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Abstract—The time delay in communications between Earth
and Mars pose a challenge for the control of rovers on Mars,
for tasks such as rock grasping. This paper investigates the
application of Deep Reinforcement Learning (DRL) as a method
for robotic grasp learning of Martian rocks. NVIDIA Isaac
Gym employed to simulate a randomly generated Mars-like
environment, populated with randomly generated rocks. Prox-
imal Policy Optimisation (PPO) is used to train a Franka
Emika Panda robotic manipulator in the task of picking up
the randomly generated rocks. As a Mars environment can
have large changes in terrain height, joint control of the robot
manipulator is implemented to enable 6-DOF grasping of rock
samples. The proposed method show a 91.51% success rate,
grasping randomised rocks ranging from 40-400 cm3 in size.
The randomness of the environment is found to create a robust
agent, while laying a solid foundation for sim-to-real in the future.
This paper presents a novel approach for 6-DOF object grasping,
using joint control and domain randomisation.

I. INTRODUCTION

Robotic grasping is an essential skill to have for a robot
to perform different manipulation tasks. Grasping is not a
solved problem for robotic manipulators, in cases with highly
varied environments or with completely novel objects [1].
Work involving robotic grasping has developed from being
able to grasp simple shapes such as cubes and cylinders to
bigger object sets with variety in object shape and size. Even
though recent successes in robotic grasping, such as Gou et
al. [2], have been able to grasp varied objects with a high
success rate, there are still several unsolved aspects of robotic
grasping if it has to be applicable outside the lab or factory
floor.

A use case where both novel objects and an unknown
environment is present is for rovers operating on the Moon
or Mars. A rover should be able to pick up novel objects in
the form of different rock samples or sample tubes left behind
by previous rovers, such as the Perseverance Mars rover [3].

To overcome the challenge of varied environments and
novel objects in robotic grasping, different strategies have been
utilised [4]. A method that has seen more use in robotics
recently for challenges in both grasping [5], [6] as well as
navigation of mobile platforms [7] is Deep Reinforcement
Learning (DRL). DRL has in recent years been made an even
more effective method for teaching robot skills as computa-
tional power has increased, along with more sample

efficient methods and better simulation tools [8]. A recent
simulation tool such as NVIDIA Isaac Gym [9], allows for
running numerous environments in parallel and utilises high
GPU performance to speed up the physics simulation. This
paper focuses on utilising high parallelisation with NVIDIA
Isaac Gym to train DRL agents for robotic grasping, with
varied objects and terrain. This is done within the context of
exploration of extraterrestrial bodies, with a focus on Mars.

In a Mars environment where communication is delayed
5-20 minutes depending on Earth-Mars alignment [10], it is
especially important for a system to be able to adapt and adjust
its own behaviour. Even though robotic grasping solutions for
space is currently limited to rovers for picking up samples, the
European space agency (ESA) and other space agencies have
plans for setting up extraction of local resources to enable a
human long term presence on the moon before 2040 [11]. This
will present many additional areas where robotic grasping can
be utilised to aid in automatic resource extraction.

II. RELATED WORK

DRL has begun to be more widely applied to robotic
manipulation tasks, such as robotic grasping. Several different
reinforcement learning (RL) algorithms is used in recent work
to solve the task of robotic grasping. Some of these include
Proximal Policy Optimisation (PPO) [12], [6], [13], Deep Q



networks (DQN) [14], SAC [15], [16] and TD3 [17]. Even
though many robotic grasping solutions are based on the
same RL algorithms, the specifics of a DRL setup can vary
a lot based on the use of simulation, network architecture,
domain randomisation, camera setup, and hyper-parameter
tuning among many others.

The architecture of the network, or networks, used to
create a DRL robot solution capable of grasping, have several
approaches. A big distinction between approaches is if DRL
is used end-to-end, or if other networks, such as an object
detection network or a dedicated grasp synthesis network,
are utilised. Using several networks, each responsible for a
different function, can help simplify the DRL problem. An
example of this is Chen et al. [6], who perform robot grasping
with 4 degrees of freedom (DOF) (x, y, z, θz). They use
an object detection network along with principal component
analysis (PCA) to extract the location and orientation of the
objects of the image. This approach simplifies the observations
used for the DRL agent to only contain robot and object
poses, instead of the entire image. An additional benefit of this
approach is that the two networks can be trained separately.

Another approach is using the camera observations directly
as observations for the DRL agent and letting the policy learn
the full problem of interpreting the observations from the
camera and moving the robot to grasp. In this approach, it is
not possible to train networks separately. An example of this is
in Huang et al. [13] where they train a PPO policy with image
observations for 3-DOF(x, y, θz) grasping of rock samples
with an 80%+ success rate. A feature extraction network is
used to extract image features and is trained simultaneously
with the policy during training.

Joshi et al. [14] propose using double deep Q learning for
robotic grasping. The solution uses a multi-camera view setup,
with a static RGB-D camera above the work surface and a
wrist-mounted RGB camera. Using multiple viewpoints im-
proves the grasping success rate from 65% to 80%+, compared
to a single camera in their setup.

In an article from 2021, Ibarz et al. [8] identifies different
current challenges in the use of DRL for training robots
for real-world skills. Some of the challenges highlighted are
generalisation and sim-to-real.

Introducing a large variety of objects can be a challenge for
a grasping solution. A recent success is Kalashnikov et al. [5]
with a success rate of 87% on a set of about 1000 different
objects doing bin picking. However, due to the complexity
of the task, a lot of grasps were used for training. 580
thousand real-world grasps were performed to train the QT-opt
model used. The authors also notes that they see a significant
performance improvements going from 320 to 520 thousand
grasps, which improves the success rate from 78% to 87%. The
collection of data for this work required 400+ robot hours.

Using simulation when training a policy allows for a huge
amount of training to be performed, compared to doing
training in the real world. Different strategies for bridging the
reality gap when transferring from simulation to the real world
can be employed. Domain randomisation is a method used

for improving the sim-to-real transfer. Randomising various
parameters of the simulation during training such as texture,
objects, pose and lighting has been shown to improve the per-
formance of a policy when transferring into the real world [18],
[19], [20].
Peng et al. [21] expands the use of randomisation by randomis-
ing dynamics parameters during simulation. This allows their
robotic manipulator to adapt to real-world dynamics while
only training in simulation. Only a small drop in performance
is observed when moving out of simulation using this strategy.
Another method for achieving better sim-to-real transfer is
domain adaptation. Bousmalis et al. [22] trains a network to
make images from simulation resemble the real world.

To enable robots to operate on Mars it has to be able to
work around obstacles and generalise well across varied terrain
and differently shaped objects. This increases complexity of
a DRL solution, thus requiring a large amount of training. In
many cases it might not be feasible to collect enough data on
a real robot, without many robots working in parallel. Using
simulation presents several advantages when using DRL, as
large amounts of training data can be collected in a time
efficient manner. However, using policies trained in simulation
can be challenging to transfer into the real world. Domain
randomisation is identified as a crucial aspect of training
policies to be able to transfer behaviour well from simulation
to the real world.

Domain randomisation techniques applied with previous
grasping methods often focuses on varying a few factors
during training or implements low-DOF grasping. There is
an opportunity to investigating high domain randomisation in
conjunction with a 6-DOF grasping approach when training
DRL agents.

The paper is structured as follows. Section III covers the
system developed, the methods used and setup for experi-
ments. Section V describes the experiments that are carried
out. Section VI presents the results of the experiments. Sec-
tion VII and VIII discusses and concludes on the results.

III. EXPERIMENTAL SETUP

The experimental setup is based on the hardware available
for the project. The robot used in the project, is the Franka
Emika Panda 7-DOF robot arm. A computer running Ubuntu
20.04 with NVIDIA GeForce RTX3070 GPU and an AMD
Ryzen 5 5600X CPU is used for simulation and training.

A. Simulation environment

NVIDIA Isaac Gym is chosen as the simulation tool, as it
provides the ability of training on many parallel environments,
with a high simulation speed [9].

The environment can be divided into three customisable
parts: The robotic arm, the terrain, and the grasp object. The
environment is made iteratively more complex. In this paper,
only the last iterations will be shown. For more details on
the simulation environment please see the appended technical
report, Chapter 5. For all training iterations, please see the
appended technical report, Chapter 6.



(a)
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Fig. 1: The randomly generated grasp objects and terrains. (a) shows seven randomly generated rocks, showing the possible
size range. Grid cells represents 1 cm2. (b) shows three randomly generated terrains, simulating a Mars-like environment. The
terrain is generated from a random uniform distribution of points between -20 cm and 0 cm in height.

• The Franka Emika Panda robot is incorporated into
the training environment as a URDF model. The Panda
robot can either be inserted with a fixed starting pose,
or with randomised joint positions. Furthermore, Gym
allows the actors in a simulated environment to have
either fixed or randomised dynamics. For the purpose
of domain randomisation, the starting joint positions are
randomly set to within ±7◦.

• The grasp object is designed to simulate objects of
interests on Mars, in this case rocks. A script is used to
randomly generate rocks within ranging from 50 cm3 to
400 cm3 in size [23]. Goossens et al. [24] finds the crust
density of Mars to be 2.6±0.2 g

cm3 . As such the mass of
the rocks generated are chosen based on the crust density.
Examples of the randomly generated rocks can be seen
in Figure 1a.

• The terrain can be randomised in Isaac Gym, similarly to
the Panda arm. The terrain is generated from a uniformly
randomly distributed height-map. The height-map ranges
from -20 cm to 0 cm in height, in order to simulate
a bumpy terrain on Mars, that is still flat enough to
be traversable by a rover. An example of the randomly
generated terrain can be seen in Figure 1b.

B. DRL robotic grasping

A RL interaction cycle demonstrating how an action applied
to an environment changes environment state and rewards, can
be seen in Figure 2.

The agent generates an action, r, at time t, according to
its policy πθ(st|at), where St is the state of the environment.

Fig. 2: The RL interaction between the agent (Franka Emika
Panda) and the environment (Mars).

After the action impacts the environment, the state transitions
to st+1 and likewise a reward, Rt+1, is generated.

The problem of robotic grasping in DRL can be formulated
as a Markov Decision Process (MDP), which describes the
connection between the agent and the environment, through
actions, states, and rewards. The goal of the RL agent is to
find a policy that maximises the rewards received from the
environment. These rewards are called the return(G). As the
policy makes decisions that impact future rewards, a discount
factor(γ) is introduced to reduce the weight of future rewards.



The policy seeks to achieve the highest discounted return
possible [25]. This concept is shown in Eq. (1).

Gt =

∞∑
k=0

γkRt+k+1 (1)

There are multiple DRL algorithms that could be applied
for training the agent. For this project, PPO is selected as
previous research have shown good results with this method.
See section II for more information on this. The objective
function of PPO can be seen in Eq. (2)[26].

LCLIP+V F+S
t (θ) = Êt[L

CLIP (θ)−c1L
V F
t (θ)+c2S[πθ](st)]

(2)
The clipped objective function, LCLIP , is the main part of

the PPO objective function. It is responsible for optimising
the policy to follow gradient ascent. A problem that occurs
when purely following gradient ascent, is making changes to
the policy that are too large. This can result in an agent that
will not converge, and is therefore important to avoid. The
clipped objective function combats this by limiting how much
the policy can be changes on each update. The state-value loss
function, LV F

t , allows PPO to learn the state-value function
parallel to learning the policy. The entropy, S, encourages
the algorithm to explore different policies, instead of only
choosing actions that the current policy predicts are good.
The two hyperparameters, c1 and c2, are simple scalars that
are used to weigh the influence of the two terms on the final
objective function[26].

1) System architecture: The Isaac Gym environment pro-
vides the observations used for training the policy. The PPO
implementation used is the one provided by the SKRL li-
brary [27]. The SKRL library wraps the Isaac gym environment
and receives observations and rewards at each time-step and
provides actions to Isaac Gym for execution by the robot. The
network structure used can be seen in Figure 3.

The network used is has an input layer, output layer and 4
hidden layers. Each hidden layer is fully connected and uses
RELU activation. The network structure is used both for the

Fig. 3: Network structure used with 4 fully connected hidden
layers of size: 512, 256, 128, 64.

TABLE I: Observations and actions of the system. All Obser-
vations and Actions are continuous of type, box.

Name No. of DOFs Unit

O
bs

er
va

tio
ns

Robot joint positions 7 θ

Robot joint velocities 7 θ̇

Gripper 2 m

Distance from gripper to target 3 m

A
ct

io
ns Target 7 θ

Gripper 1 m

policy and value network. Both networks get the observations
from the Isaac Gym environment as input. The policy network
learns to generates the actions used to control the robot in the
environment, where the value network learns to evaluate if
those actions takes the environment to a state with a higher
value.

2) Observations and actions: Using joint control of the
Franka Emika Panda robot in the simulated environment
results in 19 observed states and 8 actions. These can be seen
in Table I.

The robot has joint positions and joint velocities. The
gripper position is represented by a value that determines
how open the gripper is, along with a value for how far the
gripper is above the robots base. Finally, The distance from
the gripper to the target object in (x, y, z) direction is part of
the observations. The continuous actions of the Franka Robot
are a goal position for each of the joints, along with a single
value determining how open the gripper is.

3) Reward: The rewards for the task are based on the steps
involved in grasping a rock: Reaching, grasping, and lifting.
The reach reward is based on the euclidean distance between
the gripper of the robot, and the rock. The distance reward
maxes out at 2 when there is no difference in position between
the gripper and the object. The grasping reward is set to 50,
and given at every timestep the gripper meets resistance when
closing, without having the gripper closed entirely. The lift
reward is based on the height of the rock, and starts being
applied when the rock is above 5 cm. From here, the reward
rises exponentially until the rock is at 10 cm. Here, the reward
is 100, until the rock is lifted above 30 cm where the reward
starts dropping off. This is to motivate the agent to keep the
rock within 10-30 cm, which is also set as the criteria for a
successful grasp. In addition to the aforementioned rewards, a
success reward is given when the success criteria is met for
more than 30 timesteps. Lastly a collision penalty is given if a
high force is detected in any of the robot’s links. The reward
function can be seen in Table II.



TABLE II: The reward function with the formula for each
element shown.

Reward type Reward function

Reaching

{
( 1
1+d2

)2, for d > 6cm

2( 1
1+d2

)2, for d ≤ 6cm

Grasping 50

Lifting


h2, for h < 10cm

100h, for h > 10cm

400− 10h, for h > 30cm

Success 200∗remaining timesteps
Collision -1

IV. HYPERPARAMETERS

Several experiments are carried out for tuning hyperparam-
eters of the training. This is done on a simplified environment
to form a basis for choosing hyperparameters. Five runs are
performed for each hyperparameter setting. The hyperparame-
ters investigated are learning rate and entropy loss. Results are
shown in Figure 4 and 5. The optimal learning rate is found to
be 0.0005 and the optimal entropy value is found to be 0.001.
Further details on the hyperparameter tuning can be found in
Chapter 6 in the appended technical report.

V. EXPERIMENTS

Two experiments are carried out to verify different aspects
of the challenge presented in this paper:

• Domain randomisation
• Obstacle avoidance
In both experiments, the agent is trained using 1024 parallel

environments. The trained agent is tested 10 times with
random starting seeds for both experiments. All experiments
feature 250 randomly generated rocks as the grasping object.
The results of the experiments are presented in section VI.

For further implementation details on the two experiments,
see the appended technical report Chapter 5 and 6.

A. Domain randomisation

The domain randomisation test is carried out in an simulated
environment featuring a randomly generated terrain, randomly
generated rocks, random position of rocks, randomised starting
joint positions of the Panda arm, and randomised dynamics
of the Panda arm. The simulation environment can be seen
in Figure 6.

Because of the more complex environment, it is found that
lowering the learning rate from 0.0005 to 0.0002 is necessary
to obtain good performance. Likewise, the entropy is increased
from 0.001 to 0.005 to ensure that the agent explores enough
different options to converge on a good result.

B. Obstacle avoidance

The obstacle avoidance experiment is carried out in a simu-
lated environment featuring a flat terrain, randomly generated
rocks, fixed starting joint positions of the Panda arm, and fixed
dynamics of the Panda arm. The purpose of the experiment is
to test if the 6-DOF joint control of the Panda arm allows for
rock grasping behind obstacles. A wall, acting as the obstacle,

Fig. 4: Graph showing the median of the reward ±1 standard
deviation for different Learning rates. No useful learning
performed with the highest learning rate of 0.001 (Yellow).
Lower learning rates all have stable learning and converged at
a similar reward. The learning rate of 0.0005 (Red) performed
the best with fast convergence.

Fig. 5: Graph showing the median of the reward ±1 standard
deviation for different Entropy loss scales. No entropy (Yel-
low) converged at a high reward with high variance between
runs. Entropy of 0.001 (Blue) converged at the highest reward
and have small variance between runs.

is therefore added to the environment, separating the rock and
the Panda arm. The environment can be seen in Figure 7.

During training of the obstacle avoidance experiment the
collision reward tuning is tuned to avoid behaviours that
collides with the obstacle. A higher collision penalty of -5
is used to make the robot avoid the obstacle completely.

Fig. 6: The simulation environment for the domain randomi-
sation experiment.



Fig. 7: The simulation environment for the obstacle avoidance
experiment.

TABLE III: Success rates for each experiment, based on
100,000 grasp attempts in simulation.

Success rate
Domain randomisation 91.51%
Obstacle avoidance 88.67 %

VI. RESULTS

In both experiments, the agent is successful in learning to
pick up the rock, with a high success rate. The success rate of
each experiment is based on 100,000 grasp attempts, taken
from the most successful run in each experiment. A table
showing and comparing the results from the three experiments
can be seen in Table III.

The training took 250,000 timesteps, taking around one
hour. Training graphs showing the reward obtained during
training for both experiments, can be seen in Figure 8. From
the training graphs, it is evident that the Domain randomisation
experiment has a more robust and consistent learning across
runs, as all 10 runs converge at a similar rate, at the same
total reward. The training graph for the Obstacle avoidance
experiment show that the learning rate across these runs is
significantly more varied, with the various runs not converging
at a similar rate or at the same total reward.

The robot is able to pick up the rocks consistently, even
when the rocks are rolling. On failed grasps, the robot is able
to retry pickups. A picture series and link to a video of the
behaviour can be seen in Figure 9

VII. DISCUSSION

The trained agent is able to grasp the rock with a high
success rate in both experiments. The domain randomisation
experiment likewise demonstrates stable training, with low
variance in the rewards across runs. When observing the
behaviour during multiple runs from the same experiment,
this is also evident, since they all performed similarly well.
While the success rate of the obstacle avoidance experiment
is high, the variance of training is also quite high. This
suggests that the method shown in the obstacle avoidance
experiment has potential to converge to a good result, but does
so inconsistently. It is believed that the method could be further
improved with more hyperparameter optimisation. While the
training could be more robust, the results show that the 6-
DOF joint control of the Franka robot arm is very useful when

(a) Domain randomisation

(b) Obstacle avoidance

Fig. 8: Graphs showing the median of the reward ±1 standard
deviation over 10 runs with random starting seed. In the
domain randomisation experiment, a, the agents can be seen
learning at a somewhat similar rate, resulting in very consistent
behaviours. The agents in the obstacle avoidance experiment,
b, can be seen learning at a much more varied rate, resulting
in more inconsistent behaviours.

operating in a space with obstacles. This can be observed, by
the robot extending its arm and reaching around the wall, in
order to lift the rock. This method of grasping would not be
possible if 4-DOF control was used.

Videos and further detail on behaviours observed during
experimentation can be found in Chapter 6, in the appended
technical report.

VIII. CONCLUSION

This project has been focused on grasping rocks in a space
environment such as Mars by using DRL. A novel approach
for 6-DOF object grasping, using joint control and domain
randomisation has been presented, using PPO to control a
Franka Emika Panda robotic manipulator. Using this approach,
a success rate of 91.51% on rock grasps is achieved in
an simulated environment with high domain randomisation.
Furthermore, it is shown that 6-DOF joint control allows
for the Franka robot to grasp rocks behind obstacles, with
a success rate of 88.67%, which allows for grasps that would
not be possible with lower DOF control.

This paper therefore concludes that using DRL policy
gradient methods to joint-control a 6-DOF robot arm is capable
of grasping rocks in a space environment.

A GitHub repository containing the code for the project can
be found at https://github.com/AntonBock/RL4RobotGrasping

https://github.com/AntonBock/RL4RobotGrasping


Fig. 9: The pick up from the domain randomisation experiment. A video of the behaviour can be seen at: https://youtu.be/
5SpWWB peWc. Note that the robot is able to pick up the rock while it is rolling around, showing a very robust grasping
behaviour.
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