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Abstract:

If multiple microphones are available in a hear-
ing aid (HA) device, beamformers can be applied
to enhance target speech signals in noisy envi-
ronments. Many common beamformers require
knowledge of the target sound source location
relative to the HA user. Traditional beamform-
ing methods are equipped with techniques that
try to localize the target source acoustically, i.e.,
only using microphone signals. However, local-
izing the target source in presence of compet-
ing speakers remains an unsolvable problem. In
this thesis, we study the use of an additional
modality, apart from sound, to help enhancing
the target signal. Specifically, we aim to use
the HA user’s eye-gaze as an asset to efficiently
identity the target direction. Initially, we exam-
ine the potential performance benefits of using
eye-gaze steered beamforming under ideal con-
ditions. Subsequently, we propose two eye-gaze
based beamforming systems, namely a Bayesian
beamformer with the posterior probability on
the target direction estimated based on a prior
probability derived from the user’s eye-gaze, and
a Bayesian beamformer with the posterior jointly
estimated from the HA microphone signals and
the HA user’s eye-gaze signal. The performance
of the proposed methods are compared with cur-
rent audio-only methods. The main conclusion
is that, under certain conditions, the proposed
eye-gaze based beamformers are able to outper-
form audio-only methods in terms of estimated
speech intelligibility and quality.

http://www.aau.dk




Abstract

De fleste moderne beamformers anvendt i høreapparater kræver adgang til informa-
tion om placeringen på den ønskede taler relativt til høreapparatbrugeren. Placerin-
gen af den ønskede taler er sjældent kendt på forhånd og skal derfor estimeres online
fra de støjfyldte mikrofonsignaler. Traditionelle algoritmer, der kan bruges til at
estimere retningen på den ønskede taler, bruger kun adgang til de støjfyldte mikro-
fonsignaler. Disse algoritmer er kendt for at performe dårligt i komplekse akustiske
miljøer, hvor der er flere samtidige talere tilstede samt i meget støjfydldte omgivelser.

I denne afhandling undersøges idéen om at styre høreapparat-beamformers ved
hjælp af brugeres øjne, som ofte hviler på den ønskede taler for blandt andet mundaflæs-
ning. Idéen om at bruge brugerens øjeretnign er motiveret af den kendsgerning, at når
vi kommunikerer med hinanden igennem tale, så involverer vores opførsel både audi-
tiv og visuel opmærksomhed. Da visuel opmærksomhed kræver, at vi retter blikket
mod den ønskede taler, formoder vi, at information om brugerens øjeretning - som
er uafhængig af støjen i det akustiske miljø - må kunne bidrage til at forbedre støjre-
duktionen i fremtidige høreapparater. Målet med denne afhandling er derfor at ud-
vikle og foreslå et beamforming-system til høreapparater, som inkorporerer brugeres
øjeretning i kombination med de støjfyldte mikrofonsignaler. I den forbindelse fores-
låes to beamforming-systemer til høreapparater, nemlig 1) en Bayesian beamformer,
hvor a posteriori sandsynlighedsfordelingen på den ønskede talers retning er estimeret
baseret på en a priori sandsynlighedsfordeling udledt af brugeres øjeretning, samt 2)
en Bayesian beamformer, hvor a posteriori sandsynlighedsfordelingen er estimeret
simultant fra de støjfyldte mikrofonsignaler og burgeres øjeretning.

I denne afhandling udføres først et eksplorativt eksperiment, hvor den poten-
tielle performance gevinst ved at bruge øjestyret beamformers undersøges. Dernæst
studeres der en Bayesiansk tilgang til at kombinere de støjfyldte mikofonsignaler og
brugerens øjeretning, hvorunder de foreslåede metoder præsenteres. Den resterende
del af afhandlingen beskæftiger sig med simuleringsaspekter, herunder en gennemgang
af det anvendte data samt evaluering af de undersøgte algoritmer.

På baggrund af resultaterne fundet i denne afhandling, kan det konkluderes, at
de foreslåede metoder, der inkluderer brugerens øjeretning - under nogle forhold -
er bedre til at ekstrahere det rene talesignal fra de støjfyldte mikrofonsignaler, sam-
menlignet med de undersøgte eksisterende metoder, der ikke inkluderer brugerens
øjeretning.
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Preface

This Master’s Thesis (60 ECTS) is written by Simone Birk Bols Thomsen of the
Master program Mathematical Engineering at Aalborg University, Department of
Mathematical Sciences in the period from 01/09/2021 to 03/06/2022.

The topic of interest in this thesis is Eye-Gaze Steered Beamforming for Hearing
Aids.

For references throughout the thesis, the IEEE-method is used with specification
of pages, sections or chapters. Additional information about the sources can be seen
in the bibliography.

All figures and tables throughout the thesis have been created by the author and
are generated with Python 3.8.8 and the Tikz-package in LATEX. In addition, Python
3.8.8 is used to develop software to perform the numerical calculations related to the
thesis. The signal processing has been performed using the Python libraries NumPy,
SciPy, Matplotlib, glob, os, and Numba, while performance scores are computed
using MATLABr.

In this thesis, mathematical quantities are specified as elements of a relevant
mathematical space where necessary. However, in general it should appear from the
context which space a particular variable is contained in. Furthermore, in regards to
notation, we refer to functions as well as their function values interchangeably, i.e.,
depending on the context, f(x) can both be taken to mean the function f as well
as the function value f(x). Strictly speaking, from a mathematical point of view,
functions should be denoted without arguments, as the central concern is the func-
tion itself. However, as this thesis is mostly aimed at an engineering audience, we
choose to adopt the convention of referring to functions with arguments. Moreover,
boldface lowercase and boldface capital letters are used to indicate vectors and ma-
trices, respectively, while scalars are portrayed as non-boldface letters. All vectors
are considered as column vectors unless otherwise specified. Types of spaces and
mathematical quantities used in this thesis appear from the nomenclature.

The author would like to thank the supervisors Jesper Jensen (Demant A/S,
Department of Electronic Systems), Morten Nielsen (Department of Mathematical
Sciences), and Poul Hoang (Demant A/S) for their supervision throughout the de-
velopment of this thesis. Furthermore, the author would like to thank Eriksholm
Research Centre for providing data as well as guidance throughout the development
of the thesis.
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Nomenclature

List of Abbreviations

AIR Acoustic impulse response.

ATF Acoustis transfer function.

CPSD Cross power spectral density.

DFT Discrete Fourier transform.

DOA Direction-of-arrival.

ERH Eriksholm Research Centre.

ESTOI Extended short-time objective intelligibility.

HA Hearing Aid.

HAD HA device.

MMSE Minimum mean square error.

MSE Mean square error.

MVDR Minimum variance distortionless response.

PDF Probability density function.

PMF Probability mass function.

PSD Power spectral density.

RTF Relative transfer function.

segSNR Segmental SNR.

SNR Signal-to-noise ratio.

STFT Short-time Fourier transform.
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VAD Voice activity detector.

List of Symbols

(·)∗ Complex conjugate.

(·)H Conjugate transposition.

(·)−1 Matrix inversion.

Γv(k, l) Normalized noise CPSD matrix.

a(n, θs) Vector containing the AIRs from the target speaker
to each of the M microphone.

Cx(k, l),Cs(k, l),Cv(k, l) Noisy, target, and noise CPSD matrix.

d(k, l, θ) RTF vector of the target sound source to theM
microphones.

IM×M M ×M identity matrix.

v(n) Vector containing the noise signals for each mi-
crophone.

wB(k, l) Bayesian beamformer weight vector.

wMVDR(k, l, θs) MVDR beamformer weight vector.

X(k, l) Sequence of L consecutive frames of noisy mi-
crophone observations.

x(n) Vector containing the noisy signals for each mi-
crophone.

d̂(k, l, θ̂s) Estimated RTF vector.

R̂(k, l) Sample estimate of the noisy CPSD matrix.

λ̂s,ML(k, l, θi), λ̂v,ML(k, l, θi) Maximum likelihood estimates of λs(k, l) and
λs(k, l), respectively.

θ̂s,ML Maximum likelihood estimate of the target di-
rection θs.

ˆ̃s(k, l) Estimated target speech signal in the time-frequency
domain.

ŝ(n) Estimated target speech signal in the time do-
main.



λs(k, l), λv(k, l) PSD of the target and noise signals at the ref-
erence microphone, respectively.

C The set of complex numbers.

N0 The set of non-negative integers.

R The set of real numbers.

D RTF dictionary.

S0,S1,S2,S3 VAD states for speech-absense, single-talk for
target talker 1 and 2, and double-talk.

φj(l) Discretized eye-gaze measurement.

Re{·}, Im{·} Real and imaginary part operators, repsectively.

exp(·) Exponential function.

tr(·) Trace operator.

Θ Discrete candidate set of directions from which
the target signal can arrive.

θi DOA parameter.

θs Target DOA.

ã(k, l, θs) Vector of ATFs.

ṽ(k, l) Vector of noise signals.

x̃(k, l) Vector of noisy microphone signals in the time-
frequency domain.

ãm(k, l, θs) ATF from the target sound source to the m’th
microphone.

s̃(k, l) Time-frequency domain representation of s(n).

ṽm(k, l) Time-frequency domain representation of vm(n).

x̃m(k, l) Noisy microphone signal in time-frequency do-
main.

| · | Matrix determinant.

am(n, θs) AIR from the target sound source to the m’th
microphone.



dm(k, l, θ) RTF of the target sound source to the m’th mi-
crophone.

E[·] Expectation.

f(X(k, l)|θi) Likelihood function for the noisy microphone
signals X(k, l) given θi.

f (X(k, l)|θi, φj(l)) Likelihood function for the noisy microphone
signals X(k, l) given θi and φj(l).

f (X(k, l)|φj(l)) Likelihood function for the noisy microphone
signals X(k, l) given φj(l).

j Imaginary unit.

k Frequency bin index.

l Time frame index.

M Number of microphones.

n Discrete-time index.

p(θi) Prior probability of the target DOA.

p(θi|X(k, l)) Posterior probability density function of θi, given
X(k, l).

p (θi|X(k, l), φj(l)) Posterior probability density function of θi given
X(k, l) and φj(l).

p (θi|φj(l)) Conditional probability of θi given φj(l).

s(n) Time domain target speech signal.

sp(n) Time domain speech signal for target p.

slp(n) l’th windowed segment of sp(n).

vm(n) Additive noise signal at m’th microphone.

xm(n) Noisy signal at m’th microphone.
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1. Introduction

1.1 Haring Loss

The human hearing is one of our most important senses which enables us, among other
things, to communicate through spoken language. Speech communication plays an
important role in our everyday life as it e.g., is important for social interaction and for
the opportunities for effective learning in school and in higher education for children
and young people. [1] Unfortunately, people with hearing impairment have reduced
ability to understand speech meaning that hearing impairment may have a negative
impact on quality of life. World Health Organization (WHO) [2] estimates that
approximately 430 million people of the world’s population have disabling hearing
loss, making hearing loss one of the most common sensory processing disorders. In
fact, it is estimated that over 700 million people will have disabling hearing loss by
2050.

1.2 Hearing Aids

To accommodate individuals with hearing impairments, hearing aids (HAs) can be
used, which are devices that are capable of applying advanced digital signal process-
ing on sampled sound signals with the main goal of increasing speech intelligibility
and quality in order to deliver the intended sound to the HA user [3, p. 4].

Today, there exists various types and designs of HAs [1]. Among these, is the behind-
the-ear (BTE) HA which is a device where most of the components are placed behind
the pinna, the microphones are positioned just above the pinna, and where the sound
is led to the ear canal through a small plastic tube [1, p. 57]. A typical modern BTE
HA is shown in Fig. 1.1 [4]. The microphones of a modern HA convert the sound
pressure measured on the microphone array into electrical signals which are then
sampled into discrete time signals and thereby processed on the HA device (HAD)
[1].

1



2 Chapter 1. Introduction

Figure 1.1: An Oticon Opn behind-the-ear with receiver-in-canal hearing aid [4].

1.3 Directional Microphones and Beamforming

One of the most challenging situations for hearing-impaired people is to understand
speech in acoustically noisy environments [3, p. 110]. As a consequence, most hearing-
impaired people find it extremely difficult to communicate through speech in e.g.
larger groups of people. One example is a cocktail party, in which the hearing im-
paired is involved in a listening environment involving multiple speakers and noise
sources. In such scenarios, hearing-impaired people are in general heavily challenged,
specifically when the signal-to-noise ratio (SNR) is low [1, p. 41]. Due to the fact that
difficulty when listening in noisy environments is a common speech intelligibility com-
plaint, this aspect has had, and still has, a lot of effort in the design of HAs [3, p. 169].

To help the hearing impaired to understand speech in noisy environments, noise
reduction technologies are often implemented in HAs [5, p. 269]. The overall goal
of those noise reduction algorithms is to reduce the noise and increase speech in-
telligibility and quality of the desired speech in the acoustic environment [3, pp. 9,
111].

A large portion of acoustic noise reduction algorithms are implemented as linear
filters. Usually, the acoustic signal is picked up by M ≥ 2 microphones and passed
through a linear filter which suppresses the noise. Ideally, the filter creates an acoustic
beam towards the desired speaker by the use of directional microphones. This can be
extremely useful as the beam can enhance the sound from the location of the desired
speaker, i.e., from the target speaker direction, while attenuating other sounds from
locations of non-interest [3, p. 111], [6, p. 3]. The method of processing multi-channel
signals in order to enhance signals from a particular spatial direction is also called
beamforming, and is a type of signal processing methods implemented in hearing
aids, that has proven effective at increasing speech intelligibility [3, p. 9][6, p. 3].
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1.4 Direction-of-Arrival Estimation

Many acoustic beamformers used for noise reduction in HAs require knowledge of the
location of the desired speaker with respect to the microphones of the HA in order
to steer the beam. The location of the desired speaker is in many realistic situations,
however, not know in advance and has to be estimated online from the observable
noisy microphone signals, or assumed to be known, e.g., assumed to be directly in the
front of the user [7], [8, p. 265]. The relative location of a sound source with respect
to the microphones of the HA is generally given in terms of the direction-of-arrival
(DOA) of the sound wave impinging from that direction [7], [9]. Hence, a class of
algorithms often used for estimating the location of the desired speaker is DOA es-
timation algorithms [7], [9]. Traditional DOA estimation algorithms typically try to
localize the target sound source acoustically, i.e., only using the microphone signals.
However, these methods are known to perform poorly in complex situations, partic-
ularly in acoustic scenes with loud competing speakers and when the SNR is low [10,
p. 243]. For example, current DOA estimators such as maximum likelihood [11]–[13],
and deep learning-based DOA estimators [9], are known to suffer from not being able
to robustly handle a conversational partner in a multi-speaker environment, without
additional a priori information on the conversational partner’s location [14]. This is
due to the fact that competing speakers share similar signal characteristics to the de-
sired speaker, and hence, most conventional audio-only DOA estimation algorithms
struggle at determining if a competing speaker is desired or not. In worst cases, the
DOA estimation algorithm may erroneously classify a competing speaker as being de-
sired and instead the beamformer might enhance the noise and suppress the desired
speech, i.e., working against the overall objective of helping the hearing impaired
understand speech in noisy environments. Hence, in general, the task of estimating
the DOA is not simple, and the consequences of DOA estimation errors can be severe
[7], [8]. In other words, accurate target sound source localization and target DOA
estimation are crucial for beamformers to steer the acoustic beam towards the target
target [14].

Problems similar to the ones mentioned above may occur when using beamform-
ers that assume the target talker to be directly in the front of the user. This is due
to the fact that such frontal steered beamformers do not take into account where the
HA user is looking [15]. For instance, it may be the case that the HA user is turning
his or her head towards person A, but in fact be listening to and gazing at person B.
Another typical example one could imagine would be that in a multi-talker scenario,
it is likely that the HA user is turning his or her head to be in between person A and
B while the eyes are jumping back and forth between person A and B. In this case,
it is possible that none of the target signals would be enhanced by the frontal steered
beamforming system, and in worst case, the beamforming system would determine
the target speakers as being noise. Furthermore, studies have shown that in the case
a target talker is positioned on the side of the HA user, the user do typically not turn
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his or her all the way to directly face the target talker, even though the HA user may
be looking at the target talker [16].

As mentioned, what is shared about the traditional methods mentioned above is
that they only consider acoustic signals, i.e., they are described as so-called audio-
only systems. However, the behaviour of a person during a conversation typically
involves both auditory and visual attention [17], where visual attention implies that
the person direct his or her eye-gaze toward the target sound source. Furthermore,
visual information is essentially not affected by the acoustic noise and competing
speakers in a listing environment, which makes vision a reliable cue to exploit in
difficult acoustics conditions [18].

1.5 How to Improve Hearing Aids

In future HA systems, additional information apart from sound signals captured by
microphones may be available. For instance, one could envision future HAs which
could measure the eye-gaze direction of the user, e.g., via cameras pointing towards
the eyes of the user (e.g., mounted on glasses), or using electrodes (e.g., in-ear elec-
trodes), which may reveal the direction as a function of time of the user’s eye. In
many situations, this additional information can provide very strong evidence of the
direction of an active target talker, and hence, help identify the target direction.
For example, it is often the case that a HA user looks at the target sound source
of interest, at least now and then, e.g. for lip reading in acoustically difficult situa-
tions [19]. Based on the fact that eye-gaze is described as an excellent predictor of
conversational attention [19], and that eye contact furthermore is a natural human
response in a social environment [19], it seems reasonable to suppose that the use
of information about the HA users’ eye position to help derive the target location,
to some extent can have a beneficial contribution in noise reduction technology for
future hearing aids.

1.6 Eye-Gaze Steering

The idea of using the HA user’s eye-gaze to steer a HA has already been explored
in several studies [16], [17], [20]–[22]. The eye-gaze steering described in previous
studies works theoretically by enhancing the sound in the direction of the HA user’s
eye-gaze to any given time. Even though these previous studies confirms that such
beamformers, which are steered toward the direction the user’s eye-gaze, can be a
good way to improve future HAs, such "hard" eye-gaze steered beamformers may still
have some limitations. For instance, the user’s eye-gaze may not always be directed
towards the desired speaker although the user’s attention is at the desired speaker,
e.g., the eye-gaze might be slightly offset or the user might be gazing at something else
than the desired speaker briefly. In these cases, a hard eye-gaze steered beamformer
will likely classify the target talker as being noise, since it enhance in the direction
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of the user’s eye-gaze. However, sine natural listening behaviours involves that the
user may not always direct his of he eyes toward the target speaker at any moment
in time, it would be preferable to develop systems that allow for such uncertainty
about the target direction, such that we are able to develop beamforming algorithms
that better reflect and allow for real-life communication abilities. Specifically, instead
of only relying on the acoustic microphone signals or on the user’s eye-gaze to steer
the beamformer, it could be interesting to examine how the eye-gaze and microphone
signals from the HA can be combined to, for example, jointly estimate the direction
of the desired speaker.

When the target DOA is uncertain, a so-called Bayesian approach to beamforming
can be taken. In [23] and [24], methods have been proposed where a probability dis-
tribution on the target DOA is used to consider the Bayesian beamforming approach
for noise reduction. These proposed methods rely on acoustic information only to
estimate the target signal, but may be extended to be useful in a situation where an
additional signal is available, e.g., a signal representing the HA user’s eye-gaze.

1.7 Problem Statement

To summarize, even though several DOA estimation methods exists in the literature,
achieving effective suppression of loud competing speakers remains extremely chal-
lenging and a remarkably difficult problem to solve even with the most state-of-the-art
speech enhancement systems [14]. This fact makes the foundation for the motivation
behind this thesis. In contrast to current audio-only beamforming methods, which
try to localize the target source acoustically, i.e., using the microphones only, in this
thesis, we study an alternative means for target sound source localization that ex-
ploits an additional modality, apart from sound, to help localizing and enhancing the
target source. Specifically, based on the fact that the HA user’s tend to look at the
target sound source, e.g., for lip reading, it appears feasible to use information about
the HA users’ eye position to help derive the target location. Therefore, the moti-
vation of this thesis is to investigate the possibility of incorporating the HA user’s’
eye-gaze into a HA beamformer, such the proposed method is able to perform better
or at least on par with current state-of-the-art beamforming methods that uses mi-
crophone signals only. In this thesis, we therefore seek to answer the following main
question.

Main Question:

How can information provided by the HA user’s eye-gaze and by the HA microphone
signals be combined and used to construct a beamformer for HA applications, and can
such a beamformer potentially outperform current audio-only beamforming methods
in terms of predicted speech intelligibility and predicted speech quality in noisy acous-
tic scenes?
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In the process of developing and proposing a beamforming system for HAs which
incorporates the HA user’s eye-gaze, a natural and simple starting point, would be to
examine an upper performance bound of using eye-gaze steered beamforming. Beside
aiming in laying the foundation for study and propose more complex systems that
are not developed under such ideal conditions, from a technical point of view, such a
feasibility study may in addition provide valuable insights in determining the value
of the concept for future HAs. To this end, we formulate the following sub question:

Sub Questions:

i) Under ideal conditions, what is the potential performance benefit of using eye-
gaze steered beamforming?

The idealistic scenario is achieved by considering a synthetic situation where the user’s
eye-gaze is assumed precisely pointing towards the desired speaker at any moment in
time.

1.7.1 Delimitations

In this thesis, we consider a Bayesian approach to fuse information provided by the
HA user’s eye-gaze and by the HA microphone signals. Parts of the theory presented
throughout this thesis are general, but due to time constraints and in order to fo-
cus on technical aspect and application in real-world scenarios, we have needed to
restrict our work in several ways. First of all, we have chosen to keep the mathemat-
ics regarding probability theory as simple as possible. In that regard, it should be
noted that we present the results from probability theory using the notations that are
traditionally used conventions in the engineering literature, and so, we do not treat
the concepts in its most general measure-theoretic setting. In such a more general,
measure-theoretic treatment of probability, every functions would be considered as
densities with respect to different base measures. However, such a measure-theoretic
treatment is beyond the scope of this thesis, hence, the reader is referred to [25,
Sec. II] for a more rigorous measure-theoretic treatment of probability and statistics.

In this thesis, a dataset containing real-world measurements of HA users eye-gaze
recorded in synchronization with presented audio-visual stimuli is available, which
allows the study of beamforming systems for HAs which incorporates the user’s eye-
gaze. This dataset is provided by Eriksholm Research Centre (ERH) which is a part
of Oticon. The dataset will be used to construct the proposed beamformers and to
compare and determine the performance of different beamforming systems. Some
information regarding the applied dataset will be not be provided in this thesis, due
to the fact that the full report, in which the dataset is described is confidential, and
therefore not public available.

Furthermore, in the simulations carried out in this thesis, we have chosen to
remain as close as possible to the acoustic conditions of the experiments conducted
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at ERH. Even though acoustic situations including competing speakers are where we
expect the inclusion of eye-gaze in a beamforming system to be especially beneficial,
we do not consider acoustic scenes with competing speakers, as data supporting this
is not included in the dataset. In other words, we limit our simulations to the specific
audio-visual stimuli of the experimental setup conducted at ERH, and hence, limit
the extend to how explorative our simulations are.

1.8 Outline

The remainder of this thesis is structured as follows: Chapter 2 presents the acoustic
signal model considered in this thesis and discusses the employed statistical assump-
tions. Given the acoustic signal model, the thesis moves on to cover acoustic beam-
forming, specifically, the minimum variance distortionless response beamformer, in
Chapter 3. Chapter 4 will give an introduction to a well-known audio-only model-
based DOA estimation algorithm which will be used as a competing method through-
out this thesis. In Chapter 5, a detailed feasibility test is performed and the upper
bound performance of an eye-gaze steered beamformer is compared to state-of-the-art
audio-only beamforming methods. This chapter aim at answering the sub question
formulated for this thesis. After accessing the upper performance bound of eye-gaze
steered beamforming under ideal conditions, the thesis moves on to cover the study
on how eye-gaze information can be incorporated in a beamforming system, with the
aim of answering the main question of this thesis. In Chapter 6, a Bayesian approach
is taken to the fusion of eye-gaze signals and acoustic signals, in which the necessary
mathematical concepts of Bayesian beamforming, is introduced. Following this, the
chapter provides a detailed presentation of our two proposed Bayesian beamforming
methods. Chapter 7 introduces to the employed audio-visual dataset which contains
real-world eye-gaze measurements, and in Chapter 8, the performance of the pro-
posed beamforming methods are evaluated through numerical simulations using the
eye-gaze data and sound signals from the dataset. Following this, Chapter 9 presents
a discussion of the results obtained from the simulation experiments as well as of the
work presented in this thesis as a whole. Finally, in Chapter 10, we conclude on the
study presented in this thesis as well as present thoughts on aspects for interesting
further development.





2. Acoustic Signal Model and As-
sumptions

The microphones of a modern HA convert the sound pressure measured on the micro-
phone array into electrical signals which are then sampled into discrete time signals
and subsequently processed on the HAD [6, p. 6]. As mentioned, noise reduction sys-
tems, such as beamforming systems, are often used in state-of-the-art HADs to process
the microphone signals in order to enhance a target speech signal while suppressing
the noise signals from the surroundings with the aim of improving speech intelligibil-
ity and quality. These noise reduction algorithms are often based on some optimality
criteria and a statistical model of the microphone signals [26, p. 17],[8]. When con-
structing a mathematical model of acoustic environments where sound waves impinge
on an array of microphones on an HA, we have to make assumptions about the sound
field in which the sound waves propagate from the sound source to the array of micro-
phones. Therefore, the focus of this chapter is on modeling the acoustic environments
and the assumptions made in relation to the sound field and the sound sources, with
the purpose of deriving a signal model that sufficiently describes the noisy micro-
phone signals as they are picked up by the microphones on the HA. The signals will
be considered as discrete time signals, as we process the signals after being received
by the microphones, and thereby omitting the analog-to-digital conversion.

2.1 Overview of the Acoustic Scene

An HA user may experience a huge variety of different acoustic environments in-
cluding everything from cocktail party like environments in which the hearing im-
paired is situated in a listening environment involving, e.g., a target speaker, mul-
tiple undesirable speakers, and other additive noise sources, where the sound waves
approximately impinge from all directions, to listening environments where only a
single target speaker and a single point-source interferer, e.g., a competing speaker,
is present [6]. Furthermore, speech generated by, e.g., the target speaker does not
only reach the microphones on the HA via the direct propagation from the source,
but also via reflections off the objects and surfaces in the room. In most realistic
situations, the microphone signals are additionally disrupted by noise generated by
the microphones themselves, referred to as microphone self-noise [3, pp. 110-114],[26,

9
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s(n)

θs

Figure 2.1: An example of an acoustic environment with an HA user wearing two behind-the-ear
HAs with two microphones on each, a target source which emitting a signal s(n) which impinges on
the microphone array from direction θs, and arbitrary noise sources represented by the loudspeakers.
It is assumed that the target sound source can be modeled as a point source and that the only objects
affecting any sound source before reaching the microphones are the head, torso and pinnae of the
HA user. Blue lines depict the sound transmission from a point sound source to the two ears [27,
Fig. 1.14].

p. 71]. For simplicity, we choose in this thesis to limit the scope to only include
acoustic environments where the sound waves propagating from a source are affected
by the head, torso, and pinnae of the HA user, but otherwise propagates in free field.

A typical example of an acoustic environment is illustrated in Fig. 2.1, where an
HA user, wearing BTE HAs with two microphones on each ear, is located in a noisy
environment with multiple sound sources. One of these sound sources is the target
speaker which is the person whom the HA user wants to listen to. The speech signal
emitting from the target speaker is referred to as the target speech signal and is de-
noted s(n), with n ∈ N0 indicating a discrete-time index. The other sound sources,
which are depicted as loudspeakers in Fig. 2.1, are noise sources which may be either
diffuse noise, interfering point sources, or any other additive source of noise which
may mask the target speech signal. However, since any of these undesired sources
are disadvantageous for speech quality and intelligibility, they may be regarded as a
single entity.

Based on the acoustic setup examplified in Fig. 2.1, we will in the following
section derive a signal model for the noisy microphone signals as they impinge on the
microphone array of the HA.
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2.2 Signal Model in the Time Domain

According to the acoustic scenario in Fig. 2.1, each microphone receives a sound
signal which is assumed to consist of two components, namely a desired speech signal
and an undesired noise signal covering any signal that is not originating from the
target speech source. We assume that the target source can be modeled as a point
source, meaning that the sound source produces spherical waves which propagate
omnidirectionally in space [28]. This assumption implies that the propagation of the
sound signal from the target source to a microphone can be expressed by a linear
convolution between the target signal and an acoustic impulse response (AIR) [29,
p. 694]. Each microphone is associated with different AIRs since the propagation
of a sound signal from a particular source location to each microphone is different
[29, p. 694]. This issue is evident by the blue lines in Fig. 2.1 illustrating the sound
transmission from a point sound source to each of the four microphones [27, p. 20].
Generally, the AIRs are functions of both the azimuth and elevation angle of the
sound source in relation to the microphone array. This is due to the fact that signals
originating from different azimuth and elevation angles propagate from the sources to
the m’th microphone differently. However, for simplicity, we will in this thesis limit
ourselves to the horizontal plane, i.e., we will only consider the dependency of the
azimuth angle. Furthermore, we assume that the position of a sound source in the
acoustic environment as well as the position of the HA user is static, meaning that the
AIRs are assumed to be time-invariant [29, p. 694]. These two assumptions together
implies that the sound transmission from a point source to the microphones can be
expressed by a linear time-invariant system. [29, p. 694]. Hence, for a microphone
array withM microphones, where each microphone picks up the sound from the noisy
acoustic environment, the noisy signal xm(n), for n ∈ N0, at the m’th microphone
can be modeled as

xm(n) = (s ∗ am(•, θs))(n) + vm(n), m = 1, . . .M, (2.1)

where ∗ denotes the linear convolution operator, which is defined in Appendix A.1,
am(n, θs) denotes the AIR from the target to the m’th microphone, s(n) is the target
signal measured at the target source and impinges on the microphone array from
direction θs, and vm(n) denotes an overall additive noise component containing a
sum of all undesired signals received at the m’th microphone, e.g., interfering point
sources, diffuse background noise, and microphone self-noise.

2.3 Signal Model in the Time-Frequency Domain

Due to the wide-band and non-stationary nature of speech, speech processing such as
beamforming is conveniently performed in the time-frequency domain [26, p. 72],[8].
Typically, the time-frequency domain representation of the noisy microphone signals
is obtained by making use of the short-time Fourier transform (STFT) which is defined
in Appendix A.2 [30, p. 230].



12 Chapter 2. Acoustic Signal Model and Assumptions

Let k and l be the frequency bin index and time frame index, respectively, for
k = 0, . . . , N −1 where N is the window length used in the STFT. Then, by applying
the STFT to the noisy microphone signal xm(n) in (2.1), we obtain a time-frequency
domain representation, which for a given frequency bin index k and time frame index
l is denoted x̃m(k, l) ∈ C, for m = 1, . . . ,M , and is given as

x̃m(k, l) = STFT{xm(n)}(k, l) (2.2)
= STFT{(s ∗ am(•, θs))(n)}(k, l) + STFT{vm(n)}(k, l) (2.3)
= s̃(k, l)ãm(k, l, θs) + ṽm(k, l), (2.4)

where ãm(k, l, θs) ∈ C is the acoustic transfer function (ATF) from the target source
to the m’th microphone, (2.3) follows by linearity of the STFT, and (2.4), which is
known as the narrowband approximation of the noisy microphone signal [29, p. 696], is
due the fact that convolution in the time domain can be approximated as a multiplica-
tion in the short-time frequency domain, provided the window length is appropriately
large [31]. In this thesis, we adopt the standard made assumption in speech process-
ing that x̃m(k, l) ∈ C, for m = 1, . . . ,M , are approximately independent across time
l and frequency k, which allows us to treat each STFT coefficient independently. It
should be noted that this independency assumption is valid when the correlation time
of the signal is short compared to the window length N and when successive frames
are spaced sufficiently far apart [13], [32]. For a given frequency bin k and time frame
l, we stack, for notational conciseness, the complex-valued STFT coefficients of all
M noisy microphone signals in an M × 1 vector x̃(k, l) ∈ CM , by defining

x̃(k, l) =
[
x̃1(k, l) . . . x̃M (k, l)

]T
,

ã(k, l, θs) =
[
ã1(k, l, θs) . . . ãM (k, l, θs)

]T
,

ṽ(k, l) =
[
ṽ1(k, l) . . . ṽM (k, l)

]T
,

(2.5)

which allow us to express the complex-valued STFT coefficients of all M noisy mi-
crophone signals in vector notation as

x̃(k, l) = s(k, l)ã(k, l, θs) + ṽ(k, l), (2.6)

where it follows that s̃(k, l) is the scalar STFT coefficient of the target speech signal,
ã(k, l, θs) is the vector of ATFs from the target signal to all microphones.

When performing beamforming in HA applications, we are typically interested in
extracting the target speech signal measured at a pre-selected reference microphone
as opposed to the target speech signal as measured at the target source. This is
due to the fact that the signal at the reference microphone already has propagated
from the source to the HA, which means it contains information about reflections
and influences made by the HA users head, pinnae and torso. This situation is more
natural, compared to the situation where the target signal is measured at the target
source, as it corresponds to how we naturally perceive sound, that is, at our ears
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and not at the source of the sound. Therefore, it is often seen in the literature, e.g.,
[29, p. 694], that the ATFs are normalized with respect to a pre-selected reference
microphone. After normalization, we refer to the ATF vector as the relative acoustic
transfer function (RTF) vector [29, p. 696]. More specifically, let

d(k, l, θs) =
ã(k, l, θs)

ãm?(k, l, θs)
, (2.7)

denotes a vector whose elements m’th element dm(k, l, θs), for m = 1 . . . ,M , rep-
resents the RTF from the target source to the m’th microphone, and where m? is
the reference microphone index. As a result, the m?’th element in d(k, l, θs) equals
one, while the other elements define the RTFs of the target signal from the reference
microphone to all of the microphones, i.e.,

d(k, l, θs) =
[
1 d2(k, l, θs) . . . dM (k, l, θs)

]T
, (2.8)

where we, without loss of generality, have defined m∗ = 1 to be the reference mi-
crophone. By substituting the ATFs ã(k, l, θs) with the RTFs d(k, l, θs) in (2.6), a
modified signal model is obtained as

x̃(k, l) = s̃ref (k, l)d(k, l, θs) + ṽ(k, l), (2.9)

in which the target speech signal at the microphones is described in terms of the
RTFs d(k, l, θs) and the target speech signal measured at the reference microphone
given as

s̃ref (k, l) = s̃(k, l)ã1(k, l, θs). (2.10)

The aim of beamforming, which will be covered in the next chapter, is then to obtain
an estimate of s̃ref (k, l), which is free from noise [33, p. 2974].

Beside the assumptions of a target point source and an additive noise component
in the signal model, we assume, for mathematical convenience, that the noisy micro-
phone signals x̃(k, l) are realizations of random processes, and adopt the often-made
statistical assumptions that the noise component is uncorrelated to the speech compo-
nent [29]. This allows us to model the M ×M inter-microphone cross power spectral
density (CPSD) matrix of x̃(k, l), which is defined as Cx(k, l) = E

[
x̃(k, l)x̃H(k, l)

]
,

where E[·] and (·)H denote the expectation and conjugate transpose operators, re-
spectively, as a sum of the CPSD matrices of the two individual signal components
[26], i.e.,

C{x(k, l) = Cs(k, l) +Cv(k, l). (2.11)

Under the assumption that the target RTF vector d(k, l) is deterministic with respect
to expectation, the target CPSD matrix Cs(k, l) ∈ CM×M can be expressed as

Cs(k, l) = λs(k, l)d(k, l, θs)d
H(k, l, θs), (2.12)

where λs(k, l) = E[s̃ref (k, l)s̃∗ref (k, l)], with (·)∗ denoting the complex conjugate,
is defined as the power spectral density (PSD) of the target signal at the reference
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microphone. Furthermore, it is often assumed that the noise CPSD matrix Cv(k, l) ∈
CM×M can be modeled as [12], [13]

Cv(k, l) = λv(k, l)Γv(k, l0), l > l0, (2.13)

where λv(k, l) = E[ṽref (k, l)ṽ∗ref (k, l)] is the PSD of the noise signal at the reference
microphone, Γv(k, l0) is the normalized noise CPSD matrix which contains a value of
1 at the diagonal element corresponding to the reference microphone index [34], and
l0 denotes the most recent frame index with speech absence.Substituting (2.12) and
(2.13) into (2.11), the noisy CPSD matrix then becomes

Cx(k, l) = λs(k, l)d(k, l, θs)d
H(k, l, θs) + λv(k, l)Γv(k, l0). (2.14)

For notational convenience, we will from this point omit the indexing of ref in the
notation of the target speech signal measured at the reference microphone. Hence,
we use s̃(k, l) to denote both the target speech signal measured at the source and the
target speech signal measured at the reference microphone. The representations of
the target speech signal are distinguished by whether the target speech component is
written in terms of the ATF vector ã(k, l, θs) or the RTF vector d(k, l, θs).

In this chapter, the employed signal model has been derived in both the time domain
and in the time-frequency domain, and assumptions with regard to the employed
signal model have been presented. The time domain signal model in (2.1) will be
used to simulate the noisy microphone signals received at the HA microphones in
the different acoustic scenes studied in this thesis. The next chapter will cover an
introduction to some basic concepts of acoustic beamforming.
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In acoustic environments consisting of an HA user wearing HADs with multiple micro-
phones, a target speaker and multiple noise sources originating from the surroundings,
the microphones on the HAD do not only pick up the clean target speech signal but
the noisy signal. In such an environment, a hearing impaired may struggle to un-
derstand the desired speech compared to persons with normal hearing. In order to
make challenging listening environments more accessible to the HA user, the overall
goal of the HADs is to enhance the speech signal impinging from the direction of the
target source from the observed noisy microphone signals. As mentioned, beamform-
ing methods are typically implemented in modern HAs for such multi-channel noise
reduction purposes. The basic concept of acoustic beamforming is to create a direc-
tional microphone that is steered towards e.g., the direction of the target speaker,
by optimally combining the noisy signals picked up by the microphones into one sig-
nal to be presented to the user [8]. In this chapter, we introduce the concept of
acoustic beamforming. Specifically, we focus on the minimum variance distortionless
response (MVDR) beamformer [10], [29], [35], as this beamformer will be widely used
throughout the thesis. Later, in Chapter 6, we will move on to consider so-called
Bayesian beamformers, and as we will se, Bayesian beamfomers can be considered as
a weighted sum of MVDR bemformers.

It should be noted that often the structure of a noise reduction system as em-
ployed in a modern HA comprises a beamformer coupled with a post-filter, resulting
in a two-step algorithm [8]. However, for simplicity, we do not consider post-filtering
methods in this thesis.

An overview block diagram of a simple beamforming system is illustrated in Fig. 3.1.
As evident from the block diagram, the overall beamforming system can be split up
into three stages: An analysis stage where the received signals are converted into
a time-frequency representation using the STFT, processing stage where the beam-
former parameters are estimated and where the beamformer is applied to the noisy
signals to obtain an estimate of the target speech signal, and a synthesis stage where
the estimated target speech signal is transformed back into the time domain using
the ISTFT. In this chapter, we focus solely on the processing stage. The necessary
concepts of analysis and synthesis of the spatio-temporal signals will be discussed in
Chapter 5 where the practical implementation of the proposed beamforming noise

15
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Figure 3.1: Overview of the elements used in a beamforming noise reduction system in a HA.

reduction system is covered.

3.1 Linear Beamformers

Referring back to the signal model for the noisy observations in the time-frequency
domain given as

x̃(k, l) = d(k, l, θs)s̃(k, l) + ṽ(k, l), (3.1)

where s̃(k, l) ∈ C is the target signal measured at the reference microphone, d(k, l, θs) ∈
CM is the RTF vector, and ṽ(k, l) ∈ CM is the overall additive noise component which
is assumed to be uncorrelated with the target signal.

A beamformer is a linear spatial filter defined by a vector of M complex weights
w(k, l) ∈ CM consisting of one weight per microphone in the microphone array. The
beamformer is then applied as an inner product between the beamformer weights and
the noisy microphone signals such that the output of the beamformer for the k’th
frequency bin and the l’th time frame is [29, p. 698]

y(k, l) = wH(k, l)x̃(k, l). (3.2)

Substituting x̃(k, l) in (3.1) into (3.2), the processed signal y(k, l) ∈ C can be repre-
sented as

y(k, l) = wH(k, l) (d(k, l, θs)s̃(k, l) + ṽ(k, l))

= s̃(k, l)wH(k, l)d(k, l, θs) +wH(k, l)ṽ(k, l).
(3.3)

Using the assumption that the noisy microphone signals x̃(k, l) are realizations of
a random process, and assuming that the the weight vector w(k, l) is deterministic
with respect to expectation, the output power of a beamformer is defined as

E[|y(k, l)|2] = E[y(k, l)y∗(k, l)]

= E[wH(k, l)x(k, l)xH(k, l)w(k, l)]

= wH(k, l)Cx(k, l)w(k, l),

(3.4)

where Cx(k, l) ∈ CM×M is the noisy CPSD matrix.
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The weight vectors of the individual beamformers can be computed considering
some optimization criterion, such as minimum mean square error (MMSE), mini-
mum variance distortionless response (MVDR), linearly constrained minimum vari-
ance (LCMV), etc. [7]. As mentioned, consider in this chapter the MVDR criterion
to obtain the weight vectors.

3.1.1 Minimum Variance Distortionless Response Beamformer

In this section, the MVDR beamformer will be introduced. The MVDR beamformer
is of interest, at it can be shown that the MVDR beamformer is the beamformer
which maximizes the SNR of the output of the beamformer [29, p. 702],[36, p. 1367].

The MVDR beamformer collects statistics about the listening environment to
derive beamformer weights that 1) attenuate the noise energy as much as possible, i.e.,
achieve minimum variance, while 2) ensuring that the sounds from the target direction
are not attenuated or amplified, i.e., achieve a distortionless response towards the
target [8]. Hence, for the MVDR beamformer, the weight vector is be obtained as
the solution to the constrained optimization problem [10], [29], [35]

minimize
w

wH(k, l)Cv(k, l)w(k, l)

s.t. wH(k, l)d(k, l, θs) = 1.
(3.5)

The solution to the optimization problem for the MVDR beamformer is given by
Theorem 3.1.

Theorem 3.1 (Optimal MVDR beamformer coefficients)
Let M be the number of microphones and assume Cv(k, l) ∈ CM×M is positive
definite and Hermitian. The solution to the optimization problem

minimize
w

wH(k, l)Cv(k, l)w(k, l)

s.t. wH(k, l)d(k, l, θs) = 1,
(3.6)

is the optimal beamformer coefficients given as

wMVDR(k, l, θs) =
C−1

v (k, l)d(k, l, θs)

dH(k, l, θs)C
−1
v (k, l)d(k, l, θs)

. (3.7)

Proof.
The optimization problem in (3.6) is a constrained minimization problem where
the real-valued and non-negative function of the complex weight vector w to be
minimized is

f(w) = w(k, l)HCv(k, l)w(k, l), (3.8)
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subject to the constraint that

wH(k, l)d(k, l, θs) = 1. (3.9)

In order to obtain the solution to this optimization problem, the well-known ap-
proach is to rewrite the constrained minimization problem in (3.6) using the method
of complex Lagrange multipliers [35, p. 442], [10, p. 25].

Let the complex Lagrange multiplier, denoted λ ∈ C, be given as [37, p. 793]

λ = λr + jλi, (3.10)

where λr = Re{λ} and λi = Im{λ} is the real and imaginary part of λ, respectively,
and j is the imaginary unit. We then convert the constrained minimization problem
in (3.6) into an unconstrained minimization by forming the Lagrangian function as
[37, pp. 793-794], [38]

L(w) = f(w) + λrRe{wH(k, l)d(k, l, θs)− 1}
+ λiIm{wH(k, l)d̃(k, l, θs)− 1}

(3.11)

= f(w) + Re{λ∗(wH(k, l)d(k, l, θs)− 1)} (3.12)

= f(w) +
1

2
λ∗
(
wH(k, l)d(k, l, θs)− 1

)
+

1

2
λ
(
dH(k, l, θs)w(k, l)− 1

)
,

(3.13)

where we have used the relations

Re{z} =
z + z∗

2
and Im{z} =

z − z∗
2j

, z ∈ C. (3.14)

As it appears from (3.13), we may consider L as a real function of the two complex
variables w and wH , so we denote it by L(w,wH), [39, pp. 518-519]. Note that,
the notations in this proof is slightly different from the ones in the rest of the thesis,
as we sometimes consider w without arguments, to accord with the literature.

Invoking the rules of partial differentiation under Wirtinger calculus [37, pp .785-
794], we assume that L(w,wH) is analytic in w and wH independently, in the sense
of partial differentiation. Then, it can be shown [38] that a necessary and sufficient
condition for L(w,wH) to be minimized can be obtained by taking the complex
gradient of L(w,wH) with respect to wH and equating the result to zero.

Differentiating L(w,wH) with respect to wH and formally treating w as a
constant [37, pp .785-794], we obtain

∂L(w,wH)

∂wH
= Cv(k, l)w(k, l) +

1

2
λ∗d(k, l, θs). (3.15)

Setting (3.15) equal to zero and solve for w, yields the structure of the optimum
weight vector, i.e.,

wopt(k, l) = −1

2
λ∗C−1

v (k, l)d(k, l, θs), (3.16)
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where λ∗ remains to be determined. Note that C−1
v (k, l) is valid by the assumption

that Cv(k, l) is positive definite.
In order to determine λ∗, we first rewrite the constraint equation in (3.6) as

dH(k, l, θs)w(k, l) = 1. (3.17)

Then, we impose this constraint by substituting (3.16) into (3.17), which leads to

dH(k, l, θs)wopt(k, l) = −1

2
λ∗dH(k, l, θs)C

−1
v (k, l)d(k, l, θs) = 1. (3.18)

Finally, solving for λ∗ in (3.18), yields

λ∗ =
−2

dH(k, l, θs)C
−1
v (k, l)d(k, l, θs)

, (3.19)

where the existence of
(
dH(k, l, θs)C

−1
v (k, l)d(k, l, θs)

)−1 is guaranteed by the fact
that Cv(k, l) is assumed to be positive definite. Substituting (3.19) into (3.16), we
arrive at the optimum beamforming coefficients, i.e.,

wopt(k, l, θs) =
C−1

v (k, l)d(k, l, θs)

dH(k, l, θs)C
−1
v (k, l)d(k, l, θs)

, (3.20)

denoted wMVDR(k, l, θs) in (3.7). �

Theorem 3.1 gives a closed form expression for the MVDR beamformer weights
wMVDR(k, l, θs) as a function of the RTF vector d(k, l, θs) and the inverse noise
CPSD matrix C−1

v (k, l). Hence, in order to compute wMVDR(k, l, θs) for a given
time-frequency tile, access to d(k, l, θs) and C−1

v (k, l) at that same time-frequency
tile is required. In practice, the RTF vector is typically not known in advance and
neither is the noise CPSD matrix Cv(k, l) = E

[
ṽ(k, l)ṽH(k, l)

]
in expected sense,

and thus, these have to be estimated from the microphone signals. The next chapter
covers estimation of the RTF vector, while we briefly discuss the estimation of the
noise CPSD matrix in the following.

Using a voice activity detector (VAD) to identify time-frequency tiles of noise-
only, realizations of the noise process ṽ(k, l) can be observed in isolation and used
to estimate the noise CPSD matrix [40]. Specifically, for the l’th time frame and the
k’th frequency bin, the noise CPSD matrix can be estimated as a moving average
over L time frames during speech absence [40], i.e.,

Ĉv(k, l) =
1

L

l∑
j=l−L+1

v(k, j)vH(k, j). (3.21)

Choosing the optimum number of time frames L to estimate the CPSD over is non-
trivial. Generally, the more frames used for estimating the noise CPSD matrix, the
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lower the variance of the estimator is. However, there is a trade-off when considering
acoustic environments, which is due to how non-stationary the noise sources are. The
change in spatial position will affect the estimate of the noise CPSD matrix, and thus,
it will influence the performance of MVDR beamformer. Hence, when choosing the
number of frames over which the moving average is taken, we have to make a choice
between better noise reduction and being reactive to spatial changes in the acoustic
environment [6, p. 18]. In Chapter 5, we expand upon the estimation of Cv(k, l) in
more detail.



4. Dictionary-Based Maximum Like-
lihood DOA Estimation

As we saw in the previous chapter, the implementation of the MVDR beamformer
requires the knowledge of the RTF from the target speaker to the HA microphones.
Optimal noise reduction can therefore only be achieved if the MVDR beamformer
is provided the true target RTF vector, or equivalently, the true direction of the
target sound source [6, p. 25]. However, as mentioned, the RTF-vectors are typically
not known in advance, and thus, have to be estimated. Plenty of RTF estimation
methods exists in the literature, and among these are methods that treat the RTF
estimation problem as a DOA estimation problem. Specifically, the idea behind the
DOA-based RTF estimation methods is to obtain an estimate of the RTF vector by
mapping the estimated DOA into a RTF vector from a predefined dictionary of RTF
vectors [6]. In practice, these RTF dictionaries are often constructed in a simple and
straightforward manner where each element of the RTF dictionary is associated with
one particular candidate target direction.

Today, a state-of-the-art approach for model-based DOA estimation used in the
context of beamforming for HA applications, relies on the maximum likelihood princi-
ple. Specifically, the method we will use in this thesis is a dictionary-based maximum
likelihood DOA estimation method, which is described in e.g., [11], [24], [41]. Closed-
form expressions for the employed maximum likelihood estimates were derived in
[11] for a similar signal model to the one considered in this thesis, although in a
non-acoustic context. However, equivalent expressions for the maximum likelihood
estimates are derived in e.g., [12], [13], [41] and used in e.g., [24], in an acoustic
context, in particular, in the study of algorithms for HA applications. The following
theory is primarily based on [11]–[13], [24], [41], and we therefore also refer the reader
to these sources for a more in-depth theory behind the method. In this chapter, we
present the method from a practical standpoint, where we, based on some model
assumptions, derive the likelihood function, but simply present the closed-form max-
imum likelihood estimation solutions with a reference to the original sources. Our
objective in this chapter is to ensure understanding of the method in a sufficient way
such that we are able to understand its implementation and use the method for com-
parison in the following chapter. Furthermore, the likelihood function of the noisy
microphone signals will play a central role in the Bayesian framework that will be
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studied in details in Chapter 6 in the context of our proposed beamforming methods.
This chapter is organized by first recalling the signal model for the noisy micro-

phone observations as well as the statistical assumptions made on the signal model.
Following this, we introduce some additional key assumptions that will be made in
order to employ the dictionary-based maximum likelihood DOA estimation method,
and lastly, we introduce the theory behind and results of the method.

4.1 Signal Model and Assumptions

Recall the time-frequency domain signal model for the noisy observations x̃(k, l) ∈
CM given as

x̃(k, l) = s̃(k, l)d(k, l, θs) + ṽ(k, l), (4.1)

where s̃(k, l) is the scalar STFT coefficient of the target signal measured at a pre-
selected reference microphone which impinges on the microphone array from direction
θs, d(k, l, θs) is the target RTF-vector, and ṽ(k, l) is the overall additive noise com-
ponent which is assumed to be uncorrelated with the target signal. As we saw in
Chapter 2, the assumption of s̃(k, l) and ṽ(k, l) to be mutually uncorrelated random
processes implies that that CPSD matrix of x̃(k, l) can be modeled as

Cx(k, l) = Cs(k, l) +Cv(k, l)

= λs(k, l)d(k, l, θs)d
H(k, l, θs) + λv(k, l)Γv(k, l0), l > l0,

(4.2)

where λs(k, l) and λv(k, l) are PSDs of the target and noise at the reference micro-
phone, respectively, and the matrix Γv(k, l0) is the normalized noise CPSD matrix at
the most recent time frame index l0 where speech was absent [34]. The target RTF
vector d(k, l, θs) and the time-varying PSDs λs(k, l) and λv(k, l) are all unknown,
whereas the matrix Γv(k, l0) may be estimated in speech absent regions, identified
by the use of an ideal VAD algorithm, and is therefore assumed known [13].

To consider the maximum likelihood method to estimate the target DOA θs, it is
assumed that the target sound source can arrive from one out of I pre-selected source
directions θi, for i = 1, . . . , I, such that each possible source direction can be rep-
resented by an associated RTF vector d(k, l, θi), for i = 1, . . . , I. To represent the
discrete set of possible target source directions, we use assume a predefined dictio-
nary of RTF vectors D = {d(k, l, θ1), . . . ,d(k, l, θI)} to be available such that each
dictionary element, i.e., each RTF vector d(k, l, θi), for i = 1, . . . , I, is associated
with one particular candidate target direction. In Fig. 4.1, a graphical example of
such dictionary is depicted, where candidate target directions are confined to a circle
around the user, and where each green cross on the circle represents an RTF vector
in the dictionary. With this notation of an RTF dictionary, the signal model for the
noisy microphone signals in (4.1) may be written as

x̃(k, l) = s̃(k, l)d(k, l, θi) + ṽ(k, l), i = 1 . . . , I, (4.3)
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Figure 4.1: Potential target sound source locations and their associated relative acoustic transfer
functions (RTFs) d(k, l, θi) for a particular frequency index k and time index l.

where d(k, l, θi) is one particular RTF vector from the dictionary D. Similarly, the
model for the noisy CPSD matrix in (4.2) may be written as

Cx(k, l, θi) = λs(k, l)d(k, l, θi)d
H(k, l, θi) + λv(k, l)Γv(k, l0), l > l0, (4.4)

where we have now indicated that the noisy CPSD matrix explicitly depends on the
target DOA θi, for i = 1, . . . , I.

To employ the maximum likelihood method to estimate the target DOA θs, the
probability density function (PDF) of the noisy microphone signals is required. To
this end, we use the signal model for the noisy microphone observations in (4.3), and,
unless otherwise is stated, the assumptions made on the signal model in Chapter 2 are
assumed to be the same in the proceeding. Additionally, we make the assumption that
the noisy microphone signals x̃(n) are realizations of zero-mean Gaussian random
processes, hence, their complex STFT coefficients x̃(k, l) are circularly-symmetric
complex Gaussian distributed with CPSD matrix given in (4.2), i.e., [24]

x̃(k, l) ∼ CN (0,Cx(k, l, θi)). (4.5)

Furthermore, in the following, x̃(k, l) are assumed to be independent across time l
and frequency k [13].
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4.2 Maximum Likelihood DOA Estimation

Based on the Gaussian assumption, the likelihood function of the noisy observations
x̃(k, l), which is obtained by considering the complex Gaussian PDF of x̃(k, l) as a
function of the target DOA parameter, is given by

f(x̃(k, l)|θi) =
1

πM |Cx(k, l, θi)|
exp

(
x̃H(k, l)Cx

−1(k, l, θi)x̃(k, l)
)
, (4.6)

where θi ∈ Θ, with Θ = {θ1, . . . , θI} being a discrete candidate set of directions
from which the target signal can arrive, | · | denotes the matrix determinant, and
Cx(k, l, θi) is given in (4.4) and is a function of the scalar PSDs λs(k, l) and λv(k, l)
as well as the target DOA θi, which dependency is represented through the target
RTF vector d(k, l, θi). Note that from (4.6), it is seen that Cx(k, l, θi) is required
to be invertible. In practice, this is not a problem as e.g., microphone self-noise will
ensure that Γv(k, l0) and hence Cx(k, l, θi) has full rank [12].

To facilitate the derivation of the maximum likelihood estimate of the target DOA,
we assume that λs(k, l), λv(k, l), and d(k, l, θi) can be considered approximately con-
stant across a certain number of L consecutive time frames of the STFT coefficients
x̃(k, l). Note that this assumption is also known as the short-time stationarity as-
sumption [13]. Following this assumption, let X(k, l) ∈ CM×L denote a matrix with
L observed vectors x̃(k, j), for j = l − L+ 1, . . . , l, as columns such that

X(k, l) = [x̃(k, l − L+ 1), . . . , x̃(k, l)]. (4.7)

Then, based on the assumption that the noisy microphone observations x̃(k, l) are
independent across time l, it follows that the joint likelihood function of X(k, l), i.e.,
the joint likelihood function of successive observations, is given by the product of the
likelihood functions of successive observations, i.e.,

f(X(k, l)|θi) =
l∏

j=l−L+1

f(x̃(k, j)|θi), i = 1 . . . , I. (4.8)

Let R̂(k, l) ∈ CM×M denotes the sample estimate of the noisy CPSD matrix which
we defined as

R̂(k, l) =
1

L
X(k, l)XH(k, l). (4.9)

Then, under the aforementioned assumptions, it can be shown that the joint likelihood
of X(k, l) can be expressed as

f(X(k, l)|θi) =
exp

(
−Ltr

(
R̂(k, l)Cx

−1(k, l, θi)
))

πLM |Cx(k, l, θi)|L
, (4.10)

where tr (·) denotes the trace operator defined as the sum of the main diagonal el-
ements of a square matrix. Based on the likelihood function (4.10), the maximum
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likelihood DOA estimation approach first derives the maximum likelihood estima-
tion of λs(k, l) and λv(k, l) conditioned on the DOA parameter θi, for i = 1, . . . , I.
Then, the estimated parameters are substituted into (4.15), in which a concentrated
likelihood function is obtained, and finally, this concentrated likelihood function is
maximized with respect to θi to obtain the maximum likelihood estimate of the target
DOA.

Maximum Likelihood Estimates of Target and Noise PSDs

In [11], closed-form expressions for the maximum likelihood estimates of λs(k, l) and
λv(k, l) are derived, and equivalent expressions are derived in e.g., [12], [13] for similar
signal models to the one employed in this thesis. It can be shown that the maximum
likelihood estimate of the noise PSD λv(k, l), conditioned on the DOA parameter θi,
is [13]

λ̂v,ML(k, l, θi) =
1

M − 1

tr
(
B(k, l, θi)

HR̂(k, l)B(k, l, θi)
(
BH(k, l, θi)Γv(k, l0)B(k, l, θi)

)−1
)
,

(4.11)

where the dependency on θi in λ̂v,ML(k, l, θi) is introduced to indicate the that the
maximum likelihood estimate of the noise PSD λv(k, l) depends on the choice of θi,
and where B(k, l, θi) ∈ CM×M−1 denotes a so-called blocking-matrix given as [12],
[13]

B(k, l, θi) =

(
IM×M −

d(k, l, θi)d
H(k, l, θi)

dH(k, l, θi)d(k, l, θi)

)
I(M×M−1), i = 1, . . . , I. (4.12)

The interpretation of the blocking matrix is that it is used to project x̃(k, l) into the
null-space of d(k, l, θi)d

H(k, l, θi), i.e., we block the speech component

λs(k, l)d(k, l, θi)d
H(k, l, θi)

of x̃(k, l) [12], [13], [42].

Given the maximum likelihood estimate of the noise PSD in (4.11), it can be shown
[11], [13] that the maximum likelihood estimate of the target PSD, conditioned on
θi, is

λ̂s,ML(k, l, θi) = wH
MVDR(k, l, θi)

(
R̂(k, l)− λ̂v,ML(k, l, θi)Γv(k, l0)

)
wMVDR(k, l, θi),

(4.13)
where wMVDR(k, l, θi) ∈ CM , for i = 1, . . . , I, are MVDR beamformers steered to-
wards each direction θi defined in the discrete set Θ of possible target DOAs, i.e.,
[12], [13]

wMVDR(k, l, θi) =
Γ−1
v (k, l0)d(k, l, θi)

dH(k, l, θi)Γ
−1
v (k, l0)d(k, l, θi)

, i = 1, . . . , I. (4.14)
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Concentrated Log-Likelihood Function

Inserting the maximum likelihood estimates of λs(k, l) and λv(k, l) into the like-
lihood function in (4.10), an expression for the concentrated likelihood function
f(X(k, l)|θi, λ̂s,ML(k, l, θi), λ̂v,ML(k, l, θi)), which we may denote f̄(X(k, l)|θi), is ob-
tained, i.e.,

f̄(X(k, l)|θi) =
exp

(
−Ltr

(
R̂(k, l)Ĉ

−1
x (k, l, θi)

))
πLM

∣∣∣Ĉx(k, l, θi)
∣∣∣L , (4.15)

where we have defined

Ĉx(k, l, θi) = λ̂s,ML(k, l, θi)d(k, l, θi)d
H(k, l, θi) + λ̂v,ML(k, l, θi)Γv(k, l0). (4.16)

For practical convenience, often the logarithm of the likelihood function is maxi-
mized instead of the likelihood function. First of all, taking the logarithm of the
likelihood function simplifies the subsequent mathematical analysis, and secondly,
and even more importantly for our present purpose, it also provides numerical stabil-
ity because the product of a large number of small probabilities can easily make the
computations numerical unstable, which is resolved by instead computing the sum
of the log-probabilities [43, p.26]. As the logarithm is a monotonically increasing
function of its argument, maximization of the log of a function is equivalent to maxi-
mization of the function itself. Taking the natural logarithm of (4.15), and using the
fact that [11]

tr
(
R̂(k, l)Ĉ

−1
x (k, l, θi)

)
= M, (4.17)

the concentrated log-likelihood function can be written as

log
(
f̄(X(k, l)|θi)

)
=− LM log(π)

− L log
(∣∣∣Ĉx(k, l, θi)

∣∣∣)
− LM,

(4.18)

where log(·) is taken to mean the natural logarithm. As we want to maximize the
log-likelihood function with respect to the DOA parameter θi, we can ignore terms in
(4.18) not involving this parameter. By doing so, we arrive at the reduced expression
of the concentrated log-likelihood function given as [34]

log
(
f̄(X(k, l)|θi)

)
= − log

(∣∣∣Ĉx(k, l, θi)
∣∣∣). (4.19)

Wideband Maximum Likelihood Estimate of the Target DOA

From the concentrated log-likelihood function in (4.19), we are finally able to obtain
the maximum likelihood estimate of the target direction θs for a given time-frequency
tile. However, as an acoustic target sound sources plausibly occupy multiple frequency
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bins at once, due to the wide-band nature of speech, we may utilize this information
to obtain a more robust estimate of the target DOA [42, Sec. III-D]. We do so
by utilizing the assumption of x̃(k, l) to be independent across frequency k, which
allows us to jointly estimate the target DOA across frequencies by summation of the
concentrated log-likelihood functions for all k. In other words, we choose to maximize
the wideband concentrated log-likelihood function with respect to θi [24], [41], i.e.,

θ̂s,ML = arg max
θi∈Θ

K∑
k=1

log
(
f̄(X(k, l)|θi)

)
, (4.20)

where K is the total number of frequency bins of the one-sided spectrum. As θi
belongs to a relatively small discrete set of directions, the wideband maximum like-
lihood estimate of θs is obtained through an exhaustive search over θi. Given the
maximum likelihood estimate of θs, an estimate of the target RTF vector is obtained
by mapping θ̂s,ML into an associated target RTF from a predefined dictionary of tar-
get RTF vectors [41]. The dictionary-based maximum likelihood DOA estimation
method is summarized in Algorithm 1 as pseudo-code.
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Algorithm 1 Dictionary-Based Maximum Likelihood RTF Estimation
Input:

R̂(k, l) ∈ CM×M , ∀ k: Sample estimate of noisy CPSD matrix.
Γv(k, l0) ∈ CM×M , ∀ k: Normalized noise CPSD matrix.
Γ−1
v (k, l0) ∈ CM×M , ∀ k: Inverse normalized noise CPSD matrix.
D = {d(k, l, θ1), . . . ,d(k, l, θI)} ∈ CM×K×I : Dictionary of RTF vectors.

Output:
d̂(k, l, θ̂s,ML) ∈ CM , ∀ k: Maximum likelihood estimate of RTF vector.

1: for k = 0 to K − 1 do
2: for i = 1 to I do
3: Obtain d(k, l, θi) from D.
4: B(k, l, θi) =

(
IM×M −

d(k, l, θi)d
H(k, l, θi)

dH(k, l, θi)d(k, l, θi)

)
I(M×M−1).

5:
λ̂v,ML(k, l, θi) =

1

M − 1
tr
(
B(k, l, θi)

HR̂(k, l)B(k, l, θi)(
BH(k, l, θi)Γv(k, l0)B(k, l, θi)

)−1
)
.

6: Cv,ML(k, l, θi) = λ̂v,ML(k, l, θi)Γv(k, l0).

7: wMVDR(k, l, θi) =
Γ−1
v (k, l0)d(k, l, θi)

dH(k, l, θi)Γ
−1
v (k, l0)d(k, l, θi)

.

8: λ̂s,ML(k, l, θi) = wH
MVDR(k, l, θi)

(
R̂(k, l)−Cv,ML(k, l, θi)

)
wMVDR(k, l, θi).

9: Cx,ML(k, l, θi) = λ̂s,ML(k, l, θi)d(k, l, θi)d
H(k, l, θi) +Cv,ML(k, l, θi).

10: log
(
f̄(X(k, l)|θi)

)
= − log (|Cx,ML(k, l, θi)|).

11: end for
12: end for
13: θ̂s,ML = arg maxθi∈Θ

∑K−1
k=0 log

(
f̄(X(k, l)|θi)

)
,

14: Obtain RTF vector from D corresponding to θ̂s,ML for all k.



5. Feasibility Test and Upper Bound
Performance of Eye-Gaze Steered
Beamformers

The first task of this thesis has been to examine the potential performance benefits
of using eye-gaze steered beamformers. In order to access whether eye-gaze steered
beamforming is worth the extra cost of having additional sensors, e.g., electrodes or
cameras, in future hearing aids to measure the user’s eye-gaze, a feasibility study has
been carried out. The purpose of this study is to establish fundamental knowledge
on the potential performance benefits of using eye-gaze steered beamforming. To
determine an upper performance bound of an eye-gaze steered beamforming system,
the feasibility study is performed under ideal conditions where the user’s eye-gaze is
assumed precisely pointing towards the desired speaker. The conclusions are drawn
based on empirical experiments. Specifically, to examine the potential performance
benefits of using eye-gaze steered beamformers, an evaluation and comparison are
carried out between an oracle eye-gaze steered MVDR beamformer and a fixed MVDR
beamformer, that is always steered towards the front of the user, as well as an MVDR
beamformer steered using the microphone-only DOA estimator based on maximum
likelihood estimation described in the previous chapter.

The chapter begins with a presentation of the implementation of the overall simu-
lation framework that has been constructed in order to perform the simulation exper-
iments related to the feasibility study. This includes a description of how the acoustic
environments, in which the beamformers are tested, are created as well as a descrip-
tion of the practical implementation of the beamforming algorithms. Afterwards, the
performance measures used to evaluate the beamformers are presented, and finally,
the performance of the beamforming methods are evaluated and compared through
simulation experiments.

5.1 Implementation

In order to apply the MVDR beamformers, we need access to the noisy microphone
signals x(n) as they are picked up by the microphones on the HA devices and the
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MVDR beamformer weights wMVDR(k, l). In the following sections, we describe how
these are obtained through simulations.

5.1.1 Simulating HA Microphone Signals x(n)

In order to simulate noisy microphone signals, as they are picked up by the mi-
crophones on the HA devices with M ≥ 2 microphones, we have made a general
framework which can be used to simulate from the signal model presented in (2.1),
i.e.,

x(n) = (s ∗ a(•, θs))(n) + v(n), (5.1)

where s(n) is the target signal measured at the source location, a(n, θs) is a vector
containing the AIRs from the target speaker to each of the M microphones on the
HA, and v(n) is an additive noise term. Hence, in order to simulate from the signal
model in (5.1), we need access to the clean target signal s(n), the AIRs a(n, θs),
and some noise signals v(n). In the following, we describe how these signals, as well
as the parameters that will be used to simulate the acoustic scenes, are obtained,
and in addition, present the general framework for using the signal model in (5.1) to
simulate the sound received at the HA microphones in the studied acoustic scenes.

Acoustic Impulse Response and Sound Databases: The AIRs used to simu-
late the wave propagation from a sound source to the microphones on the HAs are
obtained from a database provided by Oticon. The AIRs are obtained from empirical
measurements with HAs placed on a real human head [33]. The measurement setup
consists of a spherical loudspeaker array with a HA user, seated in the center of the
array, wearing a BTE HA on each ear. We refer the reader to Fig. 1.1 for an exam-
ple of a BTE HA. Each BTE HA has three microphones where two are placed in a
front/rear configuration on the HA and the third is placed in the ear canal. For the
purpose of the simulation experiments carried out in this chapter, different subsets
of the microphones on the HAs are used in both a monaural and in binaural HA
configurations. For the binaural HA configurations, we assume wireless, simultane-
ous, and error-free signal exchange between the left and the right HA. The AIRs only
incorporates the influence of the head, torso and pinnae, as well as the position of
the sound source relative to the HA user, while the small amount of reverberation
present in the original AIRs has been removed by truncating the AIRs. The AIRs
are sampled at a sampling frequency of 44.1 kHz and were measured 360° around
the head with an azimuth resolution of 7.5°, with 0° defined as the frontal direction
from the HA user’s point of view, and the azimuth is counterclockwise rotating. The
AIRs were also measured at different elevations, but in this thesis, we will focus on
simulating the target and noise sources only from the azimuth angle, as, in many real
acoustic scenarios, the target may primarily be located at about the same elevation
as the HA user. Hence, when simulating acoustic scenes, the sound waves can arrive
from a discrete set of 360◦

7.5◦ = 48 possible locations which are placed uniformly around
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a circle, with a radius of 1.5 meters, in a horizontal plane approximately at the height
of the subjects ears [14], [33], [44]

Clean speech signals used for the target are speech obtained from the TIMIT
Corpus [45]. The TIMIT Corpus contains a total of 6300 recorded sentences, 10
sentences spoken by each of 630 speakers from eight major dialect regions of the
United States. For the purpose of this thesis, for each speaker, the recordings are
concatenated into a single recording. The noise types used in the simulations are
synthetic babble noise as well as speech shaped noise. The babble noise is created
using speech signals from the TIMIT corpus. The speech shaped noise (SSN) is
obtained from [46] where the SSN sequence is constructed by filtering a 50 minute
Gaussian white noise sequence through a 12th-order all-pole filter with coefficients
found from linear predictive coding analysis of 100 randomly chosen sentences from a
Danish speech corpus. The clean speech signals from TIMIT and noise signals from
[46] are sampled at 16 kHz.

Preprocessing: The first part of the simulation of acoustic scenes constitutes a
preprocessing stage, where the audio signals used to generate the acoustic scene are
resampled such that the sampling frequency of the audio signals are in agreement
with the sampling frequency of the AIRs. As the clean speech signals and noise
signals are sampled at 16 kHz, while the AIRs are sampled at 44.1 kHz, the clean
speech signals and noise signals are upsampled to 44.1 kHz. The resampling is done
using a polyphase up/down method [47] where the signal is upsampled by a factor
P , a zero-phase low-pass finite impulse response filter is applied, and then the signal
is downsampled by a factor Q. The specific values of P and Q are chosen based on
the sampling frequency of the considered audio signals. The duration of an acoustic
scene is chosen to be 5 seconds, and for each scene realization, a new target speech
signal as well as noise signals are randomly chosen and kept fixed during the acoustic
scene.

Specification of Acoustic Scene: In the simulation of the acoustic scenes, we
choose to fix the noise fields to be approximately isotropic, as this may be the case
in many realistic acoustic scenes, such as interfering speakers at a cocktail party
[6, p. 43]. We construct the approximately isotropic babble or SSN noise fields by
modeling noise received at each microphone as a superposition of mutually temporal
uncorrelated speech signals or SSN sequences impinging uniformly from all of the 48
possible directions.

For the possible target directions, we use a subset of the AIR database, namely
θs ∈ Θs = {−90°,−75°, . . . , 75°, 90°}, corresponding to the frontal-horizontal plane.
Hence, the target is located in the frontal half-plane. We choose this range of target
directions as in many realistic situations, the target speaker is usually located at the
front of the user.

To control the SNR in the acoustic scenes, we scale the target speech signal by a
gain factor g. Specifically, we define the input SNR as the ratio between the average
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target power and the average noise power. The target speech power and noise power
are computed prior to convolution between the signals and the AIRs. Hence, we have
decided to define the SNR using signal and noise powers computed at the source
locations. In this way, the SNR is not a function of direction and therefore, the input
SNR measured at the reference microphone, which is placed on the left ear of the HA
user, is biased, due to the head-shadow effect. To be more precise, when the target
signal impinges on the microphone array from the user’s right hand side, the SNR
measured at the reference microphone is reduced due to head shadow effects, but
in turn, the SNR measured on the reference microphone is almost unaltered by the
head and the torso of the user, when the target signal impinges on the microphone
array from the user’s left hand side. Hence, if SNR was measured at the reference
microphone, the SNR would be higher for target signals arriving from the left, than
for target signals arriving from the right side.

The average power of a target speech signal, s(n), for n = 0, . . . , Ns − 1, is
computed as

ς̂2
s =

1

Ns,active

Ns−1∑
n=0

(s(n))2, (5.2)

where Ns,active is the number of samples in the target speech signal where speech is
present. When we compute the average power of the target speech signal, we remove
speech absent segments in the computation by applying a VAD. We do this since the
different speech signals from the TIMIT corpus might contain different amount of
silent segments. The procedure for using the VAD in the computation of the average
power is summarized in Algorithm 2 as pseudo-code.

In order to obtain the average power of the noise signal v(n) =
∑Q

q=1 vq(n), where
vq(n) is the q’th noise signal measured the q’th noise source, the average power of
each of the Q noise signals vq(n) is computed as

ς̂2
q,v =

1

Nv

Nv−1∑
n=0

(vq(n))2, q = 1, ..., Q,

where Nv is the number of samples vq(n). Next, since the noise sources are assumed
uncorrelated, the average power of the noise signal v(n) in the acoustic scene is
determined as the sum of the average noise power of the Q noise signals, i.e.,

ς̂2
v =

Q∑
q=1

ς̂2
q,v.

When the noise type is babble, an identical VAD approach, as the one in Algorithm 2,
is used for v(n) in order to identify rare events of simultaneous speech absence from
all Q noise sources.

The SNR will be expressed in decibel (dB), thus, the SNR is given by [48, p. 229]

SNR = 10 log10

(
ς̂2
s

ς̂2
v

)
dB. (5.3)
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Algorithm 2 VAD used in computation of average power of target speech signal and
babble noise
Input:

s(n), for n = 0, . . . , Ns − 1: Target speech signal.
Output:

Ns,active: Number of samples in the target signal with speech presences.

1: Set threshold value, δth = 40 dB.
2: Set Ns,active = 0.
3: Segment target signal into non-overlapping frames of N = 256 samples as sl(n) =
s(n+ lN).

4: for all l do
5: Compute frame energy E(l) = 10 log10

(∑N−1
n=0 (sl(n))2 + ε

)
.

6: end for
7: Determine maximum frame energy as Emax = max

l
(E(l)).

8: for all l do
9: if Emax − E(l) ≤ δth then

10: Add N to Ns,active.
11: end if
12: end for

In order to control the SNR in an acoustic scene, we then scale the target speech
signal with a gain factor g, such that the SNR is determined as

SNR = 10 log10

 1
Ns,active

∑Ns−1
n=0 (gs(n))2∑Q

q=1
1
Nv

∑Nv−1
n=0 (vq(n))2

 = 10 log10

(
g2ς̂2

s

ς̂2
v

)
dB. (5.4)

Isolating g in (5.4), yields

g =

(
ς̂2
s

ς̂2
v

· 10−
SNR
10

)− 1
2

. (5.5)

Multiplying the target speech signal s(n) with g ensures that the SNR in the acoustic
scene has the desired value.

Filtering and Generation of Acoustic Scene: After preprocessing and specifi-
cation of the acoustic scene, the structure of a spatial setup, where the audio signals
can arrive from 48 equidistant angles, is generated. This simulation of the acoustic
path for each 48 angles is done by convolving the audio signals with an associated AIR.
Afterwards, the resulting signals are downsampled to 16 kHz. The noisy microphone
signals are then simulated by adding the convolved target signal with the convolved
noise signals such that the resulting noisy microphone signals are in accordance to
(5.1) with the target signal scaled by g, i.e.,

x(n) = ((gs(•)) ∗ a(•, θs))(n) + v(n), (5.6)
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with

v(n) =

Q∑
q=1

(vq ∗ a(•, θvq))(n), (5.7)

where θvq is the direction associated with the q’th noise signal.
In order to generate a number of different acoustic scenes, the code is executed by

choosing a specific acoustic scene according to target direction, noise type, and input
SNR and by specifying the number of microphonesM as well as the microphone array
geometry used to construct x(n). For each scene realization, the target direction,
noise type, and the input SNR are chosen and kept fixed during the acoustic scene.

5.1.2 Implementation of MVDR Beamforming System

As we saw in Chapter 3, some parameters need to be estimated in order to implement
the MVDR beamformer efficiently, as these are unknown in practice. Specifically, this
involves knowledge of the RTF vector of the target speech signal as well as the noise
CPSD matrix. In this section, we will describe how we obtain these beamformer
parameters in our implementation of the MVDR beamformer. Before presenting the
beamformer parameter estimation, the necessary specifications related to the trans-
formation of the time-domain noisy microphone signals into the their corresponding
time-frequency domain representations are briefly covered.

Analysis and Synthesis

Whenever a beamformer is implemented in this thesis, the signal processing is per-
formed in the time-frequency domain. To obtain the time-frequency domain represen-
tation of the noisy microphone signals, we use the STFT, as mentioned in Chapter 2.
In this thesis, we apply the STFT with a window length of N = 256 samples, which
with a sampling frequency of 16 kHz corresponds to 16 ms. We choose this window
length since a commonly made assumption in speech processing applications is that
speech, which has a time varying spectrum, can be considered wide sense stationary
in time intervals around 20 − 30 ms [48, pp. 866-867]. With a sampling frequency
of 16 kHz, 20 ms will correspond to a window length of 320 samples, and so, for
convenience, the window length is rounded to 256 samples. For the window, we use
the square root Hanning window which is constructed by taking the square root of
the Hanning window. The Hanning window is defined by [48, p. 858]

w(n) =


√

(1−cos( 2πn
N ))

2 , 0 ≤ n ≤ N,
0, otherwise,

n ∈ N0. (5.8)

We choose this window, as it is widely used in the context of beamforming when the
goal is to enhance a target speech signal by noise reduction [6, p. 16], [49, p. 50].
The square root Hanning window is implemented with a hop size of D = 128, which
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corresponds to an overlap of 50%. We choose this hop size as it guarantees that the
window satisfies the so-called overlap-add property [30, p. 232]

∞∑
l=−∞

w(n− lD) = 1. (5.9)

The overlap-add property is desirable, as it ensures perfect reconstruction of the
signal as long as an equivalent square root Hanning window is used for synthesis [30,
p. 232] and as long as D ≤ N ≤ K, where K is the number of frequency bins [48,
pp. 856-858]. For convenience, we let N = K. Our choice of settings for the STFT
are summarized in Table 5.1.

Window Square root Hanning
Window length N = 256

Number of frequency bins K = 256

Hop size D = 128

Overlap 50%

Table 5.1: Settings of the STFT.

After application of the beamformer, the estimated target speech signal, which is
obtained as the output of the beamformer, is transformed back into the time domain
using the ISTFT [48, pp. 850-581], with the same settings as for the STFT.

Beamformer Parameter Estimation

After transforming the noisy microphone signal used in a given simulation using the
STFT, the beamforming algorithms are applied to each frequency subband. Due to
the fact that xm(n) is real-valued, the spectrum is symmetric, and therefore, only
the first K = N/2 + 1 frequency bins of x̃m(k, l), corresponding to the number of
frequency bins of the one-sided spectrum, are processed. Application of the MVDR
beamformer results in an estimate of the target speech signal received at the reference
microphone given as

ˆ̃s(k, l) = ŵH
MVDR(k, l, θ̂s)x̃(k, l), (5.10)

where ŵH
MVDR is an estimate of the MVDR beamformer weights, which for each

time-frequency tile is implemented as

ŵMVDR(k, l, θ̂s) =
Ĉ
−1
v (k, l)d̂(k, l, θ̂s)

d̂
H

(k, l, θ̂s)Ĉ
−1
v (k, l)d̂(k, l, θ̂s)

, (5.11)

where Ĉv(k, l) and d̂(k, l, θ̂s) are the estimated noise CPSD matrix and RTF vector,
respectively. In the following, we describe how these estimates are obtained and used
to implement the MVDR beamformers. The overall procedure for implementing the
MVDR beamforming system is summarized in Algorithm 3 as pseudo-code.
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Noise CPSD matrix estimation, Ĉv(k, l): In this thesis, we estimate the noise
CPSD matrix by using noise dominant time-frequency tiles to update the noise CPSD
matrix and use the resulting estimate during speech presence. In practice, detecting
noise dominant time-frequency tiles requires e.g., the use of a VAD. For the imple-
mentation of the MVDR beamformer, we have decided to let the first second of each
acoustic scene realization consisting of noise-only samples such that we can use these
samples to obtain an estimate of the noise CPSD matrix using

Ĉv(k, l0) =
1

L

l0∑
j=l0−L+1

ṽ(k, j)ṽH(k, j), k = 0, . . . ,K − 1, (5.12)

over L = 125 time frames corresponding to the first second of an acoustic scene
realization, where l0 denotes the last time frame index in the first second with speech
absence. By obtaining the noise CPSD matrix this way, the underlying assumption
is that the structure of the noise CPSD matrix found during speech absence remains
identical during target speech presence.

Implementation of RTF vector estimation, d̂(k, l, θ̂s): In order to implement
the closed form expression for the MVDR beamformer for a given time-frequency
tile as given in (5.11), access to the target RTF vector at this time-frequency tile is
required. The target RTF vectors used to implement the beamformers are obtained
from a predefined RTF dictionary where each of the possible target RTF vectors are
associated with a corresponding target DOA. In the following, we first describe how
the RTF dictionary is constructed, and afterwards, we present the implementation
of the baseline maximum likelihood estimation of the RTF vectors which consists
of a maximum likelihood DOA estimation followed by a look-up of the RTF in the
predefined RTF dictionary.

A. Construction of RTF dictionary: The RTF dictionary used in the determination of
the beamformer coefficients is constructed such that D = {d(k, l, θ1), . . . ,d(k, l, θI)}
is an ordered tuple where the elements d(k, l, θi), for i = 1, . . . , I are RTF vectors
associated with the sound sources impinging from direction θi = (i − 1)7.5° in the
horizontal plane where θ1 = 0° is the frontal direction with respect to the HA user.
This RTF dictionary is graphically depicted in Fig. 5.1, where each RTF vector in
the constructed dictionary D for a particular frequency index k and time index l is
represented by the green crosses on the circle around the HA user.

The predefined database of RTFs are made by first downsampling the AIRs in
the AIR database described in Section 5.1.1 from 44.1 kHz to 16 kHz using the
polyphase up/down method [47]. In this way, the sampling frequency of the AIRs
are in agreement with the desired sampling frequency of the simulated received mi-
crophone signals.

In order to transform the AIRs to ATFs, we apply the discrete Fourier transform
(DFT) [48, p. 654], which allows us to use a window length equal to the length of the
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Figure 5.1: Potential target sound source locations and their associated relative acoustic transfer
functions (RTFs) d(k, l, θi) for a particular frequency index k and time index l.

downsampled AIRs and thereby prevent any additional information loss. However,
the window length of the DFT should not only be in accordance to the length of
the downsampled AIRs, but also to the window length of the STFT applied to the
noisy microphone signals, i.e., N = 256. The downsampled AIRs have a length of
372 samples, of which the last 223 samples are observed to be zeros. Hence, we can
simply truncate the AIRs to 256 samples without any information loss, as samples
with a value of zero do not contribute to the DFT. Thus, the ATFs are obtained by
applying the DFT on the truncated AIRs. After obtaining the ATFs, we obtain the
RTF for the m-th microphone by using

dm(k, θ) =
1

ã1(k, θ)
ãm(k, θ), m = 1, . . . ,M, (5.13)

where the frontal left microphone with reference microphone index 1 is chosen as
the reference microphone. Due to the fact that we have applied the DFT, the RTF
vectors only depend on the frequency bins and the estimated target DOA and not
the time frame. However, the RTF vectors are still implicitly dependent on the time
frame, as we for each time frame estimate a target DOA which is not guaranteed to
be constant over all time frames. When the estimate of the target DOA θ̂s is mapped
to an RTF vector, we will explicitly denote the dependence on the time frame of the
RTF vector by d̂(k, l, θ̂s).
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B. Implementation of dictionary-based maximum likelihood DOA estimation: In the
following, we describe how we have implemented the maximum likelihood based DOA
estimation scheme employed in this thesis. The implementation of this method is
made by translating an existing MATLAB function which return a wide-band maxi-
mum likelihood estimate of the target RTF vector given a dictionary of RTF vectors
for K frequency bins, into a Python function. Hence, in order to use the maximum
likelihood method as a competing DOA estimation method used to steer an MVDR
beamformer, it is of crucial importance to ensure that the translation of the MAT-
LAB function is correct. In order to ensure that our Python implementation is a
correct translation of the MATLAB function, we have evaluated and compared the
two implementations in different typically occurring acoustic scenes that a HA user
may experience. The comparisons were done by providing the two functions with the
same input variables and then see if identical results for both implementations are
obtained. Specifically, for each time frame, we investigated whether the implemen-
tations provide identical estimates of the element from the RTF dictionary. From
the results of the comparison, it was found that the two implementations provide
identical results in the different studied acoustic scenes, and therefore, we conclude
that our Python implementation can be considered a valid implementation of the
dictionary based maximum likelihood DOA estimation method. An example of the
comparison is shown in Appendix B.1.

5.2 Performance Measures

To quantify the performance of the beamformers, the beamforming performance will
be reported in terms of extended short-time objective intelligibility (ESTOI) [50] and
segmental SNR (segSNR) [51, p. 9], which yield an estimate of predicted speech in-
telligibility and quality, respectively. Specifically, ESTOI and segSNR can be used
to evaluate changes in predicted speech intelligibility and quality as a result of ap-
plying a beamformer by comparing the estimated time-domain target speech signal
ŝ(n) from the beamformer with the clean target speech signal s(n) received at the
reference microphone [50], [51, p. 9].

Extended Short-time Objective Intelligibility

ESTOI is a quantity which predicts speech intelligibility. The details of ESTOI will
not be covered in this thesis, but can be found in [50]. The lower and upper bound
in the predicted speech intelligibility score is −1 and 1, respectively, where a higher
value reflects higher speech intelligibility.

Segmental Signal-to-Noise Ratio

SegSNR is a simple objective measure to evaluate speech enhancement algorithms.
The segSNR measure takes both noise reduction and speech distortion into account
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[51, p. 9]. In this thesis, segSNR will be used to measure the degree of noise reduction,
as a measure for speech quality. However, it should be mentioned that, although
segSNR is widely used in the context of evaluation of speech enhancement algorithms,
it has been shown to correlate poorly with speech quality [51, sec. 2.2].

The segSNR and is computed by averaging frame level SNR estimates as [52,
p. 480], [51, p. 9]

segSNR =
1

Ny

Ny∑
i=1

10 log10


Ni+N−1∑
n=Ni

y(n)2

Ni+L−1∑
n=Ni

[(y(n)− ŷ(n))2]

 dB, (5.14)

where y(n) is the unprocessed time-domain signal, ŷ(n) is the enhanced time-domain
signal, N is the frame length, i.e., the number of samples in each frame, and Ny is
the number of frames in the signal. When computing the segSNR scores, we exclude
silent frames from the sum in (5.14) in order to avoid large negative segSNR values
which will bias the overall measure [51, p. 9].

In this tesis, we use the implementation from [53] for segSNR and the one from
[50] for ESTOI.

5.3 Beamformer Evaluation

In this section, we examine an upper bound performance of eye-gaze steered beam-
formers. To this end, the experiments are performed under ideal conditions where
the user’s eye-gaze is assumed precisely pointing towards the desired speaker. To
examine the potential performance benefits of using eye-gaze steered beamformers,
an evaluation and comparison are carried out between the following beamforming
methods:

• MVDR-Eye-Gaze: The beamforming system MVDR-Eye-Gaze is used as an
eye-gaze controlled reference system to indicate the upper bound performance
of the eye-gaze steered MVDR beamformer if the eye-gaze of the HA user is
precisely pointing towards the desired speaker. This is relevant to examine,
since, if no significant gain is obtained under ideal conditions, then eye-gaze
steered beamforming may not we worthwhile for future HAs. For this method,
d̂(k, l, θ̂s) is therefore the RTF vector associated with the true target direction,
i.e., θ̂s = θs, and is used to implement the MVDR beamformer.

• MVDR-Fixed: In the context of HA systems, the target speaker is often
assumed to be frontal with respect to the HA user [8]. The beamforming system
MVDR-Fixed is used to emulate such system. For this method, d̂(k, l, θ̂s) is the
RTF vector associated with the frontal direction, i.e., θ̂s = 0° and is used to
implement the MVDR beamformer.
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• MVDR-ML: The beamforming system MVDR-ML is used as an example of an
MVDR beamformer steered using a microphone-only DOA estimator. For this
method, the target RTF vector d̂(k, l, θ̂s) is estimated using the directional-
based maximum likelihood DOA estimation method in Algorithm 1, and is
used to implement the MVDR beamformer. I.e., for this method d̂(k, l, θ̂s) is
the target RTF vector associated with the dictionary maximum likelihood DOA
estimate of θs, i.e., θ̂s = θs,ML.

5.3.1 Experimental Setup

The performance of the beamforming systems is evaluated on noisy microphone sig-
nals which are simulated in accordance to the description in Section 5.1. The settings
for generating the acoustic scenes are summarized in Table 5.2. As presented in the

Noise Field Noise Type SNR Target Direction
Isotropic Babble, SSN −10, 0, 10 dB θs ∈ Θs = {−90°,−75°, . . . , 75°, 90°}

Table 5.2: Settings for parameters in simulation of acoustic environments used for evaluation of
the beamformer performance.

table, we are simulating noisy acoustic microphone signals for varying input SNRs,
specifically −10 dB, 0 dB, and 10 dB. Examining the influence the input SNR has on
the performance of the beamforming systems is motivated by the fact that the state-
of-the-art dictionary-based maximum likelihood DOA estimation method is known
to perform poorly in acoustic scenes where the SNR is low. In acoustic scenes where
the SNR is low, we therefore expect the MVDR-Eye-Gaze to perform much better
than the MVDR-ML, while we on the other hand expect the MVDR-ML to per-
form almost on par with the MVDR-Eye-Gaze at a high SNR, given that a good
estimate of Γv(k, l0) can be obtained. Furthermore, we evaluate the performance
for three different microphone array configurations; a 2-microphone configuration, a
4-microphone configuration, and a 6-microphone configuration. Exploring the influ-
ence of the number of microphones used in a HA system on the performance of the
MVDR beamformers, is motivated by the fact that the beamwidth of a 2-microphone
frontal MVDR beamformer may allow for considerable larger deviations of the tar-
get location from the assumed frontal DOA than might be the case for M = 4 and
M = 6 microphone beamformers. For M = 2 microphones, we therefore expect the
MVDR-Fixed to preform on par with the performance of the MVDR-Eye-Gaze.

The settings for analysis and synthesis, for the implementation of the MVDR beam-
formers, and for the maximum likelihood estimation of the RTF vectors are all spec-
ified in accordance with the descriptions in Section 5.1.2.
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5.3.2 Evaluation and Simulation Results

In this section, we compare the performance of the MVDR-Eye-Gaze, MVDR-Fixed
and MVDR-ML in terms of average ESTOI and segSNR scores, in order to examine
the potential performance improvements of the oracle eye-gaze steered beamformer
MVDR-Eye-Gaze in different conditions where the baseline methods potentially may
fail. Furthermore, to get an indication of an upper bound on the noise reduction per-
formance of the MVDR beamformer, an oracle MVDR beamformer, denoted MVDR-
Ideal is implemented. This beamformer is implemented using the true target DOA
as well as an estimate of the noise CPSD matrix which for each time-frequency tile
is updated using the most recent 125 samples of the isolated noise signal ṽ(k, l).
The ESTOI and segSNR scores for the MVDR-Ideal as well as for the unprocessed
noisy microphone signal at the reference microphone, denoted "Noisy", are included
as references for comparison.

The ESTOI and segSNR scores will be reported as functions of the direction of the
target speaker relative to the user, i.e., as a function of target DOA. The performance
as a function of DOA will be reported for the three different input SNRs and for the
two different noise types specified in Table 5.2.

For each simulated acoustic scene, ESTOI and segSNR scores have been com-
puted for the unprocessed noisy signal at the reference microphone as well as for
the estimated target speech signal obtained by the MVDR-Eye-Gaze, MVDR-Fixed,
MVDR-ML, and the MVDR-Ideal. After obtaining ESTOI and segSNR scores asso-
ciated to each acoustic scene, we determine the average ESTOI and segSNR scores
with respect to DOA by averaging the scores over 10 scene realizations with same
DOA. Furthermore, in order to visualize the improvement in the ESTOI and segSNR
scores after application of the beamformers, we subtract the ESTOI and segSNR
scores of the unprocessed noisy signal from the ESTOI and segSNR scores of the
MVDR-Eye-Gaze, MVDR-Fixed, MVDR-ML, and the MVDR-Ideal.

In the following, for the sake of readability, we only show results using acous-
tic scenes with babble noise. The simulation experiments with the noise type SSN
lead to similar conclusions, although for SSN, the performance difference between
the MVDR-ML and the MVDR-Eye-Gaze is much less significant. The better per-
formance of the MVDR-ML in SSN compared to babble noise may be explained by
the fact that the maximum likelihood DOA estimation method used in MVDR-ML
to obtain an estimate of the RTF vector search for a point sound source for the target
speaker. The babble noise is generated as a superposition of interfering speech signals
which share similar signal characteristics to the target speech signal, and although,
the babble noise is composed of 48 equiangular located point sources, these are not
necessarily always active at the same time. For that reason, it may be the case
that, at some point in time, one of the interfering speakers may be more prominent
in the noisy signal. This may result in the maximum likelihood DOA estimation
method used in MVDR-ML erroneously estimating the direction of an interfering
speaker as the target direction and instead suppress the true target speaker, which
would decrease the performance of the MVDR-ML. Therefore, it is expected that the
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MVDR-ML may struggle to determining the direction of the target speaker when the
simulated noise type is babble and when the SNR is low, but that the performance
of the MVDR-ML increases in acoustic scenes with SSN where the noise field is more
diffuse. The results for SNN can be found in Appendix B.

Estimated Speech Intelligibility With Respect to DOA

In Fig. 5.2, the average ESTOI scores (left figures) and the improvement of ESTOI
score relative to the unprocessed noisy signal at the reference microphone (right fig-
ures) are plotted as functions of target direction. The figure shows the results from
three experiments with different microphone configurations. In the first experiment,
we evaluate the performance for a 2-microphone configuration, using only the front
and rear microphone, respectively, on the left HA (Fig. 5.2a). In the second experi-
ment, we evaluate the peformance for a 4-microphone configuration, using the front
and rear microphones on both the left and right HA (Fig. 5.2b). Finally, in the third
experiment, we evaluate the performance for a 6-microphone configuration, using all
three microphones on both HAs (Fig. 5.2c). In these experiments, the input SNR is
fixed to −10 dB. For each experiment, we sweep over the different target directions
in the discrete DOA range, θs ∈ Θs, and then, for each DOA, we compute the aver-
age ESTOI score as well as the average improvement in ESTOI score. Fig. 5.3 and
Fig. 5.4 show similar experiments, but where we evaluate the performance under dif-
ferent input SNRs. Specifically, in Fig. 5.3, the input SNR is fixed to 0 dB while the
input SNR is fixed to 10 dB in the experiments for which the results are illustrated
in Fig. 5.4.

From Figs. 5.2 to 5.4, it is seen that, in general, the average ESTOI scores improve
as the SNR increases, as expected. Furthermore, for the individual SNR levels, we
observe that the ESTOI scores obtained for all the beamforming methods, expect for
the MVDR-Fixed, improve as the number of microphone increases. For the MVDR-
Fixed this is only the case when θs = 0°, as expected, since this beamforming method
assumes a frontal target direction. Also as expected, the MVDR-Eye-Gaze performs
on par with the the upper bound performance of the MVDR beamformer (MVDR-
Ideal) in all of the considered conditions. However, it is seen that the performance
difference between the MVDR-Ideal and MVDR-Eye-Gaze becomes more significant
as the number of microphones increases. This may be explained by the fact that
the variance of the noise CPSD matrix estimate used to implement the beamformers
increases whenM , and thereby the dimension ofCv(k, l0), increases while the amount
of data used to calculate the estimates remains unchanged. Furthermore, from the
results for M = 2 microphones (Figs. 5.2a, 5.3a, and 5.4a), we see a general tendency
that the beamforming methods obtain higher scores for positive target DOAs, i.e.,
for targets arriving from the left of the HA user, than for negative target DOAs, i.e,
for targets arriving from the right. This may be explained by the fact that the SNR
is defined at the source locations and not at the reference microphone, and so, the
input SNR measured at the reference microphone is biased due to the head-shadow,
as mentioned in Section 5.1.1. Hence, this behaviour is in line with our expectations.
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In relation to the influence of the number of microphones on the breamform-
ing performance, we consider again the results for M = 2 microphones. Compar-
ing the scores obtained for MVDR-Eye-Gaze and MVDR-Fixed, we see that the
difference in ESTOI scores obtained from these two methods are very small when
θs ∈ {−60°, · · · , 60°}, and in fact, they obtain almost identical performance scores
when θs ∈ {−30°, · · · , 30°}. Following this, based on the results obtained using
M = 4 microphones (Figs. 5.2b, 5.3b, and 5.4b) and M = 6 microphones (Figs. 5.2c,
5.3c, and 5.4c), we see that the difference in performance scores of the MVDR-Eye-
Gaze and the MVDR-Fixed is much more significant when θs 6= 0°, as we obtain
a loss in performance scores for the MVDR-Fixed as we move away from the as-
sumed frontal target direction. These observations can be explained by the fact that
for 2-microphone MVDR beamformers, the width of the beam is wider, and so, the
MVDR-Fixed is insensitive to mismatches between the true target direction and its
assumed frontal target direction, i.e, these mismatches do not deteriorate the MVDR-
Fixed performance. On the other hand, when using M = 4 and M = 6 microphones,
these mismatches deteriorate the MVDR-Fixed performance significantly, whereas
the MVDR-Eye-Gaze performs well for all target directions. These results suggest
that the 2-microphone array configuration of the MVDR-Eye-Gaze appear to be su-
perior to MVDR-Fixed only for relatively large deviations of the assumed frontal
DOA of the MVDR-Fixed (approximatly ±60°), which is an important result for
the practical use of the eye-gaze steered beamformer in HAs. Specifically, the range
of DOAs where the 2−microphone MVDR-Eye-Gaze offers any advantage over the
simpler 2-microphone MVDR-Fixed, may be too far from the angle range in which
the eye-gaze lies in realistic communicational situations to justify the computational
and implementational cost of having additional sensors in future HAs to measure the
user’s eye-gaze. In summary, the use of M > 2 microphone array configurations of
the MVDR beamformer seems necessary in order to achieve the full potential of using
eye-gaze steered beamformers in HAs.

By comparing Figs. 5.2 to 5.4 in terms of SNR, it is seen that the MVDR-ML
has a very degraded performance at an SNR of −10 dB compared to all the other
beamforming methods. In fact, for targets arriving from the sides, we see that the ap-
plication of the MVDR-ML deteriorates the performance, as we obtain ESTOI scores
that are lower than that of the unprocessed noisy signal in those angle ranges. How-
ever, as the SNR increases to 10 dB, the performance of the MVDR-ML approaches
the performance of the MVDR-Eye-Gaze and MVDR-Ideal. This result is in line with
results reported in e.g., [24], and is expected sine the maximum likelihood estimates
of the target DOAs, or equivalently, of the RTFs, are known to perform well when
used in a beamforming context when the SNR is sufficiently high [12], [34].

Estimated Speech Quality With Respect to DOA

In Figs. 5.5 to 5.7, the segSNR scores as well as the improvement in segSNR score
relative to the unprocessed noisy signal as functions of DOA, are illustrated. In
general, the segSNR scores are observed to be very small. One important aspect to
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emphasize in this context is that we measure the performance with segSNR but this
is not what we are optimizing for with the MVDR beamformers. In other words,
minimizing the objective function of the MVDR beamformers, does not necessarily
translate directly to optimum segSNR performance [6, p. 77].

As expected, segSNR for the noisy signal is always maximal for a target direction
of ≈ 90 degrees, i.e., at the left ear where the reference microphone is placed. In-
terestingly, when M = 2 (Figs. 5.5a, 5.6a, and 5.7a), the MVDR-Eye-Gaze performs
better for target directions θs ≈ 30° and not at θs ≈ 90 degrees, where the input
segSNR is largest. This optimum angle may be understood as a trade-off between
the frontal direction, where the 2-microphone MVDR beamformer is most efficient
and 90 degrees, where the input SNR is largest. [13] Finally, as for the ESTOI re-
sults, performance is relatively lower for target angles around θs ∈ {−90°, · · · ,−15°},
because the SNR at the reference microphone is reduced due to the head shadow
effects. [13]

From Figs. 5.5 to 5.7, it is observed that, generally, MVDR-Eye-Gaze performs
better than the baseline methods MVDR-ML and MVDR-Fixed in terms of segSNR.
However, from Figs. 5.5a and 5.6a, it appears that, when using M = 2 microphones
and the SNR is low (−10 dB and 0 dB), MVDR-Fixed is able to outperform the
upper boound performance of the MVDR beamformer (MVDR-Ideal) as well as the
MVDR-Eye-Gaze at all target directions, except when θs ∈ {−30°, · · · , 15°}, where
they perform on par. The exact reason remains unknown, but a possible explana-
tion may be as follows. If we consider the situation where the true target direction
is θs = 60°, then MVDR-Fixed, which points towards θs = 0°, is able to obtain a
higher noise suppression at the expense of target distortion, compared to MVDR-
Ideal and MVDR-Eye-Gaze, which are both steered towards the true target direction
(θs = 60°) to maintain the distortionless constraint in the target direction. In addi-
tion, 2-microphone MVDR beamformers are known to be more efficient for targets
located parallel to the microphone axis, i.e., θs ≈ 0° rather then perpendicular to
the microphone axis, i.e., θs ≈ ±90°[13], and so, the 2-microphone configuration of
MVDR-Fixed has an advantage over the correpsonding 2-microphone configurations
of MVDR-Ideal and MVDR-Eye-Gaze when targets arrive from the sids of the HA
user. Although, the above explanations rely on theory for 2-microphone MVDR
beamformers, it might be that it is the same mechanism that applies for M = 4 and
M = 6 microphones for low SNRs, where we see a similar behaviour (Figs. 5.5b, 5.5c,
and 5.6b), and for the MVDR-ML which is also observed to be able to obtain higher
segSNR scores than the MVDR-Ideal and MVDR-Eye-Gaze in some DOA ranges
(Figs. 5.5, 5.6a, and 5.6b).

5.4 Summary

In summary, the results obtained from the evaluation carried out in this chapter,
suggest that, under ideal conditions where the user’s eye-gaze is assumed pointing
precisely towards the target speaker, the MVDR-Eye-Gaze has an advantage over
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the state-of-the-art MVDR-Fixed in situations where M > 2 microphone is used and
when the target is placed away from frontal direction, i.e., when θs 6= 0°, and that it
has an advantage over the state-of-the-art MVDR-ML in situations where the SNR is
low. Following this, we can conclude that usingM = 2 microphones, the performance
gain of using an oracle eye-gaze steered MVDR beamformer, compared to a frontal
fixed MVDR beamfomer, is marginal. This is an important result, as many HAs, but
not all, are equipped with only M = 2 local microphones. However, using M = 4
and M = 6 microphones, we can not reject the possibility that there is something
to gain by using eye-gaze steered beamforming in future HAs. Furthermore, we can
conclude that at low SNR levels, there may be a potential of obtaining a performance
improvement using information provided by the user’s eye-gaze to help steer a beam-
former for HA applications, compared to using an audio-only method to estimate the
direction of the target speaker.

Having examined the upper performance bound for eye-gaze steered beamforming, we
will in the rest of this thesis focus on how eye-gaze information can be incorporated
in a beamforming system, with the aim of proposing a beamforming method for HA
applications which potentially may outperform current audio-only methods which so-
ley rely on the noisy microphone signals to solve the problem of enhancing the target
speech signal. Specifically, we will study the use of an additional modality, apart
from sound, in our specific case the user’s eye-gaze, to help localizing and enhancing
the target sound source. To this end, we will in the following chapter present our
proposed solution to this approach, i.e., we will describe how we propose to design a
signal processing algorithm for target localization using information provided by both
acoustic and eye direction information, and how to use this information for estimating
the underlying clean target signal by the means of a beamforming algorithm.
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Algorithm 3 MVDR Beamforming System
Input:

x(n) = [x1(n), . . . , xM (n)]T : Noisy microphone signal in time-domain,
D = {d(k, l, θ1), . . . ,d(k, l, θI)} ∈ CM×K×I : Dictionary of RTF vectors.

Output:
ŝ(n): Estimated target speech signal at the reference microphone in the time-
domain.

1: Apply STFT to x(n) to obtain x̃(k, l) for all k and l.
2: for all l do
3: for k = 0 to K − 1 do
4: Get d̂(k, l, θ̂s) ∈ CM from D determined by the beamforming method in

question.
5: end for
6: end for
7: for k = 0 to K − 1 do
8: Estimate noise CPSD matrix from the first second of noise-only as

Ĉ ṽ(k, l0) =
1

L

L−1∑
l=0

ṽ(k, l)ṽH(k, l).

9: end for
10: for all l do
11: for k = 0 to K − 1 do
12: Compute MVDR beamformer weight vector as

ŵMVDR(k, l) =
Ĉ
−1
v (k, l0)d̂(k, l, θ̂s)

d̂
H

(k, l, θ̂s)Ĉ
−1
v (k, l0)d̂(k, l, θ̂s)

.

13: Apply beamformer weights as s̃(k, l) = ŵH
MVDR(k, l)x̃(k, l)

14: end for
15: end for
16: Apply ISTFT to s̃(k, l) to obtain ŝ(n) for all n.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.2: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of −10
dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.3: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of 0 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.4: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of 10
dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.5: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of −10
dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.6: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of 0 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure 5.7: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is babble in an approximately isotropic noise field with an input SNR of 10
dB.



6. Proposed Audio-Gaze Beamform-
ing Methods

The overall purpose of this thesis is to investigate the use of an additional modality
apart from sound to help localizing and enhancing the target signal in HA applica-
tions. Specifically, in this thesis, we aim to use a signal related to the HA user’s
eye-gaze as this additional source of information. In this context, our goal is to de-
velop and propose a beamforming system for HAs which incorporates the HA user’s
eye-gaze to explore the potential advantages of using this additional modality. One
of the milestones in this process is to study and design statistical signal processing
algorithms for target localization using information provided by both acoustic and
eye direction information. This chapter aims to provide a detailed presentation of
our proposed HA beamforming methods which incorporates the user’s eye gaze.

In general, there may be several mathematical methods which can be employed to
propose algorithms that make use of an additional modality to extract information
related to the direction of the target sound source. In this thesis, we have decided to
employ a Bayesian approach. One of the motivations behind employing a Bayesian
approach is that when prior information about the target sound source direction is
available, Bayesian beamforming offers a framework for incorporating this prior in-
formation about the target sound source DOA to form optimal beamformers under
DOA uncertainty [23], [24], [54]. In general, estimation within a Bayesian framework
involves the choice of a loss function, e.g., the mean-square-error (MSE), as well as
minimization of the expected value of this loss function. In the special case of param-
eter estimation, the most direct Bayesian approach is to assume that the uncertain
DOA is a random variable with a prior distribution that reflects its uncertainty, and
then optimize relative to the corresponding posterior distribution of the DOA given
the observed data [54], [55]. Such a random formulation of the target DOA is pre-
ferred over a deterministic formulation because it considers the average effect of the
DOA error instead of a particular perturbed value that may not be representative
enough to describe the uncertain scenario [54].

In [23] and [24], methods have been proposed where a posterior DOA probability is
used to consider the Bayesian beamforming approach for noise reduction. However,
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these proposed methods rely solely on acoustic information to estimate the target sig-
nal. The overall idea of our proposed methods is to extend these audio-only Bayesian
methods to use access to the user’s eye-gaze information too. Specifically, we pro-
pose to use information provided by both the microphone signals and the HA user’s
eye-gaze to estimate a posterior probability distribution of the direction of the target
talker, i.e., for each possible target direction assigning a probability. This estimated
posterior probability distribution is then used in the design of Bayesian beamformers,
which we can apply to the noisy microphone signals to obtain estimates of the target
speech signal measured at the reference microphone.

Due to the fact that our proposed methods can be seen as an extension of the Bayesian
methods in [23], [24] which rely on acoustic information only, we begin this chapter
with a derivation of the traditional Bayesian beamformer which uses acoustic infor-
mation only. Afterwards, this framework is extended to be useful in situations where
an additional information, apart from sound, is available.

6.1 Bayesian Beamforming

In this section, we introduce the necessary background of the Bayesian approach to
adaptive beamforming using acoustic information only, aiming to lay the foundation
for us to be able to extend this approach to incorporate eye-gaze information in
addition to the traditional acoustic information. First, we recall the signal model
for the noisy microphone observations as well as the statistical assumptions made on
this signal model. Following this, we derive the Bayesian beamformer, and lastly, we
discuss the building blocks of the Bayesian beamfromer.

6.1.1 Acoustic Information - HA Microphone Signals

Recall the signal model for the noisy observations x̃(k, l) ∈ CM in the time-frequency
domain which for a particular time-frequency tile is given as

x̃(k, l) = s̃(k, l)d(k, l, θs) + ṽ(k, l), (6.1)

where s̃(k, l) ∈ C is the scalar STFT coefficient of the target signal measured at a
pre-selected reference microphone which arrives from direction θs, d(k, l, θs) ∈ CM is
the RTF vector of the target signal from the chosen reference microphone to all of
the microphones, and ṽ(k, l) ∈ CM is the overall additive noise component which is
assumed to be uncorrelated with the target signal.

To employ a Bayesian approach, we use the signal model for the noisy microphone
observations in (6.1), and, unless otherwise is stated, the assumptions made on the
individual signal components and their interrelationships in Chapter 2 are assumed
to be the same in the subsequent presentation. Furthermore, as in Chapter 4, we
assume in the following that the target sound source can arrive from one out of
I pre-selected source directions θi, for i = 1, . . . , I, where each source direction is
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represented by an RTF vector d(k, l, θi), for i = 1, . . . , I from a predefined RTF
dictionary D = {d(k, l, θ1), . . . ,d(k, l, θI)} . Therefore, we write the signal model for
the noisy microphone signals observed at the HA microphones as

x̃(k, l) = s̃(k, l)d(k, l, θi) + ṽ(k, l), (6.2)

with d(k, l, θi) being one particular RTF vector from the dictionary D.

6.1.2 Derivation of the Bayesian Beamformer

In this section, the Bayesian beamformer is derived. This derivation is primarily
based on [24], [23], and [54]. As mentioned, in a Bayesian approach, the target DOA
is modeled as a random variable with a prior probability distribution defined over a
candidate set of target DOAs. Since it is assumed that the target sound source can
arrive from one out of I possible source directions θi, for i = 1, . . . , I, the candidate
set of target DOAs is assumed to be discrete. Specifically, in the following description,
we assume the target DOA to be a discrete random variable with possible outcomes
θi, for i = 1, . . . , I, and with prior PMF, denoted p(θi), defined on the discrete can-
didate set of DOAs Θ = {θi, . . . , θI}.

As mentioned, the Bayesian beamformer refers to an optimal beamformer that min-
imizes the MSE between the target signal s̃(k, l) and the estimated target signal
ˆ̃s(k, l), under DOA uncertainty. In order to derive the Bayesian beamformer, we
therefore consider the minimum mean-square error (MMSE) estimator of the tar-
get signal based on observations of the noisy microphone signals. To this end, let
X(k, l) = [x̃(k, l − L + 1), . . . , x̃(k, l)] ∈ CM×L denote a dataset of L consecutive
time frames of noisy observations. Given the observation set X(k, l), the goal is
to retrieve the target signal s̃(k, l) at the reference microphone. From a Bayesian
approach, this means that we are interested in the MMSE estimate of s̃(k, l). Per
definition, the MMSE estimate of the target signal s̃(k, l) is the conditional expecta-
tion of ˆ̃s(k, l), given the observed data X(k, l) [56, p. 156], [52, pp. 208-210], i.e., for
a given time-frequency tile, we can write the MMSE estimate of s̃(k, l) as [54]

ˆ̃s(k, l) = E [s̃(k, l)|X(k, l)] . (6.3)

Using the definition of the conditional expectation of a continuous random variable,
we can expand the conditional expectation of s̃(k, l) given X(k, l) in (6.3) as

ˆ̃s(k, l) = E [s̃(k, l)|X(k, l)] (6.4)

=

∫
C
s̃(k, l)f(s̃(k, l)|X(k, l)) ds̃(k, l), (6.5)

where f(s̃(k, l)|X(k, l)) denotes the conditional PDF of the target signal s̃(k, l), given
the noisy observations X(k, l). Due to the fact that the target DOA is modeled as a
discrete random variable with a prior PMF p(θi) defined over the candidate prior set
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Θ = {θ1, . . . , θI}, we can use the law of total probability [57, Th. 1.1] to expand the
expression for the conditional PDF f(s̃(k, l)|X(k, l)) as [23], [24]

f(s̃(k, l)|X(k, l)) =
I∑
i=1

f(s̃(k, l)|X(k, l), θi)p(θi|X(k, l)), (6.6)

where p(θi|X(k, l)), for i = 1, . . . , I, denotes the posterior probability of θi given
X(k, l). Substituting (6.6) into (6.5), the Bayesian MMSE estimate [52, p. 209] of
the target signal at a given time-frequency tile becomes

ˆ̃s(k, l) =

∫
C
s̃(k, l)

I∑
i=1

f(s̃(k, l)|X(k, l), θi)p(θi|X(k, l)) ds̃(k, l) (6.7)

=
I∑
i=1

p(θi|X(k, l))

∫
C
s̃(k, l)f(s̃(k, l)|X(k, l), θi) ds̃(k, l) (6.8)

=

I∑
i=1

p(θi|X(k, l))E [s̃(k, l)|X(k, l), θi] , (6.9)

where the second equality holds due to the fact that the integral is a linear operator
[58, p. 70], and the last equality follows from the definition of conditional expec-
tation. From (6.9), it is seen that the MMSE estimate of s̃(k, l) can be viewed as
a linear mixture of directional MMSE estimates E [s̃(k, l)|X(k, l), θi] of s̃(k, l) com-
bined according to the posterior distributions p(θi|X(k, l)). For Gaussian signals, it
can be shown, see e.g., [54], that these directional MMSE estimates are the output
of so-called multichannel Wiener filters (MWFs) steered towards each direction θi,
for i = 1, . . . , I, and the corresponding MMSE estimator is what is known as the
Bayesian beamformer [54], and is given in terms of its beamformer coefficients as

wB(k, l) =
I∑
i=1

p(θi|X(k, l))wMWF(k, l, θi), (6.10)

where wMWF(k, l, θi) is the MWF beamformer weights which are given as the solution
to the optimization problem [10, pp. 41-46]

wMWF(k, l, θi) = arg min
w

E
[
|s̃(k, l)−wH(k, l)x̃(k, l)|2

]
. (6.11)

It is known that the MWF beamformers used in (6.10) sometimes lead to audible
distortions when implemented in practice [59]. To avoid this, it has been proposed
in the literature [23], [24] to use a more heuristically motivated Bayesian MVDR
beamformer instead where the MWF beamformers wMWF(k, l, θi), for i = 1, . . . , I,
in (6.10) are substituted by MVDR beamformers steered towards each direction θi in
the discrete set Θ of candidate target DOAs, i.e., [24]

w̌B(k, l) =

I∑
i=1

p(θi|X(k, l))wMVDR(k, l, θi), (6.12)
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wherewMVDR(k, l, θi), for i = 1 . . . , I, are the MVDR beamformer coefficients derived
in Chapter 3 which for each θi ∈ Θ is given as [23], [24],

wMVDR(k, l, θi) =
C−1

v (k, l)d(k, l, θi)

dH(k, l, θi)C
−1
v (k, l)d(k, l, θi)

. (6.13)

Note that, we have denoted w̌B(k, l) in (6.12) with a check sign to highlight that there
is not equality between the left-hand side in (6.12) and the left-hand side in (6.10).
Due to the fact that we in this thesis have decided to consider MVDR beamformers
and not MWF beamformers, we will use the approximated Bayesian beamformer in
(6.12) when implementing the Bayesin beamformers. For brevity, we will in the rest
of this thesis refer to the beamformer in (6.12) as the Bayesian beamformer as well
as ignore the check sign, however, still keeping in mind the deviation from the proper
theoretical Bayesian beamformer in (6.10).

From (6.12), it is seen that in order to implement the Bayesian beamformer,
knowledge about the posterior probability p(θi|X(k, l)), for i = 1, . . . , I, is required.
Therefore, in the following we will describe how this probability distribution is ob-
tained.

Computing a Posterior DOA Probabilities

To compute the posterior DOA probability p(θi|X(k, l)), for i = 1, . . . , I, in (6.12),
we can use Bayes’ theorem [56, p. 151, eq. (2.251)] to expand it as

p(θi|X(k, l)) =
f(X(k, l)|θi)p(θi)

f (X(k, l))
, i = 1, . . . I, (6.14)

where f(X(k, l)|θi) is the likelihood function for the noisy microphone signals,X(k, l)
conditioned on θi, p(θi) is the prior probability of the target DOA, which describes
the underlying probability that a target signal arrives from a particular direction θi,
for i = 1, . . . , I, and f(X(k, l)) is the marginal PDF of X(k, l), which can be written
in terms of the likelihood function and the prior as

f(X(k, l)) =
I∑
i=1

f(X(k, l), θi) (6.15)

=

I∑
i=1

f(X(k, l)|θi)p(θi), (6.16)

where the first equality is the so-called marginalization by summing out the θi’s,
and where the second equality follows from the fact that a joint density can be
written as the product of a conditional density and a marginal probability [25,
pp. 225+226]. Note that the denominator in (6.14) acts as a normalizing constant to
make p(θi|X(k, l)) on the left-hand side sum to a value of 1 over the DOA range Θ,
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i.e.,
∑I

i=1 p(θi|X(k, l)) = 1. Substituting (6.16) into (6.14), the posterior probability
is expressed as

p(θi|X(k, l)) =
f(X(k, l)|θi)p(θi)∑I
i=1 f(X(k, l)|θi)p(θi)

, i = 1, . . . I. (6.17)

In the following, we briefly describe how to evaluate the likelihood function f(X(k, l)|θi)
and the prior probability p(θi) on the right-hand side of (6.17) in order to be able
to compute the value of the posterior DOA probability p(θi|X(k, l)) on the left-hand
side.

The likelihood function f(X(k, l)|θi): The likelihood f(X(k, l)|θi) for the noisy
microphone observations can be computed following the approach outlined in Chap-
ter 4. Specifically, we recall that to compute f(X(k, l)|θi), it is assumed that the
noisy observations X(k, l) are realizations of circularly-symmetric complex Gaussian
distributed random processes with CPSD matrix given as

Cx(k, l, θi) = λs(k, l, θi)d(k, l, θi)d
H(k, l, θi) + λv(k, l, θi)Γv(k, l0), l > l0, (6.18)

where λs(k, l) and λv(k, l) are the scalar PSDs of the target and noise signal at the
reference microphone, respectively, Γv(k, l0) is the normalized noise CPSD matrix
which contain a value of 1 at the diagonal element corresponding to the reference
microphone index [34], and where l0 < l denotes the last time frame of a speech
absence period. As we saw in Chapter 4, this Gaussian assumption implies that the
joint likelihood function f(X(k, l)|θi) can be written as

f(X(k, l)|θi) =
exp

(
−Ltr

(
R̂(k, l)Cx

−1(k, l, θi)
))

πLM |Cx(k, l, θi)|L
, i = 1, . . . , I. (6.19)

To evaluateCx(k, l, θi) for a particular frequency bin index k and time frame l, i.e., for
a particular time-frequency tile, we can follow the procedure outlined in Chapter 4,
where Γv(k, l0) is estimated from speech absence time-frequency tiles, and where
λs(k, l) and λv(k, l) are estimated using the closed-form maximum likelihood estimate
solutions in (4.13) and (4.11), respectively [11], [13]

The prior probability p(θi): In order to find the prior probability p(θi), for
i = 1, . . . , I, any prior information about the target direction θi may be utilized.
For instance, if we do not believe that the target signal tends to arrive from a par-
ticular direction over another, a uniform prior can be used, i.e., p(θi) = 1/I, for
i = 1, . . . , I, where I is the cardinality of the discrete set of direction from which
the target signal can arrive. Similarly, if we expect a priori that the target signal
primarily arrives from e.g. the frontal plane with respect to the HA user, this prior
information may be reflected in the prior by increasing the probabilities corresponding
to the frontal directions. As we will see in the next chapter, in this thesis, we propose
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to use information provided by the HA user’s eye-gaze to derive a prior probability
distribution which will be used to evaluate the posterior DOA probabilities.

The description in this section considers the situation where the estimation of the
posterior DOA probabilities are based on microphone signals only. As our goal is to
use eye-gaze and microphone signals to estimate the target signal s̃(k, l) impinging
on the reference microphone, we will in the following sections extend the audio-only
Bayesian framework to take into account additional information provided by the
user’s eye-gaze. Specifically, we propose to compute a posterior DOA probability dis-
tribution based on microphone signals and eye-gaze data in two different ways. In the
first method, we utilize prior information of the target sound source DOA obtained
from the user’s eye-gaze direction, and derive a posterior DOA probability distribu-
tion of the target DOAs which only access the eye-gaze through the prior probability
distribution. In the second approach, we compute a posterior probability of DOAs
conditioned on both the microphone signals and the eye-gaze direction, meaning that
a joint description of the posterior DOA probabilities based on microphone and eye-
gaze data is obtained. Finally, these posterior DOA probabilities will then be used
to form Bayesian beamformers.

6.2 Proposed Gaze-Prior Bayesain Beamforming Method

As we saw in Section 6.1.2, computing the posterior DOA probabilities

p(θi|X(k, l)) =
f(X(k, l)|θi)p(θi)∑I
i=1 f(X(k, l)|θi)p(θi)

, i = 1, . . . I, (6.20)

requires a prior probability on the target DOAs θi, for i = 1, . . . , I, which describes
the intrinsic probability that a target signal arrives from a particular direction θi.
As mentioned, information about the HA user’s eye-gaze direction may in many sit-
uations provide very strong evidence of the direction of an active target talker, and,
hence, help identify the target direction. For example, it is often the case that a HA
user looks at the target talker, at least now and then, e.g. for lip reading in acous-
tically difficult situations. A simple heuristic extension of the Bayesian framework
outlined in Section 6.1.2 that take advantages of the additional eye-gaze informa-
tion, may therefore be to incorporate the user’s eye-gaze in the derivation of the
prior p(θi) in (6.17) over the I discrete target DOAs. This eye-gaze based prior can
then subsequently be combined with the acoustic information via the acoustic likeli-
hood function f(X(k, l)|θi) to obtain an estimate of the posterior DOA probabilities
p(θi|X(k, l)) which then relies on both acoustic and eye-gaze information. In the fol-
lowing, we describe how we propose to obtain the estimate of the prior probabilities
p(θi), for i = 1, . . . , I.
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6.2.1 Computing a Prior Probability of Target DOAs From Eye-
Gaze Data

In this method, we propose to use the eye-gaze data to estimate the prior proba-
bilities p(θi), for i = 1, . . . , I via the non-parametric density estimation approach of
histograms. To this end, let φ(l) denote a time-varying signal which provides informa-
tion about the user’s eye direction, where l is a time variable which, for convenience,
is assumed to be synchronized with the time variable l related to the acoustic infor-
mation used in the indexing of e.g., x̃(k, l). Furthermore, assume for simplicity that
the information represented by φ(l) is the user’s eye-gaze angle in the horizontal plane
with respect to the frontal direction from the HA user’s point-of-view, as a function
of time, then, φ(l) is a scalar. Based on φ(l), we propose to compute a histogram
over the HA user’s eye-gaze direction across a past period of time. Assuming that
the HA user looks at the target source, at least now and then, e.g., for lip-reading,
we hypothesize that the histogram may show higher occurrences of that particular
target direction than others. By normalizing the histogram into a PMF, we obtain
an estimate of the prior probabilities p(θi), for i = 1, . . . , I, which we can then use
to evaluate the posterior DOA probabilities in (6.17). These posterior DOA proba-
bilities can then subsequently be used to implement a Bayesian beamformer. Note
that an important consideration is how to choose the duration of previous eye-gaze
measurements used in the histogram, i.e., how long the time period in which we esti-
mate our prior over should be. For small periods of time, the prior probability may
adapt quickly to new data, however, a potential drawback of having too few data
points in the density estimation, is that the histogram can become overfitted to the
variance in the data. For large periods of time, the histogram may be more slowly
varying, and thereby, not as responsive to quick changes. In the next chapter, we
will expand upon the computations of the prior probabilities in more practical details.

Before proceeding, an important consideration has to be emphasized. We abuse the
term prior probability distribution, as in a rigorous use of the terminology, a prior
probability distribution refers to a prior knowledge, or expectation, of a distribution
of a parameter before data is observed. In this thesis, we use the observed eye-gaze
angles to adaptively form the prior of the target DOA parameter, and hence, violates
with the rigorous definition of being a prior probability.

6.2.2 Implementation of the Proposed Gaze-Prior Beamformer

To implement the proposed gaze-prior Bayesian beamforming system, the discrete
prior probability distribution p(θi), for i = 1, . . . , I, is estimated from real-world eye-
gaze data and used to evaluate the posterior probability distribution p(θi|X(k, l)), for
i = 1, . . . , I. Due to numerical tractability, we choose to first compute the posterior
probability p(θi|X(k, l)) in the logarithmic domain and afterwards transform the
density back into the linear domain. Taking the natural logarithm of (6.20), yields

ln(p(θi|X(k, l))) = ln(f(X(k, l)|θi)) + ln(p(θi))− ln(c), i = 1, . . . , I, (6.21)
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where c =
∑I

i=1 f(X(k, l)|θi)p(θi). The log-likelihood function ln(f(X(k, l)|θi)) can
be computed in accordance to the description in Chapter 4, while the log-prior prob-
ability ln(p(θi)) is found by computing a histogram over the the HA user’s eye-gaze
direction φ(l) across a past period of time T . Specifically, at the l’th time frame, we
choose to compute the log-prior probability ln(p(θi)) based on eye-gaze measurement
from time frame l and the measurements from the previous T − 1 time frames. As
mentioned in the previous section, when choosing the number of time frames over
which the histogram is computed, we have to make a choice between robustness
against rapid changes in the data and being quickly adaptive to new data.

In creating a histogram, a few parameters must be considered to obtain a sensi-
ble result. This includes the number of bins that φ(l) is partitioned into, the width
of these bins, and lastly, the placement of the bin edges. Since the AIR database
available for this thesis has an angular resolution of 7.5°, we have chosen to associate
a bin with each discrete candidate target DOA, hence we have I = 48 bins in our
histogram. Note that one could have grouped multiple angles into one bin, resulting
in fewer bins, an option often done if the histogram captures too much noise in the
data, giving a poor estimate of the density. Since we have chosen I = 48 bins and the
continuous eye-gaze signal φ(l) can take values in the continuous range [−180°, 180°),
the width of the bins becomes 360°/48 = 7.5°. Lastly, consider the placement of the
bin edges, which we choose such that a given bin is centered around the associated
angle, e.g., for the bin associated with a target direction of θi = 15°, the bin edges
are 11.25° and 18.75°, respectively. Finally, the histogram is computed by counting
the fraction of measured eye-gaze angles falling in each of the I = 48 bins, and nor-
malizing the histogram into a PMF, we obtain an estimate of the prior probabilities
p(θi), for i = 1, . . . , I. At last, taking the natural logarithm of the histogram, with
a very small number added to all values to avoid taking the logarithm of zero, we
arrive at the log-prior probabilities ln(p(θi)), for I = 1, . . . , I.

Finally, in order to compute the log-posterior probability, the normalization con-
stant c is needed. In the linear domain c is given as the product of the likelihood
and the prior, summed over all I elements in the discrete set of candidate target
directions. Inserting the evaluated log-likelihood function ln(f(X(k, l)|θi)) and the
estimated log-prior probability distribution ln(p(θi)) into (6.21), and applying the
exponential function exp(·) to (6.21), the posterior DOA probabilities p(θi|X(k, l))
is found.

Having computed the posterior DOA probabilities p(θi|X(k, l)), for i = 1, . . . , I,
these are used to implement the Bayesian beamformer in (6.12). Finally, to obtain
the estimated target signal ˆ̃s(k, l) for a given time-frequency tile, the Bayesian beam-
former is applied to the noisy microphone signals by taking the inner product between
the beamformer weights and the noisy microphone signals x(k, l) such that the esti-
mated target signal ˆ̃s, which is given as the output of the beamformer for the k’th
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frequency bin and the l’th time frame, is

ˆ̃s(k, l) = ŵH
B (k, l)x(k, l). (6.22)

The implementation of this proposed Bayesian beamforming method is summarized
in Algorithm 4 as pseudo-code.

6.3 Proposed Joint Audio-Gaze Beamforming Method

Instead of extending the framework in Section 6.1.2 to take into account the eye-gaze
information via a prior, one may consider to incorporate the eye-gaze information
in a way such that a joint description of the posterior DOA probabilities based on
microphone and eye-gaze data is obtained. To this end, assume that the HA system
has access to the eye-gaze signal φ(l), in addition to access to the traditional noisy
microphone signals x̃(k, l). Furthermore, we assume for simplicity that this eye-gaze
signal can be discretized such that φ(l) ∈ {φ1, . . . , φJ}, meaning that the eye-gaze
angle at a particular moment in time l is one out of J possible eye-gaze angles φj , for
j = 1, . . . , J . In other words, we define a discrete set of candidate eye-gaze angles. An
example of such a discrete set of candidate eye-gaze directions is depicted in Fig. 6.1,
where each blue cross indicates in which directions the eye-gaze may be.
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Figure 6.1: Example of user’s candidate eye-gaze direction φj(l) at time l.
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Note that in the proceeding description, we will denote the possible realizations φj ,
for j = 1, . . . , J , of the random variable φ(l) as φj(l), for j = 1, . . . , J . The variable
φj(l) is in fact not a time-varying signal, however, we still choose to denote it with
the index l to coincide with the indexing of the noisy microphone signals x̃(k, l).
Furthermore, it should be noted that in practice, the eye-gaze angle is definitely a
continuous signal, and hence, the assumption that the eye-gaze angle at a particular
moment in time is discrete may not be a very realistic assumption. However, due to
the fact that we in this thesis only have access to a discrete database of AIRs, we can
only evaluate our systems for specific discrete candidate target directions, and hence,
the data we use to extract information about the target directions may, for practical
reasons, indeed be discrete as well.

6.3.1 Computing a Probability of Target DOAs Conditioned on
Eye-gaze Data

The idea of this proposed framework is that instead of estimating the target signal
relying on p(θi|X(k, l)), i.e., using access to acoustic information alone, we propose to
extend the method to use the user’s eye-gaze information too. In other words, rather
than using p(θi|X(k, l)), for i = 1 . . . , I, to estimate the target signal, we propose to
use a joint posterior DOA probability distribution p(θi|X(k, l), φj(l)), for i = 1 . . . , I,
linking observations X(k, l) and φj(l) to the target DOA θi. In this way, we propose
to build a joint audio-gaze Bayesian beamformer to estimate the probability of a
target direction.

In order to express the posterior probability p(θi|X(k, l), φj(l)) for each i =
1, . . . , I, we first expand it using Bayes’ theorem such that

p (θi|X(k, l), φj(l)) =
f (X(k, l)|θi, φj(l)) p (θi|φj(l))

f (X(k, l)|φj(l))
, (6.23)

where f(X(k, l)|θi, φj(l)) is the likelihood of X(k, l) given θi and φj(l), p(θi|φj(l))
is a conditional PMF of θi given φj(l), and f(X(k, l)|φj(l)) acts as a normalizing
constant to make p (θi|X(k, l), φj(l)) on the right-hand side a proper density.

From (6.23), it is seen that in order to implement the Bayesian beamformer, using
the joint posterior DOA probability on the left-hand side of (6.23), we need to be
able to evaluate the factors on the right-hand side. The joint conditional likelihood
function f(X(k, l)|θi, φj(l)) describes the likelihood of observing x̃(k, l) given that
both the target DOA θi and the eye-gaze direction φj(l) is known. However, it
may be reasonable to assume that, having knowledge of the user’s eye-gaze direction
φj(l), may not provide us with any additional information as already provided by
the knowledge provided by the given target DOA θi. Hence, it seems reasonable to
consider x̃(k, l) as being conditional independent of φj(l), given that the target DOA
θi is known. We assume therefore that X(k, l) is conditionally independent of φj(l)
given that θi is known. With this assumption, the joint conditional likelihood function
f (X(k, l)|θi, φj(l)) simplifies to the acoustic likelihood f (X(k, l)|θi) [43, pp. 46, 372],
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and hence, the posterior probability p(θi|X(k, l), φj(l)) in (6.23) becomes

p (θi|X(k, l), φj(l)) =
f (X(k, l)|θi) p (θi|φj(l))∑I
i=1 f (X(k, l)|θi) p (θi|φj(l))

, (6.24)

where we, to obtain the expression in the denominator, have used the fact that
p (θi|X(k, l), φj(l)) should sum to a value of 1 over the DOA range Θ = {θ1, . . . , θI},
i.e.,

∑I
i=1 p (θi|X(k, l), φj(l)) = 1. It is seen that the only term on the right-hand

side of (6.24) that depends on the eye-gaze signal φj(l) is now the conditional PMF
p (θi|φj(l)), and hence, it is this quantity that describes how knowledge of the HA
users’ horizontal eye-gaze direction provides information about the target direction.
In the following, we describe how we choose to express the conditional probability
p(θi|φj(l)) in order to be able to compute the posterior probability on the left-hand
side of (6.24).

Probability of θi given φj(l): In order to derive the conditional PMF p(θi|φj(l))
of the discrete variable θi, given the realization of the discrete random variable φj(l),
we need to know their joint PMF [57, Def. 3.6]. However, using Bayes’ theorem,
the conditional PMF can be derived from the joint PMF, and also the other way
around, and hence, to compute the conditional PMF p(θi|φj(l)), for i = 1, . . . , I and
j = 1, . . . , J , we may expand it using Bayes’ theorem such that

p(θi|φj(l)) =
p(φj(l)|θi)p(θi)

p(φj(l))
, (6.25)

in which we express the conditional PMF p(θi|φj(l)) in terms of the conditional PMF
p(φj(l)|θi). Hence, to compute p(θi|φj(l)), we are in need of p(φj(l)|θi), which is the
probability that the eye-gaze is in direction φj(l) given that the target direction is
θi, and we are in the need of the prior probability p(θi) of the target DOAs θi, for
i = 1, . . . , I, which describes the underlying probability that a target signal arrives
from a particular direction θi.

For mathematical tractability and simplicity, the idea of the proposed method
is to build a "look-up" table with histograms over p(φj(l)|θi), for i = 1, . . . , I, such
that we can use this table of histograms to evaluate the conditional probabilities
p(θi|φj(l)), which we subsequently can use to estimate the joint posterior DOA prob-
abilities p(θi|X(k, l), φj(l)) to be used in the proposed Bayesian beamformer. Hence,
we propose to compute the conditional probabilities p(φj(l)|θi), for i = 1, . . . , I, "of-
fline", i.e., before application of our proposed beamforming methods. In the following,
will describe how computing the conditional probabilities p(θi|φj(l)) for i = 1, . . . , I
and j = 1, . . . , J , can be considered as constructing an (I × J) matrix of estimated
conditional probabilities, as illustrated in Table 6.1. Specifically, in creating the
matrix of the conditional probabilities p(θi|φj(l)), we first estimate the conditional
probabilities p(φj(l)|θi), which can also be viewed as filling in an (I × J) matrix of
histograms, where we for each of the I rows fill in a histogram to estimate p(φj(l)|θi),
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θI

...

θ2

θ1

φ1(l) φ2(l) · · · φJ(l)

p (θ1|φ1(l))

p (θ2|φ1(l))

p (θI |φ1(l))

p (θ1|φ2(l))

p (θ2|φ2(l))

p (θI |φ2(l))

· · ·

· · ·

. . .

· · ·

...
...

...

p (θ1|φJ(l))

p (θ2|φJ(l))

p (θI |φJ(l))

Table 6.1: Pre-computed look-up table with conditional probabilities p(θi|φj(l)).

θI

...

θ2

θ1

φ1(l) φ2(l) · · · φJ(l)

p (φ1(l)|θ1)

p (φ1(l)|θ2)

p (φ1(l)|θI)

p (φ2(l)|θ1)

p (φ2(l)|θ2)

p (φ2(l)|θI)

· · ·

· · ·

. . .

· · ·

...
...

...

p (φJ(l)|θ1)

p (φJ(l)|θ2)

p (φJ(l)|θI)

Table 6.2: Pre-computed look-up table with conditional probabilities p(φj(l)|θi).

for j = 1, . . . , J . This matrix is illustrated in Table 6.2. Note that since each row of
the matrix of the probabilities p(φj(l)|θi) is a density over φj(l), the rows will sum to
one. Retaining the mindset of considering the probabilities as matrices, we can con-
struct a new (I × J) joint PMF matrix p(φj(l), θi) = p(φj(l)|θi)p(θi), by multiplying
each column of the matrix containing the probabilities p(φj(l)|θi) with the associated
entry of the prior probability p(θi). Next, we compute the probabilities p(φj(l)), for
j = 1, . . . , J , by summing the columns of the matrix containing the probabilities
p(φj(l)|θi)p(θi), for i = 1, . . . , I. At last, we can construct the desired matrix of
the conditional probabilities p(θi|φj(l)) by taking each column of p(φj(l)|θi)p(θi) and
dividing by the associated entry of p(φj(l)). Now the columns of p(θi|φj(l)) are prob-
abilities over θi, for i = 1, . . . , I, and therefore, sum to one. In the next chapter, we
will present the specific estimation of each row in Table 6.2 using real-world eye-gaze
data from experiments where the HA user’s eye-gaze is measured while the user is
following a conversation between two persons in a noisy environment.

In the following, we outline how the posterior DOA probabilities p(θi|X(k, l), φj(l)),
for i = 1, . . . , I, after being computed, are used to implement the proposed Bayesian
beamforming system to estimate the target signal s(k, l) impinging on the reference
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microphone.

6.3.2 Implementation of the Proposed Joint Audio-Gaze Beamformer

The implementation of the proposed joint audio-gaze beamforming method can we
considered as a two-step procedure. First, the conditional probabilities p(θi|φj(l)),
for i = 1, . . . , I and j = 1, . . . , J , are computed using real-world eye-gaze data and
stored in a look-up table, as illustrated in Table 6.1. This is done offline, i.e., before
application of the proposed beamforming system. Secondly, the posterior probabili-
ties p(θi|X(k, l), φj(l)) are computed and used in a Bayesian beamformer to estimate
the target signal impinging on the reference microphone. To do so, we choose to first
compute the posterior probability p(θi|X(k, l), φj(l)) in the logarithmic domain for
numerical stability, and afterwards transform the probabilities back into the linear
domain. Taking the natural logarithm of (6.24), yields

ln(p(θi|X(k, l)), φj(l)) = ln(f(X(k, l)|θi)) + ln(p(θi|φj(l)))− ln(c), i = 1, . . . , I,
(6.26)

where c =
∑I

i=1 f(X(k, l)|θi)p(θi|φj(l)). Computing the acoustic log-likelihood func-
tion ln(f(X(k, l)|θi)) in accordance to the description in Chapter 4, the posterior
probability is found by substituting the evaluated log-likelihood function and the
pre-computed look-up table with conditional PMFs p(θi|φj(l)) for i = 1, . . . , I and
j = 1, . . . , J , into (6.26) and applying the exponential function exp(·) to (6.26).

Having computed the posterior DOA probabilities p(θi|X(k, l), φj(l)), for i = 1, . . . , I,
these are used to implement the Bayesian beamformer in (6.12). Finally, to obtain
the estimated target signal ˆ̃s(k, l) for a given time-frequency tile, the Bayesian beam-
former is applied to the noisy microphone signals by taking the inner product between
the beamformer weights and the noisy microphone signals x̃(k, l) such that the esti-
mated target signal ˆ̃s(k, l), which is given as the output of the beamformer for the
k’th frequency bin and the l’th time frame, is

ˆ̃s(k, l) = ŵH
B (k, l)x(k, l). (6.27)

The implementation of this proposed Bayesian beamforming system is summarized
in Algorithm 5 as pseudo-code.

Having presented our two proposed beamforming methods, we will in the next chap-
ter study the eye-gaze data and audio-visual data used in this thesis to design and
evaluate our proposed methods.
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Algorithm 4 Proposed Beamforming System: Bayesian-Gaze-Prior
Input:

x(n) = [x1(n), . . . , xM (n)]T : Noisy microphone signals in time-domain.
D = {d(k, l, θ1), . . . ,d(k, l, θI)} ∈ CK×M×I : Dictionary of RTF vectors.
φ(l) = [φj(l − T + 1), . . . , φj(l))]: Vector of T time frames of eye-gaze measure-
ments.

Output:
ŝ(n): Estimated target speech signal at the reference microphone in the time-
domain.

1: Apply STFT to x(n) to obtain x̃(k, l) for all k and l.
2: for all l do
3: for k = 0 to K − 1 do
4: Let X(k, l) = [x̃(k, l− L+ 1), . . . , x̃(k, l)] (negative indexing refers to the

1 second prepended noise).
5: Compute log-likelihood function ln(f(X(k, l)|θi)).
6: end for
7: Compute log-prior ln(p(θi)) as a histogram of eye-gaze measurements in φ(l).

If T prior time frames are not available, all available time frames are used.
8: Estimate noisy CPSD matrix, Ĉv(k, l), for all k, according to (5.12).
9: Compute the log-normalization constant as

ln(c) = ln

(
I∑
i=1

(
K−1∑
k=0

(ln(f(X(k, l)|θi))) + ln(p(θi))

))
.

10: Obtain the posterior probability p(θi|X(k, l)) as

p(θi|X(k, l)) = exp

(
K−1∑
k=0

(ln(f(X(k, l)|θi))) + ln(p(θi))− ln(c)

)
, ∀i.

11: Compute the Bayesian beamformer weights as

ŵB(k, l) =

I∑
i=1

p(θi|X(k, l))ŵMVDR(k, l, θi), ∀k.

12: Apply proposed Bayesian beamformer as s̃(k, l) = ŵB(k, l)H x̃(k, l), ∀k.
13: end for
14: Apply ISTFT to s̃(k, l) to obtain ŝ(n) for all n.
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Algorithm 5 Proposed Beamforming System, Audio-Gaze
Input:

x(n) = [x1(n), . . . , xM (n)]T : Noisy microphone signals in time-domain.
D = {d(k, l, θ1), . . . ,d(k, l, θI)} ∈ CK×M×I : Dictionary of RTF vectors.
φj(l): Eye-gaze angle at time frame l.
Z ∈ RI×J : Conditional probability matrix p(θi|φj(l)).

Output:
ŝ(n): Estimated time-domain target speech signal at the reference microphone.

1: Apply STFT to x(n) to obtain x̃(k, l) for all k and l.
2: for all l do
3: for k = 0 to K − 1 do
4: Let X(k, l) = [x̃(k, l− L+ 1), . . . , x̃(k, l)] (negative indexing refers to the

1 second prepended noise).
5: Compute log-likelihood ln(f(X(k, l)|θi)).
6: end for
7: Set ln(p(θi|φj(l))) equal to the logarithm of the j’th column of Z correspond-

ing to φj(l).
8: Estimate noisy CPSD matrix, Ĉv(k, l) for all k, according to (5.12).
9: Compute the log-normalization constant as

ln(c) = ln

(
I∑
i=1

(
K−1∑
k=0

(ln(f(X(k, l)|θi))) + ln(p(θi))

))
.

10: Obtain the posterior probability p(θi|X(k, l), φj(l)) as

p(θi|X(k, l)) = exp

(
K−1∑
k=0

(ln(f(X(k, l)|θi))) + ln(p(θi))− ln(c)

)
, ∀i.

11: Compute the Bayesian beamformer weights as

ŵB(k, l) =

I∑
i=1

p(θi|X(k, l), φj(l))ŵMVDR(k, l, θi), ∀k

12: Apply Bayesian beamformer weights as s̃(k, l) = w(k, l)H x̃(k, l), for all k.
13: end for
14: Apply ISTFT to s̃(k, l) to obtain ŝ(n) for all n.



7. Eye-Gaze and Audio-Visual Data
Study

A key aspect that allow us to study the construction and performance evaluation of
beamforming systems for HAs which incorporates the user’s eye-gaze, is the availabil-
ity of real-world measurements of a HA user’s eye-gaze recorded in synchronization
with presented audio-visual stimuli. As mentioned in Chapter 1, the dataset used
in this thesis is provided by Eriksholm Research Centre which is a part of Oticon.
The dataset will be used to construct the proposed beamformers and to compare and
determine the performance of different beamforming systems.

In this chapter, we introduce to the dataset provided by ERH. This include an
overview of the relevant backgrounds behind the dataset as well as the test setup
and procedure. The purpose of this overview is to provide the necessary background
for understanding the data collection process and to get insight into the possible
limitations involved in using the dataset in the design and simulation of the studied
beamforming systems. Following this introduction to the dataset, we describe how
we use the acoustic stimuli from the experiments, i.e., the clean sound signals from
several loudspeakers, to create realistic synthetic acoustic scenes with target sound
sources and background noise. Furthermore, we discuss how we process the raw eye-
gaze data included in the dataset to obtain a set of eye-gaze measurements which
we can use in our specific simulation framework. Finally, the chapter moves on to
a description of how the preprocessed eye-gaze measurements are used to compute
the look-up table in Table 6.1 with conditional probabilities before application of
our proposed beamforming systems. The application and evaluation of the proposed
bamformers will be studies in Chapter 8.

7.1 Audio-Visual Material and Methodology

The dataset provided by ERH contains eye-gaze measurements from 24 hearing im-
paired test participants and was measured in the Sound Wave Laboratory at ERH in
June 2021. A panoramic view capture of the physical test setup used in the Sound-
wave laboratory at ERH is depicted in Fig. 7.2, while a schematic overview of the
test setup can be seen in Fig. 7.2.

The test setup aims to measure the HA user’s eye-gaze while they are following

69
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Figure 7.1: Panoramic view capture of the experimental setup used in the Soundwave laboratory
at Eriksholm Research Center (ERH). This picture is provided by ERH.

a conversation between two people in a noisy environment. In short, the test setup
consists of:

1. A test participant with a head-mounted Tobii Pro 2 eye-tracker.

2. An 88′′ curved TV-screen on which audio-visual stimuli is presented. The test
participant was seated 1.8 meters away from the TV. The angle between the
two talkers presented on the TV is approximately 20 degrees. Note that this
angle can vary a bit as the two talkers can move in their sitting position.

3. A total of 10 loudspeakers, where three of the loudspeakers are located in front
of the TV screen and seven are located behind the TV in a height so that the
TV screen does not block the direct sound from the loudspeakers.

Referring to Fig. 7.2, the two green loudspeakers are used to play the sound from
the two conversing talkers presented on the screen, while the red loudspeakers are
used to play background noise. The background noise was created as one synthetic
babble noise realization played throughout all 8 speakers. The angles between the
two loudspeakers used to play the speech signals was measured in the Sound Wave
Laboratory to be approximately 27°, with the left loudspeaker placed approximately
at 14.6° and the right loudspeaker placed approximately at −12° with 0° defined as
the frontal direction from the HA user’s point of view, and the azimuth is counter-
clockwise rotating. Note that the visual position of the talkers on the TV screen
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Loudspeakers

20◦

1.8m

TV

Figure 7.2: A schematic diagram depicting the test setup, showing the location of the speakers
and noise sources with respect to the test subject. The test setup aims to measure eye-gaze of the
HA user following a conversation between two people in babble noise.

did not precisely coincide with the loudspeaker locations, introducing a mismatch
between the visual and acoustic stimuli presented for the test participants. During
the recording of the eye-gaze, no fixation of the participants heads were enforced, yet
the participants were instructed to keep their head as fixated as possible.

The audio-visual stimuli contains 26 recorded two-talker scenario videos. The talkers
were four danish actors, specifically, two male and two female actors. An example of
the visual stimuli presented for the participant during the experiments can be seen
in Fig. 7.1. In the videos, a dialogue is taking place between the two actors. The
dialog stems from a conversation about a picture of a landscape. The pictures differ
from the two actors, and their task is to locate the differences in the two pictures. As
seen from Fig. 7.1, the actors are wearing hands-free microphones placed close to their
mouths to record the clean speech signals from the two talkers in synchronization with
the visual stimuli presented on the TV screen. The acoustic stimuli is sampled at a
rate of 48 kHz while the Tobii Pro 2 eye-tracker has a sample rate of approximately
50 Hz. The dataset contains audio-visual stimuli for all single trials, i.e., for all 26
audio-visual scenes, and for each scene, the dataset contains associated eye-gaze data
for each of the 24 test participant. Hence, we have access to 24 eye-gaze recordings
for each audio-visual scene, leaving us with a total of 26 · 24 = 624 distinct eye-gaze
recordings. However, a preliminary examination of the acoustic stimuli, resulted in a
number of the audio-visual scenes as well as test participants had to be disqualified.
In the following section, we present our thoughts behind the selection of the trials
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and test participants to be used.

7.1.1 Data Cleaning of the Audio-Visual Stimuli

In this section, we comment on the disqualification of a number of audio-visual scenes
as well as test participants. Firstly, the eye-gaze data from two test participants has
been discarded due to malfunctioning of the test equipment, leaving 22 participants
for our study. Secondly, of the 26 audio-visual trials presented in the dataset, we
deemed only 10 usable for the purpose of this thesis. The disqualification of the
remaining 16 trial was due to multiple factors. First of all, a large amount of noise
was present in the clean speech tracks, hence, drastically decreasing the SNR and
making the task of using an effective VAD challenging. Secondly, when any of the
two talkers was active, i.e., in single-talk situations, the active talkers voice leaked
into the second talkers microphone, meaning that both talkers would be present in
each of the clean target sound tracks. Hence, a lot of cross-talk was introduced in
these audio tracks.

The audio-visual data available for this thesis consists only of two-talker scenarios,
however, the data originally contain a third talker performing a monologue in the
trials. As a last source of error, in all of the disqualified audio-visual trials a lot of
cross-talk originating from the third talker was present.

Note that any balancing of the data may have become invalidated by the exclusion
of trials and test participants. We do, however, deem that this is acceptable in order
to get rid of the aforementioned defects in the excluded trials and test participants
eye-gaze measurements, as such defects could potenitally harm the performance of
our beamforming systems.

7.2 Simulating HA Microphone signals

In order to simulate the acoustic stimuli that were presented to the users via their
HAs during the experiments, the general framework for simulating acoustic scenes
described in Section 5.1.1, will be used. However, to be able to use this framework in
the situation where real-world data is considered, some modifications to the frame-
work used in the feasibility study needs to be made. Specifically, in this study, we
simulate from a signal model on the form

x(n) = (s1 ∗ a(•, θs1))(n) + (s2 ∗ a(•, θs2))(n) + v(n), (7.1)

where s1(n) and s2(n) are the target signals measured at the source locations θs1 and
θs2 , respectively, the vectors a(n, θs1) and a(n, θs2)contain the AIRs from the target
speakers to each of theM microphones on the HA, and v(n) is an additive noise term.
To simulate from the signal model in (7.1), we use the audio tracks from the dataset
provided by ERH as the clean target speech signals s1(n) and s2(n), while we us
the AIRs from a database provided by Oticon used to simulate the wave propagation
from a sound source to the microphones on the HAs. As described in Section 7.1,
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the two loudspeakers playing speech were placed at approximately 14.6° and −12°,
respectively, hence, given the angular resolution of our RTF database, we set θs1 =
15° and θs2 = −15°. As the clean speech signals from the audio-visual dataset are
sampled at 48 kHz, while the AIRs provided by Oticon are sampled at 44.1 kHz, the
clean speech signals are downsampled to 44.1 kHz. This downsampling is done in
accordance to the description in Section 5.1.1. After the noisy microphone signals
are generated, we downsample the signals to 16 kHz such that sampling frequency
of the microphone signals coincides with the sampling frequency at which we process
our beamforming systems.

In the feasibility study in Chapter 5, the noise field was created approximately
isotropic by placing talkers in 48 evenly spaced points on a circle with the HA user
in the center. Here, however, as we aim to reproduce the test setup from the ERH
experiment as closely as possible, since changes in the setup may have affected the
eye gaze, we let noise only impinge from angles in the range [−45°, 45°], i.e., from
13 directions given the resolution of our RTF database. Note that in this way, our
simulated noise field does still not perfectly match the acoustic stimuli from the
experiments, however, based on the available RTF database, we deem that this is our
best option.

In the generation of each scene, 13 babble noise tracks are chosen at random to be
simulated from each of the 13 loudspeakers represented in Fig. 7.3. These babble noise
tracks are chosen from a set of pre-computed tracks, each consisting of talk from eight
TIMIT audio tracks. Note that in the ERH experiment, the same noise realization
was used for all noise sources. Though, we aim to simulate acoustic stimuli as close
to those in the ERH experiment, we choose to use different noise realizations for each
noise source. This is due to the fact that, if the beamforming system was to be applied
in a real world setting, noise impinging from different directions would certainly vary.
Also, from a mathematical standpoint, letting the same noise realization impinge
from all noise sources, may cause the the noise CPSD to not have full rank, causing
it to not be invertible, hence making the beamformer weights unobtainable.

Another place where we choose to simulate slight different compare to the exper-
iment conducted at ERH is that we let speech and noise be co-located, whereas in
the ERH experiment speech and noise had dedicated speakers.

Finally, regarding the SNR under which the experiments at ERH was conducted.
In the experiment conducted at Eriksholm, the SNR was set to 0 dB. As mentioned
earlier, we aim to comply as much as possible with their setup, and hence likewise
simulate our acoustic scenes at 0 dB. When simulating the acoustic scenes, the input
SNR is controlled in accordance to the description in Section 5.1.1. Do note that
when we compute the gain to obtain a SNR of 0 dB, we combine s1(n) and s2(n) to
a single signal before the average power is computed.
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Figure 7.3: Illustration of how the acoustic stimuli presented at the ERH experiments are synthetic
simulated in this thesis. The gray loudspeakers indicated the discrete sound source directions.

7.3 Eye-Gaze Data Prepocessing

In order to be able to use the eye-gaze data provided by ERH, a few key aspects
must be considered. First of all, the audio-visual material is ensured to be properly
time-aligned, and the eye-gaze data have been parsed by ERH such that is correctly
aligned with the audio-visual material and is precise up to 20 ms. However, the audio
signals, which are measured by microphones, and the eye-gaze measurements, which
are recorded by cameras from an eye-tracker, are sampled at different rates. Hence,
synchronization of the data is still needed for us to be able to integrated the signals
from the two types of sensors to be used in our beamforming systems. Secondly, the
eye-gaze data contains missing data points, and lastly, during the first 4 seconds in
each trial, the test participants were instructed to look at a fixation cross in the center
of the screen, i.e., 0° from the test participants point-of-view, which appeared on the
screen preceding the presentation of the audio-visual stimuli in each trial. In general,
the participants eye-gaze were steady in the first 4 seconds where the fixations cross
was displayed, however, not necessarily at 0°, meaning that an offset of the fixation
is observed. As a consequence, this introduces an offset in the eye-gaze measurement
angles. In the following, we describe how we choose to preprocess the eye-gaze data,
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and in doing so, obtain eye-gaze data which can be applied for the specific purpose
of this thesis.

For each of the 10 trials and 22 test participants, the following processing of the
eye-gaze measurements from the dataset is applied. The eye-gaze measurements are
provided as (x, y, z) coordinates in a three dimensional grid. As described in Chap-
ter 6, for simplicity, we have designed our proposed beamforming systems to take
into account the HA user’s eye-gaze by letting φ(l) representing the user’s azimuth
eye-gaze angle at time l. Therefore, we transform the 3D-coordinates into azimuth
angles in degrees.

After having observed the eye-gaze measurements in degrees with associated times-
tamps, we seek to correct the offset in measurement angles. In Fig. 7.4, an example
of an offset in the eye-gaze measurements is depicted. Worth noting in the figure is
the spikes, which occur very suddenly. These may either be caused by sudden eye
movements or may as well be measurement errors.
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Figure 7.4: Example of eye-gaze measurements as a function of time.

From Fig. 7.4, it is seen that for the first few seconds, the data curve is located
around ≈ 12° and not at 0°. We correct the offset by finding the mean over the
measurements taken during the fixation cross, omitting any missing data points, and
subtract this mean from all measurements.

Next, we deal with the problem of missing data. We do this in a forward step and
a backward step. First we propagate forwards, in regards to time, in the eye-gaze
data and setting any NaN values, i.e., missing data points, equal to the previous
non-NaN value. The forward step does, however, not compensate for missing data
in the beginning of the data, i.e., in the case where the first data point containing
a NaN value. Therefore, beginning from the end of the eye-gaze data, we propagate
backwards in regards to time, and set any NaN values equal to the next non-NaN
value. This procedure results in no missing data points.
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Figure 7.5: Example of eye-gaze measurements with correction as a function of time. The blue
signal is the corrected eye-gaze signal while the orange signal is the raw eye-gaze signal.

Finally, we deal with the resampling the eye-gaze data. As our beamforming
algorithms use a time-frequency representation of the microphone signals, the au-
dio frame rate is determined by the window length and the hop-size chosen for the
STFT. As mentioned in Section 7.2, the audio signals from the dataset are down-
sampled from fs,audio = 48 kHz to fs,audio = 16 kHz, meaning that our temporal
resolution of the STFT coefficients corresponds to 125 time frames per second. In
order to obtain a samplerate for the eye-gaze measurements which coincide with the
rest of our simulation framework, we therefore resample the eye-tracking frames to
match this temporal dimension of the STFT of the microphone signals. We do this
in the following manner. From the first timestamp, we create new timestamps spaced
8 ms apart, corresponding to a frame rate of 125 Hz. We can now interpolate values
at the new timestamps based on the eye-gaze measurements at the original times-
tamps. We interpolate with a zero-order hold, meaning that the interpolated value
at a timestamp is set to the most resent value of the original data. The result of
the processing steps are illustrated in Fig. 7.5, where the blue signal is the corrected
eye-gaze signal, while the orange signal is the raw eye-gaze signal.

Via the preprocessing of the eye-gaze data described in this section, we have ob-
tained eye-gaze data for 10 scenes and 22 test participants, which has been corrected
for offset based on the data during the fixation cross, corrected for missing data, and
resampled to a samplerate which coincide with the rest of our simulation framework.

As we in this thesis are interested in the distribution of the eye-gaze measurements,
we in Fig. 7.6 depict examples of histograms of eye-gaze measurements taken over
whole trials. Specifically, in order to give insight into the variance of the eye-gaze
measurements over trials and test participants, we illustrate histograms of two test
participants’ eye-gaze measurements for two trials. From Fig. 7.6, we clearly see two
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(a) Histogram density estimate of p(φj(l)) for exam-
ple test participant 1, example trial 1.

(b) Histogram density estimate of p(φj(l)) for exam-
ple test participant 1, example trial 2.

(c) Histogram density estimate of p(φj(l)) for exam-
ple test participant 2, example trial 1.

(d) Histogram density estimate of p(φj(l)) for exam-
ple test participant 2, example trial 2.

Figure 7.6: Histogram density estimate of p(φj(l)) for e of two test participants’ eye-gaze mea-
surements for two trials.
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modes in the histograms, corresponding to the two targets. Interesting is that we see
quite different histograms both across test participants but also across trials.

In the following section, we will describe how we use the preprocessed eye-gaze signals
to construct the pre-computed look-up table of conditional probabilities used in the
one of our proposed eye-gaze based Bayesian beamforming methods.

7.4 Computed Look-Up Table for Proposed Joint Audio-
Gaze Bayesian Beamformer

As described in Section 6.3.1, in this thesis, we propose a joint audio-gaze Bayesian
beamforming method in which the HA user’s eye-gaze is incorporated by means of a
pre-computed look-up table with conditional PMFs p(θi|φj(l)), for i = 1, . . . , I and
j = 1, . . . , J . We have, however, not discussed how to actual compute this look-up
table using the real-world eye-gaze data. Having presented the eye-gaze data, we are
able to compute the look-up table which is used to implement the proposed joint
audio-gaze Bayesian beamformer. As mentioned, the conditional PMF p(θi|φj(l))
describes the probability that the target signal arrives from direction θi given that
the HA user’s eye-gaze angle is φj(l). This conditional PMFs can be obtained from
the other conditional PMF p(φj(l)|θi), for i = 1 . . . , I and j = 1, . . . , J . In contrast
to p(θi|φj(l)), p(φj(l)|θi) describes the probability that the HA user’s eye-gaze is
towards φj(l) given that the target signal arrives from direction θi. In order to obtain
the value of p(φj(l)|θi), we may count all fraction of situations where the HA user’s
eye-gaze is towards φj(l) when the target signal arrives from direction θi. Hence,
to be able to compute p(φj(l)|θi), we are in the need of an ideal VAD to classify
a given time frame l as being speech-absent, single-talk, or double-talk in order to
determine a unique θi. We begin this section by a description of the VAD that we
have implemented in order to make this classification.

In the proceeding, we consider time frames of speech absence, single-talk and
double-talk and hence introduce the following notation. Let slp(n) for p = 1, 2 and
n = 0, . . . , N − 1, denote the l’th segmented time domain signal obtained from the
windowing process of the STFT. We then introduce the following notation for the
l’th time frame:

• S0 : Neither sl1(n) nor sl2(n) contains speech.

• S1 : sl1(n) contains speech but sl2(n) does not (single-talk for).

• S2 : sl1(n) does not contain speech but sl2(n) does.

• S3 : Both sl1(n) and sl2(n) contains speech.

As these states are identified by the VAD, we refer to them as VAD states. The VAD
used to identify these states are described in the following.
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7.4.1 Voice Activity Detection

This section serves the purpose of introducing a frame based VAD which is used
to detect speech-presence in a two-talker scenario. The VAD assumes access to the
clean time-domain target signals s1(n) and s2(n), in order to classify each time frame
as belonging to one of the four states S0, S1, S2, or S3. Important to note is that
the beamformers are applied for each time-frequency tile individually. However, we
choose to assign one state to entire time frames, i.e., across frequency. Alternatively,
the VAD could have classified each time-frequency tile individually. This approach
could potentially have lessened the amount of double-talk detected, as two talkers
would most likely not occupy the exact same frequency bins simultaneously. Though
this could prove beneficial, the process of threshold calibration in the VAD would
become more challenging, hence we choose a frame based VAD.

The proceeding outline of the VAD describes application for a single trial, i.e.,
a single acoustic scene. The VAD operates on the time domain signals s1(n) and
s2(n), however, in frames corresponding to the frames of the spectro-temporal sig-
nals s̃1(k, l) and s̃2(k, l). Therefore, we apply the same windowing process as in the
STFT, which is described in the following.

For sp(n), p = 1, 2 the following procedure is performed. First the clean signal is
zero-padded in the front by zeros corresponding to one second, as to make the length
of the clean speech signal match the length of the noise signal. Afterwards, the sig-
nal is zero-padded at the front and end by half the window length, i.e., N/2 = 128,
which in terms of the STFT, centers the first window segment on the first data point.
Thereafter, a number of zeros is appended to the end of the signal in order to make
the signal fit precisely into an integer value of window segments. With an overlap
of 50%, the number of necessary zeros can be computed as N/2 − (Ns mod (N/2)),
where Ns is the number of samples in sp(n), and mod is the modulo operator. Next,
sp(n) is segmented with the square-root Hann window sequence w(n) and the hop
size D = N/2 = 128, i.e., we let slp(n) = sp(n+ lD)w(n), for n = 0, . . . , N − 1 denote
the l’th segment of sp(n). Then, the energy of the l’th frame of sp(n), which we
denote Esp(l), is computed as

Esp(l) = 10 log10

(
N−1∑
n=0

(
slp(n)

)2
+ ε

)
dB, ∀l,

where ε is a small number to avoid taking the logarithm of zero. Let Emax,p denote
the largest Esp(l) across all window segments, we then define the interim binary VAD
outputs as

αp(l) =

{
1, if Emax,p − Esp(l) < 42 dB
0, otherwise

, ∀l,

where the threshold of 42 dB has been chosen based on visual inspection of example
eye-gaze signals.
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Based on αp(l), for p = 1, 2, the VAD state for the l’th time frame is determined
as

S0 : if α1(l) = 0 and α2(l) = 0 (speech absence)

S1 : if α1(l) = 1 and α2(l) = 0 (single-talk for sl1(n))

S2 : if α1(l) = 0 and α2(l) = 1 (single-talk for sl2(n))

S3 : if α1(l) = 1 and α2(l) = 1 (double-talk).

The computation of the VAD is summarized in Algorithm 6 as pseudo-code.

Algorithm 6 Voice Activity Detector
Input:

s1(n), s2(n), for n = 0, . . . , Ns−1: Clean target speech signals in the time domain.
Output:
Si, i ∈ {0, 1, 2, 3}: VAD state for each time frame l.

1: for p = 1, 2 do
2: Zero-pad sp(n) to comply with STFT.
3: Segment sp(n) into overlapping segments as slp(n) = sp(n+ lD)w(n).
4: for all l do
5: Compute frame energy as Esp(l) = 10 log10

(∑N−1
n=0

(
slp(n)

)2
+ ε
)
.

6: end for
7: Compute maximum frame energy: Emax,p = max

l
(Esp(l)).

8: for all l do
9: Compute interim binary VAD as

αp(l) =

{
1, if Emax,p − Esp(l) < 42,

0, otherwise.

10: end for
11: end for
12: for all l do
13: Determine VAD state:

S0 : if α1(l) = 0 and α2(l) = 0

S1 : if α1(l) = 1 and α2(l) = 0

S2 : if α1(l) = 0 and α2(l) = 1

S3 : if α1(l) = 1 and α2(l) = 1.

14: end for

Having introduced to the VAD, we finally move on to the actual computation
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of the look-up table with conditional PMFs used in the proposed joint audio-gaze
beamforming system.

7.4.2 Computation of Conditional PMF

To construct the conditional PMFs p(φj(l)|θi), ideally, we would estimate the distri-
bution of φj(l) given θi for all i. This would be done by collecting all available eye-gaze
angles φj(l) for each target DOA θi, and use these measurements for the density es-
timation. However, as apparent from Section 7.2, in the experiment conducted at
ERH, the participants were only placed in two positions, namely at θi = ±15°, hence
based on the data, we are only able to fill in the two rows of Table 6.2 corresponding
to θi = ±15°. In a case where the available data have had target talkers located in
each of the I directions, we would be able to construct p(φj(l)|θi) for each of the tar-
get DOAs θi, for i = 1, . . . , I, based on real-world eye-gaze data. However, since we
are not able to estimate p(φj(l)|θi) for θi ∈ Θ\{−15°, 15°} directly from the available
data, we have to decide upon how to obtain the remaining rows of the PMF matrix
in Table 6.2. Out of necessity, we have decided to synthetically fill the remaining
rows of p(φj(l)|θi) based on the actual observed densities p(φj(l)|θi) for θi = ±15°.
In the proceeding, we first describe how p(φj(l)|θi = 15°) and p(φj(l)|θi = −15°)
are computed directly from the eye-gaze data. Secondly, we describe how we have
decided to compute p(φj(l)|θi = 0°), and following this, we describe the computation
of p(φj(l)|θi = 7.5°) and p(φj(l)|θi = −7.5°), respectively. Afterwards, we describe
how p(φj(l)|θi) for θi ∈ {±22.5°,±30°,±37.5°,±45°} is computed, and finally, we
discuss how to form p(φj(l)|θi) when the target arrives from outside the DOA range
θi = ±45°.

As described in Section 7.1.1, the data consists of 10 trial each with 22 associated
eye-gaze measurements. To determine how to best utilize this data in the look-up
table, we have experimented with three different methods. Firstly, eye-gaze data from
all scenes and all test participants have been used to construct one "global" look-up
table. Secondly, we have created a look-up table for each scene in which data from
all test participants was used, with the intent of having a tailored look-up table for
each scene. Lastly, we have tested with a participant-specific look-up table so that
each participant has their own tailored look-up table. Based on experiments where
each of the three different look-up tables have been used to implement the proposed
Bayesian beamformer, the highest performance scores were obtained when using the
participant-specific look-up tables. Therefore, we choose to include this look-up table
in the beamformer evaluation in Chapter 8.

Computation of p(φj(l)|θi) for θi = ±15°

To find the density p(φj |θi = 15°), we gather the eye-gaze measurements from all
10 trials with VAD state S1 according to Algorithm 6. We repeat this procedure
for the VAD state S2, which gives two sets of data from which we can estimate the
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probabilities p(φj |θi = 15°) and p(φj |θi = −15°). Note that eye-gaze measurements
at time frames with VAD state S3, i.e., double-talk, is excluded from both groupings
of data. As described in Section 6.3, we choose to estimate the densities via the
histogram approach described in Section 6.2.2. Examples of the estimated densities
p(φj |θi = 15°) and p(φj |θi = −15°) can be seen in Fig. 7.7a and Fig. 7.7b, respectively.
From the figures it is seen that the histogram of p(φj |θi = 15°) has a clear spike in 7.5°
while p(φj |θi = 15°) has a spike in −15° but does, however, also contain noticeably
mass around −15°. As mentioned, there is a mismatch between the visual position
of the target talkers on the TV screen and the acoustic positions, i.e., the positions
of the loudspeakers playing the sound signal from the target talkers. According to
the simulated target DOA, in Fig. 7.7a, we would expect a spike in 15°, hence, the
deviation from this spike may be a consequence of this mismatch between the acoustic
and visual stimuli.
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(a) Histogram density estimates of p(φj(l)|θ = 15°)
for a specific test participant.
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(b) Histogram density estimates of p(φj(l)|θ = −15°)
for a specific test participant.

Computation of p(φj(l)|θi) for θi = 0°

To synthetically create p(φj(l)|θi = 0°), we use p(φj(l)|θi) for θi = ±15°. From visual
inspection of p(φj |θi = 15°) and p(φj |θi = −15°) in Fig. 7.7a and Fig. 7.7b, respec-
tively, though difficult to see due to the limited resolution, it might seem plausible
that the densities takes on the shape of bell curves, though slightly skewed with
longer tails towards to center. Since p(φj |θi = 15°) and p(φj |θi = −15°) are skewed
in opposite direction, it seems fair to assume that p(φj |θi = 0°) will be symmetric
around 0°, and given the shape of p(φj |θi = 15°) and p(φj |θi = −15°), we choose to
model p(φj |θi = 0°) as a Gaussian distribution. To find the standard deviation of this
Gaussian distribution, we find the sample standard deviation of the two sets of data
for θi = 15° and θi = −15°, respectively, and take the average. Next, we sample a
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zero-mean Gaussian distribution with the aforementioned standard deviation in the
J discrete angles. We assume that the eye-gaze cannot assume values beyond 45° in
either direction, therefore, we set the probability outside this range to zero. At last
we normalize p(φj |θi = 0°) so that the entries sum to one. Do note that after the
truncation, the distribution is not Gaussian anymore, however, we simulated from
the Gaussian distribution due to the general shape, hence the exact distribution is
not important. An example of the estimated density p(φj |θi = 0°) is illustrated in
Fig. 7.8.
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Figure 7.8: Histogram density estimates of p(φj(l)|θ = 0°) for a specific test participant.

Computation of p(φj(l)|θi) for θi = ±7.5°

In the construction of p(φj(l)|θi) for θi = ±7.5°, we wish to retain the information
observed in p(φj(l)|θi) for θi = ±15°, yet reflect the shift in angles. We choose to
do this in the following manner. The density p(φj |θi = 7.5°) is constructed as a
linear combination of p(φj |θi = 15°) and p(φj |θi = −15°). To do so, we first rotate
p(φj |θi = 15°) by −7.5° and weight the density by 3

4 . Next, we rotate p(φj |θi =
−15°) by 22.5° and weight the density by 1

4 . The weighting is chosen due to the
distance between the angles. These two rotated and weighted densities are then
added together. Afterwards, the density is normalized so the entries sum to one,
which gives the density p(φj |θi = 7.5°). Likewise, p(φj |θi = −7.5°) is constructed
in the same manner where p(φj |θi = 15°) is rotated −22.5° and weighted by 1

4 while
p(φj |θi = −15°) is rotated 7.5° and weighted by 3

4 . Examples of the densities p(φj |θi =
7.5°) and p(φj |θi = −7.5°) are depicted in Fig. 7.9a and Fig. 7.9b, respectively. Form
the figures, it is seen that the histograms span a more wide range of directions, which
was to be expected due the they way they are constructed.
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(a) Histogram density estimates of p(φj(l)|θ = 7.5°)
for a specific test participant.
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(b) Histogram density estimates of p(φj(l)|θ = −7.5°)
for a specific test participant.

Computation of p(φj(l)|θi) for θi ∈ {±22.5°,±30°,±37.5°,±45°}
Due to restricted possible rotation of the human eye, one could easily imagine that the
skewness of the distribution of the look direction would increase as the target talker
departed further from the frontal direction. However, since it is difficult to model
the behaviour of the user’s eye-gaze in these situations such that this model would
reflect the eye-gaze behaviour properly, we choose to naively estimate the density
p(φj |θi = 22.5°) as p(φj |θi = 15°) rotated by 7.5°, likewise we estimate p(φj |θi = 30°)
by rotating p(φj |θi = 7.5°) by 15°, etc. The distributions for the target directions θi =
−22.5°,−30°,−37.5°,−45° are constructed by negative rotation of p(φj |θi = −15°).
It is important emphasize that we do not finds this approach to be ideal, however,
necessary due to the limitations regarding the data as well as due to time constraints.
Note that we have chosen to use this approach to fill conditional PMFs only up to
±45°. This is due to the fact that, in order to be able to compare our proposed
systems with each other and with competing methods, it is desirable to have a fixed
DOA range. From all eye-gaze measurements, we found that 99.99% had a magnitude
below 48.75°, which is the outer edge of the bin associated with 45°.

Computation of p(φj(l)|θi) for |θi| > 45°

Lastly, we consider the computation of p(φj(l)|θi) when the target arrives from out-
side ±45°. In the case where the target is located at a direction exceeding ±45°, it
does not make much sense to try to locate mass around the target position. Therefore,
we choose to form a PMF with mass inside ±45°. Next, comes the question of which
shape this PMF should take. As our eye-gaze data provides no such information, we
choose to let p(φj(l)|θi) have equal mass in the directions −45°,−37.5°, . . . , 45° and
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zero probability elsewhere.

Now, we have obtained the conditional PMFs p(φj(l)|θi), for I = 1, . . . , I and j =
1, . . . , J , and hence, we can finally determine the values of the pre-computed look-up
table p(θi|φj(l)), for I = 1, . . . , I and j = 1, . . . , J .

Computation of p(θi|φj(l))
In order to obtain the values of p(θi|φj(l)) in (6.25) of the look-up table, we are in
need of the prior probability p(θi), for i = 1, . . . , I. We choose to construct this
prior probability as having equal mass in the angles θi ∈ {−45°, . . . , 45°} and zero
probability elsewhere. Finally, the normalization constant p(φj(l)) for j = 1, . . . , J ,
can be computed from the joint PMF p(φj |θi)p(θi) as p(φj) =

∑I
i=1 p(φj |θi)p(θi).

In Fig. 7.10, an example of a column of the look-up table p(θi|φj(l)) is depicted.
Specifically, the plot shows the estimated density p(θi|φj(l) = 15°). From the figure,
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Figure 7.10: Example of conditional probability from the look-up table p(θi|φj(l)), specifically,
p(θi|φj(l) = 15°).

we unexpectedly see a large spike in θi = 22.5°. However, since p(φj(l)|θi = 15°)
has a large spike in φj(l) = 7.5°, the joint PMF p(φj(l)|θi = 22.5°) will have the
same spike in φj(l) = 15°, due to the synthetic rotation. This indicates that, using
p(φj(l)|θi) for θi = ±15° to synthetically fill p(φj(l)|θi), is far from ideal, which in
fact may influence the performance of the proposed beamforming system which rely
on this pre-computed look-up table to enhance the target speech signal. However,
we still decide to use this method, as our options have been limited due to the data
available.

Based on the audio-visual simulation study presented in this chapter, in the next
chapter, we will evaluate the performance of our proposed beamforming methods.





8. Performance Evaluation of Pro-
posed Audio-Gaze Beamforming
Methods

The main purpose of the simulation experiments conducted in this chapter is to ex-
amine if an eye-gaze based approach is able to outperform audio-only ones in realistic
numerical simulations. The chapter is organized by first summarizing the imple-
mented beamforming systems that will be evaluated and compared in this chapter
through numerical experiments. Following this, we present the experiential setup for
the performance evaluation, and finally, the results from the simulation experiments
are presented. In Chapter 9, we will discuss the results found in this chapter.

8.1 Beamformer Evaluation

In this section, various beamforming systems are compared in order to access the po-
tential of using eye-gaze information in beamforming systems, in addition to acoustic
information, to enhance a target sound signal. We begin this section by summarizing
the implemented beamforming systems.

• MVDR-Ideal To get an indication of an upper bound performance on the noise
reduction an oracle MVDR beamformer, denoted MVDR-Ideal, is implemented
according to Section 5.1.2. MVDR-Ideal has access to the true target DOA
and optimal noise statistics, however, due to the fact that the acoustic scenes
comprise two-talker scenarios, some choices have to me made in relation to
determining the true target DOA θs for each time l frame in

ŵMVDR(k, l, θs) =
Ĉ
−1
v (k, l)d(k, l, θs)

dH(k, l, θs)Ĉ
−1
v (k, l)d(k, l, θs)

. (8.1)

The MVDR-Ideal assumes access to the ideal VAD, described in Section 7.4.1,
to classify time frames as belonging to one of the four VAD states S0: speech
absence, S1: single-talk for sl1(n), S2: single-talk for sl2(n), and S3: double-talk.
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The RTF vector d(k, l, θs) used to implement the ideal MVDR beamformer in
(8.1) is determined by the VAD states as follows:

S0 : d(k, l, θs), θs = 0°
S1 : d(k, l, θs), θs = 15°
S2 : d(k, l, θs), θs = −15°

S3 : wMVDR(k, l) =
[
1 0 . . . 0

]T ∈ CM .

As seen from the four conditions, if the VAD classifies a time frame as being
speech-absent, the beamformer is steered towards the frontal direction. This
choice is solely based on the fact that speech-absent frames are not included in
the computation of the performance scores, and hence, the choice of RTF vector
in the VAD state S0 should not affect the results, yet, some choice have to be
made. Moreover, if the VAD classifies double-talk, it is seen that a 1-microphone
beamformer wMVDR = [1, 0, . . . , 0]T ∈ CM is applied. The motivation behind
using a 1-microphone beamformer in time frames with double-talk is due to
the fact that the MVDR beamformer allows for only one beam, due to its
distortionless constraint in a signle target direction. Having to choose which
target to point the beamformer at would be a challenging task and would also
suppress target talk, and hence, invalidating the idea of an ideal beamformer.
It should be notet that, in free-field, a 1-microphone beamformer will let audio
pass undistorted from all directions, however, since the HAD is placed on a
human head, the propagation of the audio will still cause distortion due to the
head-shadow effect. Specifically, sound sources originating from the right-hand
side of the HA user will be attenuated when reaching the reference microphone
of the left HAD, whereas sound sources originating from the left-hand side are
not affected by the head-shadow effect, and hence, not attenuated due to the
user’s head.

• Bayesian-Audio-Gaze: The proposed beamforming system Bayesian-Audio-
Gaze (Section 6.2) uses the Bayesian beamformer weights

ŵB(k, l) =

I∑
i=1

p(θi|X(k, l), φj)ŵMVDR(k, l),

in which the posterior probability p(θi|X(k, l), φj(l)) uses the audio-based like-
lihood function f(X(k, l)|θi) in (6.19) as well as the conditional PMF p(θi|φj(l))
from the pre-computed loop-up table p(θi|φj(l)). The implementaiton of this
beamforming system is summarizedd in Algorithm 5, while the offline compu-
tation of the look-up table p(θi|φj(l)) is described in Section 7.4.

• Bayesian-Gaze-Prior: The proposed beamforming system Bayesian-Gaze-
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Prior uses the Bayesian beamformer weights

ŵB(k, l) =

I∑
i=1

p(θi|X(k, l))ŵMVDR(k, l),

in which the posterior probability p(θi|X(k, l)) uses the audio-based likelihood
function f(X(k, l)|θi) in (6.19) as well as the prior probability distribution
p(θi) obtained as a histogram over the T most resent time frames of eye-gaze
measurements. A value of T = 250 time frames, i.e., using the previous 2
seconds of eye-gaze measurements, have been chosen through an iterative test
procedure with trial and error. The implementation of the beamforming system
is summarized in Algorithm 4.

• Bayesian-Uniform-Prior: In order to examine the performance of our two
proposed eye-gaze based beamforming methods (Byesian-Gaze-Prior and Bayesian-
Audio-Gaze), we will, as mentioned, compare them to an audio-only baseline
Bayesian beamforming system. The beamforming system Bayesian-Uniform-
Prior is used to emulate such a baseline system that only relies on the noisy
microphone signals, i.e., only acoustic information. The purpose of comparing
with this baseline system is to see what the benefit of incorporating the user’s
eye-gaze in a Bayesian beamforming strategy is. This baseline beamforming
system uses the Bayesian beamformer weights

ŵB(k, l) =
I∑
i=1

p(θi|X(k, l))ŵMVDR(k, l),

in which the posterior probability p(θi|X(k, l)) uses the audio-based likelihood
function f(X(k, l)|θi) in (6.19) and a prior probability p(θi) with mass equally
spread in the DOA range {−45°, 45°} and zero-probability elsewhere. We choose
this specific DOA range, as to compare the methods properly, the range for the
target DOA parameter θi must be the same for all the Bayesian beamforming
methods. Since the two proposed Bayesian beamformers are design in such a
way that there is a underlying assumption that the target signal arrives from
one out of the 13 possible target directions in the range {−45°, . . . , 45°}, this as-
sumption is also incorporated in the baseline audio-only Bayesian beamformer.

• MVDR-ML: The beamforming system MVDR-ML is used to emulate an
MVDR beamformer steered using a microphone-only DOA estimator. For this
method, the target RTF vector d(k, l, θs) is estimated using the directional-
based maximum likelihood DOA estimation method in Algorithm 1, and is
used to implement the MVDR beamformer. I.e., for this method d̂(k, l, θ̂s) is
the target RTF vector associated with the dictionary maximum likelihood DOA
estimate of θs, i.e., θ̂s = θ̂s,ML. This audio-only beamforming system is included
in the simulation experiments, as to relate to the feasibility test carried out in
Chapter 5.
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• MVDR-Fixed: The beamforming system MVDR-Fixed is used to emulate an
MVDR beamformer that assumes a frontal target. For this method, d(k, l, θs)
is the RTF vector associated with the frontal direction, i.e., θs = 0° and is used
to implement the MVDR beamformer. This audio-only beamforming system
is included in the simulation experiments, as to again relate to the feasibility
study carried out in Chapter 5.

8.1.1 Experimental Setup

The performance of the beamforming systems is evaluated on noisy microphone sig-
nals which are simulated in accordance to the description in Section 7.2. As described
in Section 7.1.1, the audio-visual data set provides 10 trials from which we simulate
acoustic scenes. For each of these trials, eye-gaze measurements from the 22 partici-
pants are used.

From the results of the feasibility test carried out in Section 5.3, it was concluded
that using M = 2 microphones, the performance gain of using an oracle eye-gaze
steered MVDR beamformer is marginal when compared to a frontal MVDR beam-
former. We also established that by solely relying on the upper bound performance
results obtained from the oracle study, we cannot confirm whether using M = 4 or
M = 6 would possibly yield a gain in performance using eye-gaze steered beamform-
ing in future HAs. In the simulation experiments carried out in this chapter, we
therefore likewise explore the influence of the number of microphones used in a HA
system on the beamformer performance. Specifically, we again consider the three
microphone array configurations; a M = 2 microphone monaural configuration, a
M = 4 microphone binaural configuration, and a M = 6 microphone binaural con-
figuration. For each microphone array configuration, ESTOI and segSNR scores are
obtain for all pairs of trials and test participants. This means that for the proposed
beamforming systems, which utilize eye-gaze information, 220 ESTOI and segSNR
scores are obtained for each microphone array configuration, whereas 10 ESTOI and
segSNR scores are obtained for the audio-only beamforming systems. For the pro-
posed eye-gaze based beamforming systems, the performance scores are averaged over
participants as to obtain 10 ESTOI and segSNR scores, respectively. Subsequently,
the performance scores for all beamforming methods are averaged over trials, yielding
a single ESTOI and segSNR score for each beamforming system for all the considered
microphone array configurations.

The settings for analysis and synthesis, for the implementation of the MVDR beam-
formers, and for the maximum likelihood estimation of the RTF vectors are all spec-
ified in accordance with the descriptions in Section 5.1.2.
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8.2 Simulation Results

In this section the experimental results will be displayed. These results will seek to
shed light on the performance of the proposed eye-gaze based beamforming meth-
ods and to which extend the incorporating of information provided by the HA user’s
eye-gaze in a beamforming method is beneficial when compared to audio-only beam-
forming systems. This will be done by using the proposed beamformers as well as
the audio-only beamformers to solve the same task of retrieving a target signal con-
taminated with noise. As mentioned, the performance of the beamformers will be
reported in terms of ESTOI and segSNR scores. For reference, performance scores are
computed and included for the unprocessed noisy microphone signal at the reference
microphone, denoted "Noisy", to act as a lower bound on the noise reduction. The
ESTOI and segSNR performance measures are described in Section 5.2.

In Fig. 8.1, average ESTOI scores as well the improvement in ESTOI scores in relation
to the unprocessed noisy microphone signal are presented for the various beamforming
systems for M = 2, M = 4, and M = 6 microphones. Likewise, Fig. 8.2 illustrates
the average segSNR scores and the improvement in segSNR scores in relation the
unprocessed noisy microphone signal.
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Figure 8.1: Average ESTOI scores and average improvement in ESTOI scores depicted for M = 2,
M = 4 and M = 6 microphones.

The specific values plotted in Fig. 8.1 and Fig. 8.2 are displayed in Table 8.1.
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Figure 8.2: Average segSNR scores and average improvement in segSNR scores depicted forM = 2,
M = 4 and M = 6 microphones.

Furthermore, to directly compare the performance of the two proposed eye-gaze
based beamforming systems, Bayesian-Gaze-Prior and Bayesian-Audio-Gaze, to each
other, as well as to compare their performance against their audio-only counter-
part, Bayesian-Uniform-Prior, the difference in performance scores are depicted in
Table 8.2.

From Figs. 8.1 and 8.2, it is seen that the ESTOI and segSNR scores obtained for the
MVDR-Ideal improve as the number of microphone increases. This is expected as for
each time-frequency tile, the MVDR-Ideal is steered towards the true target direc-
tion, identified by the VAD, and since the beam of the MVDR beamformer becomes
slimmer as M increases, the MVDR-Ideal may suppress more noise while still main-
taining the distortionless constraint in the target direction. For the frontal MVDR
beamformer, MVDR-Fixed, the opposite behaviour is observed for ESTOI and partly
for segSNR, in that we see a decrease in performance as the number of microphones
increases. Again, this is in line with our expectations. As we saw in Chapter 5, when
M = 2, the frontal MVDR beamformer performed very close to the upper perfor-
mance bound of the MVDR beamformer when the target arrived from directions in
the DOA range θs ∈ {−45°, . . . 45°}, whereas their performance differences became
more significant as the number of microphones increased. Hence, when the target
signal arrives from ±15°, as is the case for the simulations in Figs. 8.1 and 8.2, it
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ESTOI segSNR
#Microhones M = 2 M = 4 M = 6 M = 2 M = 4 M = 6

MVDR-Ideal 0.468 0.566 0.623 -9.466 -6.508 -4.324
Bayesian-Audio-Gaze 0.439 0.462 0.467 -9.265 -6.894 -5.461
Bayesian-Gaze-Prior 0.446 0.481 0.481 -9.256 -6.976 -5.408
Bayesian-Uniform-Prior 0.424 0.44 0.449 -9.248 -6.865 -5.534
MVDR-ML 0.413 0.437 0.448 -9.688 -6.975 -5.6
MVDR-Fixed 0.433 0.413 0.383 -9.383 -7.505 -7.573
Noisy 0.411 0.408 0.411 -11.693 -11.704 -11.68

Table 8.1: Average performance scores for the beamforming systems presented in Section 8.1, as
well as for the unprocessed noisy microphone signal. The performance scores are depicted for three
microphone array configurations using M = 2, M = 4 and M = 6 microphones.

ESTOI
#Microhones M = 2 M = 4 M = 6
Bayesian-Audio-Gaze - Bayesian-Gaze-Prior -0.007 -0.019 -0.014
Bayesian-Audio-Gaze - Bayesian-Uniform-Prior 0.015 0.022 0.018
Bayesian-Gaze-Prior - Bayesian-Uniform-Prior 0.022 0.041 0.032

segSNR
#Microhones M = 2 M = 4 M = 6
Bayesian-Audio-Gaze - Bayesian-Gaze-Prior -0.009 0.082 -0.053
Bayesian-Audio-Gaze - Bayesian-Uniform-Prior -0.017 -0.017 0.73
Bayesian-Gaze-Prior - Bayesian-Uniform-Prior -0.008 -0.111 0.126

Table 8.2: Difference in performance scores for the beamforming systems Bayesian-Audio-Gaze,
Bayesian-Gaze-Prior and Bayesian-Uniform-Prior.

is expected that the performance difference between MVDR-Fixed, which assumes
a frontal target direction, and MVDR-Ideal is smaller when M = 2 microphones is
considered, than is the case with M > 2.

An important observation is that forM = 2 microphones we see that the MVDR-Ideal
is outperformed in terms of segSNR by every beamforming system except MVDR-
ML. Similar unreliable behavior was also observed in the simulations in Section 5.3.2,
and even though the exact reason remains unknown, a possible explanation was given
in Section 5.3.2. Furthermore, another possibility is that the MVDR-Ideal is steered
using the VAD described in Algorithm 6. When the VAD state is S3, i.e., in time
frames with double-talk, the MVDR-Ideal uses a 1-microphone beamformer, hence,
not performing any noise reduction. This may also contribute to the bizarre segSNR
observations.

For the beamforming systems, Bayesian-Audio-Gaze, Bayesian-Gaze-Prior, Bayesian-
Uniform-Prior, and MVDR-ML, it is seen that the ESTOI scores increases from
M = 2 to M = 4 microphones, however, the increase in performance scores is much
less significant than is the case for the MVDR-Ideal. Comparing the results forM = 4
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andM = 6 microphones, almost no increase in ESTOI scores is observed for Bayesian-
Audio-Gaze, Bayesian-Gaze-Prior, Bayesian-Uniform-Prior, and MVDR-ML. Since
we see that the performance of the MVDR-Ideal does not stagnate asM increases, we
know that this gain is obtainable. The reason why Bayesian-Audio-Gaze, Bayesian-
Gaze-Prior, Bayesian-Uniform-Prior, and MVDR-ML does not increase from M = 4
to M = 6 microphones remains unknown, but a likely explanation may be that the
requirements of accurate beamformer parameter estimation increases as the number
of microphones increases. In other words, the beam becomes slimmer and hence in-
accurate estimates are punished more heavily. Since, the MVDR-Ideal has access to
the true target DOA and optimal noise statistics, this would explain why the perfor-
mance of this beamforming system does not stagnate like other beamforming systems.

What is remarkably from from Fig. 8.1 is that the ESTOI scores for the MVDR-
ideal is significant lower than what was observed from the results obtained in the
feasibility test in Chapter 5. This observation is likely explained by that fact for
the acoustic scenes simulated in the current chapter, noise is only impinging on the
microphone array from the frontal quarter-plane, whereas we considered isotropic
noise fields in the feasibility test. As mentioned in Chapter 7, the choice of only
simulating noise from the frontal quarter-plane stems from the choice of resemble the
acoustic stimuli that the HA users in the ERH was presented, as closely as possible.
Had noise also impinged on the microphone array from the rear, this noise may have
been almost suppressed by using an ideal MVDR beamformer, and hence, poten-
tially having increased the performance scores across all the beamforming methods.
Recall that the Bayesian beamformers are implemented as linear combinations of
MVDR beamformers pointing in different directions. However, this hypothesis has
not been verified, as our focus in this thesis primarily is to investigating the influ-
ence of incorporating eye-gaze into beamformers, hence we are mostly interested in
the performance gain between eye-gaze based and audio-based beamforming systems.

When comparing the performance of the two proposed Bayesian beamforming meth-
ods in Table 8.2 in terms of ESTOI, an interesting observation is that the Bayesian-
Gaze-Prior is superior to the Bayesian-Audio-Gaze for all of the considered number
of microphones. We do however, not see the same consistent pattern for segSNR.

Comparing the MVDR-Ideal and Noisy for M = 6 microphones, we obtain an im-
provement of 0.212 in terms of ESTOI, while we for segSNR see an improvement
of 7.356. Furthermore, it is seen that the segSNR scores obtained for the proposed
Bayesian-Audio-Gaze and Bayesian-Gaze-Prior are closer to performance of MVDR-
ideal than to Noisy, as the difference between MVDR-Ideal and Bayesian-Gaze-Prior
is 1.084 while it is 6.272 between Bayesian-Gaze-Prior and Noisy, and the difference
between MVDR-Ideal and Bayesian-Audio-Gaze is 1.137 while it is 6.219 between
Bayesian-Audio-Gaze and Noisy. Comparing Bayesian-Gaze-Prior to its audio-only
counterpart Bayesian-Uniform-Prior, we see a performance improvement regardless
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ofM , in fact the greatest improvement in terms of ESTOI is 0.041, which is obtained
for M = 4 microphones. Furthermore, from Table 8.2, we observe that, in terms
of ESTOI, both the proposed eye-gaze based beamforming systems outperform their
audio-only based counterpart Bayesian-Uniform-Prior for all M , specifically, across
M , we see a general improvement of 0.032 for Bayesian-Gaze-Prior over Bayesian-
Uniform-Prior and an improvement of 0.018 for Bayesian-Audio-Gaze over Bayesian-
Uniform-Prior. Furthermore, from Table 8.1, the same observations are made when
comparing the eye-gaze based systems to the audio-only based system MVDR-ML,
in fact, there we see greater improvements. This is in line with our expectations.

Lastly, we compare the audio-only based beamforming systems Bayesian-Uniform-
Prior and MVDR-ML. For all values of M , we observe that the former yields ever
so slightly better ESTOI and segSNR results. This may be explained by the fact
that Bayesian-Uniform-Prior employs a linear combination of MVDR beamformers,
whereas MVDR-ML simply points a beam in one direction. Furthermore, Bayesian-
Uniform-Prior is restricted the DOAs −45°,−37.5°, . . . , 45°, while MVDR-ML is al-
lowed to search DOAs on the entire circle. However, due to the fact that all sound
arrives from the frontal quarter half-plane in our simulated acoustic scenes, the fact
that MVDR-ML search in the entire DOA range may not influence its performance as
much as if sound was arriving from all directions. Hence, it may be reasonable to sup-
pose that if the sound was not restricted to arrive from the front, but from all around,
the performance difference between the Bayesian beamformers and MVDR-ML would
be much more significant, as the DOA estimation conducted by the dictionary-based
maximum likelihood DOA estimator in MVDR-ML would struggle to estimate the
target direction.

In this chapter, we have presented results obtained by using the proposed beam-
formers as well as the audio-only beamformers to solve the same task of retrieving
a target signal in realistic synthetic acoustic scenes which are simulated using the
acoustic stimuli from the audio-visual data set from ERH. These results will lay the
foundation for the discussion of the proposed beamforming systems in the proceeding
chapter.





9. Discussion

In this chapter, we will discuss the results found in Chapter 8. In that regard, we will
discuss how our specific choices of using the HA user’s eye-gaze in combination with
the microphone signals to compute the posterior DOA probabilities, may impact the
results and thereby access the performance of the proposed audio-gaze beamforming
methods in relation to speech enhancement. Furthermore, we will discuss possible
sources of error as well as limitations and issues which may be connected to the pro-
posed methods.

9.1 Beamformer Performance

The results presented in Chapter 8 indicate the potential for using the HA user’s eye-
gaze in combination with the HA microphone signals to enhance the target speech
signal by the use of a Bayesian beamforming system. The acoustic data used for sim-
ulation and validation of the proposed eye-gaze steered beamforming methods were
realistic synthetic noisy microphone signals generated by the constructed framework
for simulating acoustic scenes. The generated noisy microphone signals were simu-
lated to resemble the acoustic stimuli that the participants from the ERH experiment
were presented. Therefore, as clean target speech signals, we used the audio tracks
from the audio-visual dataset provided by ERH. The AIRs used to simulate the wave
propagation from the sound sources to the microphones on the HAs were obtained
from the database provided by Oticon, and the babble noise used to create the noisy
microphone signals were synthetically generated using multiple speech signals from
the TIMIT corpus.

The results obtained in Chapter 8, suggested that the inclusion of eye-gaze infor-
mation improved performance, as in terms of ESTOI an improvements were seen for
both proposed beamforming systems for M = 2, M = 4 and M = 6 microphones,
when compared to their audio-only counterpart Bayesian-Uniform-Prior. In fact, for
M = 4 microphones, we obtained a performance improvement for the Bayesian-Gaze-
Prior 0.041 in terms of ESTOI. For segSNR, we did, however, not see that same re-
sults as the differences in scores between Bayesian-Audio-Gaze, Bayesian-Gaze-Prior
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and Bayesian-Uniform-Prior were marginal. These results suggests that in terms of
estimated speech intelligibility, we are indeed able to improve performance of beam-
forming systems by incorporating the HA users eye-gaze information, whereas, in
terms of estimated speech quality, no definite conclusion can be made as to whether
incorporation of eye-gaze is beneficial.

In regards to small differences in performance scores, it is worth noting what we
observe that the ESTOI and segSNR scores for the noisy microphone signals are sim-
ilar for M = 2, M = 4 and M = 6 microphones, however, with minor variations of at
most 0.003 for ESTOI and 0.024 dB for SegSNR. As no processing is applied to the
noisy microphone signal, the microphone array configuration should not affect perfor-
mance scores. Note that the same trials are used to construct the scenes for different
microphone configurations, however, most certainly with different noise realizations,
hence small fluctuations for performance scores are expected. Therefore, we consider
small differences to be inconsiderable, as the difference in performance scores across
M might in fact be due to variantion in the noise.

In Chapter 5, we found that when the target arrived from directions in the DOA range
θs ∈ {−45°, . . . , 45°} there was almost no performance difference between MVDR-
Fixed and MVDR-Ideal when M = 2 microphones was considered. Likewise, in
Section 8.2, we examined the difference in performance between MVDR-Fixed and
the proposed eye-gaze based beamforming systems forM = 2 microphones. Again we
found only small differences in performance scores, which suggests that when using
M = 2 microphones, there is no remarkably gain in incorporating eye-gaze compared
to simply using a frontal steered MVDR beamformer. On the other hand, for M = 4
and M = 6 microphones, we observe a gain in performance of using eye-gaze based
beamforming system compared to MVDR-Fixed. This indicates that there is a po-
tential of using eye-gaze steered beamforming in future HAs.

Comparing the two proposed beamforming methods Bayesian-Gaze-Prior and Bayesian-
Audio-Gaze, which utilize the HA user’s eye-gaze information in different manners,
we found that, in terms of ESTOI, the beamforming system Bayesian-Gaze-Prior is
superior to Bayesian-Audio-Gaze for all values ofM with an average ESTOI improve-
ment across M of 0.013. The reason why Bayesian-Gaze-Prior performs better than
the Bayesian-Audio-Prior may be explained by the fact that the Bayesian-Gaze-Prior
adapts as new measurements are observed, while the Bayesian-Audio-Gaze chooses a
predefined probability distribution based on the most resent eye-gaze measurement
which might not be as good a fit to the live data as the one constructed by Bayesian-
Gaze-Prior. Furthermore, since the pre-computed conditional probability look-up
table p(θi|φj), for i = 1, . . . , I and j = 1, . . . , J , is constructed by only using data for
the situations where θi = ±15°, even minor inaccuracies and outliers may introduce
undesirable artefacts in the entire look-up table, possibly affecting the overall perfor-
mance of the Bayesian-Audio-Gaze systems. From the results obtained in Chapter 8,
this indicates that in terms of estimated speech intelligibility, the beamforming system
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Bayesian-Gaze-Prior succeeds over Bayesian-Audio-Gaze.
In regards to the difference between Bayesian-Audio-Gaze and Bayesian-Gaze-

Prior, we made some choices during the development of these systems. In the follow-
ing, we will address these differences and how different choices might have affected
the performance of the eye-gaze based beamforming systems.

Bayesian-Gaze-Prior incorporates eye-gaze information by estimating the prior prob-
ability p(θi) as a histogram over the most recent T eye-gaze measurements. Based
on initial testing, we settle on a value of T = 250 corresponding to 2 seconds of
previous eye-gaze data, as this provided the best results in terms of beamforming
performance scores. Had a smaller value of T been chosen, the beamforming system
might have become more adaptive, and had we chosen T larger, the beamforming sys-
tem might have become less susceptible to e.g., measurement errors. Had the value
of the parameter T been optimized further, we might had seen better performance
for Bayesian-Gaze-Prior.

For the beamforming system Bayesian-Audio-Gaze, the instantaneous eye-gaze
measurement φj(l) is mapped to a predefined probability density from the look-
up table created in advance of application of the beamforming system. Based on
preliminary experiments, we have chosen to construct a look-up tables specifically
tailored to each test participants. However, in the experiment at ERH, at which the
eye-gaze measurements were recorded, a mismatch between the actor’s position on the
TV screen and the loudspeaker position from which the acoustic stimuli was played,
was observed. Furthermore, as the position of the actors was not fixated during the
trials, the actors might have sat or moved differently during different trials. Since,
the participant-specific look-up tables are obtained over all scenes, these potentially
varying mismatches will be captured in the look-up tables. If we were to have created
look-up tables for each combination of test participant and scene, we might have seen
better performance for Bayesian-Audio-Gaze. However, this has not been tested due
to the fact that when histograms are used for density estimation, the amount of data
on which the histograms are computed over is of crucial importance as to obtain a
reliable estimate. As the amount of data available to us is fairly limited, creating
look-up tables for each individual combinations of trials and participants, might not
be feasible from a mathematical point-of-view.

Another important aspect of the Bayesian-Audio-Gaze is the assumption of the
noisy microphone signals x̃(k, l) being conditional independent of the HA user’s eye-
gaze angle φj(l), given that the target DOA θi is known. Though we argued that
the assumption seems fair, this might after all be to simple a model, which may indi-
cate the need for a more complex model linking the eye-gaze measurements and the
acoustic signal.

In general, we did not see as big an improvement for the eye-gaze based beamforming
systems compared to the competing audio-only systems, that we might have hoped,
which may very well be explained by multiple factors. In a noisy environment where
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the SNR is fairly high, audio-only beamforming systems generally perform well, as the
target DOA can be estimated from the acoustic signals alone. However, as the SNR
decreases the task of using on acoustic signal for reliable DOA estimation becomes
challenging. Therefore, at lower SNRs, we would expected our proposed eye-gaze
beamforming systems to perform much better compared to audio-only beamforming
systems in such scenario. However, the eye-gaze measurements were recorded at a
SNR of 0 dB, and as such, our acoustic scenes were simulated at a SNR of 0 dB. This
is due to the fact that we find it important to mimic the setup at which the eye-gaze
measurements were recorded, as the eyes might behave differently under different
conditions. Furthermore, audio-only beamforming systems performs well in the case
when only a single talker is active at a time. In contrast, the eye-gaze is often steered
towards the target of interest, hence eye-gaze based beamforming system, should be
able to decipher which direction to look at even when competing speakers are present.

9.2 Lack of Realism

In terms of ESTOI, we do see a benefit of incorporating eye-gaze into beamforming
systems. However, it is important to emphasize that the performance presented in
these simulations are conditioned on our specific setup. Due to the natural biological
behavior of the eye, we would likely see different behavior in varying setups. For
example, it is easy to imagine that the rate at which people speak as well as how
articulate they are will subject the eye-gaze of the HA user. Furthermore, in our
simulations, the test participants were seated 1.8 m away from the TV, which in
relation to a realistic setup might be considered a long distance. In addition, in the
RTF database which we have used throughout this thesis, the HAs which recorded
the incoming sounds, was not placed 1.8 m from the speakers. This means that the
RTFs in the database may not accurately describe the wave propagation from the
target talker to the HA user.

As presented in Section 8.2, noise was simulated as only impinging from the frontal
quarter-plane, which does not resemble to noise in a real situation. In addition, we
argue that the recorded eye-gaze measurements does not truly reflect the noise field
in which is was recorded. This is due to the fact that babble noise is simulated
from each direction, yet there are no visual indication of this for the HA user. If
eye-gaze were to be recorded in a real situation with background talkers, one could
easily imagine that the HA user, from time to time, would gaze at these talkers,
hence, changing the behavior of the eye-gaze. With these considerations in mind, we
argue that our simulations may deviate from a completely realistic setup, and that
the results are dependent on the specific setup. However, under these conditions, we
observe a performance improvement of using eye-gaze based beamforming system,
which suggests potentials for such methods, and that further effort should be put
into this research area.
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We have in this thesis investigated the possibility of using the HA user’s eye-gaze in
combination with the HA microphone signals to enhance the target speech signal by
the means of a HA beamforming algorithm that exploit this combined information.
To this end, the goal of this thesis was to seek an answer to the following main ques-
tion:

How can information provided by the HA user’s eye-gaze and by the HA microphone
signals be combined and used to construct a beamformer for HA applications, and can
such a beamformer potentially outperform current audio-only beamforming methods
in terms of predicted speech intelligibility and predicted speech quality in noisy acous-
tic scenes?

In order to answer this question, we proposed two beamforming systems for hear-
ing aids which incorporates the user’s eye-gaze, namely a Bayesian beamformer with
the posterior probabilities estimated based on a prior probability derived from the
user’s eye-gaze direction (Bayesian-Gaze-Prior), and a Bayesian beamformer with the
posterior DOA probabilities jointly estimated from the HA microphone signals and
the HA user’s eye-gaze signal (Bayesian-Audio-Gaze). To allow the incorporating of
the HA user’s eye-gaze through a Bayesian approach, we considered the the target
DOA as a discrete random variable with a prior distribution that reflects its uncer-
tainty, relied on a statistical model linking the eye-gaze information and the acoustic
information to the random variable describing the target direction/DOA. Specifi-
cally, inspired by [24] and [23], the idea of the proposed methods was to estimate
a probability distribution of the target talker location, i.e. for each possible target
direction assign a probability, and then use this estimated probability distribution
for a Bayesian beamformer.

We compared the performance of the proposed Bayesian beamforming methods with
state-of-the-art audio-only methods used to solve the same task of enhancing a tar-
get speech signal. Specifically, the proposed methods were compared to an MVDR
beamformer steered using an audio-only maximum likelihood DOA estimator, a fixed
beamformer that is always steered towards the front of the user, and an audio-only
Bayesian beamformer. From the results presented in Chapter 8, it was seen that,
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in general, there is an improvement in the performance of the proposed Bayesian-
Gaze-Prior and Bayesian-Audio-Gaze for the simulated acoustic condition in terms
of ESTOI compared to the audio-only counterpart Bayesian-Uniform-Prior. Specif-
ically, for M = 4 microphones, we see an ESTOI score improvement of 0.41 when
comparing Bayesian-Gaze-Prior and Bayesian-Uniform-Prior. Based on the results,
it was discussed in Chapter 9 that there is room for improvement in the performance
of the proposed eye-gaze based beamformers in terms of both ESTOI and segSNR
for M = 4 and M = 6 microphones, as there is a gab between the upper bound per-
formance obtained by the MVDR-Ideal and the proposed Bayesian-Gaze-Prior and
Bayesian-Audio-Gaze.

Furthermore, it was seen that, in general, the proposed Bayesian-Gaze-Prior was
superior to the proposed Bayesian-Audio-Gaze in terms of ESTOI and segSNR, how-
ever, with a maximal ESTOI score improvement of 0.19. Following this, it was
discussed that this presumably may be due to the way we have chosen to incorporate
the eye-gaze information in our proposed beamforimng systems.

From results obtained from the feasibility test carried out in Chapter 5, we found
that when the target arrived from directions in the DOA range θs ∈ {−45°, . . . , 45°}
there was almost no performance difference between the frontal steered MVDR beam-
former and the upper bound performance of the eye-gaze steered MVDR beamformer
(MVDR-Eye-Gaze) when M = 2 microphones was considered. Likewise, in Sec-
tion 8.2, we found only small differences in performance scores between our proposed
methods and MVDR-Fixed. In Chapter 9, it was discussed that these observations
suggest that, when using M = 2 microphones, there is no remarkably gain in in-
corporating eye-gaze compared to simply using a frontal steered MVDR beamformer
under the acoustic conditions considered in this thesis. On the other hand, forM = 4
and M = 6 microphones, we observed a gain in performance of using eye-gaze based
beamforming system compared to the frontal steered MVDR beamformer MVDR-
Fixed. This is an important result, as many current HAs are only equipped with
M = 2 microphones.

It can be concluded that by combining information provided by the HA user’s eye-gaze
and the HA microphone signals in a Bayesian framework, by estimating a probability
distribution of the target speaker location, a beamformer can be constructed which is
able to outperform audio-only beamforming methods, at least in terms of predicted
speech intelligibility in noisy acoustic scenes.

10.1 Further Work

For all the simulations carried out in Chapter 8, the input SNR was fixed to 0 dB
to simulate a noisy acoustic scene that resemble the acoustic stimuli the test partici-
pants at the ERH experiments experienced. However, at low SNRs, eyes tend to be
at the target more often than at high SNRs [60]. Hence, it seem reasonable to as-
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sume that, at low SNRs, eye-gaze will have greater significance, while at high SNRs,
eye-gaze will have less significance. In further work, it would therefore be interesting
to examine the proposed eye-gaze based beamformers under different input SNRs.
To be able to do so, would require access to eye-gaze signals recorded under different
acoustic conditions, i.e., at different input SNRs. However, in lack of such data being
available, another option might be to make a synthetic simulation at lower input
SNRs. It should however be noted that in this case, the eye-gaze data used in this
thesis would not match the synthesized low SNR. However, as there is evidence that
at low SNRs, eyes tend to be at target more often than at high SNRs, it would be
interesting to examine if an improvement can be obtained by simulating scenes with
input SNRs lower than 0 dB. Following this, it could be interesting to examine the
effect of making a SNR-dependent look-up table p(d(k, l, θi), φj(n)), where we take
into account that at low input SNRs, the eye-gaze tends to be at the target speaker
more often than at high SNRs.

Besides varying SNRs, we would in further work, find it very interesting to also
let other parameters vary in the simulation experiments. First of all, we expect eye-
gaze based beamformers to perform particularly well when competing speakers are
present, hence the inclusion of competing speakers in the simulated acoustic scenes
would be interesting to consider. Furthermore, the positions of the actors presented
on the TV screen were fixed throughout the experiments conducted at ERH. Letting
the target positions vary, would provide us with deeper insight into a more versatile
use of the eye-gaze information in beamforming for HA applications. Moreover, we
would find it interesting in further work to have data available in which the HA user
interacted with the target talkers, as this is a common event in real world applications.
In our simulation experiments, babble noise was simulated as impinging from within
the range ±45°, which does not very well reflect a realistic acoustic environment,
as opposed to letting noise impinge from all directions. Varying the aforementioned
conditions will certainly affect the behavior of the eye-gaze, and hence, we have not
been able to do so in this thesis. However, for further research in the field of eye-gaze
based beamforming, we deem that recording a dataset of eye-gaze measurements with
the aforementioned varying conditions is attractive.

In regards to the proposed eye-gaze based beamforming systems, in further work,
we would find it interesting to extend upon the systems based on the knowledge
obtained in this thesis. For the proposed method Bayesian-Gaze-Prior, an estimate
of the density p(θi) of the eye-gaze over a fixed period of time is obtained as a his-
togram. An interesting extension to this method would be to use a VAD in order to
only include actual speech in the density estimation, as periods of silence certainly
does not contribute any information, but may erroneously have introduced unwanted
switching artifact. Furthermore, for the proposed beamforming systems, the target
sound source is assumed to arrive from the DOA range θs ∈ {−45°, . . . , 45°}. In a re-
alistic acoustic environment it may likely be that the target is able to arrive from any
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location. Hence, in a future study, where the noise field is simulated approximately
isotropic, it would be interesting to see how our proposed method fare, compared
to the audio-only systems. Lastly, our proposed beamforming systems are build on
the fact that the eye-gaze measurements are discretized to a particular moment in
time. However, as eye-gaze measurements are definitely not discrete, we see poten-
tials in modelling them through a continuous statistical model. Given the circularly
nature of eye-gaze data, the model of the data would likewise have to be circular.
However, such models might be assigned mass in directions for which the eye cannot
possibly gaze. As an alternative to a parametric modelling, the continuous eye-gaze
model could be learned by a data-driven method, e.g., a deep neural network, if
large amounts of data with synchronized audio-visual stimuli and associated eye-gaze
behaviour becomes available for future studies.
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Appendix A

In this appendix, we provide mathematical definitions and results which are used
throughout the thesis.

A.1 Linear Convolution

In Definition A.1, we define the linear convolution between two sequences, which is
used in Chapter 2.

Definition A.1 (Linear Convolution)
Let p, q ∈ [1,∞] satisfy 1/p+1/q = 1, assuming the convention that 1/∞ is allowed.
The convolution between two sequences h ∈ `p(Z) and x ∈ `q(Z) is defined as [56,
p. 206]

(x ∗ h)(n) =
∑
m∈Z

x(m)h(n−m), n ∈ Z. (A.1)

Note that the dependency on the variable n in (A.1) is used to denote the argument
over which we perform the convolution.

Remark A.1 (Convergence of the convolution sum) Recall that a doubly in-
finite sum, as the the convolution sum in (A.1), is said to converge when it converges
absolutely [56, pp. 136-137]. Hence, we know that the linear convolution (x ∗ h)(n),
for n ∈ Z, on the left hand side of (A.1) is well defined when the sum on the right
hand side is absolute convergent for every value of n. To ensure that that the convo-
lution is well defined, the condition for p and q to be satisfied in the definition, which
follows from Hölder’s inequality for sequences [56, p. 139], is included, as it can be
shown that the convolution sum in (A.1) is guaranteed to converge absolutely when
h ∈ `p(Z) and x ∈ `q(Z) for some p and q in [1,∞] satisfying 1/p + 1/q = 1, again
with the convention that 1/∞ is allowed [56, p. 316]. In signal processing, we often
employ the case were p = 1 and q =∞, due to the fact that restriction of the impulse
response h to `1(Z) allows the input x to be any sequence in `∞(Z) [56, p. 316].
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Definition A.1 assumes that the underlying domain is infinite. However, in prac-
tice, we observe only a finite portion of an infinite-length sequence, and therefore,
we have to consider how to handle results that apply to infinite-length sequences
when only a finite amount of data is observed. To this end, we are forced to apply
methods that are used to embed the finite-length sequences in the infinite-length se-
quences. Specifically, in this thesis, we choose to apply zero-padding for that purpose.
Specifically, for a sequence of length N for some finite N ∈ N0, we set x(n) = 0 for
all n outside of {0, 1, . . . , N − 1}, and thereby extent the finite-length sequence to
an infinite-length sequence. Throughout this thesis, we do most often consider se-
quences with support in N0, and obviously the definition of the convolution applies,
sine we through the use of zero-padding consider infinite-length sequences that are
zero-valued at negative times. [56, pp. 182-184]

A.2 The Short-Time Fourier Transform

This section provides a definition of the STFT given by [30, p. 230].

Definition A.2 (Short-time Fourier Transform)
Let x = {x(n)}n∈N0 be a discrete time signal. Let furthermore w = {w(n)}N−1

n=0 be
a chosen discrete window sequence such that the l’th time frame of x is given by

xl(n) = x(n+ lD)w(n), n = 0, . . . , N − 1,

where N is the length of the window sequence and D is the hop size. Then the
short-time Fourier transform of xl is defined as

x̃(k, l) =
N−1∑
n=0

xl(n) exp
−j2πnk

N , k = 0, . . . , N − 1, (A.2)

where k is the frequency bin index and j is the imaginary unit. [30, p. 230]

Hence, the STFT can be interpreted as applying a N -point discrete Fourier trans-
form on a sequence of windowed signals of length N .
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B.1 Test of Python Implementation of Dictionary-Based
Maximum Likelihood DOA Estimation Method

An example of the comparison is shown in Fig. B.1 where the estimated target di-
rection is plotted as a function of time frame. In this specific example, we have
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Figure B.1: Comparison of MATLAB function and Python implementation of the dictionary based
maximum likelihood DOA estimation of the RTF vectors. Estimated target direction is plotted as
a function of time-frames.

simulated an acoustic scene containing a single target speaker placed in an approx-
imately isotropic SSN noise field with an input SNR of 10 dB. The target direction
is θs = 0°, i.e, the target speaker is placed in the front of the user. Furthermore, the
noisy microphone signals was formed using M = 4 microphones in a binaural HA
configuration where we have used the front and rear microphones. The initial first
second of noise-only samples were used to estimate Γv(k, l) and a number of L = 15
noisy observations were used to perform the maximum likelihood estimation.

From Fig. B.1 it is seen that not all estimated target directions are equal to the
true target direction. This may be explained by the fact that directions are esti-
mated even in speech-absent regions. Since no speaker is active in these regions, the
most prominent noise source is probably selected. However, the two implementations
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provide identical results.

B.2 Additional Results

In this appendix, we provide the remaining results from the beamformer performance
evaluations in Section 5.3. The results are depicted in Figs. B.2 to B.7.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.2: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of −10 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.3: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of 0 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.4: Average ESTOI scores and average improvement ESTOI scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of 10 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.5: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of −10 dB.
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(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.

90 75 60 45 30 15 0 15 30 45 60 75 90

s

14

12

10

8

6

4

2

Av
er

ag
e 

se
gS

NR
 sc

or
e

MVDR-Ideal Noisy MVDR-Eye-Gaze MVDR-Fixed MVDR-ML

90 75 60 45 30 15 0 15 30 45 60 75 90

s

0

2

4

6

8

10

Im
pr

ov
em

en
t s

eg
SN

R 
sc

or
e

(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.6: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of 0 dB.



120 Appendix B.

90 75 60 45 30 15 0 15 30 45 60 75 90

s

4

2

0

2

4

Av
er

ag
e 

se
gS

NR
 sc

or
e

MVDR-Ideal Noisy MVDR-Eye-Gaze MVDR-Fixed MVDR-ML

90 75 60 45 30 15 0 15 30 45 60 75 90

s

2

0

2

4

Im
pr

ov
em

en
t s

eg
SN

R 
sc

or
e

(a) A 2-microphone monaural configuration, using the front and rear microphone on the left HA.
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(b) A 4-microphone binaural configuration, using the front and rear microphones on both the left and right
HA.
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(c) A 6-microphone binaural configuration, using all three microphones on both HAs.

Figure B.7: Average segSNR scores and average improvement segSNR scores as a function of target
DOA. The noise type is speech shaped noise in an approximately isotropic noise field with an input
SNR of 10 dB.
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