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Abstract:
Background and aim: CAD is the leading
cause of death worldwide. CAD is a narrowing
or blocked areas in the coronary arteries, which
can lead to angina, myocardial ischemia, and
myocardial infarction. CCTA is often used as
a diagnostic tool for identifying patients with
CAD. However, the method has a low specificity
that causes 22 - 52% of the patients without
CAD to undergo a CAG, which is the invasive
golden standard for diagnosing CAD. To reduce
the number of unnecessary invasive procedures,
it is desired to increase the specificity of CCTA
detecting CAD. Thus, this study aimed to
investigate to identify patients with CAD based
on CCTA volumes and corresponding patient
data using deep learning.
Method: To identify patients with CAD in
CCTA volumes, a CAD network was used.
The CAD network consisted of a CNN and an
RNN connected in series to perform sequential
frame analysis of the CCTA volumes and a
FCNN to analyze patient data associated with
development of CAD.
Results: The performance of the CAD network
showed an F1 score of 0.51 and a AUROC of
0.51 which indicated that the CAD network
made random classifications when classifying the
CCTA volumes as either containing CAD or not.
Conclusion: The CAD network had the
ability to classify half of the CCTA volumes
as containing CAD or not. Thus, further
improvements of the CAD network are still
needed before the CAD network can be used in
clinical practise.
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Abstrakt:
Baggrund og formål: CAD er den førende
dødsårsag på verdensplan. CAD er indsnævring eller
blokerede områder i kranspulsårerne, som kan føre
til angina, myokardieiskæmi eller myokardieinfarkt.
CCTA bruges ofte som et diagnostisk værktøj til
at identificere patienter med CAD. Metoden har
dog en lav specificitet, der fører til at 22 - 52% af
patienterne uden CAD får foretaget en KAG, som
er den invasive gyldne standard for diagnosticering
af CAD. For at reducere antallet af unødvendige
invasive procedurer, skal specificiteten af CCTA
øges i forhold til detektering af CAD. Dette studie
havde således til formål at identificere patienter med
CAD baseret på CCTA-volumener og tilsvarende
patientdata ved hjælp af deep learning.
Metode: For at identificere patienter med CAD
i CCTA-volumener blev et CAD-netværk udviklet.
CAD-netværket bestod af et CNN og et RNN
forbundet i serie til at udføre sekventiel analyse af
CCTA-volumenerne og en FCNN til at analysere
patientdata forbundet med udvikling af CAD.
Resultater: CAD-netværkets performance viste en
F1 score på 0,51 og en AUROC på 0,51, hvilket in-
dikerede, at CAD-netværket lavede tilfældige klas-
sifikationer, når det klassificerede CCTA-volumener
som enten indeholdende CAD eller ej.
Konklusion: CAD-netværket klassificerede kun
halvdelen af CCTA-volumenerne med enten CAD
eller ej korrekt. Der er således stadig behov for
yderligere forbedringer af CAD-netværket, for at
CAD-netværket kan bruges i klinisk praksis.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale

med forfatterne



Preface

This study was performed by group 22gr10-416, as a part of a Master’s thesis in Biomedical
Engineering and Informatics, at Aalborg University. The master thesis investigated
Identification of coronary artery disease in CCTA volumes using neural networks. It was
performed in collaboration with supervisor Alex Skovsbo Jørgensen and sub supervisor
Samuel Emil Schmidt.

Reading instructions

The master thesis contained a problem analysis where the problem domain related to the
diagnosis of CAD and the challenges related to the diagnosis was elaborated. Subsequently,
the methods used in the master thesis are described. It includes a description of the data,
the development of the CAD network, and how the CAD network was validated. At last,
the result of the CAD network and discussion are presented. Throughout the master thesis,
the Harvard referencing method is used. In the bibliography, the references are present.
Moreover, four appendices are attached, consisting of the literature search, layers used in
the CAD network, training of the CAD network, and hyper-parameter results for the CAD
network.

Julie Rask Madsen Mia Hebsgaard Ransborg
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Introduction 1
Coronary artery disease (CAD) is the leading cause of death worldwide accounting for 16%
of all deaths in 2019 [Zreik et al., 2018b; Fleming, 2022]. CAD is defined as a reduction of
the blood supply to the heart due to atherosclerosis in the coronary arteries, thus, leading
to angina, myocardial ischemia, and myocardial infarction [Zhao et al., 2021; Moon et al.,
2021]. The golden standard for diagnosing CAD is coronary angiography (CAG), which
is an invasive method [Cong et al., 2019]. However, in patients with low or intermediate
risk of CAD, coronary computed tomography angiography (CCTA) is an accepted method
for detecting or excluding CAD Nissen et al. [2016]; Kristanto et al. [2013]. CCTA is
a non-invasive method with a high sensitivity and negative predictive value of 70 - 80%
but a specificity of 48 - 78% [van Hamersvelt et al., 2019; Ko et al., 2012]. Thereby,
22 - 52% of the conducted CAG examinations are unnecessary [Zreik et al., 2019]. The
assessment of CAD in the CCTA volumes is manually inspected by the clinicians, which
is time-consuming and prone to inter-and intra-observer variability [Pugliese et al., 2009;
Han et al., 2020]. Thus, the interpretation and diagnosis can vary amongst the clinicians
[Cheung et al., 2021].

The use of neural networks for the detection of CAD in CCTA volumes has increasingly
been investigated [Chen et al., 2020]. In the study by Podgorsak et al. [2020], a 2D
convolution neural network (CNN) was trained to map the severity of CAD in CCTA
volumes. Their method obtained an accuracy, specificity, sensitivity, F1 score, and an area
under the receiver operating characteristic curve (AUROC) of 80.9%, 80%, 83%, 0.804,
and 0.862, respectively. Another study by Zreik et al. [2018b] investigated a CNN in series
with a recurrent neural network (RNN) for characterization of CAD and determination of
the severity in CCTA volumes. The performance of the proposed approach resulted in an
accuracy, F1 score, and κ of 0.77, 0.61, and 0.61 for the characterization analysis, and 0.80,
0.75, and 0.68 for the analysis of the severity, respectively. The above mentioned studies
showed the potential of using deep learning for detecting CAD in CCTA volumes.

AAU 3



Problem analysis 2
The chapter contains a problem analysis concerning the diagnosis of coronary artery disease
along with the state of the art regarding automatic methods for diagnosing CAD, which leads
to the aim of the present study.

The most common cardiovascular disease worldwide is coronary artery disease (CAD),
which accounted for 8.9 million deaths in 2019 corresponding to 16% of all deaths making
CAD the leading cause of death worldwide [Zreik et al., 2018b; Fleming, 2022]. CAD
refers to partially or completely blocked areas in the coronary arteries, which supply the
muscles of the heart, called the myocardium, with oxygen-enriched blood and nutrients
[Podgorsak et al., 2020; Huang and Yin, 2021]. The myocardium needs a constant supply
of oxygen and nutrients, thus, a significant hemodynamically reduction of blood flow will
cause starvation of the myocardium [Zhao et al., 2021]. CAD leads to angina, myocardial
ischemia, and myocardial infarction [Moon et al., 2021; Zhao et al., 2021]

2.1 Coronary artery disease

The narrowing or blockage of the coronary arteries is called stenosis which is caused by
atherosclerosis [Mirunalini et al., 2019]. Atherosclerosis is the thickening or hardening of
the arteries due to plaque build-up in the inner arterial wall [Moon et al., 2021]. The plaque
build-up is incrementally illustrated in figure 2.1. The formation of plaque is initiated when
macrophages ingest and oxidize the accumulated lipoproteins. When the macrophages are
filled up, they become foam cells. The foam cells deposit to the endothelial walls of
the coronary arteries releasing cytokines that will cause inflammation. The inflammation
causes the smooth muscle cells to divide resulting in a thickening of the vessel wall. Further,
apoptosis of the smooth muscle cells is associated with the formation of calcium, which
coalesces into a larger plague over time [Mori et al., 2018]. Additionally, lipid deposition
on the arterial wall causes the plaque to grow. [Lawrence, 2003; Hall and Hall, 2011]

Figure 2.1. Plaque build up in the inner wall of a coronary artery, resulting in thrombosis.
Inspired by [Hall and Hall, 2011]
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2.2. Diagnosis of coronary artery disease

The components of the plaque consist of cholesterol, fat, calcium, and other substances
that characterize the plaque as either calcified-, non-calcified- or mixed plaque relative to
the composition of substances [Mirunalini et al., 2019]. The calcified plaque is considered a
stable type of plaque, whereas non-calcified plaque and mixed plaque are thin capped with
fibrous, thus, considered unstable since these types of plaque are more likely to rupture
[Kristanto et al., 2013; Mori et al., 2018]. The rupture of a plaque is shown in figure 2.1.
The rupturing of the plaque can lead to thrombosis resulting in acute coronary syndrome
and may cause irreversible damage to the myocardium due to myocardium infraction.
[Zreik et al., 2018b; Cheung et al., 2021].

The plaque build-up causing CAD is associated with multiple risk factors which include
high blood pressure, high cholesterol levels, smoking, diabetes, overweight, lack of physical
activity, unhealthy diet, and stress. Furthermore, the risk of developing CAD increases
with age, men have a greater risk of developing CAD than women, and a family history
of early heart disease is also a risk factor. [Hajar, 2017] The lifestyle-related risk factors,
e.g smoking, overweight, and unhealthy diet can be reduced with preventative treatment
[Hajar, 2017] The first symptom of CAD most often shows as acute myocardial infarction.
Other symptoms of CAD include pain or discomfort in the center of the chest and/or in
the arms, the left shoulder, elbows, jaw, or back. Further, shortness of breath or difficulty
in breathing along with nausea or vomiting, light-headedness or faintness, cold sweats,
and turning pale might show as symptoms of CAD. [World Health Organization, 2021]
The shortness of breath most likely increases as the CAD advances [Zhao et al., 2021]. In
symptomatic patients, the diagnosing of CAD is critical to determine a suitable clinical
management [Chen et al., 2020]. Currently, CAD can be treated by using percutaneous
coronary intervention or coronary artery bypass grafting together with aggressive medical
therapies[Zhao et al., 2021]. However, an early diagnosis of CAD may allow early
medicinal intervention and prevent CAD from causing severe or permanent damage to
the myocardium [Moon et al., 2021; Cheung et al., 2021]

2.2 Diagnosis of coronary artery disease

When CAD is suspected, the diagnosis of CAD is increasingly based on imaging
technologies that provide visualization of the coronary arteries [Hampe et al., 2019]. The
golden standard for diagnosing CAD is coronary angiography (CAG) [Cong et al., 2019].
The method of CAG is illustrated in figure 2.2. It is used to evaluate the severity and
extent of CAD. When performing CAG, a catheter is inserted into a vessel in the arm
or the groin. The catheter is led to the coronary arteries through the vessels and then
injects a contrast agent directly into the coronary arteries which are captured by x-ray
motion images. [Moon et al., 2021] The extent of CAD is examined by a cardiologist who
selects the keyframes from the CAG showing the most visible coronary arteries when the
contrast agent is present. In these frames, CAD is then manually assessed by a visual
inspection, where anatomically significant CAD is defined as a narrowing of the coronary
artery lumen of 50% or more. To assess the severity of CAD, the fractional flow reserve
(FFR) is measured during CAG [Moon et al., 2021]. FFR refers to the ratio of flow distal
of stenosis to the flow proximal to the stenosis. The scale of the FFR range from 0 referring
to occlusion of the artery to 1 referring to the absence of stenosis. Stenosis is defined as
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Group hst-21-st-9-12 2. Problem analysis

hemodynamic significant when the FFR is 0.80 or lower [Podgorsak et al., 2020].

Figure 2.2. Coronary angiography. A catheter is inserted into a vessel in the groin (or in the
arm) and led to the coronary arteries. Then a contrast agent is injected into the coronary arteries
to highlight the coronary arteries in an X-ray image. The flow before and after stenosis is measured
with the catheter. Inspired by Moon et al. [2021]. [Sharma, 2022; Podgorsak et al., 2020; Moon
et al., 2021]

Although CAG along with the FFR measurement is the golden standard, the method is
invasive and costly. The risk for complications during the CAG, i.e arrhythmia, stroke,
and myocardial infarction due to the catheter passing plaque causing it to rupture, and
death is present. [Chen et al., 2020; Nissen et al., 2016]

Although CAG is the golden standard, coronary computed tomography angiography
(CCTA) is a frequently used procedure for patients with a low or intermediate risk
of CAD, since CCTA is an accepted diagnostic tool for detecting CAD and excluding
hemodynamically significant CAD. [Nissen et al., 2016; Kristanto et al., 2013] The method
of CCTA is shown in figure 2.3. CCTA is non-invasive and utilizes the measurement of X-
ray transmission profiles through a patient from numerous angles which are reconstructed
into an image of the grey level scale. Additionally, an intravenous injection of a contrast
agent is given to the patient to visualize the coronary artery lumen. [Achenbach, 2006]
Thus, CCTA can image the coronary artery lumen in cross-sectional images of the heart
[Zhang et al., 2008].
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2.2. Diagnosis of coronary artery disease

Figure 2.3. Coronary CT angiography. A patient is injected with a contrast agent and placed
on a motorized table moving the patient through the gantry. In the gantry, the X-ray source is
projecting a X-ray beam detected by the detection arc while rotating around the patient. Inspired
by Dance et al. [2014]. [Dance et al., 2014; Sun, 2013]

CCTA has high sensitivity and negative predictive value of 70 - 80% for detection of CAD
but the specificity of detecting hemodynamically significant CAD is lower with a range of
48 - 78% [van Hamersvelt et al., 2019; Ko et al., 2012]. Due to the low specificity of CCTA,
22 - 52% of the patients get an unnecessary invasive FFR measurement. [Zreik et al., 2019].
Additionally, the calcified plague can create blooming artifacts in CCTA images. Thus, it
is difficult to accurately assess the degree of luminal narrowing using CCTA when heavily
calcified plaques are present. Approximately 50 - 70% of all coronary artery plaques are
calcified in patients with asymptomatic or suspected CAD. [Zhang et al., 2008; Han et al.,
2020] Thereby, calcified plaque can result in overestimation of the degree of stenosis [Wang
et al., 2011].

Furthermore, the CCTA volumes are visually inspected by specialized clinicians, since
accurate geometric information is needed to assess the severity of stenosis. Thus, the
method is subjective and time-consuming which can result in variability in the assessment
of the stenosis severity. [Cheung et al., 2021; Zhao et al., 2021; Han et al., 2020; Mirunalini
et al., 2019] The inter-and intra-observer agreement of the interpretation of CCTA volumes
for CAD has been investigated by Pugliese et al. [2009] and Saur et al. [2010], where Cohen’s
kappa coefficient, κ, was found. Ideally, κ should be 1 indicating total agreement but the
highest κ found in the studies were κ=0.48 and κ=0.66 whereas the inter-and intra-observer
agreement for CAG was κ=0.95. [Pugliese et al., 2009; Saur et al., 2010] Furthermore,
interpretation and diagnosis are dependent on the individual clinician’s experience and
expertise. Thereby, the diagnosis can vary between clinicians. [Cheung et al., 2021]

To reduce the number of unnecessary invasive procedures, it is desired to increase the
specificity of CCTA detecting hemodynamically significant CAD [Podgorsak et al., 2020].
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Group hst-21-st-9-12 2. Problem analysis

An increased specificity could be obtained using automatic methods for detecting CAD
in CCTA volumes [Han et al., 2020]. Additionally, automatic interpretation of the CCTA
volumes may reduce the inter- and intra-observer variability of the interpretation of CCTA
volumes [Moon et al., 2021].

2.3 State of the art regarding detection and classification of
CAD

The development of automatic interpretation methods of CCTA volumes has increasingly
been relying on deep learning methods. Deep learning has been investigated for detection
of plaque, stenosis, and hemodynamically significant CAD. [Chen et al., 2020] The use of
deep learning and especially neural networks has been explored in several studies, aiming to
improve the diagnosis of CAD based on CCTA volumes. A few of the studies investigating
the use of neural networks for diagnosing hemodynamically significant CAD or significant
narrowing of the coronary arteries are presented in the following. [Podgorsak et al., 2020;
Kumamaru et al., 2020; Zreik et al., 2018b,a]

In the study by Podgorsak et al. [2020], they evaluated if a 2D convolutional neural network
(CNN) trained on CCTA slices and corresponding FFR values from 64 patients could be
used to non-invasively assess the CAD severity. The CCTA slices and FFR values were
obtained from the following coronary arteries; left anterior descending, left circumflex,
and right coronary artery. Straightened curved planar reformation (SCPR) were obtained
from CCTA volumes of the coronary artery branches using eight different rotational states
every 45-degrees around the vessel centerline of the artery branch. SCPR is a resampling
and visualization technique that ensures displaying of a whole artery within a single image
[Kanitsar et al., 2002]. This resulted in 512 slices of the coronary arteries. To asses the
CAD severity, a CNN was developed. This was done by using binary classification to
classify if the CCTA slices was hemodynamically significant or non-significant based on
a FFR threshold of 0.80. Moreover, class activation maps (CAM) was used to determine
which features the network was weighting as important for the classification task. This was
done to ensure that the network found regions in the slice that were believed to be critical
for CAD such as the calcium burden and coronary artery geometry. The information from
the class activation maps was used to optimize the image data prior to subsequent network
training, such as only calcium burden and the coronary artery geometry were present in
the slices. The mean classification accuracy for the CNN in predicting hemodynamically
significance of stenosis was 80.9% and an area under the receiver operating characteristic
curve (AUROC) of 0.862. The specificity, sensitivity, precision and F1 score was 80%,
83.0%, 77.8% and 0.804, respectively. This demonstrates that the CNN could be used to
non-invasively predict the hemodynamically significance of CAD using SCPRs of coronary
artery branches.

Another study by Zreik et al. [2018a] proposed a method for identification of patients
with at least one hemodynamically significant stenosis in a single CCTA slice acquired
at rest. The method was based on analysis of the left ventricular (LV) myocardium by
a multi-scale CNN for segmentation of the LV myocardium followed by a convolutional
autoencoder to extract features of the LV myocardium. The extracted features were then
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2.3. State of the art regarding detection and classification of CAD

used for classification of patients with or without hemodynamically significant stenosis
with a support vector machine classifier. The data included in the study consisted of
CCTA volumes from 166 patients where 156 patients underwent FFR measurements
within one year after the acquisition of the CCTA volumes. The minimum FFR value
for each patient was used as reference standard of whether or not hemodynamically
significant stenosis was present. Further, in 40 randomly selected CCTA volumes, the LV
myocardium was manually segmented by a trained observer to create reference standards
for the training, validation and test of the segmentation CNN. The evaluation of the
segmentation, performed on 20 test volumes, resulted in a Dice coefficient of 91.4 ± 2.1%
and a MAD of 0.7 ± 0.1 mm. From the manual evaluation each segmentation was graded
as very accurate (74.0%), accurate (15.8%), mostly accurate (3.4%), inaccurate (6.1%)
and segmentation failed (0.7%). The test of the classification resulted in average accuracy,
sensitivity and specificity of 0.71, 0.70 and 0.71 and AUROC of 0.74 ± 0.02. However,
the method of analysing LV myocardium only showed moderate performance compared to
methods analysing the blood flow in the coronary arteries as studies by Min et al. [2012]
and Nørgaard et al. [2014] achieved an accuracy of 0.71 and 0.81 and AUROC of 0.81 and
0.90, respectively.

The study by Zreik et al. [2018b] proposed a multi-task recurrent CNN (RCNN) for both
detection and characterization of types of plaque and detection along with determination
of significant stenosis in the coronary arteries in multi-planar reformated (MPR) images
from CCTA volumes. The study included CCTA volumes from 163 patients containing
1259 manually labeled arterial segments in 534 arteries. The RCNN consisted of a 3D
CNN and a recurrent neural network (RNN) connected in series. The type of plaque was
categorized as either no plaque, non-calcified plaque, mixed or calcified plaque whereas
the classification of stenosis ranged from no stenosis, non-significant stenosis or significant
stenosis. As reference standard, the MRP images were manually annotated by an expert.
Each plaque was marked with a start- and end-point along with the type. Further, the
significance of the stenosis caused by the plaque was marked as either non-significant if
luminal narrowing < 50% and significant if luminal narrowing ≥ 50%. To evaluate the
performance of the proposed network, the F1 score was used for assessment of both the
plaque classification and stenosis classification. Moreover, an unweighted Cohen’s κ metric
and Cohen’s linearly weighted κ metric were used to evaluate the reliability between the
predicted labels and the reference standard of the type of plaque and the significance of
the stenosis, respectively. Performance of the RCNN resulted in accuracy, F1 score, and
κ of 0.77, 0.61, and 0.61 for the plaque analysis, and 0.80, 0.75, and 0.68 for the stenosis
analysis, respectively.

From the above-described studies, the potential of deep learning for detecting hemodynam-
ically significant CAD or lumen narrowing of the coronary arteries is promising. The main
disadvantage of the studies could be the amount of data used since it is well known that
neural networks require a large data amount to be able to generalize to the unseen data
[Shin et al., 2016]. However, the study by [Podgorsak et al., 2020] obtained a specificity of
80.0%. An advantage of the study by Podgorsak et al. [2020] is the use of SCPR CCTA
images, which contained the whole coronary arteries. Thus, changes in the coronary artery
were visible in each image. Moreover, the class activation maps showed activations over
the different plaque, but low activations in the lung volumes and surrounding cardiac tis-
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Group hst-21-st-9-12 2. Problem analysis

sue. Further, the studies by Podgorsak et al. [2020] and Zreik et al. [2018a] used the FFR
values as the reference standard, which expresses the hemodynamic significance of CAD.
However, the method of segmenting LVM had only moderate performance compared to
other studies. The study by Zreik et al. [2018b] also used reconstructed CCTA slices, which
contained the whole coronary artery, which was first analyzed with the 3D CNN for feature
extraction, and then these features were collectively analyzed in the RNN. Thereby, the
temporal dependencies in the CCTA volumes were captured. If deep learning, in particular
neural networks, can be exploited when diagnosing CAD in CCTA volumes, the efficiency,
quality, and performance of the diagnosis could be improved [Han et al., 2020]. Thus, the
aim of the present study is:

2.3.1 Aim

To identify the presence of CAD in CCTA volumes of the heart and the coronary arteries
using deep learning
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Method 3
3.1 General approach of detecting CAD in CCTA volumes

The chapter contains a description of the method used in the present study. The method
includes a general system description, data pre-processing, the CAD network, the training
of the CAD network, and validation of the CAD network. For the data pre-processing
Matlab version R2020b was used. The architecture of the CAD network was written in
Python and for the training and testing of the CAD network was Aalborg University’s
GPUs (Tesla V100-SXM3-32GB) used.

The present study sought to identify patients with CAD based on CCTA volumes and
corresponding patient data using deep learning. The proposed approach is illustrated in
figure 3.1. The approach was based on a CNN and an RNN connected in series to perform
sequential frame analysis of the CCTA volumes and a fully connected neural network
(FCNN) to analyze patient data associated with the development of CAD. Both the CNN-
RNN and the FCNN were used to classify if the CCTA volumes contained CAD or not.

The input to the CNN-RNN consisted of CCTA volumes. Each CCTA volume represented
cross-sections of the coronary arteries continuously from the top of the heart to the apex.
Thus, if lumen narrowing of the coronary arteries was present, it would show as e.g. the
diameter of the lumen would decrease over the following slices depending on the previous
slices. Therefore, the slices in the CCTA volumes were independently analysed for the
shape features of the coronary arteries through the CNN. Then, the feature maps from the
CNN were collectively analyzed through the RNN, since the identification of CAD in the
CCTA volumes depended on the features of the coronary arteries in each slice within the
CCTA volumes.

Simultaneously with the CNN-RNN, the FCNN, called the patient data network, processed
the patient data. The input to the patient data network consisted of patient data associated
with the development of CAD, which outputted extracted features from the patient data.
The output from the CNN-RNN and the patient data network were concatenated and fed
as input to a classifier which outputted a prediction of whether or not the CCTA volumes
contained CAD. Furthermore, the predictions were validated to ensure the predictions
were correct. The combined CNN-RNN and patient data network will be referred to as
the CAD network in the following.
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Group hst-21-st-9-12 3. Method

Figure 3.1. The overall approach for finding CCTA volumes with CAD. The approach consists of
a CNN-RNN and a patient data FCNN called the CAD network. The CCTA volumes are inputs
to a CNN which outputs image feature maps for each slice in the CCTA volume. The feature
maps from the CNN are then fed to an RNN that outputs image features for the entire CCTA
volume. Simultaneously, the patient data is input to an FCNN that outputs patient data features.
The output from the CNN-RNN and the patient data FCNN are then concatenated and fed to
a classifier that outputs a prediction of whether or not the CCTA volume contains CAD or not.
Finally, the predictions are validated.

3.2 Data and pre-processing

The data for this study consisted of CCTA volumes of the heart from 378 patients and
an Excel sheet with the corresponding patient data from Dan-NICAD, which was an
investigator-initiated, multi-centered, randomized, cohort trial by Nissen et al. [2016].
From the Dan-NICAD, the study subjects were recruited at two regional hospitals
(Department of Cardiology, Regional Hospitals of Herning and Silkeborg, Denmark). The
CCTA scans were performed on a 320 multi-slice volume CT scanner (Aquillion One,
Toshiba Medical Systems, Japan) using prospective electrocardiogram (ECG) gating. The
z-axis coverage of the heart varied from 120 to 160 mm, depending on the length of the
heart. The acquisition of the CCTA volumes was performed using a gantry rotation time
of 0.35 s, slice thickness of 0.5 mm, and prospective ECG triggering. 50 – 80 mL nonionic
contrast agent (Optiray 350 mg/mL, Mallinckrodt, Ireland) was administrated according
to the weight of the patients. The data was reconstructed at 75% of the RR interval.
[Nissen et al., 2016]

Each CCTA volume consisted of a sequence of slices of a spatial resolution of 512x512
pixels varying between 128 and 640 slices illustrating the same stage in the heart cycle.
An example of slices from one CCTA volume can be seen in figure 3.2.
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(a) Slice 128 (b) Slice 251

(c) Slice 413 (d) Slice 467

Figure 3.2. Examples of slices from one CCTA volume of the heart. The entire CCTA volume
contains 560 slices. The slices starts (a) at the top of the heart showing the pulmonary artery
and the aorta which the coronary arteries ascents from and ends (d) at the apex. The coronary
arteries are marked with blue arrows.

The data set contains 156 patients with CAD and 222 patients without CAD. Thus, the
CCTA volumes was labeled CAD or non-CAD depending on whether or not the patients
was diagnosed with CAD. A CCTA volume was labeled with CAD if the corresponding
patient was diagnosed with hemodynamically obstructive CAD according to the Excel sheet
of patient data. Otherwise, a CCTA volume was labeled as non-CAD if the corresponding
patient was diagnosed without or with insignificant hemodynamically obstructive CAD.

3.2.1 Extraction of risk factors for CAD from the patient data

From the Excel sheet of patient data, the risk factors associated with development of CAD
were found for each patient included in the study. The extracted risk factors for CAD
are listed in table 3.1, corresponding to the risk factors described in section 2.1 as these
were available for the study. The risk factors included the male sex, overweight, diabetes,
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smoker, high blood pressure, and high cholesterol level. The definition of overweight was
based on the Body Mass Index (BMI), calculated for each patient using weight and height
[WHO, 2000]. The definition of risk values of high blood pressure and high blood cholesterol
in table 3.1 were chosen based on values defined by Messerli et al. [2007]; Ma and Shieh
[2006].

Risk
factor Gender Smoker Diabetic BMI Blood pressure Cholesterol

Risk
value Male Active/

former Yes ≥ 25 kg/m2 ≥ 140/90 mmHg ≥ 5 mmol/L

Table 3.1. The risk factors for development of CAD. Each risk factor has an assigned ’Risk value’
indicating the value of which the risk factors have an influence of the development of CAD.

The risk factors for each patient were evaluated from the patient data sheet, where a
label of 1 was assigned to a risk factor obtaining a value greater than or equal to the
corresponding risk value, e.g. a BMI of 25 kg/m2 or more was labeled 1. Otherwise, a
label of 0 was assigned. The use of risk factors excluded 17 patients as 14 patients were
missing cholesterol values, two patients were missing values for weight and one patient
was missing values for both weight and height. The weight and height were necessary to
calculate the BMI for each patient. Thereby, 8 patients with CAD and 9 patients without
CAD were excluded. This resulted in 361 patients in total, where 148 patients had CAD
and 213 without CAD. The number of the included patients with and without CAD are
shown in baseline table 3.2.

No. of
subjects

Male/
Female

Age
(years)

Weight
(kg)

Height
(cm)

BMI
(kg/m2)

CAD 148 103/45 60.1 ± 9.3 82.3 ± 14.5 173.8 ± 8.4 27.2 ± 4.2
Non-CAD 213 110/103 60.8 ± 7.4 80.2 ± 14.9 172.1 ± 9.3 27 ± 4.1

Systolic
blood
pressure
(mmHg)

Diastolic
blood
pressure
(mmHg)

Cholesterol
(mmol/L)

Smoker/
Non smoker

Diabetic/
Non diabetic

Risk
factors

CAD 145.3 ±19.7 85 ±11.6 5.5 ± 1.5 84/64 19/129 3.1 ± 1.1
Non-CAD 141.2 ± 18.3 83.3 ± 10.4 5.6 ±1.2 114/99 12/101 2.7 ± 1

Table 3.2. Baseline of the study subjects. The mean of the age, weight, height, Body Mass Index
(BMI), systolic and diastolic blood pressure, cholesterol level, and the number of risk factors were
found along with the standard deviation.

3.2.2 Dividing the CCTA volumes into a training-, validation-, and
test set

Afterward, the CCTA volumes were divided into approximately 80% of training data, 10%
of validation data, and 10% of test data using stratified randomization depending on the
distributions of CAD versus non-CAD and the number of risk factors. The distribution of
the CAD and non-CAD along with the number of risk factors can be seen in table 3.3. This
resulted in a training data set with 286 patients, a validation data set with 37 patients,
and a test data set with 38 patients. The division of the three data set can be seen in
figure 3.3, 3.4, and 3.5. If the data sets were not independent of each other, it could cause
bias in the model. [Chollet et al., 2018] Independence among the data sets was ensured by
not having the same patient in more than one data set. Furthermore, the data sets must
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represent the population of the available data [Chollet et al., 2018]. This was achieved by
placing the same distribution of patients with CAD and without CAD in each data set.
Moreover, the distributions of patients, both with CAD and without CAD, were divided
by the number of risk factors for CAD to ensure the distribution of the number of risk
factors were kept in the data sets providing best possible representation of the population.
The patients could have between 0-6 risk factors for CAD, although none of the patients
had all 6 risk factors.

Patients = 361 (100%)
CAD = 148 (41%)

No. of risk
factors 0 1 2 3 4 5

No. of
patients 0 (0%) 9 (6.1%) 33 (22.3%) 53 (35.8%) 39 (26.3%) 14 (9.5%)

Non-CAD = 213 (59%)
No. of risk
factors 0 1 2 3 4 5

No. of
patients 2 (1%) 26 (12.2%) 53 (24.9%) 85 (39.9%) 39 (18.3%) 8 (3.7%)

Table 3.3. The distribution of CAD and non-CAD along with the number of risk factors in the
data set for the present study.

The distributions of patients with and without CAD along with their number of risk factors
were followed in the training data set, the validation data set, and the test data set. The
distribution of the patients in the three data set is illustrated in figure 3.3, 3.4, and 3.5.

Figure 3.3. The distribution of patients with CAD and without CAD in relation to risk factors
in the training data set.
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Figure 3.4. The distribution of patients with CAD and without CAD in relation to risk factors
in the validation data set.

Figure 3.5. The distribution of patients with CAD and without CAD in relation to risk factors
in the test data set.

3.2.3 Pre-processing of the slices in the CCTA volumes

The pre-processing of the slices in the CCTA volumes consisted of cropping followed
by resizing and finally stacking. In figure 3.6, the pre-processing is illustrated. The
CCTA slices were cropped to find the region of interest, which in this case was the heart.
The resizing and stacking of the slices were done to decrease the computational burden
without compromising the information in the slices of the coronary arteries since their
representation in the slices were relatively small as seen in figure 3.6(c). The cropping was
performed using MATLAB by indiscriminately choosing a representative CCTA volume,
where the region of interest was marked in one of the slices from the CCTA volume. The
chosen slice contained the heart at the largest diameter to ensure the information of the
coronary arteries remained in the cropped CCTA slices. This resulted in a region of interest
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of 440x365 pixels at the same location in every slice in every CCTA volume, as shown in
figure 3.6(b).

Figure 3.6. Pre-processing of the CCTA volumes. (a) A slice representing the largest diameter
of the heart in the CCTA volume (slice 363 of 512 slices) is used to find the region of interest (b) to
which the slices are cropped. (c) The slices are then resized. The blue arrows mark the coronary
arteries.

Moreover, each of the cropped slices in every CCTA volume was spatially resized from
440x365 pixels to 256x256 pixels, using the Python imaging library Pillow when loading
the CCTA volumes in the CAD network. [Pillow, 2022]. Further, the slices in each CCTA
volume were stacked as an array where one array represented one CCTA volume from one
patient.

3.3 Identification of CAD in CCTA volumes

In the following, the architectures of the sub parts in the CAD network; the CNN, the
RNN, and the patient data network are described along with argumentation for the chosen
architectures. Finally, the classification of the concatenation between the CNN-RNN and
the patient data network in the CAD network is accounted for.

The combination of a CNN and RNN was inspired by the study of [Zreik et al., 2018b],
described in section 2.3. In the study by Zreik et al. [2018b], the analysis of CCTA volumes
for anatomically significant stenosis using a CNN-RNN showed promising results. Since
the purpose of the present study was to identify CCTA volumes containing CAD, and
thereby the narrowing of the coronary arteries in the CCTA volumes, the architecture
described by Zreik et al. [2018b] was used as a starting point.

3.3.1 Convolutional neural network for feature extraction

The CNN was a sub part of the CAD network which had the purpose of extracting patterns
or so-called image features from each slice in the CCTA volumes, independently. The
starting CNN architecture by Zreik et al. [2018b] consisted of three blocks, where each
block contained a 3D convolutional layer, a batch normalization layer, a Rectified Linear
Unit (ReLU) activation function layer, and a max pooling layer. The CNN architecture
used in this study differed from the 3D CNN used by Zreik et al. [2018b] as a 2D CNN
was used and the final layer in block 3 was a global max pooling layer. An overview of

AAU 17



Group hst-21-st-9-12 3. Method

the CNN architecture of the present study is presented in table 3.4. The 2D convolutional
layers were used because of the computational limits of the GPU, thus, preventing the use
of 3D convolutional layers. Moreover, a global max pooling layer in block 3 was used to
enable the output of the CNN to be given as input to the RNN. The number of layers
and filters used by Zreik et al. [2018b] were preserved to avoid an increased computational
burden on the GPU.

CNN
Layers Operations Output shape
Input layer 256x256x1

Block 1, layer 1 Convolution, kernel 3x3,
32 filters 256x256x32

Block 1, layer 2 Batch normalization 256x256x32
Block 1, layer 3 ReLU activation function 256x256x32

Block 1, layer 4 Max pooling, kernel 2x2,
stride 2 128x128x32

Block 2, layer 1 Convolution, kernel 3x3,
64 filters 128x128x64

Block 2, layer 2 Batch normalization 128x128x64
Block 2, layer 3 ReLU activation function 128x128x64

Block 2, layer 4 Max pooling, kernel 2x2,
stride 2 64x64x64

Block 3, layer 1 Convolution, kernel 3x3,
128 filters 64x64x128

Block 3, layer 2 Batch normalization 64x64x128
Block 3, layer 3 ReLU activation function 64x64x128
Output layer Global max pooling 1x128

Table 3.4. An overview of the CNN’s architecture.

The first layer in the CNN was the convolutional layer, which had the purpose of extracting
features such as edges and shapes from the input CCTA slices. [Chollet et al., 2018] The
inputs were three-dimensional CCTA slices with a height, width, and depth of 256x256x1
pixels. The depth corresponded to the color channel of the CCTA slices, where a depth
of one corresponded to the grey level scale of color information in the CCTA slices.
The convolutional layers learned features hierarchically, thus, the first convolutional layer
learned local patterns such as shapes, the next convolutional layer would learn larger
patterns composed of features extracted in the first convolutional layer, and so on. The
convolutional layer extracted features by applying an operation called convolution. The
convolution was performed by sliding a match filter over the input CCTA slice making
an element-wise multiplication. This resulted in an array that illustrated how well the
filter coefficients and pixel intensities in the input CCTA slice match. [Chollet et al.,
2018] Elaborated information concerning convolutions can be seen in appendix B.1. The
filter applied in the convolution was of the size 3x3 and it moved one pixel at a time,
thus, it had a stride of one [Zreik et al., 2018b]. The result of the convolution was a
two-dimensional array with output values, called a feature map. Thus, the input CCTA
slice was converted to a feature map. The feature map had a height, width, and depth,
however, now the depth represented the number of match filters computed over the input
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CCTA slice. [Chollet et al., 2018] The filters varied from 32 to 128 in the three blocks of the
CNN [Zreik et al., 2018b]. When the input feature map was computed in the convolutional
layers, the output feature map was to tiles smaller than the input feature map e.g. the
spatial resolution of the output feature map after the first convolution was 254x254. To
ensure the output feature map maintained the same spatial resolution as the input feature
map, zero padding was implemented. [Chollet et al., 2018] Zero-padding is explained in
appendix B.1.1. After the convolutional layer, batch normalization was applied to the
output feature map from the convolutional layer.

Batch normalization was used as it overcame the problem, internal covariate shift, by
normalizing the input feature maps for the subsequent layer, which resulted in a stable
distribution of inputs. Batch normalization is further explained in appendix B.2. To
achieve a stable distribution of inputs during training, batch normalization was placed
before the activation function. [Ioffe and Szegedy, 2015]

The purpose of the activation function was to introduce non-linearity to the CNN. In this
study, the ReLU activation function was used. The ReLU activation function performed
a threshold operation on each element of the input feature map. The ReLU activation
function resulted in all elements of the input feature map with a negative correlation being
removed, thus, ensuring features passed on to the subsequent layer had a significantly
high output. Thereby, irrelevant input features were removed. [Nwankpa et al., 2018] The
theoretical review of the ReLU activation function can be seen in appendix B.3.1.

The final operation in the first two blocks was max pooling. The purpose of max pooling
was to downsample the output feature maps from the ReLU activation function where the
most present features were highlighted. This was done by outputting the maximum value
of the elements of the feature map in a window, which was slid across the output feature
map from the ReLU activation function. Thereby, the max pooling operation halved the
spatial resolution of the input feature map while the feature channels were preserved in
the output. [Chollet et al., 2018] The sliding window had the size of 2x2 and moved two
tiles at a time, thus, it had a stride of two, as illustrated in table 3.4 [Zreik et al., 2018b].
For more information about max pooling, see appendix B.4.

In the last block in the CNN, the last layer was a global max pooling layer instead of max
pooling. The global max pooling layer was used to downsample the entire output feature
map from the last ReLU activation function to a single value. This was done by outputting
the maximum value in the feature map. [Chollet et al., 2018] The feature map outputted
from the global max pooling layer was given as input to the RNN.

3.3.2 Recurrent neural network for sequential analysis of CCTA
volumes

The feature maps extracted by the CNN were given as input to the RNN, similar to
the approach by Zreik et al. [2018b]. The purpose of the RNN was to extract temporal
dependencies from the slices in the CCTA volumes. The RNN in the study by Zreik et al.
[2018b] originally consisted of two recurrent layers with 64 gated recurrent units (GRU) and
a dropout rate of 0.5, each followed by the ReLU activation function except for the output
layer where a multi-class softmax activation function was used. In the present study, the
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first layer of the RNN was a time distributed layer, which allowed each recurrent layer to
be applied to every slice in the CCTA volumes [TensorFlow, 2022]. The architecture of
the RNN used in the present study is presented in table 3.5. The RNN architecture from
this study contained three recurrent layers with 128 GRU based on the hyper-parameter
optimization results in appendix D.1 and D.2. The same activation function that was
used in the CNN was also used in each recurrent layer since the same activation function
typically was in all the hidden layers. Thus, the ReLU activation function was used in
the RNN.The dropout rate of 0.5 was kept based on the hyper-parameter optimization in
appendix D.3.

RNN
Layers Operations Output shape
Layer 1 Timedistributed 1x1x128

Layer 2 GRU, 128 hidden units, ReLU,
recurrent dropout=0.5 1x128

Layer 3 GRU, 128 hidden units, ReLU,
recurrent dropout=0.5 1x128

Layer 4 GRU, 128 hidden units, ReLU,
recurrent dropout=0.5 1x128

Table 3.5. An overview of the RNN’s architecture.

The RNN differed from the CNN as the output of the current input feature map depended
on both the current input feature map and the prior input feature maps. Thereby, the
RNN was designed to utilize sequential data. [Chollet et al., 2018] An illustration of the
conceptual process of the CCTA volume through the RNN is shown in figure 3.7.

Figure 3.7. A simple RNN architecture. The output ot from the hidden unit equals the hidden
state ht, which is concatenated with the input xt to the hidden unit. When the RNN is unfolded,
the previous hidden state ht−1 and ht−2 calculated from the previous input xt−1 is concatenated
with the current input xt and passed through an activation function. The output from the
activation function becomes the new hidden state ht, which is passed on to the next hidden
unit with a new input xt+1. When the final input in the CCTA volume has been processed, the
hidden state becomes the output of the RNN which is representative of the entire CCTA volume.
Inspired by [Chollet et al., 2018; Cho et al., 2014]

To incorporate the learned features from prior input feature maps, the RNN used hidden
states to obtain a memory of the previous input feature map. Thus, the RNN could
be suitable for the identification of CAD in the entire CCTA volumes of cross-sectional
slices of the heart and the coronary arteries. [Chollet et al., 2018; Cho et al., 2014] The
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hidden state contained information on previous input feature maps which is updated by
the following equation

h(t) = f(h(t−1), xt), (3.1)

where the hidden state calculated from the previous CCTA slices ht−1 is concatenated with
the current input feature map xt and then passed through an activation function f. The
output of the activation function is the updated hidden state ht. This process continued
until the last feature map in the CCTA volume had been processed and, thus, the output
is representative of the entire CCTA volume. [Chollet et al., 2018; Cho et al., 2014]

The hidden units used in the recurrent layers were GRU. The overall concept of GRU
utilized mechanisms, called gates, to control the flow of information through the RNN. An
example of a GRU is illustrated in figure 3.8. The flow of information was controlled by an
update- and a reset gate, which controlled what information to keep or forget among each
input feature map. These gates contributed to the so-called cell memory as they updated
the hidden state that transferred relevant information from unit to unit processing the
feature maps in the CCTA volume. Thus, the GRU removed irrelevant information to the
prediction of CAD or non-CAD in a CCTA volume. [Chung et al., 2014; Cho et al., 2014]

Figure 3.8. Gated recurrent unit. The GRU consists of a hidden state, a reset gate, and an
update gate. In the GRU, the sigmoid (yellow) and tanh (green) activation functions are used.
The GRU computes point-wise multiplications several times (marked with an ’x’ in a black box)
and one addition (marked as a ’+’ in a black box). The current input feature map to the GRU is
xt whereas the previous hidden and updated hidden state are marked as ht−1 and ht, respectively.
Inspired by [Chung et al., 2014]

When an input feature map entered the GRU, it was concatenated with the hidden state
from the previous GRU. The concatenated information was passed through a sigmoid
activation function in the reset gate. Through the sigmoid activation function, a point-wise
multiplication was performed, where the values closer to 1 were kept, otherwise forgotten.
The sigmoid activation function transformed the concatenation into values between 0 and
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1. For more information about the sigmoid activation function, see appendix B.3.3. The
computation of the reset gate, rj , was as followed:

rj = σ([Wrx]j + [Urh(t−1)]j), (3.2)

where σ is the sigmoid activation function, [.]j is the j -th element in a matrix, x is the
input, h(t−1) is the previous hidden state, and Wr and Ur are weights that are learned.
[Cho et al., 2014]

Next, the concatenation of the input feature map and the hidden state was processed
through the update gate. The update gate protected the memory content in the hidden
state from the perturbation of irrelevant features in the input feature maps. The update
gate consisted of a sigmoid activation function to decide which information from the
concatenation should be added to the hidden state and which should be forgotten. The
computations from the update gate, zj , were as the following:

zj = σ([Wzx]j + [Uzht−1]j). (3.3)

where Wz and Uz are weights that were learned. Afterward the hidden state hj was
updated by

h
(t)
j = zj h̃

t
j + (1− zj)h

(t−1)
j , (3.4)

where h̃tj was used to protect the following units from irrelevant features in the current
input feature map by concatenation of the output from the reset gate and the current
input using a tangent hyperbolic (tanh) activation function. The tanh transformed the
concatenation into values between -1 and 1 to normalize the values of each element in the
input feature map [Chollet et al., 2018]. For extended information about the tanh, see
appendix B.3.5. The equation of the h̃tj was computed by

h̃tj = tanh([Wx]j + [U(r ⊙ ht−1)]j), (3.5)

where tanh is the tanh activation function and W and U are the learnable weights. Thus,
the GRU carried important features from the early input feature maps in a CCTA volume
over the entire sequence, hence, keeping the long-term dependencies [Chung et al., 2014]

Components of the RNN

The RNN achieved the effect of adding layers much like the CNN: the addition of more
layers improved the expressive ability of the RNN. However, because of the difficulties
associated with the training of an RNN due to the vanishing gradient problem, the

22 AAU



3.3. Identification of CAD in CCTA volumes

number of recurrent layers was kept at three recurrent layers. [Long and Zeng, 2022] The
vanishing gradient problem refers to the disappearance of the error when this propagates
back through the RNN to update the network weights [Hochreiter, 1998]. The number
of GRU in each recurrent layer referred to the projection of input data onto an n-
dimensional representation space. Thus, the more GRU the recurrent layers contained,
the more complex information could be learned. However, too many GRU had a bigger
computationally expense and may have led to the learning of unwanted patterns specific
to the training data set. [Chollet et al., 2018]

In the RNN, recurrent dropout was applied, which ensure the same pattern of zeroed
hidden units was applied to each input feature map from a CCTA volume, instead of
randomly zeroing hidden units per input feature map. Recurrent dropout was used in
the inner recurrent activations. The use of temporally randomly dropout would course
disruption in the propagation learning error. [Chollet et al., 2018] For further explanation
of dropout, see appendix B.5.

3.3.3 Fully connected convolutional network for analysis of patient
data

The use of a FCNN to process the patient data simultaneously with the sequential frame
analysis by the CNN-RNN in the CAD network was inspired by Spasov et al. [2018], who
used a multi-modal CNN to predict Alzheimer’s disease in MRI scans. The inspiration of a
study regarding MRI scans was drawn as the literature search of the present study, showed
in appendix A, did not reveal any study using CCTA volumes and the corresponding
patient data to identify CAD. The purpose of using patient data to guide the identification
of a disease was similar between the study by Spasov et al. [2018] and this study. Thereby,
the FCNN architecture from the study by Spasov et al. [2018] was used as a starting point
for the patient data network in this study.

Originally, the network by Spasov et al. [2018] consisted of three fully connected layers, also
called dense layers, that connect each neuron in one layer to each neuron in the following
layer [Chollet et al., 2018]. For elaborated information about FCNN, see appendix B.6. The
dense layers contained 32, 20, and 10 nodes, and each layer was followed by an exponential
linear unit (ELU) as the activation function. The ELU activation function maintained
input elements above the bias while introducing an exponential parameter slope for input
elements below the bias. Thereby, input elements below the bias were preserved compared
to the ReLU activation function. Sharma et al. [2017] The theoretical review of the ELU
activation function can be seen in appendix B.3.2. The architecture by Spasov et al. [2018]
was used for a patient data network in the present study as well. However, it differs by
applying dropout with a dropout rate of 0.2 between the two first dense layers to prevent
overfitting to the training data. In table 3.6, the architecture of the patient data network
can be seen.
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Patient data network
Layers Operations Output shape
Input layer 1x7
Layer 1 Dense, 32 nodes, ReLU, dropout=0.2 32
Layer 2 Dense, 20 nodes, ReLU, dropout=0.2 20
Layer 3 Dense, 10 nodes, ReLU, dropout=0.2 10

Table 3.6. An overview of the patient data network architecture.

3.3.4 Classification of the CCTA volumes

When the CCTA volumes and the patient data had been processed through the CNN-
RNN and the patient data network, the outputs from the networks were concatenated.
This was done to use both the CCTA volumes and the patient data to classify the volumes
as either containing CAD or non-CAD. The concatenated layer was then given as input to
a dense layer with a softmax activation function. The study by Zreik et al. [2018b] used a
softmax activation function as the classification was multi-classed. However, the present
study was a binary classification problem, i.e., if the CCTA volumes were CAD or non-
CAD. Thus, a sigmoid activation function should be used. See appendix B.3.3 for more
information about the sigmoid activation function. However, based on the results from
the hyper-parameter optimization in appendix D.4 should the softmax activation function
be applied. The output of the softmax activation function was a probability of the CCTA
volume belonging to the CAD class and the non-CAD class. Thus, the predicted label
of each CCTA volume was the label with the highest probability. [Sharma et al., 2017]
See appendix B.3.4 for more information regarding the softmax activation function. An
overview of the collected architecture of the full CAD network is presented in figure 3.9.
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Figure 3.9. An overview of the CAD network architecture.

For the CAD network to predict the correct labels for the CCTA volumes, the networks
were trained.

3.4 Training of the CAD network

The CAD network was trained to label the input CCTA volume as either CAD or non-CAD.
The training of the CAD network consisted of parameter adjustments in the layers of the
CAD network, such that the CAD network would correctly map the input CCTA volumes
to the associated targets. The parameter adjustments referred to the filter coefficients
in the convolution kernel, the weights in the reset- and update gate in the GRU, and
the biases of the activation functions. Initially, the parameters were randomly initialized.
[Chollet et al., 2018] The hyper-parameters influencing the training of the CAD network
are listed in table 3.7 and accounted for in the following.

Batch size Optimization algorithm Learning rate
1 Adam 0.00001

Table 3.7. Learning hyper-parameters of the CAD network, controlling the training process.
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The training of the CAD network was an iterative process that consisted of a training loop
with the following four steps:

1. Send a batch of CCTA volumes with the corresponding target label through the
CAD network to obtain predictions.

2. Calculate the loss of the CAD network on the batch by comparing the predicted
labels of the CCTA volume with the target label of the CCTA volume.

3. Calculate the gradient of the loss
4. Update the parameters in the CAD network by using the loss magnitude controlled

by the learning rate in a way that reduces the loss on the current batch.

The training loop of the CAD network was repeated until the loss converged towards the
minimum loss, indicating that the learning of the CAD network did not improve further.
[Chollet et al., 2018]

The gradient update was based on the Adam algorithm, an extension to the stochastic
gradient descent (SGD) optimization algorithm [Kingma and Ba, 2014; Chollet et al.,
2018]. The use of the optimizer was not changed from the original architecture by Zreik
et al. [2018b]. Adam was an adaptive learning rate optimization algorithm, which calculates
individual learning rates for each parameter in the CAD network [Kingma and Ba, 2014].
For more information about the Adam algorithm, see appendix C.1.1. The Adam algorithm
used a forward pass to process a batch of the training data through the CAD network
to obtain a prediction of whether the CCTA volume was containing CAD or not. In the
present study, a batch size of one was used due to limited memory on the used GPU. Thus,
a batch consisted of one CCTA volume. The training data was passed through the CAD
network until every CCTA volume in the training set had been processed. For each batch
of the training data, the parameters were adjusted in a direction that would lower the loss
value based on a feedback signal. The loss value should be as small as possible indicating
that the predicted and the targeted label for the CCTA volume were similar and zero if they
were the same. The feedback signal was the loss value calculated by a loss function at each
time step. The loss function used in the CAD network was categorical cross-entropy (CCE).
How much the parameters were adjusted according to the loss function was controlled by
the learning rate. [Chollet et al., 2018] The present study applied a learning rate of 0.00001
based on the hyper-parameter optimization results in appendix D.5. The adjustment
of the parameters in the CNN-RNN was achieved through the backpropagation through
time (BPTT) algorithm, which implemented a gradient descent optimization algorithm.
BPTT was used when training an RNN. However, the patient data network used the
backpropagation algorithm instead for the adjustment of parameters. BPTT differed from
backpropagation by unfolding the CNN-RNN, shown in figure 3.7 in section 3.3.2, to
perform a backward pass through the whole input sequence to adjust the CNN-RNN
parameters. This was done by using the gradient descent optimization algorithm which
aimed to minimize the loss function. For more information about the gradient descent
optimization algorithm, see appendix C.1. The gradient descent algorithm calculated the
gradient of the loss function at every time step and accumulated them in the CNN-RNN.
The CNN-RNN was then folded again to update the parameters. [Guo, 2013; Chollet et al.,
2018] Whereas the backpropagation algorithm operated the loss value backward through
the patient data networks by layerwise calculating the gradient by using the gradient
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descent algorithm to minimize the loss. [Chollet et al., 2018]

3.4.1 Categorical cross-entropy loss

The loss function used in the CAD network was CCE since the activation function in the
output layer was softmax. CCE calculated the distance between the probability of the
predicted output label and the target label for the CCTA volumes. [Chollet et al., 2018]
The function for CCE is shown in equation 3.6:

CCE = − 1

N

∑
i=1

yi · log(ŷi) (3.6)

where yi is the targeted CAD or non-CAD output label and p(yi) is the probability of the
predicted output label corresponding to the targeted output label for the CCTA volume.
[Martinez and Stiefelhagen, 2018]

3.5 Validation of the identification of CAD

To validate the performance of the CAD network and to compare the performance to
similar studies, the validation method of the AUROC, confusion matrix, and F1 score had
been used. These validation methods were often used by other studies as performance
measurements, as seen in section 2.3, thus, for comparison among studies, they are used
in this study as well. Moreover, the CNN-RNN and patient data network were validated
separately to see how each network influenced the performance of the CAD network.

3.5.1 Confusion matrix

The confusion matrix was used to illustrate the performance of the CAD network by
visualizing the relationship between targeted labels and the predicted labels of CAD and
non-CAD CCTA volumes. A conceptual confusion matrix is illustrated in figure 3.10. The
rows of the confusion matrix represented the targeted labels of the CCTA volumes and
the columns represented the predicted labels of the CCTA volumes. [Novaković et al.,
2017] The threshold used for the confusion matrix was 0.5 as the threshold used for binary
classification was 0.5 [Thanaki, 2018].
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Figure 3.10. The confusion matrix. The relationship between the targeted labels and the
predicted labels of the CCTA volumes as either containing CAD or non-CAD is shown as a true
positive (TP), false negative (FN), false positive (FP), and true negative (TN). This visualizes
how well the CAD network predicted the CCTA volumes labels compared to their targeted labels.

In the confusion matrix, the performance of the CAD network was measured by the
number of true positive, false positive, true negative, and false negative predicted labels.
The number of true positives showed how many predicted CCTA volumes with CAD
were correct and the number of false-positive indicated the number of predicted CCTA
volumes without CAD but labeled so. Likewise, the number of true negatives illustrated
the correctly predicted CCTA volumes without CAD and the number of false-negative
labels showed the number of CCTA volumes with CAD that should have been predicted as
CCTA volumes with CAD but were predicted as CCTA volumes without CAD. [Novaković
et al., 2017]

From the confusion matrix, the sensitivity and the specificity were derived, also known as
the true positive rate (TPR) and the true negative rate (TNP)

TPR =
TP

TP + FN
, (3.7)

where TP is the true positive and FN is the false negative, and

TNR =
TN

FP + TN
, (3.8)

where the TN is the true negative and the FP is the false positive. The sensitivity and
the specificity described the accuracy of the CAD network. [Novaković et al., 2017]

3.5.2 F1 score

The F1 score was another metric used to measure the accuracy of the CAD network. The
F1 score was the harmonic mean of the TPR from equation 3.8 and the positive predicted
value (PPV):

PPV =
TP

PP
, (3.9)

28 AAU



3.5. Validation of the identification of CAD

where PP is the positively predicted labels. Thereby, the F1 score was calculated by

F1 =
2

PPV −1 + TPR−1
. (3.10)

In case of perfect performance of the CAD network, where every label of the CCTA volumes
was predicted correctly, the F1 score would be 1. Contrary, the F1 score would be 0, if
non of the predicted labels were correct. The same threshold from the confusion matrix
was used for the F1 score. [Novaković et al., 2017]

3.5.3 The receiver operating characteristic curve

The receiver operating characteristic (ROC) curve was used to show the ability of the
CAD network to correctly classify CCTA volumes as either containing CAD or not at
various discrimination thresholds. It is used when having balanced data set. A conceptual
illustration of a ROC curve is shown in figure 3.11. [Novaković et al., 2017]

Figure 3.11. The receiver operating characteristic curve. Different curves show different
performances, where the blue curve represents a good performance, and the yellow line represents
a less accurate performance. The representation of random prediction performance is marked with
the red dotted line, called the line of no-discrimination. The dark blue point represents the best
possible performance of the CAD network. Inspired by [Novaković et al., 2017]

When plotting the ROC curve, the TPR of the classification reflecting the sensitivity of
the classification performance was held against the false positive rate (FPR) representing
1 - specificity. The FPR was calculated by equation 3.11. Thus, the ROC curve illustrated
the trade-off relationship between the rate of correctly classified CCTA volumes containing
CAD versus the rate of CCTA volumes not containing CAD but classified so. [Novaković
et al., 2017]

FPR =
FP

TN + FP
(3.11)
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When the TPR and the FPR were held against each other, the best possible performance
of the CAD network would yield a coordinate of (0,1) in the ROC space, representing a
100% sensitivity and specificity, and the CAD network would have performed a perfect
classification. If the CAD network performed random guesses, the ROC curve would be
placed along the line of no-discrimination, as shown in figure 3.11, thus, the further above
the line of no-discrimination the ROC curve of the CAD network performance was the
better the performance of the CAD network. [Novaković et al., 2017]
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Results 4
The following chapter includes the results training of the CNN-RNN, the patient data
network, and the full CAD network.

In this study, a total of 361 patients were included and 17 patients were excluded due to
missing patient data. Out of the 361 patients, 148 patients had CAD, and 213 did not.
Baseline characteristic for the included patients are summarised in table 4.1.

No. of
subjects

Male/
Female

Age
(years)

Weight
(kg)

Height
(cm)

BMI
(kg/m2)

CAD 148 103/45 60.1 ± 9.3 82.3 ± 14.5 173.8 ± 8.4 27.2 ± 4.2
Non-CAD 213 110/103 60.8 ± 7.4 80.2 ± 14.9 172.1 ± 9.3 27 ± 4.1

Systolic
blood
pressure
(mmHg)

Diastolic
blood
pressure
(mmHg)

Cholesterol
(mmol/L)

Smoker/
Non smoker

Diabetic/
Non diabetic

Risk
factors

CAD 145.3 ±19.7 85 ±11.6 5.5 ± 1.5 84/64 19/129 3.1 ± 1.1
Non-CAD 141.2 ± 18.3 83.3 ± 10.4 5.6 ±1.2 114/99 12/101 2.7 ± 1

Table 4.1. Baseline of the study subjects. The mean of the age, weight, height, BMI, systolic and
diastolic blood pressure, cholesterol level, and the number of risk factors have been found along
with the standard deviation.

An overview of the architecture used for training the final CAD network can be seen in
figure 3.9 in section 3.3.4. In the training of the CNN-RNN, the patient data network,
and the full CAD network, the method of early stopping was implemented to prevent the
model of the networks from overfitting to the training data. Thus, the training stopped if
validation loss did not decrease over 10 epochs. The 10 epoch was chosen to ensure that
the decrease in validation loss was not a coincidence, thus, the training of the networks was
not stopped before the losses converge. In the following, the results from the performance
of the models of the CNN-RNN, the patient data network, and the full CAD network will
be presented.

4.1 CNN-RNN

The CNN-RNN was trained separately to investigate how the CNN-RNN influenced the
performance of the CAD network. The curves of the training- and validation losses during
training of the final model of the CNN-RNN are presented in figure 4.1.
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Figure 4.1. Loss curves for the training- and validation loss from the training of the final model
of the CNN-RNN. The y-axis represents the loss and the x-axis represents the number of epochs.
The validation loss curve is illustrated in orange and the training loss curve is marked in blue.

The loss curves for the CNN-RNN showed a descending tendency for the training- and
validation loss. However, the validation loss only decreased 0.1 until epoch 22 hereafter it
flattened. The validation loss ranged between 0.7 to 1 whereas the training loss decreased
in the range 0.6 to 0.2. This created a gap between the losses, which indicated overfitting.
Thus, the CNN-RNN could not generalize to unseen data. The final model of the CNN-
RNN was obtained after the last epoch, where the training loss was 0.1794 and the
validation loss was 0.7764.

From the accuracy curves for the CNN-RNN in figure 4.2, an ascending tendency in
the training accuracy was observed whereas the validation accuracy generally did not
change. The validation accuracy decrease 0.08 in accuracy from epoch 1 to 2 where after
it remained constant. The accuracy curve for the training loss illustrated that the CNN-
RNN performance on the training data improved over time. However, the CNN-RNN
did not change in performance on the validation data through the whole training of the
CNN-RNN.
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Figure 4.2. Accuracy curves for the training- and validation accuracy after training the final
model of the CNN-RNN. The y-axis represents the accuracy and the x-axis represents the number
of epochs. The validation accuracy curve is illustrated with orange and the training accuracy curve
is marked as blue.

The confusion matrix presented in figure 4.3 with a threshold of 0.5, indicated the
performance of the final model of the CNN-RNN on the test data set with 38 patients. The
confusion matrix illustrated that 7 CCTA volumes containing CAD and 14 CCTA volumes
without CAD were classified correctly. Moreover, 10 CCTA volumes without CAD and 7
CCTA volumes with CAD were not classified correctly. The CCTA volumes with CAD
contained different amounts of stenoses.

Figure 4.3. Confusion matrix with a threshold of 0.5 for the performance of the CNN-RNN on
the test data set. The test set contained 38 patients, where 14 patients had CAD and 24 patients
did not.

In table 4.2, the distribution of stenosis in the correctly classified and misclassified CCTA
volumes containing CAD by the CNN-RNN is presented.
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CNN-RNN
Correctly classified Misclassified

1 stenosis 4 3
2 stenoses 3 1
3 stenoses 0 3

Table 4.2. An overview of the distribution of stenosis in the correctly classified and misclassified
CCTA volumes containing CAD by the CNN-RNN.

The average F1 score for final model of the CNN-RNN model along with the F1 score
for the labels CAD and non-CAD is presented in table 4.3. Additionally, the sensitivity,
specificity, accuracy and the AUROC for the CNN-RNN was also presented.

CNN-RNN
F1 score

CAD
F1 score

Non-CAD
Average
F1 score Sensitivity Specificity Accuracy AUROC

0.45 0.62 0.54 0.5 0.58 0.55 0.54

Table 4.3. The F1 score for the labels CAD and non-CAD, and the average F1 score for the
CNN-RNN along with the sensitivity, specificity, accuracy, and AUROC.

The average F1 score of 0.54 indicated that the CNN-RNN had the ability to classify
approximately half of the CCTA volumes correct. This is further supported by an accuracy
at 0.55. Moreover, the CNN-RNN can classify half of the CCTA volumes with CAD
correctly and correctly identified a bit over half of the CCTA volumes without CAD. This
was illustrated with a sensitivity at 0.5. and a sensitivity at 0.58, respectively. The data set
used in the present study was imbalanced as the data set contained more CCTA volumes
without CAD compared with CCTA volumes with CAD. This was illustrated by the F1
score for CAD and non-CAD as the the F1 score for CAD was 0.45 and 0.62 for non-CAD.
This illustrated that the CNN-RNN correctly classified over half of the CCTA volumes
without CAD. But the CNN-RNN predicted under half of the CCTA volumes with CAD
correctly. Thus, the CNN-RNN was better at predicting CCTA volumes without CAD.

The representative slices from different CCTA volumes from the test data set are illustrated
in figure 4.4, to evaluate if tendencies between the true positive-, true negative-, the false
positive-, and the false negative predicted labels were present.
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(a) True CAD
label

Patient 9, slice 95

(b) True CAD
label

Patient 7, slice 76

(c) True CAD
label

Patient 11, slice 75

(d) True CAD
label

Patient 5, slice 68

(e) False non-
CAD label

Patient 3, slice 153

(f) False non-
CAD label

Patient 6, slice 207

(g) False non-
CAD label

Patient 4, slice 67

(h) False non-
CAD label

Patient 14, slice 56

(i) True non-
CAD label

Patient 38, slice 74

(j) True non -
CAD label

Patient 37, slice 65

(k) True non-
CAD label

Patient 27, slice 106

(l) True non-
CAD label

Patient 22, slice 78

(m) False CAD
label

Patient 33, slice 76

(n) False CAD
label

Patient 30, slice 87

(o) False CAD
label

Patient 28, slice 110

(p) False CAD
label

Patient 25, slice 155

Figure 4.4. CCTA slices from 16 patients from the test data set. The labels of the slices
is predicted by the CNN-RNN. The rows represent (a-d) the true positive labels (True CAD
label), (e-h) the false negative labels (False non-CAD label), (i -l) the true negative labels
(True non-CAD label), and (m-p) the false positive labels (False CAD label).

The CCTA slices in figure 4.4 showed similar information regarding the heart and the
coronary arteries. However, some of the CCTA slices (slice d, f, i, l, n, and o) were a bit
more blurry than the others and the contrast of these CCTA slices seemed to be slightly
lower compared to the rest of the CCTA slices. Further, the amount of surrounding tissue,
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such as bone and lungs among others, is differentiated in each of the CCTA slices. Another
differentiating information among the CCTA slices was the anatomical representation
according to the slice number. CCTA slices with approximately the same number did
not show the same anatomically information.

ROC for the CNN-RNN was used to show the ability of the final model of the CNN-RNN
to correctly classify if CCTA volumes contained CAD or not. ROC illustrated in figure
4.5 was made from the test data set.

Figure 4.5. ROC for the test data set of the final model of the CNN-RNN. The y-axis represents
the true positive rate and the x-axis represents the false positive rate. The blue line illustrates the
ROC curve for the test data set and the grey line indicates where the true positive rate and false
positive rate are equal.

The ROC and an AUROC of 0.54 indicated that the final model of the CNN-RNN randomly
classified the CCTA volumes as either CAD or non-CAD. The ROC for the CNN-RNN
illustrated that the curve representing the performance of the CNN-RNN model differed
slightly from the line of no-discrimination as the curve for the CNN-RNN model slightly
moved up towards the upper left corner of the graph. This indicates that the CNN-RNN
performed random classifications.
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4.2 Patient data network

The patient data network was trained separately as with CNN-RNN. However, this was
done to investigate the impact of the patient data on the performance of the CAD network.
The training- and validation loss curve for the training of the patient data network are
presented in figure 4.6.

Figure 4.6. Loss curves for the training- and validation loss after training the final model of the
CAD network. The y-axis represents the loss and the x-axis represents the number of epochs. The
orange line illustrates the validation loss and the blue line illustrates the training loss.

The loss curve from figure 4.6 for the patient data network differed from the CNN-RNN loss
curves by having a descending tendency in both the training- validation loss. Furthermore,
the loss curves for the patient data network does not indicate overfitting to the training
data as the loss curves for the CNN-RNN. After approximately epoch 200, the training
loss begins to flatten. Moreover, the validation loss curve flattened more after epoch 50
compared to the training loss which created a gap between the training- and validation
loss. From approximately epoch 100 to the last epoch at 300, the loss difference increased
in the range from 0,01 to 0,02. The final model of the patient data network was obtained
after the last epoch, where the training loss was 0.6517 and the validation loss was 0.6794.

The accuracies of the training and validation during the training of the patient data
network model were plotted in figure 4.7.
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Figure 4.7. Accuracy curves for the training- and validation accuracy after training the final
model of the patient data network. The y-axis represents the accuracy and the x-axis represents
the number of epochs. The validation accuracy curve is illustrated in orange and the training
accuracy curve is marked in blue.

The training- and validation accuracy curves for the patient data network showed an
ascending tendency in both the training- and validation accuracy. This indicated that
the patient data network performance for both the training- and validation data improved
through the training of the network. However, the validation accuracy increased in steps
through the whole training indicating periods where patient data network did not improve
in performance.

From the confusion matrix with a threshold at 0.5 presented in figure 4.8, it was illustrated
that 10 patients without CAD and 13 patients with CAD were classified correctly.
Moreover, 14 patients without CAD and one patient with CAD were not classified correctly.

Figure 4.8. Confusion matrix with a threshold of 0.5 for the performance of the patient data
network on the test data set. The test set contained 38 patients, where 14 patients had CAD and
24 patients did not.
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From table 4.4, the distribution of stenosis in the correctly classified and misclassified
CCTA volumes containing CAD by the patient data network can be observed.

Patient data network
Correctly classified Misclassified

1 stenosis 7 0
2 stenoses 4 0
3 stenoses 1 1

Table 4.4. An overview of the amount of stenosis in the correctly classified and misclassified
CCTA volumes containing CAD by the patient data network.

A comparison of predicted labels between the CNN-RNN and the patient data network is
illustrated in figure 4.9. When comparing if the CNN-RNN and the patient network have
classified or misclassified the same CCTA volumes, it was observed that they were likely
to classify some of the same CCTA volumes.

Figure 4.9. The common predictions of the CNN-RNN and the patient data network. The
Predicted labels are the predictions made by the networks and the Targeted labels are the
true labels of the CCTA volumes.

The sensitivity, specificity, accuracy, and the AUROC for the final model of the patient
data network are presented in table 4.5 along with the F1 score for CAD, non-CAD, and
the average F1 score. The F1 scores, sensitivity, specificity, accuracy, and the AUROC of
the CNN-RNN are presented as well for comparison.

CNN-RNN
F1 score

CAD
F1 score

Non-CAD
Average
F1 score Sensitivity Specitivity Accuracy AUROC

0.45 0.62 0.54 0.5 0.58 0.55 0.54
Patient data network

F1 score
CAD

F1 score
Non-CAD

Average
F1 score Sensitivity Specificity Accuracy AUROC

0.63 0.57 0.60 0.92 0.42 0.61 0.67

Table 4.5. The F1 score for the labels CAD and non-CAD, and the average F1 score for CNN-
RNN and the patient data network along with the sensitivity, specificity, accuracy, and AUROC.
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From table 4.5, it is illustrated by the sensitivity at 0.90 that the patient model has the
ability to identify patients with CAD correctly. However, a specificity of the patient data
network of 0.42 indicated that the network was mislabeling a lot of patients without CAD
as patients with CAD. The average F1 score of 0.60 indicated that the patient data network
could classify over half of the patients correctly. Further, the F1 score for CAD was 0.63
and 0.57 for non-CAD. This illustrated that the patient data network classified over half
of the patients with CAD and without CAD correctly. The performance between the
patient data network and the CNN-RNN differed as the patient data network was better
at predicting patients with CAD correctly. The difference in performance was further
illustrated by the accuracy of the patient data network and the CNN-RNN was 0.61 and
0.55, respectively, which also illustrated that the performance of the patient data network
was slightly better.

The ROC for the patient data network, illustrated in figure 4.10, was made from the test
data set and showed the performance of the patient data network. The AUROC and ROC
illustrated that the patient data network performed better than the CNN-RNN. This was
indicated by an AUROC of 0.67 for the patient data network and the ROC was moving
more op to the upper left corner of the graph compared with the ROC of the CNN-RNN
in figure 4.5. This illustrated that the final model of the patient data network was more
able to classify the patients with and without CAD correctly than misclassifying them.
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Figure 4.10. ROC for the test data set of the final model of the patient data network. The y-axis
represents the true positive rate and the x-axis represents the false positive rate. The blue line
illustrates the ROC curve for the test data set and the grey line indicates where the true positive
rate and false positive rate are equal.

4.3 CAD network

When combining the CNN-RNN and the patient data network, it became the full CAD
network. In figure 4.11 is the loss curves of the training- and validation loss for the training
of the final architecture of the CAD network presented.
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Figure 4.11. Loss curves for the training- and validation loss after training the final model of
the CAD network. The y-axis represents the loss and the x-axis represents the number of epochs.
The orange line illustrates the validation loss and the blue line illustrates the training loss.

The loss curves for the CAD network illustrated a descending tendency for the training
loss, whereas an overall flat tendency in the validation loss was expressed. This was also
seen in the loss curves for the CNN-RNN in figure 4.1. However, the loss curves for the
CAD network differed from the patient data network loss curves in figure 4.6 by having a
flat tendency in the validation loss. From epoch 8 to the last epoch, the difference between
training- and validation loss increased in the range of 0.08 to 0.1, indicating a slightly
overfitting to the training data. Thus, the CAD network overfitted less to the training
data compared to the CNN-RNN. The final model of the CAD network was obtained after
the last epoch, where the training loss was 0.3981 and the validation loss was 0.4713.
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Figure 4.12. Accuracy curves for the training- and validation accuracy after training the final
model of the CNN-RNN. The y-axis represents the accuracy and the x-axis represents the number
of epochs. The validation accuracy curve is illustrated in orange and the training accuracy curve
is marked in blue.

Like the accuracy curves of the CNN-RNN in figure 4.2, the accuracy curves of the CAD
network in figure 4.12 illustrated an ascending training accuracy, but a constant validation
accuracy. Thereby, the CAD network also improved the performance on the training data,
however, the performance on the validation data did not change.

In figure 4.13 the confusion matrix with a threshold of 0.5 for the final model of the CAD
network is presented. The CAD network classified 5 CCTA volumes containing CAD and
16 CCTA volumes without CAD correctly whereas it misclassified 9 CCTA volumes with
CAD and 8 CCTA volumes without CAD.

Figure 4.13. Confusion matrix with a threshold of 0.5 for the performance of the CAD network
on the test data set. The test set contained 38 patients, where 14 patients had CAD and 24
patients did not.

As mentioned, the CCTA volumes with CAD contained a different amount of stenoses. In
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table 4.6, the distribution of how many CCTA volumes with one, two, and three stenoses
were correctly classified or misclassified by the CAD network, CNN-RNN, and the patient
data network was illustrated. The 14 CCTA volumes in the test data set contained either
one, two, or three stenoses in the coronary arteries. From table 4.6 it can be observed
that the CAD network and CNN-RNN were more equaled in their classifications of the
amount of stenosis in the CCTA volumes with CAD. Moreover, a comparison of the CAD
network with the patient data network showed that the patient data network was better
at correctly classifying CCTA volumes containing one, two, and three stenoses.

CAD network CNN-RNN Patient data
network

Correctly
classified

Mis-
classified

Correctly
classified

Mis-
classified

Correctly
classified

Mis-
classified

1 stenosis 2 4 4 3 7 0
2 stenoses 3 2 3 1 4 0
3 stenoses 0 3 0 3 2 1

Table 4.6. The distribution of how many CCTA volumes with one, two, and three stenoses
was correctly classified and misclassified by the CAD network, CNN-RNN, and the patient data
network.

In figure 4.14, a comparison of the common predicted labels between the CAD network
and the CNN-RNN as well as between the CAD network and the patient data network
is illustrated. When comparing if the CNN-RNN and the CAD network had classified or
misclassified the same CCTA volumes, it was observed in figure 4.14 that the CNN-RNN
and CAD network was more likely to classify the same CCTA volumes correct or not.
Whereas the CAD network and the patient data network were not as likely to classify the
same CCTA volumes correct or not.

44 AAU



4.3. CAD network

Figure 4.14. Comparison of the common predicted labels between the CAD network and the
CNN-RNN and between the CAD network and the patient data network. The Predicted labels
account for the labels predicted by the networks and the Targeted labels is the true labels of the
CCTA volumes.

The F1 score for the prediction of CAD, non-CAD, and the average F1 score for the final
architecture of the CNN-RNN, the patient data network, and the CAD network on the
test data set are presented in table 4.7 along with the sensitivity, specificity, accuracy, and
AUROC.

CNN-RNN
F1 score

CAD
F1 score

Non-CAD
Average
F1 score Sensitivity Specificity Accuracy AUROC

0.45 0.62 0.54 0.5 0.58 0.55 0.54
Patient data network

F1 score
CAD

F1 score
Non-CAD

Average
F1 score Sensitivity Specitivity Accuracy AUROC

0.63 0.57 0.60 0.92 0.42 0.61 0.67
CAD network

F1 score
CAD

F1 score
Non-CAD

Average
F1 score Sensitivity Specitivity Accuracy AUROC

0.37 0.65 0.51 0.36 0.67 0.55 0.51

Table 4.7. The F1 score for the labels CAD and non-CAD, and the average F1 score for CNN-
RNN, the patient data network, and the CAD network along with the sensitivity, specificity,
accuracy, and AUROC.
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The average F1 score of 0.51 for the CAD network showed that the CAD network could
classify half of the CCTA volumes correctly. Just like the results for the CNN-RNN
indicated the F1 score for CAD and non-CAD of 0.37 and 0.65, respectively, that the
CAD network was more likely to classify CCTA volumes without CAD correctly. The
sensitivity of 0.36 for the CAD network showed that the network was not able to correctly
classify the CCTA volumes with CAD. However, the CAD network’s specificity of 0.67
illustrated that the network was better at identifying the CCTA volumes without CAD.
Comparing the accuracy of the CNN-RNN with the CAD network, illustrated that the
CAD network did not differ in performance from the CNN-RNN when the patient data
network was combined with the CNN-RNN in the CAD network.

Since the performance of the CAD network showed an almost random classification of the
CCTA volumes, examples of slices from the CCTA volumes from the test set and whether
or not they were classified correctly are illustrated in figure 4.15.

46 AAU



4.3. CAD network

(a) True CAD
label

Patient 2, slice 370

(b) True CAD
label

Patient 5, slice 68

(c) True CAD
label

Patient 7, slice 119

(d) True CAD
label

Patient 11, slice 132

(e) False non-
CAD label

Patient 1, slice 129

(f) False non-
CAD label

Patient 4, slice 109

(g) False non-
CAD label

Patient 10, slice 78

(h) False non-
CAD label

Patient 14, slice 61

(i) True non-
CAD label

Patient 15, slice 159

(j) True non-
CAD label

Patient 18, slice 107

(k) True non-
CAD label

Patient 19, slice 150

(l) True non-
CAD label

Patient 34, slice 94

(m) False CAD
label

Patient 16, slice 51

(n) False CAD
label

Patient 25, slice 90

(o) False CAD
label

Patient 30, slice 140

(p) False CAD
label

Patient 26, slice 133

Figure 4.15. CCTA slices from 16 patients from the test data set. The labels of the slices is
classified by the CAD network. The rows represent (a-d) the true positive labels (True CAD
label), (e-h) the false negative labels (False non-CAD label), (i -l) the true negative labels
(True non-CAD label), and (m-p) the false positive labels (False CAD label).

The classification of the CCTA volumes by the CAD network was similar to the
classification of the CNN-RNN, thus, some of the patients recur between figure 4.4 and
4.15. Although new CCTA slices are present in 4.15, the same tendencies amongst the
CCTA slices were present. Some of the CCTA slices were slightly blurry and the contrast
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between the different tissues varied a bit, as seen in a, i, l, and o. Moreover, the amount
of surrounding tissue varied, e.g l contained significantly more surrounding tissue than a.

To show the ability of the final model of the CAD network to correctly classify if CCTA
volumes contained CAD or not was the ROC in figure 4.16 created.

Figure 4.16. ROC for the test data set of the final model of the CAD network. The y-axis
represents the true positive rate and the x-axis represents the false positive rate. The blue line
illustrates the ROC curve for the test data set and the grey line indicates where the true positive
rate and false positive rate are equal.

The AUROC on 0.51 indicated that the final model of the CAD network made random
classifications. The ROC illustrated that the model curve differed slightly from the line
of no-discrimination as it was moving up towards the upper left corner of the graph. The
ROC in figure 4.5 for the CNN-RNN was slightly better than ROC for the CAD network
as the performance of the model differed more from the line of no-discrimination. Thus,
both networks indicated that they performed random classifications. The performance of
the patient data network differed from the CAD network as it was more able to classify
the CCTA volumes correctly, as illustrated by the AUROC presented in table 4.7.
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Discussion 5
CCTA is often used as a diagnostic tool for identifying patients with CAD. The method
has high sensitivity and a negative predictive value of 70 - 80%, but the specificity varies
between 48 - 78%. The low specificity causes 22 - 52% of the patients without CAD to
undergo a CAG, which is the invasive golden standard for diagnosing CAD. Moreover, the
manual review of the CCTA volumes is prone to inter-observer variability. To overcome
the aforementioned problems related to diagnosing CAD with CCTA, deep learning could
be implemented in the workflow of the clinicians. The present study investigated the use
of CCTA volumes and the corresponding patient data to identify patients with CAD by
using a CAD network consisting of two neural networks based data processing components:
a CNN-RNN combined with a patient data network. The CNN-RNN was based on the
architecture used by Zreik et al. [2018b], but it differed by using a 2D CNN and three
recurrent layers with 128 GRUs in each. The patient data network was inspired by Spasov
et al. [2018] but dropout was added between the two first dense layers. The full CAD
network obtained an AUROC of the ROC of 0.51 and an F1 score of 0.51, which indicated
that the CAD network made random classifications. The CNN-RNN alone obtained an
AUROC of the ROC of 0.54 and an F1 score of 0.54, indicating that the CNN-RNN
classified half of the CCTA volumes containing CAD or non-CAD correctly. Finally, the
patient data network obtained an F1 score and AUROC of the ROC of 0.6 and 0.67,
respectively, which illustrated that the patient data network was better at predicting
patients with CAD or non-CAD, correctly.

From the obtained results from the CAD network, a flat tendency in the validation loss was
observed. The flat tendency in validation loss was also observed in the loss curves obtained
through hyper-parameter optimization. A flat validation loss could result from missing
variance among the slices from each CCTA volume. The suspected insignificant variance in
the CCTA slices was further indicated in figure 4.4 and 4.15, showing representative CCTA
slices from the test data set. The CCTA slice might have shared the same features despite
containing CAD or not, which prevented the CAD network from learning the features that
varied between the CAD and non-CAD CCTA volumes. If the variance amongst the slices
from the different CCTA volumes was insignificant, the possibility of the CAD network
detecting any differentiating features between the CAD and non-CAD CCTA volumes
would decrease. To manipulate the variance in the CCTA slices, augmentation could have
been applied to the CCTA slices, generating input CCTA volumes to the CAD network
varying from the original CCTA volumes. Augmentation strategies could be rotation,
scaling, flipping, changes in brightness, or random shift. When applying augmentation,
the augmented CCTA would have to imitate the original CCTA slices, otherwise, the
augmented CCTA slices would not represent reality. An augmentation strategy for the
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CCTA slices could be rotation. Thereby, the information in the CCTA slice would be the
same but at different locations forcing the CAD network to learn the same features at
different locations.

When comparing the results with the study by Zreik et al. [2018b], they gained a higher
F1 score of 0.75 for detecting significant stenosis, indicating that the RCNN was better
at classifying CAD. The present study utilized a 2D CNN instead of a 3D CNN like the
study by Zreik et al. [2018b], and the RNN contained an extra recurrent layer with more
hidden units, thus, three recurrent layers with 128 GRUs. Using a 2D CNN instead of
a 3D CNN could result in missing information from the CCTA volumes. The 2D CNN
modeled spatial information in the CCTA volumes whereas a 3D CNN would also have the
ability to model temporal dependencies between the slices in each CCTA volume. Thus,
the present study did not model the temporal dependencies in the CCTA slice through the
CNN as the study by Zreik et al. [2018b]. However, the temporal information from the
CCTA volumes was instead learned in the RNN, thus, the CAD network did not miss the
temporal information in the CCTA volumes. To conclude if a 3D CNN performed better
than a 2D CNN in the CAD network, a CAD network with a 3D CNN should have been
tested. Due to the computational limitation of the used GPU, a 3D CNN was not used in
the present study. Another reason for the different performance between the present study
and Zreik et al. [2018b] was the use of data. Both studies used CCTA volumes, however,
Zreik et al. [2018b] differed by having extracted the centerlines of the coronary arteries
from every CCTA slice to reconstruct a straightened MPR of every coronary artery in
the CCTA volumes. Thus, the input to RCNN was MPR images of arteries whereas the
input to the CAD network was a CCTA volume containing cross-sectional slices of the
entire heart. The information in the input to the CAD network contained more noise than
the MPR images as the MPR images only contained the region of interest, the coronary
arteries. The use of the MPR images of the coronary arteries could have resulted in a
better performance of the CAD network as the stenosis could be easier to identify in the
MPR image than in CCTA volumes of the entire heart.

The CNN-RNN and patient data network were trained separately to see how each network
influenced the CAD network. A comparison of the loss curves from the CNN-RNN with
the loss curves of the CAD network showed the same trend in the descending training losses
but a flat or slightly descending tendency for the validation losses. However, the patient
data network alone had converging loss curves for both the training- and validation. From
the comparison of how many common predictions the CAD network and the CNN-RNN
and the CAD network and the patient data network had, respectively, in figure 4.14 in
section 4.3, the CAD network and the CNN-RNN had more agreeing predictions than
the CAD network and the patient data network. Thereby, the CNN-RNN may have had
a bigger influence on the predictions of the final model than the patient data network.
However, the performance of the patient data network was better than the CNN-RNN
and the CAD network. This showed conflicting learning between the patient data network
and the CNN-RNN in the CAD network. The patient data network classified most of
the CCTA volumes as containing CAD, whereas the CNN-RNN classified more non-CAD
CCTA volumes than with CAD. Thereby, the data processing components of the CAD
network made unequal classifications, which could have contributed to the almost random
classification of the CAD network. Moreover, the better performance of the patient data
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network compared to the CNN-RNN could be an indication of the predictive value of the
patient data, in particular the risk factors, when identifying CCTA volumes with CAD.

Before the CCTA volumes were given as input to the CNN-RNN, they were pre-processed
according to section 3.2.3. The first pre-processing method consisted of cropping each slice
in the CCTA volumes. The cropping of all slices in every CCTA volume was performed on
behalf of a single slice from one CCTA volume. Thus, the uncertainty of whether or not the
cropped CCTA slices contained the entire information of the coronary arteries was present
due to the different sizes of the heart of the patients. To accommodate the possibility
of one or more coronary arteries being cut off during the cropping, a region beyond the
heart was included. However, the position of the heart might differ from patient to patient,
thus, when the cropping was executed at the same position every time, the risk of coronary
arteries being cut off was present. As the features of the coronary arteries were essential
to identify CAD in the CCTA volumes, the cut off of the coronary arteries could have
resulted in the lack of crucial information for predicting the correct label of the CCTA
volumes. Although the risk of excluding important information from the data was present,
the method of cropping the slices from the CCTA volumes was time-saving and effective
to create a region of interest of the heart. To ensure all of the necessary information about
the heart and the coronary arteries, other approaches for a region of interest could have
been used, like segmentation of the heart region.

Second, the CCTA slices were resized to a spatial resolution of 256x256 to limit the
computational burden. When resizing the CCTA slices the important information of the
coronary arteries became smaller, thus, the significance of the features for the coronary
arteries might have been reduced. However, the spatial resolution of 256x256 was the
biggest resolution allowed due to the computational limitation of the GPU. Additionally,
the cropping of the CCTA slices removed unnecessary information before the the resizing,
thereby, the information of the heart and the coronary arteries was more present than if
the whole CCTA slices had been resized.

5.1 Limitations

A limitation of this study was the computational limit of the GPU. Due to the
computational limitation, a batch size of one was used and submission of more layers and
filters to the CNN was not possible. An increased batch size could have increased the ability
of the CAD network to generalize to unseen CCTA volumes. However, it was not possible
to optimize the batch size. The batch size, which indicated the best performance of the
CAD network, should have been found through hyper-parameter optimization. Moreover,
the addition of more layers and filters to the CNN could have improved the expressive
ability.

The data set of the present study contained more non-CAD CCTA volumes than CAD
CCTA volumes. This was also illustrated in the F1 score for CAD and non-CAD for the
CAD network. Although the distribution between CAD and non-CAD was 41% and 59%,
the learning of non-CAD features was biased. To increase the learning of CAD features,
the distribution could have been in favor of the amount of CCTA volumes containing
CAD. Since the features of CAD were presumed to be few based on the representation of
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the coronary arteries in the CCTA slices and learning of these features was preferred, it
might have increased the ability of the network to predict the correct labels. To increase the
representation of the CAD features, a data set consisting of an overweight of CCTA volumes
containing CAD could enhance the leaning of features associated with CAD. Although,
manipulating the distribution between CAD and non-CAD CCTA volumes would not
be representative of the population in the data set, the CAD network might learn the
difference between CAD and non-CAD CCTA volumes.

Moreover, the patient data consisted of clinical assessment of the symptoms like angina
but the use of symptoms as patient data was not possible, since it was not defined for
all the patients. Other patient data such as which segments of the coronary arteries were
present for the patients with hemodynamically significant CAD, but none of the authors
of the present study were experience enough to point out which CCTA slices contained
the given segments nor to identify CCTA slices containing significant stenosis. Although
the authors were not trained cardiac clinicians, the patient data did contain information
about where the stenoses were in the CCTA volumes with CAD and how many were
detected. The exact location of the stenoses could not be determined by the authors, but
the number of stenoses for each CCTA volume could have been a part of the patient data
fed to the CAD network to improve the possibility of the network to predict the correct
labels. Additionally, information of which slices contained stenosis could have been used
to label each CCTA slice as containing CAD or non-CAD instead of the CCTA volumes.
When labeling the CCTA slices as containing CAD or not, the CAD network might learn
to map features in each CCTA slices to either belonging to CAD or non-CAD, thus, the
location of stenosis might be detected.

As the results from the CAD network indicated randomly classification of whether or
not CCTA volumes contained CAD or not, improvement of the performance of the
CAD network had to be made before implemented in clinical practise. To improve the
performance of the CAD network, the approach of class activation maps proposed by
Podgorsak et al. [2020] could have been implemented to identify which features in the
CCTA slices were weighted as important. Thereby, it would be visualized if the regions
containing the coronary arteries were weighted by the CAD network. If the features of the
coronary arteries were not weighted important by the CAD network, it might be necessary
to implement anatomical guidance to ensure that features of the coronary arteries were
weighted.
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Conclusion 6
This study aimed to identify patients with CAD based on CCTA volumes and
corresponding patient data using deep learning. From the results, it can be concluded
that the CAD network made random classifications according to the AUROC of the ROC
of 0.51 and an F1 score of 0.51. The CAD network consisted of two neural networks; the
CNN-RNN and the patient data network. The performance of the CNN-RNN and the
patient data network obtained an F1 score of 0.45 and 0.63, respectively. This indicated
that the CNN-RNN classified half of the CCTA volumes containing CAD or non-CAD
correctly and that the patient data network was better at predicting patients with CAD or
non-CAD, correctly. For the CAD network to be used in clinical practice, the performance
of the CNN-RNN and the patient data work had to be improved.
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Structures Literature
search A

To investigate the problem domain within the scope of the present study, a structured
literature search had been performed. The structured literature search investigated the
diagnosis of CAD and the challenges related to the diagnosis. The first step in the process
was to find keywords for the structured literature search. This was done by performing
a semi-structured search. A search protocol illustrated in table A.1 had been made to
document the structured literature search. The search protocol contained information
regarding the problem, limitations, and inclusion and exclusion criteria for the search.

Element Definition
Background Coronary artery disease (CAD) is the most common type of cardiovascular

disease and the most frequent cause of death worldwide. CAD occurs due to
partially or completely blocked areas called stenosis in the coronary arteries
causing a reduction of oxygen rich blood to the myocardium. The diagnosis
of CAD is important to treat it before the heart is severely or permanently
damaged. The diagnosis of CAD is based on imaging technologies that
provided visualization of the coronary arteries.

Problem domain The golden standard for diagnosing CAD is coronary angiography (CAG).
However, the method is invasive and has risks of complications such as
myocardial infarction due to the catheter passing plaque causing it to
rupture. A non-invasive method for detecting stenosis is coronary computed
tomography angiography (CCTA). This method is time-consuming as the
clinicians manually have to review a large number of images for detecting
stenosis.

Information source PubMed

Search strategies Block search
Chain search

Inclusion criteria Articles in English or Danish

Exclusion criteria

E1: Full text not available
E2: References not specified
E3: Studies regarding animals
E4: Studies regarding calcium score
E5: Studies regarding children

Strategy of selection
and

critical examination

1) Selection of sources based on title and abstract
2) Selection of source based on full text of the article
3) Chain search based on included literature

Table A.1. Search protocol for the structured literature search.

In the structured literature search, two search strategies were used. The first search
strategy was the block search, illustrated in table A.2. The identified keywords from
the semi-structured search were used in the block search. They were connected by the
boolean operators "AND" and "OR", which will narrow or expand the search. From the
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block search, a search string was derived and used in the medical database PubMed.

AND
Coronary artery disease Cardiac CT Deep learning
Coronary artery stenosis Computed tomography CNNOR

Coronary angiography

Table A.2. Block search for the structured literature search.

From the initial search were 11 articles identified and 89 articles were found through the
search in PubMed. Initially, the title and abstract of the articles were sorted by the
inclusion and exclusion criteria and afterward the articles were sorted by full text. The
structured literature search resulted in 38 articles, where 34 articles were found through
block search and 4 articles were identified through chain search. The sorting process can
be seen in figure A.1.

Figure A.1. The sorting process for the literature search.
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Layers in the CAD network B
B.1 Convolution

A convolution is a linear operation that involves multiplication between the input CCTA
slice and a two-dimensional array consisting of filter coefficients, called a match filter. The
filter applied was smaller than the input CCTA slice, but had the same depth. Thereby,
the filter only covered a part of the input CCTA slices, as illustrated in figure B.1. [Chollet
et al., 2018] Between the filter coefficients and pixels in the covered part of the CCTA slice,
an element-wise multiplication was performed. The multiplied values were then summed
and divided with the number of filter coefficients, which resulted in a single value. This
process continued until the filter passed every possible position in the input CCTA slice.
As illustrated in figure B.1, the filter moves from the left to the right and from top to
bottom. The next position of the filter was decided by a stride e.g. if the stride was one,
the filter shifted one pixel for each movement. [Chollet et al., 2018]

Figure B.1. Concept of the convolution operation. A match filter slides over the input CCTA
slice making an element-wise multiplication resulting in a feature map. Inspired by Chollet et al.
[2018].

The result of the convolution was a two-dimensional array with output values, called a
feature map. [Chollet et al., 2018]
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B.1.1 Zero-padding

After the convolution operation, the spatial resolution of the output feature map would be
smaller than the spatial resolution of the input CCTA slice or feature map. Zero-padding
is a technique to preserve the spatial resolution of an input CCTA slice or feature map.
The concept of zero-padding is illustrated in figure B.2. [Chollet et al., 2018]

Figure B.2. Concept of the convolution operation with zero-padding. A match filter slides over
the input making an element-wise multiplication resulting in a feature map. The input is padded
with zeros along the edges to maintain the spatial resolution of the input. Inspired by [Chollet
et al., 2018].

When using zero-padding, a border of pixels with the value of zero was added around the
edges of the input feature map, as illustrated in figure B.2. [Chollet et al., 2018]

B.2 Batch normalization

The purpose of batch normalization was to reduce internal covariate shift which allowed
for fast and stable training. Internal covariate shift is the change in the distribution of
internal nodes due to the change in the weights and bias values. This change in distribution
presented a problem because the subsequent layer needed to adapt to the new distribution,
which affected the CNNs training speed. Batch normalization overcame internal covariate
shift by normalizing the inputs for the subsequent layer using a fixed mean and variance.
Thus, the distribution of the inputs did not change which stabilized and accelerated the
training of the CNN. [Ioffe and Szegedy, 2015]

B.3 Activation functions

Activation functions are non-linear functions that computed the weighted sum of inputs
and added bias. Thereby, they were indicating which part of the inputs were relevant for
the CAD network to focus on. The choice of activation function depended on the position
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of the activation function. Activation functions placed in the hidden layers converted
linear mappings to non-linear forms. Typically, the same activation function was used in
all the hidden layers. Activation functions placed in the output layer would instead create
predictions. The output layer typically used a different activation function than the hidden
layers and depended on the type of prediction required by the network.[Nwankpa et al.,
2018]

B.3.1 Rectified Linear Unit

The Rectifies Linear Unit (ReLU) activation function performed a threshold operation on
each element of the input feature map, as illustrated in figure B.3. [Nwankpa et al., 2018]

Figure B.3. The ReLU activation function. Inspired by [Nwankpa et al., 2018]

If the input element was below bias, the ReLU outputted zero whereas an input element
above bias remained unchanged. ReLU with a bias of zero is given in equation B.1.

f(x) =

{
xi if xi ≥ 0

0 if xi < 0,
(B.1)

where f(x) is the output of the activation function and xi is the input element. [Nwankpa
et al., 2018]

B.3.2 Exponential linear unit

The Exponential Linear Unit (ELU) activation function is a variant of the ReLU activation
function, which introduced an alpha constant, defining an exponential parameter slope for
input elements below the bias, as seen in figure B.4. [Sharma et al., 2017]
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Figure B.4. The ELU activation function. Inspired by [Sharma et al., 2017]

The mathematical expression of ELU with a bias of zero is given ín equation B.2 [Sharma
et al., 2017].

f(xi) =

{
xi if xi ≥ 0

α(exi − 1) if xi < 0,
(B.2)

B.3.3 Sigmoid activation function

The sigmoid activation function is a logistic function, that outputs values in the range 0 to
1, as shown in figure B.5. The larger input, the closer the output value was to 1 whereas
the smaller the input was, the closer the output was to 0. [Nwankpa et al., 2018]

Figure B.5. The sigmoid activation function. The sigmoid activation function scales its input to
a range between 0 and 1. Inspired by Sharma et al. [2017]; Nwankpa et al. [2018]

The sigmoid activation function is defined by equation B.3 with a bias of zero. [Nwankpa
et al., 2018]
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f(x) =
1

1 + e−xi
(B.3)

B.3.4 Softmax activation function

The softmax activation function was used as the output activation function in the classifier.
The softmax was a combination of multiple sigmoid functions, returning a probability of
both the CAD label and the non-CAD label. Thus, the predicted label of each CCTA
volume was the label with the highest probability. The sum of the probabilities for the
CAD and non-CAD labels of a CCTA volume equaled 1. This was achieved by applying
a standard exponential function to each element of the input vector and then normalizing
the input element by dividing with the sum of all the exponentials. The following equation
shows the mathematical expression for the softmax activation function:

σ(z)j =
ezj∑K
k=1 e

zk
(B.4)

σ(z)j is the probability for either of the labels, K refers to the total number of labels, and
zk is the total of the elements in the input vector. [Sharma et al., 2017]

B.3.5 Tangent Hyperbolic activation function

The Tangent Hyperbolic (tanh) activation function normalized the input to be in a range
between -1 and 1 [Chollet et al., 2018]. Equation B.5 shows the mathematical expression
of a tanh activation function with a bias of zero.

f(x) =
ex − e−x

ex + e−x
(B.5)

The tanh activation function has the property of being zero-centered as shown in figure
B.6. [Nwankpa et al., 2018]
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Figure B.6. The tanh activation function. The tanh activation function is zero-centered and
scales the input in the range between -1 and 1. The bias value of the tanh activation function is
zero. Inspired by Nwankpa et al. [2018].

B.4 Max pooling

The max pooling operation operated by sliding a window with a size of 2x2 pixels across
the output feature map from the ReLU activation function and outputted the maximum
value of the pixels in the window. The window was moved according to the stride of 2
pixels. Thus, the window was moved two pixels each time. Thereby, the input feature
map was down sampled. [Chollet et al., 2018] The max pooling operation is illustrated in
figure B.7.

Figure B.7. The concept of the max pooling operation. The maximum value of the pixels in the
window with a size of 2x2 is outputted from the max pooling operation. Inspired by Bonaccorso
[2018].

B.5 Dropout

Dropout is a regularization technique used in neural networks preventing them from
overfitting to the training data. The dropout operation randomly drops out or set some
of the output hidden units to zero. The concept of dropout is illustrated in figure B.8.
The amount of zeroed output hidden units was determined by the dropout rate, which was
the fraction of zeroed hidden units. Usually, the dropout rate varies between 0.2 and 0.5,

67



corresponding to a range of 20% to 50% zeroed hidden units, where a dropout rate of 0.5
is shown in figure B.8. [Chollet et al., 2018]

Figure B.8. Concept of random dropout with a dropout rate of 0.5. Inspired by Chollet et al.
[2018]

B.6 Fully connected neural network

The FCNN consisted of an input layer and dense layers. The input layer distributed each
element of the input to each node in the first dense layer. Hereafter, the dense layers
connected each previous node to each following node. Thus, the output of one node in the
previous layer was the input to each node in the sequential layer. When calculating the
output of a node, the inputs to the node were summed and passed through a non-linear
activation function, which determined the output of the node. The concept of the FCNN
is illustrated in figure B.9 [Khan et al., 2018]

Figure B.9. Concept of a fully connected neural network. Inspired by Khan et al. [2018].
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Training of the CAD
network C

C.1 Gradient descent algorithm

The gradient descent optimization algorithm aimed to minimize the loss function. The
concept of gradient descent is illustrated in figure C.1. The gradient of the loss function
gives the direction of the steepest descent and by calculating the negative of the gradient,
the direction decreasing the loss function was found, indicating how much the parameters
must be adjusted for a better prediction. By using gradient descent, the CAD network
iterative moved closer to the minimum value of the loss function by taking small steps in
the direction given by the gradient. How much the parameters were adjusted according
to the loss function was controlled by the optimizer’s learning rate. To find an optimal
learning rate toward the loss function’s minimum, an stochastic gradient descent-based
optimizer was used. [Chollet et al., 2018]

Figure C.1. Concept of gradient descent optimization algorithm. Inspired by Chollet et al.
[2018].

The equation for the gradient descent optimization algorithm is presented in equation C.1:

wt+1 = wt − α · ∂L
∂x

(C.1)
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where wt+1 is the computed parameter value, wt is the prior parameter value, α is the
learning rate, and ∂L

∂x is the gradient for the direction of the descent. [Chollet et al., 2018]

BPTT and backpropagation used the chain rule to calculate the gradient backward through
the layers of the CAD network to adjust the parameters. The chain rule can be seen in
equation C.2:

∂h

∂xi
=

∑
j

∂h

∂uj
· ∂uj
∂xi

(C.2)

Here x ∈Rm and u ∈Rn indicating that the inner function maps m inputs to n outputs
and the outer function receives n inputs to produce an output, h. Further, i = 1, ...,m

and j = 1, ..., n. [Chollet et al., 2018; Guo, 2013]

C.1.1 Adam optimizer

The Adam algorithm was an adaptive learning rate optimization algorithm. It is a
combination of an adaptive gradient algorithm and root mean square propagation. The
concept of the Adam optimizer is presented in figure C.2. [Kingma and Ba, 2014]

Figure C.2. The concept of the Adam optimizer. The adaptive learning rate varies the step size
of the update of the parameter reaching the global minimum during training. Inspired by Kingma
and Ba [2014].

The calculation of the adaptive learning rate was done by applying estimations of the
first and second moments of the gradient, where the first moment was mean and the
second moment was uncentered variance. To estimate the moments, an exponential moving
average calculated on the gradient was used. The adaptive learning rate was calculated by
the following equation:
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wt+1 = wt − m̂t

(
α√
v̂t + ϵ

)
(C.3)

where wt+1 is the computed parameter value, wt is the prior parameter value, m̂t is the
bias-corrected first moment, α is the learning rate, v̂t is the bias-corrected second moment,
and ϵ is a small positive constant. [Kingma and Ba, 2014]
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Hyper-parameter
optimization of the CAD

network D
A manual hyper-parameter optimization was performed on the CAD network to find which
hyper-parameters to use for the identification of CCTA volumes containing either CAD
or not. This was done as the baseline architecture could not identify CCTA volumes
with CAD or not. Each hyper-parameter was tested three times to avoid noisy fitness
evaluation, which is when a neural network produces different results because of different
initialization conditions and random batch training [Stathakis, 2009]. The method of
early stopping was implemented to avoid overfitting to the training data by stopping the
training if the performance of the CAD network validation loss did not decrease over 10
epochs. The 10 epoch was chosen to ensure that the decrease in validation loss was not
a coincidence, thus, that the training of the CAD network was not stopped before the
losses converge. Afterwards, the hyper-parameter results were evaluated according to the
selection criteria in table D.1 to find the hyper-parameter which had the best performance
according to the selection criteria. If the performance of the CAD network improved with
a given hyper-parameter, the architecture was updated to ensure the best performance of
the CAD network.

When choosing hyper-parameters, three criteria were used, shown in table D.1. The first
criterion was assessed through a visual inspection of the loss curves of the training- and
validation losses. Moreover, it must be the first criterion to be fulfilled as a descending
tendency in losses through the training indicated that the network was getting better at
learning and generalizing. The second criterion was that the loss difference between the
training- and validation loss in the last epoch had to be the lowest. It must be fulfilled to
ensure that the CAD network did not overfit to the training data as this indicated that
the CAD network could not generalize to unseen data.

Criteria for selecting hyper-parameters
1. The training- and validation losses must have a descending tendency

2. The average difference between training- and validation losses must
be as low as possible

Table D.1. Criteria used to selected hyper-parameters.

The starting point of the hyper-parameter optimization was inspired by the architecture by
Zreik et al. [2018b] and Spasov et al. [2018]. The baseline architecture prior to the hyper-
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parameter optimization is shown in figure D.1. The learning rate used in the baseline
architecture was 0.001. The baseline architecture was tested three times to create a
starting reference to compare the following hyper-parameter configurations. The results
from the baseline architecture can be seen in table D.2 and in figure D.2a, D.2b, and D.2b.
The hyper-parameters was tested sequentially. First hyper-parameters such as number of
recurrent layers and GRUs, and the use of dropout in the RNN was tested. Afterwards,
the activation function in the classifier was tested and lastly, the learning rate was tested.

Figure D.1. An overview of the baseline architecture for the hyper-parameter optimization.

The loss curves of the training- and validation loss for each hyper-parameter configuration
were plotted, according to the epochs.

D.1 Number of recurrent layers

The hyper-parameter optimization of the number of recurrent layers was tested as the
addition of more layers gives more tunable parameters, thus, more learning power. The
hyper-parameter optimization of the number of recurrent layers consisted of two tests
in addition to the test of the baseline architecture. The first test consisted of testing
three recurrent layers with 64 GRUs. The second test was performed on an RNN
architecture with four recurrent layers with 64 GRUs. The results of the hyper-parameter
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optimization of the number of recurrent layers are presented in table D.2. The hyper-
parameter configuration of three recurrent layers obtained the lowest mean difference
between training- and validation loss.

Baseline architecture
Two recurrent layers Three recurrent layers Four recurrent layers

Mean Range Mean Range Mean Range
0.8908 0.5013 - 1.2656 0.1906 0.035 - 0.3893 0.1926 0.0644 - 0.2851

Table D.2. Results from the hyper-parameter optimization of the number of recurrent layers,
where the baseline architecture, three, and four recurrent layers were tested three times each.
Mean is the mean difference between the training- and validation losses in the last epoch of the
training in the three tests. Range is the minimum and maximum difference between the training-
and validation losses. The Mean and Range of the chosen hyper-parameter configuration are
highlighted in blue.

The loss curves of the training- and validation loss for the hyper-parameter optimization
of the number of recurrent layers are plotted in figure D.2a to D.4c. In the three tests of
the baseline architecture, a general descending tendency for the training loss were observed
along with a overall flat tendency in the validation loss. Furthermore, intersections between
training- and validation loss in all three tests were observed. In the first test presented
in figure D.2a, a descending tendency for both the losses was observed from epoch 1 to 5
hereafter the validation loss increased and an intersection was seen in epoch 4. The second
test presented in figure D.2b illustrated an increasing validation loss, which indicated
overfitting to the training data. Moreover, intersections were seen in epoch 4, 5, and 6.
In the last test presented in figure D.2c, a fluctuating tendency in the validation loss was
observed along with intersections between training- and validation loss in epoch 4, 6, and
17.
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(a) (b)

(c)

Figure D.2. Loss curves for the CAD network with the baseline architecture.

The loss curves in figure D.3 for testing three recurrent layers showed the same general
descending tendency in the training losses and a flat tendency in the validation as the loss
curves from the baseline architecture. The first test, presented in figure D.3a, had one
intersection in epoch 8 observed. Moreover, the validation loss had an ascending tendency,
indicating overfitting. In the second test, presented in figure D.3b, four intersections were
observed in epochs 3, 5, 7, and 9. The last test, presented in figure D.3c, illustrated four
intersections in epochs 4, 7, 9, and 10. Furthermore, the validation loss showed fluctuations.
In both tests two and three, a flat tendency in the validation loss was observed.
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(a) (b)

(c)

Figure D.3. Loss curves for the CAD network with three recurrent layers containing 64 GRUs.

The same general tendency as in the two previous tests of testing baseline architecture and
three recurrent layers were observed for testing four recurrent layers. In the first and second
tests for testing four recurrent layers, presented in figure D.4a and D.4b, an ascending
tendency in the validation loss was observed, which indicated overfitting. Moreover, one
intersection in epoch 3 was observed in both tests. In the last test, presented in figure
D.4c, one intersection in epoch 2 was observed. Moreover, the validation loss had ascending
tendency from epoch 1 to 9, but a descending tendency from epoch 9 to 11.

76



(a) (b)

(c)

Figure D.4. Loss curves for the CAD network with four recurrent layers containing 64 GRUs.

The results from the hyper-parameter test for the number of recurrent layers showed that
all three architectures had a descending tendency in training loss and an ascending or flat
validation loss. Thus, none of the three tests had a descending tendency in both losses.
However, the architecture with three recurrent layers had the lowest mean difference of
0.1906 between the training- and validation loss, thus, it was chosen to use three recurrent
layers.

D.2 Number of GRUs

The hyper-parameter optimization of the number of GRUs in the recurrent layers was
tested as the more GRUs in the recurrent layers, the more complex information could
be learned. The hyper-parameter optimization of the number of GRUs consisted of one
test. The loss curves can be seen in figure D.5 and the mean difference of the losses is
shown in table D.3. The architecture containing 128 GRUs in the three recurrent layers
was compared to the architecture containing 64 GRUs in the three recurrent layers, found
through the previous hyper-parameter optimization in table D.3. When comparing the
two architectures, the lowest mean difference between training- and validation loss was
obtained with the hyper-parameter configuration of three recurrent layers with 128 GRUs.
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64 GRUs 128 GRUs
Mean Range Mean Range
0.1906 0.035 - 0.3893 0.1241 0.0939 - 0.2036

Table D.3. Results from the hyper-parameter optimization of the number of GRUs, where 64
and 128 GRUs were tested three times each. Mean is the mean difference between the training-
and validation losses in the last epoch of the training in the three tests. Range is the minimum
and maximum difference between the training- and validation losses. The Mean and Range of
the chosen configuration are highlighted in blue.

From figure D.5, a general descending tendency in the training loss and intersections
between the training- and validation loss was observed. In the first and last tests, presented
in figure D.5a and D.5c, a flat tendency in the validation loss was observed. Moreover,
seven intersections in epoch 4, 7, 9, 14, 16, 18, and 19 was observed in figure D.5a, whereas
one intersection in epoch 7 was present in figure D.5c. In the second test, presented in
figure D.5b, a descending tendency in the validation loss from epoch 1 to 31, was observed,
and from epoch 31 to 35 the validation loss increased. Furthermore, two intersections in
epochs 5 and 7 were observed.

(a) (b)

(c)

Figure D.5. Loss curves for the CAD network obtained through hyper-parameter optimization
testing 128 GRUs.

The results from the hyper-parameter test for the number of GRUs showed that every test
of the architecture with 128 GRUs in the three recurrent layers had a descending tendency
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in training loss. The only test with a descending validation loss was the second test, seen
in figure D.5b. The architecture with 128 GRUs had the lowest mean difference of 0.1241
between the training- and validation loss, thus, the architecture with 128 GRUs in the
three recurrent layers fulfilled the selection criterion.

D.3 Dropout

To review the use of dropout in the RNN, the hyper-parameter optimization of dropout
in the recurrent layers consisted of testing the architecture without dropout. The test
of dropout was performed to see if it prevented the CAD network from overfitting to the
training data as dropout is a regularization technique for preventing overfitting. A dropout
rate of 0.5 was used as the baseline architecture applied a dropout rate of 0.5. Since
the previous architecture consisting of three recurrent layers with 128 GRUs contained
dropout with the rate of 0.5, this architecture was used for comparison. The loss curves
of the previous architecture are shown in figure D.5. Thus, an architecture containing
three recurrent layers with 128 GRUs without a dropout rate was tested. The loss curves
from a training of the architecture without dropout are shown in figure D.6. Furthermore,
the mean difference and range between the training- and validation losses are presented
in table D.4, where the hyper-parameter configuration with dropout obtained the lowest
mean difference between the training- and validation loss.

Dropout Without dropout
Mean Range Mean Range
0.1241 0.0939 - 0.2036 0.2945 0.0569 - 0.6294

Table D.4. Results from the hyper-parameter optimization of applying dropout in the recurrent
layers were tested three times each. Mean is the mean difference between the training- and
validation losses in the last epoch of the training in the three tests. Range is the minimum and
maximum difference between the training- and validation losses. The Mean and Range of the
chosen configuration are highlighted in blue.

The three tests of the CAD network without dropout showed either flat loss curves with a
spike, as seen in figure D.6a and D.6b, or overfitting to the training data set, seen in figure
D.6c. The flat tendency in figure D.6a and D.6b indicated that the learning of the CAD
network did not improve during training. Further, a spike approximately in epoch 7 and 5
in figure D.6a and D.6b, respectively, was present. Moreover, the training- and validation
losses intersected with each other in epoch 5, 6, 9, 11, 13, and 14 in figure D.6a, in epoch
3 and 7 in figure D.6b, and in epoch 4 and 6 in figure D.6c.
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(a) (b)

(c)

Figure D.6. Loss curves for the CAD network without dropout.

The results from the hyper-parameter configuration without dropout showed a descending
tendency in training loss. However, the validation loss was flat or slightly ascending.
Compared to the loss curves of a hyper-parameter configuration with dropout, a descending
tendency in the validation loss was observed in figure D.5b. When comparing the
architecture with dropout, the lowest mean difference of 0.1241 between the training-
and validation loss was seen, thus, the architecture with dropout was chosen.

D.4 Activation function

The hyper-parameter optimization of the activation function in the CAD network’s
classifier was performed, since the classification was a binary problem, but the starting
hyper-parameter configuration contained a softmax activation function for multi-class
problems. Thus, a test of a hyper-parameter configuration containing the sigmoid
activation function was performed, where the loss curves can be seen in figure D.7. The
hyper-parameter configuration of the three recurrent layers with 128 GRUs contained the
activation function softmax in the classifier. Therefore, the test for applying the activation
function softmax equaled the results from the test with 128 GRUs in the three recurrent
layers. Thus, the loss curves for using the softmax activation function corresponds to figure
D.5a, D.5b, and D.5c. The results of the hyper-parameter optimization of the activation
function in the classifier are presented in table D.5. The hyper-parameter configuration
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with the activation function softmax obtained the lowest mean difference between training-
and validation loss.

Softmax Sigmoid
Mean Range Mean Range
0.1241 0.0939 - 0.2036 0.3620 0.3158 - 1.2251

Table D.5. Results from the hyper-parameter optimization of activation function, which consisted
of testing softmax and sigmoid, were each tested three times. Mean is the mean difference between
the training- and validation losses in the last epoch of the training in the three tests. Range is
the minimum and maximum difference between the training- and validation losses. The Mean
and Range of the chosen configuration are highlighted in blue.

In the first and last test, presented in figure D.7a and D.7c, a flat tendency in both the
training- and validation loss were present. However, a spike in the training- and validation
loss in figure D.7a and a spike in training loss in figure D.7c were observed. Furthermore,
five intersections between the training- and validation loss in epoch 7, 8, 15, 23, and 24
in the first test was observed. In the last test, three intersections in epoch 2, 3, and 5,
was observed. In the second test, illustrated in figure D.7b, a descending tendency in the
training loss and an ascending tendency in the validation loss were observed along with
intersections in epoch 6, 8, and 11.

(a) (b)

(c)

Figure D.7. Loss curves for the CAD network with the activation function sigmoid.
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The results from the hyper-parameter test for applying softmax as an activation function
in the classifier showed a descending tendency in the training loss. The architecture with
softmax had the lowest mean difference of 0.1241 between the training- and validation loss,
thus, the architecture with softmax in the classifier was chosen.

D.5 Learning rate

The hyper-parameter optimization of learning rate was tested to find the learning rate
that is low enough that the CAD network converges without needing to many iterations
but not as high that the optimal solution will be skipped [Chollet et al., 2018]. The
hyper-parameter optimization consisted of three tests. The results from the test of the
learning rate were compared to the results from the hyper-parameter configuration of
three recurrent layers with 128 GRUs, presented in table D.3 and figure D.5, where a
learning rate of 0.001 was used. Therefore, the test for applying an learning rate of 0.001
equaled the results from the test with three recurrent layers with 128 GRUs. The three
tests consisted of testing a learning rate varying from 0.0001 to 0.000001. The result
of the hyper-parameter optimization of learning rate are presented in table D.6. The
hyper-parameter configuration with the learning rate of 0.00001 obtained the lowest mean
difference between training- and validation loss.

Learning rate of 0.001 Learning rate of 0.0001
Mean Range Mean Range
0.1241 0.0939 - 0.2036 0.7473 0.5782 - 0.8862
Learning rate of 0.00001 Learning rate of 0.000001
Mean Range Mean Range
0.0055 0.0032 - 0.0099 0.1225 0.1102 - 0.1422

Table D.6. Results from the hyper-parameter of learning rate, which consisted of four different
learning rates, where each were tested three times.
textbfMean is the mean difference between the training- and validation losses in the last epoch of
the training in the three tests. Range is the minimum and maximum difference between training-
and validation loss. The Mean and Range of the chosen learning rate are highlighted in blue.

The loss curves for learning rate 0.0001 showed a general descending tendency in the
training loss and an ascending tendency in the validation loss, indicating overfitting.
Intersections between the training- and validation loss were also presented in the loss
curves. In the first test illustrated in figure D.8a, two intersections in epoch 10 and 12
were observed. In the second test illustrated in figure D.8b, four intersections in epoch 5,
6, 7 and 12 was observed. In the last test illustrated in figure D.8c, one intersection in
epoch 7 was observed.
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Figure D.8. Loss curves for the CAD network with a learning rate of 0.0001.

The test of a learning rate of 0.00001 in the CAD network shown a fluctuating, but
descending tendency for both the training- and validation curves in figure D.9a, D.9b, and
D.9a. Moreover, the training- and validation losses from the three tests intersected with
each other during training. For figure D.9a the training- and validation loss intersected in
epoch 6, 9, and 11 and in figure D.9b the losses intersected in epoch 2, 5, 7, 9, 13, 14, and
in epoch 18. In figure D.9c, the training- and validation loss intersected in nearly every
epoch for the first 20, approximately, and then again frequently in the following epochs.
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Figure D.9. Loss curves for the CAD network with a learning rate of 0.00001.

From the hyper-parameter optimization with a decreased learning rate of 0.000001, an
over overall tendency of fluctuating, but descending training loss curves was seen in figure
D.10a, D.10b, and D.10a. For the validation loss curves in D.10b and D.10c, a relative
flat tendency was observed, although the validation curve in figure D.10c was slightly
descending at the first 13 epochs. However, validation loss was descending in figure D.10a.
Further, intersections between training- and validation loss was present at epoch 4, 6, 8,
9, 11, 13, 15, 17, 18, 20, 22, 27, 31, 33, and 35 in figure D.10a.
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Figure D.10. Loss curves for the CAD network with a learning rate of 0.000001.

The results from the hyper-parameter optimization of the learning rate indicated that
the learning rate of 0.00001 fulfilled the criteria by obtaining the lowest mean difference
between training- and validation loss of 0.0055. Moreover, the loss curves for the learning
rate of 0.00001 had a descending tendency for both the training- and validation loss,
thereby, a learning rate of 0.00001 was chosen.
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