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CCTV Closed-Circuit Television
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Chapter 1

Introduction

There are a lot of scenarios where image capture in a low-light environment is not only

unavoidable but paramount. CCTV cameras capture at a much lower quality than what

can be used for image processing tasks like face detection. This is done to account for the

continuous footage and memory. Thus they suffer the most during nighttime or in low

light environments. Sometimes mishaps that can occur at night are monitored by CCTV

cameras or dash cams on cars, fail to provide sufficient evidence. Drones or robots that

work in low light environments like mines or underwater may not work as efficiently

as they do in presence of light. Low light image enhancement has multiple applications

in military reconnaissance, medical surgeries, autonomous vehicles, etc where footage

captured at night or in an extremely low light environment becomes unusable. Cap-

turing low light images still remains an issue for a variety of use cases but modern

image reconstruction methods compliments this by enhancing the low light footage to

some degree of normal light to render it usable. This area of research has seen large

scale efforts to develop models that are exceptionally accurate. However, most of these

methods do not use actual low light images but synthesize a normal light image dataset

by degrading it. Many prominant image enhancement network like LLNet creates its

synthetic low light images by adding noise and adjusting contrast [18], RetinxNet does

so by adjusting the illumination and reflectance of normal light images to match that of

low light images [31] and MBLLEN generates low light images by adding Poisson noise

and gamma adjustment [19]. Models trained using these synthetic low light images

generally do not pan to work well with real low light images. The downscaling may

alter natural noise and other natural characteristics of low light images, which in turn

results in color distortions, overexposure, excessive noise, etc in the generated normal

light images. Aakerberg et al [1] created a dataset with real low light low-resolution

3
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images and corresponding normal light high-resolution images to curb the issues with

low light enhancement and super-resolution over synthetic low light images. Although

the dataset encompasses both indoor and outdoor scenes, due to obvious constraints,

there is a lack of animate objects and discrete geological and environmental conditions.

Any enhancement model conforming to a very specific problem, demands appropriate

data for the sake of precision. To service these needs and extend datasets similar to

RELLISUR, we propose a multi-domain supervised GAN model that can generate low

light images of varying exposure values.

1.1 Characteristics of Low Light Images

Natural low light images pose certain characteristics that define the natural features of

the subject of the image. Settings in the capturing device define some of these charac-

teristics. The camera sensor is responsible for capturing light photons that make up the

image. A sensitive camera sensor can improve the details in the captured image. How-

ever this increased sensitivity also impacts cost, so better sensors are typically found

on higher-end devices. A sensitive image sensor can be coupled with an advanced im-

age signal processor (ISP) that can deliver high-quality images in challenging conditions.

CMOS sensors and ISP modules are optimized specifically for video surveillance in low-

light environments by manufacturers. An ISP module is responsible for color balance,

white balance, exposure levels, gamma correction, dynamic range, etc.

Another major challenge in low light imaging is having enough light falling onto the

camera sensor which becomes difficult with higher resolution sensors. Sensors need the

light to fall onto the individual pixels to create a sufficient charge to set values for each

picture element. An external source of illumination can make up for this lack of light

but in the case of security cameras or military recognizance operations, the presence of

an illuminating object defeats the purpose of stealth.

Some settings that enable capturing low light images are ISO and shutter speed. Camera

sensitivity to light increase with ISO. Thus when capturing in low light settings, high

ISO will fetch more light and better images. Figure 1.2 shows images with increasing

ISO values. The speed at which the camera closes its shutter is known as the shutter

speed. It controls the duration for which the light can fall onto the sensor. Figure 1.3

shows the effect of various shutter speed settings. However, in both these cases, random
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noise is introduced in the resulting images. Higher ISO and lower shutter speed will

disrupt the Signal to Noise Ratio (SNR). SNR is the presence of unwanted noise along

with signal which is the actual information about the picture. Along with this, a lower

shutter speed will also induct motion blur in the images in a dynamic environment.

Aperture is the opening through which the light passes on the sensor. Adjusting the

aperture can control the amount of light that falls onto the camera sensor. With larger

aperture the depth of field is smaller which might be undesirable. An EV step can be

best described using a triangle with ISO, Aperture, and Shutter Speed being the three

vertices. Figure 1.1 shows the exposure triangle and how the three factors affect the

exposure value of the image. The exposure value is calculated as log2
N2

t where N is the

camera lens f-stop and t is the exposure time in milliseconds.

Figure 1.1: The exposure triangle[6]
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Figure 1.2: Effect of ISO settings on an image[9]

Figure 1.3: Effect of shutter speed on an image[10]

The presence of noise is another characteristic of low light images. This noise is the

result of random altercation of brightness and color and often occurs in low light condi-

tions. Noise can also occur due to heat near the camera sensor. This noise compliments

the subject of low-light images. Noise is almost unavoidable in low light imaging and

thus must be present in images that will be used to train low light enhancement models

for it to be able to enhance real low light images.
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Post-processing involves gamma correction and white balancing. Gamma correction is

the way to correct the light in images corresponding to human perception. The camera

sensor considers two photons on the same pixel as twice the intensity. On the contrary,

humans record this as only a fraction brighter. To correct this and not allow the image to

white out, gamma correction is an important step in the post-capture optimization stage.

Figure 1.4 show images with and without gamma correction. White balancing works the

same as adjusting the colors with respect to the light source. The camera and humans

perceive colors differently needing white balancing. Numerous color models try to

bridge this gap where Hue, Saturation, Value(HSV) comes closest to human perception

of color. Figure 1.5 shows an image before and after white balancing. Both of these

adjustments are necessary in low light imaging as to not lose the colors and prevent the

image from appearing very saturated or completely void of any colors.

Figure 1.4: Effect of Gamma Correction on an image[24]

Figure 1.5: Before White Balancing(left), After White Balancing(Right)[32]
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1.2 Initial Problem Statement

In summary, low light images are currently being generated using either degradation

pipelines or by adjusting camera settings. Degradation pipelines try to match the fea-

tures of the normal light image like histogram or gamma to that of low light images

while simultaneously adding random noise. Although this process is effective in its

ways, it differs from real low-light images based on a variety of factors. Manually cap-

turing low light images by adjusting ISO, Shutter speed, and Aperture is a very tedious

and time-consuming method and also requires considerable post-processing. This pro-

cess gets even more laborious considering the sheer amount of images that are needed

by state-of-the-art deep learning models. Both these approaches have their backlogs with

the former being practical but not precise while the latter is precise but impractical. The

demand and range of applications of low light images drive the progress of technology

for creating this large-scale dataset. RELLISUR provides a large dataset with paired

real low light and normal light images but is not enough for every low light image en-

hancement problem based on different environments, indoor-outdoor settings and due

to ethical reasons, human faces and animals. Thus there is a need to extend low light

datasets like RELLISUR but in a more practical way than simply capturing more images.

A preliminary problem statement has been set as follows:

How can a normal light image be synthesized to a realistic low light image using a

deep learning model?



Chapter 2

Related Works

2.1 Rellisur

RELLISUR [1] is a first of its kind large scale dataset of paired real low light low-

resolution images and normal light high resolution with the objective to bridge the

gap between low light enhancement and super-resolution problems. The images were

captured using a Canon EOS 6D camera equipped with a Canon 70-300mm L IS USM

zoom lens. For low light images, the auto bracketing mode was used to capture under-

exposed images. To further generalize, two different ranges were used going from -4.5

EV to -2.5 EV and -5.0 EV to -3.0 EV steps, and then averaged out. The dataset contains

12750 images grouped into 850 distinct sequences, with each sequence containing x1,

x2, x4 scaled normal light images and five real low light images with exposure levels

-5.0 EV to -3.0 EV.

Figure 2.1: Single sequence of images with exposure levels -5.0 to -3.0 (left) and scale levels x1, x2 and
x4(right) for the same image[1]

9
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2.2 Low Light Image Synthesis and Enhancement

In this section, we look at low light image enhancement models and their degradation

pipelines.

2.2.1 LLNet

Lore et al propose LLNet [18], a method to enhance noisy and darkened images. LLNet

is based on the principle of stacked sparse denoising autoencoder(SSDA) for learning

features to denoise signals. Low light images are synthetically generated by degrad-

ing normal light images from public datasets. The degrading pipeline consists of non-

linearly darkening patches by gamma adjustment and adding Gaussian noise, both by

means of MATLAB [20] functions. Multiple sets are generated by diversifying the inten-

sities of gamma adjustments and noise levels. It is also suggested to further incorporate

Poisson noise for a true sense of degradation.

2.2.2 MBLLEN

Lv et al propose a multi-branch low light enhancement model or MBLLEN [19]. MBLLEN

extracts rich features from images repetitively enhance those features and finally per-

forms multi-branch fusion to obtain the final enhanced normal light image. The model

is trained on manually degraded images from the PASCAL VOC images dataset [5].

Similar to LLNet [18], images are degraded by random gamma adjustment and adding

Poisson noise. The resulting images were compared to images degraded using other

state-of-the-art methods to identify brightness, contrast, and other artifacts and were

found to be better than BIMEF [34] and Ying [35]. Figure 2.2 shows normal light and

low light images from MBLLEN training set.
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Figure 2.2: Real normal light images (above) and synthetic low light images (below) from MBLLEN dataset
[21]

2.2.3 Attention Guided Low-Light Image Enhancement

Lv et al. proposed an attention-guided enhancement method using un-attention maps

and noise maps in a region adaptive manner [31]. Lv et al. fabricated a synthetic dataset

by identifying candidate images based on darkness estimation, blur estimation, and

color estimation. 97,030 images fit this criterion out of multiple datasets comprising

344,272 images. The set of images that pass these criteria is synthesized to produce

low-light images. The images were analyzed for varying degrees of exposure levels

after which linear and gamma transformations are approximated for the images. These

images are then verified by comparing the histograms of Y channel in YCbCr color

space to that of real low light images. Further exposure fusion was used to improve

color/contrast and correct exposure to avoid over-exposure in enhanced images. Finally,

22,656 images were used to train the enhancement model. Figure 2.3 shows normal light

and low light images used in training.
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Figure 2.3: Real normal light images(above) and synthetic low light images(below) [31]

Based on the methodologies used by the degradation pipelines, low light images can

be mathematically represented by llout = n(g(nlin)), where g() represents gamma ad-

justment and n() is the inducted noise which can be gaussian noise, poisson noise or a

combination of different noises.

Above mentioned degradation models/ pipelines require rigorous processing and man-

ually estimating parameters for degradation. These parameters include minimum and

maximum values for exposure which is applied across all the images. This does not

account for relative brightness of different surfaces. Some degradation pipelines also

fail to reproduce natural camera sensor noise and exposure which, while enhancement

leads to local overexposure and noise amplification. Random gamma and Poisson noise

added in the degradation pipelines can model natural noise well in normal or dim light

but fails to do so in low light environments. This leads to poor characterization of

structural details of real low light images.

2.3 Generative Adversarial Networks

For years now generative adversarial networks (GANs) [8] have been the at the prime

solution to most common computer vision problems like super-resolution, image-to-

image translation, image synthesis, image generation, etc. Generally, a GAN consists

of two basic modules a generator and a discriminator. The generator is responsible for
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generating fake images based on some input. The discriminator then takes this fake

image and the corresponding real image and tries to identify the fake one. Thus the

generator trains to create more realistic images to fool the discriminator. To ensure this

learning the loss function accounts for adversarial loss. With more complex problems,

better and efficient GANs have been designed for very specific problems.

Figure 2.4: General Architecture of a GAN[7]

Condition-based image generation using GANs is also being studied actively. In some

cases, class information is provided to the generator and discriminator to generate sam-

ples conditioned on it. In other cases the generator is provided with a written descrip-

tion or the input is appended with domain information. These cGANs have been break

through in style transfer [15] and super-resolution [17].

Equation 2.1 is the standard GAN loss function as described by Goodfellow et al [8].

Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (2.1)

D(x) is the discriminator’s probability that a real instance x is real. Ex is expected value

for all real data instances x. G(z) is the generator’s output for given input noise z.

D(G(z)) is the discriminator’s probability that a fake instance G(z) is real. Ez is the

expected value for all generated fake instances G(z). This loss is also known as min-

max loss as the generator tries to minimize it while the discriminator tries to maximize

it. This loss function can further be categorized into Discriminator and Generator loss.

When the discriminator is trained, it penalizes itself for misclassifying a real image as

fake, or a fake image as real by maximizing the equation 2.2.

∇θd

1
m

m

∑
i=1

[
log

(
D
(

x(i)
))

+ log
(

1 − D
(

G
(

z(i)
)))]

(2.2)

∇θd is the stochastic gradient of the Discriminator. m is the number of inputs.
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log(D(x)) is the probability that the discriminator is correctly classifying the real image

and maximizing log(1− D(G(z))) helps the discriminator correctly label the fake image

that comes from the generator. The generator samples random noise during training

and produces an output from that noise. The generator gets rewarded if it successfully

fools the discriminator, and get penalized otherwise.

Equation 2.3 is minimized to train the generator:

∇θg

1
m

m

∑
i=1

log
(

1 − D
(

G
(

z(i)
)))

(2.3)

∇θg is the stochastic gradient of the Generator. m is the number of inputs.

2.3.1 Challenges in GAN Training

GANs can be very useful and pretty disruptive in some areas of application but training

a stable GAN is a challenging task. This is because the two neural networks, genera-

tor, and discriminator compete against each other during the training. If one of them

learns faster than the other, the other network stops learning. In this case, the GAN fails

to converge. The generator training can also fail because of vanishing gradients. This

happens when the discriminator becomes can’t pass enough information to the gener-

ator for training. This has a multiplying effect as the chain rule of differentiation and

gradient starts flowing backward and it keeps on decreasing. Initial layers stop learning

completely because of this.

GANs can sometimes also struggle to generalize which is known as mode collapse.

Mode collapse happens when GAN generates data with a little representation of the

whole dataset. It basically generates the same output for different types of input.

2.3.2 Possible Remedies

Finding solutions to mode collapse and non-convergence problems of GAN is part of ac-

tive research. The convergence problem of the GAN can sometimes be solved by adding

noise to the input images of the discriminator. This makes the work of the discriminator

tougher and leads to stable GAN training.

Goodfellow et al [8] suggest that the min-max loss function mentioned earlier in Equa-

tion 2.1 can cause the generator to get stuck in the early stages when the discriminator
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is very good at its job. They suggest to modify the generator loss such that it tries to

maximize logD(G(z)) instead of minimizing log(1 − D(G(z))). Changing the learning

rate, loss function, and trying different architecture for generator and discriminator also

helps make the training stable.

2.4 Image to Image Translation GANs

To establish a baseline for the solution architecture, we explore a subgroup of GANs

known as image to image translation GAN that transform an image from a source do-

main to a target domain while maintaining content representations. There are multiple

unsupervised solution for generating images like CycleGAN[37], style transfer[33] and

MUNIT[11]. However, given the low light-normal light pairing readily available in REL-

LISUR [1], the architecture in supervised Pix2Pix [12] is a good candidate as the base for

the solution. In Pix2Pix, a target image is generated conditioned on input data and the

loss function changes such that the output image is feasible in the context of the target

domain and is a possible translation of the input image. This can be the core of the

solution where, a normal light image can be translated to a low light image. The gener-

ator in Pix2Pix is trained to both fool the discriminator and minimize the generator loss

i.e. the error between the real image and the generated image thus, it can help maintain

content representation.

The U-Net architecture in the generator is the same as an encoder-decoder model in

the sense that it will down sample the input to a certain degree and then up sample it

back to its original dimensions except that it maintains skip connections between layers

of the same size in the encoder and decoder. The generator is trained using L1 loss be-

tween the real images and generated images and adversarial loss from the discriminator.

Since the model must train over multiple exposure levels, it must also learn the mapping

between the exposure value and the corresponding image. StarGAN [3] performs image

to image translation across multiple domains using a single generator and discrimina-

tor. The discriminator tries to identify if the translated image created by the generator is

real or fake and classify it to the target domain. The discriminator is a patch GAN along

with an auxiliary classifier. This auxiliary classifier can be used to learn the mapping of

images and its exposure value by inducing it into the discriminator loss function.
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2.5 Final Problem Statement

Based on all this, the following final problem formulation was determined:

How can a single image to image translation model convert a set of normal light images

to realistic low light images with varying exposure levels having PSNR/SSIM values

better than low light images generated by existing degradation pipelines?



Chapter 3

Methodology

This chapter will show different stages of implementation of our proposed model and

explain the architecture used in the model.

3.1 Initial Discoveries

After analysing the existing works and the problem, we first implemented a simple su-

pervised image to image translation GAN [12] G : x− > y, that will learn the mapping

between a normal light image x and the corresponding low light image y of exposure

value -3.0 EV by training on the RELLISUR [1] dataset. The generator G is trained

to produce low light image that can not be distinguished by the discriminator D. Dis-

criminator D is trained to detect fake images generated by the generator from the real

images.

Figure 3.1: Design of GAN to generate synthetic image with exposure -3.0 EV

We designed the generator and discriminator with similar architecture as used in Pix2Pix

17
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[12] GAN. The generator was trained using L1 loss along with the adversarial loss. Af-

ter 150 epochs the model was able to generate low light images which appeared to be

underexposed to the expected degree but also presented checkered artifacts. Figure 3.2

shows the output of this model. Thus, image to image translation was decided as the

baseline for the final solution. There was a further need to be able to do so with mul-

tiple exposure levels and also improve on the quality of the output. Following section

describes the proposed model.

Input Image Output Image Ground Truth

Figure 3.2: Low light images generated by a primitive GAN

3.2 Proposed model

We propose a supervised multi-domain GAN model to tackle the problems faced by the

primitive model. Ledig et al used the VGG19 perceptual loss in their super-resolution

model SRGAN [17] to get better perceptual quality and reduce artifacts. Thus, we chose

to optimize the generator using perceptual VGG19 loss along with L1 and adversarial

loss. To achieve mapping among multiple domains of exposure levels, we train the

generator G to translate a normal light image x into a low light image based on the

target exposure label l, G(x, l) -> y. We use target label l so that G learns to map normal

light image with low light images with different exposure levels that are present in

the RELLISUR dataset [1]. The discriminator tries to detect fake images also predicts
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the exposure value of the target/generated images. Figure 3.3 shows the described

architecture.

Figure 3.3: Design of the proposed model

3.2.1 Architecture of Generator and Discriminator

In the case of image to image translation problems[12][3], the input and output are dif-

ferent in appearance but both have the same underlying structure which means that

there is a lot of low-level information that is shared between them. For example, in our

case, the location of edges in the images will be the same. To make use of this low-level

information, we have added a “U-Net” architecture. The U-Net structure has proven to

be effective in other image to image translation GANs like Pix2Pix [12].The U-Net, first

downsamples the input image, until a bottleneck layer after which it is upsampled. Skip

connections are added between layer l and layer n − l, where n is the total number of

layers. Each skip connection just concatenates all channels at layer l with those in layer

n − l.

Our generator takes two inputs - input image and the target exposure label. We have

defined target exposure labels with the help of one-hot encoding. One-hot encoding is

a method used to quantify categorical data. It produces a vector with a length equal

to the number of categories which is different exposure levels in our case. If the image

belongs to the ith category then the ith bit is set to 1 and all other bits of this vector are

set to 0. We spatially replicate the label vector and reshape it to (Image_size, Image_size,
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number of exposure levels). We do this so that we can concatenate the target label to

the input image. This concatenated input image is then fed to the U-net structure for

training. Figure 3.4 shows the architecture of the generator.

Figure 3.4: Architecture of the Generator

Figure 3.5 shows the architecture of the discriminator used in the model. Our discrim-

inator takes the input image and target/generated image as input and predicts if the

image is real or fake. It also gives the probability of that image belonging to different

exposure levels in the form of a one-hot vector.

Figure 3.5: Architecture of the Discriminator

The discriminator consists of two parts- PatchGAN[12] discriminator and a classifier.

We used the PatchGAN discriminator because it takes patches from the image and clas-

sifies them as real or fake. It runs convolutionally across the image and returns a single

feature map of predictions that gives the final prediction. Isola et al[12] have proved that

the PatchGAN discriminator promotes sharp outputs, unlike the PixelGAN discrimina-

tor which just compares pixels of the images individually. This type of discriminator

can also be used on bigger images thus making it independent of the size of the im-

age. The auxiliary classifier[23] used in the discriminator does not only distinguishes
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between real and fake images but unlike conditional GAN, it predicts the class label of

the generated/target image. The modules used in both generator and discriminator are

of the form Convolution-BatchNorm-LeakyReLu.

3.2.2 Loss functions

Adversarial Loss

Equation 3.1 is the adversarial loss we have adopted to train the generator to make

images indistinguishable from the real images.

Ladv = Ex[log(D(x))] + Ex,l [log(1 − D(G(x, l))] (3.1)

G(x, l) is a generated image conditioned on both input image x and the target label l. D

tries to detect fake images correctly by maximizing this loss whereas the generator tries

to minimize it.

Exposure Classification Loss

The objective is to generate an output image y from a given input image x and a target

exposure label l, which is correctly classified to the target exposure label l. We have

imposed exposure classification loss when optimizing the generator and discriminator

to achieve this condition. Equation 3.2 is the exposure classification loss of real images

that is used to optimize discriminator during training. Dcls is the probability distribution

over exposure labels calculated by discriminator. The discriminator tries to minimize

this loss to learn to classify a real image x as its original exposure label l.

Lreal
cls = Ex,l [−log(Dcls(l|x))] (3.2)

Equation 3.3 is the exposure classification loss of fake images that is used to optimize the

generator during training. The generator tries to minimize this loss function to generate

images that can be classified as the target label l.

L f ake
cls = Ex,l [−log(Dcls(l|G(x, l))] (3.3)
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L1 Loss

We have also used the traditional L1 loss to optimize the generator. The generator

is trained to generate images as close as possible to the ground truth in an L1 sense.

Equation 3.4 shows how L1 loss is calculated. y is the real image and G(x, l) is the

image generated by the generator for input image x and target label l.

LL1(G) = Ex,y,l [||y − G(x, l)||1] (3.4)

VGG19 Perceptual Loss

We also used a perceptual loss function for generator training that depends on high-

level features from a pretrained VGG19 network as mentioned by Simonyan et al[27].

This type of loss has been used previously in image processing tasks like style trans-

fer[13] and super-resolution[17]. Perceptual loss has been found to measure similarities

in images more robustly compared to per-pixel losses. Perceptual loss is the distance

between the feature representations of the real image and the image generated by the

generator. We used 5 layers from VGG network to calculate this feature loss. Equation

3.5 shows how perceptual loss is calculated.

Lperc/i,j(G) =
wij

AijBij

Aij

∑
x=1

Bij

∑
y=1

||Mij(y)− Mi,j(G(x, l))|| (3.5)

Mij indicates the feature map obtained after jth convolution before the ith maxpooling

layer of the VGG19 network. y is the real image and G(x, l) is the generated image for

input image x and target label l. Aij and Bij describe the dimensions of the feature maps

in the network.

Full Objective

The final objective functions to optimize generator and discriminator are written, re-

spectively, as

LG = Ladv + λclsL
f ake
cls + λL1LL1 + λperLperc (3.6)

LD = −Ladv + λclsLreal
cls (3.7)

λL1, λcls, λper were set to 100, 1 and 10 respectively.
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3.2.3 Data Preprocessing

RELLISUR Dataset[1] was used to train the model. Out of the complete dataset, only

normal light images from x1 and low light images from 2.5 EV, 3.0 EV, 3.5 EV, and 4.0 EV

were used. We used only four exposure labels because of lack of GPU resource. For the

same reason all the images were resized from 625x625 to 512x512. All the images were

normalized from (0-255) to (0,1). Pairs of normal light-Low light images were created by

concatenating low light images from all exposure levels to their corresponding real nor-

mal light image. Target exposure labels in the form of one hot vector were concatenated

to these training pairs.

3.2.4 Training

The model was developed using Tensorflow [28] and Keras [14] in Python3 [26]. The

training was conducted over a AAU Strato’s[2] Nvidia T4 [22] GPU with 250 epochs. The

batch size is set to 1 for instance normalization as it has proven to be efficient at image

generation [12] [29]. Adam optimizer[16] was used for training with fixed learning rate

for generator being α1 = 1e − 4 and α2 = 1e − 8 for discriminator. The learning rate for

the discriminator was set slower compared to generator because with the same learning

rate, the discriminator would become too good resulting in very small loss values which

in turn resulted in the generator not able to learn.



Chapter 4

Results

4.1 Model Evaluation

After training the model for 250 epochs, testing was carried out on RELLISUR test

dataset with low light images from -2.5 EV, -3.0 EV, -3.5 EV and -4.0 EV and normal

light images from x1. The results are shown in Figure 4.1 and Figure 4.2.

Input Image -2.5EV -3.0EV -3.5EV -4.0EV

Ours

Ground truth

Figure 4.1: Comparison of synthetic images generated by our model with ground truth
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Input Image -2.5EV -3.0EV -3.5EV -4.0EV

Ours

Ground truth

Ours

Ground truth

Figure 4.2: Comparison of synthetic images generated by our model with ground truth

The model is able to generate visibly underexposed images corresponding to the input

EV value. The exposure also darkens with stronger exposure values.

To measure the accuracy of the model the synthetic images were compared to respective

real low light images using standard measures of image similarities. PSNR and SSIM[30]
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are common place measures of similarity between images. LPIPS[36] metric compare

images based on factors closer to human perception and was also used to measure the

accuracy of the model. LPIPS trained on Alex-Net was used for this purpose. Another

measure used is DISTS[4] loss which is based on correlation of structural and texture

similarity. Table 4.1 shows the result of similarity of our synthetic low light images with

ground truth.

Exposure PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓
-2.5 EV 22.95 0.77 0.11 0.11
-3.0 EV 23.42 0.76 0.14 0.14
-3.5 EV 23.46 0.70 0.15 0.15
-4.0 EV 21.19 0.60 0.19 0.16

Table 4.1: Results of similarity of images with ground truth

The discriminator’s classification accuracy, measured across the four levels of exposure,

was based on its ability to classify the generated images according to their exposure

level. Table 4.2 shows the confusion matrix of the multi-class classifier. Accuracy of the

classifier was found to be 74.2%.

Predicted

Actual

Exposure(EV) -2.5 -3.0 -3.5 -4.0
-2.5 3 13 0 0
-3.0 2 60 18 5
-3.5 0 15 63 7
-4.0 0 3 7 75

Table 4.2: Confusion matrix of the classifier in discriminator

4.2 Model Evaluation on LOL Dataset

To test the model on a completely different set of images to RELLISUR it was tested

using the LOL [31] dataset. Normal light images from LOL were used to generate low

light images with different exposure levels as seen in figure 4.3. Table 4.3 shows the

comparison between the generated images and the ground truth image.
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Input Image -2.5EV -3.0EV -3.5EV -4.0EV Ground Truth

Figure 4.3: Our Model’s Output on LOL dataset [31]

Exposure PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓
-2.5 EV 19.43 0.53 0.29 0.26
-3.0 EV 20.23 0.56 0.26 0.23
-3.5 EV 20.63 0.57 0.25 0.23
-4.0 EV 21.42 0.61 0.21 0.19

Table 4.3: Comparison of synthetic images generated using LOL Dataset [31] with ground truth

The gradual underexposure and degradation is coherent with the exposure values as

seen in figure 4.3 and table 4.3. Based on metrics in table 4.3 images generated using

-4.0 EV were closest to the ground truth images.
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4.3 Comparative analysis

We compared our model to existing low light degradation pipelines described in Section

2. Normal light images from x1 of RELLISUR’s test set were ran through the LLNET’s

[18] and MBLLEN’s [19] degradation pipelines. Since there was no way to specify target

exposure value to degrade in LLNet and MBLLEN, we approximate the exposure value

by calculating the average PSNR and SSIM values of the synthetic images with ground

truth of all four exposure levels used in our model. Table 4.4 shows the results of

this comparison. We found them to be closest to -3.0 EV. So we chose real low light

images with -3.0 EV as ground truth and used the same value as input to our model for

comparison.

Exposure LLNet [18] MBLLEN [19]
2.5 EV 15.64dB,0.16 17.01dB,0.45
3.0 EV 15.93dB,0.17 17.24dB,0.47
3.5 EV 14.03dB,0.10 16.56dB,0.35
4.0 EV 13.91dB,0.08 16.18dB,0.34

Table 4.4: Similarity measures of degradation pipelines with ground truth of four exposure levels in REL-
LISUR

Table 4.5 shows the result of image similarity metrics for LLNet, MBLLEN and our

model with ground truth of exposure -3.0 EV.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓
LLNet [18] 15.93 0.17 0.52 0.49
MBLLEN [19] 17.24 0.47 0.39 0.35
Ours 23.42 0.76 0.14 0.14

Table 4.5: Results of similarity of synthetic images create using different methods with ground truth of
exposure -3.0 EV

Figure 4.4 shows some images from this experiment along with respective PSNR and

SSIM values.
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Input Image LLNet[18] MBLLEN[19] Ours Ground Truth

12.27dB,0.1 19.43dB,0.52 29.2dB,0.90

16.97dB,0.16 16.1dB,0.49 32.58dB,0.9

20.32dB,0.30 16.48dB,0.34 30.99dB,0.89

17.29dB,0.19 16.67dB,0.50 35.37dB,0.9

16.84dB,0.14 26.36dB,0.73 32.27dB,0.88

Figure 4.4: Our model’s output against degradation pipelines with (PSNR,SSIM) values.

We compared histograms of real low light images in RELLISUR [1], real low light images

in LOL [31] to histograms of synthetically generated low light images by our model us-

ing real normal light images in RELLISUR and those generated by degradation pipeline

in MBLLEN [19] and LLNet [18]. Figure 4.5 shows how real low light images depict
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most pixels saturated towards lower values on x axis. Same is the case with the his-

togram for low light images generated by our model. On the contrary, the histogram for

images generated by MBLLEN’s and LLNet’s degradation pipeline appear to be spread

out across the x axis. Thus, concluding our model can generate low light images closer

to real low light images.

(a) Average RGB histogram of the low light im-
ages in RELLISUR[1] test dataset

(b) Average RGB histogram of low light images
in LOL[31] training dataset

(c) Average RGB histogram of synthetic low light
images generated by our model

(d) Average RGB histogram of synthetic low
light images generated by MBLLEN’s degrada-
tion pipeline [19]

(e) Average RGB histogram of synthetic low
light images generated by LLNet’s degradation
pipeline [18]

Figure 4.5: Histogram Comparison
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4.4 Discussion

Figure 4.2 shows the output images gradually darken with higher exposure value. The

PSNR value was maximum for -3.5 EV at 23.46 and minimum for -4.0 EV at 21.19. SSIM

showed a different trend with -2.5 EV having the highest value 0.77 and -4.0 EV having

the least at 0.60. The discriminator classifier was able to classify images with high accu-

racy except for those with -2.5 EV. Figure 4.3 shows the model’s output to normal light

images from LOL[31] dataset, which also showed gradual degradation with changing

exposure values. Thus the model is found to work well with images outside of REL-

LISUR[1].

We compared our model to degradation pipelines used by LLNet [18] and MBLLEN

[19], where we found our model to be better at creating low light images based on the

PSNR and SSIM [30] values as seen in Table 4.5. We also compared histograms of real

low light images to those generated by our model. There are striking similarities in the

histograms where there are seldom any pixels with values greater that 50 and show a

steady drop in pixel values on the x axis. However, for our model the histogram shows a

bump at around 25 on the x axis which might be attributed to artifacts, glossy structures

or other minor areas of improvements.

4.5 Limitations and Future Work

Even though our model is capable of synthesising low light images to a realistic degree,

there are certain areas of improvements that can be explored further. Some glossy or

shiny white surfaces appear to be saturated and not darken enough. Glossy surfaces

also at times produce random checkerboard artifacts. Inclusion of a different perceptual

loss function might help overcome this. Limited resources and other external factors

couldn’t let the model train on more exposure levels and had to make do with four

discussed above. Due to unbalance in the RELLISUR dataset with less images of -2.5EV

available, the classifier shows bias towards the other classes of exposure as seen in table

4.2. Adding weight to the less represented class might balance out this bias. Some of

these issues can also be dealt by training the model longer.

To improve the model further, more exposure levels can be added to the training set

to get a wider range of output images. Learning an unsupervised mapping can make
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it convenient to train the model on new data that doesn’t have a low light to normal

light pairing. A more efficient solution than depth wise concatenation to include the

exposure value for input images which creates huge memory overhead could allow for

more exposure levels to be added.
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Conclusion

This section summarizes the answer to our final problem statement:

How can a single image to image translation model convert a set of normal light images

to realistic low light images with varying exposure levels having PSNR/SSIM values

better than low light images generated by existing degradation pipelines?

As proven in RELLISUR, low light image enhancement models work better with real

low light images, our goal being to develop a GAN that can synthesize images that are

similar to the ones in RELLISUR. We designed a GAN where the generator synthesizes

low light images with exposure values ranging from -2.5 EV to -4.0 EV and the discrim-

inator not only tries to distinguish the real low light images from the fake ones but also

classifies them according to their respective exposure value. After training the model for

250 epochs on RELLISUR’s training set, it was evaluated against existing degradation

pipelines by means of metrics such as PSNR and SSIM and found to be better than the

ones used in LLNet and MBLLEN. To verify our models viability on unseen images, the

model was tested with images from LOL dataset and found to display the same qualities

and degrading capabilities to those in RELLISUR. The histogram of images generated

by our models was similar to the one generated by using low light images in RELLISUR.

In conclusion, we can state that our model can work to a respectable degree, coher-

ently with RELLISUR or any other real low light image dataset to generate further low

light images from normal light images with varying degrees of exposure and can bridge

the gap to extend the low light image enhancement solutions across many unsolved use

cases.
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The implementation of the model will be available on the groups Github Page[25].
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