5.5). The L-TMLE method consists of four steps where the first three steps
are iterated for k “ K, . . . , 1. The reason why we iterate for k “ K, . . . , 1 is to sequentially
estimate and update each of the expected values in Equation (5.5) starting from the innermost
expected value. Thus, in the first step, we estimate ErYk | Āk´1 “ āk´1, L̄ks for all individuals
which are uncensored and alive until time k´1 applying the super learner method. Notice that in
the first iteration, that is, k “ K, then the outcome refers to the measured outcome while for later
iterations then the outcome refers to the prediction from step three. In step two, set Āk´1 “ āk´1

based on the rule āk and predict the outcome at k, which we denote as Ỹ āk
k , based on step one.

In step three, the initial estimator is targeted as for the TMLE method described in Section 3.3.
However, the intercept is now the predicted outcome from step two and the clever covariate in
this case is given by

HpĀ, C̄, L̄qk´1 “
k´1π

s“0

rĀs “ āss
PpAs “ as | L̄s “ l̄s, S̄s “ 1, C̄s´1 “ 1, Ās´1 “ ās´1q

¨ rC̄s “ 1s
PpCs “ 1 | Ās “ ās, L̄s “ l̄s, S̄s “ 1, C̄s´1 “ 1q

¨ rS̄s “ 1s
PpSs “ 1 | C̄s “ 1, Ās “ ās, L̄s “ l̄s, S̄s´1 “ 1q .

(5.6)

Notice that we assume that all individuals are uncensored and alive prior to the beginning of the
study, that is, C´1 “ S´1 “ 1. Also for s “ 0, that is at time zero, the denominator of the
first factor in Equation (5.6) reduces to PpA0 “ a0 | L0 “ l0, S̄0 “ 1, C´1 “ 1q. Moreover
to estimate the probabilities in the clever covariate in Equation (5.6), we again apply the super
learner method.

Thus, step three yields a targeted update of Ỹ āk
k . In step four, we estimate the expression in

Equation (5.5) by the empirical mean of the prediction from step three for k “ 1.
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6 | Applying the TMLE Methods in Practice

In this chapter, we analyse a subset of the Framingham Heart Study1. This study examines car-
diovascular diseases among a population in Framingham (Massachusetts, USA). The particular
data set considered in this chapter consists of 4, 434 individuals and 39 variables. A list of the
variables can be found in Table 6.1 where also a short description of the variables is given. The
study consists of three examinations periods approximately six years apart in the period 1956 to
1968. For each of these examinations, the Time-varying variables in Table 6.1 are measured. At
the first examination attended also the Fixed variables are measured except for Hdlc and Ldlc
which only are measured at the third examination. Moreover, each individual is observed for a
total of 24 years for the outcome of the Variables measured for 24 years in Table 6.1. Further-
more, the data set is subject to right censoring and thus, when considering the entire data set, we
need to adjust for censoring.

The aim of this chapter is to determine if smoking has a causal effect on stroke within 24 years.
That is, smoking is viewed as the treatment and stroke within 24 years as the outcome. We note
that smoking is defined as whether or not an individual is currently smoking at an examination.
In particular, we want to analyse this causal question for both a fixed treatment and for a time-
varying treatment. For the fixed treatment, we do not consider the measurements of the time-
varying variables at the second and third examinations for each individual and examine the causal
question "does smoking at the time of the first examination have a causal effect on stroke within
a period of 24 years". For the time-varying treatment, we consider all measurements of the
variables of the data set. In this particular case, the causal question is "does smoking at the
time of each of the examinations have a causal effect on stroke within a period of 24 years
compared to not smoking at any of the examinations". In order to analyse these causal questions,
we assume the identifiability conditions hold for both the observational non-longitudinal study
considered for the fixed treatment and for the observational longitudinal study considered for
the time-varying treatment. We apply the TMLE and the CV-TMLE methods when examining
the causal question of the fixed treatment and the L-TMLE method when examining the causal
question of the time-varying treatment. Furthermore, all analysis of this chapter is done in R

where we used the packages tidyverse, missForest, sl3, SuperLearner, tmle3 and
ltmle. Specific functionalities mentioned in this chapter are implemented in these packages.
All packages are available through The Comprehensive R Archive Network (CRAN) except the
tmle3 and sl3 packages which are available through GitHub see [Coyle, 2021] and [Coyle
et al., 2021], respectively. Furthermore, all our code is available at https://github.com/
AalborgGit/TMLEandDataprep [Last assessed 02-06-2022].

1The data set can be found at: https://biolincc.nhlbi.nih.gov/studies/framcohort/ [Last
assessed 02-06-2022].
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Table 6.1: List and description of all variables included in the data set [Framingham Heart Study Longitudinal Data
Documentation, 2021].

Variable Name Description

Fixed variables

Randid ID for the individual

Sex The sex of the individual (0=Men, 1=Women)

Educ Education (1=0–11 years, 2=High School Diploma, GED, 3=Some
College, Vocational School and 4=College (BS, BA) degree or more)

Hdlc High Density Lipoprotein Cholesterol, mg/dL

Ldlc Low Density Lipoprotein Cholesterol, mg/dL

Time-varying variables

Period Examination periods (1=First examination, 2=Second examination,
3=Third examination)

Time Number of days since the first examination

Cursmoke Smoking status (0=Not current smoker, 1=Current smoker)

Cigpday Number of cigarettes smoked per day

Age The age of the individual

Sysbp Systolic Blood Pressure, mmHg

Diabp Diastolic Blood Pressure, mmHg

Bpmeds The use of Anti-hypertensive medication (0=Not currently used,
1=Current Use)

Totchol Serum Total Cholesterol, mg/dL

BMI Body Mass Index (BMI)

Glucose Casual serum glucose, mg/dL

Diabetes Diabetes status (0=Not diabetic, 1=Diabetic)

Heartrte Heart rate, beats/min

Prevap Prevalent Angina Pectoris (0=No disease, 1=Prevalent disease)

Prevchd Prevalent Coronary Heart Disease (0=No disease, 1=Prevalent dis-
ease)

Prevmi Prevalent Myocardial Infarction (0=No disease, 1=Prevalent disease)

Prevstrk Prevalent Stroke (0=No disease, 1=Prevalent disease)

Prevhyp Prevalent Hypertensive (0=No disease, 1=Prevalent disease)
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Variables measured for 24 years

Angina Angina Pectoris (0=The event did not occur during follow-up, 1=The
event did occur during follow-up)

Hospmi Hospitalized Myocardial Infarction (0=The event did not occur during
follow-up, 1=The event did occur during follow-up)

Mi_fchd Hospitalized Myocardial Infarction or Fatal Coronary Heart Disease
(0=The event did not occur during follow-up, 1=The event did occur
during follow-up)

Anychd Angina Pectoris, Myocardial infarction (Hospitalized and silent or
unrecognized), Coronary Insufficiency (Unstable Angina), or Fatal
Coronary Heart Disease (0=The event did not occur during follow-
up, 1=The event did occur during follow-up)

Stroke Atherothrombotic infarction, Cerebral Embolism, Intracerebral Hem-
orrhage, or Subarachnoid Hemorrhage or Fatal Cerebrovascular Dis-
ease (0=The event did not occur during follow-up, 1=The event did
occur during follow-up)

Cvd Myocardial infarction (Hospitalized and silent or unrecognized), Fa-
tal Coronary Heart Disease, Atherothrombotic infarction, Cerebral
Embolism, Intracerebral Hemorrhage, or Subarachnoid Hemorrhage
or Fatal Cerebrovascular Disease (0=The event did not occur during
follow-up, 1=The event did occur during follow-up)

Hyperten Hypertensive (0=The event did not occur during follow-up, 1=The
event did occur during follow-up)

Death Death from any cause (0=The event did not occur during follow-up,
1=The event did occur during follow-up)

Timeap Number of days from first examination to first Angina during the
follow-up or number of days from first examination to censor date

Timemi Defined as above for the first Hospmi event during follow-up

Timemifc Defined as above for the first Mi_fchd event during follow-up

Timechd Defined as above for the first Anychd event during follow-up

Timestrk Defined as above for the first Stroke event during follow-up

Timecvd Defined as above for the first Cvd event during follow-up

Timehyp Defined as above for the first Hyperten event during follow-up

Timedth Defined as above for Death during follow-up
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In order to analyse the beforehand mentioned causal questions, we clean the data set in Section
6.2 in order to perform these analyses. Since there are missing values in the data set, we first
describe the method used to handle these missing values in the following section.

6.1 Handling Missing Values
This section is based on [Stekhoven and Buhlmann, 2011, pp. 112–114]. Since FDA does not
allow parametric statistical models for causal inference, as we described in the beginning of
Chapter 3, we choose to use a non parametric imputation method to handle the missing values in
the data set. Hence, in this section, we present the miss forest imputation method.

First, we examine which variables contain missing values. In Table 6.2, we present which vari-
ables in the data set we encountered missing values for as well as the number of missing values
for these variables.

Table 6.2: The variables with missing values in the data with their associated number of missing values.

Variable Name Number of Missing Values
Heartrte 6

Bmi 52
Cigpday 79

Educ 295
Totchol 409
Bpmeds 593
Glucose 1440

Hdlc 8600
Ldlc 8601

Notice that the data set is in long format, that is, each individual is represented by multiple rows
in the data set and thus the number of missing values can exceed the number of individuals.
Moreover, recall that Hdlc and Ldlc only are measured at the third examination and thus are
missing by design for first and second examinations. We now introduce the notation used in
order to describe the miss forest imputation method.

Let X “ pX1, X2, . . . , Xpq where p is the number of variables and let n be the number of
observations. Furthermore, for a variable Xs where s P t1, . . . , pu containing missing values,
let ipsq

mis Ä t1, . . . , nu and ipsq
obs “ t1, . . . , nuzipsq

mis be the entries containing missing values and
observed values for the variable Xs, respectively. In the miss forest imputation method, for each
variable Xs, categorical or continuous, we make the following split. Let ypsq

obs and ypsq
mis denote the

observed values and missing values of Xs, respectively. Furthermore, let xpsq
obs and xpsq

mis denote the
remaining variables at entries ipsq

obs and ipsq
mis, respectively.
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We now present the miss forest imputation method in Algorithm 1 where the stop criterion � of
the algorithm is described after the description of the method.

Algorithm 1 Miss Forest
Require: An n ˆ p matrix X and stopping criterion �.

X imp
new – Mean imputation for missing values in X;

k – Sorted indices of variables in X with missing values in increasing order;
while not � do

X imp
old – X imp

new;
for s in k do

Fit a random forest model with ypsq
obs as the response variable and xpsq

obs as the predictors;
Predict ypsq

mis with the data xpsq
mis;

X imp
new – X imp

old with new prediction of ypsq
mis;

end for
Update �;

end while
return X imp

new

Thus, Algorithm 1 first replaces all the missing values by using a mean imputation. Afterwards,
the variables which contained missing values in X are updated using a random forest model.
Specifically, the variables are updated in increasing order based on the number of missing values
of the variables. This process in iterated until the stop criterion � is fulfilled which we present in
the following.

Let N denote the index set of the continuous variables in X . Then the difference between the
continuous variables in successive iterations of the miss forest imputation method is given by

�N “
∞

jPN

���X imp
new,j ´ X imp

old,j

���
2

∞
jPN

���X imp
new,j

���
2 (6.1)

where X imp
new,j and X imp

old,j denotes the j’th column of X imp
new and X imp

old , respectively. Furthermore, let
F denote the index set of the categorical variables in X . The difference between these variables
in successive iterations of the miss forest imputation method is given by

�F “
∞

jPF
∞n

i“1 rpX imp
new,jqi ‰ pX imp

old,jqis
∞

jPF |ipjq
mis,F |

(6.2)

where pX imp
new,jqi and pX imp

old,jqi denotes the i’th entry in X imp
new,j and X imp

old,j , respectively. Further-
more, |ipjq

mis,F | denotes the number of missing values for j’th categorical variable. Then if there
is an increase in �N and �F , for X consisting of both continuous and categorical variables, the
stopping criterion, � is fulfilled.
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Having described the method used for handling the missing values of the data set considered in
this chapter, we now present the cleaning of this data set in the following section.

6.2 Data Cleaning
In this section, we present the process of cleaning the data set introduced in the beginning of
this chapter. The aim of this section is to prepare the data set for applying the L-TMLE method
as well as the TMLE and the CV-TMLE methods in order to analyse the corresponding causal
questions introduced previously in this chapter. Notice that for the TMLE and the CV-TMLE
methods, we only use a subset of the data set used for the L-TMLE method. Thus, in particular,
we present how the data set is prepared for the L-TMLE analysis.

The subset of the Framingham Heart Study considered in this chapter is as mentioned provided in
long format, that is, for each individual, we have one row representing one examination attended
by the individual. Hence, we have a maximum of three rows for each individual. For each of these
rows, besides the time-varying variables in Table 6.1 which are measured at each examination,
the variables measured for 24 years and the fixed variables are also provided. Notice that these
particular variables are considered as fixed variables. In order to apply the L-TMLE method, we
need to provide the data set in wide format, that is, one individual is represented by only one row.
Moreover, we need to handle the missing values where we use the method presented in Section
6.1. In the following, we outline the process of converting the data set from long to wide format
and how the missing values are imputed as well as how we treat unattended examinations which
are not due to right censoring.

First, we notice that the variables Hdlc and Ldlc are only measured at the third examination.
Thus, all missing values of these variables for the first two examinations are missing by design.
Since we do not have any observations for these examinations, we decide to consider these
variables as fixed. However, for individuals right censored before the third examination, we have
no observation of these variables. Moreover, for some of the individuals who attended the third
examination, these variables are also missing. Hence, we need to handle these specific missing
values separately which we describe in the following.

Specifically, we first identify, the last examination attended for each individual. This is done
by grouping the individuals based on Randid using the group_by function and then using
the filter function in order to extract the the row with the maximal value of Period. This
results in a data set consisting of only one row for each individual corresponding to the last
attended examination. Having done so, we use missForest with parallel programming in
order to obtain a more efficient imputation method to impute for the missing values of this data
set. Then we use the select function to extract the columns Randid, Period, Hdlc and
Ldlc in the imputed data set for the maximal period of each individual. This is done since we
are only interested in the variables Hdlc and Ldlc where we use Randid and Period in
order to combine these with the original data set.
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The original data set is then left joined, using the left_join function, with this data set where
we join by Randid and Period. This adds two new columns to the original data set containing
the Hdlc and Ldlc columns from the imputed data set and hence, we remove the original Hdlc
and Ldlc variables. Therefore, we now have one observation of Hdlc and Ldlc for each
individual where this observation is present in the last attended examination.

Before handling the remaining missing values, we need to add rows for the individuals who
did not attend an examination prior to their last attended examination. This could for example
be an individual attending only examinations one and three. This is required since the ltmle
function which we use for applying the L-TMLE method can only handle missing values due
to right censoring. Hence, we use the complete function on Randid and Period in order
to fill in rows for all individuals who did not attend all examinations, that is, one row for each
individual for each value of Period. We note that the values of Randid and Period will also
be filled in when applying the complete function. However, when doing so, we also add rows
for the individuals who are lost to follow up due to right censoring. Since right censoring can be
handled by the ltmle function, we do not want to impute for these individuals. Thus, we want
to remove the rows which correspond to a right censoring which we explain in the following.

First, we identify which individuals did not attend all examinations. Hence, we begin with ap-
plying the rle function on the Randid variable in the original data set which returns a count
of each value in Randid. That is, we have a list of how many examinations each individual
attended. Then we extract from the data set the rows of the individuals who did not attend all
three examinations. However, this data set then also contains the individuals who did not attend
an examination prior to their last attended examination. Thus, we start by filtering the individuals
which maximal value of Period is not three. This is done since for the individuals who attended
the third examinations, we want to impute for the unattended examination. Thus, we now have a
data set consisting of individuals who are right censored in the sense that they did not attend the
third examination. For each of these individuals, we want to remove the row corresponding to
the third examination. This is done by using anti_join on the complete data set and the data
set containing the individuals censored in the third examination.

However, some of these individuals were already right censored for the second examination and
thus, we want to identify these individuals in order to also remove the row corresponding to the
second examination. This is done by extracting the rows corresponding to the individuals who
were censored in the third examination from the data set constructed by anti joining the complete
data set and the data set containing the censored individuals in the third examination. Then we
filter based on the second Period and test which rows have missing values for Sex. Notice
that the variable Sex had no missing values in the original data set and thus a missing value of
this variable is introduced from adding a row representing an examination not attended. At last,
we anti join this data set with the data set from the beforehand mentioned anti join. Thus, we
have now removed the rows corresponding to right censoring.

Having added rows for the individuals who did not attend an examination prior to their last
attended examination, we can now handle the missing values. First, we fill in the missing values
of the constant variables which already have an observation for another examination by using the
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fill function. This is mainly for the rows, we have just added and for the variables Hdlc and
Ldlc which only have an observation at the last attended examination. Moreover, the variables
Age and Time can be calculated based on their values for the attained examinations. Notice that
we here assume that for each individual the time between the first and second examination is the
same as the time between the second and third examination. Then we apply missForest with
parallel programming for imputation of the remaining missing values.

Now what remains is to change the format of the imputed data set from long to wide. First,
we combine the time-varying variables of Table 6.1 into two columns using gather where
the first column contains the variable names and the second column contains their respective
values. Since we want the data set in wide format, we want to be able to distinguish between for
example Age from the first examination and Age from second examination. Thus, we use the
unite function where we unite the column containing the variable names of the time-varying
variables with Period such that for example Age from the first examination will be denoted as
Age_1 and, analogously, Age for the second and third examinations will be denoted Age_2 and
Age_3. Having done so, we now have a column of all the variables which we want to convert to
wide format. Hence, we then use the spread function on the column with the variable names
of the time-varying variables and the column with the corresponding values. The resulting data
set is then in wide format and contains only missing value which are due to right censoring.

Having cleaned the data set, we in the following sections analyse the causal questions intro-
duced in the beginning of this chapter using the TMLE, CV-TMLE and the L-TMLE methods,
respectively.

6.3 TMLE and CV-TMLE
In this section, we analyse the causal question "does smoking at the time of the first examination
have a causal effect on stroke within a period of 24 years". In order to analyse this causal
question, we use a subset of the data set obtained in Section 6.2. The data set consists of the
fixed variables, the variables measured for 24 years and the variables corresponding to the first
examination. We apply the TMLE and CV-TMLE methods in order to determine if there is an
average causal effect of smoking at the time of the first examination on stroke within a period
of 24 years. Specifically, we use the tmle3 package and the usage of this package is based on
[van der Laan et al., 2022].

By using the super learner package sl3, we define the methods which we want the super learner
method to use in order obtain an initial estimate and an estimate of the clever covariate. As earlier
mentioned, we do not use parametric methods in the super learner method. Thus, by using the
make_learner function, we use the xgboost, randomForest and mean methods from
the sl3 package and the ipredbagg method from the SuperLearner package. Finally, we
use the function Lrnr_sl to define the learner_list which is an argument in the ltmle3
function specifying the list of methods used for the super learner method.
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First, we use the CV-TMLE method. In order to do so, we apply the tmle3 function which
has CV-TMLE as default where we in particular use 10-fold cross validation. Specifically, we
create a spec object which specifies the parameter of interest, that is, the average causal effect
which is done by using the function tmle_ATE. We then use the tmle3 function to estimate
the average causal effect.

Then to use the TMLE method, we manually disable the additional layer of cross validation used
in the CV-TMLE method. This is done by using the ate_spec function in combination with the
Targeted_Likelihood function with the argument updater=list(cvtmle=FALSE).
We then use the fit_tmle3 function to obtain the estimate. In the following table, the esti-
mates and 95% confidence intervals obtained by the CV-TMLE and TMLE methods are shown.

Table 6.3: CV-TML and TML estimates with associated 95% confidence intervals.

Method Estimate 95% Confidence Interval
CV-TMLE -0.0020 [-0.0053, 0.0013]

TMLE -0.0009 [-0.0029, 0.0011]

Notice that the 95% confidence intervals are calculated as explained in Section 4.3.

We observe in Table 6.3 that by applying the CV-TMLE and TMLE methods there is no average
causal effect since zero is contained in both confidence intervals. Hence, we conclude that based
on the TMLE and CV-TMLE methods, when considering the 95% confidence intervals, that
there is no average causal effect of smoking at the time of the first examination on the outcome
of stroke within a 24 years period.

6.4 L-TMLE
In this section, we analyse the causal question "does smoking at the time of each of the examina-
tions have a causal effect on stroke within a period of 24 years compared to not smoking at any
of the examinations". In particular, we are interested in examining the two treatment strategies,
presented in Section 5.1, āT “ p1, 1, 1q and āC “ p0, 0, 0q. Thus, we examine the value of

ErY pĀ “ āT qs ´ ErY pĀ “ āCqs. (6.3)

In order to analyse this causal question, we apply the L-TMLE method presented in Section 5.3.
This method requires a particular time ordering. Thus, we first rearrange the variables such that
we have the ordering O “ pW,A1, L1, . . . , A3, L3, Y q where W denotes the fixed covariates, Ak

the treatment at examination k, Lk the time-varying covariates at examination k and Y is the
outcome.
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However, as mentioned previously, the data set is subject to right censoring. The ltmle function
which is used estimate the average causal effect by applying the LTMLE method can handle
right censoring but in order to do so, we need to construct a time-varying censoring variable
which specifies which individuals are censored at the three examinations. That is, this censoring
variable only concerns with right censoring due to an individual being lost during follow up and
not the individuals for which the outcome at the end of follow up has not occurred.

Hence, we construct the variables c2 and c3 denoting which individuals are censored before
the second and third examinations, respectively. Notice that no individuals are censored before
the first examination and thus, we only need to define the censoring variables corresponding to
censoring prior to the remaining examinations. Since missing values now only occur due to right
censoring, we can construct c2 and c3 based on whether or not any variables in L2 and L3,
respectively, have missing values. This results in two binary variables for which we then use the
BinaryToCensoring function such that the levels of these two variables are censored and
uncensored. This is required for the censoring variables used in the ltmle function.

Returning to the time ordering O “ pW,A1, L1, . . . , A3, L3, Y q then we want to include the
censoring variables appropriately. Notice that, the ltmle function requires that missing values
only occur after an individual has been censored, that is, the corresponding censoring variable
must be placed prior to the censorings. Thus, it is important that the censoring variables are
placed prior to the corresponding treatment variables since the treatment values also are missing
if an individual has missing values for the corresponding time-varying variables since all these
variables are measured at the examinations. Hence, if we denote the censoring variables as C2

and C3, we have the following time ordering O “ pW,A1, L1, C2, A2, L2, C3, A3, L3, Y q.

Furthermore, we need to specify the algorithms used in the super learner method to obtain the
initial estimate and an estimate of the clever covariate. We choose the methods RandomForest
and xgboost. In Table 6.4, we present the L-TML estimate and the corresponding 95% confi-
dence interval.

Table 6.4: LTML estimate with associated 95% confidence interval.

Method Estimate 95% Confidence Interval
L-TMLE ´0.0009 r´0.0342, 0.0325s

By applying the L-TMLE method, when considering the 95% confidence interval in Table 6.4, we
conclude that there is no average causal effect of smoking at the time of each of the examinations
on stroke within 24 years compared to not smoking at any of the examinations.
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7 | Conclusion

To summarise, we have in this master’s thesis presented theory of causal inference for both
non-longitudinal and longitudinal studies as well as examined various methods for estimating
causal effects in practice. That is, we defined a causal effect, average causal effect and presented
causal DAGs, (conditional) randomised experiments and the identifiability conditions. Then
we considered the inverse probability weighting and standardisation methods which under the
identifiability conditions can be used to identify average causal effects in observational studies.

Then we presented structural causal models which we used to define the target parameter where
we in this master’s thesis focused on the average causal effect. Afterwards, we described the
TMLE method which consists of two steps where we in the first step obtain an initial estimator
by applying the super learner method and in the second step we target the initial estimator such
that we obtain an optimal bias-variance trade-off for the target parameter.

Furthermore, we considered the CV-TMLE method which is an extension of the TMLE method
where we apply an extra layer of cross validation to the method. Then we showed that the CV-
TML estimator is an asymptotic linear estimator where we also presented influence functions.
Moreover, we extended the definition of a causal effect and an average causal effect and presented
the identifiability conditions for observational longitudinal studies. This was done in order to
present the L-TMLE method which is an extension of the TMLE method such that the method
can be applied to longitudinal studies.

At last, we considered a subset of the Framingham Heart Study. First, we cleaned the data set
where we applied the miss forest imputation method to adjust for missing values and converted
the data to wide format. This was done in order to apply the TMLE, CV-TMLE and L-TMLE
methods. In particular, we then applied the TMLE and CV-TMLE methods in order to analyse
the causal question "does smoking at the time of the first examination have a causal effect on
stroke within a period of 24 years". At last, we applied the L-TMLE method in order to analyse
the causal question "does smoking at the time of each of the examinations have a causal effect
on stroke within a period of 24 years compared to not smoking at any of the examinations". We
then concluded from the confidence intervals for the TMLE and CV-TMLE methods that there
was no causal effect of smoking at time of the first examination on the on outcome stroke within
a 24 years period. Furthermore, we concluded from the confidence intervals for the L-TMLE
method that there was no causal effect of smoking at the time of each of the examinations on
stroke within 24 years compared to not smoking at any of the examinations.
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