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Synopsis:

In this master thesis it is investigated how
multiple delaminations in fiber compos-
ites can be promoted by using toughen-
ing/weakening patches in order to improve
damage tolerance. This is done by first
investigating state-of-the-art methods for
toughening the interface between the lay-
ers in composite materials, to determine
the ones that qualifies for being used as
patches in DCB specimens.
Four different arc-length solvers are pre-
sented and implemented to solve the inher-
ent nonlinear behavior associated with de-
lamination problems. A parameter study
has been done alongside the implementa-
tion of the arc-length solvers. The param-
eter study are conducted on the param-
eters of the patches and their placement
in the DCB specimens. The findings from
the parameter study are used to manufac-
ture DCB specimens for the experimen-
tal tests, where four different patches are
tested. Specifically, two interleaving meth-
ods and a stitching method are used as
toughening patches. Additionally, DCB
specimens with a weakening patch is also
used. The results show that the weak-
ening patch promotes multiple delamina-
tions, which improves the fracture resis-
tance by approximately 50%, whereas it
was not possible to promote multiple de-
laminations with toughening patches.

The content of the report is freely available, but publication (with source reference) may only

take place in agreement with the authors.



Resumé

Denne kandidatafhandling undersøger, hvordan multiple delamineringer i fiberkompositter
kan fremprovokeres ved at forstærke eller svække interlaminære områder, med det formål
at forbedre skadetolerancen.
Dette gøres ved at undersøge state-of-the-art og brainestorme forskellige metoder til at
forstærke eller svække områder i fiberkompositten.
Den efterfølgende undersøgelse tager udgangspunkt i to dele, som er udført sideløbende.
Dette omfatter udarbejdelse og implementering af numeriske bue-længde løsere til anven-
delse i et Finite Element Program. Fire bue-længde løsere er undersøgt og implementeret.
To af disse baserer sig på en geometriske begrænsnings ligninger, hvilket kan give proble-
mer i tilfælde, hvor lokal materiale ustabilitet forekommer. Dette kan løses, ved i stedet
at definere bue-længde løseren baseret på en ligning, der relaterer sig til mængden af en-
ergien, der dissiperes i modellen. Dette anvendes i de to resterende bue-længde løsere, der
er implementeret. Alle fire bue-længde løsere er valideret op mod en flytningskontrolleret
finite element løsning. Robustheden af den ene løser er dog begrænset.
Sideløbende med bue-længde løserne er der lavet et parameterstudie. Dette parameter-
studie udføres på paramenterne for de interlaminære områder, der forstærkes eller svækkes
i fiberkompositten, samt deres placering i såkaldte Double Cantilever Beam (DCB) emner.
Resultaterne fra parameterstudiet anvendes til at fremstille DCB emner til de eksperi-
mentelle forsøg. Der fremstilles en type, hvor et interlaminært område svækkes, og tre
hvor et interlaminært område forstærkes. Specifikt anvendes der en tynd PTFE-film til
at svække det interlaminære område, hvor der ved forstærkningen af det interlaminære
område anvendes to forskellige mikrofiber måtter og en syningsmetode.
Resultaterne fra de eksperimentelle forsøg viser, at ved at svække de interlaminære om-
råder kan der fremprovokeres multiple delamineringer, hvilket forbedrer sejheden med ca.
50%. Det var derimod ikke muligt at fremprovokere multiple delamineringer med de to
forskellige mikrofiber måtter eller syningsmetoden.
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Delamination of composites 1
The application of fiber reinforced, polymer-matrix (FRP) composite materials were at
first introduced in the aerospace and aeronautics industry, but has since spread to other
industries (Turon, 2007). A FRP composite is in general described as individual lamina
stacked together to form a laminate, with the desired properties. Often composite materials
are associated with high performance structures and nowadays also counts industries within
naval engineering, civil engineering, automobile, high end sporting equipment, etc.

Generally, the reason for utilizing composite materials in structural components are its
often superior properties, compared to conventional materials like e.g. steel. Especially, a
high specific strength and stiffness, and the possibility for directionally tailored properties
are the main benefits. Additionally, good fatigue properties, corrosion resistance, wear
resistance etc. are often associated with composite materials. (Jones, 1999)

However, using composite materials in a structural design also comes at cost as it greatly
complicates the design phase. This is due to e.g. added coupling terms, new failure modes,
directional dependent properties, etc. This further complicates the prediction of the service
life of a component.

Nonetheless, the advantages seems to outbalance the added complexity, as composites in
many cases has either maintained or increased their importance within the aforementioned
industries, since their introduction.

In addition to the introduction of advanced material, like composites, the demand for more
efficient, lighter or larger structures, have over time led to new design approaches. These are
needed in order to comply with new requirements, material and manufacturing cost while
securing the structural integrity of components. According to Braga et al. (2014) three
design approaches are generally used to handle fatigue in the design of high performance
structures. These are safe-life, fail-safe and damage tolerant design, respectively.

Although the safe-life and fail-safe design approach are still in use, the most commonly
applied design approach today, when considering high performance structures, are based
on the damage tolerant design approach. This is mainly due to the limitations in the safe-
life and fail-safe design philosophies which in some cases have lead to disastrous premature
failure due to unforeseen failure modes. In other cases these have lead to unnecessary high
safety factors or a uneconomically short service life (Boller and Buderath, 2007).

Damage tolerance is a measure of a structures or materials capability to sustain a load
and/or functionality, when damaged. Thus, the structure is designed to safely operate even
though damage is present. Further, in this design philosophy damage are allowed to grow
throughout the service period, but must not become critical before it is detected (Braga
et al., 2014). Thus, the damage tolerant design provides a guidance for, when to replace or
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1.1. Failure Mechanism in Composite Materials Aalborg University

repair damaged components, while also taking into account the risk of final failure under
continued service (Goyal, 2002).

The main advantages of this approach is the possibility of utilizing the materials much
more efficiently, which may lead to more optimized structures (Boller and Buderath,
2007). Furthermore, the damage tolerant design philosophy, allows for extending the
service lifetime of structures, compared to the safe-life and fail-safe design approaches, by
monitoring the amount of damage throughout its service life (Braga et al., 2014).

However, implementation of a damage tolerant design philosophy requires thorough
understanding of the materials including among others strength, fatigue properties,
potential damage mechanisms and modes. Also advanced analysis methods that can
predict damage initiation and propagation as a function of the in-service loads are needed.
These modelling techniques are used along with conditional non-destructive inspection
(NDI), live monitoring of damage in the structure and repair to ensure that non of the
existing damage becomes critical in between two subsequent inspections. (Tavares and
de Castro, 2018)

Additionally, a structure can be made more damage tolerant by using damage tolerant
materials. Such materials should to a high degree exhibit stable crack growth. This implies
that the load level needed to promote unstable crack growth, must be substantially higher,
than the load level needed to initiate a crack. Thereby, materials which shows a toughening
behaviour as a crack develops and grows is especially suited for damage tolerant designs.
(McGugan et al., 2015)

1.1 Failure Mechanism in Composite Materials

Based on the introduction of the damage tolerant design approach in the previous section,
it is clear that a thorough understanding of potential failure modes is required in order to
use the damage tolerant design approach.

Failure in composite materials can overall be divided into two categories, intra-lamina and
inter-laminar failure, respectively. Intra-lamina failure refers to failure modes within a
lamina, while inter-laminar failure refers to failure in the interface between two adjoined
laminas. However, it is often not enough to treat these types of failure separately as they
often interact with each other (Goyal, 2002).

Often encountered intra-lamina failure modes are fiber failure, matrix failure and
matrix/fiber interface failure or debonding. Fiber failure can occur due to tensile fracture,
crushing or local compressive buckling or kinking. Matrix failure is typically associated
with matrix cracking. However, also effects such as material degradation due to radiation
or moisture can cause matrix failure. (Turon, 2007).

Inter-laminar failure is normally caused by loss of adhesion between adjoined laminas
and typically happens due to the weak interface strength, which is commonly found in
composite materials. This type of failure is referred to as delamination and is one of the
most frequently seen failure modes in composite materials. Delamination is often the main
failure mode, which ultimately leads to final failure. (Trabal et al., 2022a) (Turon, 2007)

However, simply the presence of delamination does not necessarily mean the structure is
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1.2. Modelling of delamination Aalborg University

about to fail or at the end of its service life. (Turon, 2007). This is utilized in the damage
tolerant design philosophy where the existence of delamination flaws in a structure are
accepted as long as they are not critical.

Methods that can arrest or slow down delamination by increasing the through-thickness
toughness in composite materials can therefore extend the service life of composite
structures. This is beneficial from an economical point of view, especially when high
performance structures are considered. Details on methods for improving toughness are
explained later in section 1.3.

As mention above, delamination occurs due to loss of adhesion in a interface and it is
caused by e.g. manufacturing defects, out of plane loading, intralaminar damage, abrupt
changes in the layup, free edges, bonded joint, material configuration, temperature and
moisture effects or a combination hereof (Trabal et al., 2022a) (Turon, 2007).

Looking at a microscopic scale, delamination growth follows in the wake of a damage zone
formed at the delamination tip. The size, shape and evolution of this zone depends on e.g.
the resin ductility, toughness and the state of loading. Further, once delamination growth
occurs other mechanisms, such as fiber bridging and fiber breakage hinders further growth
by increasing the fracture toughness (Turon, 2007).

Due to the high number of variables, delamination evolution is difficult to predict.
However, such prediction are needed, in the damage tolerant design approach, as the
degree of delamination is decisive for the structural integrity. Additionally, delamination
can lead to a redistribution of the loads in a structure, thereby causing failure in
other components (Turon, 2007). Prediction of delamination evolution requires advanced
modelling techniques and in this work, delamination is modelled with cohesive zone
modelling as explained in the next section.

1.2 Modelling of delamination

Delamination in composites is in essence a crack initiation and propagation problem. In
continuum mechanics a crack, as illustrated in Figure 1.1, is defined as a discontinuous
surface in a body. In its unloaded state the upper and lower crack surfaces are coincident
and are only capable of transferring compression and shear stresses. (Bak, 2015)

Unloaded crack 
surface

F

F

Upper crack
surface

Lower crack 
surface

Figure 1.1. Crack in a continuum.

There exist three basic modes a crack can open in. These are mode I, mode II and mode
III. Mode I is the mode that dissipates the smallest amount of energy. Therefore, regardless
of the initial opening mode of the crack, it will gradually change direction during the crack
propagation state until it reaches a mode I configuration. However, this is not necessarily
true for laminated composite materials, as a crack in many cases is restricted to grow in the
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interfaces in between the layers. Due to this, delamination cracks in composite materials
can propagate in any mixed mode configuration. (Bak, 2015)

The modelling approaches of a crack growth problem, such as delamination in a laminate
can broadly be divided into two modelling categories; linear elastic fracture mechanics
(LEFM) and cohesive zone modelling (CZM). (Trabal et al., 2022b) In this work, the
cohesive zone modelling approach is used.

The cohesive zone modelling approach is an attempt to accurately describe the crack,
by introducing a cohesive zone. Contrary to the LEFM approach, where damage only
develops at the crack tip, the introduction of the cohesive zone allows for representing
material separation mechanisms e.g. fiber bridging, which extent quite far from the crack
tip. This is beneficial when used to model composite materials, as these often have quite
large damage zones. (Sun and Jin, 2012)

Another advantage of the cohesive zone modelling approach, compared to the LEFM
modelling approach, is that it can be formulated such that both prediction of crack
initiation and propagation are combined into one model. (Turon et al., 2006)

As mentioned above, the cohesive zone modelling approach introduces a cohesive zone. In
the cohesive zone, tractions are added in order to balance the crack opening forces. By
doing so, the stress singularity in front of the crack tip, inherent from LEFM, is removed
(Bak, 2015). Thereby, the cohesive zone is normally described as cohesive surfaces held
together by cohesive tractions, and failure is assumed to have occurred upon full separation
of these surfaces. The size of this cohesive zone depends on the opening mode, where mode
II and III generally have the largest zone (Turon, 2007).

The cohesive zone is placed either behind or in front of the crack tip, depending on the
method used. However, in this work the crack tip is defined as the point, where the
tractions are at a maximum and the cohesive zone is placed behind the crack tip as
illustrated in Figure 1.2.

Cohesive zone 
Crack Tip

τ Tractions

Figure 1.2. Example of the cohesive zone with tractions in a DCB specimen.

The relation between the cohesive tractions and the separation of the crack faces, which
describes the material failure process, is formulated by a traction-separation law as stated
in Equation 1.1. This is a generic expression that relates the separation, S, of the cohesive
surfaces to the cohesive tractions, τ , in the cohesive zone.

τ = τ o f(S/Sf ) (1.1)
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Where τ o and Sf in Equation 1.1 is used to describe critical values of the tractions and
separation, respectively. τ o is also referred to as onset traction, and defines damage
initiation. Sf describes the separation distance, at which the interface strength is fully
lost. f is a dimensionless function describing the shape of the traction-separation law. A
generic traction-separation law is illustrated in Figure 1.3, and the area under this curve
is defined as the critical energy release rate, Gc.

In order to apply the different cohesive traction-separation laws, it is necessary to determine
cohesive zone related material properties, such as the onset traction, τ o, critical energy
release rate, Gc, or the critical separation distance, Sf (Sun and Jin, 2012).

τ

S

τo

Sf

Gc

Figure 1.3. Example of a generic cohesive
traction-separation law. τo is the onset
traction and Sf is the critical separation.

τ

S

τo

Sf

A
B

C D

Figure 1.4. Damage evolution during
crack growth.

In order to control the damage evolution in the model and ensure irreversible crack growth
a damage parameter, d, can be introduced (Bak, 2015). This is explained with offset in
Figure 1.4. Prior to loading there are no damage in the interface. If an overload is applied
to the cracked body, i.e. the onset traction τ o is exceeded, damage initiates. This results
in the separation between the two cohesive surfaces gradually increases and the strength
of the interface decreases. This is illustrated with curve A-B in Figure 1.4. During this,
the value of the damage parameter, d, is increased according to the amount of interface
degradation. (Bak, 2015)

If the overloading stage is followed by unloading, the traction separation law traces the
linear curve B-C to the origin. In this stage the damage parameter, d, is constant as no
further damage occurs. The energy dissipated during the overloading stage is equal to the
area under the curve, marked with grey in Figure 1.4. If the crack is overloaded again,
curve C-B is first traced without increasing the amount of damage and then curve B-D is
followed and damage evolves (Bak, 2015).

In point, D, the separation equals the critical separation, Sf , and the tractions, τ , becomes
zero, as illustrated in Figure 1.4. At this point the strength of the interface is lost and
the amount of dissipated energy is equal to the critical energy release rate, Gc, for the
interface. (Sun and Jin, 2012).

As mentioned, damage initiation is governed by the onset traction, τ o, in Figure 1.3. Thus,
if only one of the modes, either pure mode I, mode II, or mode III, are present in the crack,
damage onset occurs when the interlaminar traction belonging to the mode, exceeds its
onset traction τ o.
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Similar, crack propagation is governed by the energy release rate, G, and crack propagation
starts when the energy release rate, G, equals the critical energy release rate, Gc. Thus, if
only one of the modes are present in the crack, it starts to propagate as soon as the energy
release rate equals the critical energy release rate for the specific mode i.e. the area under
the traction-separation law. (Sun and Jin, 2012)

Under mixed mode conditions this is not as straight forward, and the traction-separation
law must be able to take the mode interaction into account. This is necessary as the mode
mixity e.g. affects how the crack propagates. (Bak, 2015) (Turon, 2007)

Cohesive zone modelling is often applied in the modelling of delamination in composite
structures, as the interface between each layer in a laminate can be considered as a cohesive
zone (Sun and Jin, 2012). This is normally done in a finite element framework, where there
are generally two main methods for introducing the cohesive zone. This is done as either
discrete inter-element cracks or discrete intra-element cracks, respectively (Turon 2007).
In this work, the inter-element approach is used. In the inter-element approach cohesive
elements are placed in the interfaces between the layers of the laminate, where the crack
is expected to grow.

However, modelling crack initiation and propagation problems, with a cohesive zone
modelling approach in a finite element framework is not unproblematic. Especially, the
large variation of the tractions within and near the cohesive zone requires a fine element
discretization. Trabal et al. (2022b) states that 3-10 elements must be used in the damage
process zone, to get accurate results while also maintaining the computational efficiency.
Additionally, a too coarse mesh may cause numerical oscillations in the structural response.
This is caused by the inability of the coarse mesh to represent the tractions in the cohesive
zone. This can further lead to convergence problems.

Thus, in a standard finite element program, modelling of crack propagation requires, that
the full potential extension of the crack is modelled with equally fine elements. Due to the
small length scale of the cohesive zone, relative to the full potential extension of the crack
in large scale structures, the computational efficiency decreases (Trabal et al., 2022b).

1.3 Toughening of composites by promoting multiple
delaminations

As mentioned in chapter 1, the damage tolerance of a structural component can be
improved by using materials, which exhibits a toughening behaviour when cracks develops.
Further, as explained in section 1.1, delamination is one of the main failure modes leading
to final failure in composite structures and is typically caused by a weak interface between
the individual layers.

In order to minimize the occurrence of delamination, several methods to toughen the
interface are suggested in the literature. Some of the most common toughening methods
are matrix modification, interleaving and through the thickness reinforcement.

These methods are normally introduced in interfaces that are highly exposed to
delamination cracks. However, in this work a novel way of increasing the toughness is
investigated.
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Rask and Sørensen (2012) observed through experimental tests on DCB specimens, loaded
with uneven bending moments, that onsetting new delamination in a composite material
changes the damage mechanism which ultimately lead to a higher toughness. Specifically,
their results showed, the steady-state fracture toughness increased in a almost proportional
manner to the number of secondary cracks onset during the experiments. However,
increasing the fracture toughness by onsetting new delamination cracks was not the focus
of this article. Thus, it was only noted as a short remark without any further investigation.

Goutianos and Sørensen (2016) later showed, through numerical and analytical models,
that the through-thickness fracture toughness in delamination problems can be increased,
by onsetting multiple delaminations in the laminate. The analytical model developed
in Goutianos and Sørensen (2016), is based on the J-integral and assumes pure mode I
loading. This model predicts that the increase in the fracture toughness increases linearly
with the number of new onset delamination cracks. Goutianos and Sørensen (2016) further
verified through a numerical model, that the fracture toughness is increased by onsetting
new delamination crack. However, the found fracture toughness in the numerical models
did not increase linearly with the number of new delaminations as the toughness was found
to also depend on the geometry and interface properties.

Trabal et al. (2022a) recently investigated the possibility for increasing the toughness, by
promoting multiple delaminations by purposely inserting patches in specific locations in
the interfaces. This was done through a numerical parameter study, where both weakening
and toughening patches were introduced in double cantilever beam (DCB) specimens. The
patches were modelled by cohesive interfaces with either increased or decreased interface
properties, i.e. onset traction, τ o and critical energy release rate, Gc. By introducing the
patches Trabal et al. (2022a) were able to promote multiple delaminations for both cases,
and as a consequence toughening the structure. The toughening effect is a result of an
additional crack surface being formed, thereby dissipating more energy.

As mentioned traditional toughening methods is normally introduced in interfaces, that
are highly exposed to delamination cracks. This often comes at a high cost, because the
entire interface needs to covered. If instead the toughening methods is placed as patches,
which promotes multiple delaminations the cost can be reduced (Trabal et al., 2022a).
Furthermore using weakening patches might prove to be an even more cost effective way
of promoting multiple delaminations(Trabal et al., 2022a).

The method of placing patches to promote delamination has only been studied numerically,
and needs to verified through experimental work to confirm that the concept actually
promote delamination and consequently toughens the structure.

7



Problem Statement 2
As explained in chapter 1, delamination is one of the main reasons for causing failure in
composites. However, the presence of delamination in a structure does not necessarily
mean that the structure is about to fail. This is exploited in the damage tolerant design
approach, where advanced modelling techniques are used, along with non-destructive
inspections, to extent the service life of a structure. Furthermore, the use of through-
thickness toughening methods, which can arrest or slow down delamination propagation, by
increasing the interface toughness, is important considerations within the damage tolerant
design approach, when composite materials are considered.

In section 1.3 a new method for improving the structural toughness in composites was
introduced. The work mentioned in section 1.3 has shown through analytical and numerical
models, that the structural toughness during delamination propagation, can be improved
by onsetting multiple delamination. According, to Trabal et al. (2022a) this toughening
method has the potential for being a cost-effective alternative, to other commonly used
toughening methods. It is also mentioned in section 1.3, that only limited experiments has
been done on this subject to validate its applicability.

Thus, this thesis takes offset in the possibility for improving the structural toughness by
onsetting multiple delaminations. This leads to the following problem statement.

"How can multiple delaminations in fiber composites be promoted by the
use of toughening/weakening patches in order to improve damage

tolerance in quasi-static loading?"

2.1 Limitations and objectives

In order to answer the problem statement, this thesis is divided into two main parts. The
first part includes chapter 3, 4 and 5 and focuses on the implementation of numerical
solvers in a existing finite element framework. The objective of including this, is partly
due to a learning goal set forth by the authors and as it is needed in order to model
delamination problems in a finite element context.

The second part, of this thesis includes chapter 6, 7, 8, and 9. This part centers around
experimental testing of DCB specimens to validate whether delamination can be promoted
purposely by introducing either weakening or toughening patches in specific interfaces. In
order to do this preliminary studies are firstly done to define a patch-placement which
should promote new delamination cracks.
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Only unidirectional glass fiber reinforced polymer (GFRP) composites with continuous
fibers are experimentally tested in this work. Additionally, only DCB test specimens
loaded in a mode I configuration are considered.

9



Finite Element Framework for

Modelling Delamination 3
Delamination in composite materials is a complex phenomena and are therefore often
modelled in a finite element framework. In this project, the finite element framework
developed in Trabal et al. (2022b) and Trabal et al. (2022a), is used to model delamination
in quasi static loaded 2D DCB-specimens. This chapter explains the main features of the
finite element framework, which is hereafter referred to as the MATLAB Framework.

The MATLAB Framework is a FEA-code, which is specifically developed to simulate single
or multiple delamination in double cantilever beam (DCB) specimens, end notched flexure
(ENF) specimens, and mixed mode bending (MMB) specimens.

The MATLAB Framework is based on a Floating Node Method (FNM), and further
includes additional novelties to improve on the highly computationally demanding process
associated with modelling delamination with cohesive elements. In general, when modelling
delamination with cohesive elements a very fine discretisation is needed near the crack tip,
due to the presence of high gradient traction profiles. The reader is referred to section 1.2
for further details.

The main improvements in the MATLAB Framework, compared to already existing FNM
includes a new adaptive FNM based element (A-FNM element). The A-FNM element is
a general element that can use either solid or cohesive element formulation and refine and
partition itself. The refinement of the A-FNM element is controlled with a novel Adaptive
Refinement Scheme (ARS). In Figure 3.1 the basic principle of the MATLAB Framework
is illustrated. The models initiates with a mesh consisting of a user defined number of A-
FNM elements in the longitudinal direction and only one element through the thickness.
The A-FNM elements are afterwards split and refined according to where delamination is
occurring.

A)

B)

Figure 3.1. A) The initial mesh consisting of non-refined A-FNM elements. B) A-FNM elements
near the crack tip are refined to model the delamination crack.
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Both of these improvements are explained in detail later in this chapter. The improvements
makes it possible to handle multiple simultaneous delaminations within each A-FNM
element. Furthermore, it also enables automatic adaptment of the mesh refinement near
the crack tip, according to changes in the damage processes zone, as the analysis evolves.

In the version of the MATLAB Framework used in this work it is possible to insert pre-
cracks, weakening and toughening patches in any of the interfaces in the DCB specimen,
as illustrated in Figure 3.2. The patches are modelled with decreased or increased critical
energy release rate and onset traction compared to the virgin interfaces. Additionally,
the MATLAB Framework is able to model delamination onset in pristine interfaces i.e.
interfaces without any delamination.

= Pre-crack
= Interface

= Toughening Patch
= Weakening Patch

Figure 3.2. Example of a DCB specimen with three interfaces, one pre-crack, one toughening
patch and one weakening patch.

The MATLAB-Framework consist of a pre-processor, a solver which in its original state
only includes a force and displacement controlled Newton-Raphson solver and finally a
post-processor. The first part of the preprocessing in the MATLAB Framework loads input
files generated in ANSYS Mechanical-APDL. The input files defines the geometry, material
properties, layup, boundary conditions, and mesh. This is followed by a preprocessing step
in the MATLAB Framework that defines pre-cracks, patches, solver settings and A-FNM
related variables.

The postprocessing step includes generation of figures and videos of traction profiles and
the deformation of the specimen.

3.1 Floating Node Method and A-FNM Element

As mention, the MATLAB Framework is based on a Floating Node Method, where a
number of floating nodes, in addition to the standard finite element nodes, are set up in the
preprocessing part of the analysis. Each of the floating nodes are associated to a specific
A-FNM element and are initially defined as inactive and only activated when needed.
By activating or deactivated the floating nodes continuously, when and where needed, it is
possible to dynamically refine and coarsen the A-FNM elements as well as dynamically add
cohesive elements within the A-FNM element. By doing so, accuracy and computational
efficiency is improved. Compability in the model is maintained by automatically generating
multi-point-constraints (MPCs), when the A-FNM element refines or coarsens itself.

Thus, the main features of the novel A-FNM element is its ability to automatically refine,
coarsen and split itself into 2D solid and interface elements during the analysis.

The principle of the A-FNM element is illustrated in Figure 3.3. Whenever a A-FNM
element is refined, it activates some of the in-active floating nodes which are assigned
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a position and displacement in the element by linear interpolation of the already active
nodes. The newly activated floating nodes are used to split the A-FNM element into several
sub-elements (SEs), and the relevant material is assigned to each of the sub-elements based
on the A-FNM layup. When a floating node is activated, it is also included in the internal
A-FNM element connectivity, that relates the floating nodes to the specific sub-element.

Layer 1

Layer 2

Layer 3

SE1 SE2 SE3

SE4 SE5 SE6

SE7 SE8 SE9

Inactive Layer interface

A-FNM Element boundaries

Standard nodes
Inactive �oating nodes

Cohesive SE

A) B)

Active �oating nodes
SE Element boundaries 2D Solid SE

Figure 3.3. Example of refinement of a A-FNM element. A) The A-FNM element is initialized as
a standard 4-node element with inactive floating nodes. B) Some of the floating nodes are activated
in order to refine and split the A-FNM element. The element is split with cohesive elements in the
interface between layer 1 and layer 2. This further requires the A-FNM element to be refined with
solid sub-elements.

The A-FNM is able to refine itself both through the thickness of the element and in the
longitudinal direction of the element. The refinement through thickness is dependant
on the number of interfaces, which needs to be modelled with cohesive elements. The
refinement in the longitudinal direction is done according to a user defined value in the
MATLAB Framework, that specifies the number of cohesive sub-elements, that are to be
used within each refined A-FNM element.

An advantages of using a FNM is the possibility to utilise a standard finite element
formulation, where all operations are done on element level. This furthermore makes
it possible to keep the standard finite element bookkeeping procedures. Thereby, the
efficiency of the calculations are improved compared to other re-meshing techniques.

Thus, standard finite element procedures are used within each sub-element, to calculate
the tangent stiffness matrix and internal force vector at sub-element level. These are
afterwards assembled to the A-FNM element level. In summary, if the element needs to
be split in an interface, refined or both, the following four steps are done:

1. Calculate divisions in element
2. Activate floating nodes
3. Calculate Subelement tangent stiffness matrix and internal force vector
4. Apply MPCs if needed.

If there is no need for any refinement of the A-FNM element, the tangent stiffness and
internal force vector is calculated only at A-FNM level.
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As mentioned, the A-FNM element uses two different element formulations. These are a 2D
n-layered, 4-noded, geometrically linear, solid, plane strain element with the option of using
enhanced assumed strains stabilization and a 4-noded zero-thickness cohesive element used
to model the cohesive zone. The enhanced assumed strains stabilization scheme is only
used for the coarse 2D solid-elements and are deactivated in the refined elements. Each
A-FNM element is initialized as a 4-noded solid element, which can be split, as explained
above. The cohesive element used is based on Turon et al. (2006) and Camanho et al.
(2003), which utilizes a progressive interlaminar damage formulation, based on a bilinear
cohesive law and accounts for geometrically non-linear effects. The reader is referred to
Appendix A for further details.

3.2 Adaptive Refinement Scheme for Multiple Cracks

As mentioned, the purpose of the Adaptive Refinement Scheme (ARS) is control the level
of refinement in each A-FNM element. This is needed to ensure an ideal discretization in
all interfaces, which ensures accurate modelling without reducing computational efficiency.
The discretization is checked and updated for each iteration in the solver, based on the
damage state and the traction profile in the interface.

The traction profile can be divided into four regions which need different discretisation,
in order to model the traction profile accurately while maintaining the computational
efficiency. This is done by assigning the A-FNM elements within each region a
corresponding refinement state. However the main driver for the ARS is the damage
parameter, d, since it is easily accessible from the cohesive elements and related to the
traction profile illustrated in Figure 3.4. d is used in the cohesive element formulation and
defines the degree of damage in each cohesive element. In the ARS the four regions are
related to the damage parameter in the following way:

• Full damage region: The full damage region is defined as the region where the
interfacial stiffness is lost. The damage parameter in this region is equal to 1. The A-
FNM elements in this zone is assigned a full damage state and the interface is meshed
with coarse cohesive elements, with the single purpose of preventing interpenetration
of the crack faces.

• High gradient region: The high gradient region is defined as the region where
the gradient of the tractions is high. The high gradient region includes the damage
process zone and a small distance ahead of it. The damage process zone is defined
by the damage parameter being in the interval 0 ≤ d ≤ 1. Due to the high gradients,
the A-FNM elements in this region is assigned a refined state and the entire element
including the cohesive elements in the interface is refined. Generally, 3-10 cohesive
elements are needed in the damage process zone in order to achieve accurate results
and fast convergence.

• Low gradient region: The low gradient region is placed in front of the high gradient
region and has a damage parameter, d, equal to zero. The A-FNM elements in this
region is assigned a coarse state and the interface is modelled with coarse cohesive
elements. The low gradient region needs to be meshed with coarse cohesive elements
in order to determine the stored elastic energy, as this is important to achieve smooth
and accurate results. As the gradient of the traction profile is low in this region,
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it can be modelled with coarse cohesive elements without affecting the accuracy
significantly.

• Inactive region: The inactive region is defined by having no or a very low gradients
in the traction profile present. The damage parameter, d in this region is equal to
zero. The elements in this zone is assigned an inactive state and does not have to be
discretised with cohesive elements.

d
1

0

High 
Gradient 
Region

Full Damage Region Low 
Gradient 
Region

DCB Speciment length

Damage Process Zone

Crack Tip

Inactive Region

Tractions (τ)τ
Damage parameter (d)

Figure 3.4. Illustration of the four different regions and associated damage parameter, d.

If multiple delaminations occur in the same A-FNM element, the interface requiring the
most refined state becomes dominant for the refinement of the A-FNM element.

Thereby each interface in the model is assigned either a full damage state, a refined state,
a coarse state or inactive state depending on which of the four regions it is located in.

The interface state is decisive for the mesh refinement of the A-FNM element

3.2.1 ARS-Related Variables

There are five user-inputtet ARS-related variables in the MATLAB Framework, that are
used to control the ARS. The ARS-related variables are listed and explained below:

• RZone1: Specifies the refinement used in the full damage state A-FNM elements, i.e.
where d = 1. Thus, this variable controls the longitudinal refinement of the model in
zone 1 in Figure 3.5. The refinement is specified as an integer number, and defines
how many times the full damage state A-FNM elements are split in the longitudinal
direction. This is illustrated in Figure 3.5 B), where RZone1 is equal to two, which
means the length of the sub-elements, are half of the length of the A-FNM elements.
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• RZone23: Specifies the refinement used in the refined state A-FNM elements. Thus,
this variable controls the longitudinal refinement in region 2 and 3 in Figure 3.5.
Zone 2 is where damage is occurring, i.e. 0 < d < 1. The refinement in zone 2 and 3
is specified as an integer number, which defines the number of sub-elements that are
to be used in the longitudinal direction within each refined state A-FNM element.
This is illustrated in Figure 3.5 C), where RZone23 is set equal to 3.

• NZone3: Specifies the number of A-FNM elements in front of the crack tip which
are assigned a refined state. Thus, this variable defines how many A-FNM elements
are included in zone 3 in Figure 3.5 A). As mentioned region 3 is refined in the same
way as zone 2.

• NZone4: Specifies the number of A-FNM elements ahead of region 3, which are split
and meshed with cohesive zone elements in the interface. Thus, this variable defines
how many A-FNM elements that are included in zone 4 in Figure 3.5.

• RZone4: Specifies the refinement of the coarse state A-FNM elements in zone 4 in
Figure 3.5 A). This is specified as an integer number, and defines how many times
the A-FNM elements are split in the longitudinal direction, equivalent to RZone1.

Full Damage Region
High Gradient 

Region
Low Gradient 

Region

Zone 1 Zone 2 Zone 3

τ d Damage Process Zone

Zone 4

Zone 1

SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 SE10

A)

B) C)

A-FNM Element

Crack Tip

Floating Nodes

Full Damage State Refined State Coarse State

Inactive Region

Zone 2

SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 SE10

Zone 3

Figure 3.5. Refinement principle based on the user defined ARS variables for a DCB specimen
with one interface.

In the models done in this project the entire interface is as a minimum discretised by use of
the coarse state, by setting NZone3 equal to the number of A-FNM elements in the model.
This is done, as non-physical phenomena may be encountered, in the transition from the
coarse state to the idle state, due to the MPCs. Furthermore, variable RZone1 and RZone4

are kept at a constant value of one, meaning no further refinement is done in these zones.
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Geometric Arc Length Solver 4
Crack propagation problems, and thereby also the delamination process which might occur
in composite materials, are non-linear problems (Jensen, 2021). In its original form, the
MATLAB Framework presented in chapter 3 is not able to fully solve this inherent non-
linear behaviour, due to the solver used. In the following chapter a brief outline of the
general governing equations and solution procedures related to non-linear problems is
presented. This is followed by a short explanation of the issues encountered when using the
existing solver in the MATLAB Framework. Finally, to circumvent the issues encountered
when solving delamination problems with non-linear behaviour, the arc-length method is
presented and implemented in the MATLAB-Framework.

In this chapter, curly brackets, {∗}, are used to indicate vectors, square brackets, [∗], are
used to indicate matrices, and symbols without brackets indicate scalar values.

In general, a non-linear solution algorithm takes offset in the equilibrium equations written
in residual form, as done in Equation 4.1.{

R
(
{D},{Fext}

)}
= {F int({D})} − {F ext} = {0} (4.1)

where {F ext} is the external forces, {F int({D})} is the internal forces in the system which
depends on the displacements {D}.

{
R
(
{D},{Fext}

)}
is the residual. The residual is

introduced as the internal forces and external forces are generally not in equilibrium for an
arbitrary displacement {D} and an external load {F ext}. The residual is as such used to
find corrections for the displacements fields, in order to achieve equilibrium in the structure
(Vasios, 2015).

For a non-linear finite element model, Equation 4.1 is often solved by an incremental-
iterative approach, where the prescribed loads on the structure is applied in several
substeps, and where the iterative method is used to ensure the residual force is sufficiently
small within each substep. Using such a incremental-iterative approach for a force
controlled problem with proportional loading, the equilibrium equation for the n’th substep
is usually defined by Equation 4.2.{

R
(
{D},{F ext}

)}
= {F int({D})}n − λn{F̂ ext} = {0} (4.2)

Where {F int({D})}n is the internal force in the n’th substep. λn is a scalar-valued load-
level parameter for the n’th substep, which is multiplied with the normalised external load
vector {F̂ ext}. By introducing the scalar-valued load-level parameter, it is possible to
apply the external load in several substeps (de Borst et al., 2012).

Often iterative methods such as Newton-Raphson’s method is utilized as is the case in the
MATLAB Framework. In this method the non-linear governing equations, in Equation 4.2,
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are linearized using truncated Taylor series and solved iteratively, in order to achieve
convergence between the internal and external applied loads. Thereby, in a force controlled
setting, the method works by increasing the load parameter by a predefined value, ∆λ,
for each new substep and calculating the incremental displacement field, {∆D}, which
ensures equilibrium (Vasios, 2015).

Defining the previous converged substep by ({D}n−1, λn−1), and assuming that an
increment in both load-level parameter ∆λ and displacement {∆D} has been found, that
ensures equilibrium, then λn−1 and {D}n−1 are updated according to Equation 4.3 and
4.4, to yield the next point on the equlibrium curve ({D}n, λn).

λn = λn−1 +∆λ (4.3)

{D}n = {D}n−1 + {∆D} (4.4)

However, Newton-Raphson’s method as explained above, has some limitation and will
fail to converge or skip part of the curve, if the equilibrium curve exhibits snap-through
behaviour, i.e. it has a limit point as illustrated in Figure 4.1. This is caused by the
tangent stiffness becoming singular in these points and due to the requirement that
the load-parameter λ must increase for each substep. This problem can in some cases
be circumvented by utilizing a displacement controlled solution method. However, a
displacement controlled solution encounters the same problems if the structure has a snap-
back behaviour, i.e. it has a turning point as illustrated in Figure 4.1. The dotted lines in
Figure 4.1 are used to indicate that part of the equilibrium curve may be skipped. (Vasios,
2015)

Limit point

Turning point

Turning point

Limit point

Load

Displacement

Figure 4.1. Limitations of the force controlled and displacement controlled Newton-Raphson
solvers.

Because the equilibrium curve is generally unknown, it is not possible to determine
beforehand, whether the structure exhibits snap-back or snap-through behaviour and
thereby, whether Newton’s method can be applied or not. Alternatively, more advanced
solution algorithms, such as the arc-length solver can be utilized.

The rest of the chapter is organised in the following way; first, an arc-length method
based on a geometric constraint is presented, implemented in the MATLAB Framework
and validated. This is followed by a presentation, implementation and validation of two
arc-length methods that use energy dissipation based constraints. These constraint are
beneficial when solving problems with local material instability such as delamination
problems.
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4.1 Geometric Arc-Length Method

The arc-length method, presented in this section is based on Crisfield (2000) and de Borst
et al. (2012). The arc-length method takes offset in the residual equilibrium equation
defined in Equation 4.2. However, in the arc-length method, both the displacement {D},
and load-level parameter, λ, are variables in the iterative solution scheme. This is different
from other commonly used solvers, such as the Newton-Raphson solver explained above.

The basic idea of the arc-length method is thereby to find the next equilibrium point
on the load-displacement curve as the intersection of the load-displacement curve and a
surface defined by a path-following constraint. This is illustrated for a 1 degree of freedom
system in Figure 4.2, where the surface defined by the path-following constraint is a circle.
Also illustrated in Figure 4.2, is all the iterations, within the illustrated substep until
convergence is achieved. From the figure it is evident, that all these iterations lies on the
path-following constraint.
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Load displacement curve
Path-following constraint
Linearization of load-
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Figure 4.2. One degree of freedom illustration of the arc-length solver.

In the following, superscript, n, is used to define the current substep and subscript, i,
is used to define iteration number in the substep. Furthermore, Dn

i and λn
i are used to

describe the displacement and load-level parameter. ∆Dn
i and ∆λn

i are used to describe
the incremental displacement field and load-level parameter. δDn

i and δλn
i are used to

describe corrections to the displacement field and load-level parameter from one iteration
to the next, within the substep.

Taking offset in a previous converged substep (dn−1, λn−1fext), in Figure 4.2, the method
initiate each substep by calculating a predictor step, which leads to the point (dn1 ,λ

n
1fext)

by varying the load-level parameter and displacement by ∆λ1 and ∆d1, respectively.
This predictor step is explained in details in subsection 4.1.1. Based on this new point,
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(dn1 ,λ
n
1fext), the residual is determined. If the residual is too large, the iterative process

of the arc-length solver algorithm continues, and it finds the next point on the path-
following constraint (dn2 ,λn

2fext) by adding corrections, δd1, and δλ1. If the residual is still
to large the algorithm proceeds in a similar manner and finds the next points on the path-
following constraint, (dn3 ,λn

3fext), (d
n
4 ,λ

n
4fext) . . . (d

n
i ,λ

n
i fext) iteratively. This is done until

the intersection of the load-displacement curve and the path-following constraint is found
which implies the current substep has converged and a new point on the load-displacement
curve is determined.

In the arc-length method the load-level parameter λ in Equation 4.2 is included as an
additional unknown variable in the system of equations. This differs from the Newton-
Raphson method where it is a prescribed incrementally increasing parameter. Thus, the
original problem with m unknown displacements {D} is increased to a problem containing
m + 1 unknowns. In order to solve this system of equations, it is necessary to add one
additional equation, which is done through the path-following constraint,which is defined
in a general form in Equation 4.5.

g({D}, λ, {∆D},∆λ,∆l) = 0 (4.5)

Where ∆l defines the distance between the previous converged substep to the path-
following constraint in the load-displacement space. Thereby, ∆l, as illustrated in
Figure 4.2, determines the size of the incremental step in the m + 1 load-displacement
space. The augmented system of equations can be expressed as done in Equation 4.6.{{

F int

(
{D}

)}n − λn{F ext}
gn

}
=

{
{0}
0

}
(4.6)

The system of non-linear equations can be solved iteratively with a Newton-Raphson
approach, where the equations are linearsed by a truncated Taylor series expansion, as
done in Equation 4.7.{F int}ni − λn

i {F̂ ext}+ ∂{F int}
∂{D} {δD}ni − {F̂ ext}δλn

i

gni +
(

∂g
∂{D}

)T
{δD}ni + ∂g

∂λδλ
n
i

 =

{
{0}
0

}
(4.7)

By rewriting Equation 4.7 it is possible to solve for corrections, {δD} and δλ to the
displacement field and load-level parameter, as done in Equation 4.8.[

[Kt]
n
i −{F̂ ext}

({h}ni )T wn
i

]{
{δD}ni
δλn

i

}
=

{
{R}ni
−gni

}
(4.8)

Where the tangent stiffness, [Kt], a h-vector, {h}, and scalar, w, is introduced and defined
in Equation 4.9.

[Kt]
n
i =

∂{F int}
∂{D}

{h}ni =
∂g

∂{D}
wn
i =

∂g

∂λ
(4.9)

The arc-length method as introduced in Equation 4.8 and 4.9 is known as Riks arc-length
method. A detailed explanation of Riks arc-length method and its implementation in the
MATLAB Framework is presented in Appendix B.
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Riks arc-length method has the disadvantage that the matrix in Equation 4.8 destroys the
symmetry and banded structure of the tangential stiffness matrix according to de Borst
et al. (2012). For this reason, more efficient arc-length algorithms have been proposed and
the following takes offset in the method by Crisfield (2000).

Taking offset in the first of the equations in Equation 4.7, introducing the tangent stiffness
[Kt] as in Equation 4.9 and rewriting yields Equation 4.10.

[Kt]
n
i {δD}ni = −({F int}ni − λn

i {F̂ ext} − δλn
i {F̂ ext}) (4.10)

Introducing the residual force as {R}ni = {F int}ni − λn
i {F̂ ext} yields Equation 4.11.

[Kt]
n
i {δD}ni = −

(
{R}ni − δλn

i {F̂ ext}
)

(4.11)

Isolating for the displacement correction, {δD}, and assuming the tangent stiffness, [Kt],
to be non-singular yields Equation 4.12.

{δD}ni = −([Kt]
n
i )

−1{R}ni + δλn
i ([Kt]

n
i )

−1{F̂ ext} = {δDII}ni + δλn
i {δDI}ni (4.12)

where:

{δDII}ni = ([Kt]
n
i )

−1{R}ni and {δDI}ni = ([Kt]
n
i )

−1{F̂ ext} (4.13)

In this way the iterative displacement correction {δD}ni is split into two parts. {δDII} is
the iterative correction in displacement due to residual forces, and equivalent to the step
used in the Newton-Raphson method, and {δDI} is the iterative correction in displacement
due to the external load vector. Common for both parts of the displacement corrections
{δDI} and {δDII} are that they only rely on known quantities and can therefore be
calculated.

In Equation 4.12 and 4.13 it is assumed that the tangent stiffness [Kt] is always non-
singular, which is the case for all points along the equilibrium curve except at limit points.
However, according to Crisfield (2000) it is very unlikely, that the solution ends up exactly
at a limit point, which makes the tangent stiffness singular. For this reason the non-singular
requirement for the tangent stiffness [Kt] does not in practice invalid the method.

Based on the computed displacement correction in Equation 4.12, the new incremental
displacement in the current substep is updated by Equation 4.14.

{∆D}ni+1 = {∆D}ni + {δD}ni = {∆D}ni +
(
{δDII}ni + δλn

i {δDI}ni
)

(4.14)

Equivalently, the new incremental load-level parameter in the current substep is updated
by Equation 4.15.

∆λn
i+1 = ∆λn

i + δλn
i (4.15)

However, δλn
i in Equation 4.14 and 4.15 is still unknown and must be determined. This is

done by using a path-following constraint. In the following the widely used path-following
constraint defined below is utilized.

g =
(
{∆D}ni

)T {∆D}ni + β2(∆λn
i )

2{F̂ ext}T {F̂ ext} −∆l2 = 0 (4.16)

β is a user-defined variable, which can be changed to achieve different path-following
constrains. Two commonly used path-following constrains are the spherical path-following
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constrain, β = 1, and the cylindrical path-following constrain, β = 0. According to
de Borst et al. (2012) the value of β does not change the performance of the algorithm
much. de Borst et al. (2012) also concludes that β = 0 yields a robust method for most
engineering problems.

As the incremental step size, ∆l, illustrated in Figure 4.2, is kept constant for all substeps,
it is possible to write Equation 4.17

({∆D}ni )T {∆D}ni + β2(∆λn
i )

2{F̂ ext}T {F̂ ext}
= ({∆D}ni+1)

T {∆D}ni+1 + β2(∆λn
i+1)

2{F̂ ext}T {F̂ ext} = ∆l2
(4.17)

Substituting the expression for {∆Di+1} from Equation 4.14 and the expression for ∆λi+1

from 4.15 into Equation 4.17 yields Equation 4.18.

g =
[
{∆D}ni + {δDII}ni + δλn

i {δDI}ni
]T [{∆D}ni + {δDII}ni + δλn

i {δDI}ni
]

+β2(∆λn
i + δλn

i )
2{F̂ T

ext}{F̂ ext} −∆l2 = 0
(4.18)

Rewriting this equations yields the quadratic equation defined in Equation 4.19.

g = a1(δλ
n
i )

2 + a2δλ
n
i + a3 = 0 (4.19)

where:

a1 =
( {

δDI
}n
i

)T {δDI}ni + β2{F̂ ext}T {F̂ ext}

a2 = 2
[((

{∆D}ni
)T

+
(
{δDII}ni

)T) {δDI}ni + β2∆λn
i {F̂ ext}T {F̂ ext}

]
a3 = ({∆D}ni + {δDII}ni )T ({∆D}ni + {δDII})ni + β2(∆λn

i )
2{F̂ ext}T {F̂ ext} −∆l2

(4.20)

By solving the quadratic equation it is possible to determine δλn
i . Having determined this

value, {∆D}ni+1 and ∆λn
i+1 can be determined from Equation 4.14 and Equation 4.15,

respectively.

However, as Equation 4.19 is a quadratic equation it generally has two solutions. The
correct solution must be chosen each time, such that the method evolves forward. An
often chosen approach is to calculate which incremental displacement vector, {∆Dn

i+1},
that points in the same direction as the previous incremental displacement vector {∆Dn

i }.
This can be done by utilizing the definition of the dot-product, where the root which yields
the smallest angle and thereby the largest cosine value is chosen, as done in Equation 4.21.
Alternatively, Equation 4.16 can be linearised which means only one value for δλ is found.

cos(θ) =
({∆D}ni )T {∆Dn

i+1}
|{∆D}ni | · |{∆Dn

i+1}|
(4.21)

An additional problem is if the solution to Equation 4.19 yields imaginary roots. If this
happens, a often used approach is to restart the solution algorithm, from the last converged
substep and reduce the incremental step ∆l.

Once the correct δλi is determined the displacement and load level parameter is updated
according to Equation 4.14 and 4.15.
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4.1.1 Predictor Solution

In order to start the iterative solution algorithm in each substep, a predictor step is needed
for the first iteration. In this predictor step the displacement increment is based on a
forward-Euler tangential predictor and defined in Equation 4.22.

{∆D}n1 = ∆λn
1 ([Kt]

n
1 )

−1{F ext} (4.22)

This is in accordance with Equation 4.12, if it is assumed that the residual in the previous
converged substep is zero. Inserting this predictor term in the path-following constraint
defined in 4.16 yields Equation 4.23.(

∆λn
1 ([Kt]

n
1 ))

−1{F̂ ext}
)T (

∆λn
1 ([Kt]

n
1 )

−1{F̂ ext}
)
+ β2λn

1{F̂ ext}T {F ext} −∆l2 = 0

(4.23)
Which can be rewritten to Equation 4.24.

(∆λn
1 )

2 =
∆l2(

(([Kt]n1 )
−1{F̂ ext})T (([Kt]n1 )

−1{F̂ ext}) + β2{F̂ ext}T {F ext}
) (4.24)

Using the definition of {δD}I = [Kt]
−1{F̂ ext} from Equation 4.13, it is possible to

determine the predictor step for ∆λ as in Equation 4.25.

∆λn
1 = ± ∆l√(

({δD}Ii )T ({δD}Ii ) + β2{F̂ ext}T {F ext}
) (4.25)

From Equation 4.25 it is evident, that there are two options when determining the predictor
step for the load-level parameter. According to Crisfield (2000), the plus sign is to be used
if the tangent stiffness [Kt] is positive definite and the negative sign is to be used if one
of the eigenvalues are negative. A negative eigenvalue implies that a limit point has been
passed.

However, to implement the geometric arc-length solver in the MATLAB Framework,
another approach must be taken. The stiffness matrix in the MATLAB framework is
a large sparse matrix, and determining eigenvalues is a demanding numerical problem.
Additionally, the stiffness matrix in the MATLAB framework is non-symmetric, which
further complicates the problem of determining eigenvalues.

Instead a method outlined in Geers (1999) is used. In this method the sign is determined
according to Equation 4.26.

∆λn
1 =

{
+|∆λn

1 | if ({∆D}n−1)T {δDI}n0 > 0

−|∆λn
1 | if ({∆D}n−1)T {δDI}n0 < 0

(4.26)

where {∆D}n−1 is the total displacement increment in the previous converged substep
and {δDI}n0 is calculated according to Equation 4.13.

4.2 Matlab Implementation and Validation of Geometric
Arc-Length Method

Based on the theory explained in the previous section, a Crisfield geometric arc-length
solver is programmed and implemented in MATLAB. The algorithm is shown in Algorithm
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1. The programmed arc-length solver is validated against three benchmarks examples in a
step-wise manner in order to gradually build up the complexity of the solver. This is done
in parallel with the development of the arc-length solver, while verifying it along the way.
First a 1 DOF benchmarks example is considered and afterwards two 2 DOF’s benchmarks
examples are used to validate the solver. The validation against the benchmark examples
is shown in Appendix C. Finally the arc-length solver is implemented in the MATLAB
Framework and validated against a displacement controlled solution. In order to do so
the algorithm shown in Algorithm 1 is modified to work in the MATLAB Framework, see
Appendix D.

Algorithm 1 Simple Crisfield arc-length solver
1: Define solver settings, external loads and residual tolerance,
2: Initialize substep counter, displacement vector {D} and load parameter vector λ
3: while λ{F̂ ext} < {F ext} do
4: Update substep counter
5: Evaluate tangent stiffness [Kt]
6: Calculate displacement correction {δDI}n1 according to Equation 4.13
7: Calculate ∆λ1 according to Equation 4.25
8: Calculate displacement increment {∆D}n1 according to Equation 4.22
9: Update displacement according to {D}n1 = {D}n−1 + {∆D}n1

10: Update load-level parameter according to λn
1 = λn−1 +∆λn

1

11: Calculate internal force {F int}
12: Calculate the residual force {R} according to Equation 4.2
13: Initiate iteration counter icount = 0
14: while Residual tolerance < residual force do
15: Update iteration counter: icount = icount+ 1
16: Evaluate tangent stiffness [Kt]
17: Calculate displacement corrections {δDI}ni and {δDII}ni according to Equa-

tion 4.13
18: Solve equation Equation 4.19 for δλn

i and choose the correct root
19: Calculate displacement correction {δD}ni according to Equation 4.12
20: Update incremental displacement, {∆D} according to Equation 4.14
21: Update incremental load level parameter ∆λ according to Equation 4.15
22: Update displacement according to {D}ni+1 = {D}n−1 + {∆D}ni+1

23: Update load-level parameter according to λn
i+1 = λn−1 +∆λn

i+1

24: Calculate internal forces {F int}
25: Calculate the residual force {R} according to Equation 4.2
26: end while
27: end while

The implementation of the Crisfield arc-length solver in the MATLAB Framework is
validated by solving a model, with the original displacement controlled Newton-Raphson
solver. This solution is compared with one solved with the Crisfield arc-length solver. The
model used for the validation is a DCB-test specimen with dimensions and boundary
conditions as illustrated in Figure 4.3. In the displacement controlled solution a
displacement is applied, whereas in the arc-length solver a force is applied. In both cases
the analysis is stopped, when a displacement of 20mm is reached in the node where the
displacement/force is applied. This problem is chosen as it features both single and multiple
delaminations, which means both snap-through and snap-back behaviour is expected to
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occur in the model.

20 mm

150 mm

3.
18

m
m

10 mm
20 mm

5.30 mm

= Pre-cracks
= InterfaceDisplacement/Force

Figure 4.3. Model used to validate the implementation of the arc-length solver in the Matlab
framework

Model and ARS-specific variables from the analysis are evident from Table 4.1. The
material data used are evident from Table 4.2.

Element variables Number

A-FNM elements (longitudinal) 90
A-FNM elements (thickness) 1
RZone1 1
RZone23 20
RZone4 1
NZone3 2
NZone4 90

Table 4.1. Element and ARS-specific
variables used in the model for validation of
the Crisfield arc-length solver.

Material parameter Value

E11 115.0GPa
E22 8.5GPa
ν12 0.0257
G12 4.5GPa
GIc 330 J/m2

GIIc 800 J/m2

τI0 16.5MPa
τII0 35.0MPa
η 2.0
K0 30 000GPa

Table 4.2. Material data used in the
model for validation of the Crisfield arc-
length solver.

In Figure 4.4 the results from each test done on the Crisfield arc-length solver is illustrated
and each substeb is highlighted with a marker according to the legend in the figure. The
arc-length is changed from a small step length, yielding a fine discretisation of the load-
displacement curve, to a rather large step length, yielding a coarse discretisation of the
curve. Additionally, a test has been done with a step size of 0.0001 and a residual of both
1 × 10−4N and 1 × 10−8N. However, these are not plotted in the figure, as the small
distance between each substep makes it difficult to see the results for the remaining tests.

Furthermore, the residual tolerance is investigated. Specifically a residual of 1 × 10−4N

and 1×10−8N are tested. A residual of 1×10−4N is used as it yields short analysis times
and 1 × 10−8N is checked to verify a solution can be obtained for even smaller residual
errors.

The reason for checking these parameters in the arc-length solver is to validate the
robustness of the final implementation. This is motivated by the fact that bugs in the
code were found to cause convergence problems, either by utilizing extra iterations or
diverging. However, based on the results in Figure 4.4 it is concluded that the arc-length

24



4.2. Matlab Implementation and Validation of Geometric Arc-Length MethodAalborg University

solver works satisfactory.

1

2

Figure 4.4. Validation of Crisfield arc-length solver. All test are run with β = 0.

The step size in each test in Figure 4.4 is kept constant throughout the entire analysis.
The figure shows that all the tests traces the displacement controlled solution satisfactory.
However, if the step size becomes too large, i.e. 0.005 , the peak of the load displacement
curve is missed. Additionally, a step size of 0.005 causes the Crisfield arc-length solver
to stop just after point 1 is passed, whereas the remaining tests successfully traces the
curve until point 2 .

During the implementation of the arc-length solver it is found that the ARS-related
variables defined in subsection 3.2.1 greatly affects the convergence behaviour of the arc-
length solver. Throughout the implementation of the arc-length solver this has been an
additional unknown, which has made debugging troublesome. If too few sub-elements are
used in the high gradient region, the Crisfield solver stopped prematurely, near point 1
in Figure 4.4. In this case the solver iteratively finds the same 2-4 points on the arc-length
constraint, without advancing further. It has also been tried to increase the number of
sub-elements in the refined zone, in order to make the solver advance past point 2 , but
this did not work.

In point 2 the second pre-crack in the model opens up and causes the Crisfield arc-
length solver to diverge or outputting imaginary roots when solving Equation 4.19. In
order to circumvent this problem a condition which automatically bisects the arc-length
if the residual error becomes too large, if no real roots are found or if the number of
iterations within the substep exceeds a predefined value, is implemented. However, this
did not solve the problem as the arc-length solver kept bisecting the arc-length infinitely.
According to de Borst et al. (2012) this is to be expected, as the Crisfield arc-length solver
has problems when local material instability, in the form of the second pre-crack, occurs
in the model. This can be solved by using other path-following constraint as explained in
the next section.
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As mentioned, the Crisfield arc-length method, introduced in the previous section, uses a
global geometrical path-following constraint. The geometrical constraint takes all degrees
of freedom into account when the next point on the load-displacement curve is to be found.
However, such a constraint is not applicable for models with a high degree of local material
instability, such as delamination, and may fail to converge (de Borst et al., 2012). This
inadequacy of not being able to model local instability, is believed to be the reason why
the Chrisfield arc-length method is not able to solve for equilibrium points past point 2
in Figure 4.4.

When local material instability occurs, the degrees of freedom located in the vicinity of the
local material instability becomes dominant for the continued deformation of the structure.
For this reason the global constraint fails to accurately represent the instability (Börjesson
et al., 2022).

Several approaches have been suggested in the literature to circumvent this problem. One
approach is to only consider the degrees of freedom near the material instability, when
defining the path following constraint. However, this implies the location of the material
instability is known in advance and throughout the duration of the solution, reducing its
generality. (Verhoosel et al., 2009)

Alternatively, Gutierrez (2004) formulated a path following constraint, based on the
dissipated energy. The dissipated energy is related to the material instability in the model,
making it ideal for a path-following constraint. When defining a path-following constraint,
the constraint must monotonically increase in order for the solution to advance forward and
fulfill the constraint equation g = 0. The rate of dissipated energy is always non-negative
according to the second law of thermodynamics making the dissipated energy constant or
increasing. (Verhoosel et al., 2009).

However, if there is no damage evolution in the model, the rate of dissipation is zero,
which means this path-following constraint cannot be used. In such cases it is necessary
to change the path-following constraint to e.g. the constraint defined in Equation 4.19.

The path-following constraint formulated by Gutierrez (2004) is done in terms of the global
displacement and force vector for geometrically linear models with damage. Verhoosel et al.
(2009) later extended Gutierrez (2004) method by deriving path-following constraints for
other problems. In order to do so, new global vector quantities were introduced in addition
to the terms used by Gutierrez (2004).

The approach taken by Gutierrez (2004) and Verhoosel et al. (2009) has its limitations,
as the path-following constraint must be defined and changed according to the specific
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problem. This reduces its generality. Secondly, some dissipation mechanism are difficult
or impossible to define, in terms of the global displacement and force vectors, which further
compromises the generality of this method.

With offset in the methods proposed by Gutierrez (2004) and Verhoosel et al. (2009),
Börjesson et al. (2022) proposed another dissipation based arc-length solver, where the
dissipated energy is calculated locally in each element and summed up over the entire
domain. This is contrary to Gutierrez (2004) and Verhoosel et al. (2009) who does it at a
global level.

Calculating the dissipated energy in each element makes it possible to generalise the path-
following constraint. Multiple dissipation mechanisms can be combined in this method by
adding the contribution from each mechanism. Additionally, defining the path-following
constraint at a local level allows for including dissipation mechanism, which cannot be
expressed in terms of global quantities. (Börjesson et al., 2022)

In this work two energy dissipation based arc-length solvers are implemented in the
MATLAB Framework:

1. An arc-length solver based on Börjesson et al. (2022), referred to as the local energy
arc-length solver

2. An arc-length solver based on Gutierrez (2004) and Verhoosel et al. (2009), referred
to as the global energy arc-length solver

5.1 Local Energy Arc-Length Solver

This section takes offset in Börjesson et al. (2022) and explains the theory of the local
energy arc-length solver. This is followed by a derivation of analytical terms, which are
needed to implement the solver, in the MATLAB Framework. Finally, the arc-length solver
is validated against a displacement controlled solution.

The total rate of dissipation of a body, G, is found by equation Equation 5.1, where Q̇ is
the specific rate of dissipation, and Ω is the area of the body.

G =

∫
Ω
Q̇ dΩ (5.1)

The path-following constraint, g, is found by time-discretising Equation 5.1 with a
backward Euler scheme, and introducing a parameter, ∆τ , which defines the amount of
dissipated energy in the current substep of the solution. This is done in Equation 5.2.

g =

∫
Ω
∆Q dΩ−∆τ = 0 (5.2)

∆Q describes the energy dissipation between two substeps. The definition of the path-
following constraint in Equation 5.2, means ∆τ can be interpreted as an equivalent to the
step size, ∆l, in the geometric arc-length solver in section 4.1.

The exact definition of Q̇, and thereby also ∆Q, depends on the specific dissipating
mechanism and the material model used. In this work, the dissipation mechanism in
the models is related to opening and propagation of delamination cracks. This is modelled
with cohesive elements in the MATLAB Framework as explained in chapter 3. This implies
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that energy is only dissipated in the cohesive elements. The specific rate of dissipation, Q̇,
in the cohesive elements used in the MATLAB Framework is expressed by Equation 5.3
(Börjesson et al., 2022).

Q̇ =
1

2
ḋ{sL}T [Ep]{sL} (5.3)

Where {sL} is the separation vector defined in local coordinates in the cohesive interface,
[Ep] is the penalty stiffness of the interface and d is the damage parameter that is used
in the formulation of the cohesive element. For further details on the definitions of the
cohesive element related variables, see Appendix A.

Time-discretising Equation 5.3 yields Equation 5.4.

∆Q =
1

2
∆d{sL}T [Ep]{sL} (5.4)

By inserting Equation 5.4 in Equation 5.2 the path-following constraint that is used in the
local energy arc-length solver is defined by Equation 5.5.

g =

∫
Γcz

1

2
∆d{sL}T [Ep]{sL} dΓ−∆τ = 0 (5.5)

In the above equation the integral is changed to cover only the cohesive domain, Γcz, as
energy is only dissipated in this domain. Due to the discretion of a finite element model,
the integral in Equation 5.5 are evaluated individually over the area of each element, and
summed up to yield the total dissipated energy, as in Equation 5.6.∫

Γcz

1

2
∆d{sL}T [Ep]{sL} dΓ =

n∑
k=1

∫
Γczk

1

2
∆d{sL}T [Ep]{sL} dΓ (5.6)

Where Γczk is the area of the k’th cohesive zone element and n is the total number of
cohesive elements.

The arc-length solver is implemented with a method based on the same set of equations
as used in the Riks arc-length method i.e. Equation 4.8 and 4.9 which are repeated below.
Further details on Riks arc-length method is explained in Appendix B.[

[Kt]
n
i −{F̂ ext}

({h}ni )T wn
i

]{
{δD}ni
δλn

i

}
=

{
{R}ni
−gni

}
(4.8)

[Kt]
n
i =

∂{F int}
∂{D}

{h}ni =
∂g

∂{D}
wn
i =

∂g

∂λ
(4.9)

Thereby, expressions for the constraint derivatives, {h}ni and wn
i are needed. Due to

the definition of the path-following constraint, g, in Equation 5.5, g is independent of
the load-level parameter, λ, making w equal to 0. Each entry in, {h}ni , is expressed by
Equation 5.7.

hj =

∫
Γczk

{
∂∆Q

∂{sL}

}{
∂{sL}
∂dj

}
dΓ (5.7)

Where Γczk is the cohesive domain of the k’th cohesive element. The global vector, {h},
is assembled similarly to the internal force vector in the MATLAB Framework and this is
done for each iteration.
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The integral in Equation 5.6 and Equation 5.7 are both integrated by numerical integration,
as this is easily implemented in the MATLAB Framework. The MATLAB Framework has
both Newton-Cotes integration and Gauss integration available. In this work, a two point
Gauss quadrature is used. As mentioned in chapter 3, the cohesive element used in the
MATLAB Framework is a 2D cohesive element. Therefore, the element area is integrated
over the length, L, and multiplied by its thickness, t as done in Equation 5.8 and 5.9.∫

Γczk

1

2
∆d{sL}T [Ep]{sL} dΓ =

∫ x=L

x=0

1

2
∆d{sL}T [Ep]{sL}t dx (5.8)

∫
Γczk

{
∂∆Q

∂{sL}

}{
∂{sL}
∂dj

}
dΓ =

∫ x=L

x=0

{
∂∆Q

∂{sL}

}{
∂{sL}
∂dj

}
t dx (5.9)

In order to use a two point Gauss quadrature the integral limits must be changed from
[0,L] to [-1,1]. This is done by changing from global coordinates to local coordinates in the
element by using the Jacobian determinant, J.∫ x=L

x=0

1

2
∆d{sL}T [Ep]{sL}t dx =

∫ ξ=1

ξ=−1

1

2
∆d{sL}T [Ep]{sL}tJ dξ (5.10)

∫ x=L

x=0

{
∂∆Q

∂{sL}

}{
∂{sL}
∂dj

}
t dx =

∫ ξ=1

ξ=−1

{
∂∆Q

∂{sL}

}{
∂{sL}
∂dj

}
tJ dξ (5.11)

In general for a function, ϕ(ξ), Gauss integration is performed by evaluating the function
in specific predefined points and multiplying with predefined weight factors. For a two
point Gauss quadrature this is done according to Equation 5.12:

I =

∫ 1

−1
ϕ dξ ≈ W1ϕ1 +W2ϕ2 (5.12)

where W1 and W2 are weight factors, both equal to 1, and ϕ1 and ϕ2 are the function value
evaluated in the points ξ = −1√

3
and ξ = 1√

3
, respectively.

5.1.1 Derivation of Analytical Terms for The Arc-Length Solver

In order to implement the local energy dissipation based arc-length solver in the MATLAB
Framework, expression for each of the terms

{
∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
in Equation 5.7 needs

to be derived. Expression for the first term is defined in Equation 5.13.{
∂∆Q

∂{sL}

}
= ∆d{sL}T [Ep] (5.13)

An expression for the second term is more comprehensive, as it requires a derivation of the
separation vector in the cohesive element. A derivation of the separation vector is given
in the following section. This derivation takes offset in Camanho et al. (2003) and Turon
et al. (2006).

The cohesive element used in the MATLAB Framework is a 4-node zero thickness element
and each node has two degrees of freedom, one in the x-direction and one in the y-direction.
The displacement field of the upper, {ũ+}, and lower, {ũ−}, crack faces are expressed by
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the nodal displacements, {d} and shape functions, [N ] as done in Equation 5.14 and
Equation 5.15.

{ũ+} =

[
ũ+(x,y)

ṽ+(x,y)

]
= [N ]{d+} =

[
N1 0 N2 0

0 N1 0 N2

]
u+1
v+1
u+2
v+2

 (5.14)

{ũ−} =

[
ũ−(x,y)

ṽ−(x,y)

]
= [N ]{d−} =

[
N1 0 N2 0

0 N1 0 N2

]
u−1
v−1
u−2
v−2

 (5.15)

{d+} and {d−} contains nodal displacements for the top and bottom crack face,
respectively.

The shape functions are expressed in Equation 5.16, in terms of the local coordinates ξ.

N1 =
(1− ξ)

2
N2 =

(1 + ξ)

2
(5.16)

Based on the above expression for the displacement fields of the crack faces in the cohesive
element, it is possible to express the separation vector in global coordinates, {sG}, as the
difference in the displacements fields. This is done in Equation 5.17.

{sG} = {ũ+} − {ũ−} = [N ]{d+} − [N ]{d−} (5.17)

It is possible to redefine the separation vector in global coordinates by defining the shape
functions according to the location of the nodes, as in Equation 5.18.

N̄p =

{
Np p ∈ nodes located at the upper crack face

−Np p ∈ nodes located at the upper crack face
(5.18)

Thereby, the displacement jump vector in global coordinates is found according to
Equation 5.19.

{sG} = {ũ+} − {ũ−} = [N̄ ]{d} =

[
N1 0 −N1 0 N2 0 −N2 0

0 N1 0 −N1 0 N2 0 −N2

]


u+1
v+1
u−1
v−1
u+2
v+2
u−2
v−2


(5.19)

The separation vector in local coordinates, {sL}, is expressed as the separation vector in
the global coordinate system, {sG}, multiplied by a rotation matrix, [T ]. Thereby, the
separation vector in local coordinates are determined by Equation 5.20.

{sL} = [T ]{sG} = [T ][N̄ ]{d} = [T ]

[
N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2

N1v
+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2

]
(5.20)
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In order to fully describe the separation vector by analytical expressions, an expression for
each term in the rotation matrix needs to be derived. The rotation matrix is determined
by the direction cosines, between a tangent vector and a normal vector to the midsurface of
the crack face. The tangent vector to the crack face, {ν}, is determined by differentiating
the global position vector of the crack midsurface, {x̄}, with respect to the local element
coordinate, ξ.

Also, the geometry, {x}, of an finite element is generally defined by shape functions, [N ],
and nodal coordinates, {c}, as described by Equation 5.21.

{x} = [N ]{c} (5.21)

The nodal coordinates of the midsurface are defined by Equation 5.22, where xp and yp, are
the undeformed x- and y-coordinate of the crack faces and, u and v are nodal displacements
in the x- and y-direction, respectively.

{c} =



x+p1
y+p1
x+p2
y+p2

+


x−p1
y−p1
x−p2
y−p2

+


u+1
v+1
u+2
v+2

+


u−1
v−1
u−2
v−2


 (5.22)

Thereby, the midsurface of the crack is interpolated by Equation 5.23.

{x̄} =

[
x

y

]
=

1

2

[
N1 0 N2 0

0 N1 0 N2

]

x+p1
y+p1
x+p2
y+p2

+


x−p1
y−p1
x−p2
y−p2

+


u+1
v+1
u+2
v+2

+


u−1
v−1
u−2
v−2


 (5.23)

The shape functions are as defined in Equation 5.16.

As mentioned above, the tangent vector to the midsurface of the crack, {ν}, is expressed
by differentiation of the global position vector with respect to the local coordinate, ξ.
Further, only the shape functions are functions of the local coordinate, ξ, which simplifies
differentiation of Equation 5.23 to Equation 5.24.

{ν} =

[
ν1
ν2

]
=

1

2

∂[N ]

∂ξ



x+p1
y+p1
x+p2
y+p2

+


x−p1
y−p1
x−p2
y−p2

+


u+1
v+1
u+2
v+2

+


u−1
v−1
u−2
v−2


 (5.24)

The partial derivative of the shape functions are defined in Equation 5.25.

∂[N ]

∂ξ
=

[
−1
2 0 1

2 0

0 −1
2 0 1

2

]
(5.25)

Combining equation Equation 5.25 and Equation 5.24 yields an expression for the tangent
vector to the midsurface of the crack. This is done in Equation 5.26.

{ν} =

[
ν1
ν2

]
=

1

2

[
−1
2 0 1

2 0

0 −1
2 0 1

2

]

x+p1 + x−p1 + u+1 + u−1
y+p1 + y−p1 + v+1 + v−1
x+p2 + x−p2 + u+2 + u−2
y+p2 + y−p2 + v+2 + v−2




=
1

4

[
−1(x+p1 + x−p1 + u+1 + u−1 ) + (x+p2 + x−p2 + u+2 + u−2 )

−1(y+p1 + y−p1 + v+1 + v−1 ) + (y+p2 + y−p2 + v+2 + v−2 )

] (5.26)
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The tangent vector is normalised.

{νnorm} =
{ν}

||{ν}||
=

{
ν1,norm
ν2,norm

}
(5.27)

where ν1,norm and ν2,norm are defined in Equation 5.28 and 5.29.

ν1,norm =
− 1

4
(x+

p1+x−
p1+u+

1 +u−
1 )+ 1

4
(x+

p2+x−
p2+u+

2 +u−
2 )√

[− 1
4
(x+

p1+x−
p1+u+

1 +u−
1 )+ 1

4
(x+

p2+x−
p2+u+

2 +u−
2 )]

2
+[− 1

4
(y+p1+y−p1+v+1 +v−1 )+ 1

4
(y+p2+y−p2+v+2 +v−2 )]

2
(5.28)

ν2,norm =
− 1

4
(y+p1+y−p1+v+1 +v−1 )+ 1

4
(y+p2+y−p2+v+2 +v−2 )√

[− 1
4
(x+

p1+x−
p1+u+

1 +u−
1 )+ 1

4
(x+

p2+x−
p2+u+

2 +u−
2 )]

2
+[− 1

4
(y+p1+y−p1+v+1 +v−1 )+ 1

4
(y+p2+y−p2+v+2 +v−2 )]

2
(5.29)

A normal vector to the crack surface, {µ} can now be defined by interchanging the
entrances in {ν} and adding a minus sign for the first entrance. This is done in
Equation 5.30.

{µ} = {ν̂norm} =

[
−ν2,norm

ν1,norm

]
(5.30)

The rotation matrix can now be defined from the tangent vector, {ν}, and the normal
vector, {µ}, as in Equation 5.31.

[T ] =

[
ν1,norm µ1

ν2,norm µ2

]
=

[
ν1,norm −ν2,norm

ν2,norm ν1,norm

]
(5.31)

Thereby, combining Equation 5.20 and 5.31 the full analytical expression for the separation
vector, {sL}, in local coordinates is expressed by Equation 5.32.

{sL} =

[
ν1,norm −ν2,norm

ν2,norm ν1,norm

][
N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2

N1v
+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2

]

=

[
ν1,norm[N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ]− ν2,norm[N1v

+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2 ]

ν2,norm[N1u
+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ] + ν1,norm[N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ]

] (5.32)

It is now possible to derive expressions for
{

∂{sL}
∂dj

}
, in Equation 5.7. This is not included

in the report, due to the length of each expression, but can be found in Appendix E.

Thus, expression for all the terms related to the path-following constraint, needed to
redefine Riks arc-length method as expressed in Equation 4.8 and 4.9 are now defined.
Thereby, it is possible to implement the solver in the MATLAB Framework.

The solver algorithm implemented in the MATLAB Framework is available Appendix F.
As mentioned in the introduction to this chapter, the arc-length solver presented in this
section, requires that the energy dissipation between sub-steps is positive and for this
reason the path-following constraint must be changed if there exist non-dissipative part
on the load-displacement curve. This is e.g. the case in the initial linear elastic part of
an analysis, which means the solution must be initialized with e.g. a geometric arc-length
solver such as Crisfield or Riks arc-length solver.

5.1.2 Validation of Local Energy Arc-Length Solver

In this section an evaluation of the implementation of the local energy arc-length solver
in the MATLAB Framework solver is done. The solver is successfully applied to solve
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the same problem as in the validation of the Crisfield solver in section 4.2. The result is
illustrated in Figure 5.1. The arc-length solver yields the same load-displacement curve as
the displacement controlled solution. Furthermore, it captures the snap-back behaviour at
point 2 in Figure 5.1.

1

2

Figure 5.1. Load-displacement curve used to validate the local energy arc-length solver against
a displacement controlled solution. Crisfields arc length solver is used to initiate the solution and
the shift to the local energy arc-length solver happens at point 1.

However, tests of the solver has revealed problems related to the robustness. Even though
a substantial amount of time has been put into debugging the implementation of the
arc-length solver, the problem has not been fully fixed.

The main problem encountered with the local energy arc-length solver is convergence
difficulties due to the step size used.

In order to avoid using too large step-sizes, a condition that bisects the step size is
implemented in the solver. The bisecting is similar to the bisecting condition done for
the Crisfield arc-length solver in section 4.2. However this did not solve the convergence
difficulties since both too small and to large step sizes cause difficulties.

The solver runs successfully if the step size, ∆τ , is limited to be within a small interval.
For the analysis presented in Figure 5.1, the limit of ∆τ , is approximately [0.0005-0.01].
In aforementioned interval, the solver uses 5-25 iterations within each substep and the
residual generally decreases monotonically for each iteration.

Using a step size just below the acceptable interval, generally makes the solver run
satisfactory for a number of substeps, until the solver starts diverging. This ultimately
causes the solver to automatically bisect the step size, due to the aforementioned condition.
Bisecting the step size yields a new steps size, even further from the acceptable interval.
This causes the solver to diverge even faster and this process keeps repeating.

It makes sense that the solver has convergence problems for large step sizes. If the step
becomes too large, the linearisation of the equilibrium equation and the path-following
constraint, done according to Equation 4.7, yields a poor fit to the actual curves which
causes convergence problems.
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The convergence problems related to utilizing smaller step sizes cannot be explained.
Intuitively, reducing the step size should improve the convergence rate, as the linearisation
should yield a better approximation to the actual curve. Nevertheless, this was not
experienced with the solver.

In order to debug what cause the convergence issues several approaches is taken:

• Check if constraint g is fulfilled
• Test of implementation of structure of equations
• Central difference check on

{
∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
in the constraint derivative, {h}

• Central difference check on the constraint derivative {h}

The approaches and outcome is explained in the following:

Check if constraint g is fulfilled

First of, the dissipated energy in each converged substep is checked and compared with the
magnitude of the step size, ∆τ . This is done to check whether the arc-length constraint is
fulfilled for each converged substep. For all the different analyses checked, this is the case.

Test of implementation of structure of equations

As mentioned earlier, the local energy arc-length solver is based on the same set of equations
as Riks arc-length method, but uses a different path-following constraint. An arc-length
solver based on Riks arc-length method is implemented in the MATLAB Framework. This
is done to check whether the implementation of the set of equations is correct. Details of
Riks arc-length method and its implementation is explained in Appendix B.

The implementation of Riks arc-length method is done successfully. Thus, it is concluded
that the error does not lie within the implementation of the set of equations. The error is
instead expected to be found in the calculation of either the path-following constraint, g,
in Equation 5.5 or the constraint derivative, {h} in Equation 5.7, which is where the Riks
and local energy solver differ.

Central difference check on
{

∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
in the constraint

derivative, {h}

The definition of the constraint derivative, {h}, is considerably more demanding than
the path-following constraint, g, both in terms of the theoretical derivation and its
implementation in the MATLAB Framework. Therefore, focus has been put on the {h}
term.

To validate the analytical expressions derived for the constraint derivative, {h}, central
differences have been used to numerically calculate the terms. Specifically, central
difference is used to calculate both

{
∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
, individually.

The central differences are used as a quick check on the values of each of the aforementioned
terms. Due to this and limited time, there has not been put much effort into determining
the correct size of the perturbation. Instead the perturbation has been decreased in steps,
until almost no change between two perturbations sizes is achieved. A perturbation of
1.0 × 10−7m is used to calculate

{
∂∆Q
∂{sL}

}
. Similarly, a perturbation of 1.0 × 10−6m
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is used to calculate
{

∂{sL}
∂dj

}
. Almost identical results from the analytical and central

difference approach are achieved. An example of the analytical and central difference
results for a randomly selected element in substep 15 and 17 are given in Table 5.1.

Substep 15

IP
∂∆Q

∂{sL}
∂{sL}
∂u+1

∂{sL}
∂v+1

∂{sL}
∂u−1

∂{sL}
∂v−1

∂{sL}
∂u−2

∂{sL}
∂v−2

∂{sL}
∂u+2

∂{sL}
∂v+2

Analytical:
1

[
0.0032 · 106

3.2286 · 106

] [
0.7887

0.0014

] [
−0.0015

0.6977

] [
−0.7887

−0.0018

] [
0.0017

−0.8796

] [
−0.2113

−0.0002

] [
0.0003

−0.1204

] [
0.2113

0.0006

] [
−0.0005

0.3023

]

2

[
0.0034 · 106

3.3526 · 106

] [
0.2113

0.0002

] [
−0.0003

0.1254

] [
−0.2113

−0.0006

] [
0.0005

−0.2973

] [
−0.7887

−0.0014

] [
0.0015

−0.7027

] [
0.7887

0.0018

] [
−0.0017

0.8746

]

Central difference:
1

[
0.0032 · 106

3.2286 · 106

] [
0.7887

0.0016

] [
−0.0016

0.7887

] [
−0.7887

−0.0016

] [
0.0016

−0.7887

] [
−0.2113

−0.0004

] [
0.0004

−0.2113

] [
0.2113

0.0004

] [
−0.0004

0.2113

]

2

[
0.0034 · 106

3.3526 · 106

] [
0.2113

0.0004

] [
−0.0004

0.2113

] [
−0.2113

−0.0004

] [
0.0004

−0.2113

] [
−0.7887

−0.0016

] [
0.0016

−0.7887

] [
0.7887

0.0016

] [
−0.0016

0.7887

]

Substep 17

IP
∂∆Q

∂{sL}
∂{sL}
∂u+1

∂{sL}
∂v+1

∂{sL}
∂u−1

∂{sL}
∂v−1

∂{sL}
∂u−2

∂{sL}
∂v−2

∂{sL}
∂u+2

∂{sL}
∂v+2

Analytical:
1

[
0.0055 · 106

5.1646 · 106

] [
0.7887

0.0017

] [
−0.0018

0.7360

] [
−0.7887

−0.0020

] [
0.0019

−0.8413

] [
−0.2113

−0.0004

] [
0.0004

−0.1587

] [
0.2113

0.0006

] [
−0.0005

0.2640

]

2

[
0.0062 · 106

5.4212 · 106

] [
0.2113

0.0004

] [
−0.0004

0.1625

] [
−0.2113

−0.0006

] [
0.0005

−0.2601

] [
−0.7887

−0.0017

] [
0.0018

−0.7399

] [
0.7887

0.0020

] [
−0.0019

0.8375

]

Central difference:
1

[
0.0055 · 106

5.1646 · 106

] [
0.7887

0.0019

] [
−0.0019

0.7887

] [
−0.7887

−0.0019

] [
0.0019

−0.7887

] [
−0.2113

−0.0005

] [
0.0005

−0.2113

] [
0.2113

0.0005

] [
−0.0005

0.2113

]

2

[
0.0062 · 106

5.4212 · 106

] [
0.2113

0.0005

] [
−0.0005

0.2113

] [
−0.2113

−0.0005

] [
0.0005

−0.2113

] [
−0.7887

−0.0019

] [
0.0019

−0.7887

] [
0.7887

0.0019

] [
−0.0019

0.7887

]

Table 5.1. Comparison of analytical and central difference results for each term in the constraint
derivative {h} in Equation 5.7. IP = Integration point.

It is clear from Table 5.1, that the agreement between the analytical and central difference
method is good. Even though the perturbation size has not been investigated thoroughly, it
is assessed that the analytical derivation and implementation is correct due to the similarity
in the results.

Central difference check on the constraint derivative {h}

The next step in the process of locating the error, is to use central differences to calculate
the constraint derivative, {h}, without using the analytical definition in Equation 5.7.
Thus, the constraint derivative is calculated in its most general form by following its
definition in Equation 4.9. This check serves the purposes of validating the derived
analytical expression for the constraint derivative in Börjesson et al. (2022).

Again, the central difference is implemented as a quick check, due to the same reasons
mentioned above. A perturbation of 5.0× 10−10m is used. The results for the constraint
derivative in randomly selected elements where energy is being dissipated in substep 18,
19 and 20 is given in Table 5.2. The tendencies seen in Table 5.2 are also valid for
the remaining elements wherein energy is being dissipated. The elements are selected
randomly, as it is difficult to do it systematically, due to the adaptive floating node method.

Substep 18, 19 and 20 are all located around point 1 in Figure 5.1. Point 1 is where the
onset of delamination is happening. It must be noted that the tendencies is not isolated to
this point, but valid for other locations on the load-displacement curve when convergence
issues occurs.
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The step size used is ∆τ = 0.001. In Table 5.2, three methods are used to calculate the
constraint derivative {h}. Each method is listed below:

• Method 1: An overall central difference is used to calculate the constraint derivative
{h}, according to Equation 4.9

• Method 2: Central difference is used to calculate
{

∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
respectively

and the constraint derivative {h} is afterwards calculated according to Equation 5.7.
• Method 3: Analytical expressions are used to calcualte

{
∂∆Q
∂{sL}

}
and

{
∂{sL}
∂dj

}
and

the constraint derivative {h} is afterwards calculated according to Equation 5.7.

Random element in substep 18
∂g

∂u+
1

∂g

∂v+1

∂g

∂u−
1

∂g

∂v−2

∂g

∂u−
2

∂g

∂u−
2

∂g

∂u+
2

∂g

∂v+2

Method 1:
[
0.6448 137.9136 -0.6492 -137.8539 -0.9151 -185.9058 0.9062 186.0373

]
Method 2:

[
0.6170 131.0154 -0.6170 -131.0154 -0.8803 -179.0993 0.8803 179.0993

]
Method 3:

[
0.6096 128.5006 -0.6243 -133.5302 -0.8730 -176.5845 0.8876 181.6140

]
Random element in substep 20

∂g

∂u+
1

∂g

∂v+1

∂g

∂u−
1

∂g

∂v−2

∂g

∂u−
2

∂g

∂u−
2

∂g

∂u+
2

∂g

∂v+2

Method 1: 0.5981 61.9642 -0.5980 -61.9627 -0.4893 -42.7372 0.4893 42.7376
Method 2: 0.5295 55.0691 -0.5295 -55.0691 -0.4074 -35.8421 0.4074 35.8421
Method 3: 0.5290 54.9273 -0.5299 -55.2110 -0.4070 -35.7002 0.4078 35.9840

Random element in substep 19
∂g

∂u+
1

∂g

∂v+1

∂g

∂u−
1

∂g

∂v−2

∂g

∂u−
2

∂g

∂u−
2

∂g

∂u+
2

∂g

∂v+2

Method 1:
[
0.0006 7.1212 -0.0005 -7.1266 -0.0005 -7.1421 -0.4177 7.1175

]
Method 2:

[
0.0005 0.2186 -0.0005 -0.2186 -0.0005 -0.2220 0.0005 0.2220

]
Method 3:

[
0.0005 0.1646 -0.0008 -0.2726 -0.0005 -0.1680 0.0008 0.2760

]
Table 5.2. Comparison of the constraint derivative {h} calculated by different methods in
randomly selected elements in three substeps.

Based on Table 5.2 it is clear, that the constraint derivative, {h}, calculated by all
methods in the randomly selected element in substep 18 and 20 are approximately identical.
However, for substep 19 method 1 differs alot from the other methods while method 2 and
3 are approximately identical.

Yet another tendency, which is evident from Table 5.2, is that the difference between
the methods decreases as the values of the h-vector increases. Both of these tendencies is
further found for all the remaining h-vectors calculated in the cohesive elements throughout
the model. This may indicate, that the perturbation used in the central difference is
not optimal in all elements. However, in order to make this conclusion, it needs to be
investigated further.

The arc-length solver is also tested in a configuration, where method 1 is used to calculate
the constraint derivative, {h}. This made the solver more robust, as the step-size, ∆τ , can
now be reduced to lower values than if the constraint derivative is based on the analytical
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expressions. A plot of the local energy arc-length solver run with the central difference
method and a step size of ∆τ = 0.0001 is illustrated in Appendix G.

This also indicates that the implementation in the MATLAB Framework, including
assembling the constraint derivative and summing up the dissipated energy from each
element is done correctly. This part of the implementation has also caused troubles as the
constraint derivative, {h}, is assembled in several steps due to the Floating Node method,
which complicates the bookkeeping part.

It is further assessed that the analytical expressions must be partly correct, when it is
possible to achieve almost the same results with the central difference and the analytical
approach. Based on the random variation between the methods used to calculate the
constraint derivative, {h}, it seems like there are terms which the analytical expression
does not account for.

No final conclusion on what causes the convergence issues can be made and further
debugging has not been done due to time constraint. Instead a different energy based
arc-length method is introduced and implemented in the next section.

5.2 Global Energy Arc-Length Solver

This arc-length solver is implemented as problems were encountered in the implementation
of the local energy based arc-length solver in the previous section.

In this section it is first explained how a energy dissipation based path-following constraint,
can be formulated in terms of the global displacement and force vector. Finally, this
method is implemented in the MATLAB Framework and validated.

The formulation of the constraint is based on the previous mentioned work in in the
beginning of this chapter by Verhoosel et al. (2009) and Gutierrez (2004). Also mentioned,
this method is referred to as the global energy arc-length solver.

A benefit of using this path-following constraint is the fact, that it is based on the global
displacement and force vector. This eases the implementation in the MATLAB Framework
and thereby reduces the chances for introducing bugs in the code.

The rate of dissipation, G, may be defined as the exerted power, P minus the rate of elastic
energy, V̇ , as done in Equation 5.33.

G = P − V̇ (5.33)

The exerted power, P , is in general defined in terms of the external forces, {F ext}, and
the nodal velocities, {Ḋ}, as in Equation 5.34.

P = {F ext}T {Ḋ} = λ{F̂ ext}T {Ḋ} (5.34)

The expression for the rate of elastic energy, V̇ , is problem dependent. In the following a
geometrically linear model with damage is assumed as this is consistent with the MATLAB
Framework explained in chapter 3. In this case the stored elastic energy is defined in
Equation 5.35.

V =
1

2

∫
Ω
{ϵ}T {σ} dΩ+

1

2

∫
Γcz

{sL}T {t} dΓcz (5.35)
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Where the first term is the stored elastic energy in the continuum elements and the second
term is the stored elastic energy in the cohesive elements. {ϵ} is the strain, {σ} is the
Cauchy stress, {sL} is the displacement jump vector and {t} is the tractions.

Each of the two terms in Equation 5.35 is treated separately and subscript Ω and Γ is
used to indicate that the variable is related to the continuum elements or the cohesive
elements, respectively. First the term related to the stored elastic energy in the continuum
material is considered. In a finite element framework the strain is defined in terms of the
strain-displacement matrix, [B], and the nodal displacements, {d}, as in Equation 5.36.

{ϵ} = [B]{d}Ω (5.36)

Inserting Equation 5.36 in the first term in 5.35 yields Equation 5.37

1

2

∫
Ω
{ϵ}T {σ} dΩ =

1

2
{d}TΩ

∫
Ω
[B]{σ} dΩ (5.37)

The integral on the right hand side of Equation 5.37 is recognized as the internal forces,
{f int}, in the system, which means Equation 5.37 simplifies to Equation 5.38

1

2

∫
Ω
{ϵ}T {σ} dΩ =

1

2
{d}TΩ{f int}Ω (5.38)

Now the second term in Equation 5.35 is considered. The displacement jump vector in the
cohesive element is defined in Equation 5.20 and repeated below to ease the reading.

{sL} = [T ][N̄ ]{d}Γ (5.20)

Inserting this in the second term in Equation 5.35 yields Equation 5.39.

1

2

∫
Γcz

{sL}T {t} dΓcz = {d}TΓ
1

2

∫
Γcz

[T ]T [N̄ ]T {t} dΓcz (5.39)

According to Turon (2007), the integral in Equation 5.39 is the internal force vector in the
cohesive element. Thus, Equation 5.39 reduces to Equation 5.40.

1

2

∫
Γcz

{sL}T {t} dΓcz = {d}TΓ
1

2
{f int}Γ (5.40)

An expression for the stored elastic energy, V , in the model is determined by combining
Equation 5.35, 5.38 and 5.40 and assembling the element displacement vector, {d}, and
internal force vector, {f int} to a global level.

V =
1

2
{D}TΩ{F int}Ω + {D}TΓ

1

2
{F int}Γ = {D}T 1

2
{F int} (5.41)

Assuming the system is in equilibrium, i.e. the internal force is in equilibrium with the
applied external load, Equation 5.38 is rewritten to Equation 5.42.

V =
1

2
{D}Tλ{F̂ ext} (5.42)

By time differentiation of Equation 5.42 the rate of change of the elastic energy, which is
needed for the path-following constraint is derived, as in Equation 5.43.

V̇ =
1

2
λ̇{D}T {F̂ ext}+

1

2
λ{Ḋ}T {F̂ ext} (5.43)
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By combining Equation 5.33, 5.34 and 5.43 the rate of dissipated energy, G, is defined as
in Equation 5.44.

G =
1

2
{F̂ ext}T

(
λ{Ḋ} − λ̇{D}

)
(5.44)

The corresponding incremental path-following constraint, is found by using a forward Euler
discretisation and introducing the step size, ∆τ , as done in Equation 5.45.

g =
1

2
{F̂ ext}T

(
λn−1{∆D}ni −∆λn

i {D}n−1
)
−∆τ (5.45)

where λn−1 and {D}n−1 are the converged load-level parameter and the displacements
from the last converged substep, respectively. Thereby, a path following constraint based
on the rate of dissipated energy, defined in terms of the global displacement and force
vector is derived.

The global energy arc-length solver explained in this section is implemented in the
MATLAB Framework by utilizing the same set of equations as in Riks arc-length solver.
Similar to the local energy arc-length solver, the displacement and load-level parameter
corrections are found by solving the set of equations in Equation 4.8 and 4.9 which are
repeated below. Further details on Riks arc-length method is explained in Appendix B.[

[Kt]
n
i −{F̂ ext}

({h}ni )T wn
i

]{
{δD}ni
δλn

i

}
=

{
{R}ni
−gni

}
(4.8)

[Kt]
n
i =

∂{F int}
∂{D}

{h}ni =
∂g

∂{D}
wn
i =

∂g

∂λ
(4.9)

Again, the derivatives of the arc-length constraint with respect to the displacements and
the load-level parameter is needed. The derivative of the path-following constraint with
respect to the displacements is given in Equation 5.46 while the derivative of the path-
following constraint with respect to the load-level parameter is defined in Equation 5.47.

{h}ni =
∂g

∂{D}
=

1

2
λn−1{F̂ ext}T (5.46)

wn
i =

∂g

∂λ
= −1

2
{F̂ ext}T {Dn−1} (5.47)

Equivalent to the local energy arc-length solver, the global arc-length solver needs to be
initiated with a solver which does not rely on energy dissipating mechanism. This is
explained in more detail in subsection 5.1.1. The solver algorithm for the global energy
arc-length solver implemented in the MATLAB Framework is available in Appendix H

5.2.1 Validation of Global Energy Arc-Length Solver

The global energy arc-length solver is validated on the same problem and in the same
way as the local energy arc-length solver and the Crisfield geometric arc-length solver.
Thus, first solving the problem with the displacement controlled Newton-Raphson in the
MATLAB Framework and comparing it with a solution obtained by the global energy
arc-length solver. The model used is presented in section 4.2.

The results from each of the test is evident from Figure 5.2. The solution is initialized
with the Crisfield field arc-length solver.
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To check robustness, the step size, ∆τ , is varied from a small value of 0.0005 , which yields
a fine discretisation of the curve, to a rather large value of 0.01 , which yields a coarse
discretisation of the load-displacement curve. During testing of the arc-length solver it
was found that if the step size, ∆τ , is too high, the solver might run into convergence
issues. To circumvent this problem, a condition that bisects the step size is implemented
in the solver. The bisecting is similar to the bisecting condition done for the Crisfield
arc-length solver in section 4.2.

To further check robustness the residual tolerance is varied. A residual of 1 × 10−4N

is used as it yielded relative fast solution times. Further, a residual of 1 × 10−8N is
tested for both the largest and smallest step size, in order to verify that it is possible to
obtain solutions with even smaller residuals, if needed. Equivalent, to the validation of
the Crisfield solver this is mainly motivated by the fact that bugs in the code have caused
convergence problems for some solver settings.

1

2

Figure 5.2. Validation of global energy arc-length solver. The Crisfield arc-length solver is used
until point 1.

From Figure 5.2 it is deemed that all the tests, traces the displacement controlled solution
satisfactory. Furthermore the global energy arc-length solver is able to represent the snap-
back at point 2 . Thus, the same robustness issues related to convergence experienced
with the local energy arc-length solver is not experienced with the the global energy arc-
length solver.
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Literature Study on Toughening

Methods 6
As mentioned in section 1.3, the numerical study done by Trabal et al. (2022a) indicates
that introducing a patch with increased or decreased onset traction, τ o, and critical energy
release rate, Gc, can promote multiple delaminations, which results in an overall toughening
of the structure. In order to realize this a literature study is done exploring the state of
the art methods of toughening. Ideally, a literature study on weakening methods should
be done as well, but it has proven difficult to find literature about this subject.

It must be noted, that the goal of the literature study is not to choose a best method,
but only to explore the possibilities available, which is then used for the experiments,
presented in chapter 8 and 9. It can be noted that a good toughening/weakening method
is one which is cost effective, easy to manufacture and does not considerably degrade the
mechanical, electrical and thermal properties (İnal O. et al., 2022).

In this chapter the principles of the different methods is presented. Figure 6.1 shows an
overview of the different methods that has been studied in this project.

Delamination 
Toughening

Interleaving

Through the 
thickness 

reinforcement

Films

Stichingz-pinningTufting

Surface roughening

Non-vowen fiber 
veilsParticles

Figure 6.1. Overview of studied toughening methods.

6.1 Interleaving

Interleaving methods works by inserting a thin layer of a secondary material in between the
layers of the laminate. This is to improve the interlaminar fracture toughness and impact
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resistance (Shivakumar and Panduranga, 2013) (Yasaee et al., 2012). The way this can be
done is plentiful and a lot of effort in different methods can be found in the literature.

Particles
Interleaving with particles is done by introducing e.g. polymer, nano-silica, or CNT’s
particles on the surface of the interface, between the layers, by various methods such as
sifting, particle filtering and spraying (Shivakumar and Panduranga, 2013) (İnal O. et al.,
2022). The main challenge using particles as interleaves is getting an even distribution, and
having a good bond between the particles and the rest of the laminate. Uneven distribution
can occur for different reasons, such as poor initial distribution, the particles moving with
the resin during infusion causing them to agglomerate (İnal O. et al., 2022). Furthermore,
even though particles interleaves increases fracture toughness, their thickness is between
20% and 50% of the fiber layer thickness, resulting in increased laminate thickness, thereby
reducing the fiber volume fraction in the laminate, which results in reduced in-plane
stiffness and strength (Shivakumar and Panduranga, 2013) (İnal O. et al., 2022).

Films
Using a polymer film offers the advantage of a more uniform distribution of the polymer,
more rapid moulding, and a cheaper process overall when compared to particle interleaving
(Cheng et al., 2019). Furthermore, it is possible to mix different polymers and implement
additional phases, such as nanofibers, to achieve multi-scale toughening (Shivakumar and
Panduranga, 2013). The downside of using a film compared to particles, is that problems
with proper infusion of the resin can occur, due to the film acting as a barrier (İnal O.
et al., 2022) (Shivakumar and Panduranga, 2013) (Cheng et al., 2019). Researchers have
tried to solve this problem by using porous films or films with holes instead, decreasing
the problems with proper infusion (Cheng et al., 2019). Furthermore films has the same
problem of reduced in-plane properties as particles due to a thickness increase of the
laminate.

Non-vowen fiber veils
Non-vowen fiber veils are mats formed from continuous or discontinuous fibers, which is
inserted as an interleave. They can be categorised into two types; microfiber veils and
nanofiber veils. The main difference between them is the size of the fibers used, i.e.
micro-sized fibers and nano-sized fibers respectively. Both types has high porosity, which
allows for good resin flow, and thereby good infusion of the resin. They have proven to
significantly improve the interlaminar fracture toughness, while being easy to implement
in an existing layup process. Furthermore, they also have the possibility to implement
additional phases, so called multi-scale toughening, in order to provide further intralaminar
fracture toughness. (İnal O. et al., 2022)

Microfiber non-woven veils consist of randomly distributed micro-sized fibers made from
various materials such as termoplastic, carbon, glass, aramid and mixed variations of these.
They are mass-producible, cheap and are commercially available in various areal weights.
The main downside of using microfiber non-vowen veils is that they add thickness, which
results in reduced in-plane stiffness and strength. (İnal O. et al., 2022)

Nanofiber non-woven veils is the latest development in interleaves. They are produced
through a process called electrospinning where bulk thermoplastics is spun into continuous
fiber, either directly onto a base fiber layer, or onto a support which can then be inserted
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in between layers. Its benefits is that they are thin, light, has high porosity and therefore
has a minimal, almost negligible, impact on the laminate in terms of weight, thickness,
infusion and in-plane stiffness and strength, while increasing the out-of-plane properties.
There are still challenges in terms of mass production, and commercially available nanofiber
non-vowen veils is therefore limited. (Palazzetti and Zucchelli, 2017) (İnal O. et al., 2022)

6.2 Surface Roughening

The surface roughness has a great effect on the delamination resistance. Generally having
a rougher surface improves the delamination resistance. Compared to interleaving which
adds extra material in between layers, surface roughening methods does not require an
extra layer to be inserted.

Xu et al. (2018) studied the effect of creating a carbon fiber forest (CFF), by pulling
out strands of woven carbon fiber mats, by brushing the surface of woven carbon fiber
fabrics with a wire brush. The CFF worked as an in situ interleaf, which promoted fiber
bridging and improved the GIc. A maximum loss of in-plane properties similar or lower
than other reinforcement methods was observed. Generally, higher levels of brushing done
to the surface results in a higher GIc value, but also a higher loss of in-plane strength.
The method is simple, cheap and chemical free and should be possible to incorporate into
large scale manufacturing of composites according to the authors.

6.3 Through the Thickness Reinforcement

Through the thickness reinforcement in general aims to improve out-of-plane performance
of the laminate, by inserting material transversely to the fiber orientation. Generally,
through the thickness reinforcements improves the out-of-plane performance, but decreases
the in-plane performance mainly due to the creation of resin pockets and local damage to
the fibers. Furthermore, they add costs in the form of specialised equipment and additional
steps in the manufacturing process (İnal O. et al., 2022). The three mostly used methods
are Z-pinning, stitching and tufting. (Gnaba et al., 2019) (Heß and Himmel, 2010)

Stitching
Stitching works by inserting high strength yarns made of carbon, glass, kevlar etc. through
the thickness of the laminate by a needle and tying loops with knots on the other side by a
second needle and thread. The loops and tying of knots is one of the main disadvantages
to the stitching method, since it causes misalignment and crimping of fibers, due to tension
in the yarns. Furthermore, conventional stitching methods requires access to both sides of
the laminate, making it harder to apply to mold layups. Advanced stitching technologies
has been developed, which only requires access to one side eliminating this disadvantage,
but still having to tie knots. (Gnaba et al., 2019)

Z-pinning
Z-pinning involves inserting rigid rods/pins with a thickness of 0.2-1.0mm through the
thickness of the laminate in order to lock the layers together. The pins/rods are made of
high strength material such as carbon/epoxy, titanium or steel. (Gnaba et al., 2019)

Tufting
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Similar to stitching tufting involves inserting high strength yarns made of carbon, glass,
kevlar etc. through the thickness of the laminate. The yarns is inserted through a hollow
needle, and the yarns are not tied or interlocked on the other side by a second needle or
thread, contrary to stitching, but stays in position solely due to the friction between the
fabric and yarn. Therefore only access to one side of the fabric is required. Contrary to
stitching tufting do not create tension in the threads themselves and therefore do not have
the same problems with misalignment of fibers. (Gnaba et al., 2019)
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Parameter Study on Patch Placement

Parameters 7
In this chapter a parameter study on the patch placement is done. This is done in an effort
to understand which parameters have an effect on the promotion of multiple delaminations.
Ultimately conclusions made from the parameter study is used to decide, where to place
the patches in the DCB specimens in the experiments presented in chapter 8.

In order to do so, material parameters for the DCB specimen is first approximated. This
is followed by a mesh dependency study, with the purpose of ensuring correct modelling of
the delamination. Having defined the correct mesh discretisation, it is possible to do the
parameter study on the patch parameters.

As mentioned in section 1.3, Trabal et al. (2022a) has mainly investigated onset of multiple
delaminations and how this can be used to improve the load bearing capacity. This was
done by introducing a patch with augmented interface properties i.e. onset traction τ o

and Gc in the general layup. However, Trabal et al. (2022a) observed that other structural
and material parameters also have an effect.

The parameters is investigated by the use of the MATLAB Framework presented in
chapter 3. Please note that the loading is different from the experiments presented in
chapter 8 and 9, which is loaded with equal and opposite moments. The simulations are
done with prescribed displacements, since the developed energy based arc-length solver
presented in chapter 4 was not available at the time the parameter study was done. It is
expected that the observations made in this chapter also applies for the experiments.

7.1 Specimen Dimensions and Material Properties

Before the simulations can be done dimensions and material properties for the specimens
must be specified.

The general layup used for the DCB specimens, from now on referred to as the virgin
laminate, consists of 16 unidirectional glass fiber noncrimp fabric mats with an areal density
of 800 g/m2, together with PRO-SET INF114-INF212 standard infusion epoxy (PRO-SET
inc., 2022). A 0.13 µm thick PTFE film is used to produce an 100mm initial crack in
the mid-plane of the specimens i.e. in the interface between the two center layers. This
interface is referred to as the main interface. Each layer has a thickness of approximately
0.5mm when cured. This results in an overall thickness of around 8mm. The length
and width of the specimens is 760mm and 30mm, respectively. Patches with augmented
interface properties will then be placed in the virgin laminate.

The dimensions and boundary condition of the specimen used in the parameter study is
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illustrated in Figure 7.1.
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u

Figure 7.1. Dimensions and boundary conditions for the DCB specimen used in the preliminary
simulations.

As it is not possible to do material tests before a layup has been manufactured, material
properties need to be estimated. The material properties are estimated based on the work
by Jensen et al. (2019), Lindgaard and Bak (2019) and Jensen et al. (2018).

Experiments from the aforementioned work has shown critical energy release rates for
mode I, GIc, of around 2000 J/m2.

No information about critical energy release rate for mode II, GIIc, is available for the
material used. GIIc is expected to have a minor influence on the global response due to
the mode I loading of the DCB specimens. It is estimated to be four times GIc, thereby
making GIIc 8000 J/m

2.

The onset traction, τ o, is not as easily obtainable from experimental data as Gc. Numerical
studies done by Alfano and Crisfield (2001), Turon et al. (2010) and Lindgaard et al. (2017)
indicate that, a too low onset traction for mode I, has a minor effect on the global response
during propagation. However, a low onset traction can effect the early loading stage where
the model becomes too soft. This can have a negative effect, when predicting onset of
delamination and modelling multiple delaminations. On the other hand, using a too low
τ o generally improve convergence by effectively increasing the length of the damage process
zone.

Lindgaard et al. (2017) further investigated how the peak load at the early loading stage is
affected by the initial crack length and onset traction. They concluded, the onset traction,
τ o, has almost no effect on the peak load for relatively long initial pre-crack. Since a
pre-crack of 100mm is used for the DCB specimens it is assessed that, onset traction,
τ o, has minor influence on the global response. This has been verified in this work for a
single delamination but should be investigated for multiple delaminations. Jensen et al.
(2018) and Jensen et al. (2019) used a τ oI between 30MPa and 10MPa. Therefore τ oI is
set to 30MPa in this work. τ oII is then calculated using Equation 7.1 in order to obtain
energetically consistent results under mixed-mode conditions (Turon et al., 2010).

τ oII = τ oI

√
GIIc

GIc
(7.1)

The penalty stiffness, Ep, is determined based on Equation 7.2, which is an expression
suggested by Turon et al. (2006).

Ep =
αE33

t
(7.2)
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Ep is the penalty stiffness, E33 is the through-the-thickness Young’s modulus, t is the
thickness of the layer and α is a parameter much higher than 1 (α >> 1). According to
Turon et al. (2006) the cohesive surfaces should only simulate fracture, and its contribution
to the global deformation should be very small i.e E33 << Ep. Equation 7.2 ensures that
the cohesive contribution to compliance is very small, compared to the surrounding bulk
material. Numerical studies done by Turon et al. (2006) showed that α = 50 yields an
optimum for Ep between convergence and not affecting the global response. If Ep is too
high numerical problems such as oscillations and convergence problems can occur.

The material properties used for the simulations are listed in Table 7.1. The elastic
properties are the same as Jensen et al. (2019) used in their work. Please note that
due to the unidirectional layup used, the elastic properties is transverse orthotropic.

Symbol Material property Value

E11 Young’s modulus in the fiber direction 21.5GPa
E22, E33 Youngs’s modulus transverse to fiber direction 10.0GPa
ν12, ν13 Major in-plane Poisson’s ratio 0.3
ν23 Major out-of-plane Poisson’s ratio 0.07
G12, G13 In-plane shear modulus 4.0GPa
G23 Out-of-plane shear modulus 2.5GPa

GIc Critical energy release rate Mode I 2000 J/m2

GIIc Critical energy release rate Mode II 4000 J/m2

τ oI Onset traction Mode I 30MPa
τ oII Onset traction Mode II 60MPa
Ep Penalty stiffness 5× 106N/mm3

Table 7.1. Material properties used for the simulations.

Even though the material properties can not be guarenteed to be the actual values for the
specimen, it is assessed to be sufficient for the parameter study. The goal of the parameter
study is not to simulate the laminate one-to-one. Instead it is used to study the effect each
parameter has on the delamination behaviour.

7.2 Mesh Dependency Study

In order to ensure accurate results, a mesh dependency study based on the overall number
of A-FNM elements and user defined ARS-variables, presented in section 3.2, is done in
this section for the DCB specimen.

As mentioned in section 3.2, the only ARS-variables that are changed in this work are
RZone23 and NZone3. In order to aid the reader, the definition of the relevant ARS-variable
that are investigated is repeated here in short:

• RZone23: Specifies the refinement used in Zone 2 and 3 illustrated in Figure 7.2.
Zone 2 is the A-FNM elements, wherein damage is occurring. Zone 3 is the A-FNM
elements in front of the crack tip. This is specified as an integer number, which
defines the number of sub-elements that are to be used in the longitudinal direction
for each of the relevant A-FNM elements.
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• NZone3: Specifies the number of A-FNM elements that are included in Zone 3
illustrated in Figure 7.2. As mentioned, Zone 3 is refined in the same way as Zone 2
i.e. according to the value of RZone23.

Full Damage Region
High Gradient 

Region
Low Gradient 

Region

Zone 1 Zone 2 Zone 3

τ d Damage Process Zone

Zone 4

A-FNM Element

Crack Tip

Floating Nodes

Full Damage State Refined State Coarse State

Inactive Region

Figure 7.2. Refinement principle based on the user inputted ARS variables used in the MATLab
Framework to control the ARS-algorithm.

As mentioned in section 3.2, 3-10 cohesive elements are needed in the damage process
zone. In order to ensure this, the length of the numerical damage process zone needs to be
estimated. It must be noted that the numerical damage process zone length is not the same
as the physical damage process zone length (Harper and Hallett, 2008). Several approaches
on how to estimate this length can be found in the literature, where it is also commonly
referred to as the cohesive zone length. The simplest models for isotropic materials takes
the form shown in Equation 7.3.

ldpz = ME
Gc

(τ o)2
(7.3)

Where ldpz is the length of the damage process zone, E is Young’s modulus and M is a
fitting parameter dependant on the model used. The most commonly used models in the
literature are Hillerborg et al. (1976)’s model and Falk et al. (2001)’s model, which uses a
fitting parameter, M , of 1 and 0.88, respectively. (Turon et al., 2007)

For orthotropic materials Yang and Cox (2005) and Yang et al. (2006) developed modified
expressions of Equation 7.3 for both mode I and mode II, as shown in Equation 7.4a and
7.4b, respectively.

ldpz,I = E′
I

GIc

(τ oI )
2

(7.4a)

ldpz,II = E′
II

GIIc

(τ oII)
2

(7.4b)

These expressions uses an equivalent elastic modulus, E′, for orthotropic materials, which
depends on the elastic constants and whether a plane stress or plain strain condition is
assumed.

Equation 7.4a and 7.4b is only valid for so called infinite bodies, where the thickness of the
body has no influence on the damage process zone length. Most composites is very thin
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and the thickness of the body therefore affects the damage process zone length. Due to
this, Yang and Cox (2005) developed expressions for thin laminates with centered cracks
loaded in mode I or mode II as defined in Equation 7.5a and 7.5b.

ldpz,thin,I =

(
E′

I

GIc

(τ o0 )
2

) 1
4

t
3
4 (7.5a)

ldpz,thin,II =

√(
E′

II,thin

GIIc

(τ oII)
2

)
t (7.5b)

Where t is half the thickness of the laminate, and E′
II,thin is a mode II equivalent young’s

modulus.

Based on a numerical study, Harper and Hallett (2008) showed that Equation 7.4a, 7.4b,
7.5a and 7.5b generally over predicts the numerical damage process zone length. They
suggested that a scaling factor of 0.5 should be applied to the minimum values of the
equations, when using a bi-linear traction separation law under mixed-mode conditions.

ldpz,estimated = 0.5(min(Equation 7.4a, 7.4b, 7.5a, 7.5b)) (7.6)

As mentioned in section 3.1 the traction-separation law used in the MATLAB Framework
is a bi-linear traction-separation law. Equation 7.6 will therefore be used to estimate the
length of the numerical damage process zone.

Having defined the expression for the estimated length of the damage process zone, ldpz,est,
it is possible to determine the maximum element length for each element in the damage
processs zone, lele,max, by using Equation 7.7

lele,max =
ldpz,estimated

Nele,DPZ
(7.7)

Where Nele,DPZ is the desired number of elements in the damage process zone.

Using the material properties and specimen dimensions presented in section 7.1,
Equation 7.6 yields a estimated damage process zone length, ldpz,estimated, of 2.89mm.

As mentioned in section 3.2, the number of elements in the damage process zone, Nele,dpz,
has to be between 3 and 10. Setting Nele,DPZ to 10 in Equation 7.7, yields a maximum
length of each element in the damage process zone, lele,max, of 0.289mm. This value is
used as a starting point for the mesh dependency study.

All the models done in the mesh dependency study is done with the model in Figure 7.1
and a prescribed displacement, u, of 30mm.

7.2.1 Number of A-FNM Elements

Trabal et al. (2022a) reports that the discretisation of the length of the A-FNM elements
can have an influence on the results. This is due to the A-FNM elements not being able
to represent the deformation state. This is mainly due to bending for the DCB specimen.
Therefore a convergence study on this is done in order to ensure accurate results.

In order to rule out all other variables in the study of the A-FNM element size, LA−FNM ,
the element size in the damage process zone, lmax,DPZ , is kept constant at 0.289mm.
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In practice, lmax,DPZ is kept at a constant value by adjusting the ARS-variable RZone23

according to Equation 7.8.

RZone23 =
LA−FNM

lmax,DPZ
(7.8)

Furthermore, the total length of zone 2 and 3 combined is kept constant, which results
in the total number of sub elements being constant. This is done by adjusting the ARS-
variable NZone3 according to Equation 7.9.

NZone3 =
LA−FNM,max

LA−FNM
− 1 (7.9)

Where LA−FNM,max is the maximum A-FNM element length investigated, i.e. 40mm.

An overview of the parameters used for the convergence study on the length of the A-FNM
elements is shown in Table 7.2, with the size of the smallest and largest mesh illustrated
in Figure 7.3.

NA-FNM LA-FNM RZone23 NZone3

19 40mm 138 0
38 20mm 70 1
76 10mm 35 3
152 5mm 17 7
228 3.3mm 12 11
304 2.5mm 9 15

Table 7.2. AFN-element and ARS-variables used for the convergence study on the number of
A-FNM elements.

(a) A-FNM element size, LA−FNM = 40mm.

(b) A-FNM element size, LA−FNM = 2.5mm.

Figure 7.3. Illustration of the smallest and largest A-FNM element size used for the convergence
study on A-FNM element length. The pre-crack is marked with a blue line

Figure 7.4 illustrates the load-displacement curves for the different A-FNM element lengths
used. It is evident from the figure, that the length of the A-FNM elements does not affect
the outcome of the simulation, except in the case of an A-FNM element length of 40mm.
This change is due to the pre-crack not being placed at the same place as the rest of
simulations as illustrated in Figure 7.3. The MATLAB Framework can only place pre-
cracks in whole A-FNM elements and will do a extension/reduction of the pre-crack to
the nearest whole A-FNM element. In the case of an LA−FNM of 40mm, the pre-crack
therefore ends up being placed 120mm, instead of the intended 100mm.

As there is no obvious difference in the load-displacement curve for the different A-FNM
element lengths, LA−FNM , except for the case discussed above, a LA−FNM of 5mm is
chosen for the remaining simulations in this chapter. The size is chosen as it is a good
compromise, between the total number of coarse A-FNM elements, NA−FNM and the
refinement in Zone 2 and 3, RZone23. Additionally, the LA−FNM of 5mm makes it possible
to place patches and pre-cracks at 5mm intervals.
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Figure 7.4. Load displacement equilibrium curve for different A-FNM element lengths.

7.2.2 Number of sub-elements

As mentioned in section 3.2 3-10 elements in the damage process zone yields a good
compromise between convergence and accurate results. Additionally the remaining part of
the high gradient region must be discretised with equally fine elements.

In order to check whether this is the case the mode I traction, τI , profile is investigated.
Afterwards, a study on the number of subelements elements is done in order to check mesh
dependency. This is all done on the aforementioned DCB-model with an A-FNM element
length of 5mm.

Figure 7.5. Mode I traction profile around the crack tip, at the full displacement of 30mm. Each
circle represents a node.

Figure 7.5 illustrates the mode I traction profile near the crack tip at the fully applied
displacement of 30mm. As it is evident from Figure 7.5 the length of the damage process
zone is about 4.7mm. This length is longer than the estimated 2.89mm from Equation 7.6.
Consequently 16 elements are present in the damage process zone, which is more than
enough to model the delamination correctly. Furthermore, the length of zone 3, defined
in Figure 7.2, seems to be plenty long to model the high gradient region, which is about
15mm, correctly.
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In order to reduce the number of subelements, the amount of A-FNM elements in Zone 3
is reduced by adjusting the ARS-variable NZone3 to 1. The reduction is done in order to
improve the computational efficiency.

Figure 7.6. Load displacement equilibrium curve for two different values of NZone3.

Figure 7.6 illustrates the load-displacement equilibrium curves for 1 and 7 A-FNM elements
included in zone 3. From Figure 7.6 it is observed that the global response is the same.
Figure 7.7 illustrates the mode I traction profile around the crack tip for both cases. This
also illustrates that 1 A-FNM element in zone 3 is sufficient to capture the high gradient
zone and thereby model the delamination correctly.

7 A-FNM Elements in Zone 3
1 A-FNM Element in Zone 3

Figure 7.7. Mode I traction profile around the crack tip, at the full displacement of 30mm for
two different values of NZone3.

In order to investigate the influence of the number of sub-elements in the damage process
zone, a convergence study on this is done. This is done by adjusting the ARS-variable
RZone23.

Figure 7.8 illustrates the load displacement equilibrium curves for the different values of
RZone23. From Figure 7.8 it is observed that the peak load is increased, for the low values
of 2 and 4. Furthermore, the response is oscillating once past the peak load. Both these
behaviours is a sign that not enough elements are present in the damage process zone.
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Figure 7.8. Global response for different refinement values for RZone23.

Figure 7.9. Mode I traction profile near the crack tip at the 30 mm displacement values for a
RZone23 value of 4. The circles represents a node.

Figure 7.9 illustrates the mode I traction profile near the crack tip at the fully applied
displacement of 30mm for a RZone23 value of 4. Figure 7.9 shows that 4 sub-elements
are present in the high traction zone. According to Trabal et al. (2022b) this should be
enough elements to model the delamination correctly. As mentioned the global response
indicates, that this is not the case, and therefore more than 4 elements is needed in the
damage process zone.

Based on the convergence study on the number of sub-elements in the damage process
zone, the ARS-variable RZone23 is set to 25 for the remaining simulations in this chapter.
This relative high value is used to account for a shorter damage process zones, once the
toughening patches are introduced. The number of elements present in the damage process
zone is checked for all the simulations done in the parameter study in order to ensure correct
modelling of the delamination.

7.3 Parameter Study

In this section parameters related to the placement and material of the patches is studied.
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The parameters that will be investigated in the parameter study includes:

• Distance between pre-crack and patch
• Patch length
• Interface placement of the weakening patch

The reason for investigating each parameter will be explained throughout this section.

The ARS-variables and number of A-FNM elements used for the parameter study, based
on the convergence study in the previous section, is presented in Table 7.3

LA-FNM NA-FNM RZone23 NZone3

5 152mm 25 1

Table 7.3. AFN-element and ARS-variables used for the parameter study.

7.3.1 Augmented Patch Parameters

A study is done, to check whether multiple delaminations will occur, when a patch with
augmented onset traction τ0 and critical energy release rate Gc, is placed in the virgin
laminate.

A weakening patch and two toughening patches is studied separately. The weakening patch
is placed in the interface just below the main interface i.e. at a distance of 0.5mm. This
interface is referred to as the secondary interface. The weakening patch has the following
interface properties:

• τ o = 0 and Gc = 0 of for both mode I and II

Thereby the weakening patch cannot transfer any loads and essentially acts similar to
placing a PTFE film in the secondary interface. This is chosen since this is the way
weakening patches will be introduced in the experiments.

The toughening patches are placed in the main interface and has the following properties:

• 2 · τ o and 2 ·Gc of the virgin laminate for both mode I and II
• 1.25 · τ o and 1.25 ·Gc of the virgin laminate for both mode I and II

The interface properties of the toughening patches is unknown before the experiments are
done. Instead above mentioned values for the toughening patches is chosen in order to get
an rough idea of what the critical energy release rate, Gc and onset traction, τ o should be
in order to promote multiple delaminations.

The patches is placed at a distance of 50mm from the pre-crack and has a length of 50mm.
The model used in the study is illustrated in Figure 7.10. The prescribed displacement, u,
is 100mm. Only the main interface and the secondary interface are included in the model,
in order to improve computational efficiency.

Figure 7.11 illustrates the load-displacement curve of the DCB-specimen with a toughening
patch, weakening patch and without a patch. Figure 7.12 illustrates the deformation of
the DCB-specimen at the four points of interest marked in Figure 7.10. The four points
of interest marks the following:
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= Precrack
= Toughening Patch
= Weakening Patch
= Interface

760mm

8
m
m

100mm 50mm 50mm

0.5mm

u

u

Figure 7.10. Dimensions and boundary conditions for the DCB specimen used in the study of
augmented patch parameters.

A

B
C

C

D

Figure 7.11. Load-displacement curve of the DCB-specimen with a weakening patch, a toughening
patch and without a patch.

A Both patch types: Delamination is onset from the pre-crack in the main interface
and starts propagating as a single delamination.

B Toughening patches: The single delamination in the main interface reaches the
toughening patch. This leads to an initial toughening of the specimen during
propagation of the single delamination in the main interface, until the peak load
is reached.
Weakening patch: The single delamination in the main interface is aligned with
the weakening patch.

C Toughening patch: Delamination in the secondary interface is onset causing a
drop in the load. Multiple delamination fronts are present at this stage and starts
propagating. The delamination in the toughened main interface propagates slower
than the delamination in the secondary interface. This is due to the toughening
patch, making it harder for the delamination in the main interface to propagate.
Weakening patch: Delamination in the secondary interface is onset causing a drop
in the load. The entire weakening patch opens as soon as the delamination in the
secondary interface is onset, hence the large load drop. This is followed by a second
load increase. None of the delaminations are propagating.

D Weakening patch: Multiple delaminations starts propagating.
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(A) Initiation of single delamination in main
interface.

(B) Single delamination in main interface
reaches the patch.

(C) Delamination in secondary interface initi-
ates. (D) Propagation of the multiple delaminations.

Figure 7.12. DCB-specimen deformation at the four points marked in Figure 7.11.

From Figure 7.10 it is observed that multiple delaminations are promoted for both the
weakening and the toughening patch with 2 · τ o and Gc. The multiple delaminations leads
to a toughening of the specimen, when compared to the virgin laminate without a patch.
The toughening patches leads to a higher toughening than the weakening patches. For the
toughening patch with 2 · τ o and Gc an initial toughening is present, but eventually drops
of and comes to the same level as a virgin laminate without a patch. This indicates that
multiple delaminations has not been promoted. Thereby it indicates that a toughening
patch with interface values of around twice the virgin laminate is needed in order to
promote multiple delaminations.

7.3.2 Length of Patch

The length of the patch used has an effect on whether multiple delaminations is promoted
or not, according to Trabal et al. (2022a). If the delamination in the main interface
is not fully arrested, a longer toughening patch increases the probability of onsetting
multiple delaminations. Similarly, if a weakening patch is used in the secondary interface
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a longer weakening patch increases the probability of onsetting and propagating multiple
delaminations. In both cases, the patch needs to be sufficiently long to ensure a full damage
process zone, in the secondary interface, is developed with high enough tractions to onset
multiple delaminations. (Trabal et al., 2022a)

Three different patch lengths, lpatch, is studied; 10mm, 25mm and 50mm. All the patches
is placed at a distance of 50mm from the pre-crack. Only toughening patches is studied.
The rest of the settings are the same as described in the previous sections. The model
used is illustrated in Figure 7.13.

= Precrack
= Toughening Patch
= Interface

760mm

8
m
m

100mm 50mm lpatch

0.5mm

u

u

Figure 7.13. Dimensions and boundary conditions for the DCB specimen used in the study of
lpatch.

A

B

Figure 7.14. Load-displacement equilibrium curve of the DCB-specimen with different lengths of
the toughening patch, lpatch, and without a patch.

Figure 7.14 illustrates the load-displacement curve of the DCB-specimen with different
lengths of the toughening patch, lpatch. The general behaviour is the same as described
in subsection 7.3.1 and identical for all lpatch, except for the patch with a lpatch value of
10mm. Aforementioned patch length experiences a load drop at 0.07mm displacement.
Figure 7.15 illustrates the deformation at point A and B marked in Figure 7.14. From
aforementioned figures it is evident, that the load drop is due to the delamination in the
main interface propagating out of the toughening patch at this point. This causes a sudden
propagation both in the main and secondary interface.
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(A) Deformation just before the delamination in the main interface propagates out of the
toughening patch.

(B) Deformation just after the delamination in the main interface propagates out of the toughening
patch.

Figure 7.15. Deformation of the DCB specimen with lpatch = 10mm at point A and B marked
in Figure 7.14

Conclusions made from the study on the length of the patch, is that multiple delaminations
is promoted even with a short patch, thereby toughening the specimen. None of the lengths
fully arrests the delamination in the main interface. If lpatch is too short the delamination
in the main interface can propagate out of the toughening patch causing a sudden load
drop. Furthermore, since the interface properties of the materials used as toughening
patches is unknown a longer patch might increase the probability of promoting multiple
delaminations. This needs to be studied further in order to finally conclude this.

7.3.3 Interface Placement of the Weakening Patch

According to Trabal et al. (2022a), a lower distance between the main and secondary
interface increases the probability of onsetting and propagating multiple delaminations.

As mentioned in section 7.1 the layup used for the specimens consists of 16 layers which is
approximately 0.5mm thick. Therefore the distance between interfaces is predetermined
to 0.5mm. Instead the effect of the distance between interfaces observed by Trabal et al.
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(2022a) can relate to which interface the weakening patch is placed in. A weakening patch
placed close to the main interface increases the likelihood of multiple delaminations. The
downside of placing it too close to the main interface is that the main and secondary
interface might collapse into one interface during the experiments. The interfaces in the
specimens in the experiments is not perfectly separated as they are in the simulations,
due to mechanisms like fiber bridging, fiber pullout and crack jumping. Therefore a study
on whether multiple delaminations is onset, if the weakening patch is placed in different
interfaces is done in the following.

Four different interface distances, dweak, is investigated; 0.5mm, 1mm, 1.5mm and 2mm.
The distances corresponds to placing the patch in the first, second, third and fourth
interface from the main interface, respectively. The model used is illustrated in Figure 7.16
Only the main interface and the interface where the patch is placed is simulated, due
to computational efficiency. The weakening patches are all 50mm long and placed at
distance of 50mm from the pre-crack. The rest of the settings are the same as described
in subsection 7.3.1.

= Precrack
= Weakening Patch
= Interface

760mm

8
m
m

100mm 50mm 50mm

dweak

u

u

Figure 7.16. Dimensions and boundary conditions for the DCB specimen used in the study of
dweak.

Figure 7.17. Load-displacement equilibrium curve of the DCB-specimen with different interface
distance, dweak, and without a patch.

Figure 7.17 illustrates the load-displacement curve for the simulations. The general
behaviour is the same as described in subsection 7.3.1. From Figure 7.17 it is evident that
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multiple delaminations is onset and starts propagating for all patch placements except
for the patch distance of 2mm. At this distance the load initially drops due to the full
weakening patch being reached. This is followed by an initial toughening until a second
load drop happens. The load drops to the same level as a specimen without a patch
indicating that no toughening, due to multiple delaminations, is achieved. Thus, it is
possible to place the weakening patch at a distance where multiple delaminations is not
onset and starts propagating.

7.4 Summary

To summarise, the observations made from the parameter study are the following:

• Multiple delaminations can be onset for a weakening patch with interface properties
equal to 0.

• Multiple delaminations can be onset for a toughening patch with twice the virgin
laminate interface properties.

• Multiple delaminations are onset even if a short toughening patch is used. This has
only been studied for a toughening patch with interface properties twice the virgin
laminate.

• A too short toughening patch causes a sudden load drop if the delamination
propagates out of the patch.

• Multiple delaminations are promoted if the weakening patch is placed in one of the
three secondary interfaces nearest to the main interface.

Based on the observations, DCB specimens with toughening and weakening patches are
manufactured and tested in the next chapter.
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Specimens 8
The experimental part of this work is explained in the following chapter. The experimental
test are done to determine whether multiple delaminations is onset in the DCB-specimen
and whether it has a toughening effect. In order to determine this, the fracture resistance
and crack mouth opening displacement (CMOD) is determined in the tests of the DCB-
specimens. The chapter is organised in the following way. First the manufacturing, test
setup and dataprocessing is explained. Then two preliminary types of DCB specimens are
designed, manufactured and tested. This leads to the development of a virtual clip gauge.
Finally the results from six different types of DCB specimens are presented.

8.1 Manufacturing Process

As mentioned in section 7.1, the general layup used for the DCB specimens consists of 16
unidirectional glass fiber noncrimp fabric mats with an areal density of 800 g/m2, infused
with PRO-SET INF114-INF212 standard infusion epoxy (PRO-SET inc., 2022). The layup
is symmetric around the midplane, with the UD fibers facing the midplane. A 0.13 µm
thick PTFE film is used to produce an 100mm pre-crack in the midplane. Each layer
has an approximately thickness of 0.5mm when cured, resulting in an overall thickness of
around 8mm. Patches are then introduced in the general layup in order check their ability
to promote multiple delaminations.

The specimens is manufactured by using a vacuum assisted resin transfer molding process
(VARTM) and cured according to the specification from the resin manufacturer. An image
from the infusion process is shown in Figure 8.1.

In order to manufacture the specimens a single plate is first manufactured with a size of
780mm by 465mm. The specimens is then cut from the plate to a size of 740mm by
30mm using a CNC-mill with a end mill designed for glass fiber composites. An existing
MATLAB script for generating tool paths for the CNC-mill is modified and used to machine
the specimens from the plate. The reason to use the CNC-mill is to automate the cutting
of the DCB specimens, as a high number of specimens are manufactured in this work.

An image from the machining process is shown in Figure 8.2 After cutting the DCB
specimens, holes are drilled and taped in order to attach a mounting bracket to each arm
of the DCB specimen. Furthermore, two pins are attached to the DCB specimen in order
to mount a clip gauge. These pins are located on one side of the specimen, at the tip of
the initial crack. The final dimensions of the specimens are measured with a caliper, for
use in the data processing.
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Figure 8.1. Infusion process.

Figure 8.2. Composite plate machined in the CNC machine.

Figure 8.3. Naming of DCB specimens.

The DCB specimens are named and numbered based on their layup and position in the
cured composite plate e.g. V01-01 is the first virgin specimen from the first virgin layup.
W and T will be used for specimens with a weakening or toughening patch respectively.
This is shown in Figure 8.3.
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8.2 Test Setup

The DCB specimens are tested using the test fixture, shown in Figure 8.4, which applies
pure even or uneven bending moments to the DCB specimen. The test fixture is actuated
by a standard tensile testing machine and converts a force loading into bending moments
using a wire pulley system. By using a standard tensile testing machine as actuation, the
existing high precision motion and data acquisition from the tensile testing machine can
be utilised. (Lindgaard and Bak, 2019)

The standard test method for delamination testing of DCB specimens is done according
to ASTM D5528-13 and ISO 15024. For mode I testing these methods use wedge loading,
where a DCB specimen is mounted with hinges and loaded. Aforementioned methods
requires that the crack length is recorded during testing, which can be challenging. One of
the benefits of applying bending moments to the DCB specimen, is that the crack length
does not need to be monitored (Sørensen et al., 2006).

Figure 8.4. Overview of test fixture used for tests of the DCB specimens.

The procedure of testing is as follows:

• Attach a mounting bracket to each arm of the DCB specimen.
• Position the DCB specimen in the support rollers.
• Attach the moment loading arms to the specimen.
• Attach clip gauge to the specimen.

Data from the clip gauge is logged together with the force applied by the tensile test
machine and the angle of each loading arm. The angle is measured using inclinometers,
mounted on the loading arms.

8.3 Experimental Data Processing

The energy release rate needs to be determined, in order to characterise the delamination
of the DCB specimens. The energy release is determined based on the J-integral shown in
Equation 8.1.

G = J =
21 · (M2

1 +M2
2 )− 6 ·M1 ·M2

4 ·W 2 ·H3 · E
(8.1)
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Where M1 and M2 are the applied moments on each of the arms of the DCB specimen, W
is the width of the specimen, H is the height of each beam of each arm and E is Young’s
modulus in the fiber direction. The loading is illustrated in Figure 8.5. In this work the
DCB specimens is loaded with equal and opposite bending moments i.e, M1 = −M2 and
M2 > 0, thus loading it in mode I .

Figure 8.5. Illustration of loading of the DCB specimen with bending moments and variables
used for accounting for rotation.

The Young’s modulus has been determined using three point bending tests on selected DCB
specimens with an average value of 30.8GPa with a maximum deviation of 0.62GPa. For
further details on the derivation of the J-integral see Sørensen et al. (2006).

The applied moments is calculated from Equation 8.2

M =
F

2
· Larm (8.2)

Where Larm is the horizontal distance between the wire on the rollers as shown in
Figure 8.5, F is the force applied by the tensile test machine.

Due to rotations of the loading arms the horizontal distance between the rollers change
during the test, thereby changing the applied moment. This is accounted for by using
Equation 8.3.

Larm = cos(θ) · dwires (8.3)

Where θ is the angle measured by the inclinometers, and dwires is the distance between
the wires as shown in Figure 8.5.
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8.4 Preliminary Experiments

In order to gain experience with the manufacturing and testing of the DCB specimens
preliminary experiments are done. The preliminary experiments are further used to check
whether the observations made in the parameter study in section 7.3 are valid. Two
different types of DCB specimens are designed, manufactured and tested based on the
observation from the parameter study.

• V01: A virgin type using the general layup. This is made to get a baseline to
compare the effect of introducing patches in the DCB specimens with.

• W01 A weakening type with a weakening patch positioned in the general layup.
The patch consists of a PTFE film, that will act in a similar manner as a pre-crack.
The patch is positioned between layer 10 and 11, with a longitudinal distance to the
pre-crack of 100mm. The patch has a length of 50mm.

The DCB specimen with a weakening patch is illustrated in Figure 8.6.

= Precrack
= Weakening Patch
= Interface

760mm

8
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100mm

100mm
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1mm

Figure 8.6. DCB specimen with a weakening patch.

The preliminary experiments showed that it is possible to onset and propagate multiple
delaminations when a weakening patch is used based on visual inspection. However, the
range of the clip gauge is too small to measure the crack mouth opening displacement
for the entire experiment. The clip gauge simply falls of just as the delamination reaches
the patch. Therefore it is not possible to determine whether multiple delaminations has a
toughening effect.

One way to alleviate this could be to move the patch closer to the pre-crack. However, it
was observed during the experiment of a V01 specimen, that the damage zone with large
scale fiber bridging extended approximately 50mm behind the crack tip. A full damage
process zone is needed before the patch is reached, in order to correctly study the effect of
patches introduced in the specimens. Therefore, moving the patches closer is not deemed
a viable solution.

Therefore, a different method to measure the CMOD is required. This is done in the form
of image registration, which will be explained in the next section.
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8.5 Virtual Clip Gauge

By using image registration a Virtual Clip Gauge can be utilised.

The basic idea of the Virtual Clip Gauge is to measure the CMOD on images captured
continuously during the experiments. This is done by marking each arm of the DCB
specimen with a cross and using image registration to track the change in position of the
crosses throughout the captured images. This is done by tracking the change in position
of the crosses between images using the Computer Vision Toolbox from MATLAB. Image
registration basically detects the position of a detail selected from one image on a second
image. The two images is henceforth referred to as the target image and the search image,
respectively.

The image registration is done using the Computer Vision Toolbox from MATLAB. The
image registration in the Computer Vision Toolbox utilises local features. A local feature
is a pattern, which is distinct from the surrounding area of the image. Usually this is done
using image properties such as texture and intensity (Mikolajczyk and Tuytelaars, 2009).
The toolbox contains different feature detectors and descriptors. The feature detectors are
used to detect the local features in the image, and the descriptors are used to describe the
neighborhood of a local feature. (MathWorks, 2022a)

The process of image registration follows five steps (MathWorks, 2022a):

• Detect local features in both the detail, selected from the target image, and the
search image

• Extract descriptors for the local features
• Determine candidate matches by matching the descriptors
• Obtain the location of the candidate matches
• Determine matching points and the geometric transformation

In the following the principle of image registration is explained using the two images shown
in Figure 8.7a and 8.7b. The square in Figure 8.7a illustrates the selected detail to find in
Figure 8.7b.

First the local features are detected in both the detail, and the search image. The detected
local features are illustrated in Figure 8.8. Feature descriptors are then extracted for the
local features.

The candidate matches are found by matching the local features from the two images by
using their descriptors as shown in Figure 8.9a. The outliers then are removed leaving
only matching points as shown in Figure 8.9b. The geometric transformation of the detail
is then estimated, to find its location on the search image, which yields a transformation
matrix.

The transformation matrix is then used to show the found position and rotation of the
detail on the search image as illustrated in Figure 8.10.

Based on the principles for Image Registration a virtual clip gauge is programmed.Different
types of feature detectors is available in the Computer Vision Toolbox. In order to select
the best type each of them are tested.
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(a) Target image, the green square illustrates the
selected detail. (b) Search image on where to find the detail.

Figure 8.7. Images used for explaining the principles of image registration.

(a) Selected detail.

(b) Search image.

Figure 8.8. Detected local features on the two images (Circled in green).

Local Features on Marker Image
Local Features on Search Image

(a) Candidate matches.

Local Features on Marker Image
Local Features on Search Image

(b) Matches after the geometric transformation

Figure 8.9. Matching points between the two images.
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Figure 8.10. The detail overlaid on the search image.

From the test three conclusions are made.

• Using one type of feature detectors and descriptors alone will either result in difficulty
to find sufficient matches or too high of a computational cost.

• The primary computational cost comes from the extraction of the descriptors. It is
therefore beneficial to reuse the extracted descriptors if possible.

• The resolution of the detail has a substantial effect, on how many matching points
are found.

Based on aforementioned, four different types of feature detectors and descriptors are used;
SURF, BRISK, KAZE and SIFT for further details see MathWorks (2022b). All four are
combined into one image registration algorithm shown in Appendix I. The idea of this is
to use the faster types first, and then continue with a slower but better algorithm, if not
enough matching points are found. Additionally, a region of Interest is used with three
of the feature detectors. This is used to further reduce the computational time of the
image registration, by reducing the search area from the full picture to smaller part near
expected location of the selected detail. Finally the resolution of both the detail and the
search image are increased using the MATLAB function imresize.

The different types of feature detectors and descriptors are used in the following order:

• SURF with region of interest
• BRISK with region of interest
• KAZE with region of interest
• SIFT
• SURF without region of interest
• BRISK without region of interest
• KAZE without region of interest

The input to the algorithm is two selected details in the form of each cross on the DCB
arms, the image on which they are to be found, a region of interest for each detail and
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a integer describing the minimum number of matching points required to proceed to the
next image.

If a feature detector and descriptor is used without a region of interest, for the first detail,
the local features detected on the search image are reused for the second detail. This is
possible as the as the search image remains the same for the two details. This reduces the
computational cost.

The output from the algorithm is the angle, scale, location and number of matching points
found for each detail. These are then used to calculate the center position of each detail
and the distance between them. As this distance is in pixels a calibration is needed.

A calibration script has therefore been developed. This is set up to utilise a checkerboard
attached to the DCB test rig, in the approximately same plane as the crosses drawn on
the DCB specimen. The checkerboard is automatically detected and presented with a
numbering for the detected points. An example of the checkerboard with the numbering
is illustrated in Figure 8.11.

Figure 8.11. Checkerboard with numbering used for the calibration.

The two points to measure between are then entered, along the distance between them
measured in mm. This is used to calculate a distance per pixel, which used to calculate
the CMOD in mm.

The first trials with the image registration algorithm shows, that the light in the images
changes throughout the experiment. This caused problems if the light change affects the
areas with the two details too much. In order to alleviate this, the two details are updated
when the angle found by the image registration algorithm have increased by five degrees for
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both details. The updated details are then used until they are updated again. Although
the computational cost of updating the details is substantial, it helps in reducing the total
computational cost of running the Virtual Clip Gauge on the entire set of recorded images.
Furthermore, it makes the Virtual Clip Gauge more robust to change in lighting during
the experiments. The script for the Virtual Clip Gauge is shown in Appendix I. An visual
example from the Virtual Clip Gauge is illustrated in Figure 8.12. Where the location
found for the two details are shown in green, the regions of interest are shown in red for
the top detail and blue for the bottom detail.

Figure 8.12. Visual example from the image registration process with the Virtual Clip Gauge.

A time is needed for each image in order to synchronise the results from the CMOD with
the data from the tensile test machine. This is done by taking the timestamp from the first
and the last captured image and calculating an average frame rate. This is then used to
set a time associated with each CMOD measurement. This is then manually synchronized
with the data and time from the physical clip gauge.

In order to confirm that the developed Virtual Clip Gauge works correctly it is compared
with the measurements from the physical clip gauge as shown in Figure 8.13.

Based on Figure 8.13 it is concluded that the Virtual Clip Gauge measures the correct
CMOD, this is also confirmed by measuring the CMOD with a caliper. The flat part of
the CMOD for the physical clip gauge is were it has fallen off.

The Virtual Clip Gauge is used to measure the CMOD in all the remaining test done in
this work. Images that are to be used for the Virtual Clip Gauge are captured with a
digital camera. Additionally two other cameras are used to record the experiments from
two different angles. The final test setup including the additional cameras is illustrated in
Figure 8.14
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Figure 8.13. Comparison of Virtual Clip Gauge and physical clip gauge.

Figure 8.14. Experimental setup with the test fixture, digital camera for the Virtual Clip Gauge
and the two cameras to record the experiments.

8.6 DCB Specimens Used for The Experiments

In this section the patches and specimens used for the experiments on determining whether
multiple delaminations is promoted are presented.

In addition to the two types of DCB specimens used in the preliminary experiments
presented in section 8.4, four new types are manufactured. Three with toughening patches
and one virgin type. The three toughening patches are explained in the following:

Fibertex FICHE 45 The patch is a nonwoven fiber mat from Fibertex called FICHE 45.
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The composition of the mat is 60% polyester and 40% polypropylene, which have been
needle punched to bond the fibers. Additionally the mat have been melted on one side.
The patch is an interleave type.

Fibertex VIGONIT 30 The patch is a nonwoven fiber mat from Fibertex called
VIGONIT 30. The composition of the mat is 100% polyester, which has been calendered to
bond the fibers. Additionally the mat has been melted on one side. The mat is positioned
in the main interface as a toughening patch. The patch is an interleave type.

Stitching with aramid thread This patch is made by stitching the two center layers
together. The stitching operation is done using an aramid thread, with the lines of stitching
transverse to the fiber direction in the mats. The stitching lines have a spacing of 4mm,
and the entire patch has a length of 52mm. The patch is a through-the-thickness type.

The toughening patches is inserted into the general layup described in section 8.1 in the
main interface as illustrated in Figure 8.15.

= Precrack
= Toughening Patch
= Interface

760mm

8
.5
m
m

100mm

100mm

50mm

Figure 8.15. DCB specimen with placement of the toughening patch. The illustration is not to
scale.

The four new types of DCB specimens are manufactured in two composite plates. e.g. by
manufacturing one plate with one half being with the T01 DCB specimens and the other
half being the T02 DCB specimens. The last two types DCB specimens are manufactured
in the same manner. The DCB specimens are manufactured as explained in section 8.1.

Thereby, the different types of DCB specimens, including the two from the preliminary
experiments, which will be used for determining whether multiple delaminations are
promoted, are as follows:

• V01: A type without any patches. The pre-crack has a length of 75mm.
• V02: A type without any patches. The pre-crack has a length of 100mm.
• W01: A type with a weakening patch consisting of PTFE film. The patch is

positioned between layer 10 and 11, with a longitudinal distance to the pre-crack
of 100mm. The patch has a length of 50mm. The pre-crack has a length of 100mm.

• T01: A type with a toughening patch consisting of a FICHE 45 mat from Fibertex.
The patch is positioned in the main interface, with a longitudinal distance to the
pre-crack of 100mm. The patch has a length of 50mm. The pre-crack has a length
of 100mm.

• T02: A type with a toughening patch consisting of a VIGONIT 30 mat from Fibertex.
The patch is positioned in the main interface, with a longitudinal distance to the
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pre-crack of 100mm. The patch has a length of 50mm. The pre-crack has a length
of 100mm.

• T03: A type with a toughening patch is manufactured, by stitching the two center
layers together with an aramid thread. The patch is positioned in the main interface,
with a longitudinal distance to the pre-crack of 50mm. The patch has a length of
50mm. The pre-crack has a length of 100mm.
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Experimental Results 9
In the following, results from the experiment are presented. As the main focus in this work
is to increase the toughness by promoting multiple delamination, the fracture resistance is
plotted as a function of the crack mouth opening displacement. Furthermore fractography
is used to study the specimens.

Based on the observations in section 7.3, it is expected, that the fracture resistance curves
can be divided into distinct phases. There are five distinct phases for the specimens with
patches, whereas the virgin specimens are expected to have the first three phases. The
phases are listed below and illustrated in Figure 9.1:

• Phase 1: Fracture resistance increases without any noticeable delamination crack
growth.

• Phase 2: Delamination crack growth initiates and is followed by an increase in the
fracture resistance caused by the development of a damage zone with fiber bridging.
In this phase the damage zone continuously increases in size leading to an increased
toughness.

• Phase 3: The fracture resistance approaches a steady state value. In this phase a
full damage zone is developed and delamination crack growth occurs in a almost
self-similar manner.

• Phase 4: Fracture resistance and delamination crack growth becomes affected by the
patch, as the crack tip advances close to or into the patch.

• Phase 5: Fracture resistance approaches a steady state value, after the crack tip has
advanced beyond the patch. Comparing the fracture resistance in this phase with
the fracture resistance in phase 3 will reveal if multiple delamination has occurred.

Toughening patch

Weakening patch
Virgin material

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

CMOD

G

Figure 9.1. Fracture resistance curve with the five expected phases.
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The results from the experiments of one DCB specimen from each type are illustrated
in Figure 9.2 and 9.3. In Figure 9.2, the results from the entire experiments are shown,
whereas Figure 9.3 is a zoom of the first three aforementioned phases. In the following,
the virgin experimental results are explained first and afterward the weakening patch and
each of the toughening patches are explained individually.

Figure 9.2. Fracture resistance curves for the five types specimens.

Figure 9.3. Fracture resistance curves for the five types specimens in the first three phases.

The virgin specimens are used for the comparison of the effects of using different patches.
This is mainly for phase 3 and 5, as it can be difficult to assess, whether a steady state
value for the fracture resistance in these phases are reached for some of the DCB specimens.
Thus, if multiple delamintions has been successfully onset this is expected to be seen in
the fracture resistance in phase 5.

V01 and V02: Results from the V01 specimens are illustrated in Figure 9.4. As mentioned
above, the first three phases are expected to be seen in the plot, which is also the case.
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Especially, the two V01-specimens exhibits close to stable crack growth in phase 3. The
fracture resistance in phase 3 is approximately 2000 J/m2.

Figure 9.4. Fracture resistance curves for the V01 and V02 specimens.

On the other hand, the V02 specimens have larger variations in the fracture resistance and
also seem to exhibit unstable crack growth, identified by the abrupt drops in the fracture
resistance. It is therefore difficult to assess a steady state fracture resistance common
for all three V02 specimens. The V02-05 seem to be approaching a steady state fracture
resistance in phase 3 is approximately 2400 J/m2 in the range of CMOD 20mm-60mm.
However, it is difficult to assess whether it the correct steady state value, as the fracture
resistance increases again afterwards.

The large variations in the fracture resistance for the three V02 DCB specimens may be
explained by the fact, that they were manufactured in the same plate as the ones with the
T03 DCB specimens. The stitching operations done on the T03 half of the plate may have
distorted or damaged the fibers in the V02 specimens, which ultimately leads to the larger
variation in the fracture resistance.

There is a difference in the steady state fracture from the V01 specimens of 2000 J/m2, to
the value of 2400 J/m2 for the V02-05 specimen. This is explained by the two composite
plates being manufactured at different times. The V01 specimens was cured longer, than
the other specimens. Thereby, making the epoxy more brittle leading to the lower fracture
resistance than in the V02 specimens. As it is unknown if the fracture resistance 2400 J/m2

is a correct steady state value for the V02 specimens, the steady state value for the V01
will be used a comparison point, when evaluating if multiple delaminations has successfully
been onset in the other types of specimens. However, keeping in mind that the fracture
resistance of 2000 J/m2 might be lower, because of the longer curing.

W01: The results from the DCB specimens with a weakening patch are illustrated in
Figure 9.5. Phase 1 and 2 are easily identified from the figure, whereas the steady-state
behaviour in phase 3 is less obvious, as each of the W01 specimens reaches a maximum
value and drops off again shortly after. Therefore the value of 2000 J/m2 from the V01
specimens are used.
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Figure 9.5. Fracture resistance curves for the W01 specimens.

From Figure 9.5 it is evident that phase 3 is followed by a drop in the fracture resistance.
This is consistent with the expected behavior for a weakening patch as shown in Figure 9.1,
and is explained by a decrease in the load bearing capacity, when entering the area with
a weakening patch. Afterwards the fracture resistance increases in a steady manner, until
the fracture resistance reaches an average peak value of approximately 3400 J/m2 for the
three specimens. This increase is caused by the crack tip in the secondary interface, which
starts to advance forward. Thus, energy is spend on advancing both crack tips, and this
has a toughening effect.

In phase 5 the steady state fracture resistance is approximately 3200 J/m2. Comparing this
with the steady state fracture resistance from the V01 specimens indicates that both crack
tips are still active and dissipate energy. Taking into account, that the V01 specimens
was cured longer, is it estimated that the fracture resistance for the W01 have increase by
approximately 50%, by promoting multiple delaminations.

To inspect that multiple delaminations is actually occurring, the eperiments was visually
inspected. A picture of the multiple delamination is shown in Figure 9.6.

Main crack tip
Secondary crack tip

Weakening patch

Figure 9.6. Figure of W01 specimen viewed from the side and shows two crack tips.

From Figure 9.6 it is evident that multiple delaminations indeed are onset and starts
propagating.

The drop in fracture resistance at a CMOD of 84mm for W01-02 and W01-04 is explained
by a sudden increase in crack growth in the main crack. It is observed that the secondary
crack advances out of the patch with the main crack lagging behind. This occurs in a stable
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manner. However, once the secondary crack has advanced out of the weakening patch, and
the main crack is still in the patched area, the main crack jumps, which places it in front
of the secondary crack. The jump in the main crack is believed to cause the drop in the
fracture resistance at 84mm in Figure 9.5. Aforementioned behaviour was not observed
in the W01-06 specimen, which explains its more steady value in phase 5. Common for
all of them are, that the secondary crack seems to be lagging behind the main crack, once
the main crack has advanced out of the patch.

It is also observed in the experiments, that the rate at which the secondary crack grows
decreases and almost comes to a stop, once the main crack overtakes the secondary crack.

Additionally, the DCB specimens have been investigated by fractography after the
experiments. In Figure 9.7 a fractographic image taken at the end of the weakening patch,
is shown. The red line that is seen in this image is the PTFE film, used to create the
weakening patch. The line separating the light area and the darker area is the secondary
crack. As shown in the image, the secondary crack advances out of the weakening patch
and thereby creating multiple delamination.

Weakening Patch 

Main Crack 

Delamination Crack 

End of Weakening Patch

Figure 9.7. Fractographic inspection of the weakening patch in a W01 specimen. End of
weakening patch marked on the specimen.

In Figure 9.8 an fractographic image of the crack tip in the secondary interface is shown.
Similar to the observations for Figure 9.7, a line separating the light and the dark area
is observed. Furthermore, where the line stops indicates where the crack tip is in the
specimen. This will be used as a comparison point, when examining other specimens for
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multiple delaminations.

Main Crack 

Delamination Crack Delamination Crack
Tip

Figure 9.8. Fractographic inspection of the secondary crack in a W01 specimen. Crack tip in the
secondary interface is marked on the specimen.

T01:

The results from the DCB specimens with a T01 toughening are shown in Figure 9.9. Again
the first two phases are easily identified, whereas the steady-state behaviour in phase 3
seems to be missing.

Looking at Figure 9.3 it is clear that the T01-01 specimen does not reach a steady-state
fracture resistance but keeps increasing in phase 3. However, the increase is only gradual
for a CMOD value of 5mm-30mm and almost comparable to the other DCB specimens.

As the T01 specimens does not reach a steady state fracture resistance before entering the
patch, the value of 2000 J/m2 from the V01 specimens are used. However it is expected
that it should be higher in the T01 specimens as they was not cured as long as the V01
specimens.
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Figure 9.9. Fracture resistance curves for the T01 specimens.

In phase 4 a large increase in fracture resistance occurs due to the main crack entering the
toughening patch. Thus, the toughening patch is beneficial for toughening the interface.
The T01-01 and T01-05 specimens reaches a peak fracture resistance of 4200 J/m2 and
4200 J/m2, with the T01-03 specimen reaching a peak value of 5600 J/m2. However, once
the crack tip advances out of the patch, the toughening effect decreases and rapid crack
growth occurs. This was observed during the experiment on T01-01, where the crack tip
moved a distance of approximately 50mm in one step.

The rapid crack growth, is followed by a similar increase in the CMOD. During this
crack growth, only a few images are captured by the camera. The Virtual Clip Gauge
can therefore not provide reliable CMOD-values, until the crack grows in a more stable
manner. The unstable crack growth caused the crosses, used for the Virtual Clip Gauge,
on specimen T01-03, to be placed outside the view range of the camera. The same was
encountered for the T01-05 specimen, where only a few data points was recorded after the
unstable growth. Thus, only the T01-01 specimen is considered reliable after the rapid
growth. However, the data points in the interval from 70mm-123mm in Figure 9.9 cannot
be used.

Considering the T01-01 specimen in phase 5, when stable crack growth is restored, the
fracture resistance has value of approximately 2700 J/m2.

This is an increase compared to the steady-state fracture resistance in phase 3 for the
V01 specimens. However, as mentioned previously, the fracture resistance in phase 3 for
the T01-01 is expected to be higher, based on the shorter curing time compared to the
V01 specimens. This could therefore indicate that is has not been possible to onset new
delaminations.

This was confirmed by visual inspection during the experiments and by the recorded videos
afterward. In order to finally confirm this, the T01-01 specimen was further investigated
by fractography. The fractographic images from the inspection are shown in Figure 9.10.
Each image is captured at different locations along the length of the specimen, one aligned
with the center of the patch, one aligned with the transition from the patch to the virgin
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material and one 40mm ahead of the toughening patch. It is difficult to observe the
toughening patch, the images are therefore captured based on the measurements from the
manufacturing of the specimens and the untested T01-04 specimen.

No new delaminations was observed on the images. Thereby confirming that it has not
been possible to on new delamination cracks in the T01 specimen.

T02:

The fracture resistance curves for the T02 specimens are shown in Figure 9.11. The
tendencies for phase 1 and 2 are similar to the T01 specimens. However with some
fluctuation being present in the T02-01 and T02-03. All three T02 specimens seem to
go from phase 2 directly to phase 4. The steady state fracture resistance of 2000 J/m2

from the V01 specimens, is therefore used as an approximate steady state value for the
T02. Again it is expected to be higher for the T02 specimens, as the curing process was
shorter, than for the V01 specimens. The tendencies in phase 4 are similar to the other
specimens with toughening patches. The average peak fracture resistance is approximately
3200 J/m2.

Figure 9.11. Fracture resistance curves for the T02 specimens.

The transition from phase 4 to phase 5 is more steady compared to the T01 specimens,

(a) Center of the toughening
patch.

(b) Front of the toughening
patch.

(c) 40mm ahead of the
toughening patch.

Figure 9.10. Fractographic inspection of T01-01 specimen.
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with the T02-01 behaving differently. The more steady transition is assumed to be due to
peak fracture resistance being closer to the steady-state facture resistance in phase 5.

In phase 5 the T02-03 and T02-05 specimens approaches a steady-state fracture resistance,
whereas T02-01 was stopped before it reached a steady-state fracture resistance. The
steady state value in phase 5 is approximately 2700 J/m2. This is an increase compared
to the steady-state fracture resistance from the V01 specimens. However, as mentioned
previously, the fracture resistance in phase 3 for the T02 specimens is expected to be
higher, based on the shorter curing time compared to the V01 specimens. This indicates,
that it has not been possible to onset new delamination cracks, which is confirmed by
the observations during the experiments, and by fractographic inspection on the tested
specimens.

T03:

The results from the T03 specimens are shown in Figure 9.12 and the same tendencies as
in the other toughening patches are observed. Equivalent to the other toughening patches
a steady-state fracture resistance is reached in phase 3. Again the steady-state fracture
resistance from the V01 specimens are used as an approximate fracture resistance value in
phase 3 for the T03 specimens.

Figure 9.12. Fracture resistance curves for the T03 specimens.

When the crack enters the toughening patch in phase four the fracture resistance increases
to an approximate average peak value of 6000 J/m2. Based on the results from all the
toughening patches, stitching is the most effective toughening patch used in this work, as
it has the highest fracture resistance measured.

As experienced for the T01 toughening patch, the peak on the curves in Figure 9.12 is
followed by unstable crack growth. This is observed during the experiment of the T03-01
specimen, where the crack tip advance 70mm in on step.

The experiments with the T03-03 and T03-05 specimens where stopped, as the crosses,
used for the Virtual Clip Gauge, was out of the range for the camera

Due to the aforementioned reasons only the T03-01 experiment is considered, when
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evaluating the fracture resistance in phase 5, where it attains a value of 2800 J/m2. This
is higher than the steady-state fracture resistance from the V01 specimens. However, the
fracture resistance in phase 3 for the T03 specimens is expected to be higher, as the V01
specimens was cured for a longer time than the T03 specimens. This indicates, that it has
not been possible to onset new delamination cracks, which is confirmed by the observations
during the experiments, and by fractographic inspection on the tested specimens.

To summarize the observations during the experiment and the results show the following:

• A weakening patch consisting of a PTFE film promotes multiple delaminations, and
the multiple delaminations increases the fracture resistance by approximately 50%

in the specimens.
• The toughening patches were not able to promote multiple delaminations in the DCB

specimens.
• The toughening patches toughened the specimens, thereby increasing the fracture

resistance. However, the toughening were only present, when the delamination in
the main interface was within the patch.

• A rapid crack growth was observed for the DCB specimens with toughening patches.
This occurred as the delamination advanced close to the end of the patch. The
magnitude of this rapid rack growth depended on the magnitude of toughening
introduced by the patch.
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Discussion 10
In the following the results and methods used in this thesis are discussed.

Arc-length solver: The four arc-length solvers implemented in this thesis are partly
done due to a learning goal set forth by the authors. However, it is also needed to model
a moment loaded DCB specimen in the MATLAB Framework. Additionally, it generalises
the finite element tool developed by Trabal et al. (2022b), which is beneficial if it is to be
used in future projects.

Two energy based arc-length solvers are investigated and implemented. However, only
one of the energy dissipation based arc-length solvers is strictly needed for the purpose
of modelling delaminations in this work. Nevertheless, time and effort has been spend on
implementing and debugging both arc-length solvers. Especially, time has been spend on
the local energy solver due to the robustness issues mentioned in chapter 5, even though
the global arc-length solver is sufficient for modelling delamination problems. This is
done, as it is a novel solver, which generalises the problem of modelling energy dissipating
mechanisms contrary to the global arc-length solver, which is problem dependant.

The next step in the implementation of the local energy arc-length solver is to locate the
error causing the robustness issues. Based on the authors experience, it is to be found in
the analytical expression for the constraint derivative, but the exact error is not located.
Additionally, it is found that calculating the constraint derivatives with a central difference
method solves the problems encountered. Thus, the implementation of the local energy
arc-length solver could be based on central differences. This requires that the perturbation
size is further investigated. The reason for using analytical expressions in the first place
was, that using a central difference approach was expected to increase the computational
time. However, this does not seem to be the case for the models done in this project.

Ideally, the implemented arc-length solver should have been used to simulate a forced
controlled, moment loaded DCB specimens as this is close to the actual boundary
conditions in the test setup. However, this has not been done due to time constraints.

Promoting multiple delaminations by the use of patches

The experiments done with the W01 DCB specimens shows that a weakening patch,
consisting of a PTFE-film, promotes multiple delaminations. There was a drop in load
bearing capacity, when the delamination in the main interface reached the weakening patch.
However, this was followed by an increase in fracture resistance, caused by the secondary
delamination starting to propagate. The use of a PTFE-film as a weakening patch, is
therefore observed to increase the fracture resistance of the DCB specimen.

A PTFE-film acts similar to setting τ0 and Gc equal to zero, this is an extreme case of a
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weakening patch. However, it was used as a way to increase the probability that multiple
delamination would occur. It would have been beneficial to investigate more moderate
weakening patches, to check what characteristics would be required of a weakening patch
in order to still promote multiple delaminations. However, this was not done in this work
as other weakening methods was not found. Furthermore, it was assessed that weakening
patches are less likely to be used, as it is generally not favorable to weakening a structural
component.

The toughening patches used in this work did not promote multiple delaminations in the
DCB specimens. The patches toughened the DCB specimens, when the delaminations
propagated inside the patch. However, this toughening effect was lost, when the
delamination propagated out of the patch. Furthermore, when the delamination
propagated out of the patch, a rapid unstable crack growth occurred followed by a similar
increase in CMOD. A drop in load bearing capacity, of the magnitude observed for some of
the specimens with a toughening patch, would be unacceptable in a structure, especially
if multiple delaminations are not promoted.

A steady-state fracture resistance was not observed in any of the toughening patches used
in the experiments. This is caused by the toughening patches being to short, thereby not
allowing a full damage zone to develop. It is assessed that using a longer toughening patch
would have increased the probability of promoting multiple delaminations. This was not
done in this work due to time constraint. Additionally, using a virgin material with a lower
toughness, might also increase the probability of promoting multiple delaminations.

Experiments in test setup:

All experimental tests, in this work is done by applying equal and opposite moments to the
DCB specimen, as explained in section 8.3. The advantage of using this test method is,
that the crack tip does not need to be tracked throughout the test, in order to determine
the fracture resistance.

However, the effect of promoting multiple delamination can also be evaluated based on
load-displacement curves. Thus, the tests could have been done directly in the tensile test
machine as wedge loaded DCB specimens. In this case an increased fracture toughness
will yield an increased load bearing capacity.

Further advantages of using the tensile test machine is, that it allows for modelling the
exact same boundary conditions, as in the MATLAB Framework. However, an arc-length
solver is still needed in order to trace the entire non-linear load-displacement curve.

Additionally, it is beneficial to calculate the fracture resistance in order to characterise
the increase in fracture resistance, which can be compared with other toughening methods
presented in the literature.

The fracture resistance data gathered from the experiments can further be used to
determine onset traction and critical energy release rates to be used in a traction separation
law. This was one of the main arguments for using the test method of applying equal and
opposite moments to the DCB specimen in this work. The intention was to extract above
mentioned values and then use them together with the developed arc-length solver in a
parameter study. Due to time constraints this has not been possible in this work, but
could be done in a future project.
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Conclusion 11
This master thesis is based on the problem formulation stated below:

"How can multiple delaminations in fiber composites be promoted by the
use of toughening/weakening patches in order to improve damage

tolerance in quasi-static loading?"

In order to answer the problem statement, this thesis is divided into two overall parts.
Part one centers around a numerical implementation of advanced solutions techniques in a
finite element framework. Part two tries experimentally to verify that the damage tolerance
can be improved by onsetting multiple delaminations cracks for DCB-specimens loaded in
mode I. The numerical part of this thesis is mainly included as a learning goal.

Four different arc-length solvers are implemented in a finite element framework written
in MATLAB. First an arc-length solver based on Crisfields method is implemented and
validated. This method encounters convergence issues when a high degree of material
instability occurs. Additionally, an arc-length solver based on Riks’ method is implemented
and validated. Next, two arc-length solvers, which are based on the energy dissipation in
the model are implemented. The first solver evaluates the energy being dissipated at
element level, but has robustness issues, when using too large or too small step sizes. The
cause of the robustness issues has been found to be related to the derivative constraints.
However, the exact problem has not been located. The second solver evaluates the
dissipated energy being dissipated at a global level and works satisfactory.

Preliminary studies are done in the MATLAB based finite element framework to
determine a patch placement for the DCB-specimens, which ensures onsetting of multiple
delamination. To do this a mesh dependency study is first done to ensure correct
modelling of the delamination problem. This is followed by analyses, which conclude
that multiple delamination can be onset by either introducing a weakening patch with
interface properties equal to 0 or a toughening patch with interface properties twice the
value of the virgin material. Finally, the patch length and the interface wherein the patch
is placed is investigated and used for the DCB specimens.

Finally, DCB specimens with weakening patches and toughening patches are manufactured
and tested. In order to do this a virtual clip gauge is developed to track the crack mouth
opening displacement during the test. Based on the experiments it can be concluded that
it is possible to onset multiple delaminations, by having a weakening patch in the layup.
The steady state fracture resistance is improved is increased by 50%, thus improving
the damage tolerance. It was not possible to onset multiple delamination cracks in the
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DCB-specimens with toughening patches.
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Cohesive Element used in the

MATLAB Framework A
The following appendix outlines the cohesive element described in Turon et al. (2006).
This element is used in the MATLAB Framework to model delamination. Further details
on the cohesive element can be found in (Turon et al., 2006). In its original formulation,
the element is a 3D, 8-noded cohesive element. However in this work, the element is used in
a 2D configuration Trabal et al. (2022b). Thus, mode III crack opening is not considered.

Kinematic formulation: In this element the displacement discontinuity is described by
an upper crack surface S+ and a lower crack surface S−. For an undamaged interface the
element has zero thickness and the upper and lower crack surface are coincident. Upon
opening of the interface, the upper crack surface, S+, moves a distance {u+} and the lower
crack surface, S−, a distance {u−}. Thus, the separation in global coordinates, {sG}, are
defined by Equation A.1.

{sG} = {u+} − {u−} (A.1)

The separation is evaluated at the interface midsurface, {x̄}, which is defined in global
coordinates in Equation A.2.

{x̄} = {X}+ 1

2
({u+}+ {u−}) (A.2)

{x̄} is the coordinate of the midsurface in the deformed configuration and {X} is the
initial coordinates in the undeformed configuration.

Further, in order to distinguish between the different opening modes the separation must
be described in a local coordinate system. This is done by establishing a rotation matrix,
[T ], which relates the orientation of the interface midsurface, in local coordinates to the
global coordinates.

Utilizing the rotation matrix, the separation in the local coordinates, {sL}, is defined by
Equation A.3.

{sL} = [T ]({u+} − {u−}) (A.3)

Constitutive law: The constitutive law used in the cohesive element is a bilinear traction-
separation law, as illustrated in Figure A.1. The separation in local coordinates, {sL}, is
related to the tractions, {τ}, by Equation A.4.

{τ} = (1− d)[I]Ep{sL} = (1− d)[Ep]{sL} (A.4)

Where d, is a scalar damage parameter and defines the amount of damage in the interface.
This parameter has a value between 1 and 0, where 1 indicates a fully damaged interface
and 0 indicates an undamaged interface.
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Ep, in Equation A.4, is the penalty stiffness of the undamaged cohesive interface, and
defines the slope of the initial linear part of the curve, prior to damage. The penalty
stiffness is used to maintain compatibility in undamaged interface before crack onset.
However, the introduction of the penalty stiffness generally yields a more compliant
interface. Thus, the penalty stiffness must be large enough to guarantee a stiff connection
in the interface prior to damage, such that the added compliance is insignificant. However,
the penalty stiffness should also be chosen small enough to avoid numerical problems in
the solution. (Bak, 2015)

τ

Ep

(1-d)Ep

Sf
mSt

mSo
m

τo
m

Sm

Figure A.1. Bilinear traction-separation law for mixed mode loading used in the cohesive element.
τom is the onset traction, So

mis the onset separation norm, St
m is the current threshold separation

norm, Sf
m is the critical separation norm, Ep is the penalty stiffness and, d, is the damage

parameter.

The traction-seperation law in Equation A.4 can be applied if the damage parameter, d,
is known at all times during the damage process. In order to describe, d, throughout the
damage process, a damage evolution law is needed. The damage evolution law it defined
in terms of a damage initiation criterion and a damage propagation criterion. These are
explained in the following.

As explained in section 1.2, delamination cracks are prone to grow under mixed mode
conditions. Due to this the cohesive element must be formulated in a way, that accounts
for mixed mode conditions. This is done through the definition of an equivalent one
dimensional separation norm, Sm, the damage initiation criterion, and the damage
propagation criterion. In order to take mixed mode into account when formulating the
damage initiation criterion and the damage propagation cirterion, a mixed mode ratio is
determined as in Equation A.5.

β =
sII

⟨sI⟩+ sII
(A.5)

Where sI and sII are the separation in mode I and II, respectively. Furthermore, the mode
I separation is defined as ⟨sI⟩ = 1

2(|sI |+ sI) in order to avoid penetration in the interface,
by always ensuring a non-negative mode I opening.

Norm of separation: The separation norm, Sm, is defined in Equation A.6, as an
equivalent one dimensional opening displacement for a mixed mode opening.

Sm =
√
⟨sI⟩2 + s2II (A.6)
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Where the same definition of ⟨sI⟩ as in Equation A.5 is used.

Damage evolution law: The evolution criteria for the damage parameter, d, is defined
in Equation A.7 where, d is the current damage parameter and, r is a damage threshold
parameter (Bak, 2015).

d− r ≤ 0 (A.7)

Thus, the condition, d − r < 0 implies that the current damage parameter, d is below
the threshold value, r, and the damage state remains unchanged. On the other hand, the
condition d− r = 0 implies that damage may evolve.

The evolution law for the damage parameter, d, is defined in terms of the separation norm,
Sm, as done in Equation A.8 for the bilinear traction-separation law.

d(Sm) =
Sf
m(Sm − So

m)

Sm(Sf
m − So

m)
d ∈ [0,1] for Sm ∈ [So

m, Sf
m] (A.8)

where So
m is the onset separation norm, and Sf

m is the critical separation norm. Both, So
m

and Sf
m are defined in terms of the mixed mode ratio, β. The onset separation norm, So

m,
is determined based on the damage initiation law, while the critical separation norm, Sf

m,
is obtained from the damage propagation law.

With offset in the evolution law defined in Equation A.8, the damage threshold value, r is
defined in Equation A.9

d(St
m) = r =

Sf
m(St

m − So
m)

St
m(Sf

m − So
m)

(A.9)

Where St
m is the threshold separation norm, St

m, illustrated in Figure A.1.

Based on the evolution criteria in Equation A.7 and the definition of the damage threshold
value, r, in Equation A.9, it is possible to define the threshold separation norm, St

m as in
Equation A.10

St
m =

So
mSc

m

Sc
m − d(Sc

m − So
m)

(A.10)

A change in the damage parameter requires the separation norm, Sm, to exceed the current
threshold separation norm, St

m, as illustrated in Figure A.1. For a pristine interface, the
threshold separation norm, St

m, is equal to the onset separation norm, So
m. Thereby,

damage initiation occurs once the separation norm, Sm exceeds So
m.

Furthermore, the damage parameter can only increase, as damage is irreversible. This
means the damage parameter for the next increment, n + 1, is chosen according to
Equation A.11

dn+1 = min
(
max(d(Sm),rn),1

)
(A.11)

where, rn is the current damage threshold value.

Damage propagation: Crack propagation occurs, when the energy release rate, G, is
greater than or equal to the critical energy release rate, Gc. In a mixed mode crack
configuration, the energy release rate is determined by:

G = GI +GII (A.12)

where GI and GII are the energy release in mode I and mode II, respectively.
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The critical energy release rate is determined by a Benzeggagh-Kenane (BK) criterion and
defined in Equation A.13.

Gc = GIc + (GIIc −GIc)B(β)η (A.13)

Where η is a mode interaction parameter determined from experimental data and B(β) is
defined in Equation A.14.

B(β) =
GII

GI +GII
=

β2

1 + 2β2 − 2β
(A.14)

The propagation criteria can further be written in the separation space by utilizing,
that the critical energy release rate for the bilinear traction-separation law is defined
by Gc = 1

2EpS
o
mSf

m. Utilizing this, the critical separation norm, Sf
m, is defined by

Equation A.15.

Sf
m =

soIs
f
I + (soIIs

f
II − soIs

f
I )B(β)η

So
m

(A.15)

Damage initiation criterion: As explained above, damage initiation occurs when the
traction in the interface exceeds its critical value. The mixed mode traction value is defined
according to Equation A.16.

τ = ⟨τI⟩2 + τ2II (A.16)

In order to predict damage initiation in a mixed mode configuration, the value of the
onset traction, τ o, must also take the mixed mode condition into account. This is done by
utilizing an approach similar to the damage propagation criteria. Thus, an equivalent one
dimensional onset traction, τ o, is also determined by a Benzeggagh-Kenane (BK) criterion.
The exact definition of the onset traction is defined in Equation A.17

τ o(β)2 = τ oI
2 + (τ o

2

II − τ o
2

I )B(β)η (A.17)

Where B(β)η is equal to Equation A.14. Using the bilinear traction-separation law, the
separation norm at damage initiation, So

m, is defined by

(So
m)2 = (soI)

2 +
(
(soII)

2 − (soI)
2
)
B(β)η (A.18)
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Riks Arc-length Solver B
In this appendix, the implementation of Riks arc-length solver in the MATLAB Framework
is explained and validated. This Arc-length solver is implemented, as it uses the same
structure of equations as the two energy based arc-length solver explained in chapter 5.
However, this method is simpler and can be testes against the simple 1D and 2D benchmark
examples in section 4.2. Due to these reasons this algorithm is easier to debug in case
mistakes are made.

Thereby, this arc-length solver is implemented with the main purpose of validating that the
structure of the equations in the solver are correct. When this has been successfully done,
it is possible to implement the two energy based arc-length solver by changing the path-
following constraint and its derivatives. Thereby, the intent is to minimize and narrow
down potential bugs in the energy based arc-length solvers. This is especially useful, when
implemented in the MATLAB Framework, where the floating node method based code
complicates the implementation. In the following the equations used in the Riks arc-
length solver are first defined and finally the method is validated against the problem in
section 4.2.

Riks arc-length solver is based on the same set of equations as the Crisfield arc-length
solver explained in section 4.1. This means an augmented system of equations is used as
defined in Equation 4.6 and repeated below to ease the reading.{{

F int

(
{D}

)}n − λn{F ext}
gn

}
=

{
{0}
0

}
(4.6)

This set of equations is solved by linearising the equation by truncated Taylor series
expansions as stated in Equation 4.7. Again this equation is repeated below to ease the
reading. {F int}ni − λn

i {F̂ ext}+ ∂{F int}
∂{D} {δD}ni − {F̂ ext}δλn

i

gni +
(

∂g
∂{D}

)T
{δD}ni + ∂g

∂λδλ
n
i

 =

{
{0}
0

}
(4.7)

Rewriting this equation leads to the equation in Riks arc-length solver, which is used to
calculate corrections to the displacement field and load-level parameter. This equation is
stated in Equation 4.8 and repeated below.[

[Kt]
n
i −{F̂ ext}

({h}ni )T wn
i

]{
{δD}ni
δλn

i

}
=

{
{R}ni
−gni

}
(4.8)

Where the tangent stiffness, [Kt], a h-vector, {h} and scalar, w, is defined in Equation 4.9.

[Kt]
n
i =

∂{F int}
∂{D}

{h}ni =
∂g

∂{D}
wn
i =

∂g

∂λ
(4.9)
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The path-following constraint is the same as the one that is used in Crisfield arc-length
solver defined in Equation 4.16. This path-following constraint is repeated below:

g =
(
{∆D}ni

)T {∆D}ni + β2(∆λn
i )

2{F̂ ext}T {F̂ ext} −∆l2 = 0 (4.16)

However, in Riks arc-length solver this constraint is introduced in a linearised form
according to Equation 4.8. This means it is necessary to define expressions for the h-vector
and the scalar, w, defined in Equation 4.9. Based on the definition of the path-following
constraint in Equation 4.16 the h-vector and scalar, w is defined in Equation B.1.

{h}ni =
∂g

∂{D}
= 2({∆D}ni )T w =

∂g

∂λ
= 2β2λn

i {F̂ ext}T {F̂ ext} (B.1)

After corrections to the load level parameter, δλ, and displacement field, {δD} is
found from Equation 4.8, the total incremental change in the load-level parameter and
displacement field are updated according to Equation 4.14 and 4.15. The updating
procedure for the total incremental change in the load-level parameter and displacement
field, from Equation 4.14 and 4.15 are further repeated below.

{∆D}ni+1 = {∆D}ni + {δD}ni (4.14)

∆λn
i+1 = ∆λn

i + δλn
i (4.15)

The predictor step used in the implemented arc-length solver is equivalent to the predictor
step used in Crisfield arc-length solver in subsection 4.1.1. This predictor step is used as
it seemed to work fine in the Crisfield arc-length solver.

B.1 Validation of Riks Arc-Length Solver

The validation of Riks arc-length solver is done on the same example as is used in section 4.2
and the results are illustrated in Figure B.1. This problem is again chosen as it features
both a snap-through and snap-back behaviour. The same problem is run with different
solver settings, i.e. residual and arc-lengths to test the robustness of the solver. This is
done as the authors have experienced, that bugs in the codes can introduce convergence
problems for specific solver settings.

In this figure each substep is highlighted with a marker according to the legend. In addition
to the tests illustrated in Figure B.1 a test with an arc-length of, ∆l = 0.0001 has also
been done. However this is not plotted in the figure as the small distance between each
substep makes it difficult to see the remaining tests.

From figure Figure B.1 it is clear that Riks arc-length solver can solve past the snap-
through in point 1 and the snap-back in point 2. However, in order for the solver to
advance past point 1 and 2 a sufficiently small step sizes is needed. In the test runs
illustrated in Figure B.1, the arc-length is kept constant throughout the solution. For an
arc-length of ∆l = 0.005 the solver fails at point 1. For an arc-length of ∆l = 0.001 the
solver fails at point 2, whereas the solver is able to trace the full curve for an arc-length
of ∆l = 0.0005. In order to ensure a sufficiently small step size, a condition which halves
the arc-length if the number of iterations or the residual exceeds a predefined value.
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1

2

Figure B.1. Validation of Riks arc-length solver. All test are run with β = 0.

Based on the test runs in it is assessed that the Riks arc-length solver works satisfactory,
as it traces the displacement controlled solution almost perfectly.

An algorithm for the implementation of Riks arc-length solver in the MATLAB Framework
is shown in 2.
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Algorithm 2 Riks arc-length solver
1: Save analysis data from last converged substep into new variables
2: Initialize vectors for {δDI}, {δD}, {∆D} and scalars for δλ and ∆λ
3: Initialize iteration counter
4: if Substep = 1 then
5: Update refinement of A-FNM elements
6: Calculate and assemble the stiffness matrix and internal force vector
7: end if
8: Calculate displacement increment {δDI} according to Equation 4.13
9: Calculate predictor value for load-level parameter ∆λn

1 according to Equation 4.26
10: Calculate predictor displacement increment {∆D}1 according to Equation 4.22
11: Update displacement {D}n1 = {D}n−1 + {δD}n1
12: Update load-level parameter λn

1 = λn−1 + δλn
1

13: Update refinement of A-FNM elements
14: Calculate and assemble the stiffness matrix and internal force vector
15: Evaluate the residual force vector according to Equation 4.2
16: Update MPCs in the A-FNM elements
17: while The norm of the residual force is larger than the residual tolerance do
18: Update iteration counter
19: Calculate the constraint derivatives, {h} and, w, according to Equation B.1
20: Calculate the path-following constraint according to Equation 4.16
21: Assemble the system of equations defined in Equation 4.8 and solve for the load-level

parameter correction δλn
i and the displacement correction {δD}ni

22: Update the incremental load-level parameter ∆λ according to Equation 4.15
23: Update the incremental displacement vector {∆D} according to Equation 4.14
24: Update displacement {D}ni+1 = {D}n−1 + {∆D}ni+1

25: Update load-level parameter λn
i+1 = λn−1 +∆λn

i+1

26: Update refinement of A-FNM elements
27: Calculate and assemble the stiffness matrix and internal force vector
28: Evaluate the residual force vector according to Equation 4.2
29: if Residual error or number or iterations exceeds a predefined value then
30: Reset all analysis data to last converged substep,
31: Bisect the step size, ∆l,
32: Exit solver
33: end if
34: Update MPCs in the A-FNM elements
35: end while
36: Save all analysis data
37: Exist Riks arc-length solver
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Validation of Crisfield Arc-Length

Method on Simple Benchmark

Examples C
In this section the programmed arc-length solver is validated against three benchmarks
examples. This is done in parallel with the development of the arc-length solver, in order
to gradually increase the complexity, while also verifying it along the way. First a 1 DOF
system is considered and afterwards two 2 DOF’s benchmarks examples are used to validate
the solver. Finally the arc-length solver is implemented in the MATLAB Framework and
validated against a displacement controlled solution.

C.0.1 One Degree of Freedom System:

A 1 DOF benchmark example is used as the first and simplest benchmark example. This
example is implemented as it makes it easy to plot how the solution progresses, thus
making debugging easier. In this benchmark example the arc-length solver is set up to
trace the polynomial defined in Equation C.1. This polynomial is chosen as it models a
snap-through behaviour, which is generally not trivial to pass with a non-linear solver.

f(x) = 0.633x3 − 5x2 + 10x (C.1)

The full solution plotted on top of the analytical function is illustrated in Figure C.1.

f(x) = 0.633x^2 - 5x + 10

Figure C.1. Arc-length solver solution for 1DOF system. Solver settings are ∆l = 0.5, β = 1,
Residual tolerance = 0.0001
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Additionally, several solver settings are tested to validate the robustness of the solver. The
result from each of these test, along with the specific solver settings are listed in Table C.1.
Based on the tests it is deemed that the arc-length solver works satisfactory.

Test: ∆l β Residual Tolerance Converged Substeps Total Iterations

Test 1 0.0001 1 1.0 · 10−4 Yes 191947 4
Test 2 0.001 1 1.0 · 10−4 Yes 19195 48
Test 3 0.01 1 1.0 · 10−4 Yes 1920 359
Test 4 0.1 1 1.0 · 10−4 Yes 192 195
Test 5 1.0 1 1.0 · 10−4 Yes 19 38
Test 6 5 1 1.0 · 10−4 Yes 5 13
Test 7 0.0001 0 1.0 · 10−4 Yes 53202 12
Test 8 0.001 0 1.0 · 10−4 Yes 5321 130
Test 9 0.01 0 1.0 · 10−4 Yes 533 464
Test 10 0.1 0 1.0 · 10−4 Yes 54 53
Test 11 1.0 0 1.0 · 10−4 Yes 6 6
Test 12 5 0 1.0 · 10−4 Yes 2 2
Test 13 0.5 1 1.0 · 10−10 Yes 38 101
Test 14 0.5 0 1.0 · 10−10 Yes 11 11

Table C.1. Robustness check of the arc-length solver.

C.0.2 Two Degree of Freedom System:

In the previous 1 DOF benchmark, only scalar values were used. However, in order to solve
the benchmark examples with 2 DOF the code must be generalised to handle matrices
and vectors. This is also needed later when the solver is implemented in the MATLAB
Framework. The two benchmark examples in this section are further chosen, as these both
includes snap-through and snap-back behaviour.

Benchmark One

The first of the two, 2 DOF benchmark examples takes offset in the truss structure
illustrated in Figure C.2 and is based on the article by Vasios (2015). It is assumed
that the truss members cannot buckle, and are only allowed to deform by compression or
extension. It is further assumed that each truss member are homogeneous and made of
a isotropic, linearly elastic material. u1 and u2 are the vertical displacement of the hinge
points and a load, F is applied. All hinges in the structure are constrained to only allow
vertical displacement. l0 and L0 defines the initial length of the truss members, while β

and k define their stiffness.

The equilibrium equations for this system are defined in Equation C.2 and details of the
derivation can be found in Vasios (2015).(

1√
B(a1,θ0)

− 1

)
(sin(θ0)− a1)− w(a2 − a1) = 0

w(a2 − a1)− λ = 0

(C.2)
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k,L0k,L0

ß,l0

θ θ

F

u2

u1

Figure C.2. Truss structure for 2 Degree of freedom benchmark example.

a2 = u2
L0

and a1 = u1
L0

are normalized displacements and λ = P
2kL is the normalized force.

B(a1,θ0) is defined in Equation C.3 and w = β
k , defines the stiffness ratio between the

individual truss members.

B(a1,θ0) = 1− 2a1sin(θ0) + a21 (C.3)

The system of equations in Equation C.2 can be expressed in residual form, as defined in
Equation C.4.

f int(a)− λq =


(

1√
B(a1,θ0)

− 1

)
(sin(θ0)− a1)− w(a2 − a1)

w(a2 − a1)

− λ

[
0

1

]
=

[
0

0

]
(C.4)

Differentiating f int in Equation C.4 with respect to both a1 and a2 yields the tangent
stiffness matrix for the system.

It is not possible to determine an analytical solution for the benchmark example. The
programmed arc-length solver is therefore validated by visually comparing the solution
from the developed arc-length solver with the solution from Vasios (2015).

Figure C.3. Arc-length solver solution for
2DOF system. Solver settings are ∆l =
0.005, β = 0, Residual tolerance = 0.001.

Figure C.4. Benchmark example with
normalised load λ plotted as a function
of the normalised displacement a2 based.
(Vasios, 2015)

Based on the results in Figure C.3 and C.4, the programmed arc-length solver is deemed
to work, when snap-back behaviour occurs. Again, several solver settings are tested to
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validate the robustness of the solver. The result from each test, along with the specific
solver settings are listed in Table C.2.

Test: ∆l β Residual Tolerance Converged Substeps Total Iterations

Test 1 0.5 · 10−4 1 1.0 · 10−6 Yes 197280 47
Test 2 0.5 · 10−3 1 1.0 · 10−6 Yes 19728 451
Test 3 0.5 · 10−2 1 1.0 · 10−6 Yes 1973 858
Test 4 0.5 · 10−1 1 1.0 · 10−6 Yes 198 220
Test 5 0.5 1 1.0 · 10−6 Yes 19 31
Test 6 0.5 · 10−4 0 1.0 · 10−6 Yes 193257 49
Test 7 0.5 · 10−3 0 1.0 · 10−6 Yes 19326 459
Test 8 0.5 · 10−2 0 1.0 · 10−6 Yes 1933 851
Test 9 0.5 · 10−1 0 1.0 · 10−6 Yes 194 215
Test 10 0.5 0 1.0 · 10−6 Yes 19 31
Test 11 0.5 · 10−2 1 1.0 · 10−10 Yes 1973 2181
Test 12 0.5 · 10−2 0 1.0 · 10−10 Yes 1933 2143

Table C.2. Robustness check of the arc-length solver for 2DOF system in Figure C.2. All the
test are done with w = 0.25.

Benchmark Two

This benchmark example is based on an example in (Leon et al., 2011). In this article,
several different nonlinear solution schemes are used to trace a 2 DOF non-linear function.
The function exhibits both snap-back and snap-through behaviour for both degrees of
freedom. In the problem considered, the external and internal forces are defined by
Equation C.5.

f ext =

[
40

15

]
f int(u) =

[
10u1 + 0.4u32 − 5u22
0.4u31 − 3u21 + 10u2

]
(C.5)

The tangent stiffness is determined by differentiating the internal forces with respect to
the degrees of freedom u1 and u2 as done in Equation C.6.

K(u) =

[
10 1.2u22 − 10u2

1.2u21 − 6u1 10

]
(C.6)

The programmed arc-length solver is again visually compared to the benchmark example.
This is done in Figure C.5 and Figure C.6.

Again the similarity between the programmed arc-length solution in Figure C.5 and the
solution from the benchmark example in Figure C.6 is satisfactory.
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Figure C.5. Arc-length solver solution for
2 DOF system. Solver setting are ∆l =
0.011, β = 1, Residual tolerance = 0.001.

Figure C.6. Benchmark example with
load parameter λ plotted as a function of
the displacement u1 and u2. (Leon et al.,
2011)
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Algorithm 3 Crisfield arc-length solver
1: Save analysis data from last converged substep into new variables
2: Initialize vectors for {δDI}, {δDII}, {δD}, {∆D} and scalars for δλ and ∆λ
3: Initialize iteration counter
4: if Substep = 1 then
5: Update refinement of A-FNM elements
6: Calculate and assemble the stiffness matrix and internal force vector
7: end if
8: Calculate displacement increment {δDI} according to Equation 4.13
9: Calculate predictor value for load-level parameter ∆λn

1 according to Equation 4.26
10: Calculate predictor displacement increment {∆D}1 according to Equation 4.22
11: Update displacement {D}n1 = {D}n−1 + {∆D}n1
12: Update load-level parameter λn

1 = λn−1 +∆λn
1

13: Update refinement of A-FNM elements
14: Calculate and assemble the stiffness matrix and internal force vector
15: Evaluate the residual force vector according to Equation 4.2
16: Update MPCs in the A-FNM elements
17: while The norm of the residual force is larger than the residual tolerance do
18: Update iteration counter
19: Calculate displacement correction {δDI} and {δDII} according to Equation 4.13
20: Calculate constant, a1, a2 and a3 according to Equation 4.20
21: Solve Equation 4.19 and determine the correct load level parameter correction, δλ
22: if No real roots are found in Equation 4.19 then
23: Reset all analysis data to last converged substep,
24: Bisect the step size, ∆l,
25: Exit solver
26: end if
27: Calculate displacement correction {δD} according to Equation 4.12.
28: Update the incremental load-level parameter ∆λ according to Equation 4.15
29: Update the incremental displacement vector {∆D} according to Equation 4.14
30: Update displacement {D}ni+1 = {D}n−1 + {∆D}ni+1

31: Update load-level parameter λn
i+1 = λn−1 +∆λn

i+1

32: Update refinement of A-FNM elements
33: Calculate and assemble the stiffness matrix and internal force vector
34: Evaluate the residual force vector according to Equation 4.2
35: if Residual error or number or iterations exceeds a predefined value then
36: Reset all analysis data to last converged substep,
37: Bisect the step size, ∆l,
38: Exit solver
39: end if
40: Update MPCs in the A-FNM elements
41: end while
42: Save all analysis data
43: Exist Crisfields arc-length solver
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Derivative of Displacement Jump

Vector E
This appendix determines the full expression for each of the terms in,

{
∂{sL}
∂dj

}
, that is

needed in order to define h, in Equation 5.7. This is required to implement the local energy
arc-length solver in the MATLAB Framework.

An expression for the displacement jump vector in local coordinates is defined in
Equation 5.32 and repeated here to ease the reading.

{sL} =

[
ν1,norm −ν2,norm

ν2,norm ν1,norm

][
N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2

N1v
+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2

]

=

[
ν1,norm[N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ]− ν2,norm[N1v

+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2 ]

ν2,norm[N1u
+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ] + ν1,norm[N1u

+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ]

] (E.1)

The final expression for the derivatives of the displacement jump vector are lengthy and
in order to keep the overview, two new functions are defined. These are listed below in
Equation E.2.

fu(d) = [N1u
+
1 −N1u

−
1 +N2u

+
2 −N2u

−
2 ]

fv(d) = [N1v
+
1 −N1v

−
1 +N2v

+
2 −N2v

−
2 ]

(E.2)

By introducing these function, the displacement jump vector can be expressed by
Equation E.3, where both ν1,norm(d), ν2,norm(d), fu(d) and fv(d) are functions of the
degrees of freedom in the model.

{sL} =

[
ν1,norm(d)fu(d)− ν2,norm(d)fv(d)

ν2,norm(d)fu(d) + ν1,norm(d)fv(d)

]
(E.3)

Differentiation of the displacement jump {sL} vector is done by use of the product rule,
as defined in Equation E.4.{

∂{sL}
∂dj

}
=

[
∂ν1,norm(d)

∂dj
fu(d) + ν1,norm(d)∂fu(d)dj

− ∂ν2,norm(d)
∂dj

fv(d) + ν2,norm(d)∂fv(d)dj
∂ν2,norm(d)

∂dj
fu(d) + ν2,norm(d)∂fu(d)dj

+
∂ν1,norm(d)

∂dj
fv(d) + ν1,norm(d)∂fv(u)dj

]
(E.4)

Each of the terms in the above equation are now defined. First the derivatives of fu(d)
and fv(d) are determined in Equation E.5:

∂fu

∂u+1
= N1

∂fu

∂u−1
= −N1

∂fu

∂u+2
= N2

∂fu

∂u−2
= −N2

∂fv

∂v+1
= N1

∂fv

∂v−1
= −N1

∂fv

∂v+2
= N2

∂fv

∂v−2
= −N2

∂fu

∂v+1
=

∂fu

∂v−1
=

∂fu

∂u+2
+

∂fu

∂v−2
= 0

∂fv

∂u+1
=

∂fv

∂u−1
=

∂fv

∂u+2
+

∂fv

∂u−2
= 0

(E.5)
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And the terms in ∂ν1,norm(d)
∂dj

and ∂ν2,norm(d)
∂dj

are defined in Equation E.6 through
Equation E.13.

∂ν1,norm

∂u+1
=

∂ν1,norm

∂u−1
=

Tν1,u

N
(E.6)

∂ν1,norm

∂u+2
=

∂ν1,norm

∂u−2
= −Tν1,u

N
(E.7)

∂ν1,norm

∂v+1
=

∂ν1,norm

∂v−1
=

Tν1,v

N
(E.8)

∂ν1,norm

∂v+2
=

∂ν1,norm

∂v−2
= −Tν1,v

N
(E.9)

∂ν2,norm

∂u+1
=

∂ν2,norm

∂u−1
=

Tν2,u

N
(E.10)

∂ν2,norm

∂u+2
=

∂ν2,norm

∂u−2
= − Tν2,u

Nν2,u
(E.11)

∂ν2,norm

∂v+1
=

∂ν2,norm

∂v−1
=

Tν2,v

Nν2,v
(E.12)

∂ν2,norm

∂v+2
=

∂ν2,norm

∂v−2
= − Tν2,v

Nν2,v
(E.13)

where:
Tν1,u = −(y−1 + y+1 − y−2 − y+2 + v−1 + v+1 − v−2 − v+2 )

2 (E.14)

Tν1,v = (u−1 + u+1 − u−2 − u+2 + x−1 + x+1 − x−2 − x+2 )

(v−1 + v+1 − v−2 − v+2 + y−1 + y+1 − y−2 − y+2 )
(E.15)

Tν2,u = (y+1 + y−1 + v+1 + v−1 − y+2 − y−2 − v+2 − v−2 )

(u−1 + u+1 − u−2 − u+2 + x−1 + x+1 − x−2 − x+2 )
(E.16)

Tν2,v = −(u−1 + u+1 − u−2 − u+2 + x−1 + x+1 − x−2 − x+2 )
2 (E.17)

and

N =

(
(u−1 )

2 + (2u+1 − 2u−2 − 2u+2 + 2x−1 + 2x+1 − 2x−2

−2x+2 )u
−
1 + (u+1 )

2 + (2x+1 − 2x−2 − 2x+2 − 2u−2 − 2u+2

+2x−1 )u
+
1 + (u−2 )

2 + (−2x+1 + 2x−2 + 2x+2 + 2u+2 − 2x−1 )u
−
2

+(u+2 )
2 + (−2x+1 + 2x−2 + 2x+2 − 2x−1 )u

+
2 + (v−1 )

2 + (2v+1 − 2v−2

−2v+2 + 2y−1 + 2y+1 − 2y−2 − 2y+2 )v
−
1 + (v+1 )

2 + (2y−1 + 2y+1

−2y−2 − 2y+2 − 2v−2 − 2v+2 )v
+
1 + (v−2 )

2 + (−2y−1 − 2y+1 + 2y−2

+2y+2 + 2v+2 )v
−
2 + (v+2 )

2 + (−2y−1 − 2y+1 + 2y−2 + 2y+2 )v
+
2

+(x−1 )
2 + (2x+1 − 2x−2 − 2x+2 )x

−
1 + (x+1 )

2 + (−2x−2 − 2x+2 )x
+
1

+(x−2 )
2 + 2x+2 x

−
2 + (x+2 )

2 + (y−1 + y+1 − y−2 − y+2 )
2

)3/2

(E.18)
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Algorithm 4 Local energy arc-length solver
1: Save analysis data from last converged substep into new variables
2: Initialize vectors for {δD}, {∆D} and scalars for δλ and ∆λ
3: Initialize the amount of dissipated energy, ∆Q, to zero
4: Initialize iteration counter
5: Calculate and assemble the stiffness matrix, internal force vector and constraint

derivatives, {h}ni
6: Calculate the path-following constraint, gni according to Equation 5.5
7: Assemble the system of equations defined in Equation 4.8 and solve for the load-level

parameter correction δλn
i and the displacement correction {δD}ni

8: Update displacement {D}n1 = {D}n−1 + {δD}n1
9: Update load-level parameter λn

1 = λn−1 + δλn
1

10: Update refinement of A-FNM elements
11: Calculate and assemble the stiffness matrix, internal force vector and constraint

derivatives, {h}ni
12: Evaluate the residual force vector according to Equation 4.2
13: Update MPCs in the A-FNM elements
14: while The norm of the residual force is larger than the residual tolerance do
15: Update iteration counter
16: Calculate the path-following constraint, gni according to Equation 5.5
17: Assemble the system of equations defined in Equation 4.8 and solve for the load-level

parameter correction δλn
i and the displacement correction {δD}ni

18: Update the incremental load-level parameter ∆λ according to Equation 4.15
19: Update the incremental displacement vector {∆D} according to Equation 4.14
20: Update displacement {D}ni+1 = {D}n−1 + {∆D}ni+1

21: Update load-level parameter λn
i+1 = λn−1 +∆λn

i+1

22: Update refinement of A-FNM elements
23: Calculate and assemble the stiffness matrix, internal force vector and constraint

derivatives, {h}ni
24: Evaluate the residual force vector according to Equation 4.2
25: if Residual error or number or iterations exceeds a predefined value then
26: Reset all analysis data to last converged substep,
27: Bisect the step size, ∆l,
28: Exit solver
29: end if
30: Update MPCs in the A-FNM elements
31: end while
32: Save all analysis data
33: Exist local energy arc-length solver
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Plot of Local Energy Arc-Length

Solver Solution G
A plot of the solution obtained with the local energy arc-length solver explained in
chapter 5, is illustrated in this appendix. The solution is done for the same problem
as is used in section 4.2. The arc-length solver is run with Crisfield arc-length solver
for the first 19 substep to initiate the solver, and then it changes to the local energy arc-
length solver. The arc-length solver is run with a step-size of ∆τ = 0.0001 and a residual of
1×10−4N. The solution is compared with a displacement controlled solution. Further, the
analysis is stopped before the full solution is obtained due to large amount of time needed
to finish the analysis. However, as illustrated in Figure G.1, the arc-length method traces
the displacement controlled solution satisfactory and do also capture the snap-through and
snap-back behaviour.

Figure G.1. Validation of local energy arc-length solver. Solver setting are ∆τ = 0.0001 and a
residual error of 1× 10−4 N.
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Algorithm 5 Global energy arc-length solver
1: Save analysis data from last converged substep into new variables
2: Initialize vectors for {δD}, {∆D} and scalars for δλ and ∆λ
3: Initialize iteration counter
4: Calculate and assemble the stiffness matrix and internal force vector
5: Calculate the constraint derivatives, {h}ni according to Equation 5.46
6: Calculate the constraint derivatives, wn

i according to Equation 5.47
7: Calculate the path-following constraint, gni according to Equation 5.45
8: Assemble the system of equations defined in Equation 4.8 and solve for the load-level

parameter correction δλn
i and the displacement correction {δD}ni

9: Update displacement {D}n1 = {D}n−1 + {δD}n1
10: Update load-level parameter λn

1 = λn−1 + δλn
1

11: Update refinement of A-FNM elements
12: Calculate and assemble the stiffness matrix and internal force vector
13: Evaluate the residual force vector according to Equation 4.2
14: Update MPCs in the A-FNM elements
15: while The norm of the residual force is larger than the residual tolerance do
16: Update iteration counter
17: Calculate the constraint derivatives, {h}ni according to Equation 5.46
18: Calculate the constraint derivatives, wn

i according to Equation 5.47
19: Calculate the path-following constraint, gni according to Equation 5.45
20: Assemble the system of equations defined in Equation 4.8 and solve for the load-level

parameter correction δλn
i and the displacement correction {δD}ni

21: Update the incremental load-level parameter ∆λ according to Equation 4.15
22: Update the incremental displacement vector {∆D} according to Equation 4.14
23: Update displacement {D}ni+1 = {D}n−1 + {∆D}ni+1

24: Update load-level parameter λn
i+1 = λn−1 +∆λn

i+1

25: Update refinement of A-FNM elements
26: Calculate and assemble the stiffness matrix and internal force vector
27: Evaluate the residual force vector according to Equation 4.2
28: if Residual error or number or iterations exceeds a predefined value then
29: Reset all analysis data to last converged substep,
30: Bisect the step size, ∆l,
31: Exit solver
32: end if
33: Update MPCs in the A-FNM elements
34: end while
35: Save all analysis data
36: Exist global energy arc-length solver
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Virtual Clip Gauge Scripts I
In the following the general layout of the ImageRegistation and Virtual Clip Gauge is
shown in Table I.1 and I.2 respectively.
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1. Initialize
Start with the top detail
3. Check if region of interest for the top detail is within the image

If Yes: Go to step 4, else go to step 16
4. Use the SURF algorithm with a region of interest to the following:

5. Detect local feature in both the detail and the image
6. Extract local feature descriptors
7. Find candidate matches in detail and image
8. Retrieve locations in detail and image for the candidate matches
9. Check if enough candidate matches are found. If yes continue else go
to step 12
10. Remove outliers and determine the geometric transformation
11. Check if enough matching points have been found in step 10. If yes
go to step 24 else continue

12. Use BRISK algorithm with a region of interest and the procedure in step
5-10 combined with the candidate matches with those from step 4

13. Check if enough matching points have been found. If yes go to step
24 else continue

14. Use KAZE algorithm with a region of interest and the procedure in step
5-10 combined with the candidate matches with those from step 4 and 12

15. Check if enough matching points have been found. If yes go to step
24 else go to step 20

16. Use SURF algorithm without a region of interest and the procedure in
step 5-10

17. Check if enough matching points have been found. If yes go to step
24 else continue

18. Use BRISK algorithm without a region of interest and the procedure in
step 5-10 combined with the candidate matches with those from step 16

19. Check if enough matching points have been found. If yes go to step
24 else continue

20. Use SIFT algorithm without a region of interest and the procedure in step
5-10 combined with the candidate matches with those from step 16 and 18

21. Check if enough matching points have been found. If yes go to step
24 else continue

22. Use KAZE algorithm without a region of interest and the procedure in
step 5-10 combined with the candidate matches with those from step 16, 18
and 20

23. Check if enough matching points have been found. If yes go to step
24 else continue

Repeat step 3-23 for the bottom detail. Reuse the local features found on the
image from step 16, 18, 20 and 22 if possible

24. Return location, rotation and number of matching points found for the two
details to the Virtual Clip Gauge

Table I.1. ImageRegistration function.
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1. Start the Virtual Clip Gauge.
2. Select folder, containing data, camera parameters and images from the
experiment, add paths for these.
3. Load camera parameters: used to undistort images when loading them.
4. Create results folder.
5. Read image names.
6. Select Search Area: Loads first and last image, then select the search area based
on the crosses.
7. Calibration: calculate the distance per pixel using a calibration function made by
the authors.
8. Load first image and select top and bottom detail.

9. Save position and size of the details.
10. Check the selected details.

11. Load first image.
12. Run ImageRegistration with the two details on the first image.

13. Calculate the center position of the found details.
14. Set region of interest based on the center position found in step 13.

15. Initiate counter count = 0
16. for loop - loop over the remaining number of images.

17. Load image.
18. Run ImageRegistration with the two details.
19. Check if the details are found. If Yes: got to step 20 else report error and
go to step 24.
20. Check if the angles calculated in step 18 have increased by five degrees.

If Yes: Update both details else go to step 25
21. Update detail positions.
22. Calculate Center positions.
23. Set region of interest based on the center positions.
24. Update counter count = 0

25. for loop - loop over the number of images.
26. Calculate distance in pixels between the center positions.
27. Calculate distance in mm using the distance in pixel and the calibration
from step 7.

28. Manually select a cutoff point and remove outliers using the Matlab function
filloutliers.
29. Calculate the frame rate of the camera based on the timestamp on the first and
last image.
30. Calculate the CMOD by subtracting the first distance found in step 27 from the
subsequent distances.
31. Calculate a time for each CMOD measurement by 1

Frame rate · index in CMOD
33. Load data set from the experiment and synchronize the time with the clip gauge.
34. Save the results from the Virtual Clip Gauge.

Table I.2. Virtual Clip Gauge Script.
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