Uncharted Chants

Music Training Game for CI Users using Real Time Simulated
Instruments

Master Thesis
Erik Frej Knudsen & Helmer Emo Nuijens

Aalborg University
Department of Architecture, Design and Media Technology

Copyright © Aalborg University 2022

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Uncharted Chants - Music Training
Game for CI Users using Real Time Sim-

ulated Instruments

Theme:
Cochlear Implants,
Physical Modelling

Project Period:
Spring Semester 2022

Project Group:

Participant(s):
Erik Frej Knudsen
Helmer Emo Nuijens

Supervisor(s):
Stefania Serafin

Copies: 1
Page Numbers:

Date of Completion:
May 25, 2022

Department of Architecture, Design and
Media Technology

Aalborg University

http://www.aau.dk

Abstract:

Music Training,

This thesis presents the design and
development process of Uncharted
Chants, a game that is focused on
training music perception for cochlear
implant (CI) users. The main fo-
cus of this project is to make music
training engaging and fun by utilizing
game-based learning principles. Our
approach is to use real-time imple-
mented physical models to synthesize
the sounds with the purpose of em-
ulating real instruments. An evalua-
tion is presented, in the form of perfor-
mance, usability, and user experience
tests, for both normal-hearing listeners
and CI users. Results show that the
implemented game concept can have
positive effects on the level of engage-
ment toward music training exercises.
Next to this, the models for synthesiz-
ing sounds are perceived as realistic
and allow for small timbre differences
to be perceived based on different in-
teractions.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

2.2 Design and Functionality
2.3 Perception| o
2.4 Music Training| L ..

Sound Synthesis|

3.1.1 Additive Synthesis| oo oo oL
[3.2 Physical modeling|

4 Design
:

.1 Starting point - Internship Work|
4.1.1 Initial concept-design process|.
.12 Concept - Uncharted Chants|

4.2 Revisited Concept Focus|

4.3 Music training minigames|

.4 Difficulty scaling| o 00000,

4.5 Design Requirements|.

Implementation|

vii

=~ N

N O G ;g

10

13
13
14
15
16
17
19

23
23
23
26
26
28
29
30

vi Contents
021 Maracal. 38

0.2.2 StiffString] Lo 38

.23 DynamicString 0 L. 39

.24 AdditiveSynth|.o o000 oo 40
..................................... 41
5.3.1 Scene Management|. 41

2 levelGenerationl 43

p.3.3 Difficulty Scaling 0000 47

534 Aesthetics| 49

0.3.5 Minigames|. Lo 50
6__Evaluation 59
[6.1 DPerformance Testing| 59
[6.2 CoolHear Workshop| 61
[6.3 User Experience 62
6.3.1 Online Survey|. 63

6.32 Interviews 66
[7__Discussionl 71
8__Conclusion| 75
[Bibliography 77
9 Appendix 83
A Internship o o 83

(B AudioPlugins 0o 0 00 83

IC Game Art 83

D Evaluation 84

[E Unity Project| 84

Preface

This thesis concludes our master’s degree in Sound and Music Computing at Aal-
borg Unversity in Copenhagen. This project started as an internship at Oticon
Medical and this thesis is a continuation of that.

We want to express our sincere gratitude to Stefania Serafin and Marianna Vatti
for supervising us throughout the project. We also like to thank Silvin Willemsen
for helping specifically with the implementation of physical models, as well as
everyone participating in our study.

Aalborg University, May 25, 2022

i

7/
Erik\ Frej Knudsen Helmer Emo Nuijens
<eknuds20@student.aau.dk> <hnuije20@student.aau.dk>

vii

Chapter 1

Introduction

Music plays an important role in our lives and contains cognitive, emotional, and
social functions. Music is a source of entertainment and pleasure [50]. It can
trigger certain memories, experiences, moods, and emotions [29, 50]. Music is
omnipresent, as it plays significant roles in various social, cultural, and spiritual
events [50]. Additionally, music can play a substantial role in people’s well-being
and social lives [34].

Music is a complex form of sound that consists of elements such as rhythm,
pitch, timbre, and harmony [36]. These elements requires the perception of layers
with varying temporal representation, frequency distribution, and harmonic con-
tent [36]. As cochlear implant (CI) systems lack the precision needed to correctly
perceive these, music perception of CI users is generally poor [28]. Consequently,
CI users commonly describe music listening as unsatisfying [33, 40], making them
possibly miss out on the previously mentioned benefits that music can bring.

Still there has been emerging evidence that music perception training may aid
CI users as a means to fine-tune their auditory system and could potentially in-
crease music listening enjoyment [18]. Despite this, music training tools are not
commonly offered in typical clinical practices [19] nor are they available outside
selective research protocols [14]. This is why Oticon Medical [’} a company special-
ized in hearing solutions such as CIs and bone conducting hearing, proposed us to
develop a prototype of an innovative music training application for CI users. One
thing they observed was that the training tools that do exist can often be tedious
or dull and CI users often fail to complete them. This is why the main challenge
of our project was to make music training fun and engaging using digital-based
learning.

Digital-based learning (DBL) is a way to facilitate learning using games [12].
Games that are used to promote knowledge acquisition, have gotten increasingly
more attention from researchers mainly because of their potential in terms of en-

Thttps:/ /www.oticonmedical.com/

2 Chapter 1. Introduction

gaging the user in educational practices [[12]. Although many attributes contribute
to user engagement, engagement can be seen as a form of attention, intrinsic in-
terest, motivation, and curiosity [45]. Because of their potential in increasing en-
gagement, DBL can lead to more effective and enjoyable learning experiences
13]. Games with applied DBL are often referred to as serious games. Serious
games integrate a relationship between two main objectives: the game experience,
where the goal is to have fun, and a pedagogical component, with an educational

objective [8].

1.1 Music-Based Serious Games

To familiarize the concept of serious games, we will examine a selection of related
work on music-based serious games.

Rhythm Workers

Rhythm Workers is a game developed to re-train rhythm for people that have
disrupted rhythm perception due to neurological or neurodevelopment disorders
(such as Parkinson’s disease) [4]. Retraining rhythm may help in regaining the
lost cognitive functions that are associated with rhythm perception, such as poor
performance in language, memory, and attention. For this, construction was im-
plemented as the main game mechanism to train rhythm by both perceptual and
motor tasks. In this game, different levels of a building are constructed through
listening, of which the aesthetic quality of the building reflects the player’s perfor-
mance. Apart from the positive effect on rhythm skills found for some participants,
results show high motivation of the participants when playing the game as well.

Figure 1.1: One of the tasks of Rhythm Workers where the quality of each level of the constructed
building reflects the player’s performance, extracted from [E]]

1.1. Music-Based Serious Games 3

iClef

iClef is a phone application that is developed to teach people to correctly identify
notes with different clefs [3]. The interface, depicted in Figure consists of a
clef, the notes that need to be identified, and a piano keyboard. With increasing
speed, the player has to identify the note by pressing one of the keys on the key-
board. The developers integrated multiple elements to promote engagement, such
as interactivity and competition. iClef has been further developed and is available
on the App Store

Current BPM: 60

Figure 1.2: The interface of iClef, extracted from [3].

Speech Perception Training

Another serious game, designed by Larrea-Mancrea et al., focused on understand-
ing speech in the presence of acoustic competition for people with hearing impair-
ments [32]. The game was designed to train several auditory processing skills such
as spectral-temporal processing, sound localization, and auditory memory. The
main goal of the game is to avoid obstacles by correctly reacting to stimuli. The
interface, depicted in Figure shows different screenshots for the tasks that the
player has to complete, including pitch-discrimination, specialization, and mem-
ory tasks. Although no significant improvements are reported, possibly due to
the absence of participants with hearing impairments, the study demonstrated the
feasibility of this entertaining game to be used in participants” homes and on un-
calibrated devices.

Zhttps:/ /apps.apple.com/us/app/iclef/id1520882406

4 Chapter 1. Introduction

A)S

TM (Up/Down) tasks Memory tasks
- ¥ — st

g 0O o o o o

Figure 1.3: The interfaces for the three different tasks, extracted from .

1.2 Project Goal

As serious games are only recently starting to be applied to music training for CI
users, they are not readily available. This makes it a compelling area for further
research and development. In this thesis we do so by designing and developing
a music training game for CI users. Our key focus points for this project are en-
gagement and implementing real instrument sounds, both of which are currently
explored by Oticon Medical for novel music training games. During our internship
project we focused on exploring various game concepts and selecting one to further
develop. This concept, titled Uncharted Chants, formed the foundation of our thesis.

We formulated the following goal of our thesis:
To design and develop an engaging game experience for training music perception for CI
users using real instrument sounds.

To reach this, we first analyze the functionality and perception of CIs as well as in-
vestigate potentials for music training in chapter [2 Then in chapter [3| we examine
current synthesis techniques that are used to synthesize real instrument sounds.
In chapter [/ an overview of the design process that lead to the game concept Un-
charted Chants is described. Then in chapter |5, a technical description is given of
the game’s implementation. Finally, we present the results of both a technical, us-
ability, and user experience evaluation with normal hearing listeners and CI users,
in chapter 6, which is further discussed in chapter

Chapter 2

Cochlear Implants

Cochlear Implants, or CIs for short, are devices that utilize electrical stimulation
to provide or restore functional hearing [61]. This technology holds the position
of being the most successfully neural prosthesis with currently around 736,900
recipients around the world || However widespread it is now, commercialization
only began relatively recently. The first phenomenon of auditory sensation by
electric stimulation was encountered in the 19" century, almost two centuries ago.
This prompted more interest and research into the subject with physicians trying
to translate early findings like this into clinical practices. This effort resulted in
the first report on successful hearing using electric stimulation in 1957 [61]. After
the further development and approval by the U.S. Food and Drug Administration
(FDA), CIs became available to consumers [61]. In this chapter, we will briefly go
over the CIs” general functionality and design, speech and music perception, and
finally music perception training and its relevance to our project.

2.1 Cochlea

Normally, sound is perceived by a collection of mechanisms that together convert
physical vibration into an encoded nervous impulse [1]. This conversion begins in
the outer ear, where acoustic sound propagates through the auditory canal towards
the tympanic membrane (eardrum). The movement of the tympanic membrane
then sets a series of small coupled bones into motion, located in the middle ear.
These bones, the ossicles (malleus, incus, and stapes respectively), connect the tym-
panic membrane to the oval window. To do so they serve as an impedance match-
ing system as the medium changes from low-impedance into a high-impedance
fluid that is located inside the cochlea [22].

IRetrieved from https://www.frontiersin.org/articles/10.3389/fnhum.2021.757254/full,
Accessed on: 25/01/22

https://www.frontiersin.org/articles/10.3389/fnhum.2021.757254/full

6 Chapter 2. Cochlear Implants

The cochlea is a snail-shell-like part of the inner ear (hence the name) that
houses the organ of hearing. The movement of the liquid inside the chambers of
the cochlea creates standing waves in the basilar membrane of which the vibration
then in turn is picked up by the hair cells on the membrane. The difference in
stiffness of the membrane establishes a tonotopic organization, where hair cells
located closest to the oval window are resonating with high frequencies and hair
cells located at the apical end of the membrane are resonating with low frequencies.
Finally, the movement of the hair cells sends out nerve impulses through the nerve
fibers to the brain, where the signals are processed. [1].

2.2 Design and Functionality

CIs are provided for people that have severe sensorineural hearing loss, in which
the normal auditory mechanism, discussed above, is bypassed [35]]. Instead, the
sound is converted into electrical signals and directly stimulates the auditory nerve.
Almost all CIs are using the same design, which can be separated into the following
components [35} 61]:

1. An external unit, or speech processor, picks up the sound, processes it using
a digital sound processor (DSP) unit, and transmits the data using radio
frequency (RF) data. This unit is positioned above the ear and held in place
by a magnet attracted to the internal unit.

2. An internal unit placed below the skin behind the ear. This system receives
and decodes the incoming RF data and converts it into electrical currents that
are transmitted to the electrodes.

3. The electrode array that is located inside the cochlea, which stimulates the
auditory nerve.

There are multiple strategies when it comes to converting the acoustic audio
into electrical pulses, all with different spectral (relating fundamental frequency,
harmonics, etc.) and temporal resolution (changes of amplitude and frequency
over time) [59]. Commonly used is the CIS strategy [61], of which the block dia-
gram can be seen in Figure The acoustic signal is first bandpass-filtered into
a series of channels to extract the envelopes of the different frequency ranges. The
envelopes are then compressed and used to amplitude modulate a fixed-rate pulse
carrier [61]. In an attempt to distribute the frequency channels according to the
tonotopic mapping of the cochlea, the frequency channels which represent higher
frequencies are sent to basilar electrodes and channels representing lower frequen-
cies are sent to apical electrodes.

2.3. Perception 7

P B fielo—

.
i S et —oo-n

Microphone »—

Preamp

LI}

B LHME S ‘
Bandpass Envelope Amplitude H“ Current

filter extraction compression source
Pulses

Electrodes

Figure 2.1: Block diagram of audio conversion to electrical pulses using the CIS strategy, extracted
from [61].

2.3 Perception

The CI's capability to restore speech perception for deaf people has been very
successful [9]. Cls are designed with the focus of enhancing the user’s ability
to perceive speech and engage in conversation, and they do so very effectively.
Present-day cochlear implants convey speech signals in such a way that 80% of
the sentence is recognized in quiet environments [28]. However, our environment
constantly exposes us to various other sounds that differ significantly from speech
signals. Sounds such as birds chirping in a forest or music in a cafe are perceived
poorly by CI users. Music perception is usually challenging for CI users due to the
complexity of musical signals, often containing harmonies, multiple instruments,
overlapping spectral content, etc. Some of the most prominent constraints of Cls
for music perception are presented in this section. These constraints, as described
by Limb and Roy [37], can be categorized into technological, biological, and acous-
tic types, that each may limit the perception of a CI user.

Technical Constraints

The technical limitations of CIs become evident when looking at the process of con-
verting an acoustic sound into sequences of electrical impulses that should stim-
ulate the auditory nerve. This works efficiently for speech signals, but difficulties
arise when conveying music, because of the spectral, temporal, and timbral com-
plexities and varying dynamic range that music often contains [37].

Usually, the electrode array contains at most 22 electrodes and they only cover

8 Chapter 2. Cochlear Implants

27 Hz- (Middle C) 4186 Hz-
Low 130.8 Hz 261.6Hz 523.2 Hz High

» x

BCDEFGABCDEFGCDEFGABCDEFGABCDEFGAB C|D|E|F|G|A|B|C|D|E|F|G|A|B|C

(

22 21 19 18,17,16,15 [14through] 8 7 6 —>1
Range of frequencies \ J
that are not conveyed I
througha CI Frequency distribution for Cochlear Implant

Speech Perception (#22-1 electrodes)

Figure 2.2: An example of a mapping of electrodes to musical notes, extracted from [41]

frequencies from around 200 Hz up to 8500 Hz (strongly varies between indi-
viduals) [37]. This means that at most an acoustic signal would be split into 22
frequency channels and that the low and high frequencies of music are not con-
veyed at all (see example in Figure[2.2). Furthermore, often fine pitch and harmony
content would fall under the same frequency channels when bandpass-filtered and
encoded to the electrode array. This usually results in poor music perception as
the finely graded and frequency-specific information is lost in the conversion [37].

When the electrodes stimulate the auditory nerve at different positions the elec-
tric stimulation is imprecise and excites a multitude of nerve fibers when replicat-
ing a single frequency. Then there might be surgical and anatomical limitations,
such as the placement of the electrode array in relation to nerve fibers, the depth
at which the array can be inserted into the cochlea for maximum frequency resolu-
tion, or individual cochlear anatomy which are all factors that might decrease the
perception-accuracy [37].

Biological Constraints

As a consequence of hearing loss, the auditory system often suffers deficits that
affect the general perception of sound for CI users. These deficits may severely
impact the ability to ultimately perceive music. When hearing loss is experienced,
functional hair cells die, which results in the degeneration and death of nerve
fibers. According to Hardie and Shepherd, damage to the nerve fiber network can
lead to prolonged latencies, reduced temporal resolution, diminished neuronal ef-
ficiency and the abolishment of neuron-to-neuron signal transmission [24]. This
means that the CI will have to compensate for these limitations by increasing cur-
rent densities on electrode surfaces [52].

Several studies have been conducted using positron emission tomography (PET)
scanning on both CI users and normal-hearing (NH) people. Here, PET was used
to detect which parts of the brain were activated when a person listens to auditory

2.3. Perception 9

stimuli [38, 44, 60]. These studies show two tendencies. First, CI users seem to
have a greater intensity of activation in the parts of the brain that are traditionally
used for auditory processing. Second, due to brain plasticity, CI users can utilize
other parts of the brain that are not traditionally used for auditory processing [37].
Plasticity, in cognitive neuroscience, is a term used to describe changes in structure
and function of the brain that can change behavior and are related to the amount
of exposure to stimuli [25]. This plasticity of the brain shows a positive impact on
the perception of CI users, because of the found correlation between the intensity
of activation in auditory cortices and performance in listening tasks [15} 26].

The potential for brain plasticity in CI users is confirmed by several studies to
be age-dependent. The studies show that, in clinical tests, children implanted at
a young age, are performing better in speech and music perception than children
who obtained their CI later in life [54, 56, 43| 48]. Also, pre-lingually deafened CI
users are found to enjoy and interact more with music than post-lingually deafened
users. This is partly because pre-lingually deafened CI users have no reference to
how music sounds with normal hearing and therefore they rely solely on the ca-
pability of the CI to portray how acoustic music sounds. Post-lingually deafened,
on the other hand, have a better reference of how music should sound with nor-
mal hearing, and therefore they might find the capability of the CI to portray this
unsatisfactory and therefore avoid engagement with music [37]].

Acoustical Constraints

The perception of musical properties like rhythm, pitch, harmony, and timbre are
generally poorly encoded by the CI, and often the conversion of the acoustic signal
to electric pulses can drastically alter how the signal is perceived. The perception
of rhythm is well preserved for CI users as the extracted envelopes are sufficient for
conveying the rhythmic elements of the music [37]. As long as the music is based
mainly on percussive rhythmic sounds, the CI users are capable of perceiving them
almost as clearly as NH listeners. This was found in a study where CI users were
performing a rhythm-listening task at 78% accuracy compared to normal hearing
with an 84% accuracy [7].

On the other hand, the perception of pitch, melody, and harmony is severely
altered. This is due to how the implant processes sound, the electrode design,
as well as previously mentioned reasons. Most NH listeners can detect a pitch
direction change of one semitone, however, the threshold of CI users for detecting
a pitch direction change may vary from one to eight semitones or even more [30].
Since the perception of relative pitch is crucial to be able to perceive music, this
proves to be a highly problematic limitation for CI users to perceive music.

The psycho-acoustic property called timbre, also known as tone color, covers
the properties of a sound that makes it possible to distinguish sounds even though
they have the same pitch, loudness, and duration [37]. As different instruments

10 Chapter 2. Cochlear Implants

have different timbres, NH listeners use this quality to differentiate them. Various
studies have found that the perception of timbre in CI users varies drastically, but
generally, CI users experience inferior timbre recognition than NH listeners [37].

Normally, the auditory system decomposes complex signals such as music by
applying auditory stream segregation [37]. This is an ability to distinguish the
different parts of a musical signal and separate them to be able to comprehend the
music as a whole. However, CI users have more trouble analyzing and constructing
different streams as the attributes used in this process, like pitch, dynamic range,
and timbre, are poorly perceived. This ultimately limits their ability to listen to
and enjoy music [37].

24 Music Training

Music training has been extensively studied for its relevance to training-based neu-
ral plasticity. Music activates multiple bilateral brain regions and involves ongoing
encoding and processing of different musical patterns, like pitch, timbre, rhythm,
and loudness, and how they correspond to each other (e.g. melodies and har-
monies) [20, 25]. Although there seems to be some effect on neural response when
being passively exposed to music (seen in musically untrained people) [25], mu-
sic training does have a larger impact on the perceptual accuracy of speech and
music stimuli. A study by Brown et al., where a group of musically trained and
untrained people was compared, reported that musically trained people had supe-
rior perceptual accuracy when it comes to, among others, pitch discrimination and
timbre recognition [20].

Playing music, as opposed to music training involving only listening, can lead
to even more extensive neural changes. As playing music involves both the sensory-
motor system in combination with the auditory system it demands higher-order
processes [25]. The brain regions activated when engaged with music are associ-
ated with emotional response, arousal and attention, semantic and syntactic pro-
cesses and motor functions [18]. Playing music often includes positive emotions
and rewards (when playing with sufficient accuracy), and requires repetition and
focused attention, which is required for experience-based plasticity. Because of
this, playing music can increase experience-based plasticity even more [47]. This
can also be seen in studies that have been investigating differences between musi-
cians and non-musicians, where musicians show increased thickness, volume, and
concentration of auditory cortices, and increased binding of auditory features like
pitch and timbre [25]. Also, the interconnection between the auditory and motor
areas likely contributes to this enhanced plasticity. In a study by Herholz et al.,
was suggested that only attentive listening that involves a task was not sufficient
for measurable plasticity [25].

These insights have also sparked interest in using music as a training tool for

2.4. Music Training 11

the rehabilitation of CI users. It is hard to generalize previous findings for CI
users, as their perception differs drastically from NH listeners whom the studies
were targeted on. However, preliminary research shows that CI users can benefit
from auditory training. From the review article of Gfeller et al. [20] came forward
that music training on adult CI users shows increased pitch discrimination, timbre
recognition, melodic contour recognition, and complex melody recognition. Ad-
ditionally, music training could improve sound quality ratings (timbre appraisal),
general music enjoyment, and participation [39, 21, 20]. This suggests that music
training has the potential of improving overall music enjoyment or even the quality
of life of CI users [20].

Apart from benefits on music perception and enjoyment, music training can
also improve speech perception [31, 20]. This was found to be the case for NH
listeners, but also for CI users, where CI users who have more accurate pitch and
timbre perception are also more likely to correctly perceive complex elements of
speech (e.g. speech in noise and talker identification) [20]. Patel et al. explained
this phenomenon using the so-called OPERA hypothesis, stating that there is an
overlap between speech and music-processing brain regions and that music listen-
ing requires a higher precision when it comes to feature extraction. This could
explain (among emotions, repetition, and attention associated with music) how
music training could improve speech perception as well [47].

Training Protocol

There are two main approaches when it comes to music training: analytic and
synthetic [20]. Analytic music training employs bottom-up processes, where of-
ten acoustic features, such as pitch and timbre, are isolated and exposed to the
listener with increased difficulty. The aim here is to train the auditory system for
increased perceptual precision and efficiency. With synthetic music training, the
listener is exposed to more complex, often natural sounds, like real instruments
and speech. Here the listener has to extract features themselves and is aimed to
train the efficiency of cognitive processing, like increased attention.

Although there is a significant correlation between time listening to music and
music listening enjoyment [40], it is hard to determine how much exposure or
what duration of music training is adequate. As sufficient training depends on
many variables, such as the stimuli used and differences between individuals, it is
not yet clear how much training is adequate [20]. However, as experience-based
plasticity requires enough exposure to the stimuli, a training program should have
sufficient repetition and duration [20]. To do so, the participant has to be persistent
as therapy works best when the participant is highly engaged, motivated, and
focused [20, 39]. To achieve this, training programs should consider the great
differences in perception between individuals, described previously. Therefore,
music training should be individually focused in terms of difficulty.

Chapter 3

Sound Synthesis

Digital sound synthesis are numerical algorithms intended to create musically in-
teresting sounds or simulate realistic sounds [55]. Digital sound synthesis began in
1957 by researchers at Bell Telephone Laboratories, where they succeeded in pro-
ducing a time-varying sound with a certain envelope and waveform [49]. These
first examples of synthesized sounds could not be computed in real-time as it was
too computationally heavy to calculate these sounds with the former computing
power. Sound synthesis has come a long way since this as new techniques started
to develop. Of all conventional techniques, also known as abstract methods [5, 55],
wavetable synthesis, additive synthesis, FM-synthesis, and granular synthesis are
the most well-known [6]. What these early types of sound synthesis techniques
have in common is their simplicity and are often extremely computationally effi-
cient [5]. However, as computational power increased over the years, other tech-
niques that focused on simulating natural sounds and instruments, called physical
modeling started to emerge.

This chapter will start with an overview of popular abstract methods. There-
after, various physical modeling techniques will be presented, focusing on Finite-
Difference Schemes (FDSs), in more detail as they are taking a significant portion
of the project.

3.1 Abstract methods

As abstract methods have been around for some time they have reached a certain
level of refinement [5] and a lot of techniques have emerged. The most well-known
synthesis techniques are briefly explained next.

¢ Wavetable Synthesis. A technique that stores one period for one or more
waveforms in a table instead of directly calculating values through sine or
cosine functions [5].

13

14 Chapter 3. Sound Synthesis

* Additive Synthesis. A spectral method that adds single sinusoidal compo-
nents together to create complex tones [55].

* Subtractive Synthesis. Also known as source-filtering, a technique that re-
moves frequencies from the spectrum using filters often applied to a complex
tone [55].

* Amplitude Modulation (AM) Synthesis. A synthesis technique where a time-
variant modulator is applied to the amplitude of the carrier signal. The result-
ing spectrum consists of both carrier frequency and two added frequencies
(carrier frequency =+ frequency of the modulator) [46].

¢ Frequency Modulation (FM) Synthesis. Similar to AM, but applying the mod-
ulator to the frequency of the carrier. This technique allows the synthesis of
more complex spectra, with the use of just two sinusoids [55].

Of these methods, additive synthesis will be described more in detail as it is used
later in the implementation.

3.1.1 Additive Synthesis

A popular synthesis technique that has been used since at least the 1960s [5] is
called additive synthesis. The underlying concept of additive synthesis, coming
from the Fourier theory, is that almost any sound can be constructed using a
collection of sinusoids [55]. A pitched sound can be created by selecting a fre-
quency close to that of a multiple of the fundamental frequency, and contrarily,
non-pitched sounds, like bells, can be synthesized by avoiding this harmonic coher-
ence [5]. A single sinusoidal signal can be mathematically expressed in continuous
time as

x(t) = Acos 27tft+¢), (3.1)

with A, f, and ¢ the amplitude, frequency and phase of the sinusoid, respectively.
These parameters are also called the control functions, although the phase is often
left out as for simplicity. After sampling, the same expression can be written down
in discrete time as

x[n] = Acos (2rtfn/fs+ ¢), (3.2)

with sampling frequency f;, and time step n. Then the output signal y[n] can be
constructed by adding the individual sine waves:

M
yln] =Y Ajcos 2nfin/fs+ 1), (3.3)
1=0

3.2. Physical modeling 15

with index I and number of sinusoids M. Even though this method is effective and
extremely simple to implement, there are also downsides to using it. Mainly the
amount of data stored for tracking each sinusoid can be problematic for the high
amount of sinusoids, for example when synthesizing noisy signals. [55].

3.2 Physical modeling

Of the above methods, although they are generally not computationally expensive,
it can be difficult to predict the behavior of sound as they include certain pa-
rameters that do not possess any association with a physical representation [5]. As
computing power increased over the years, physical modeling emerged. with phys-
ical modeling sound synthesis, the parameters controlling the sound are linked to
physical rather than perceptual attributes. This, in contrast with spectral model-
ing, is a bottom-up approach, where a target system, often a real instrument, is
described using a set of equations [6]. These equations, often a set of partial differ-
ential equations (PDEs), can describe the resonator (violin, guitar, trumpet, etc.),
but can also model the excitation input (e.g. bowing the violin, plucking the guitar,
or the lip pressure when playing the trumpet). The main advantage of this over
recording real instrument sounds is flexibility. In this way different interactions
can be modeled in real-time, without the need to prerecord all the different possi-
ble interactions.

There exists different techniques when it comes to physically modeling a musi-
cal instrument, all with different complexities. The most popular ones are briefly
described below.

¢ Digital Waveguide Modeling, an efficient technique that solves the 1D wave
equation using delay lines [53].

* Modal Synthesis is a technique that possesses a direct link with additive
synthesis where a target system is analyzed in terms of the modes it produces
by a particular excitation [55].

* Mass-Spring Networks, a technique in which the system, such as a string or
a plate, is described using spring-connected masses [5].

¢ Finite Difference Time Domain methods (FDTD), a numerical method where
the continuous system is approximated by difference operations and repre-
sented over a grid in discrete time and space [5].

Even though FDTD require a great amount of computing power to simulate, their
advantages, such as their generality, simplicity, and flexibility when it comes to
the vast amount of instruments and interactions it can describe [5], make it a very

16 Chapter 3. Sound Synthesis

t — n N /o.\

u(x,t) X u(n,l) |

Figure 3.1: To the left the system in continuous time and to the right the system in discrete time,
where the system is subdivided in both space and time.

compelling synthesis technique. Because this technique forms the main synthesis
technique used in this project, it will be explained more in-depth below. The theory
described originates mostly from the book "Numerical Sound Synthesis’ by Stefan
Bilbao [5], which can be consulted for further clarifications.

3.2.1 Finite-Difference-Time-Domain Methods

With FDTD methods the state of a continuous system, described by a PDE, is
approximated over discrete space and updated over discrete time. This is depicted
in Figure where the state of a continuous system is discretized and represented
by a set of limited points and calculated for each time step. The state of a system,
often described by u = u(x,t) can be discretized to a grid function uj', where
n and [originate from discretizing the spatial variable x = [k and time variable
t = nk respectively. Here h stands for the grid spacing, or distance between two
grid points, and k for the time step and is dependent on the sampling frequency
fs (k = 1/fs). The methods of approximating a PDE is also known as Finite-
Difference Schemes (FDSs) and is done by using difference operators that can be
applied to a grid function [5]. For example, one can approximate the first-order
derivative with respect to time (d;) applied to u} using the forward, backward, and
centered difference operators:

1 1
O = (! —uf)
O = G ul! = F(uf —u)) (3.4)
Spul = S (utt —ulty,

with ¢ indicating the difference operator. Similar operations can be used for first
order spatial derivatives:

1
Svvrt] =y (uf'yy —up)
Ot = {5 ult = H(ul —ul) (3.5)
_ 1
Oxu) = 55 (g —upy).

3.2. Physical modeling 17

For second-order derivatives, a combination of the backward and forwards differ-
ence operators can be used (8% A Opuy = Oprp—uy, and 83% R Oxxll] = Oxqx—up).

After the PDE has been discretized, the next state of the system can be found
by solving the system for the next time step (u}”l). A step-by-step example will be
given in the following section for discretizing the damped stiff string.

3.2.2 Towards the Damped Stiff String
The 1D Wave Equation

A prominent PDE in the field of acoustics and physics is the 1D wave equation,
which describes the movement of a one-dimensional system over time (e.g. a string
or air in a tube). This second-order PDE, dependent on space x, and time ¢, is
defined as

0?u = c*%u, (3.6)

where ¢ is the wave speed of the system. This can then be discretized to yield the
following FDS:

Opu] = czéxxu?. (3.7)
This FDS can then be expanded using the difference operators for space and
time)
1 c
— (Ut —2uf +ul) = o (= 2uf' +uft). (3.8)

K2
Finally, by solving for u}”l yields following update equation:

uf = 2u — 't A2 (uf g = 2ul +ul), (3.9)

with Courant number A = ck/h. It is good to mention that when discretizing,
one should pay close attention to the stability of the system [5]. In the case of
the 1D wave equation the stability is solely dependent on A, and when chosen
incorrectly an unstable system could 'blow up’. The stability condition for the 1D
wave equation is defined as

A<1 = h>ck. (3.10)

The Damped Stiff String

The 1D wave equation on itself sounds rather synthetic as it is lacking natural
elements like energy losses and inharmonicities. In order to model a realistic string
sound, one would need to add damping and stiffness to the system. Equation
can be expanded to yield the damped string equation

0?u = c?%u — 2000;u + 2010;9%u, (3.11)

18 Chapter 3. Sound Synthesis

with frequency-independent damping oy and frequency-dependent damping 7.
This can be further expanded by adding stiffness, yielding

07u = c*0%u — 2000su + 2070;0%u — K20%u, (3.12)

where stiffness coefficient x = /EI/pA, with Young’s Modulus E, moment of iner-
tia I = 7t*/4, material density p, and cross-sectional area A. This added coefficient
introduces inharmonicities to the system due to a phenomena called dispersion,

where higher frequencies travel faster than lower frequencies. Discretizing and
expanding Equation 3.12 will yield the following FDS:

1 _ c? 200 _
St = 2u) = () = 2uf ufg) = 5 (T =
k h 2k
20'1 _ _ —
+ W(M?H —2uj +uj_q — “?+11 + 2uf - ”?—11)
2
K
— ﬁ(”ﬂz —4u +6ul —dui | +ul,). (3.13)

Again in order to calculate the next states, Equation [3.13 is solved for u?“ yielding

the following update equation:

1
u}”l = [Zu? — u?fl(l — opk) +)\2(”;:-1 —2uj +ujq)

1+ ook
2kay n n n n—1 n—1 n—1
+ ?(UZH —2up + g — w20 —)
k2x2
—F(uﬂz —4u} +6u —4ul | +ui,)l, (3.14)

with stability condition

212 2)2 2 2k?
hz\/Ck + 401k + /(PR + 4ork)* + 167K (3.15)

2

Boundary Conditions

To discretize a system in space, boundary conditions, or endpoints must be estab-
lished. As can be seen from the stencil of the stiff string (Figure [3.2), calculating
a new grid point always requires two neighboring grid points due to the fourth-
order spatial derivative in Equation [3.12. The most straightforward way to solve
this is by fixating the boundary grid points at either side to be zero (clamped). One
disadvantage of using this, however, is that the system can quickly become out of
tune with higher fundamental frequencies as there are fewer calculated grid points.

3.2. Physical modeling 19

h
<>
A
n+1 O
k
)
£ n—Q o o o o
n—1 { @ {
-2 -1 l l+1 l+2
h space

Figure 3.2: The stencil of the damped stiff string, retrieved from [58]. In order to calculate the future
state of a grid point, the state of five current grid points should be determined (ul", u? ooy and u? jEZ)

and three points of the previous state (u;’_1 and ”71_11)'

A simply supported boundary condition can be used to circumvent this, in which
only one endpoint is fixated and the other one is calculated using the second-order
spatial derivative. Both conditions are defined below for discrete-time

up =oxruf =0 (Clamped), (3.16)
uj = oxyuf =0 (Simply Supported) . (3.17)

3.2.3 Exciters

The excitation on the resonator determines which modes of vibration (the natural
harmonics) will be present [11]. There are two main excitation methods: exciting
using initial conditions and time-varying excitations. With initial conditions, one
or more grid points are set to non-zero values, and with time-varying excitations,
the excitation is also based on a temporal variable. For each, one example will be
given that is used in the implementation later in this thesis.

Pluck

A simple way to create a smooth excitation is by using a raised cosine, also known
as a Hanning windo Consider a raised cosine excitation with width (ey), am-
plitude e;, and the center location (I). Then, the start location of the excitation is
given by I = I, — ey, /2, and the end location by I, = I. + e, /2. Then the excitation

Thttps:/ /ccrma.stanford.edu/ jos/sasp/Hann_Hanning_Raised_Cosine.html

20 Chapter 3. Sound Synthesis

08
06

Il' 'l
04r

I' 'V
02r

0 Il Il :
0 10 20 30 40

50 60 70 80 90 100

Figure 3.3: A raised cosine with e; = 1, [= 50, and ey, = 20. The vertical axis denotes the amplitude
(in m), and the horizontal axis the grid points in space.

Figure 3.4: The Helmholtz motion visualized. The vertical axis denotes the amplitude (in m), and
the horizontal axis the grid points in space.

to the grid points between these points is determined by the raised cosine function
in discrete-time given below.

, 48 (1meos (), ifL<i<t,

(3.18)
, otherwise.

Bow

The timbre of a bowed string originates from the non-linear friction between the
bow and the string [6]. When the bow velocity, force, and position are chosen
well the recognizable Helmholtz-motion is present. This phenomena, depicted in
Figure is where a triangular wave is moving around the string. To model a
bow interaction for FDSs a friction model is used, which scales how much the bow
force affects the resonator. A simple one is the static friction model, where the force
is dependent on the relative velocity only. The one used in this project is defined

3.2. Physical modeling 21

as
q)(vrel) =V 2av;’eleiuvfdJrl/z ’ (3.19)
with relative velocity between the bow and string v,,; = 9;u(xp,t) — vg(t), and

scalar a. A bow force fp, that is scaled by this friction model, can then be applied
to the PDE of the stiff string (Equation [3.12), yielding the following PDE:

07U = c?2u — 20004 + 2010;9%u — K29+ — fy®(vyep) - (3.20)

In order to discretize this, spreading operators are used. Spreading operators are
used to interact with a FDS (through connections or interactions). In the simplest
case the interaction is applied directly to the grid point, which is defined as

11, ifl=1
) = = 3.21
Jilx) h {O, otherwise. ()

Using this, discretizing Equation 3.20 gives

Sl = CPpxtt] — 2008¢ul 4+ 2010 Oyt — K 0xaxxttl — Ji(xB)FAD (W), (3.22)

with
vy = Onl] — V. (3.23)

In order to solve for u}““ at the bowing position, v, has to be determined. Equa-

tion @, however, makes the scheme implicit as the centred difference operator
making it dependent on future values of the non-linear interaction. An approx-
imation of v}, can be found using an iterative root-finding method, such as the
Newton-Raphson method | defined as

e S
Xit1 = Xi f/(xi) . (324)

Zhttps:/ /www.sciencedirect.com/topics/ mathematics/newton-raphson-method

Chapter 4

Design

In this chapter, the design process and final concept will be discussed. This consists
of the work we did in our internship at Oticon Medical, our revisited concept
design, and the music training minigame concepts. This chapter is concluded with
an overview of the design requirements for the implementation.

4.1 Starting point - Internship Work

As formulated by Oticon Medical, our main goal was to make music training fun
and engaging to increase music exposure and maximize the therapy. Therefore,
we had to design an experience that is motivating for the users to keep them ac-
tively training their perception over a long period. To reach this goal, we examined
different game elements for enhancing engagement. The elements that we found
include play, challenge, premise, story, immersive environments, rewards, and in-
teractivity [2, |[17]. Similar methods are used in gamification practices to facilitate
changes in behaviors or cognitive processes [23]. We followed such a gamification
approach as we aimed to direct users’ behaviors towards training music perception
regularly.

4.1.1 Initial concept-design process

We started by roughly defining our target group. Initially, we chose teenagers and
young adults as our target group. We chose this group as we envisioned that it
would be most beneficial to them, both in terms of music training potential and
overall engagement, because of their familiarity with the game-medium.

Inspired by Fullerton’s [16] iterative concept design approach, we followed the
idea of iteratively refining and evaluating ideas into a final concept that would
incorporate both our project and user requirements. This design process ensured
that our concept had already received the first round of user feedback to antici-

23

24 Chapter 4. Design

pate immediate challenges before development started. The design process of our
internship is illustrated in Figure .1). We explored and validated different game-
concepts during our design process, which is described in the rest of this section.
The full process can be found in our internship report in Appendix

We started by brainstorming on various ideas, touching upon user experience,
art style, sounds, interactions, characters, difficulty, etc., and we ended up with
around 20 different game ideas. Then, we grouped and selected ideas using a
priority matrix with two criteria: 1. how engaging the ideas’ game experience
would be and 2. how effective the music training aspect of the idea would be (as
illustrated in figure (4.1).

After rating all our ideas according to the criteria, four ideas, covering different
game types, were rated highest and we decided to explore these ideas further.
We formalized these four ideas and created storyboards (see figure to further
explore and describe the interactions and user experience. Each game concept idea
is shortly described below (storyboards and descriptions of the ideas can be found

in Appendix [A).

1. Sound Squash - Competitive Multiplayer

Catch the ball by matching its pitch to be able to direct it towards the oppo-
nent

2. Sound Surfer - Infinite Side Scroller

Adjust your surfboard to match each sound wave’s pitch.

3. Aquaria - Puzzle

Guide the water flow through a series of objects to mimic a referenced melody.

4. Uncharted Chants - Dungeon Exploration

Explore and find certain musical sounds to compose and match a melody.

Aiming to assess our concepts further, we chose to collect external feedback and
created a questionnaire including both descriptions and visuals for each concept.
Our goal here was to gather general insights and feedback on the ideas as well
as to confirm which game concept(s) would be most engaging and fun. To get as
much feedback as possible, we included both NH and CI users in this process and
shared the questionnaire to forums for game designers and to contacts provided
to us by Oticon.

For each concept, using Likert-scale questions, the respondents had to rate how
engaging they found it, how efficient they found the music training element, and
their eagerness to play the game when developed further. We also included open
questions for suggestions and feedback for each concept.

4.1. Starting point - Internship Work 25

M
W A -
7 N —
—]
(_/
AL A
Q /‘(‘\‘
O ~=

5=

It is possible to interact with the
= valves to control the flow 2 "

Health Points
—_—— -4
— — R
"_ H Bounciag ball
N @
| - " }
W 8 Pitch slider
&
| va — —_—)
\ S — —4
Movement control

Willingness to play

B AllAges [Age 12-25

Sound Squash Sound Surfer Aquaria Uncharted Chants

Figure 4.1: Illustration of our design process, going from initial brainstorm through concept-idea
assessment, formalization and validation.

26 Chapter 4. Design

We got 113 responses to the questionnaire and respondents were aged from
14 to 56, of which one of the respondents was a CI user (see Appendix @ for full
questionnaire and results).

In Figure 4.1/ the result of the respondents’ eagerness to play each game concept
is presented. From this can be seen that the puzzle game concept and the dungeon
explorer game concept got the highest ratings out of the four concepts.

4.1.2 Concept - Uncharted Chants

The game concept that we decided to develop further was a combination of the
two highest-rated concepts in our concept validation. The foundation of our game
concept is the dungeon-exploration idea which features several music training
minigames that are incorporated into the gameplay (one of the minigames being
the puzzle-game concept). The goal of the game is to explore the dungeon to find
and defeat different instrument monsters. While playing against these instrument
monsters, the user needs to complete a music training exercise, which is related
to pitch, rhythm, melody contour, etc. Additionally, at each level, the user needs
to find certain items to help them progress through the dungeons. One of these
is the sphere fragments that are required to enter the sound puzzle minigame and
progress to the next level.

To make exploration interesting and replayable the room layouts of each level
are procedurally generated. This introduces a game system that makes each play
session unique and potentially engages the user for longer periods. The core con-
cept of having a circular game-play experience (as illustrated in Figure is in-
spired by the rogue-like game genr and aims to have the user repeatedly play
through unique levels and restart if they lose. While playing the music training
minigames, the user will improve their performance resulting in them progressing
further in the game for each play-through. Ideally, the game will include multiple
other systems to encourage the player to explore more rooms, such as a shop room
where they can buy upgrades, chests, and other rewards. These added systems
could prevent the users from feeling stuck when the difficulty is too high, and
prevent them from losing motivation as the levels are always different.

4.2 Revisited Concept Focus

We changed the focus of our concept based on experiences and user feedback on
the game version from our internship. First, we decided to focus on implementing
real instrument sounds and interactions. As we aim to create a game that trains
music and expose users to music, we wanted to make the interactions and audio in
the game resemble real instruments as accurately as possible. This was also aligned

1ht’cps:/ /en.wikipedia.org/wiki/Roguelike

4.2. Revisited Concept Focus 27

Each play-session

- Character Upgrades (Meta) - Increased perception

- Incentivise Replay-ability __ Level 1 - More char-upgrades
R 1st - Reaches higher levels
¢ Hub Level 2 -
Level 3 |
g
Boss Level 4
3rd
Level 5

Figure 4.2: The intended gameplay-loop where the user get increasingly further for each playthrough
by practicing music perception and upgrading their character.

with Oticon’s future work, as they were exploring the usage of more realistic in-
strument sounds in their music training games. To do so each ‘combat’ minigame
focuses on a different instrument that teaches about its sounds and interaction,
and by this indirectly training instrument recognition. To do so as accurately as
possible, we investigated the usage of physical modeling for sound synthesis (see
chapter [3.2). These models are used to dynamically produce audio that reflects
how the user is interacting with an instrument. By generating sound via physical
models, the timbre of the virtual instrument changes depending on the interac-
tion. This might contribute to giving the user a more nuanced palette of sounds
to associate with a given instrument thus helping them differentiate instruments
timbre.

We also decided to switch our target development platform from mobile, which
Oticon originally proposed to us, to PC and Mac. As physical models can be com-
putationally heavy, especially implementing more complex ones, mobile platforms
would not be sufficient any longer. Next to this, music training games require a
certain level of attention and the user must be in a quiet environment. Therefore,
it is not ideal to play on the go which eliminates one of the main reasons for devel-
oping for mobile platforms. Furthermore, the game concept that we have features
many user interface components, such as a health bar, minimap, and currency in-
dicators, which take up screen real-estate. Switching to PC and Mac provides more
screen real estate and an opportunity to create a more satisfying character control
interaction.

28 Chapter 4. Design

4.3 Music training minigames

Our game concept revolves around five music training minigames, of which four
are represented as different instrument monsters. The player has to defeat the
instrument monster by completing a music training exercise before returning to
exploring the dungeon. After defeating a monster the player is rewarded with
musical essence, which is a persistent currency that can be spent to upgrade the
player’s attributes such as the amount of health or run speed when outside the
dungeon (Hub, see Figure £.2). As the player progresses through the level struc-
ture, the instrument monster minigames increase in difficulty.

In Table the different minigames and the trained perceptual features are
given and are briefly elaborated below.

’ Minigame Trained music perception property
Percussion minigame Rhythm perception via tempo
Harp minigame Melodic contour recognition
Violin minigame Timing and loudness contour
Guitar minigame Pitch perception
Puzzle minigame Melodic contour recognition

Table 4.1: Overview of minigames and which perceptual properties they aim to train.

Percussion minigame

The percussion minigame is designed to train rhythm perception by evaluating
the user’s ability to tap into the correct tempo of various rhythmic sample loops.
Rhythm perception consists of various components such as rhythmic pattern, me-
ter, tempo, and timing [27]. We chose to focus on evaluating the user’s ability to
perceive tempo which can be described as the speed or rate of the perceived sound
pattern and is related to the cognitive notion of ‘beat’ [27]. Tempo perception is rel-
atively straightforward for non-musicians and evaluates the user’s ability to listen
for different rhythmical elements in a musical pattern while specifying the speed
of the musical pulse.

Harp minigame

The harp minigame is primarily focused on training melodic contour recognition.
A reference melody is played and the user’s task is to recreate the reference melody
by playing the strings of a harp. To make the minigame more accessible to non-
musicians the first note of the reference melody will always be visually indicated.

4.4. Difficulty scaling 29

Next to this, melodies will only consist of two or three notes with large note-
intervals in the beginning.

Violin minigame

In the violin minigame, a reference violin sound is played after which the user
has to recreate it by moving the violin bow with a sufficient velocity over the
string, matching the note duration of the reference. This game is focused mainly on
timing as the correct duration should be perceived, but also the dynamics (loudness
contour) as the user needs to be able to perceive when the note rises and falls. As
this can be tricky, due to the CI user’s limited loudness perception, there will be
an error margin taken into account that will be scaled depending on the level.

Guitar minigame

The guitar minigame focused on pitch perception training. In contrast to the harp
minigame, which trains the user on pitch relationships between notes (intervals),
this minigame trains the user on absolute pitch values of single notes. The user’s
goal is to tune the guitar string to match the pitch of the reference note. We aimed
to make this minigame portray a real-life scenario of tuning a guitar by having two
simultaneous interactions of plucking the string and turning the guitar peg. Also
here, an error margin will be established to make it more accessible for CI users
with poorer pitch perception.

Puzzle minigame

This minigame is focused on melodic contour recognition, which is not represented
as an instrument monster in the dungeon, but has to solved to progress to the next
level. This minigame is inspired by the puzzle game concept (Aquaria) which we
decided to incorporate here. The minigame presents the user with several sound-
emitting spheres of different sizes corresponding to different tones (larger sphere
equals lower frequency). A reference note sequence is played and the user has
to draw a path that guides falling music notes through sound-emitting spheres
according to the reference melody.

4.4 Difficulty scaling

The game’s difficulty should be dynamic and increase as the player progresses.
As stated by Mayer & Johnson, digital game-based learning should, amongst other
things, accommodate the user’s skill level by implementing “gradual learning outcome-
oriented increases in difficulty”"[12]. We aimed to implement a dynamic difficulty sys-
tem that will tweak the parameters of each music training minigame to adjust the

30 Chapter 4. Design

A
Too hard — frustrating
&
= o
\C
& <
<
O
Too easy — boring
>
Player Expertise

Figure 4.3: The balance of a games difficulty. As the players expertise increases (x-axis) the difficulty
of the game (y-axis) should increase as-well to maintain a state of ‘flow’. Extracted from: [62]

difficulty according to the level that the user has reached. As described and visu-
alized by Zohaib [62] in Figure 4.3|any game experience needs to have a moderate
difficulty level. If it is too easy the user can get bored and if it is too difficult the
user can get demotivated.

As proposed by Csikszentmihalyi [42], when the user is not bored nor frus-
trated she is experiencing a state of ‘flow’ (see figure [£3). Optimally, the user
should be in a state of flow to maintain their motivation to play. This can be
achieved by gradually increasing the difficulty level of the game, at a certain pace,
that allows the user to have sufficient time for learning and improving to meet the
increase in difficulty[42].

Finding the ideal difficulty level is a challenge because of the huge differences
in perception between CI users (elaborated in chapter 2). To tackle this, the game
should have a low entry-level, after which the difficulty should scale with higher
levels to include better-performing CI users. For this, the minigames’ difficulty
parameters, including the error margin in pitch, note lengths, tempo, etc., are dy-
namically scaled. These will be elaborated further in the implementation section.

4.5 Design Requirements

Before starting the implementation phase, we made design requirements to set our
priorities (Must Have) and listed the less essential elements (Nice to Have), which
is shown in Table Apart from the requirements from our internship project,
we have real instruments sounds and interaction, language selection, a tutorial,

4.5. Design Requirements

31

Must Have

Nice to Have

Minigames training pitch, melody, timbre, and rhythm

Character customization

Dynamic difficulty system

Trophy system

Unique level generation

Aesthetically pleasing artwork

Realistic instrument sounds & interactions

Free-play instruments

Instrument interaction should reflect sound output

Shop system

Character upgrades

Lighting and shadows

Volume control

Post processing visuals

English and Danish language

Hiding unexplored areas

Encourage exploration

Should run on Windows and MacOS

Should include a tutorial

Table 4.2: List of requirements.

and sufficient performance on both PC and Mac as requirements. The Nice to
Haves include game elements focused on increasing user engagement but are less

essential.

Chapter 5

Implementation

This chapter contains a technical description of the developed application. We
start by giving an overview of the project on a macro level, then we will go into the
implementation of the Audio Plugins, and finish with the implementation of the
game engine. Although the implementation is a continuation of our internship, for
completeness this chapter also contains the foundational work made during our
internship project. For brevity, we will focus in this chapter on the core implemen-
tation, although the full Unity project and all scripts can be found in Appendix
Both the game’s installation files and demo video can be found in Appendix [F.

5.1 Overview

Uncharted Chants can be split into two main parts: the game engine, consisting of
the framework of the game and in which all the scenes are established and con-
trolled by the player, and the implemented audio plugins, in which most of the
audio inside the game is synthesized. We chose Unity, |'| as the game engine for
our project during our internship, and continued using it during our thesis, both
because of our familiarity with this game engine and because of its extensive func-
tionality. Unity is a native C++ game engine, in which users write their code in
the C# programming language. These custom-written components, called scripts,
are running on Mono [, an open-source software platform. In Figure 5.1/ a block
diagram is depicted of the project. Scripts are loaded inside a scene, a place where
all or part of the current game is active, and start running whenever the scene is
playing. A scene is constructed through GameObjects, objects of which the function-
ality is determined by the attached Components. This, for example, can be a light
source, audio source, or a sprite for a 2D visual. By using the camera component,
the created scene is captured and displayed to the user. The specific properties of

Thttps:/ /www.https:/ /unity.com/
Zhttps:/ /www.mono-project.com/

33

34 Chapter 5. Implementation

the camera and the way it is rendering the visuals to the display are dependent on
the used render pipeline, further discussed in Besides the visual aspects of
the application, the audio is set up through the Audio Source component. This com-
ponent can be used to play audio clips, which are then routed and mixed inside the
Audio Mixer and perceived by an Audio Listener component. When it comes to au-
dio, however, Unity can be quite limiting, especially when it comes to synthesizing
sounds in real-time. One way to do this in Unity, which we used during the previ-
ous iteration, is implementing the algorithms in C# using the OnAudioFilterRead()
method. This approach, however, would likely not work for more complex models,
as it lacks the required efficiency. This is why we decided to set up the audio in
a modular way, where we would write audio plugins in C++ for each instrument
and import them into our Unity project. This is done using the Audio Mixer, which
apart from mixing and mastering, can be used to add third-party audio plugins
to the project, and can be controlled through scripts using exposed parameters. The
specific details about the audio setup and each of the written audio plugins will be
discussed in the following section.

5.2 Audio

In Figure |5.2/a more detailed overview of the audio architecture is illustrated. The
Audio Mixer consists of three groups, one for background sounds (Ambient), one
for sound effects (SFX), and one group for the sounds inside the minigames (Music
Training). This approach allowed us to let the user change the volume of each of
the groups according to their preferences from within the settings menu (see Figure
5.3).

The music training group consists of subgroups each with a different audio
plugin loaded onto it. We made different audio plugins as the desired instruments
required different synthesis techniques. In Table each of the instruments, the
plugin names, and the synthesis technique are listed. For each of the algorithms,
a prototype was made first in MATLAB [°, Then we made the real-time imple-
mentations in C++ using JUCE [*, of which both implementations can be seen in
Appendix B| JUCE is a framework for developing audio applications with multi-
platform build support, which we chose because it also includes build support for
Unity. Communication with Unity works by specifying audio parameters inside
the plugins. Audio parameters use the AudioProcessorParameter base class and are
used to control parameters from an external software like digital audio worksta-
tions, or in this case Unity. Setting up an audio parameter is done by defining a
default value and limits (minimum and maximum value) in case it is a float type.

3https:/ /nl.mathworks.com/products/matlab.html
4https:/ /juce.com/

5.2. Audio 35

Unity

4 Unity Scene(s) N
(’

H Audio Mixer Audio
, : Plugins
Outout Visual Audio

- Camera] Mixing >
- (_ - > Groups « -
) l _ t

_ Sprites

Mouse

|

Exposed
Parameters

|

Keyboard

Figure 5.1: Block diagram overview of the project. Whenever a scene is loaded, scripts control certain
properties of GameObjects, called components. Depending on the program, scripts are controlled by
user input or by certain game states. These include static variables or saved player preferences,
that are used to save certain parameters whenever scenes are closed or other scenes are loaded. The
visuals inside the scene are then rendered using a camera component and displayed. Audio is routed
through the Audio Mixer, where external audio plugins are loaded and controlled using exposed
parameters from scripts. Finally, after the audio is routed through the Audio Listener component, the
audio is routed to the user’s output device.

Audio Mixer Groups Audio Plugins
Master ~ Ambient SFX Music Training\ _ Audio / \
3 io) [o) / G | A H il (Windows)
Audi Audi Audi
&5 || e i))| Souielers | BUIS Gunaeivicts
—
ePos
eWidth
" Prototypes
§ r 8 ")
@ <= Volume | | Volume | | Volume P Volume <
z LS jan) \ /
g _|_ X Audio Out
o \-ft — S \- ! 11
=4 \

Figure 5.2: Audio routing and control block diagram. The yellow blocks indicate the exposed pa-
rameters controlled by C# scripts. The blue lines indicate audio routes.

36 Chapter 5. Implementation

e gn o — -
VOLUME =t e
Master — —— .
Training e—————— . JIL
Effects o m u e
Ambient e ——) -|-'|-I-|-

LANGUAGE

Figure 5.3: Settings menu with volume control for each group, which can be opened at all times.

An example code snippet is given below for setting up an audio parameter for the
fundamental frequency.

1 addParameter (fundFreq = new AudioParameterFloat ("fundamentalFreq", //
parameter ID

2 "Fundamental Frequency", // parameter name

3 20.0f, // minimum value

4 10000.0f, // maximum value

5 220.0f)); // default value

Exporting the plugin to Unity will create a .bundle file for MacOS or .dll file for
Windows, which then can be loaded onto the Audio Mixer, after which the audio
parameters show up in the inspector. This can be seen in Figure where the
audio parameters are shown when built for both a standard audio plugin (VST)
and a Unity plugin. These parameters in Unity can then be ‘exposed’, allowing
them to be controlled from within C# scripts. For example, one could change the
fundamental frequency from a script by referencing the Audio Mixer and using the
SetFloat method:

1 audioMixer.SetFloat ("StiffString_£f0", (float)Remap(£f0, 20.0f, 10000.0f
, 0.0f, 1.0f));

Here, a mapping function is required as the limits of the audio parameters are
converted into values between 0 and 1 (see Figure [5.4).

In Table each of the instruments, the plugin names, and the synthesis tech-
nique are listed. In the following sections, each of these plugins will be briefly
described.

5.2. Audio 37

StiffStringPlugin (VST3)

Fundamental

Frequency 2Dl

Pitct

sigma 0 1.00 e

® Attenuation
Volume

sigma 1 0.01

radius in mm 0.50 - - - -
audioplugin_StiffStringPlugin

density 7850.00 lioes

excitation Type 0.00

bow Velocity 0.00
position

excit

excited
parameter chang =

Demo Routing

parameter changed

Figure 5.4: Communication between C++ audio plugins and Unity. On the left are the audio pa-
rameters in the editor of the plugin (VST), and on the left how they show up when build for Unity.
Notice that all parameters are converted to a float between 0 and 1, even if the parameter is a boolean
type. Exposed parameters are indicated with the arrow next to the parameter name.

’ Instrument ‘ Audio Plugin ‘ Technique
Percussion Maracas PhISM
Harp StiffString FDS
Violin StiffString FDS, Static friction model

Guitar DynamicString FDS, Dynamic Grids
Synthesizer | AdditiveSynth Additive Synthesis

Table 5.1: Each of the audio plugin and used synthesis technique.

38 Chapter 5. Implementation

5.2.1 Maraca

The maraca instrument is played inside the rhythm perception training minigame
to provide audible feedback to the player’s input. We modeled the maraca using a
technique called Physically Informed Sonic Modeling (PhISM), a method by Cook
[10]. This method uses stochastic events to model percussive instruments. As the
sound of maracas is characterized by the random interactions of the beads inside, it
can be modeled by adding a grain of sound for each collision. Collisions are then
predicted using a certain probability that is dependent on the number of beads
inside the maraca. The total envelope of the sound is dependent on the number
of collisions and the excitation curve of the maraca, which resets each time there
is an excitation. By applying this envelope to a generated white noise signal, the
basic shape of the sound can be created. Then, the resonance frequency of the shell
can be modeled using a bi-quad filter P, The maraca plugin is controlled using one
AudioParameterBool that excites the maraca whenever it is true.

5.2.2 StiffString

The StiffStringPlugin is an implementation of the damped stiff string model using
FDS (described in and is used to model both the harp and the violin. The
physical parameters (damping and stiffness coefficients) as well as the fundamental
frequency are audio parameters and can be controlled through Unity. The string
can be excited by either plucking or by bowing the string, allowing us to synthesize
both the harp and the violin, by changing the dedicated audio parameter. The
plugin consists of two classes, a StiffString class and a Bow class. The StiffString
class calculates the grid size and spacing at startup, and recalculates it whenever
an audio parameter has been changed (e.g. the fundamental frequency). For a FDS
model to run in real-time, the scheme has to be calculated and updated for each
sample. This is done in the getNextSample() method. Here, the next state of the
system is calculated using the simply-supported boundary condition (see[3.2.2), an

output is retrieved, and the states are updated (making u ! = u! and u} = u'*").
double StiffString::getNextSample(float outputPos)
{
calculateScheme () ;
double out = ul[0][static_cast<int> (round(outputPos * N))I;
out = out * eScalar; // scale to make excitaiton audible
updateStates () ;
return out;
}

Whenever the string is plucked the public method exciteSystem(double amp, float pos,
int width) is called, which excites the string using a raised cosine with the specified

5 https:/ /www.dsprelated.com/freebooks/filters /BiQuad_Section.html

W N =

5.2. Audio 39

amplitude, position, and width.

The Bow class includes the static friction model described in [3.2.3l Whenever
the excitation type is set to bowing the public method setExcitation() is called each
sample.

void Bow::setExcitation(std::vector<double*x>% u, float bowPosition,
double bowVelocity)

In this method, the relative velocity, dependent on the bowVelocity, is calculated
using the Newton Raphson method. Then the excitation is calculated and applied
to the grid point corresponding to the bowPosition.

5.2.3 DynamicString

Using the previous StiffStringPlugin could also work for modeling a guitar, but
because the guitar tuner minigame requires the pitch to be smoothly adjusted in
real-time, a different approach was necessary. Smooth parameter changes, such as
fundamental frequencies, are tricky for FDS methods as the grid has a fixed amount
of points. To create a dynamically changing grid, we implemented the method of
dynamic grids by Willemsen [57]. The principle of this approach is making the
number of grid intervals (N) fractional, which is realized by splitting the system
into two connected subsystems. Then smooth parameter changes can be made by
dynamically altering the distance between the systems. Whenever this distance,
denoted by «, is larger than one, a grid point is added to the system, and when
it is smaller than zero, a grid point is removed. The inner boundaries of the two
systems are calculated through virtual grid points. These grid points are outside
of the boundaries and calculated using interpolation with the other system. We
implemented this method for the damped string and created a DynamicString class.
The main method that is called for each sample is the getNextSample() method,
which is shown below.

double DynamicString::getNextSample(float outputPos)
{

alpha = N - floor(N); // calc distance between two systems

// Check if there is a need to add/delete grid points
if (floor(N) > floor(N1)) addPoint ();
else if (floor(N) < floor(N1)) removePoint () ;

getVirtualGridPoints () ;
calculateScheme () ;

double out = getOutput (outputPos);
updateStates () ;

return out;

40 Chapter 5. Implementation

Just like the harp, the string is excited using a raised cosine, which is controlled
using an audio parameter.

5.2.4 AdditiveSynth

For the puzzle game, we used a more synthetic synthesis technique as the sound-
emitting objects were abstract and had no direct connection to a real musical instru-
ment. We chose additive synthesis (see because of its flexibility in the creation
of different timbres. Because the minigame required multiple notes to be played
at the same time we implemented a SynthVoice class. We created six instances of
this class allowing six-voice polyphony. Each instance of the SynthVoice class has
a fundamental frequency, 16 harmonics, and its own ADSR envelope using the
JUCE ADSR class ﬁ We added the envelope to create smooth amplitude curves,
which both get rid of possible audible artifacts (i.e. clicks) and made it sound more
natural. The main method in each voice class is getNextSample() method, which is
shown below.

1 double SynthVoice::getNextSample ()

2 {

3 double out = 0.f;

4

5 for (int h = 0; h < numHarmonics; h++)

6 {

7 if (£f0 * (h + 1) < nyquist) // filter out harmonics above
nyquist

8 {

9 out = out + adsr.getNextSample() * gainVector[h] * sin(
currentAngle [h]) ;

10 }

11 currentAngle [h] += angleChange [h];

k if (currentAngle[h] > 2.f * double_Pi)
14 {

5 currentAngle [h] -= 2.f * double_Pi;
16 }

17 ¥

18 return out * averagedGain;

19 }

Here, the output is created by adding up all the harmonics up to the Nyquist
frequency (half the sampling frequency) to avoid aliasing. Then, the angle of each
sinusoid is updated according to the angle change (dependent on the frequency
of the harmonic). Keeping track of the current angle allowed us to create smooth
frequency changes if necessary.

®https:/ /docs.juce.com/master/classADSR.html

5.3. Unity 41

5.3 Unity

5.3.1 Scene Management

Applications made in Unity are composed of one or more scenes. By organizing
different parts of a game in different scenes it is possible to distribute functionality
and make the project more modular to increase effectiveness, error-tracking, and
bug-fixing effectiveness. This workflow can significantly decrease the time spent
managing and organizing the work of multiple developers as well as improve the
execution time of the final application.

As illustrated in figure the main gameplay loop of Uncharted Chants con-
sists of a sequence of scenes starting from the hub scene to the level-progression-
map scene and then to the main dungeon scene. To control the progression through
levels and the dynamic increase of difficulty the static variable int currentLevel is
used. From here, either the player successfully collects the sphere-fragments and
finishes the level which results in the currentLevel being incremented or the player
loses (lost all health) and currentLevel is reset to 1. When the player finishes a
level the level-progression-map scene is loaded which, on startup, references cur-
rentLevel to check which level-transition to animate. The same system applies when
the main dungeon scene is loaded as it also references currentLevel on startup to
check which level layout to generate as well as which difficulty the instrument-
monsters mini-games should have. If the player loses or completes all levels, the
meta-hub scene is loaded again.

The main scenes which hold the majority of the game, as well as their key
functionality, are elaborated in the following sections. The game includes some
additional scenes (main menu, settings menu, and tutorial) but is not a part of the
main gameplay loop.

Meta-hub Scene

The hub-area scene is a "lhome” environment where the player is in between play
sessions. Here the player can do different activities, like permanently upgrading
their character (for the cost of musical essence), watching tutorial videos, viewing
obtained achievements, and entering the dungeon. This scene is loaded when the
game is started, or whenever the player loses or successfully progresses through
the final level.

Level-progression-map Scene

The level-progression-map scene has the purpose of presenting a visual overview
of the player’s progression through the levels of Uncharted Chants to give the
player a sense of progression when playing. The scene is loaded every time the

42 Chapter 5. Implementation

Player wins a level -
currentlLevel is incremented Minigames Loaded Additively

/\

Level- .

Player loses/wins

Figure 5.5: The main sequence of scenes to maintain the game-play loop. Starting from the hub area
in which the player can enter the dungeon. When entering the dungeon, the level-progression map
scene is loaded. In the dungeon, the minigame scenes are loaded /unloaded additively. Whenever a
level is completed the level-progression map and the next level are loaded sequentially. Whenever
the player loses (or completes all levels) the hub is loaded again.

player starts a new level in the dungeon or, as a transition, when they complete a
level and go to the next level. The scene is non-interactable and plays an animation
showing the character progressing to the next level.

Main Dungeon Scene

The main dungeon scene holds the core of the game’s functionality. When this
scene is loaded, a new unique room layout is generated at runtime and all the
instrument-monsters, sphere fragments, chests, special rooms as well as the player
character are instantiated in specific rooms depending on scripted behavior in the
PostProcessing script. The player controls the character in the room layout to find
the sphere fragments as well as interact with instrument monsters and other items
to collect currencies and complete the level.

Minigame Scenes

The minigames-scenes hold the functionality for specific music-training exercises
of the percussion, harp, guitar, violin, and sphere puzzle. When the player in-
teracts with a certain type of instrument monster in the main dungeon scene, the
respective minigame scene is loaded additively (i.e. on top of the main dungeon).

5.3. Unity 43

Whenever the player wins, this scene is unloaded, allowing the player to continue
controlling the character in the main dungeon scene.

5.3.2 Level Generation

The level generation algorithm runs whenever the main-dungeon scene is loaded.
It is responsible for generating a unique room layout and instantiating items and
instrument monsters. For this, we have utilized a procedural level generator Unity-
asset called Edga and customized it to our needs. The generation algorithm uses
mainly two types of inputs: the room templates, which are the building blocks used
by the algorithm, and the level graph, which defines the structure of a level.

Room templates Design

A room template, illustrated in Figure defines how the room looks and what the
physical boundaries are. The room-templates, which are prefabricated (prefabs),
each have a RoomTemplateSettings and a Doors component. Here, the RoomTemplate-
Settings script keeps track of the validity of the room template’s border wall, and
the Doors script is used to add door positions to this wall. These door positions
are possible sockets where the algorithm might connect a door to another room
or to a corridor that leads to another room. The design of the room is established
using tilemaps for each layer (e.g. walls, floor, windows, tables, etc.). To create
enough variety, we designed each room with custom shapes and different content.
To engage the player to keep exploring new rooms, we implemented a fog effect
that hides the room in the beginning of a level. For this, each room also has a fog
layer that is removed when colliding with the player character.

Level-graphs

The level graphs define the structure of the dungeon, including how the rooms
are internally connected and where the special rooms (spawn-room, shop-room,
puzzle-room) are located. An example of a level-graph structure can be seen in
Figure which is the structure of the third dungeon level.

On Start(), depending on the level (encapsulated by the static variable cur-
rentLevel) a different level graph is selected. In total, we designed five different
level graphs (one for each level), with increasing difficulty. These level graphs have
an increasing amount of rooms and a more complex structure for each level. This
scales the difficulty progressively as it requires the player to explore more rooms.
In the level graph, depicted in Figure 5.7, the rooms are represented by the boxes la-
beled 'Room’, and lines represent corridors between rooms. When generating, the

"https:/ /ondrejnepozitek.github.io/Edgar-Unity /

44 Chapter 5. Implementation

20

W9 ErikRoom#2

v ErikRoom#2 Static v

7 Tag Untagged ~ er Default v

Room template status Transform]
tline: valid
valid

Room Template Settings (@ 3 :

Allow Repeat

Add outline override
Add bounding box outline handler

Doors (Script) o i i
Simple mode Manual mode Hybrid mode
Add door positions
Delete door positions
Delete all door positions

th

Itd on for r Undi

Door Lines

Add Component

Figure 5.6: How a room-template is designed in the Unity editor. Yellow boxes around the edge
represents the border-wall and red squares represent each door-position.

Scene Graph editor ~ * Animator B Console
Selected graph: Level3 Snap to grid Select in inspector Select level graph

SpawnRoom

Figure 5.7: Level-graph for level 3. Structure of how rooms should be connected with corridors in a
generated room-layout.

5.3. Unity 45

Purchasable in Shop-room Rewards to find in dungeon

@ Clear Fog !
J_:L Inc. Attack Damage @ Block Attack

4;9 Double Attack % Health Up
f' Damage Over Time %

Inc. Run Speed Coin - currency

L

Musical Essence - currency

Chest - Contains random items

Trophy - Reward for winning
Key - Shoproom

Key - Shoproom

Sphere fragments

DLGHEC ©

Figure 5.8: Lists of various items, and their functionality, that can be bought in the shop room or
found in the dungeon.

algorithm picks one random room from a list of specified rooms (room set). The
special rooms (spawn room, puzzle room, or shop room) are indicated as boxes
with text referring to their functionality. These special rooms are always the same
and are therefore consistently found in the level graphs across all levels. The level-
graph setup enables us to generate unique levels, using random room picking, yet
keeping a sense of consistency as the structure of the level graph remains the same
for a given level. In Figure a couple of generated dungeon room-layouts are
illustrated, all generated from the third level-graph in Figure

Dungeon generation post-processing

We added a customized post-processing script to the Edgar dungeon-generation
system which executes a block of code right after the dungeon layout has been
generated. This post-processing logic is where we instantiate instrument monsters,
sphere fragments, shop items and chests. To make sure each level is a new and
unique challenge for the player, random instrument monsters are instantiated in
each room. Also, the sphere fragments and chest are instantiated in random rooms.
The chest is implemented to further reward the player for exploring the dungeon
and will provide the player with coins when opened. The shop room includes
random item upgrades which are purchasable for the player. These items can
upgrade the player in various ways, like increasing the player’s run speed, and
are priced according to their effectiveness. The different items that the player can

46 Chapter 5. Implementation

Figure 5.9: Examples of room-layouts that were all generated from the level-graph of level 3 pre-
sented in Figure

5.3. Unity 47

Minigame Enemy Data Higher difficulty
Percussion Bpm error margin Decreases
Harp Number of notes Increases
Interval time Decreases
String interval distance Decreases
Violin Number of notes Increases
Note length error margin Decreases
Guitar Interval distance Decreases
Pitch error margin Decreases
Time to react Decreases

Table 5.2: Each training minigame and difficulty control

obtain either by exploring the dungeon or visiting the shop room is displayed in

Figure

5.3.3 Difficulty Scaling

To make sure that we can dynamically change and tweak the difficulty of each
minigame we used Unity’s Scriptable Objects °, which are data containers often used
to provide data to prefabs. We used this principle by creating an EnemyData object
that defines the difficulty of the instrument monsters using a set of parameters
(depicted in @) These parameters are related to the general difficulty, including
the health and damage of the enemy, but also the training difficulty. In Table
an overview is given of all the parameters that are related to the training difficulty,
and how they change for higher difficulties. To create small variations between
enemies, we created a list of EnemyData objects, each with slightly different param-
eters. Then when the dungeon is created, each instrument monster gets a random
EnemyData object assigned from a list that corresponds to the current level.

This system allowed us to tweak the difficulty of each minigame instance and
each level, and add more EnemyData objects to increase variety or add more levels.
This modular system prevented us from changing the main functionality scripts of
the training minigames, allowing us to test the difficulty of the game and change
specific minigames parameters when necessary.

8https:/ /docs.unity3d.com/Manual/ class-ScriptableObject.html

48

6> Harp Enemy#3 (Enemy Data)

General
Enemy Health

Enemy Damage

Rhythm Game
Track BPM 0

Chapter 5. Implementation

_'. ~
+~

Open

Track To Play None (Audio Clip) ©

Bpm Threshold 0.1

Guitar Game
Guitar Root Note 0]

Freq Threshold 0
Freq Fine Threshold 0
Range For Next Freq O
Min Range For Next F O

Time To React 10

Harp / Violin Game

Root Note 523.25

String Notes

ElementO O
Element1 7
Element2 12

N Notes 2
Interval Time 1

Margin Of Error Sec 0.3

> Error margin in
relation to the
BPM

Error margins
in semitones

String
intervals in
semitones

- Number of notes

==> Error margins
(violin)

Figure 5.10: EnemyData scriptable object for the Harp instrument presented in the Unity editor. The
inspector view of the scriptable object shows all the parameters which are used to set the difficulty

of all music training instrument-monsters.

5.3. Unity 49

RAhAAALA

Figure 5.11: Sprite sheet of the player’s run animation.

5.3.4 Aesthetics
Game art

We implemented the game using two distinct graphic styles to create a more clear
distinction between the music training and the non-music training game expe-
rience. For everything outside the minigames, we used lower-quality pixelated
sprites. Some of these we have extracted from other sources, like the Overgrown
Pixel Dungeon Tileset ﬂ and some we have designed ourselves, including the in-
strument monsters and the player character. To create the animations we designed
multiple frames of a character and put them into sprite sheets. An example of
this is the sprite sheet of the player’s walking animation can be seen in Figure
b.I1. To create a more distinctive art style for the minigames, we created vector-
based sprites, allowing us to easily resize them without losing quality. In Figure
(.12 these sprites are shown for the player character. To separately animate each
of the character’s body parts, they have been split and assembled back in Unity.
All designed game art can be found in Appendix |C} including the sprite sheets,
minigame sprites, and icons and logos that we designed.

Rendering

Apart from sprite design, another way to create a more unique style is by chang-
ing the way the sprites are rendered by the camera. In Unity, the way the camera
renders the content of a scene is dependent on the used rendering pipeline |} For
our project, we chose the Universal Render Pipeline (URP) ['*} a scriptable render
pipeline that allows easy customization and supports multiple platforms. Using
this pipeline we implemented a package called Lights 2D =, which provides 2D op-
timized lighting to be added for sprites. This package allowed us to create distinct

https:/ / foxdevart.itch.io/ overgrown-pixel-dungeon-pack
Ohttps:/ /docs.unity3d.com/Manual/ render-pipelines.html
Uhttps:/ /docs.unity3d.com /Manual /universal-render-pipeline.html
Zhttps:/ /docs.unity3d.com /Packages/com.unity.render-pipelines.universal@7.1/manual / Lights-
2D-intro.html

50 Chapter 5. Implementation

Figure 5.12: Sprites designed for character inside the minigame. All body parts are exported sepa-
rately in order to create independent animations for each.

looks for the different objects inside a scene by adding lights with varying colors,
intensities, shapes, and sizes, depending on the light source it is representing. We
also used it to create different atmospheres between scenes as well, by using dif-
ferent global lights with different intensities to establish a darker environment for
the dungeon and a more vibrant atmosphere for the hub area. Additionally, we
used this package to make the scene come alive by giving both the player charac-
ter and the instrument monsters shadows using the Shadow Caster 2D. To further
create discrimination between scenes, we used URP’s post-processing using dif-
ferent volumes. We attached different effects to these volumes, such as Bloom,
Vignette, Tonemapping, and Chromatic Aberration, depending on the scene. In Figure
three main atmospheres are depicted, all with different light intensities and
post-processing volumes.

5.3.5 Minigames

As has been described in chapter 4 we have designed five minigames, of which
four are played whenever the player enters combat with an enemy, and one is the
sound puzzle that needs to be solved to proceed to the next level. Although the
minigames all work in a slightly different way, the four combat minigames are all
set up similarly to a certain extent. From Figure [5.14 the structure of the com-
bat minigames can be seen. To create a seamless transition from the dungeon to
the minigames, the minigame scene is loaded on top of the dungeon, and moved

5.3. Unity 51

Figure 5.13: The hub area, dungeon, and the final boss level. Each of these scenes have different 2D
lights and post processing effects to create the different atmospheres.

Figure 5.14: The basic structure of each combat minigame with the player character on the left and
the enemy sprite on the right, each standing on a floor and with a health bar above them. To increase
the focus on the minigame, the background has been slightly darkened.

52 Chapter 5. Implementation

CombatSystem_Vi

Add Property

Figure 5.15: Creating animations in Unity. To the left, the scene hierarchy can be seen, with as
selected object the enemy portrait of the violin enemy, on which an Animator component is attached.
On top, the Animator window is shown, in which the different animations are visualized as well as
the transitions between them. In this case, there are three animations: one default animation (idle),
one for attacking, and one for playing a sound. Then at the bottom, the Animation window is shown,
where animations for each sprite can be constructed using so-called keyframes.

to the player’s location. However, to shift the focus to the minigame itself, the
background is slightly darkened. Each of the combat minigames consists of a com-
bat system GameObject. This parent object contains the basic structure for each
minigame, including the floor, player portrait to the left, the enemy portrait to the
right, and the Canvas, which includes the health bars of both the player and the
enemy. To animate each of the separate images from which the player and enemies
are made, each portrait consists of multiple child objects, each with a SpriteRen-
derer component to render one image. This can be seen from the project hierarchy
to the left of Figure [5.15. Then on the portrait itself, an Animator component is at-
tached, which is used to trigger different animations from script, and handles the
transitions between the different animations. Then, the animations themselves are
constructed from the Animation window, where each child’s sprite is separately
animated using keyframes.

The basic game mechanic of shooting a spell that damages the enemy whenever
the user has correctly executed the listening task, or reversely, the enemy shooting
a spell whenever the player has incorrectly executed the task, is set up in the fol-
lowing way. The portraits for both the player and enemy consists of a Spell Spawner
Handler script, used to cast a spell on the opponent by calling the CastSpel() method.
Each of the portraits also includes a Circle Collider2D and a RigidBody2D compo-
nent. These components are using Unity’s 2D physics system and can be used

5.3. Unity 53

Figure 5.16: The percussion minigame.

to detect collisions, or triggers in this case, whenever it hits another object with a
2D collider. To detect collisions with the spell, each of the portraits also contains
a ReceiveDamageHandler script, of which the OnTriggerEnter2D() method is called
each time a spell hits its collider, after which the health bar is updated according
to the opponent’s damage. The minigame continues until either the player or the
enemy has run out of health, in which case the minigame is unloaded. For each
minigame, there is a custom game controller script, that specifically controls how
the game behaves and when spells are spawned, which will be discussed below.

Percussion

In the percussion game, a drum loop is played and the player needs to tap in the
right tempo of the song. The first implementation of this minigame was made
during our internship, which seemed to be very inconsistent in evaluating the
rhythm correctly. In this implementation, the beat was evaluated with respect
to the current beat of the song. We found out however that due to input lag
(especially for Windows devices) tapping in the beat would often be evaluated
as incorrect because the keypress would be observed after the beat. This would
result in the user needing to tap in off-beats, which felt very unnatural. In the new
implementation of the percussion game, instead of evaluating if the tap was exactly
on, or close to the beat, now the beats-per-minute (bpm) of the tapped tempo is
calculated and compared to the bpm of the song. The main script controlling this
is the BPMController. From within this script, the bpm of the song is extracted
from the EnemyData and the corresponding song is played at startup. To give
the player a reference of the right tempo, a circle starts to pulsate on the beat of
the song. For this, the DetectBeat() method checks if there is a beat detected for
every frame, by starting a timer and comparing this to the beat interval of the
song. When detected, the circle is expanded of which the magnitude decreases
with each successful evaluation, and increases with each unsuccessful evaluation.
This is implemented to make sure that the player does not solely rely on visual
cues and has to focus on listening. Each time the player taps the maraca is excited
by using the exposed parameter Maracas_excited and setting it to true. To provide
the user with feedback on the current beat in the measure, the circle partially fills

N

54 Chapter 5. Implementation

Figure 5.17: The harp minigame. After the harp enemy played the reference melody, the player’s
harp becomes interactable and the first string that needs to be excited becomes indicated with an
arrow. Then, the other string is played, and the played melody is evaluated as successful.

up for each tap as well. After four taps, the bpm is evaluated. This is done by
calculating the average time in between the four beats:
float averageTime = ((tapTime[1] - tapTime[0]) + (tapTime[2] - tapTime

[1]1) + (tapTime[3] - tapTime([2])) / 3;
evaluatedBpm = (float)System.Math.Round ((double) 60 / averageTime, 2);

Harp

Most of the harp minigame’s functionality is determined by the HarpGameCon-
troller script. When the minigame is loaded, some parameters are set according
to the specific enemy that the player is fighting, These parameters, are the root
frequency, the intervals of the strings in respect to this root frequency, the num-
ber of notes in the melody, and the interval time between the notes of the played
reference melody, are extracted from the EnemyData and set at Start(). Next to
that, the physical parameters of the model are set within the inspector using the
exposed parameters of the plugin. After startup, three main steps are followed
repeatedly in consecutive order. The first step in the loop is to create a reference
melody (void CreateReferenceMelody(int nNotes)), with takes as input the number of
notes in the melody. After this, the next step is to play the reference melody (
IEnumerator PlayReferenceMelody()), which return-type is an IEnumerator making it
possible to play the melody with the right interval lengths. Lastly, the harp is made
interactable and the program waits for the player to play the melody, which is then
evaluated using the method public void CheckCorrectMelody(double f0).

The player’s harp consists of three strings, each with a ExciteString script, which
excites the string whenever the player drags over or clicks on the string. It does
so by first calculating the excitation location by subtracting the string’s y position
from the mouse’s y position and adding up the bounds of the BoxCollider2D, after
which the audio parameter is changed:

float excitationPos = mousePos.y -
transform.position.y + 0.5f * collider.bounds.size.y /

collider.bounds.size.y;
audioMixer.SetFloat("StiffString_ePos", excitationPos);

5.3. Unity 55

Figure 5.18: The violin enemy plays one or more reference notes, which the player needs to imitate,
by dragging the bow with the right velocity over the string while clicking the mouse button.

In order for the HarpGameController script to play the reference melody, the
ExciteString script also includes a public method void ExciteFromScript(float excita-
tionPos), of which the excitation location can be freely chosen. For consistency, this
excitation location, when playing the reference melody, is always the same, but we
could introduce slight variations to make it more difficult at higher levels.

When the location has been set the ExciteString script excites the string of the
physical model by putting the exposed parameter “StiffString_excited” to true. Each
string also has an Animator component attached which animates the string when-
ever it is excited.

Violin

The violin minigame works in many ways the same as the harp minigame, with
two main differences. With this game, the duration of the played note is evaluated,
and the player excites the string by dragging the bow over the string of the vio-
lin. The violin consists of four strings that are tuned each with five semitones in
between (0, 5, 10, and 15 semitones respectively), but with a variable root note ac-
quired from the EnemyData of the violin monster. The main script controlling this
scene is the ViolinGameController, which sets the frequency of the strings, changes
the physical parameters of the StiffStringPlugin, and sets the excitation type of the
plugin to bowed, by changing the exposed parameter "StiffString_eType”. After all
the parameters have been set, the game starts by looping through the three main
stages. First are the reference note lengths, which consist of one or more notes
(depending on the EnemyData.nNotes) each with a random duration between 1 and
2.5 seconds. Then these notes are played using the method IEnumerator PlayRef-
erenceMelody(), which plays the reference notes from script by changing the bow
velocity to 0.2 (slowly increasing to create a smooth transition) for the duration of
the reference note, after which the velocity is changed back to zero. When there are
more notes in the melody, it waits for a set amount of time (EnemyData.interval Time)

)

56 Chapter 5. Implementation

to prevent notes to be connected. Because of the non-linear interaction of the bow
and the slow attack and decay of the notes, the reference note lengths might not
correspond to the perceived note lengths when the plugin is played from script.
To get a more accurate representation of perceived note lengths these note lengths
are recorded while the bow is excited from script. This is done by start record-
ing the note length when the intensity is above a certain threshold, and stopping
when the intensity goes under the threshold. For this, the Audio is routed back
to an AudioSource using Native Audio SDK’s Audio Routing plugin [°, and then
the intensity is calculated by the root mean square of the audio in the GetVolume()
method:

void GetVolume ()

{
gameUbject.GetComponent<AudioSource>().GetOutputData(samples, 0);
// £ill array with samples
int i = 0;
float sum = 0;
for (i = 0; i < gSamples; i++)
{
sum += samples[i] * samples[i]; // sum squared samples
}
rmsValue = Mathf.Sqrt(sum / qSamples); // rms
}

After the notes are played from script and the note lengths are recorded the
violin strings and bow show up, and the string that needs to be excited becomes
intractable. While the player drags the bow over the string both the excitation
position and velocity are calculated and used to control the plugin. When the
sound intensity is above the threshold, the note length is being recorded in the
same way as before, and the string is animated by getting changing the vertical
position of the string according to the intensity of the sound:

Vector3 vibration = new Vector3 (0, (rmsValue / 3.0f) * Mathf.Sin(2 *
Mathf .PI * 10 * Time.time), O0);

strings [currentString].transform.localPosition = stringPositions/|[
currentString] + vibration;

When the player releases the mouse button, the played note length is compared
to the recorded reference note length. The amount that this can be outside of the
reference is dependent on the error margin set in the enemyData, which decreases
for higher difficulty.

Guitar

In the guitar minigame, the player needs to tune the guitar according to a reference
frequency that is played. To do so, the player needs to click and rotate the tuning

B3https:/ / github.com /Unity-Technologies/NativeAudioPlugins

5.3. Unity 57

Figure 5.19: The guitar minigame. The guitar monster plays a reference note, after which the guitar
becomes visible and intractable. To make it slightly simpler, an arrow shows if the guitar has to be
tuned up or down. The player can tune the guitar by clicking and rotating the peg and excite the
string by clicking any key.

peg of the guitar and can excite the string by clicking any key on the keyboard. The
main script controlling this scene is the PegRotationController. Just like some of the
other minigames, this script first changes the fundamental frequency of the guitar
string at Start(), according to the EnemyData, by changing the exposed parameter
"DynamicString_f0". To allow smooth frequency changes that are needed for tuning
a string, this plugin also has a modulation parameter. The PegRotationController
has several stages that are looped throughout the minigame. First, it creates a new
random reference interval value, which has a minimum and a maximum value
determined by the EnemyData. Then this reference frequency is played by exciting
the string of the plugin by setting the exposed parameter "DynamicString_excited”
to true. In the final stage, the player needs to find the right pitch by rotating the
peg while exciting the string. The string is animated in a similar way as in the
violin minigame, where the intensity of the sound changes the vertical position of
the string. The functionality of the peg is implemented by using the EventTrigger
component that is attached to the peg GameObject. This component has two events:
Drag and EndDrag. The Drag event is triggered while the player is dragging the
peg. This starts a countdown, in which the player has to find the correct pitch, and
updates the modulation parameter according to the rotation of the peg. The pitch
is evaluated either when the EndDrag event is triggered, signifying that the player
has released the peg, or when the countdown has run out. The allowed margin
of error that the player may either be above or below the reference pitch, is also
dependent on the EnemyData and decreases for higher levels.

Sound Puzzle

In the sound puzzle, depicted in Figure [5.20, the player needs to recreate a melody
by guiding music notes through the correct sound spheres by drawing lines on the
screen. The scene consists of three buttons, one for playing the melody, one for
spawning the music notes, and one for deleting the previous line that the player
has drawn. As described in section the sound for this minigame is synthe-

58 Chapter 5. Implementation

Figure 5.20: The sound puzzle minigame.

sized by an additive synthesizer. This minigame has, other than recreating the c#
implementation of the synthesizer to c++, and creating more presets, not received
significant changes since the internship. In short, the PuzzleGameController script,
the main script controlling the scene, initialized the sound spheres according to
a preset containing the number of sound spheres, their location, and fundamen-
tal frequency. This preset also determines what sound spheres need to be played
and in what order. Each sound sphere controls one of the voices of the Addi-
tiveSynthesizerPlugin by changing the exposed parameter "AdditiveSynth_v#", with
indicating the voice number. The PuzzleGameController script also sets the audio
preset of the plugin at Start(), by changing the "AdditiveSynth_preset” parameter.
To provide a rich sound this preset is set to a saw-tooth waveform by default.

Chapter 6

Evaluation

The results of various evaluations are provided in this section. These include per-
formance tests, initial user tests during the CoolHear Workshop, and a user expe-
rience study.

6.1 Performance Testing

Relating performance, we had two assumptions that we wanted to evaluate. First,
we expected C++ plugins to be preferable to doing all sound synthesis in Unity
because of the higher efficiency, but how significant are the benefits of using audio
plugins? Secondly, as 2D game environments are generally not difficult to run for
modern devices, we envisioned that the application would run on most devices.
However, considering we implemented more complicated audio plugins we de-
cided to analyze how well it was running on different devices before doing the
actual user tests.

Audio Plugins

To find out if it is worth the additional effort of creating the audio plugins in C++
and controlling them from within Unity, we first compared their performance. For
this, we created a blank Unity project and created a new scene with only one Audio
Source component. Then in the first test, we compared the Audio CPU load be-
tween the two implementations of the Stiff String. Figure [6.1|shows Unity’s Profiler
from which can be observed that the CPU load of the C++ implementation was
around 1.6%, and of the C# implementation was around 36% while continuously
exciting the string with a fundamental frequency of 220 Hz. To find how much
this affects performance, we compared the frame times between the two as well.
By recording the frames using the Profiler we could compare the two using Unity’s

Thttps:/ /docs.unity3d.com /Manual / Profilerhtml

59

60 Chapter 6. Evaluation

1§ Audio . 4 Audio

Playing Audio Sources s Playing Audio Sources
Audio Voices Audio Voices
Total Audio CPU Total Audio CPU

= Total Audio Memory = Total Audio Memory

m(Video m Video

Tatal \lidan Qaiirrac Tatal \lidan QAnirrac

Simple ~ Simple ¥

Total Audio Sources: 1 Total Audio Sources: 1
Playing Audio Sources: 0 Playing Audio Sources: 1
Paused Audio Sources: 1 Paused Audio Sources: 0
Audio Clip Count: 0 Audio Clip Count: 0
Audio Voices: 0 Audio Voices: 1

Total Audio CPU: 1.6 % Total Audio CPU

DSP CPU: 1.6 % DSP CPU: 36

Streaming CPU: 0.0 % Streaming CPU: 0.

Other CPU: 0.0 ¢ Other CPU: 0.0 ¢

Total Audio Memory: 1.4 MB Total Audio Memory: 1.5 MB
Streaming File Memory: 0 B Streaming File Memory:
Streaming Decode Memory: 0 B Streaming Decode Mel
Sample Sound Memory: 0 B Sample Sound Memory:
Other Memory: 1.4 MB Other Memory: 1.5 MB

Figure 6.1: Audio comparison between the C++ (left) and the C# (right) implementation of the Stiff
String model with a fundamental frequency of 220 Hz.

’ fo = 220Hz ‘ C++ ‘ C# ‘ Difference ‘ Percentage ‘

Min (ms) 1.32 2.68 9.31 49.25 %
Max (ms) 8.29 15.63 13.03 53.04 %
Median (ms) | 1.37 8.12 6.75 16.87 %
Mean (ms) 1.47 8.54 7.07 17.21 %
Avg fps (Hz) | 680.27 | 117.10 563.17 580.95 %

Table 6.1: Comparison of frame time and frames per second (fps) between the C++ and C# imple-
mentation of the Stiff String model. In total the frame time of 500 frames were recorded using the
Profiler and compared using the Profiler Analyzer.

Profiler Analyzer of which the data can be seen from Appendix@ In Table|6.1|the
results of the frame times are compared to recordings consisting of 500 frames of
each implementation. From this can be seen that the average frame time of the C++
implementation is 1.47 ms, and that of the C# implementation is 8.12 ms. When
calculating this to the number of frames per second (fps), the C++ implementation
turned out to be 580.95 % faster.

Overall Performance

To get an idea of the overall performance of the application we compared the aver-
age fps between four devices, each with different specifications. The frames were
captured using the Profiler from within the editor while playing two scenes: the

Zhttps:/ /docs.unity3d.com/Packages/com.unity.performance.profile-
analyzer@0.4/manual/ profiler-analyzer-window.html

6.2. CoolHear Workshop 61

Device HP Omen 15 | HP zBook | MacBook | Desktop
Year 2021 2015 2015 2018
OS Windows Windows | MacOS | Windows
CPU AMD 5800H Intel i7 Intel i7 Intel i5
Dedicated GPU RTX 3060 - - GTX 1050
FPS Dungeon 201.61 134.22 77.04 147.28
FPS Minigame 143.27 101.01 38.83 136.61

Table 6.2: Comparison of the average frames per second (fps) between four different devices when
playing the game in two different scenes. In total the frame time of 500 frames were recorded using
the Profiler and analyzed using the Profiler Analyzer.

dungeon, and the percussion minigame. from within the editor on four different
devices with different specifications. In Table the results are outlined of the
calculated average fps. From this can be seen for each instance the framerate is
above 30, even for older devices. Next to this, when running the minigames the
fps is significantly lower than when running the dungeon scene alone.

6.2 CoolHear Workshop

The CoolHear Workshop was an event organized by the Multisensory Experience
Lab in Aalborg University CPH, the Center of Hearing and Balance at Rigshospi-
talet, and the Royal Danish Academy of Music. The goal of this workshop was to
provide a hands-on listening experience for people with hearing impairments, al-
though, many others visited, including Medialogy students of Aalborg University
CPH and audiologists. To gain initial feedback, and insights on the usability of
the application, we used this opportunity to demo our game throughout the day.
The demo was running on two laptops, with both a mouse and wired headphones
connected. During the day observations and feedback were collected, of which the
full report can be found in Appendix D]

Visitors were advised to play the demo first. Completion of the tutorial took
around 5-10 minutes. Most people stopped playing after 5-15 minutes. However,
on some occasions participants kept playing the game, sometimes reaching level 3
or 4, playing over 20 minutes. The majority of people seemed to understand all the
goals, including exploring, playing minigames, and proceeding to the next levels.
On a few occasions, however, it happened that a participant did not immediately
know how to play the minigames. Although this seemed only the case either
when the participant did not play the tutorial beforehand, or accidentally skipped
the tutorial videos. Most people that gave feedback found that it had the right

3https:/ /melcph.create.aau.dk/coolhear-workshop /

62 Chapter 6. Evaluation

difficulty, although some said that there was a high learning curve for some of
the minigames, such as the guitar and the puzzle game. One participant stated “I
found it really intuitive, and I heard myself get better” and another one said, “the
interactions felt natural”.

Interestingly, the way participants played the minigames differed sometimes
from how we envisioned them to be played. One instance of this is the percussion
game, where some players did not tap continuously on the tempo, but in rounds.
Some people had the problem of finding the right BPM and played either in double
tempo or half tempo. This indicated that it was not clear that the pulse of the circle
represented the right BPM.

The harp and violin minigames seemed pretty easy to most players. Some
people seemed to be confused about the harp playing the reference strings at the
beginning of the minigame and thought it was part of the melody that they needed
to recreate. The violin was also well received and was perceived as fun. One person
stated that he liked the sound overall, but specifically of this game.

The guitar was the hardest of the minigame for most participants. Apart from
the interaction that was slightly more complicated for this minigame, it seemed
difficult for most people to remember the reference pitch. One person suggested
that it would be nice if the reference pitch could be heard again. One participant
with musical experience found a way to perform better by humming the pitch
herself to remember it.

Overall the game performed quite well with no major technical issues. One bug
that appeared, however, was that the guitar disappeared when the player ran out
of time (timer zero).

Apart from insights of NH listeners playing the game discussed above, also
one hearing aid (HA) user and one CI user played the game, both around 11 years
old. In both cases, communication went in English via the parent. The HA user
found the guitar game very difficult and did not understand what to do. Other
minigames were a lot easier for him to carry out. The CI user was able to play all
minigames without any difficulty, and specifically said during playing the violin
that he found it too easy.

6.3 User Experience

We evaluated the user experience both quantitatively and qualitatively. In order
to get a general idea of the user experience, and identifying possible flaws, we
evaluated the game on NH listeners using an online survey. Secondly, in order
to get more in-depth insights on the thoughts and feelings of some CI users we
conducted interviews.

6.3. User Experience 63

6.3.1 Online Survey

To get insights into the user experience of our application, we created a question-
naire for NH people that needed to be filled out after they had played the game.
The questionnaire consisted of installation and play instructions, and three main
sections with questions, including background questions, the user experience ques-
tionnaire (UEQ), and additional questions to make it easier for us to interpret the
data. The UEQ [*|is designed to get a good understanding of the user experience
and usability by measuring both classical usability aspects (efficiency, perspicuity,
dependability) and user experience aspects (originality, stimulation). This is done
using 26 questions that each have a seven-point scale with two opposing words on
either side (semantic differentiation). The final sections of the questionnaire con-
sisted of both 5-point Likert-scale and open questions to get more in-depth insights
into the users’ thoughts on sound quality, interaction, and music training.

Results

We received 23 responses, of which two persons were not able to install the game
and one person was filtered out because of too many inconsistencies in the UEQ.
Participants’ ages ranged from 15 to 32 years old (M = 24,75, SD = 3,40) and
played the game on average for around 30 minutes, using mostly wired head-
phones (few exceptions with people wearing wireless earphones). Most respon-
dents were experienced in playing video games, with most of them playing either
daily or multiple times a week.

The results of the UEQ were analyzed using the UEQ Data-Analysis Tool "} For
almost all questions, the mean was rated above 1, except the usual-leading edge (M =
0,3) and fast-slow (M = —0,2) questions. In the UEQ the data is grouped into six
scales, of which the results are given in Figure Here, Attractiveness scored the
highest (M = 1,92, SD = 0,46), followed by Perspicuity (M = 1,56, SD = 0,55),
Stimulation (M = 1,49, SD = 0,58), and Dependability (M = 1,48, SD = 0, 31).
The lowest scores were obtained for Efficiency (M = 1,00, SD = 0,61) and Novelty
(M =1,20, SD = 0,41). These results can be grouped further into three categories:
Attractiveness (M = 1,92), Pragmatic quality (M = 1,35), and Hedonic quality
(M =1,34). Here, the pragmatic quality consists of the Perspicuity, Efficiency and
Dependability, and the Hedonic quality of Stimulation and Novelty. In order to
test if the user experience is ‘sufficient’, we used UEQ’s benchmark comparison
tool [51], of which the results are shown in Figure Here, the results of each of
the scales are compared to existing values from a benchmark data set, consisting
data from 21175 persons from 468 studies. Here, Attractiveness scored Excellent (in
the range of the 10% best results), Stimulation and Novelty scored Good (10% better,

“https:/ /www.ueg-online.org/
5htt—ps: / /www.ueg-online.org/

64 Chapter 6. Evaluation

&

Figure 6.2: Results of the UEQ. Mean and standard deviation for each scale.

75% worse), Perspicuity and Dependability scored Above Average (25% better, 50%
worse), and Efficiency scored Below Average (50% better, 25% worse).

In addition to the UEQ, we added one open question for people to give sug-
gestions to improve the overall game experience. Here, some people indicated that
they had missed the tutorial videos (accidentally skipped it by clicking next), or
that a voice-over explaining the interaction could make it more clear what to do.
One participant suggested adding more instrument monsters, for example, wind
instruments. Another found that, although it was fun at first, it lacked variety, the
game phase was very slow, and it took much time to explore the full dungeon.
Three people indicated that they had issues playing the harp, either because it was
too difficult, or because they felt it was evaluated randomly. One participant sug-
gested improving the latency in the drum game, and one participant had to quit
the game because of a frozen screen after level 4.

6.3. User Experience 65

2,50 -
2'00 b I .
Above Average

0,50 Below Average
0,00 - . Bad
e \ean
-0,50 -
-1,00 - : :

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

s Excellent

s Good

Figure 6.3: Results of the UEQ benchmark.

The final section of the questionnaire consisted of three five-point Likert-scale ques-
tions in combination with open questions for more explanation and feedback. The
mean and standard deviations are given in Figure Of these, the question "How
realistic do you find the sounds of the instruments in each minigame?", got rated
the highest (M = 4,25, SD = 0,79). Most people seem to find it accurately repre-
sents real instruments. One participant stated “They sound like they do in real life”,
and another one said, “I'm used to playing instruments and they sound pretty alive”.
However, one participant mentioned that the guitar sounded artificial in the higher
registers, and some others stated that the harp and violin were slightly synthetic or
missing something. Additionally, one participant perceived cut-outs in the sound.

The question "To which degree do you think the minigames increase your un-
derstanding and perception of musical aspects like pitch, timbre, and rhythm?"
was rated slightly lower (M = 3,95, SD = 1,00). One participant stated: “They are
very simple and effective in representing the musical aspects”. Two participants said that
it would be for people that are not musically inclined, although another participant
with more musical experience said: “The pitch game is a nice training though, and the
interval game can be useful training if expanded”. Also, another participant said that it
could increase the perception of these musical aspects even for people that are not
hearing impaired. One participant said that the game gives a good foundation of
the musical aspects but lacks proper explanation.

The question "To which degree do you think interacting with the simulated in-
struments inside the minigames will improve your perception and understanding
of real instruments?", was rated the lowest (M = 3,3, SD = 1,22). Here, respon-
dents who gave a lower score indicated that it was because they are experienced
in playing musical instruments. Others mentioned that even though it can help,
playing physical instruments is better and that the ‘feeling’ of playing an instru-
ment is critical. One participant stated: “I definitely think it will improve perception.

66 Chapter 6. Evaluation

Sound Realism Instrument Education Music Training

Figure 6.4: Results of the sound and training related questions

Especially for bowed instruments whose interaction gives a very distinct/sustained sound.
By playing with this one might attune to the behaviour and will maybe be able to recognize
it in a musical context”. However, another participant mentioned that it could have
helped in understanding the instruments if free-play was possible, as opposed to
the single-click interactions.

Two final open questions were about the difficulty and optional general feed-
back. Most people said that all minigames got easier after getting used to the
game mechanics and interactions. Two indicated that all got easier except for the
violin, and another said there was a slight learning curve in dealing with the bow
of the violin. One participant said: “It also gets easier to remember e.g. the pitch in
the guitar game, which makes it easier to recreate”. One participant mentioned that
the minigames got harder the further you proceeded into the game. As final feed-
back, some participants emphasized that they liked the artwork and animations.
One participant said that the puzzle game would be less relevant as it does not
represent a real instrument. Some people also mentioned possible improvements
to make it less cumbersome to walk around, like being able to zoom in on the
minimap or teleport.

6.3.2 Interviews

To complement the user experience questionnaire presented above, we also con-
ducted semi-structured interviews with CI users from our target group to get more
in-depth insights into their experience, feelings and thoughts. For this we focused
on acquiring knowledge about their opinions on the instrument interactions and
sounds. We conducted two interviews via Teams with a 10 and 11 year old CI
user. The interviews were around 50 minutes and 30 minutes respectively. The

6.3. User Experience 67

Theme

Game - Difficulty Game - Experience/Engag.. Game - Sounds Game - Systems Game - Technical Issues

0,40

0,30

0,25

0,10

. l l
P.1 P.2 P.1 P.2 P.1 P.2 P.1 P.2 P.1 P.2

Figure 6.5: Interview categorisation of common themes of feedback and their frequency for each
participant.

o
N
o

Frequency of Theme Discussed
o
=
(03]

second participant had one of his mother help him answer some questions as she
was also present whenever he played the game. Interviews were conducted based
on a semi-structured interview outline which can be found in Appendix

The interviews were transcribed (Appendix [D) and then analyzed and cate-
gorized to be able to summarise different themes of discussion (as color codes).
Figure [6.5] gives a brief overview of the themes and parts of the game that were
discussed with each participant. The feedback from the interviews was categorized
into themes, including the game’s difficulty, game experience or engagement, game
sounds, game systems, or technical issues. This system provides an overview of
the frequency of each theme being addressed by the participants. From this it can
be observed that both participants frequently addressed their engagement with the
game, but participant one addressed many of the game systems during his inter-
view, and participant two addressed the sounds more often. Each participant’s
feedback is elaborated more in-depth in the sections below.

Participant 1

Participant one was a 10 year old boy with bilateral CIs. His obtained his right
CI one year ago and just received his left one, of which he was still recovering
from. Due to this he was yet unable to hear with his left CI and was relying solely
on his right CI to listen while playing the game. He was generally not actively

68 Chapter 6. Evaluation

engaging with music, other than when he heard it in television commercials or
as background music for visual content. Music was generally not bothering him
but he found specific melodies and especially dynamically quiet music to sound
annoying. He specifically mentioned that violin music was unpleasant for him to
listen to. Participant one liked to play video games on computer and PlayStation
such as fighting, exploration, and social -games.

Participant one played Uncharted Chants over a period of two weeks and he
said that he played around two hours per day with only a couple of days where
he was not playing. To him, Uncharted Chants was fun and engaging. He said
that he enjoyed playing the game in general and that he was motivated to play
again each day. When he was asked if he looked forward to playing the game
or if it felt more like a chore to him, he replied: “Nahh it was actually for pure
enjoyment”. Furthermore, he addressed many systems in the game, such as the
item upgrades, currencies, and shop-rooms, and seemed to have understood the
systems and shared his tactics on how to optimize his performance in the game
using various items. The interactions of the minigames made sense and were easy
for him to grasp. He could beat every minigame in all levels up until the final boss
level. However, he tried to avoid the violin instrument monster because he found
the sound of it unpleasant and he reported that he found the harp more challenging
than the guitar and the percussion instruments. He found the puzzle minigame a
bit difficult to understand at first but he then found out how it worked and was
able to consistently succeed in it. When he played, he reported to have reached
the final boss level several times but he, for the time being, failed to beat the
boss. He said that the harp-instrument monster in the boss level was currently too
difficult for him mostly due to the speed at which the notes of the reference melody
were played. He mentioned that for each playthrough he prioritized playing all
instrument minigames in each level with the purpose of training his perception
so that he could beat the boss. He elaborated on his experience stating: “The first
many times I did speed-runs, I avoided all monsters [...]” then “But then I found out that
you have to practice quite a lot to reach the boss so now I [...] go around and beat all the
monsters in each level”.

Participant one found the overall game really fun and after the two weeks he
had the game, he was still motivated to play more. He found the harp strings to
have a pleasant sound and he liked the percussion beats, stating that: “[...] the
harp gives nice sounds which are not annoying, it is such a relaxing melody one could say.
It is really only the violin that is a bit annoying, otherwise, everything else is fine”. He
even recorded some of the percussion-instruments beats because he liked to just
listen to them. For him, the guitar sounds were pleasant as well and were working
well for him to indicate the tuning of the guitar in the guitar training exercise.
However, he found the synthetic saw-waves of the puzzle minigame to be more
clear and easy to perceive than the harps string sounds. Participant one reported

6.3. User Experience 69

some technical issues that he noticed while he was playing. First, the game did not
save his progress when he exited during a playthrough. Then, he found that the
harp monster had a weird spinning behavior sometimes which made it difficult
to dodge. Finally, he reported that he noticed some parts of the game would
be in English even though he selected danish. He added that he found himself
improving his performance in the training exercises towards the end of each of his
playthroughs and that this was why he was confident that he could beat the boss.
Participant one previously used another perception training app that focused on
training speech and everyday sounds. He said the app had helpful exercises but
that he would rather play Uncharted Chants because he found it more fun. He also
mentioned that he would recommend Uncharted Chants to other CI users that had
recently received their implants as he thought the game was good for training
perception.

Participant 2

Participant two was a 11 years old boy who also had bilateral CIs. He acquired
his CIs when he was 9 months old. He was not interested in listening to music on
his own but when he encountered music as part of other media, such as games,
television etc., he generally likes it. He liked playing video games, specifically
sports games like soccer or basketball, on either his PlayStation or phone, and with
his friends.

Participant two played Uncharted Chants two times for 30 minutes each ses-
sion and was generally not motivated to play it on his own. He found that he
understood how the minigames worked from the tutorials but found the guitar
minigame difficult to succeed in. He found the violin difficult as well but did like
the sound of it as he answered: “It sounded good, it sounded like a real violin.” when
asked about the sound of the violin. He found that with the violin it felt like he
had to let go of the bow a little bit early for it to evaluate as successfully, which
made it more difficult. Generally, participant two liked the sounds in the game
and reported that he liked especially the violin and harp string sounds. He said
that he found the sounds realistic and that he liked the string sounds more than
the puzzle’s saw-wave tones because they sounded like actual strings. None of the
sounds were unpleasant or annoying to participant two. Participant two also liked
the percussion beats and reported that he enjoyed listening to those. Participant
two found that in the beginning he was confused with the harp strings having dif-
ferent timbres when interacting differently. He listened for the exact same sound
as the reference and was confused when he played a string that did not have the
same sound (even though it played the same note).

In the beginning, he did not understand the concept of the game and why
he had to play from the beginning again after he died. He felt that it was a bit
demotivating to lose his coins. But after he understood that he kept the musical

70 Chapter 6. Evaluation

essence and could upgrade the character he understood why he had to play from
the first level again. He also found that if he closed the game in the middle of a
level he would lose the progress that he had and would have to start over, this was
also demotivating for him.

Participant two had tried another music training app in VR and he thought
that he would rather play a music training game on the computer. He reported
also that he thinks the game works well on computer and that he thinks it works
better than it would on PlayStation or a phone as he stated: “I think computer works
best. It would not be good on a PlayStation because. .. I can not explain it. On the phone,
it would probably lag too much”.

Chapter 7

Discussion

During the evaluation we have gained various insights regarding the current per-
formance and usability of Uncharted Chants, and its user experience regarding
both NH listeners as CI users. These are discussed below.

Firstly, even though Uncharted Chants has not been optimized, it runs suffi-
ciently on all tested devices. For all devices in the performance test, the game was
running effortlessly with sufficient frame rates. Probably contributing to this per-
formance is the way we implemented the physical models as the results show that
C++ has a significant advantage over implementing them using Unity’s C# scripts.
Some respondents of the survey were not able to install the game (2 out of 23),
which was likely due to Windows” antivirus software labeling it potentially harm-
ful when downloading. Besides that, other than a few bugs reported, no major
problems were found when playing the game. This indicates the game’s potential
for using it for a wide audience and various devices.

Results from the UEQ indicate that Uncharted Chants has a high user experi-
ence score, with positive ratings for both the Attractiveness, Pragmatic quality and
Hedonic quality. From the benchmark, we can interpret the data better, with the
Attractiveness scoring ‘excellent” and all other scales scoring ‘higher than average’,
except for the Efficiency scale scoring ‘below average’. This scale scoring worse is
due to the game being perceived as slightly slow. Although it is difficult to say
why this is from the UEQ alone, the attached open questions could give a bet-
ter indication. Here, elements like the time it takes to explore the dungeon and
slow walking speed were mentioned, which indicate aspects to further improve
the rating for this scale. Next to this, another factor possibly influencing the user
experience, is that the interactions were not always as clear. Especially the guitar
and violin minigames seemed to be significantly more difficult than the percussion
and harp minigames. This can be both due to the interactions being more com-
plex as well as the listening exercise being more difficult. This could be due to
the tutorial videos being unclear or that users accidentally skipped them as some

71

72 Chapter 7. Discussion

participants reported.

The results from the interviews indicate that the game can be perceived as
highly engaging for CI users as well. This became evident as one out of the two
CI users was motivated to play the game daily. However, the level of engagement
seems to be strongly dependent on the user’s personal preferences towards game
genres. For example, when the user is more interested in other types of games,
like social or sports, the game can be less engaging. Both CI users reported to
have used other tools for perceptual training, including both speech and music,
and mentioned that they would prefer training their perception using Uncharted
Chants. Although we do not know the specifics of these tools, this could be due to
the game-based learning approach that we took.

The implemented difficulty system seems to be approachable to most partici-
pants. The CI users reported having reached level two or three the first time they
played the game. This was also observed during the CoolHear workshop where
the CI user did not have any issues with the starting difficulty. From this, it seems
like the low entry-level that we implemented works for a wide audience. However,
the way we designed the difficulty scaling, where the margin of error decreases for
higher levels, could potentially mean that CI users misinterpret their performance.
With the guitar for example, even if CI users tuned the guitar to the wrong pitch,
it still could have been evaluated as successfull. We tried to accommodate for this
by giving the user different feedback (e.g. ‘alright’, instead of ‘perfect’), but some
participants still reported that they felt like their input was evaluated randomly.
This issue could be addressed by implementing more detailed visual feedback for
all minigames, but most importantly the guitar minigame.

Regarding the sound of the implemented physical models, most respondents of
the survey considered it highly realistic. A few improvement points do exist, how-
ever, with some people indicating it was lacking ‘something’. This could be due to
the fact that we only modeled part of the resonator (e.g. the string), and not full
instruments (adding the bridge, body;, etc.). The CI users enjoyed most of the used
sounds, although there was a slight difference found between them. The prelin-
gual CI user indicated that all instrument sounds were realistic and sounded good,
preferring them over the synthetic sound of the puzzle game. The post-lingual
CI user, however, found the violin highly unpleasant and found the sound of the
puzzle clearer. This might be because he only had his CI for one year and therefore
was still training and adapting to electrical hearing, as opposed to the participant
that used CIs almost his whole life who found the violin sound satisfying and re-
alistic. Some participants reported being confused about the different sounds they
were able to produce while playing the harp strings, including one CI user. This
indicated, that even though it was not clear that the sound was dependent on the
interaction, some CI users may be sensitive to small perceptual changes in timbre.

Although we did not specifically evaluate the game in terms of training out-

73

come, we can discuss its potential. From the survey, most people see the potential
of playing instruments for music training and found that the minigames conveyed
the foundations of the different musical aspects, like pitch, timbre, and rhythm.
Potentially, it could even be used as a music training tool for NH listeners when
adjusting the difficulty accordingly. Additionally, one CI user indicated that he
would recommend the game to others that recently obtained their CIs, as he found
it helpful for rehabilitation. Some participants reported that one way to complete
a level very fast was to avoid walking into instrument monsters in the dungeon.
Exploiting this shortcut might result in worse performance in higher levels, where
the training exercises are more difficult and sufficient training exposure is required.
However, for higher performing CI users this ultimately results in limited exposure
to perception training and should be addressed in future iterations of the game.

Limitations

Certain limitations affect the level at which generalization of the results is possi-
ble. The biggest of which is the sample size of the CI user group. As a result of
difficulties regarding the recruitment of CI users, we were only able to interview
two CI users. Although this is sufficient for getting preliminary insights, it makes
it impossible to generalize the findings. For the UEQ the sample size was sufficient
in the way that it gave stable results (small standard deviation). However, it could
lack variety as most participants seemed to be highly engaged in games. Secondly,
the data is susceptible to bias. Although the survey was shared on forums, some
participants were acquaintances of ours. Additionally, even though we did not
know the interviewees, they were possibly encouraged by their parents to play the
game, skewing the results.

Chapter 8

Conclusion

During this project, we have designed and developed a music training game for
CI users, with the primary goal to make perception training fun and engaging.
While doing so, we tried to investigate the potential of using simulated instrument
sounds and interactions in training applications.

This game, named Uncharted Chants, shows that utilizing gamification prin-
ciples in music training practices can result in high engagement for some users.
However, the user’s preferences towards the game genre play a major role in the
exact level of engagement. The current state of the game is fully functional and has
shown to score high on user experience. Nevertheless, several shortcomings exist
regarding some game elements, like game speed, interactions, and bugs. Addi-
tionally, the game is built using systems that are easy to expand upon. This could
be done by adding, for example, more instruments, more levels, and different en-
vironments.

Using physical modeling for creating instrument sounds yields promising re-
sults in terms of perceived sound realism. Next to this, the different timbres,
created by different interactions can be perceived by CI users. This shows that
some users can notice small timbre differences, although it can also cause confu-
sion relating to the training exercise they need to complete. To familiarize the user
with the different interactions and timbre it would be ideal to implement a way for
users to play the simulated instruments freely, outside the training exercises. Fur-
thermore, it is yet to be determined if using physical modeling could potentially
educate CI users on the relationship between interaction and sound output, and
would be an interesting topic for further research and exploration.

Other possible future works include personalized difficulty scaling. Our cur-
rent system seems to be accessible for CI users, but mainly because of the low-entry
level, which can be too easy for higher-performing CI uses. A simple approach to
improve the current difficulty system could be by incorporating checkpoints that
let the player start every new playthrough from a previously reached checkpoint.

75

76 Chapter 8. Conclusion

However, the ideal way to improve the difficulty system is to develop a more versa-
tile system that could dynamically tweak the difficulty depending on how well the
player performs in the training minigames. Using this approach, the game could
also be targeted for NH listeners.

Finally, future work could show whether playing Uncharted Chants ultimately
increases music perception and music enjoyment, and to what degree. For this, a
long-term study could be conducted to see if music exposure in this form benefits
CI users.

Bibliography

[1]

8]

[9]

[10]

Peter W Alberti. “The anatomy and physiology of the ear and hearing”. In:
Occupational exposure to noise: Evaluation, prevention, and control (2001), pp. 53—
62.

Albena Antonova and Krassen Stefanov. “Applied cognitive task analysis
in the context of serious games development”. In: Third International Confer-
ence on Software, Services and Semantic Technologies S3T 2011. Springer. 2011,
pp- 175-182.

Adriano Barate, Mattia G Bergomi, and Luca A Ludovico. “Development of
serious games for music education”. In: Journal of e-Learning and Knowledge
Society 9.2 (2013).

Valentin Bégel, Antoine Seilles, and Simone Dalla Bella. “Rhythm Workers:
a music-based serious game for training rhythm skills”. In: Music & Science
1 (2018), p. 2059204318794369.

Stefan Bilbao. Numerical sound synthesis: finite difference schemes and simulation
in musical acoustics. John Wiley & Sons, 2009.

Stefan Bilbao et al. “The NESS Project: Physical Modeling, Algorithms and
Sound Synthesis”. In: (2019).

S. J. Brockmeier et al. “The music perception test: A novel battery for testing
music perception of cochlear implant users”. In: Cochlear Implants Interna-
tional (2011). 1ssN: 14670100. por: 10.1179/146701010X12677899497236.

Sandra Cano et al. “Model for Design of Serious Game for Rehabilitation
in Children with Cochlear Implant”. In: International Workshop on ICTs for
Improving Patients Rehabilitation Research Techniques. Springer. 2015, pp. 94—
105.

Graeme M. Clark. Personal reflections on the multichannel cochlear implant and a
view of the future. 2008. po1: 10.1682/JRRD. 2007 .05.0064.

Perry R Cook. “Physically informed sonic modeling (phism): Synthesis of
percussive sounds”. In: Computer Music Journal 21.3 (1997), pp. 38—49.

Perry R Cook. Real sound synthesis for interactive applications. CRC Press, 2002.

77

https://doi.org/10.1179/146701010X12677899497236
https://doi.org/10.1682/JRRD.2007.05.0064

78

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Bibliography

S. Erhel and E. Jamet. “Digital game-based learning: Impact of instructions
and feedback on motivation and learning effectiveness”. In: Computers and
Education (2013). 1ssN: 03601315. por: 10.1016/j . compedu.2013.02.019.

Deniz Eseryel et al. “An investigation of the interrelationships between moti-
vation, engagement, and complex problem solving in game-based learning”.
In: Journal of Educational Technology & Society 17.1 (2014), pp. 42-53.

Qian-Jie Fu and John J Galvin III. “Perceptual learning and auditory training
in cochlear implant recipients”. In: Trends in Amplification 11.3 (2007), pp. 193
205.

Nobuya Fujiki et al. “Correlation between rCBF and speech perception in
cochlear implant users”. In: Auris Nasus Larynx (1999). 1ssn: 03858146. por:
10.1016/S0385-8146(99) 00009-7.

T Fullerton, C Swain, and S Hoffman. Game design workshop: A playcentric
approach to creating innovative games. Amsterdam: Elsevier Morgan Kaufmann,
2008.

Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creating In-
novative Games. 2008. 1sBN: 9780240809748. arXiv: 9809069v1 [arXiv:gr-qc]l.

Kate Gfeller. “Music-based training for pediatric CI recipients: A system-
atic analysis of published studies”. In: European Annals of Otorhinolaryngology,
Head and Neck Diseases 133 (2016), S50-556.

Kate Gfeller, Virginia Driscoll, and Adam Schwalje. “Adult cochlear im-
plant recipients’ perspectives on experiences with music in everyday life: A
multifaceted and dynamic phenomenon”. In: Frontiers in neuroscience (2019),
p- 1229.

Kate Gfeller et al. “A preliminary report of music-based training for adult
cochlear implant users: rationales and development”. In: Cochlear implants
international 16.sup3 (2015), S22-S31.

Kate Gfeller et al. “Effects of training on timbre recognition and appraisal by
postlingually deafened cochlear implant recipients”. In: Journal of the Ameri-
can Academy of Audiology 13.03 (2002), pp. 132-145.

Richard L Goode et al. “New knowledge about the function of the human
middle ear: development of an improved analog model.” In: The American
journal of otology 15.2 (1994), pp. 145-154.

Juho Hamari. “Gamification”. In: The Blackwell Encyclopedia of Sociology. John
Wiley & Sons, Ltd, 2019, pp. 1-3. 1sBN: 9781405165518. por: https://doi.
org/10.1002/9781405165518 . wbeos1321. eprint: https://onlinelibrary.
wiley . com/doi/pdf /10 . 1002 /9781405165518 . wbeos1321. URL: https :
//onlinelibrary.wiley.com/doi/abs/10.1002/9781405165518.wbeos1321.

https://doi.org/10.1016/j.compedu.2013.02.019
https://doi.org/10.1016/S0385-8146(99)00009-7
https://arxiv.org/abs/9809069v1
https://doi.org/https://doi.org/10.1002/9781405165518.wbeos1321
https://doi.org/https://doi.org/10.1002/9781405165518.wbeos1321
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781405165518.wbeos1321
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781405165518.wbeos1321
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405165518.wbeos1321
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405165518.wbeos1321

Bibliography 79

[24]

Natalie A Hardie and Robert K Shepherd. “Sensorineural hearing loss during
development: Morphological and physiological response of the cochlea and
auditory brainstem”. In: Hearing Research 128.1-2 (1999), 147-165. por: |10 .
1016/s0378-5955(98) 00209-3.

Sibylle C Herholz and Robert] Zatorre. “Musical training as a framework
for brain plasticity: behavior, function, and structure”. In: Neuron 76.3 (2012),
pp- 486-502.

Hans Herzog et al. “Cortical activation in profoundly deaf patients during
cochlear implant stimulation demonstrated by h2150 pet”. In: Journal of Com-
puter Assisted Tomography (1991). 1ssN: 15323145. por: (10 . 1097 /00004728 -
199105000-00005.

Henkjan Honing. “Structure and Interpretation of Rhythm in Music”. In: The
Psychology of Music. 2013. 1sBN: 9780123814609. por: |10 .1016/B978-0-12-
381460-9.00009-2.

Nicole T Jiam, Meredith T Caldwell, and Charles J Limb. “What does music
sound like for a cochlear implant user?” In: Otology & neurotology 38.8 (2017),
€240-e247.

Patrik N Juslin and Daniel Vastfjall. “Emotional responses to music: The
need to consider underlying mechanisms”. In: Behavioral and brain sciences
31.5 (2008), pp. 559-575.

Robert Kang et al. “Development and validation of the University of Wash-
ington clinical assessment of music perception test”. In: Ear and Hearing
(2009). 155N: 01960202. DOI: [10.1097/AUD . 0b013e3181a61bcO0.

Nina Kraus et al. “Experience-induced Malleability in Neural Encoding of
Pitch, Timbre, and Timing: Implications for Language and Music”. In: Annals
of the New York Academy of Sciences 1169.1 (2009), pp. 543-557.

E de Larrea-Mancera et al. “Training with an auditory perceptual learning
game transfers to speech in competition”. In: Journal of Cognitive Enhancement
6.1 (2022), pp. 47-66.

Luis Lassaletta et al. “Changes in listening habits and quality of musical
sound after cochlear implantation”. In: Otolaryngology—Head and Neck Surgery
138.3 (2008), pp. 363-367.

Petri Laukka. “Uses of music and psychological well-being among the el-
derly”. In: Journal of happiness studies 8.2 (2007), pp. 215-241.

Huawei Li and Renjie Chai. Hearing loss: mechanisms, prevention and cure.
Vol. 1130. Springer, 2019.

https://doi.org/10.1016/s0378-5955(98)00209-3
https://doi.org/10.1016/s0378-5955(98)00209-3
https://doi.org/10.1097/00004728-199105000-00005
https://doi.org/10.1097/00004728-199105000-00005
https://doi.org/10.1016/B978-0-12-381460-9.00009-2
https://doi.org/10.1016/B978-0-12-381460-9.00009-2
https://doi.org/10.1097/AUD.0b013e3181a61bc0

80

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Bibliography

Charles J Limb. “Cochlear implant-mediated perception of music”. In: Cur-
rent Opinion in Otolaryngology & Head and Neck Surgery 14.5 (2006), pp. 337-
340.

Charles J. Limb and Alexis T. Roy. Technological, biological, and acoustical con-
straints to music perception in cochlear implant users. 2013. URL: https://wuw.
sciencedirect.com/science/article/abs/pii/S03785955130010207via
3Dihub.

Charles J. Limb et al. “Auditory cortical activity during cochlear implant-
mediated perception of spoken language, melody, and rhythm”. In: JARO -
Journal of the Association for Research in Otolaryngology (2010). 1ssn: 15253961.
DOI:[10.1007/s10162-009-0184-9.

Valerie Looi, Kate Gfeller, and Virginia D Driscoll. “Music appreciation and
training for cochlear implant recipients: a review”. In: Seminars in hearing.
Vol. 33. 04. Thieme Medical Publishers. 2012, pp. 307-334.

Valerie Looi and Jennifer She. “Music perception of cochlear implant users:
a questionnaire, and its implications for a music training program”. In: Inter-
national journal of audiology 49.2 (2010), pp. 116-128.

Medicine CI CI and Music. https://medicine.uiowa.edu/iowaprotocols/
music-and-hearing-loss/cochlear- implant-ci-and-music/cochlear-
implant-ci-pages-audiologists/cochlear. Accessed: 2022-05-18.

Philip H. Mirvis and Michael Csikszentmihalyi. “Flow: The Psychology of
Optimal Experience”. In: The Academy of Management Review (1991). 1ssN:
03637425. por1: 110.2307/258925.

Chisato Mitani et al. “Music recognition, music listening, and word recog-
nition by deaf children with cochlear implants”. In: Ear and Hearing (2007).
1ssN: 01960202. por: |10.1097/AUD.0b013e318031547a.

Yasushi Naito et al. “Increased cortical activation during hearing of speech
in cochlear implant users”. In: Hearing Research (2000). 1ssN: 03785955. por:
10.1016/S0378-5955(00) 00035-6.

Heather L O’Brien and Elaine G Toms. “What is user engagement? A concep-
tual framework for defining user engagement with technology”. In: Journal of
the American society for Information Science and Technology 59.6 (2008), pp. 938—
955.

Tae Hong Park. Introduction to digital signal processing: Computer musically
speaking. World Scientific, 2009.

Aniruddh D Patel. “Why would musical training benefit the neural encoding
of speech? The OPERA hypothesis”. In: Frontiers in psychology 2 (2011), p. 142.

https://www.sciencedirect.com/science/article/abs/pii/S0378595513001020?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0378595513001020?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0378595513001020?via%3Dihub
https://doi.org/10.1007/s10162-009-0184-9
https://medicine.uiowa.edu/iowaprotocols/music-and-hearing-loss/cochlear-implant-ci-and-music/cochlear-implant-ci-pages-audiologists/cochlear
https://medicine.uiowa.edu/iowaprotocols/music-and-hearing-loss/cochlear-implant-ci-and-music/cochlear-implant-ci-pages-audiologists/cochlear
https://medicine.uiowa.edu/iowaprotocols/music-and-hearing-loss/cochlear-implant-ci-and-music/cochlear-implant-ci-pages-audiologists/cochlear
https://doi.org/10.2307/258925
https://doi.org/10.1097/AUD.0b013e318031547a
https://doi.org/10.1016/S0378-5955(00)00035-6

Bibliography 81

[48]

Shu Chen Peng et al. “Perception and production of Mandarin tones in
prelingually deaf children with cochlear Implants”. In: Ear and Hearing (2004).
1ssN: 01960202. po1:/10.1097/01.AUD. 0000130797 .73809. 40.

Curtis Roads. The computer music tutorial. MIT press, 1996.

Thomas Schifer et al. “The psychological functions of music listening”. In:
Frontiers in psychology 4 (2013), p. 511.

Martin Schrepp. “User experience questionnaire handbook”. In: All you need
to know to apply the UEQ successfully in your project (2015).

Robert K. Shepherd and Natalie A. Hardie. “Deafness-induced changes in
the auditory pathway: Implications for cochlear implants”. In: Audiology and
Neuro-Otology 6.6 (2001), 305-318. por: |10.1159/000046843.

Julius O Smith. “Physical Audio Signal Processing for virtual musical in-
struments and digital audio effects”. In: online book at http://ccrma. stanford.
edu/jos/pasp/, Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University (2010).

Wooi Teoh Su, David B. Pisoni, and Richard T. Miyamoto. “Cochlear implan-
tation in adults with prelingual deafness. Part I. Clinical results”. In: Laryn-
goscope (2004). 1ssN: 0023852X. po1: |10.1097/00005537-200409000-00006.

Tero Tolonen, Vesa Vilimiki, and Matti Karjalainen. “Evaluation of modern
sound synthesis methods”. In: (1998).

Susan B. Waltzman, J. Thomas Roland, and Noel L. Cohen. “Delayed implan-
tation in congenitally deaf children and adults”. In: Otology and Neurotology
(2002). 1ssN: 15317129. por: |10.1097/00129492-200205000-00018.

Silvin Willemsen et al. “Dynamic grids for finite-difference schemes in musi-
cal instrument simulations”. In: 24th International Conference on Digital Audio
Effects. 2021, pp. 144-151.

Silvin Willemsen et al. “Real-time control of large-scale modular physical
models using the sensel morph”. In: 16th Sound and music computing confer-
ence. Sound and Music Computing Network. 2019, pp. 151-158.

Blake S Wilson and Michael F Dorman. “Cochlear implants: current designs
and future possibilities”. In:] Rehabil Res Dev 45.5 (2008), pp. 695-730.

Donald Wong et al. “PET imaging of cochlear-implant and normal-hearing
subjects listening to speech and nonspeech”. In: Hearing Research (1999). 1ssN:
03785955. po1:110.1016/50378-5955(99) 00028- 3.

Fan-Gang Zeng et al. “Cochlear implants: system design, integration, and
evaluation”. In: IEEE reviews in biomedical engineering 1 (2008), pp. 115-142.

Mohammad Zohaib. Dynamic difficulty adjustment (DDA) in computer games:
A review. 2018. po1:10.1155/2018/5681652.

https://doi.org/10.1097/01.AUD.0000130797.73809.40
https://doi.org/10.1159/000046843
https://doi.org/10.1097/00005537-200409000-00006
https://doi.org/10.1097/00129492-200205000-00018
https://doi.org/10.1016/S0378-5955(99)00028-3
https://doi.org/10.1155/2018/5681652

Chapter 9

Appendix

Appendices for this thesis are external and can be found in "External Appendix.zip"

which is included in the hand-in. It can also be accessed from Google Drive via this

link: https://drive.google.com/drive/folders/1GuDgbewn7EDOXor JVMWxsyUtsBaxQPy67?
usp=sharing.

A Internship

¢ Internship Report: A: Uncharted Chants: A game experience to engage
cochlear implant users in music-perception training exercises.pdf

* Concept idea descriptions and sketches: A: Initial concept-ideas.pdf
¢ Data of the idea evaluation questionnaire: A: Data Idea Evaluation.xlsx

¢ Results and graphs of idea evaluation: A: Idea Evaluation Results.docx

B Audio Plugins
¢ Additive synth JUCE plugin: B: /AdditiveSynthPlugin
e StiffString JUCE plugin: B: /StiffStringPlugin
¢ Dynamic string JUCE plugin: B: /DynamicStringPlugin

* Matlab implementations of physical models: B: /MATLAB

C Game Art
¢ Instrument monsters sprites: C: /Instrument Monsters

¢ Player character sprites: C: /Player Character

83

https://drive.google.com/drive/folders/1GuDqbewn7EDOXorJVMWxsyUtsBaxQPy6?usp=sharing
https://drive.google.com/drive/folders/1GuDqbewn7EDOXorJVMWxsyUtsBaxQPy6?usp=sharing

84 Chapter 9. Appendix

¢ Sound puzzle art: C: /SoundPuzzle

¢ Uncharted Chants logo designs: C: logo2.png and logo3.png

D Evaluation

* User experience questionnaire results: D: User experience survey/UEQ-Results.xIsx
and Results.xIsx

¢ Transcribed CI user interviews: D: CI User Interviews/Participant 1 - Tran-
scribed Interview.docx and Participant 2 - Transcribed Interview.docx

* Interview guide for semi-structured interviews: D: CI User Interviews/Semi
Structured Interview Guide.docx

e Performance test: C# and C++ comparison: D: Performance Tests/C# C++
comparison/

¢ System performance comparison: D: Performance Tests/System Performance
Comparison/

We collected consent forms from interview participants which can be shown on
request.
E Unity Project

¢ Game Project (To be opened with Unity Hub): E: Uncharted-Chants-master.zip

F Game Demo
¢ Game installation files for Windows: F: Windows - Uncharted Chants.zip
¢ Game installation files for Mac: F: macOS - Uncharted Chants.zip
* Uncharted Chants Demo Video: F: Uncharted Chants Demo.mp4
* Training Exercise Tutorial Videos: F: Tutorial Videos/

¢ Uncharted Chants Installation Instructions: F: Game Installation Instruc-
tions.docx/

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Music-Based Serious Games
	1.2 Project Goal

	2 Cochlear Implants
	2.1 Cochlea
	2.2 Design and Functionality
	2.3 Perception
	2.4 Music Training

	3 Sound Synthesis
	3.1 Abstract methods
	3.1.1 Additive Synthesis

	3.2 Physical modeling
	3.2.1 Finite-Difference-Time-Domain Methods
	3.2.2 Towards the Damped Stiff String
	3.2.3 Exciters

	4 Design
	4.1 Starting point - Internship Work
	4.1.1 Initial concept-design process
	4.1.2 Concept - Uncharted Chants

	4.2 Revisited Concept Focus
	4.3 Music training minigames
	4.4 Difficulty scaling
	4.5 Design Requirements

	5 Implementation
	5.1 Overview
	5.2 Audio
	5.2.1 Maraca
	5.2.2 StiffString
	5.2.3 DynamicString
	5.2.4 AdditiveSynth

	5.3 Unity
	5.3.1 Scene Management
	5.3.2 Level Generation
	5.3.3 Difficulty Scaling
	5.3.4 Aesthetics
	5.3.5 Minigames

	6 Evaluation
	6.1 Performance Testing
	6.2 CoolHear Workshop
	6.3 User Experience
	6.3.1 Online Survey
	6.3.2 Interviews

	7 Discussion
	8 Conclusion
	Bibliography
	9 Appendix
	A Internship
	B Audio Plugins
	C Game Art
	D Evaluation
	E Unity Project
	F Game Demo

