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Chapter 1

Introduction

The underlying generating process of asset prices has been of interest for decades, and being able to model it
effectively has been something to strive for. The assumptions of the generating process has changed through
time. The generating process was viewed as a time series with ARCH and GARCH variations, it has been
viewed as a stochastic process starting with random walks, which slowly evolved into more complicated
setups. Black and Scholes had a breakthrough in the seventies, stemming from the release of ”The Pricing of
Options and Corporate Liabilities“ [Black and Scholes, 1973]. The issue with the Black and Scholes model
was however that volatility was assumed constant, this assumption is violated by the empirically estimated
volatility smile. In the Dupire local volatility model [Dupire et al., 1994], the local volatility is a deterministic
function of the underlying price and time, chosen to match observed European option prices. This model has
highly unrealistic dynamics and create future volatility surfaces unlike those observed. Other models allowed
for stochastic volatility, e.g. the Heston model where the volatility process was a markovian process. Whilst
stochastic volatility dynamics are more realistic than local volatility dynamics, generated option prices from
these types of models are not consistent with observed European option prices. Furthermore, the stochastic
volatility models do not fit the volatility surface [Gatheral et al., 2018]. In particular, At the-money (k = 0)
volatility skew

ψ(p) :=

∣∣∣∣ ∂∂pσBS(k, p)

∣∣∣∣ ,
is well approximated by a power law function of time to expiry p. In contrast, conventional stochastic
volatility models generate a term structure of at-the-money skew that is constant for small p and behaves as
a sum of decaying exponentials for larger p. In the paper [Fukasawa, 2011], they used a stochastic volatility
model where the volatility is driven by a fractional Brownian motion with Hurst index H. This model
generated an ATM skew of the form, ψ(p) = pH− 1

2 at least for small p. This provided a counterexample to
the widespread belief that the explosion of the volatility smile as p → 0 implies the presence of jumps. In
order to generate volatility surfaces with a reasonable shape, H had to be close to zero [Gatheral et al., 2018].
In the paper [Gatheral et al., 2018], they estimated smoothness of the volatility process by investigating the
moments of the increments of log-volatility.

E[|log(σ∆)− log(σ0)|q] = bq∆
ζq ,

where ∆ is a mesh. Plotting ζq against q, they obtained that ζq ∼ Hq, and found that empirically H was
indeed quite small. These findings do however rely on an estimation of the spot volatility, which is noisy and
inaccurate.

When the volatility process is driven by a fractional Brownian motion with Hurst index smaller than 0.5 it is
called a rough volatility model. This is the new generation of underlying price generation process dubbed by
Jim Gatheral, Thibault Jaisson and Mathieu Rosenbaum. Rough is referring to short-memory and erratic
nature. Historically, it has nearly been accepted as a stylized fact that volatility had long-memory properties,
however [Gatheral et al., 2018] found that a rough fractional volatility model, where the volatility process is
driven by a fractional Ornstein-Uhlenbeck process, was remarkably consistent with volatility time series data.
The rough fractional volatility model they used did not have any long memory properties, and outperformed
conventional AR and HAR volatility forecasts. Which motivates the use of rough volatility models when
striving towards describing the price process effectively.
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1. Introduction

Rough volatility violates the typical log-price process setup, where the volatility process is assumed to be
a semi-martingale. This somewhat invalidates the empirical findings obtained using the typical setup, if
volatility truly is rough.

In this project, we seek to describe the underlying price generating process with a rough volatility setup, the
chosen model has parameters, which we would like to estimate.

Estimating parameters in the model can be done in multiple ways, for example generalized method of
moments (GMM), likelihood approaches or machine learning. In this project, the method of choice will
be GMM. In [Bolko, 2021], they are using a GMM approach to estimate parameters in the process driving
spot volatility, the process being a Fractional Ornstein-Uhlenbeck process. They used realized volatility
as estimator for integrated volatility with 5 minute observations, RV5, as to not be affected by potential
microstructure noise, and thereby obtain an estimate of H with estimates of integrated variance instead of
estimates of spot volatility like in [Gatheral et al., 2018], which should reduce the amount of noise included
in the estimation of H. In this project, we want to take a similar approach, however we would not like to
neglect a huge number of observations, and instead we would rely on a high frequency setting, from which
we need to deal with microstructure noise. Realized volatility is not a microstructure robust estimator,
which will be needed for this setting. For this purpose, we will be using the modulated realized covariance
estimator, MRC, described in [Christensen et al., 2010].

With a model at hand, a way of estimating the parameters and a microstructure noise robust estimator for
integrated volatility. We would like to validate the GMM approach through a simulation study, as well as
compare the estimation procedure and parameter distribution using both MRC and RV5 as estimators for
integrated volatility. Finally, we will apply the GMM procedure to high frequency prices for the S&P500
ETF SPY to estimate the parameters and potential roughness.

Outline of Chapters

In Chapter 2, the semi-martingale price model is presented along with the volatility process and the driver of
the volatility process, which for this project is a fractional Ornstein-Uhlenbeck process. This is followed by a
presentation of the generalized method of moments estimation procedure along with asymptotic properties
of the estimated parameters. Lastly, the assumptions on microstructure noise are introduced, with its effect
on estimation of integrated volatility.

In Chapter 3 the model for simulation is presented along with the models parameter specification, initial
guesses, optimization procedure and two methods of validating the distribution of the parameters. This is
followed by Tables illustrating the accuracy of the estimation procedure, both when microstructure noise is
present and when it is not, and for different estimators of integrated volatility. Lastly, graphs are shown to
validate the distribution of the parameters in a finite setting.

In Chapter 4, we apply the estimation procedure to S&P 500 and present the results.

In Chapter 5, we discuss the decisions made throughout the project along with potential different tweaks
and their effect on the estimation. Lastly, we conclude on the results obtained.
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Chapter 2

Theory

2.1 The Semi-martingale Price Process

Firstly, assumptions about the behavior of the log-price as well as assumptions about the volatility process
are needed.

This section is based on [Bolko, 2021].

Throughout the project, the log-price of a financial asset, X = (Xτ )τ≥0 will be modeled by an adapted
continuous-time stochastic process on a filtered probability space (Ω,F , (Fτ )τ≥0,P). A standard arbitrage
free market is assumed where asset log-prices are of semi-martingale form, i.e. X can be described by the
itô process

Xτ = X0 +

∫ τ

0
µsds+

∫ τ

0
σsdWs, τ ≥ 0, (2.1)

where X0 is F0-measurable, µ = (µτ )τ≥0 is a predictable drift process, σ = (στ )τ≥0 is a càdlàg volatility
process and W = (Wτ )τ≥0 is a standard Brownian motion.

This setup differs from the typical semi-martingale setup, since neither the volatility process nor the log
volatility process is necessarily a semi-martingale.

For the spot volatility we will assume a model as to incorporate rough volatility, we model σ2 = (σ2τ )τ≥0 as

σ2τ = ξ exp

(
Yτ −

1

2
κ(0)

)
, τ ≥ 0, (2.2)

with ξ ∈ (0,∞), a scale parameter representing the unconditional mean of the stochastic volatility, the process
Y = (Yτ )τ≥0 is a zero-mean stationary Gaussian process with covariance function κ(u) = cov(Y0, Yu) =

κϕ(u), u ≥ 0, parameterized by ϕ ∈ Rp, where p is going to depend on the chosen model for Y , denote
θ = (ξ, ϕ).

For estimation of the parameters of the model, we will use the integrated volatility for day t defined as

IVt =

∫ t

t−1
σ2sds, t ∈ N,

which holds information on the model. This can be estimated by realized volatility or a microstructure noise-
robust estimator if microstructure noise is present. The presence of Microstructure noise will be expanded
upon in a section later.
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2. Theory

2.1.1 Properties of Integrated Volatility

In this section, we will present some properties of Integrated Volatility under (2.1) and (2.2). This will serve
as a foundation for the GMM approach, which will be presented in a section later.

Theorem 1

Suppose that (2.1) and (2.2) holds. Then, the integrated volatility process, (IVt)t∈N, is stationary with the
following first and second-order moment structure

E[IVt] = ξ,

E[IVtIVt+ℓ] = ξ2
∫ 1

0
(1− y)

(
exp{κ(ℓ+ y)}+ exp{κ(|ℓ− y|)}

)
dy,

for ℓ ∈ N0. In addition, suppose the following conditions hold:

1. limℓ→∞ κ(ℓ) = 0.
2. There exists an integrable function ζ : [−1, 1] → R such that κ(ℓ+y)

κ(ℓ) → ζ(y) as ℓ → ∞ for any
y ∈ [−1, 1],

3. lim sup
ℓ→∞

sup
y∈[−1,1]

∣∣∣κ(ℓ+y)
κ(ℓ)

∣∣∣ <∞.

Then as ℓ→ ∞:

E[(IVt − ξ)(IVt+ℓ − ξ)] ∼ ξ2κ(ℓ)

∫ 1

−1
(1− |y|)ζ(y)dy.

Proof. The proof can be found in [Bolko, 2021].

Where we denote asymptotic equivalence with f(ℓ) ∼ g(ℓ) meaning that f(ℓ)
g(ℓ) → 1 as ℓ→ ∞.

The integral describing the second-order moments of integrated volatility depends on Y and might not
be possible to solve analytically. Thus, one might need to approximate the integral or solve the integral
numerically. Moments of higher order can also be expressed in this way, as shown in [Bolko et al., 2022],
increasing the order of integration by one makes the resulting expression unwieldy to work with in practice.
Therefore, estimation procedures rely on low-order moments, as showcased later.

2.2 Fractional Stochastic Volatility

This section is based on [Cheridito et al., 2003] and [Bolko, 2021].

In this section, a fractional Ornstein-Uhlenbeck process for Y in (2.2) is introduced, in order to have a
fractional stochastic volatility model, fSV. This will be the only process for Y that will be considered
throughout this project, and thus the volatility process will in all scenarios be driven by a fOU process.

Before introducing both the Ornstein-Uhlenbeck- and Fractional Ornstein-Uhlenbeck processes, we start by
introducing the fractional Brownian motion.
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2.2. Fractional Stochastic Volatility Aalborg University

A fractional Brownian motion is a zero-mean Gaussian process with continuous paths, starting from 0, with
covariance structure

E[BH
s B

H
τ ] =

1

2

(
|τ |2H + |s|2H − |τ − s|2H

)
,

where H is the Hurst index. H < 1
2 leads to negative correlation between increments, H > 1

2 positive
correlation and H = 1

2 no correlation, i.e. a standard Brownian motion. Furthermore, the closer H gets to
0, the more the paths of the fractional Brownian motion will fluctuate, why it is called rough. Oppositely,
as H goes toward, 1 the paths of the fractional Brownian motion will have a trendlike structure.

We are now ready to introduce the process which will be the underlying driver of the volatility process.

To motivate why the fractional version exists, the standard Ornstein-Uhlenbeck is introduced,

Y 1/2
τ = ν

∫ τ

−∞
e−λ(τ−s)dBs, τ ≥ 0, (2.3)

where ν, λ > 0, which is the unique solution to the Langevin equation

Vτ = ξ′ − λ

∫ τ

0
Vsds+Nτ , τ ≥ 0, (2.4)

if the noise process is Nτ = νBτ and with initial condition ξ′ = ν
∫ 0
−∞ exp{λs}Bs. However, the Langevin

equation can be solved pathwise for more general noise processes than the Brownian motion. For example,
for each H ∈ (0, 1] and every, a ∈ [−∞,∞) there exists a pathwise Riemann-Stieltjes integral for∫ τ

a
exp{λs}dBH

s , τ > a,

which when used in the following equation

Y ξ′
τ = exp{−λτ}

(
ξ′ + ν

∫ τ

0
eλsdBH

s

)
, τ ≥ 0, (2.5)

is the unique almost surely continuous process that solves the equation

Vτ = ξ′ − λ

∫ τ

0
Vsds+ νBH

τ , τ ≥ 0. (2.6)

In particular, in the case of positive τ ’s of the almost surely continuous process

Yτ = ν

∫ τ

−∞
e−λ(τ−s)dBH

s , τ ∈ R, (2.7)

will solve (2.6) with initial condition ξ′ = Y0. The stationarity of Yτ follows from the stationarity of the
increments of the fractional Brownian motion. Furthermore, for every random variable ξ′

Yτ − Y ξ′
τ = exp{−λτ}(Y0 − ξ′) → 0, as t→ ∞ a.s.,

which implies that every stationary solution of (2.6) has the same distribution as (Yτ )t≥0. We call Y ξ′
τ

a fractional Ornstein-Uhlenbeck process with initial condition ξ′ and Yτ a stationary fractional Ornstein-
Uhlenbeck process [Cheridito et al., 2003].

In order to estimate the parameters in (2.7) by generalized method of moments, we need the covariance
structure of the fractional stochastic volatility model as described in Section 2.1.1.

5



2. Theory

Lemma 2

If Y follows the model in (2.7), then for ℓ ≥ 0

κ(0) =
ν2

2λ2H
Γ(1 + 2H),

κ(ℓ) = κ(0) cosh(λℓ)− ν2ℓ2H

2
1F2(1;H +

1

2
, H + 1;

λ2ℓ2

4
), ℓ ≥ 0,

where qFp(a1, . . . , ap; b1, . . . , bq;x) is the generalized hypergeometric function with p parameters of type 1

and q parameters of type 2.

Proof. The proof can be found in [Bolko, 2021].

Where the generalized hypergeometric function is defined as

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
,

and (a)k is the Pochhammer symbol

(a)k ≡ γ(a+ k)

γ(a)
= a(a+ 1)(a+ 2) · · · (a+ k − 1).

Using Theorem 1 along with Lemma 2 and a Taylor approximation, the following remark can be made.

Remark If Y follows the model in (2.7), the second-order moment structure of integrated variance can be
approximated by the following expression for ℓ ≥ 1:

E[IV 2
t ] ≈ ξ2 exp{κ(0)}

(
1− κ(0) +

2κ(0)

λ2
(cosh(λ)− 1)− c1F2(1;H +

3

2
, H + 2;

λ2

4
)

)
E[IVtIVt+ℓ] ≈ ξ2 exp{κ(ℓ)}

(
1− κ(ℓ) +

2κ(0)

λ2
cosh(λℓ)(cosh(λ)− 1)

)
− ξ2 exp{κ(ℓ)} c

2
(ℓ+ 1)2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2(ℓ+ 1)2

4

)
− ξ2 exp{κ(ℓ)} c

2
(ℓ− 1)2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2(ℓ− 1)2

4

)
+ ξ2 exp{κ(ℓ)}cℓ2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2ℓ2

4

)
,

(2.8)

where c = v2

(2H+1)(2H+2) .

The approximation in this remark is based on the Taylor approximation, exp{κ(ℓ+ y)− κ(ℓ))} ≈ 1 + κ(ℓ+

y) − κ(ℓ) for y ∈ (0, 1). The accuracy of the approximation depends on how close κ(ℓ + y) − κ(ℓ)) is to
zero. The approximation is therefore fairly accurate in areas where κ(ℓ) is slowly decreasing. When H is
very small, the correlation function decreases fast for small ℓ and the accuracy of the approximation is poor.
Thus, one needs to be careful with this approximation, but it is fast to calculate compared to the integral
representation in Theorem 1.

With this Remark and Theorem 1 we are able to construct moment conditions.
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2.3. Generalized Method of Moment Estimation Aalborg University

2.3 Generalized Method of Moment Estimation

This section is based on [Bolko et al., 2022].

In the setup of Section 2.1, the spot volatility depends on the set of parameters, θ = (ξ, ϕ) ∈ Θ. Denote the
true parameters by θ0 ∈ Θ, the probability measure induced by θ with Pθ and corresponding expectation by
Eθ. Lastly, the σ-algebra generated by σ2 is denoted as F σ. Now to the main assumption of Y .

Assumption 3

The process Y and its covariance function κ satisfy

1. Y has continuous sample paths for any ϕ ∈ Φ,
2. κϕ(u) is a continuous function.

Condition 1. follows naturally for Gaussian processes. Condition 2. is important to ensure the moments are
continuous with respect to θ, as for these assumptions in the specific case of Y following (2.7), the following
remark is noted.

Remark For the fractional Ornstein-Uhlenbeck process described in Section 2.2 Assumption 3 condition
1. has been shown to hold in Proposition 3.4 of [Kaarakka and Salminen, 2011]. Condition 2. follows
immediately from the continuity of the hyperbolic cosine and generalized hypergeometric function.

2.3.1 Consistency of Generalized Method of Moment Estimation

In this section, we introduce the required assumptions for the consistency of the GMM estimator to hold.

In order to speak on the consistency of the method of moment estimation, the structure of the moment
conditions for the IVt process are

g
(1)
0 (θ) = E[IVt(θ)],

g
(2)
0 (θ) = E[IV 2

t (θ)],

gℓ(θ) = E[IVt(θ)IVt−ℓ(θ)], ℓ ∈ Z, θ ∈ Θ.

Fix some k ∈ N, then we can denote the k + 2 long vector of moments as

G(θ) =
(
g
(1)
0 (θ), g

(2)
0 (θ), g1(θ), . . . , gk(θ)

)⊤
, θ ∈ Θ.

We will focus on the double asymptotic case, i.e. when n → ∞ and T → ∞. Where T is the number of
days and n is the number of observations for each day. Under the double asymptotic setup, we can use a
consistent estimator of the integrated volatility IVt, and denote this estimator by V n

t . Then, for some fixed
k ∈ N, denote

IVt =
(
IVt, IV

2
t , IVtIVt−1, . . . , IVtIVt−k

)⊤
Vn
t =

(
V n
t , (V

n
t )2, V n

t V
n
t−1, . . . , V

n
t V

n
t−k

)⊤
,

7



2. Theory

and define the random function associated with the sample moments

m̃n,T (θ) =
1

T

⊤∑
t=1

Vn
t −G(θ),

and resulting in the GMM estimator

θ̃n,T = argmin
θ∈Θ

m̃n,T (θ)
⊤Wn,T m̃n,T (θ).

We introduce a standard assumption about the limiting behavior of WT .

Assumption 4

WT = A⊤
TAT for a random (k + 2) × (k + 2) matrix AT , which under Pθ0 converges almost surely to a

non-random matrix A as T → ∞.

We also introduce an assumption about the parameters being identifiable.

Assumption 5

AEθ0 [m̃n,T (θ)] = 0 if and only if θ = θ0.

Assumption 5 is a standard identification condition in GMM that ensures uniqueness of the solution. It is
hard to check when moments are not given in algebraic form.

Assumption 6

The processes (IVt)t∈Z and (V n
t )t∈Z,n∈N admit the following:

1. (IVt)t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ,
2. supt∈Z Eθ0 [(V

n
t − IVt)

2] → 0 as n→ ∞.

Now we are ready to present the consistency of θ̃n,T .

Theorem 7

Suppose Assumption 3, 4, 5 and 6 hold. As T → ∞ and n→ ∞

θ̃n,T
P→ θ0.

Thus, under the assumptions, the estimator is consistent.

If one were to use realized volatility as an estimator for integrated volatility then under a boundedness
condition on drift and volatility, Assumption 6 condition 2. holds, since

sup
t∈Z

|E[(RV n
t − IVt)

2]| ≤ Cn−1, (2.9)

for some C > 0.

8



2.3. Generalized Method of Moment Estimation Aalborg University

2.3.2 Asymptotic Normality of GMM Estimator

This Section is based on [Bolko et al., 2022].

With the consistency of the generalized method of moment estimation setup shown in Section 2.3.1, we will
now look at the asymptotic normality of the method.

Initially we need to assume that under Pθ0 , the process Y has a causal moving average representation of the
form

Yt =

∫ t

−∞
K(t− u)dBu, t ∈ R, (2.10)

where B = (Bt)t∈R is a two-sided Brownian motion, defined as

Bt =


B1

t , t > 0,

0, t = 0,

B2
−t, t < 0,

with B1 and B2 being two independent Brownian motions. As well as some measurable kernel K : (0,∞) →
R, such that

∫∞
0 K(u)2du <∞, with an extension to the entire real line by setting K(u) = 0 for u < 0.

The fractional Ornstein-Uhlenbeck process introduced in Section 2.2 has the causal moving average
representation from (2.10), this is shown in [Barndorff-Nielsen and Basse-O’Connor, 2011].

The asymptotic behavior of K(u) as u→ ∞ dictates the long-term memory of Y . To derieve the asymptotic
normality of our GMM estimator, we need to constrain that memory.

Assumption 8

K(u) = O(u−γ) as u→ ∞ for some γ > 1.

[Garnier and Sølna, 2018] showed that the kernel in (2.10) as u→ ∞, is proportional to uH−3/2 forH ∈ (0, 12).
Moreover, the fOU process from (2.7) with H = 1

2 implies K(u) = ν exp{−λu} = o(u−γ), for all γ > 1 as
u→ ∞. Thereby the fSV model requires H ≤ 1

2 to be covered by Assumption 8 allowing for rough volatility
but ruling out the long-memory version.

Furthermore, if K(u) is asymptotically proportional to u−γ for y ∈ (0, 1) e.g. with the fSV model for
H > 1/2, then asymptotic normality with a standard rate of convergence ceases to hold.

Further assumptions are needed for the asymptotic distribution of θ̃n,T .

9



2. Theory

Define g : Rk+2 ×Θ → R as

g(x, θ) = x−G(θ).

Assumption 9

1. θ0 is an interior point of Θ.
2. J⊤WJ is invertible, where J = Eθ0 [∇θg(Vn

1 , θ0)] and W = A⊤A.
3. The function θ 7→ g(x, θ) is continuously differentiable as well as Eθ0 [∥g(Vn

1 , θ0)∥2] < ∞ and
Eθ0 [supθ∈Θ ∥∇θg(Vn

1 , θ)∥] <∞.

We also need assumptions on the integrated volatility process (IVt)t∈Z and corresponding estimator
(V n

t )t∈Z,n∈N.

Assumption 10

supt∈Z Eθ0 [(
√
T (V n

t − IVt))
2] → 0 as T → ∞ and n→ ∞.

We now have the necessary assumptions to be able to present the asymptotic distribution of θ̃n,T .

Theorem 11

Suppose Assumptions 3, 4, 5, 6, 8, 9 and 10. As T → ∞ and n→ ∞,
√
T (θ̃n,T − θ0)

d−→ N(0, (J⊤WJ)−1J⊤WΣIVWJ(J⊤WJ)−1), (2.11)

where

ΣIV =
∞∑

ℓ=−∞
ΓIV(ℓ),

and

ΓIV(ℓ) = Eθ0 [(IV1 −G(θ0))(IV1+ℓ −G(θ0))
⊤]

Proof. The proof can be found in [Bolko et al., 2022].

In traditional GMM estimation fashion, we seek to minimize the asymptotic variance in (2.11) to achieve an
efficient estimator. In order to do this, we need a consistent estimator of ΣIV, such that the weight matrix
W can be chosen as the inverse. To this end, a HAC-type estimator will be used

Σ̂IV = Γ̂(0) +
T−1∑
ℓ=1

w(ℓ/L)[Γ̂(ℓ) + Γ̂(ℓ)⊤], (2.12)

with

Γ̂(ℓ) =
1

T

T−ℓ∑
t=1

(Vn
t −G(θ̃n,T ))

⊤(Vn
t+ℓ −G(θ̃n,T )). (2.13)

Where w is a weight function and L = o(T 1/2) is the lag length.

10



2.4. Microstructure Noise Aalborg University

Some assumptions are needed for the weight function w

Assumption 12

1. w(0) = 1 and supx≥0 |w(x)| <∞.
2. w is continuous at 0.
3.

∫∞
0 w(x)dx <∞ where w(x) = supy≥x |w(y)|.

Assumption 12 is fulfilled by the Bartlett kernel, which is also the choice of kernel in our application of the
GMM setup.

We can now choose the weight matrix W = Σ̂−1
IV and thereby minimize the variance of (2.11), thus achieving

an efficient estimator.

Theorem 13

Under the same assumptions as in Theorem 11 and with a consistent estimator for ΣIV, then as T → ∞
and n→ ∞

√
T (θ̃n,T − θ0)

d−→ N(0, (J⊤Σ−1
IV J)

−1).

Proof. The proof can be found in [Bolko et al., 2022].

With the results shown in this section, we now have the distribution of the GMM estimator.

2.4 Microstructure Noise

In practice, Microstructure noise leads to a departure from the semimartingale model in (2.1). Microstructure
noise is primarily caused by the bid-ask spread bounce. Hence, what is observed is a noisy version of X from
(2.1), which we define as

Zτ = Xτ + ετ (2.14)

where ετ is assumed to be an i.i.d. process and X ⊥⊥ ε.

The process ε is assumed to satisfy

E(ετ ) = 0,

E(ε2τ ) = ψ.

2.4.1 Microstructure Noise Robust Estimator for IV

If one were to use realized volatility as an estimator for integrated volatility, the expression would be
dominated by the variance for the microstructure noise as n→ ∞. Let ∆n

i X = X i
n
−X i−1

n
then

1

2n

n∑
i=1

∆n
i (X + ε)2 =

1

2n

n∑
i=1

(∆n
i X)2 +

1

2n

n∑
i=1

(∆n
i ε)

2 +
1

n

n∑
i=1

∆n
i X∆n

i ε

p→ ψ,

(2.15)

11



2. Theory

thus, in the presence of microstructure noise, we need a different estimator for IVt, the estimator of choice
will be Modulated Realized Covariance, MRC, which builds on the idea of averaging the data over some
period within a given range, thereby reducing the impact of the microstructure noise. Then using a scaled
realized volatility estimator on the pre-averaged data, and lastly do a bias correction. The MRC estimator
has a convergence rate of n1/4. Related to this MRC estimator is whether a bias correction is included, a
parameter θ and a parameter δ. In this project, MRC with a bias correction, δ = 0 and θ = 0.3 is used, the
parameter choice for MRC is based on the simulation study performed in [Andreassen and Dam, 2021]. For
more detail about this estimator, see [Christensen et al., 2010].

2.4.2 Microstructure Noises Effect on GMM

Previous papers on GMM estimation of Rough volatility models are few, and far between. To our knowledge,
do there not exist any papers that have used GMM estimation of rough volatility models in presence of
microstructure noise. In [Bolko et al., 2022], they estimated roughness with GMM estimation, however
microstructure noise was not added during their simulation study. This is what this paper intent to. We
are going to check the distribution for θ̂n,T in the presence of microstructure noise with different choices
of estimators for IVt and see if Theorem 13 still seems valid and thereby validate the GMM approach for
different estimators of IVt.

12



Chapter 3

Simulation Study

This section is based on [Bolko et al., 2022].

In this chapter, we will do a simulation study as to gauge the finite sample properties of the GMM approach
of estimating parameters for the model setup from (2.1) and (2.2) with the fractional Ornstein-Uhlenbeck
process described in Section 2.2 as the Y in the presence of microstructure noise and without. Thus, we
can assess the accuracy of the estimation and validate the GMM approach in the presence of microstructure
noise.

Model specification

We assume the log-price without microstructure noise, Xτ , evolves as a driftless Itô process

dXτ = στdWτ , τ ≥ 0, (3.1)

with initial condition X0 = 0. The term στ is the spot volatility and Wτ is a standard Brownian motion.
We discretize X via an Euler Scheme. The log-variance, Yτ = log

(
σ2τ

)
is a fOU process given as

dYτ = −λ(Yτ − η)dτ + νdBH
τ , (3.2)

where BH
τ is a fractional Brownian Motion and W ⊥⊥ BH . Where the initial value of Y is random and

distributed as Y0 ∼ N(η, κ(0)).

The SDE in (3.2) is solved to get a more convenient expression for Y

Yτ = η + (Yτ−∆ − η) exp{λ∆}+ ν

∫ τ

τ−∆
exp{−λ(τ − s)}dBH

s . (3.3)

This is not entirely trivial, since we are dealing with a fractional Brownian motion, however in [Cheridito
et al., 2003] it is shown that it works.

The stochastic integral is approximated as
∫ τ
τ−∆ exp{−λ(τ − s)}dBH

s ≈ exp{−λ∆/2}(BH
τ −BH

τ−∆) meaning
that increments to a discretely sampled fractional Brownian motion are required. In this simulation study, we
have used circulant embedding to get an exact discretization of paths from a fractional Brownian motion, see
[Asmussen and Glynn, 2007], this method is among the fastest methods for exact discretization of fractional
Brownian motions, with a complexity of O(T · n log(T · n)).

The log-price in the presence of microstructure noise is given as

Zτ = Xτ + ετ . (3.4)
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3. Simulation Study

Parameter specification

We have chosen to make two scenarios, for both scenarios we make 1000 replications with 23400 equidistant
observations per day, in the first scenario we have 100 days, in the second we have 1000. The initial value of
Y is drawn from its stationary distribution Y0 ∼ N(η, κ(0)). Where η = E[Y0] is

E[exp{Y0}] = ξ

exp

{
η +

1

2
κ(0)

}
= ξ ⇒

η = log(ξ)− 1

2
κ(0).

Recall that E[σ2t ] = ξ, and we set ξ = 0.025. For the Hurst index, we have chosen H = [0.05, 0.2, 0.3, 0.4].
For the lag-parameter, we have chosen ℓ = (1, 2, 3, 4, 5, 10, 15). For the variance of the microstructure noise,
we have decided to make it constant for within a day, but different from day to day. Furthermore there is a
relationship between the variance of returns and the variance of microstructure noise, which is described in
[Bandi and Russell, 2006]. We set the variance of the microstructure noise to

ωt = 0.01 ·

√√√√ 1

n

n=23400∑
s=1

σ4s (3.5)

ετ ∼ N(0, ωt), τ ∈ [t− 1, t] (3.6)

The subscript s refers to all observations between t− 1 and t.

Initial Guesses and Optimization Procedure

For the optimization procedure, we want the initial guesses to be qualified, both since it will possibly cost
fewer iterations to complete the procedure, and it increases the chances of reaching the global minimum.
We denote the initial values by θini = (ξini, λini, νini, Hini). The value for ξini is chosen to be the average of
the estimated integrated volatility. Initializing H and ν is a bit more complicated. We exploit the auxiliary
two-stage procedure proposed in [Gatheral et al., 2018], which relies on the scaling law

γh
|h|qH

=
E[|Yt+h − Yt|q]

|h|qH
→ Kqν

q (3.7)

as h → 0, where Kq = 2q/2
Γ( q+1

2
)√

π
is the q’th moment of the absolute value of a standard normal random

variable. This entails a log-linear relationship between γh and |h| i.e. log(γh) = log(Kqν
q)+ qH log(|h|). We

employ V n
t as a proxy for the instantaneous variance and substitute the left-hand side of (3.7) by the sample

mean

γ̂h =
1

T −m
| log

(
V n
t+h

)
− log(V n

t )|q. (3.8)

For h = 1, . . . ,m, q = 2 and m = 6.

We can now regress log(γ̂) on log(|h|) while allowing for an intercept to achieve β̂0 and β̂1, then isolate ν
and H.
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νini =

exp
{
β̂0

}
Kq


1
q

, Hini =
β̂1
q
.

The parameter λ is pre-estimated such that the theoretical variance of Yt equals the sample variance of
log(V n

t ), thus we construct the function

f(λ) = |( ν2

2λ2H
Γ(1 + 2H)− var(log(V n

t ))|,

where H and ν are the initial guesses obtained by the regression. We find the λ which minimizes the function,
and set this to λini.

Lastly, we need to solve

θ̃n,T = argmin
θ∈Θ

m̃n,T (θ)
⊤Wn,T m̃n,T (θ),

which can be formulated as an optimization problem. The optimization algorithm used is Nelder-Mead for
the first scenario and BFGS for the second. When approximating the theoretical moments G(θ), we use the
approximations from (2.8).

Estimators for IVt

The estimators we are using for IVt are realized volatility, RV, realized volatility with 5 minute sampling,
RV5, and modulated realized covariance with a bias correction and θ = 0.3, MRC.

Methods of Validating the Distribution

In this section, we will lay out the groundwork needed to investigate the distribution of the estimated
parameters in a finite sample setup, as to compare with the asymptotic result from Theorem 13.

The validation is done by two slightly different methods.

For the first method, we start by Cholesky decomposing the matrix (J⊤Σ−1
IV J)

−1. For ease of notation, we
denote (J⊤Σ−1

IV J)
−1 = Ω = L⊤L where L⊤L is the Cholesky decomposition, and let L⊤−1

= L−⊤.

By Theorem 13 as T → ∞ and n→ ∞

L−⊤(
√
T (θ̃n,T − θ0))

d−→ N(0, I).

Thus L−⊤(
√
T (θ̃n,T − θ0)) is normally distributed where each entry is a univariate standard normal

distribution.

However, we do not know either J⊤ and Σ−1
IV which complicates the Cholesky decomposition. Therefore, we

use the previously mentioned HAC-type estimator for ΣIV from (2.12) and (2.13).

The matrix J is estimated by finite central differencing evaluated at θ̃n,T , we denote the estimated J by Ĵ .

We do this for each repetition, let Ĵi, Σ̂IV,i, Li and θ̃n,T,i refer to the matrices and parameters estimated at
repetition number i respectively.
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3. Simulation Study

We thereby achieve Li by the Cholesky decomposition L⊤
i Li = (J⊤

i Σ−1
IV,iJi)

−1 and compute the test statistic
for repetition i as L−⊤

i (
√
T (θ̃n,T,i − θ0)), we can then investigate the distribution of each of the parameters.

This method however, is numerically sensitive due to the inversion of ΣIV,i and (J⊤
i ΣIV,iJi), the Cholesky

decomposition and lastly the inversion of L⊤
i . This approach requires that the estimate Ωi is positive definite

due to the inversion of L⊤
i .

The second approach relies on the fact that(
RJ

√
T (θ̃n,T − θ0))

)⊤
RJ(

√
T (θ̃n,T − θ0))

d−→ χ2(4)∥∥∥RJ(√T (θ̃n,T − θ0))
∥∥∥2 d−→ χ2(4).

Thus, we get the test statistics
∥∥∥RiJi(

√
T (θ̃n,T,i − θ0))

∥∥∥2 for each repetition. This procedure will be better
in the sense of numerical robustness compared to the first, since only one inversion is needed. However, one
loses the ability to investigate each parameter individually. Furthermore, since ΣIV is a covariance matrix,
therefore, by definition, positive semi definite, which implies that the Σ−1

IV is positive semi definite as well,
thus the Cholesky decomposition Σ−1

IV = R⊤R exists. Which makes the second approach require one less
assumption.

Summary

To get a brief overview of the model- and parameter specification, the initial guesses, the optimization
procedure, the estimators for IVt, and the test statistics, we present this summary.

• Log-Price without microstructure noise: dXτ = στdWτ , τ ≥ 0.
• Log-variance: dYτ = −λ(Yτ − η)dτ + νdBH

τ .
• Log-price with microstructure noise: Zτ = Xτ + ετ .
• n = 23400.
• T = 100 or T = 1000.
• Y0 drawn from N(η, κ(0)), where η = log(ξ)− 1

2κ(0).
• ξ = 0.025.
• ετ ∼ N(0, ωt), where ωt = 0.01 ·

√
1
n

∑n=23400
s=1 σ4s .

• H = [0.05, 0.2, 0.3, 0.4].
• ℓ = (1, 2, 3, 4, 5, 10, 15).
• ξini =

1
T

∑T
t=1 V

n
t .

• νini = (
exp{β̂0}

Kq
)
1
q .

• Hini =
β̂1

q .

• λini = argmin
λ

|( ν2ini

2λ2Hini
Γ(1 + 2Hini)− var(log(V n

t ))|.

• θ̃n,T = argminθ∈Θ m̃n,T (θ)
⊤Wn,T m̃n,T (θ) (Nelder-Mead or BFGS).

• IVt estimators:

– RV: realized volatility
– RV5: realized volatility with 5 min sampling.
– MRC: Modulated realized covariance with bias correction and θ = 0.3.

• Test statistics:

– L−⊤
i (

√
T (θ̃n,T,i − θ0))

–
∥∥∥RiJi(

√
T (θ̃n,T,i − θ0))

∥∥∥2
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3.1 Simulation Results

3.1.1 Short Timeframe

In this section, we present tables containing the results from the setup described in Chapter 3.

Using the setup of T = 100, n = 23400 and 1000 replications, we have investigated 4 different sets of
parameters.

1. Panel A: ξ = 0.0225, λ = 0.005, ν = 1.25 and H = 0.05, with results found in Table 3.1.
2. Panel B: ξ = 0.0225, λ = 0.015, ν = 0.5 and H = 0.2, with results found in Table 3.2.
3. Panel C: ξ = 0.0225, λ = 0.015, ν = 0.5 and H = 0.3, with results found in Table 3.3.
4. Panel D: ξ = 0.0225, λ = 0.035, ν = 0.3 and H = 0.4, with results found in Table 3.4.

In Section 3.1.2 we investigate the effects of increasing T to 1000, which should result in a better GMM
estimation, the results of this setup are summarized in Tables 3.5, 3.6, 3.7 and 3.8.

When microstructure noise is not present. Both using RV, RV5 and MRC provide somewhat decent estimates,
it is hard to single one estimator as being better than the others. Estimation of λ seems to be the weakest
point, especially in Table 3.1, where the all the λ estimates are at least twice the true value. Estimation of
H is also inaccurate in Tables 3.1 and 3.4. Interestingly enough, the estimates of H are fairly similar in all
the tables, even though the true values changes.

The story is a bit different when microstructure noise is present. When RV is the estimator for IVt, the
ξ estimates are far higher than the true value, this is what one would expect and this is due to realized
volatility being dominated by the variance of the microstructure noise if sampling is frequent enough, this
phenomenon is also seen in (2.15). The same dynamic can be seen when RV5 is used as an estimator for
IVt, however this is to a far lesser extent. Microstructure noise does not really seem to affect estimation of
λ, nu nor H. In addition, the standard deviations are, for all parameters, generally higher in the presence
of microstructure noise.

When microstructure noise is present, choosing MRC as the estimator for IVt seems to be the superior choice.

Keep in mind, that T = 100, thus, this might hardly be considered as asymptotic and the variance of the
estimates is rather high, which follows from Theorem 13.
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Parameter ξ λ ν H

True 0.0225 0.005 1.25 0.05

IV Initial 0.113 (0.503) 0.0594 (0.0323) 0.471 (0.0849) 0.257 (0.0734)
Estimate 0.104 (0.467) 0.013 (0.0599) 0.559 (0.135) 0.115 (0.0674)

No microstructure noise

RV Initial 0.113 (0.503) 0.0594 (0.0323) 0.471 (0.0848) 0.256 (0.0734)
Estimate 0.101 (0.429) 0.0131 (0.0581) 0.563 (0.132) 0.119 (0.156)

RV5 Initial 0.114 (0.503) 0.0522 (0.0335) 0.533 (0.0831) 0.213 (0.0751)
Estimate 0.1 (0.427) 0.0114 (0.0316) 0.562 (0.132) 0.118 (0.0679)

MRC Initial 0.112 (0.493) 0.0575 (0.0327) 0.487 (0.0845) 0.245 (0.0744)
Estimate 0.0998 (0.425) 0.0123 (0.0424) 0.56 (0.129) 0.121 (0.111)

With microstructure noise

RV Initial 74.4 (329) 0.0585 (0.0326) 0.482 (0.0885) 0.249 (0.0721)
Estimate 61.6 (298) 0.0227 (0.124) 0.553 (0.276) 0.161 (0.312)

RV5 Initial 0.359 (1.58) 0.0524 (0.0332) 0.541 (0.0835) 0.21 (0.0742)
Estimate 0.318 (1.45) 0.0121 (0.041) 0.562 (0.144) 0.116 (0.0963)

MRC Initial 0.112 (0.493) 0.0571 (0.0328) 0.49 (0.0844) 0.243 (0.0746)
Estimate 0.102 (0.456) 0.0125 (0.0411) 0.561 (0.133) 0.117 (0.0674)

Table 3.1. Panel A. Scenario one

Parameter ξ λ ν H

True 0.0225 0.015 0.5 0.2

IV Initial 0.032 (0.0348) 0.0621 (0.0316) 0.329 (0.0815) 0.358 (0.0717)
Estimate 0.0303 (0.034) 0.00846 (0.0247) 0.549 (0.17) 0.114 (0.0882)

No microstructure noise

RV Initial 0.032 (0.0348) 0.062 (0.0316) 0.33 (0.0814) 0.358 (0.0716)
Estimate 0.0301 (0.0335) 0.0085 (0.0251) 0.554 (0.161) 0.112 (0.077)

RV5 Initial 0.032 (0.0349) 0.051 (0.0332) 0.401 (0.0786) 0.276 (0.0743)
Estimate 0.03 (0.0348) 0.00977 (0.0345) 0.542 (0.135) 0.116 (0.0709)

MRC Initial 0.0317 (0.0345) 0.059 (0.0323) 0.347 (0.0812) 0.335 (0.0718)
Estimate 0.0302 (0.0367) 0.00815 (0.0216) 0.55 (0.148) 0.113 (0.0693)

With microstructure noise

RV Initial 15.6 (16.9) 0.0617 (0.0317) 0.332 (0.0841) 0.356 (0.0711)
Estimate 12.5 (14.1) 0.0193 (0.115) 0.428 (0.307) 0.171 (0.233)

RV5 Initial 0.0839 (0.0918) 0.0499 (0.0333) 0.411 (0.0779) 0.267 (0.072)
Estimate 0.0777 (0.0908) 0.00894 (0.0233) 0.541 (0.128) 0.117 (0.0581)

MRC Initial 0.0317 (0.0344) 0.0584 (0.0324) 0.35 (0.0808) 0.33 (0.0716)
Estimate 0.0302 (0.0364) 0.00811 (0.0214) 0.548 (0.15) 0.112 (0.0664)

Table 3.2. Panel B. Scenario one
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Parameter ξ λ ν H

True 0.0225 0.015 0.5 0.3

IV Initial 0.0592 (0.2) 0.0615 (0.0313) 0.396 (0.161) 0.426 (0.071)
Estimate 0.0561 (0.29) 0.023 (0.0897) 0.64 (0.236) 0.155 (0.131)

No microstructure noise

RV Initial 0.0591 (0.2) 0.0615 (0.0313) 0.396 (0.161) 0.425 (0.0711)
Estimate 0.0611 (0.327) 0.0213 (0.0695) 0.643 (0.237) 0.15 (0.129)

RV5 Initial 0.059 (0.198) 0.0521 (0.0331) 0.46 (0.153) 0.352 (0.0749)
Estimate 0.0539 (0.25) 0.022 (0.0932) 0.64 (0.217) 0.152 (0.108)

MRC Initial 0.0586 (0.198) 0.0591 (0.0319) 0.411 (0.159) 0.406 (0.072)
Estimate 0.051 (0.165) 0.024 (0.121) 0.643 (0.215) 0.153 (0.13)

With microstructure noise

RV Initial 28.6 (96.8) 0.0612 (0.0314) 0.399 (0.168) 0.422 (0.0704)
Estimate 21.4 (81.5) 0.0663 (0.473) 0.546 (0.369) 0.214 (0.938)

RV5 Initial 0.154 (0.523) 0.0512 (0.0331) 0.468 (0.156) 0.344 (0.0739)
Estimate 0.133 (0.502) 0.0232 (0.0906) 0.643 (0.215) 0.152 (0.152)

MRC Initial 0.0586 (0.198) 0.0586 (0.032) 0.414 (0.159) 0.402 (0.0719)
Estimate 0.0548 (0.206) 0.0241 (0.14) 0.644 (0.214) 0.154 (0.177)

Table 3.3. Panel C. Scenario one

Parameter ξ λ ν H

True 0.0225 0.035 0.3 0.4

IV Initial 0.0305 (0.0347) 0.0601 (0.0282) 0.273 (0.162) 0.49 (0.0649)
Estimate 0.028 (0.0382) 0.0242 (0.108) 0.474 (0.303) 0.215 (0.284)

No microstructure noise

RV Initial 0.0305 (0.0347) 0.06 (0.0283) 0.273 (0.162) 0.489 (0.065)
Estimate 0.0281 (0.0384) 0.0272 (0.15) 0.481 (0.3) 0.209 (0.358)

RV5 Initial 0.0305 (0.0347) 0.0417 (0.0298) 0.357 (0.152) 0.35 (0.0746)
Estimate 0.0299 (0.0636) 0.0193 (0.0671) 0.561 (0.225) 0.151 (0.114)

MRC Initial 0.0302 (0.0344) 0.0545 (0.0292) 0.294 (0.159) 0.448 (0.0678)
Estimate 0.0282 (0.0399) 0.0252 (0.111) 0.516 (0.293) 0.18 (0.208)

With microstructure noise

RV Initial 14.5 (16.5) 0.0598 (0.0283) 0.276 (0.17) 0.487 (0.0649)
Estimate 10.2 (14.3) 0.0407 (0.187) 0.359 (0.342) 0.243 (0.272)

RV5 Initial 0.0788 (0.0909) 0.0401 (0.0301) 0.37 (0.154) 0.336 (0.0748)
Estimate 0.0768 (0.127) 0.0256 (0.108) 0.576 (0.223) 0.143 (0.0979)

MRC Initial 0.0302 (0.0345) 0.0535 (0.0293) 0.298 (0.159) 0.44 (0.0683)
Estimate 0.0284 (0.041) 0.0243 (0.108) 0.521 (0.29) 0.163 (0.138)

Table 3.4. Panel D. Scenario one
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Distribution of Estimates

The color schemes in the following figures will refer to different sets of true values, as well as either a standard
normal or χ2(4) distribution for reference. The color scheme is as follows

• Red: Panel A.
• Green: Panel B.
• Blue: Panel C.
• Purple: Panel D.
• Black: Standard normal distribution or χ2(4) distribution.

In Figure 3.1, 3.2 and 3.3 we show the distribution of each parameter obtained by the first method. In Figure
3.4 the distribution of the test statistic for the second method is plotted. For both methods, we only keep
the 90 percent absolute smallest test statistics.

In Figure 3.1 we see the distribution of ξ, λ, ν and H in that order, this is done with MRC as estimator for
IVt and when no microstructure noise is present.

The distribution of ξ differs quite substantially, the ξ distributions with true parameters from panel A and
C (red and blue lines) has a really heavy left tail compared to the standard normal distribution, the ξ

distributions with true parameter from panel B and D have higher density around the mean and a steeper
right tail compared to the standard normal distribution.

The λ distributions with true parameters from panel A and C (red and blue lines) have a heavy right tail,
while the λ distributions with true parameters from panel B and D have higher density around the mean
compared to the standard normal distribution. All the λ distributions have the highest density below zero,
but the tail structure makes it a bit hard to tell whether this results in underestimation, and the earlier
presented tables do not help to provide an answer.

For the third graph, the ν distributions are plotted. None of them are close to looking like a standard normal
distribution, the standard normal distribution looks like a completely flat line. All the ν distributions have
way higher density around their means and way steeper tails. In this graph, it seems like the variance is
completely wrong.

For the fourth graph, the H distributions are plotted. Out of the four graphs, it is within this graph that
the distributions seems closets to standard normal. For all sets of true parameters, the distributions have
negative mean and heavier tails. The distribution of H with true parameters as in panel B (green line) has
higher density around its mean, and vice versa for the rest of the H distributions. This suggests that a
general slight underestimation of H using MRC as estimator for IVt, which is, for the most part, consistent
with the results presented in the tables, table 3.1 is an exception.

In Figure 3.2 we see the distribution of ξ, λ, ν and H in that order, this is done with MRC as estimator for
IVt with microstructure noise present.

The distributions for all the parameters for all sets of true values are surprisingly similar to the distributions
seen in Figure 3.1, which emphasizes the microstructure noise robustness of the MRC estimator. Furthermore,
this suggests that Theorem 13 is still valid after the inclusion of microstructure noise.
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In Figure 3.3 we see the distribution of ξ, λ, ν and H in that order, this is done with RV5 as estimator for
IVt with microstructure noise present.

If we compare with the two previous figures, the main differences lie within the first and the second graph.
There is not much to touch upon regarding the ν distributions, since the same problem is present as in the
two previous figures. The H distributions have less heavy tails compared to the previous figures, this might
suggest that, if the only interest is to estimate the Hurst index. RV5 may be a better choice than MRC
as the estimator for IVt. However, the ξ distributions are right skewed with a positive mean, and is highly
suggesting an overestimation of ξ, which is consistent with the results presented in the tables. All the λ
distributions have negative mean with varying skewness. The general tendency suggests underestimations,
this does however seem to be case dependent, when comparing with the tables.

In Figure 3.4, the distribution for the test statistic from the second approach for each of the panels is shown,
where MRC and RV5 is used as estimators of IVt. The first graph is with no microstructure noise, while the
second and third are with microstructure noise.

We once again notice that the addition of microstructure noise, does not seem to affect the distribution of
the test statistic. The distribution of the test statistic closer to the χ2(4) distribution when MRC is the
estimator for IVt, however, none of the distributions seem really close to the χ2(4). The distribution for the
test statistic with true values from panel C (blue line) and MRC as estimator for IVt is the closest we get.

With the information provided by Figures 3.1, 3.2 and 3.3, it may seem that it is the distribution of ν that
is ruining the distribution of the test statistic obtained via the second approach.
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Figure 3.1. Density plots for MRC without microstructure noise.
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Figure 3.2. Density plots for MRC with microstructure noise.
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Figure 3.3. Density plots for RV5 with microstructure noise.
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Keep in mind that T = 100. This probably has an effect on distributions plotted, if T was larger, the
distributions might have been closer to the standard normal. Furthermore, the first approach requires 3
matrix inversions along with a Cholesky decomposition, which also might make the distributions plotted
look further away from the standard normal than what the underlying true distribution actually is.

The presented graphs along with previous presented tables draw us toward the following conclusion. In the
presence of microstructure noise, MRC is generally the better choice as an estimator for IVt as it overall
provides the best estimates, where MRC really outshines RV and RV5 is in estimation of ξ. Thus, if the
interest is to estimate risk, MRC is far superior. However, for solely estimating the Hurst parameter RV5 is
a slightly better choice.

The GMM approach still seems to be valid in the presence of microstructure noise if a microstructure noise
robust is chosen as estimator for IVt. If the RV5 is chosen instead, the method might still work to estimate
roughness, but the distribution presented in Theorem 13 seem incorrect.

3.1.2 Long Timeframe

The second part of the simulation study consists of a different setup. Namely, the setup of T = 1000,
n = 23400 and 1000 replications, here we have only investigated the following set of parameters.

1. Panel A: ξ = 0.0225, λ = 0.005, ν = 1.25 and H = 0.05, with results found in Table 3.5.
2. Panel B: ξ = 0.0225, λ = 0.015, ν = 0.5 and H = 0.2, with results found in Table 3.6.
3. Panel C: ξ = 0.0225, λ = 0.015, ν = 0.5 and H = 0.3, with results found in Table 3.7.
4. Panel D: ξ = 0.0225, λ = 0.035, ν = 0.3 and H = 0.4, with results found in Table 3.8.

The increase of T greatly improves the H estimates for larger true values of H. When T = 100 the estimates
of H only varied between 0.1 and 0.2 even for larger values of true H. Furthermore, the H estimates are way
better when MRC is used as an estimator for IVt compared to RV and RV5 when the true H is larger than
0.05 as seen in Table 3.6, 3.7 and in Table 3.8. Interestingly enough, microstructure noise does not seem to
affect the H estimation when RV is used as estimator for IVt, RV as estimator, does once again overestimate
ξ no matter the set of true parameters. This is not the case when RV5 is the estimator for IVt, as it was in
scenario one. This suggests an improvement when using MRC as the estimator for IVt compared to RV and
RV5.

Another observation is that the standard deviations for all parameters, with or without microstructure noise
present, are greater for the results presented in Section 3.1.1, with T = 100 compared to the results in the
following tables. This follows from the greater value of T , which from Theorem 11 effects the variance of the
estimated values.
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Parameter ξ λ ν H

True 0.0225 0.005 1.25 0.05

IV Initial 0.0251 (0.0098) 0.0284 (0.0141) 0.457 (0.0117) 0.266 (0.0195)
Estimate 0.0236 (0.00878) 0.0256 (0.023) 0.659 (0.0492) 0.168 (0.023)

No microstructure noise

RV Initial 0.0264 (0.0142) 0.0279 (0.0143) 0.457 (0.0117) 0.265 (0.0194)
Estimate 0.0246 (0.012) 0.0259 (0.0289) 0.66 (0.0557) 0.169 (0.0326)

RV5 Initial 0.0264 (0.0141) 0.0222 (0.0129) 0.522 (0.0135) 0.221 (0.0185)
Estimate 0.0238 (0.0118) 0.0368 (0.0713) 0.688 (0.0754) 0.167 (0.046)

MRC Initial 0.0264 (0.0157) 0.0262 (0.014) 0.474 (0.0121) 0.253 (0.0192)
Estimate 0.0245 (0.0139) 0.0285 (0.0441) 0.669 (0.0563) 0.168 (0.045)

With microstructure noise

RV Initial 0.189 (0.0739) 0.0276 (0.0139) 0.466 (0.012) 0.259 (0.0193)
Estimate 0.177 (0.0658) 0.0336 (0.0614) 0.666 (0.0594) 0.176 (0.0859)

RV5 Initial 0.0269 (0.0144) 0.0222 (0.0129) 0.521 (0.0134) 0.221 (0.0185)
Estimate 0.0243 (0.0121) 0.0361 (0.0692) 0.687 (0.0737) 0.168 (0.0456)

MRC Initial 0.0262 (0.014) 0.0262 (0.014) 0.474 (0.0121) 0.253 (0.0192)
Estimate 0.0243 (0.0119) 0.0289 (0.0439) 0.668 (0.0545) 0.169 (0.0439)

Table 3.5. Panel A. Scenario two

Parameter ξ λ ν H

True 0.0225 0.015 0.5 0.2

IV Initial 0.0229 (0.00339) 0.038 (0.0117) 0.318 (0.00804) 0.367 (0.0203)
Estimate 0.0224 (0.00319) 0.0181 (0.0153) 0.527 (0.0818) 0.189 (0.0566)

No microstructure noise

RV Initial 0.0229 (0.00338) 0.0379 (0.0117) 0.318 (0.00801) 0.366 (0.0203)
Estimate 0.0224 (0.00319) 0.0183 (0.0157) 0.526 (0.0824) 0.19 (0.0576)

RV5 Initial 0.0229 (0.00338) 0.0261 (0.0101) 0.392 (0.0101) 0.281 (0.0192)
Estimate 0.0219 (0.00314) 0.0187 (0.014) 0.595 (0.04) 0.165 (0.0267)

MRC Initial 0.0227 (0.00335) 0.0345 (0.0113) 0.336 (0.00856) 0.343 (0.0201)
Estimate 0.0221 (0.00316) 0.0172 (0.0125) 0.549 (0.0639) 0.177 (0.0418)

With microstructure noise

RV Initial 0.134 (0.0198) 0.0377 (0.0116) 0.319 (0.00809) 0.365 (0.0202)
Estimate 0.131 (0.0187) 0.0179 (0.0151) 0.533 (0.0823) 0.186 (0.0558)

RV5 Initial 0.0233 (0.00343) 0.0261 (0.0101) 0.392 (0.0101) 0.281 (0.0193)
Estimate 0.0223 (0.00319) 0.0187 (0.0142) 0.596 (0.0385) 0.165 (0.027)

MRC Initial 0.0227 (0.00336) 0.0344 (0.0113) 0.336 (0.00858) 0.343 (0.0201)
Estimate 0.0221 (0.00316) 0.0173 (0.0127) 0.548 (0.0652) 0.178 (0.0429)

Table 3.6. Panel B. Scenario two
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Parameter ξ λ ν H

True 0.0225 0.015 0.5 0.3

IV Initial 0.0233 (0.00771) 0.0331 (0.0104) 0.362 (0.00913) 0.437 (0.0206)
Estimate 0.0218 (0.00687) 0.0198 (0.0295) 0.545 (0.123) 0.261 (0.0956)

No microstructure noise

RV Initial 0.0233 (0.0077) 0.0331 (0.0103) 0.362 (0.00911) 0.437 (0.0206)
Estimate 0.0218 (0.00686) 0.019 (0.0231) 0.544 (0.123) 0.26 (0.092)

RV5 Initial 0.0232 (0.00761) 0.0237 (0.00885) 0.428 (0.011) 0.361 (0.0201)
Estimate 0.0212 (0.00665) 0.0132 (0.0164) 0.631 (0.0873) 0.207 (0.0576)

MRC Initial 0.023 (0.00757) 0.0305 (0.00994) 0.378 (0.00962) 0.417 (0.0205)
Estimate 0.0215 (0.0067) 0.018 (0.0343) 0.571 (0.108) 0.242 (0.0876)

With microstructure noise

RV Initial 0.136 (0.0449) 0.0329 (0.0103) 0.364 (0.00921) 0.435 (0.0205)
Estimate 0.126 (0.04) 0.0471 (0.113) 0.559 (0.127) 0.295 (0.182)

RV5 Initial 0.0236 (0.00774) 0.0237 (0.00886) 0.428 (0.011) 0.361 (0.0201)
Estimate 0.0215 (0.00677) 0.0129 (0.0123) 0.631 (0.0835) 0.206 (0.0524)

MRC Initial 0.023 (0.00756) 0.0305 (0.00994) 0.378 (0.00962) 0.417 (0.0205)
Estimate 0.0214 (0.00671) 0.0181 (0.0343) 0.57 (0.11) 0.242 (0.0877)

Table 3.7. Panel C. Scenario two

Parameter ξ λ ν H

True 0.0225 0.035 0.3 0.4

IV Initial 0.0227 (0.00339) 0.0488 (0.0108) 0.235 (0.00582) 0.499 (0.0208)
Estimate 0.0222 (0.00325) 0.0416 (0.026) 0.303 (0.035) 0.392 (0.0745)

No microstructure noise

RV Initial 0.0227 (0.00339) 0.0487 (0.0107) 0.236 (0.0058) 0.499 (0.0208)
Estimate 0.0222 (0.00325) 0.0414 (0.0264) 0.303 (0.0344) 0.391 (0.0736)

RV5 Initial 0.0227 (0.00337) 0.0279 (0.00847) 0.324 (0.00807) 0.351 (0.0205)
Estimate 0.0216 (0.00315) 0.0132 (0.0099) 0.513 (0.0464) 0.187 (0.0362)

MRC Initial 0.0225 (0.00333) 0.0423 (0.01) 0.257 (0.00637) 0.456 (0.0208)
Estimate 0.0219 (0.00319) 0.0273 (0.0165) 0.354 (0.041) 0.312 (0.0635)

With microstructure noise

RV Initial 0.13 (0.0194) 0.0486 (0.0107) 0.236 (0.00583) 0.498 (0.0207)
Estimate 0.127 (0.0186) 0.0417 (0.0293) 0.306 (0.0425) 0.39 (0.0803)

RV5 Initial 0.023 (0.00342) 0.0279 (0.0085) 0.324 (0.00804) 0.351 (0.0206)
Estimate 0.0219 (0.0032) 0.0132 (0.0101) 0.513 (0.0463) 0.187 (0.0367)

MRC Initial 0.0225 (0.00333) 0.0422 (0.01) 0.257 (0.00638) 0.456 (0.0208)
Estimate 0.0219 (0.00319) 0.0273 (0.0167) 0.354 (0.0407) 0.312 (0.0634)

Table 3.8. Panel D. Scenario two
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Distribution of Estimates

For this section, we will keep it short and only include the MRC distribution for the first method. The color
schemes in the following figures will refer to different sets of true values, as well as either a standard normal
distribution for reference. The color scheme is as follows

• Red: Panel A.
• Green: Panel B.
• Blue: Panel C.
• Purple: Panel D.
• Black: Standard normal distribution.

In Figure 3.5 and 3.6 we see the parameter distribution of parameters when MRC is used as the estimator
for IVt when no microstructure noise is present and when microstructure noise is present respectively. In
general, it seems like the distributions somehow have diverged further from the standard normal distribution.
The distributions of λ look like they could be normal, but with a variance different from one, this does not
seem to be the case for the rest of the distributions. The distribution of H with true parameters from panel
A looks like it is negatively biased, which is clearly not the case when looking at Table 3.5, this could indicate
issues related to the Cholesky decomposition, which includes the inversion of L, the estimation of ΣIV, the
estimation of J and the inversion of (J⊤Σ−1

IV J).

It is hard to pin down exactly why the divergence from the normal distribution occurs. It could be a
numerical problem due to all the inversions, it could be related to issues with the optimization procedure, it
could be related to estimation of some of the matrices, it could be related to the finiteness of the simulation
study.

The distributions for when microstructure noise is not present are again similar to the distributions for
when microstructure noise is present. Which indicates the same as the plots in Section 3.1.1 did. Namely,
that Theorem 13 is still valid in the presence of microstructure noise when using a microstructure robust
estimator.
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Figure 3.5. Densities MRC without microstructure noise
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Figure 3.6. Densities MRC with microstructure noise
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Chapter 4

Application

In the empirical application, we would like to investigate S&P500. We would like to assume that the
underlying unobserved log-price process is generated by (2.1) and that the observed price is a noise version
as in (2.14). We are going to assumes that the volatility process is driven by a fractional Ornstein-Uhlenbeck
process. We would like to estimate the parameters, here are the ξ and H of special interest. Before we get
started, some data cleaning is needed. The data we will be using is trade data from 1999 to 2009, and the
cleaning process we use is the one described in Section 3 of [Barndorff-Nielsen et al., 2009]. In summary, the
data is filtered to include only trades from one exchange, NYSE in this application, and outlier prices are
removed using a rolling centered median approach.

Introduction to Data

In the first graph of Figure 4.1 is the close price primo 1999 to ultimo 2009 plotted. In the second graph of
figure 4.1 is the MRC and RV5 estimates of IVt plotted from primo 1999 to ultimo 2009. The average number
of observations per day is 9058, while the largest number of observation for a day is 22809 and the minimum
number of observation for a day is 213. Since the data is primo 1999 to ultimo 2009 the observations per day
is steadily increasing as time progresses which can be seen In Figure 4.2. This emphasizes that importance
of a setting that utilizes high frequency. In the period from the 8th of February 2007 to the 23rd of February
2007, the number of observations per day suddenly drops from about 10000 to about 500. It is not clear why
this occurs, investigating the price during this period does not help to provide an answer. As seen in Figure
4.3, there is nothing too suspicious to note. CNN reports that the 27th of February 2007 was the worst day
in 4 years for S&P500 with a decrease of 3.5 percent [https://edition.cnn.com/business, 2007] , according to
Wikipedia was a trading room at 30 Broad Street closed in February 2007 [en.wikipedia.org, 2022], which
in itself does explain the low trading frequencies, but it may be part of the explanation. The period from
2007-02-08 to 2007-02-23 will be removed from the data due to the low trading frequency.
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Parameter Estimation

In the Table 4.1 we see the initial guesses along with the estimated parameters for the assumed underlying
driver of the volatility model. No matter the use of the estimator, we achieve quite similar estimates for the
Hurst index, they differ at the 3rd digit. If we are to compare with other empirical findings, in [Gatheral
et al., 2018] they estimated the Hurst index, with a different method, for S&P 500 to 0.142 for the period
January 2000 to March 2014, which is relatively close to hour estimates. In [Bolko et al., 2022] they estimated
the Hurst index for S & P500 to 0.043 for the period January 2000 to July 2019, this results differs a bit
from our results. However, we have generally struggled with estimations of the Hurst index, when it is below
0.1. But nevertheless, we draw the same conclusion as many before us, for S&P 500, volatility is rough.

We once again see that, when RV is used as estimator for IVt, the estimate of ξ is significantly higher, than
when RV5 or MRC is the estimator for IVt.

From the findings through the simulation study, we generally trust that the estimated provided when MRC
is used as estimator for IVt is the most reliable.

Parameter ξ λ ν H

RV Initial 0.00038 0.000073 0.4537 0.1347
Estimate 0.000342 0.00021 0.4537 0.13471

RV5 Initial 0.00014 0.000802 0.53573 0.14695
Estimate 0.0001158 0.000266 0.53454 0.11924

MRC Initial 0.00013 0.0018 0.48762 0.1749
Estimate 0.0001094 0.00019 0.47666 0.12814

Table 4.1. S&P 500 Parameter estimation
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Chapter 5

Conclusion

5.1 Discussion

Regarding the validation of generalized method of moments to estimate parameters in the process driving
the volatility process, there are a number of decisions made, that could have been made differently.

We did not decide to include a moment correction as in [Bolko et al., 2022], even though the moment
correction made is based on the IVt observed, being described as a noisy proxy which is not the case in the
double asymptotic setting i.e. the moment correction term vanishes. However, we are still operating within a
finite setup and [Bolko et al., 2022] states that, one might as well include the moment correction term, since
nothing is lost by adding it. The inclusion of the moment correction term, could potentially have improved
the estimation.

Our optimization procedure generally struggles in estimation of H for small values of the Hurst index. The
optimization algorithms used in this project have been either Nelder-Mead with tolerance 10−6 or BFGS with
tolerance 10−8. In [Bolko et al., 2022], they used a gradient-based non-linear least squares Matlab function
called lsqnonlin with the algorithm trust-region reflective and a tolerance level of 10−6. Our implementation
has been in R, and we did try the equivalent algorithm, which provided us with worse results. Even though
we did not find any algorithms that provided us with better results, there might be algorithms better suited
for the specific problem at hand.

In the project, we have only been concern about one end of the spectrum of fractional volatility models.
The optimization procedure would be able to estimate H > 0.5 as shown in [Bolko et al., 2022], however the
Theorem 13, on the asymptotic distribution of the parameters, ceases to hold. This focus is primarily taken
due to existing literature on the topic suggesting that volatility is rough, which agrees with the empirical
findings presented in this project.

In the investigation of the distribution of the parameters, we primarily relied on the test statistic
L−⊤(

√
T (θ̃n,T − θ0)). Which, as mentioned, includes 3 matrix inversions and a Cholesky decomposition. A

different approach for single parameter investigation could be to simply pick the scaled parameter estimates
minus the true values and divide those by the corresponding diagonal entries in (J⊤Σ−1

IV J)
−1. This approach

would have been more numerical robust, but might be dependent on the covariance structure between the
parameters in finite samples.
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5. Conclusion

5.2 Conclusion

Related to the investigation of the parameter distribution is the validation of Theorem 13 in the presence of
microstructure noise. Even though, the parameter distribution presented when MRC was used as estimator
for IVt generally diverged from the standard normal distribution. The addition of microstructure noise barely
changed anything about the distribution. Which one may argue points towards the Theorem 13 still being
valid in the presence of microstructure noise, at least with a microstructure robust estimator for IVt.

The empirical analysis agrees with existing literature on volatility being rough. When MRC was used as
estimator for IVt we estimated the Hurst index of S&P 500 to 0.128 which is on par with [Gatheral et al.,
2018] who got a Hurst index of 0.142 but further away from [Bolko et al., 2022] with a Hurst index of 0.043.
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