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Abstract:

This project concerns the speed control of
a surface-mounted permanent magnet syn-
chronous motor. The goal is to improve the
speed response under a load torque by on-
line estimating the load torque disturbance
and then using feed-forward compensation to
counteract the speed error, reducing recov-
ery time and enabling the PI controllers to
work more effectively. Field Oriented Con-
trol (FOC) is used to control the drive system,
where PI controllers were designed to control
the dq reference currents and the electric rotor
speed.
The dynamical equations describing a
SPMSM were used to construct a non-linear
model to simulate the motor. Four different
sliding mode observers (SMO) were designed
to estimate the load torque. The FOC
and SMOs were tested and tuned with the
constructed simulation model. The designed
SMOs and FOC were then implemented into
the physical test setup, where experiments
were conducted and analyzed.
From the test at 600 [RPM], it was concluded
that the SMO using a saturation function
(SMO-Sat) showed the best results regarding
RMS errors and recovery time with the values
of 1.5 [RPM] and 103 [ms], respectively.
Without the load torque compensation, the
drive system showed an RMSE of 7.3 [RPM]
and a recovery time of 150 [ms], for the
test at 1800 [RPM]. The SMO-Sat and a
proposed SMO method utilizing the Power-
Sigmoid function (SMO-PS) showed the best
results. For SMO-Sat, the RMSE was 1.6
[RPM] with 90 [ms] recovery time and for
SMO-PS an RMSE of 2 [RPM] and a recovery
time of 83 [ms] for 5 [Nm] load at 1800 [RPM].
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Summary

In recent years, many studies have been proposed to optimize the control of a PMSM
with feed-forward load torque compensation to improve the overall performance, thereby
eliminating the undesirable sudden speed change occurring when applying a load torque
to the drive system. Therefore, this study aims to control an SPMSM, where the main
objective is to obtain fast speed control through load torque compensation. Various
methods of estimating load torque have been proposed over the years. Therefore, this
study further aims to analyze and compare different sliding mode observer-based methods
to estimate the load torque using simulation and experimental results conducted on a
physical test setup.

To analyze the performance of the drive system with the designed SMOs, a non-linear
mathematical model is made in Simulink to simulate the motor. The non-linear model is
constructed based on the dynamical equations described by SPMSM.

Field Oriented Control (FOC) is used to control the drive system. The FOC utilizes a
cascade structure with an inner current loop and an outer speed loop. The FOC structure
uses PI controllers to control the dq reference currents and the electric rotor speed. The
PI current controller is designed based on the linear current system, where the back-EMF
terms are decoupled based on a Relative Gain Array (RGA) analysis, which showed a
strong coupling effect for high-speed operations. The PI speed controller is designed based
on the linear speed system where the load torque is considered a disturbance, leaving the
drive system to work well under no-load conditions. However, as previously described,
when applying a load torque to the PMSM, an undesirable transient occurs, leaving the
overall motor performance will degrade.

Four different sliding mode observers are designed to compensate for the load torque
disturbance. First, each method will be mathematically derived to present the principles
of the observer structure. Afterward, a stability analysis is carried out for each SMOs,
where a Lyapunov candidate function is used to prove stability by having its derivative
be Negative Definite. Next, the SMOs are analyzed based on the constructed simulation
model, where also the observer gains and parameters are analysed through various tests
to understand their impact before determining the SMO parameters. Finally, when each
SMOs has obtained good estimation results, the SMOs are implemented into the physical
test setup.

The SMOs are tested for low and high speeds at 600 [RPM] and 1800 [RPM] respectively.
In addition, a load torque of 1 [Nm] and 5 [Nm] is applied during each test. Lastly, the
SMOs are compared based on the experimental performance, where peak-to-peak, recovery
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time, chatter level, RSME of speed error and RMSE of load torque estimation error is used
to aid the comparison before concluding the study.
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Nomenclature

Symbols Units

α Observer Gain for LTID-SMO-PS [-]

∆ Observer Gain for LTID-SMO-Sat [-]

δ Observer Gain for LTID-SMO-PS [-]

ω̂e Estimated Electrical Speed [Rad/s]

T̂L Load Torque Estimation [Nm]

λ Stator Flux [Wb]

λmpm Permanent Magnet Flux Linkage [Wb]

ω∗
r,mech Mechanical Reference Speed [Rad/s]

ωe Electric Rotor Speed [Rad/s]

ωr,mech Mechanical Speed [Rad/s]

ϕ Delay Between Estimated and Real Load Torque [Rad]

σ Sliding Variable [RPM]

τ Time Constant for Plant [s]

τinner Time Constant for Inner Loop Approximation [s]

θr Electric Rotor Angle [Rad]

ω̃e Electrical Speed Error [Rad/s]

ζ Damping Coefficient [ - ]

e back-EMF [V]

eTL
Estimated Load Torque Error [Nm]

fs Sampling Frequency [Hz]

G(s) Transfer Function [-]

id Direct axis Current [A]

iq Quadrature axis Current [A]
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J Total Moment of Inertia of the system [Kg m2]

kf Safety factor for LTID-SMO-Sat [-]

KT Motor Torque Constant [Nm / A]

Ki Integral gain [-]

Kp Proportional gain [-]

L Inductance [H]

nlab Measured Speed for laboratory [RPM]

nmeas Measured Speed for Experiments [RPM]

Npp Number of Pole-Pairs -

nrat Rated Speed [RPM]

nsim Measured Speed for Simulation [RPM]

p Pole [-]

Rs Stator Resistance [Ω]

Td Time Delay [s]

Te Electric Torque [Nm]

TL Load Torque [Nm]

Ts Sampling Time [s]

Tdelay Time Delay [s]

TL,max Maximum Load Torque [Nm]

TL,transient Load Torque During Transient Response [Nm]

Trated Rated Torque [Nm]

TRT Recovery Time [s]

Tsettling,c Settling Time for Inner Current Loop [s]

Tsettling,s Settling Time for Outer Speed Loop [s]

V Lyapunov Candidate [ - ]

vi Voltage [V]

Vs RMS Voltage [V]

zPI Zero From PI Controller [rad/s]
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ωc Cutoff frequency on LPF [Rad/s]

ωrat Rated speed [Rad/s]

B Viscous Friction [Nm s/rad]

C Coulomb Friction [N]

K Sliding Mode Gain [-]

L Observer Gain for LTID-SMO-Sat [-]

s Laplace operator [-]

Abbreviations

EMF Electro-Motive Force

FFT Fast Fourier Transform

FOC Field Oriented Control

LPF Low-Pass Filter

LTID-SMO Load Torque Identification Sliding Mode Observer

ND Negative Definite

NSD Negative Semi Definite

PD Positive Definite

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Motor

PS Power-Sigmoid

RGA Relative Gain Array

RMSE Root Mean Square Error

RPM Rounds Per Minute

SMO Sliding Mode Observer

SPMSM Surface-mounted Permanent Magnet Synchronous Motor

SVM Space Vector Modulation

VSI Voltage Source Inverter
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Introduction 1
Permanent Magnet Synchronous Machine (PMSM) is becoming more widely used in
various industrial applications due to nature of the PMSM as it has high efficiency, high
power density, fast dynamical response, and high reliability [1]. In recent years, the PMSM
has been used to replace the high-power asynchronous machine, since the PMSM offers
2-3 times more power density [2], making it a more attractive choice for many industrial
applications, for example, the automobile industry or robot-based industries. Many studies
have been proposed to optimize the PMSM performance in various aspects in the past
decades. In [3] the authors describe how to optimize the PMSM using sliding mode
observers to eliminate the use of sensors by online estimating the rotor position- and speed.
In [4] the authors propose a method to optimize the PMSM by estimating the moment
of inertia by the use of an improved model-reference adaptive system (IMRAS). Both
these studies show that any optimization study has great importance for the technological
developments of PMSM drives. Therefore, this thesis will focus on developing a method to
online estimate the load torque. The load torque is often an unknown factor in the drive
system, and an undesirable transient will occur in the speed response causing the overall
system performance to degrade. Furthermore, for robot-based industries which specialises
in designing robot arms for storage facilities, the load torque often changes due to the
movements of different elements. Therefore, it is highly desirable to estimate the load
torque, which can then be used in feed-forward current compensation by converting the
estimated torque into an estimated current.

The topic of load torque identification (LTID) has been widely discussed in various
papers. In [5] and [6] a Luenberger observer and a Kalman filter are proposed to estimate
the load torque. However, sliding mode observers often plays a more significant part
in developing load torque estimation methods due to its robustness against parameter
variations, uncertainties, and disturbance rejection[1]. In [7] a conventional SMO uses
a sign function as the switching term. This causes issues regarding chattering/buffering
in the system and therefore heavy Low-pass filtering is needed [7]. LPF are known to
cause undesirable phase delay, therefore, some proposed methods have been discussed in
recent years to overcome the chattering issue instead by replacing the sign function with
other functions as the switching term. In [1] an improved LTID-SMO is proposed using
Saturation function where some parts of the signal is filtered through an LPF while the
rest is directly feed back. The benefit of this method is as concluded in the paper both fast
estimation and low chatter in steady-state [1]. In [8] the authors investigate the possibility
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Group MCE4 - 1027 1. Introduction

of using a Sigmoid function as the switching term, which has the advantages of effectively
reducing chatter and obtaining less phase delay as the need for an LPF is not required.

Therefore, this study proposes a new SMO method that utilizes a modified version of the
Sigmoid function to reduce chattering even further and obtain good estimation results.
This method will, throughout the project, be referred to as the Power-Sigmoid method.

The project analyzes and compares four different load torque identification (LTID) SMO
methods. The first method is the conventional sliding mode observer using a sign function.
The second is the boundary layer method, which uses a saturation function as the switching
term. The third is the Power-Sigmoid method. The final method, is the Power-Sigmoid
method combined with a PI controller.

When analyzing the three LTID-SMO methods, a simulation model is created based on
the provided experimental setup described in the next section.

1.1 System Description

To compare the performance of the designed controllers and SMO’s during the project, a
physical test-setup is provided. The provided test-setup can be described by two main
parts, the drive system and the load system. Both systems uses a surface-mounted
permanent magnet synchronous machine (SPMSM) and is connected with a mechanical
coupling between them. The drive and load system can be seen in Figure 1.1, where the
load-SPMSM are solely used to generates a load torque to the other SPMSM.

dSPACE 
Micro controller

+

-

DC
+

-

DC

SPMSM SPMSMVSI VSI

Measure Position

Measure CurrentMeasure Current

Measure Voltage Measure Voltage

Duty Cycle

Coupling
Vabc Vabc

LOAD SYSTEM POWER DRIVE

LOAD MACHINE

Figure 1.1. Schematic of the experimental test setup.

Two DC sources are used to supply the voltage source inverter (VSI) used for both
SPMSM’s. The VSI is controlled by a duty cycle calculated by space vector modulation
(SVM) in dSPACE. dSPACE is a micro controller, with a software program that utilizes the
MATLAB program Simulink. In addition, the test-setup uses different sensor to measure
the system states. The sensors used are current sensors for measuring the 3-phase abc

currents in the drive system, voltage sensors for measuring the voltage signals across the
VSI and lastly an encoder to measure the rotor position and speed.

2



Problem Statement 2
This study aims to control a SPMSM, where the main objective is to obtain a precise and
fast control through load torque compensation. As described in the introduction, various
methods of estimating a load torque have been proposed over the years. Therefore, the
purpose of this study is to analyze and compare different sliding mode observer-based
methods to estimate the load torque using simulation and experimental results conducted
for each methods, which leads up to the following problem statement:

"How can sliding mode observer-based load torque identification methods be
designed to estimate a load torque to improve the speed control of a PMSM?"

2.1 Objectives

To answer the problem statement, the following objectives are formulated as:

1. Construct a non-linear model described by the dynamical differential equations of
the SPMSM.

2. To control the speed and current in the drive system, field oriented control (FOC)
is designed, having a cascade control structure with an inner current loop and outer
speed loop.

3. Validate the non-linear model with experimental test.
4. Describe the load torque dynamic given from the load machine and construct a

mathematical approach to obtain the actual load torque.
5. Describe and analyze methods for estimating the load torque disturbance using

sliding mode control theory.
6. Compare the results of the different sliding mode observer-based load torque

identification methods.

2.2 Project Limitations

To limit the scope of this project, some assumptions is made throughout the project,
defined as:

• The PMSM is symmetric and balanced and the zero component in the dq reference
frame is neglected.

3



Group MCE4 - 1027 2. Problem Statement

• The magnetic flux in the PMSM is constant, and thereby will not reach its saturation
limits.

• The air gap between the rotor and stator is uniformly distributed and the q and d

axis inductance’s is equal.
• Eddy losses and hysteresis losses are neglected.
• The motor parameters will not change due to increased temperatures.
• The VSI is assumed ideal and will not take part of the modeling.

2.3 Performance Evaluation of the Sliding Mode Observers

As described in the problem statement, the goal is to improve the speed control of the
PMSM using LTID-SMO. Therefore, to improve the speed control the settling/recovery
time and overshoot for the speed response must be improved when running the drive system
with the designed LTID-SMO. The recovery time throughout the project is determined as:

For 600 [RPM]:

• The recovery time, TRT , is determined within ±1 [RPM].

For 1800 [RPM]:

• The recovery time is determined within ±3 [RPM].

The overshoot in the speed response are for this project presented with its peak-to-peak
value, calculated as: peak-to-peak = max(speed)−min(speed).

4



PMSM Modeling 3
The described system from Section 1.1 is to be modeled. This is the foundation for the
simulation and making of the control structure. In this chapter, the motor parameters
are presented, the motor voltage equation in the dq reference frame and the mechanical
equation of motion are described.

3.1 SPMSM Model Equations

The motor used is a Surface-mounted Permanent Magnet Synchronous Machine (SPMSM).
Having the magnets mounted on the surface makes the motor non-salient due to the
uniform reluctance, where the Permanent Magnets can be seen as an air gap due to the low
permeability of the magnet being close to that of air [9]. The inductance in all directions
is, therefore, the same [10], leaving that:

Ld = Lq (3.1)

The parameters for the drive system are presented in Table 3.2, which will be used in the
non-linear model.

Symbol Description Value Unit

B Viscous friction coefficient 1.6655 10−3 [Nms
rad ]

C Coulomb friction 0.42 [Nm]
J Total inertia 0.0125 [kgm2]
Ld Inductance direct axis 5.5 10−3 [H]
Lq Inductance quadrature axis 5.5 10−3 [H]
Npp Pole Pairs 4 [-]
nrat Rated speed 4500 [RPM]
Rs Stator resistance 1.2 [Ω]

Trated Rated torque 5.8 [Nm]
V Rated voltage 400 [V]

λmpm Permanent magnet flux linkage 0.1213 [Wb]

Table 3.2. Parameters used to model the drive system.

5



Group MCE4 - 1027 3. PMSM Modeling

The SPMSM is shown in Figure 3.1, where the stator is presented with the winding on the
q and d axis space vectors.

Figure 3.1. The surface-mounted permanent magnet synchronous machine, with the stator
represented by the winding in the q and d space vectors.

The SPMSM is a 3-phase AC motor having eight poles. As seen in picture 3.1, each phase
is shifted 120 electrical degrees from each other therefore applying a sinusoidal current to
the windings will produce a rotating magnetic field. The equation describing the sinusoidal
currents applied can be seen in 3.2 to 3.4. As the input to these three phases is sinusoidal,
controlling them can be problematic as the phase is not constant [10]. Making vector
projection can convert the stationary reference frame to a rotating dq reference frame that
will follow the resultant space vector created. The dq reference frame is not fixed to the
mechanical structure but rotates, as it sees the space vector as a signal with a constant
phase. This allows for easier control as it becomes a DC signal from the perspective of
the dq frame, and classical control theory can be used, such as PI controllers. Park-Clarke
matrix transformation can be used to make the vector projection from the stationary abc

frame to the rotating dq frame [9]. This can be seen in Equation 3.5.

ia = Imcos(ωt) (3.2)

ib = Imcos(ωt− 120°) (3.3)

ic = Imcos(ωt+ 120°) (3.4)

6



3.1. SPMSM Model Equations Aalborg University

f⃗dq0 =
2

3

 cos (θ) cos
(
θ − 2

3π
)

cos
(
θ + 2

3π
)

− sin(θ) − sin
(
θ − 2

3π
)

− sin
(
θ + 2

3π
)

1
2

1
2

1
2

 · f⃗abc (3.5)

Stator voltage equations

After the Park-Clarke transformation, the stator voltage equations in the dq reference
frame is described by Equations 3.6 and 3.7 with the zero component v0 = 0.

vd = Rsid +
d

dt
λd − ωeλq (3.6)

vq = Rsiq +
d

dt
λq + ωeλd (3.7)

where flux linkage λd and λq can be written as:

λd = Ldid + λmpm (3.8)

λq = Lqiq (3.9)

As the q-axis is perpendicular to the magnets and only the flux linking the stator and rotor
is affecting λq and as d-axis is parallel to the magnets, λd is affected both by flux linking
stator to rotor and the flux produced by the magnets.

Combining Equation 3.6 and 3.7 with 3.8 and 3.9 yields:

vd = Rsid +
d

dt
(Ldid + λmpm)− ωeLqiq (3.10)

vq = Rsiq +
d

dt
Lqiq + ωe(Ldid + λmpm) (3.11)

Mechanical equation

The equation of motion is described using Newton’s 2nd law:

d

dt
(ωr)J = Te − TL −Bωr (3.12)

J is the motors total inertia, ωr is the speed of the rotor, Te is the electric torque produced
by the motor, B is the viscous friction and TL is the load torque applied from the load
machine.

The electric torque produced, Te, can be derived as [10]:

Te =
3

2
Npp(λdiq − λqid) (3.13)

If substituting Equation 3.8 and 3.9 into Equation 3.13, the following is obtained:

Te =
3

2
Npp(λmpmiq + (Ld − Lq)iqid) (3.14)

7



Group MCE4 - 1027 3. PMSM Modeling

As previously mentioned in Equation 3.1 the inductance for Ld and Lq are equal for a
SPMSM, leaving the torque equation can be simplified to:

Te =
3

2
Nppλmpmiq (3.15)

The torque is therefore proportional to the current iq and the term 3
2Nppλmpm is defined

as the torque constant KT .

3.2 Load Torque Dynamic

As the load torque step does not occur instantaneously and is associated with some amount
of transient dynamic from the load machine, the actual load torque from lab is implemented
into the Simulink model instead of an ideal load step. Thereby, a more representative
simulation model of the physical system is made, ensuring that the simulation model
considers all load torque dynamics. As a result, this will give a much more precise indication
of how the physical system behaves when analyzing the Sliding Mode Observers in Chapter
5.

As the applied load torque can not be measured directly, the load torque is calculated
using Equation 3.12 and 3.14 and repeated here:

TL = Te −Bωr − Jω̇r where Te =
3

2
Nppλmpmiq (3.16)

To calculate the load torque, the mechanical rotor speed and the three-phase abc currents
are measured, where the abc currents are transformed into its corresponding quadrature
current, iq. The measured speed and quadrature current are implemented into the Simulink
model, where the calculation is made. To determine the angular acceleration of the rotor,
a phase-locked loop (PLL) is used to acquire the acceleration. Utilizing a PLL also can
suppress the high frequencies in the speed measurements [11], which means the unfiltered
speed measurement can be used in the calculation of load torque, resulting in less phase
lag. In Figure 3.2 a block diagram is made to illustrate the process of calculating the load
torque with the proposed PLL structure.

8



3.2. Load Torque Dynamic Aalborg University

+-

++ +-

-

++

Figure 3.2. A block diagram of the load torque acquisition given from the load machine with a
PLL structure.

From the above block diagram, the PI gains in the PLL have been tuned iteratively to
obtain satisfactory results for the speed measurements. In addition, the Coulomb friction
has been added to eliminate the static offset in the load torque.

Further, to describe the dynamical response of the load torque, a linear approximation is
be made by determining the transfer function of the load torque. To estimate the transfer
function, a test is conducted by applying a load step of TL = 5 [Nm] to the SPMSM with
the motor is running at a constant reference speed of nref = 1200 [RPM]. The measured
rotor speed and iq current are implemented into the Simulink model to obtain the load
torque. The results are presented in Figure 3.3.

0 0.5 1 1.5 2 2.5

Time [s]

-1

0

1

2

3

4

5

6

7

8

Load Torque

1 1.05 1.1
0

2

4

6

8

Figure 3.3. The simulation results for the load torque of 5 [Nm].

By analyzing the dynamical response of Figure 3.3, it is seen that the load torque resembles
a second-order system due to the increased overshoot, entailing the system is underdamped

9



Group MCE4 - 1027 3. PMSM Modeling

and has complex poles. The linear approximation is made with the MATLAB program
System Identification [12], by inputting the above-described information and the simulation
results, given from Figure 3.3, the transfer function is determined to be:

Gload(s) =
135.8s+ 9813

s2 + 109s+ 9743
(3.17)

Finally, a comparison of the actual load torque and the linear approximation is made and
seen in Figure 3.4. This approximation is also valid for different loads and speeds.
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Figure 3.4. The simulation results for the load torque of 5 [Nm] with its corresponding linear
approximation obtained through the MATLAB program System Identification.
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Control of the SPMSM 4
This chapter presents the control strategy of the SPMSM utilized with Field Oriented
Control, where an inner current loop and an outer speed loop are designed. PI controllers
are designed to control the d and q axis currents separately for the inner current loop.
Afterward, a PI speed controller is designed to control the electric rotor speed. Finally, the
non-linear model is validated with the designed PI controllers.

4.1 Field Oriented Control

The control structure of the SPMSM is given by the Field Oriented Control (FOC). The
FOC is a widely used vector control technique that utilizes the rotating dq frame by
applying Clark/Park transformations which synchronously rotates with rotor. The FOC
structure is a method used to control the electric torque and flux linkage by transforming
the abc currents into their corresponding dq current components. The dq components make
up the stator field vector, where the d-axis is aligned with the rotor flux axis. Maximum
torque occurs when the stator field vector is shifted 90° electrical from the rotor flux
axis. Therefore, by regulating the amplitude of the d-axis current vector to zero (id = 0),
the entire stator field vector will be aligned with the q-axis current vector (is = iq) and
maximum torque is obtained. This is further seen in Figure 4.1, where it may also be
noted the rotor position (θr,el) is needed to perform the coordinate transformation from
the stationary abc frame to the rotating dq frame.

A

B

C

iq

id

is
q-axis

d-axis

rotor �ux axis

A

B

C

iq is

q-axis

d-axis

rotor �ux axis

id =0

=

id >0

Figure 4.1. The stator field vector is decomposed into its d and q components. In addition two
illustrations is shown, one for id > 0 and one for id = 0.
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Group MCE4 - 1027 4. Control of the SPMSM

The FOC structure of the PMSM is presented with Figure 4.2. The FOC control scheme
is based on a cascade structure with a speed controller placed in the outer loop and two
current controllers in the inner loop. The speed and current loop are utilized by applying
PI controllers to control the desired torque and flux. In addition, for the cascade structure
to be successfully, the inner loop has to be faster than the outer loop, which should be
taking into consideration when designing the PI controllers.

+-

-+
+-

+-

++

++

Figure 4.2. Schematic of the Field Oriented Control structure.

As illustrated in the above figure, the PI speed controller outputs the reference current,
i∗q based on the speed error (ω∗

r − ωr). Therefore, the input for the PI current controllers
are given as (i∗q − iq) and (i∗d − id), which then outputs the desired voltage for the VSI. In
total, three PI controllers are needed in the FOC, where the coefficients (KP and KI) for
the PI controllers will be derived based on classical control theory. However, to design the
PI controllers, it is evident that the transfer function for the current and speed plants is
derived.

4.1.1 Design of Current Control

An overview of the inner current loop containing the current plant, time delay, PI controller,
and decoupling of the back-EMF terms is displayed in a block diagram of the linear system
in Figure 4.3.

The coupling effect of the back-EMF terms is investigated with an RGA analysis in
Appendix A, where it was found that the system is fully decoupled at ωe = 0. However,
as the speed increases, the coupling effect becomes stronger. As aforementioned, the d

and q axis are controlled separately, where a strong coupling effect may cause the overall

12



4.1. Field Oriented Control Aalborg University

dynamical performance of the PMSM to degrade [13]. Therefore, to overcome this issue,
the back-EMF terms are decoupled with the method shown in Figure 4.3.

-+ + -++

Figure 4.3. Block diagram of current loop.

When deriving the transfer function of the linear model for the two current plants,
Equation 3.10 and 3.11 is rearranged and brought to the s-domain by applying a Laplace
transformation. In addition, the transfer function is derived according to the current
plant’s output/input relationship.

id =
vd + ed
Lds+Rs

(4.1)

iq =
vq + eq
Lqs+Rs

(4.2)

Where the back-EMF terms are given as:

ed = −ωeLqiq and eq = ωe(Ldid + λmpm) (4.3)

As seen in Equation 4.1 and 4.2, two inputs is shown, namely the voltage and back-EMF
and one output given as the current. However, with the decoupling of two back-EMF
terms the two current transfer functions is defined as:

Gd(s) =
id
vd

=
1

Lds+Rs
(4.4)

Gq(s) =
iq
vq

=
1

Lqs+Rs
(4.5)

Further, as the dealing with a surface-mounted PMSM, the inductance is the same in all
directions (Lq = Ld = Ls). Therefore the two current plants for the d and q-axis currents
are further reduced to a single plant given by Equation 4.6 enabling the control engineer
to design only one PI controller to control both the d and q-axis currents.

Gdq(s) =
1

Lss+Rs
(4.6)

Time delay
When implementing the controllers into the experimental setup, time delays will occur.
As the system is running on a digital platform, the sensor measurements for the rotor
position, current, and voltage measurements will not be updated instantaneously and will
imply adding a phase to the system and potentially make the system unstable. Therefore
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Group MCE4 - 1027 4. Control of the SPMSM

this has to be accounted for when designing controllers. The time delay is implemented
into the control system and is inserted between the PI controllers and the current plant,
and is estimated as a first-order transfer function given as:

Gdelay(s) =
1

Tdelays+ 1
, Ts =

1

fs
(4.7)

Here the time constant is defined as Tdelay = 1.5Ts and the sampling time Ts is calculated
with the sampling frequency of fs = 5000Hz.

Design of PI current controller
When designing the PI controller, a fast response and a low overshoot is preferred, as the
inner current loop must be faster than the outer speed loop. The standard PI controller
may be formulated as:

GPI =
Ki,c +Kp,cs

s
with the zero placed at zPI =

Ki,c

Kp,c
(4.8)

The PI controller consist of a pole placed at the origin given from the free integrator and
a zero placed on the real axis. Having integrator action results in no steady-state error
from a step input, whereas the placement of the zero contribute to how much overshoot,
settling time, rise time etc. the control system experience [14]. Therefore, when tuning
the PI controller, the placement of the zero will be investigated.

pcurrent plant = −Rs

Ls
= −218 and ptime delay = − 1

Tdelay
= −3333 (4.9)

If placing the zero from the PI controller to the left of the system pole from the current
transfer function, faster dynamical response can be obtained. This is due to the closed-
loop poles becoming complex-conjugated, which will lessen the damping in the system
and thereby making the system transient faster. In addition, the zero should have a large
enough safety margin from the system pole, such that the control system does not change
any significantly dynamic if the system pole should increase and shift further into the LHP,
due to parameter variations.
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Figure 4.4. Root locus of the current loop

To ensure a fast dynamical response and minimize the overshoot, the placement of the zero
is chosen to be at zPI = −250 ensuring the prescribed requirements are obtained. This
is further illustrated in Figure 4.4, where the PI controller has been implemented to the
current loop. From the figure it is seen that the zero is placed to the left of current plant
pole. Thereby, obtaining the desired transient response.

From the above analysis the closed-loop step response is presented in Figure 4.5, where
the final results for the PI gains and settling time are displayed in Table below the figure.
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Figure 4.5. Step response of current plant with the designed PI controller.

Settling time PI gains
ts = 0.0032 [s] KP,c = 8 and KI,c = 2000

4.1.2 Design of the Speed Control

When designing the PI controller for the outer speed loop, the same procedure is applied
by first deriving the linear system as for the inner current loop. The entire outer speed loop
consisting of the PI controller, the inner current loop, the speed plant, and load torque
compensation is illustrated in Figure 4.6. The load torque compensation will be discussed
in Chapter 5.

-+ -+++

Figure 4.6. Block diagram of the speed loop.

Deriving the speed plant
The equation of motion from Equation 3.12 is brought to the s-domain by applying Laplace
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transformation and rearranged to:

ωr =
Te − TL

Js+B
(4.10)

Te =
3

2
· λmpm ·Npp · iq (4.11)

From Equation 4.10, the load torque, TL, is decoupled by considering it as a disturbance.
Then by substituting Equation 4.11 into Equation 4.10, it is possible to find the transfer
function for the system as:

Gspeed(s) =
ωr

iq
=

3
2 · λmpm ·Npp

Js+B
=

KT

Js+B
(4.12)

where KT is the torque constant.

Inner current loop approximation
The closed-loop transfer function for the inner current loop can be approximated as a first-
order transfer function, given that the inner loop is much faster than the outer loop. The
inner current loop, given by Equation 4.13, consist of the PI current controller, current
plant, and a time delay.

Gcurrent =
Ki,c +Kp,c s

s

1

Lqs+Rs

1

Tdelays+ 1
(4.13)

The inner loops first-order time constant, is estimated to be around 1/7 of the current loop
settling time Tsettling,c, and may yield the following calculation of the time constant to be:

τinner = Tsettling,c ·
1

7
(4.14)

The first-order transfer function for the inner loop will be as following:

Gin =
1

τinners+ 1
(4.15)

A Bode plot is shown in Figure 4.7 of the inner and current transfer function where it is
seen that the bandwidth is approximately the same.
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Figure 4.7. Bode plot of the current loop and inner loop approximation.

Design of PI speed controller
Having defined the transfer function for the speed plant and an approximation for the
inner current loop, the PI controller is designed. As previously described the FOC control
scheme is utilized by a cascade structure, thus the inner current loop should be 5-10 times
faster than the outer speed loop. This also make sense from a physical standpoint, as the
outer loop is describing the mechanical part of the system, which is inherently slower than
the inner loop describing the electrical part of the system. In Figure 4.8 the root locus plot
for the outer loop is showing, with the designed PI controller. In addition, by examine the
transfer function for the speed plant and inner loop transfer functions, the system poles
are located at:

p speed plant = −B

J
= −0.13 and p inner current = − 1

τinner
= −1250 (4.16)

The PI zero is placed to the left of the pole from the speed plant at zPI = −2.5, resulting
in the root locus seen in Figure 4.8. The fast pole from the inner loop is not shown in
the root locus, as it is located far to the left from the rest of the poles and zero. The
closed-loop step response is presented with Figure 4.9, where the final results from the
analysis is given in the Table below Figure 4.9.
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Figure 4.8. Root locus for the speed loop.
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Figure 4.9. Step response of closed loop speed plant with speed PI control.

Settling time PI gains
Tsettling,s = 0.41 [s] Kp,s = 0.8 and Ki,s = 2
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To verify the requirement of having the inner loop to be 5-10 times faster than the outer
loop, a bode diagram is made for the the closed loop current control and close loop speed
control and is shown on Figure 4.10.
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Figure 4.10. Bode plot of closed loop current and speed plants.

As seen on the bode diagram it is clear the bandwidth of the inner current loop is at least
10 times faster than the outer speed loop, and the requirement is therefore satisfied.

20



4.2. Validation of the Non-Linear Model Aalborg University

4.2 Validation of the Non-Linear Model

In this section, the non-linear mathematical model derived in Chapter 3 is validated based
on an experimental test conducted on the physical setup. To validate the non-linear
model in Simulink, the speed nmeas and current iq are compared. In addition, a reference
trajectory is made for the speed to fully compare the Simulink model with the experimental
test data, which is then given as input to the Simulink model. The reference trajectory is
presented in Figure 4.11.
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Figure 4.11. Trajectory for the speed reference, used to compare the simulation and experimental
test results.

The validation results for the speed and currents are presented in Figure 4.12 and 4.13.
The speed PI controller gains had to be retuned to the nonlinear model. The current
PI controller worked as intended and needed no additional tuning for simulation and
experimental test.

Retuned Speed PI Current PI

Kp,s = 0.1 Kp,c = 8
Ki,s = 2 Ki,c = 2000

If comparing the non-linear model and experimental test from Figure 4.12 and 4.13, the
non-linear model manages to closely follow the experimental test for both the speed and
currents.
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Figure 4.12. Validation results for the speed, where the simulation is compared to the
experimental test results.
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Figure 4.13. Validation results for the current and iq, where the simulation is compared to the
experimental test results.

The speed response is further analyzed when applying a load torque of 4 [Nm] to the
Simulink model and the physical setup. The validation results are presented with Figures
4.14 and 4.15.
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Figure 4.14. Validation results for the speed with a load torque step of 4 [Nm], where the
simulation is compared to the experimental test results.
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Figure 4.15. Iq current during a load step. Load torque vector in simulation is based on lab
data.

When comparing the speed results and its corresponding iq current, it is noted that the
experimental results have slightly higher peak values than the simulation. The PI gains
given from the Subsection 4.1.2 were used in both the experimental setup and in the
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simulation, however, due to parameter uncertainties, such as inertia and friction, there
will be a slight difference from the real system to the simulation.

To conclude this section the Simulink model manages to closely follow the experimental
test results for the currents and the speed with and without a load torque and is therefore
considered representative.

24



Load Torque Identification

Sliding Mode Observer 5
In Chapter 4 the control strategy was described, which included PI controllers for the speed
and current loop based on the linear system. To derive the linear speed plant, the load torque
was considered a disturbance, which would entail the drive system working well under no-
load conditions. However, if a load torque is applied, the overall motor performance will
be degraded. Therefore, this chapter concerns the load torque disturbance. Different LTID-
SMO methods are designed and implemented into the FOC control structure to compensate
for the load torque disturbance.

5.1 Strategy

The main objective of the LTID-SMO is to improve the transient part of the speed response
when a load torque is applied to the SPMSM. To minimize the transient part of the speed
response, the control scheme of the LTID-SMO is implemented into the FOC structure
by feeding forward a load torque estimation. In practice, the SMO is used to estimate
the actual load torque given from the load machine. The estimated load torque can then
be transformed into an estimated current, which then is added to the reference current
provided by the PI speed controller (i∗q + î∗q).

The general idea of adding an extra current component is to enable the PI current controller
to work more effectively when a load torque is applied to the drive system. When a load
torque is applied, the PI current controller will have to increase its current amplitude to
counteract the sudden error in the speed response. Therefore, adding the estimated current
will increase the amplitude to a more suitable level for handling the change in speed when
a load torque is applied.

The implementation of the LTID-SMO in the FOC structure is presented in Figure 5.1,
where it may be noted the LTID-SMO uses the iq and id currents and the electrical angular
speed as inputs.
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Figure 5.1. The FOC structure with implemented load torque identification sliding mode
observer.

The chapter presents four different SMO-based methods to estimate load torque, where
the first two methods taking basis in [1]. The objective is to analyze each method and
compare their performance based on how well each technique improves the transient part
of the speed response when a load torque is applied.

The first method presented in Section 5.2, is a conventional SMO using a signum switching
function with the controller output given as:

u(σ, t) = −K · sign(σ(t)) (5.1)

where K ∈ R+.

The conventional SMO can be used to effectively estimate the load torque. However, the
main drawback of using the conventional SMO is the chattering phenomenon. It produces
a high-frequency switching signal around the sliding surface due to the discontinuous
nature of the sign function. The chattering phenomenon can cause the physical system to
decrease in efficiency over time, resulting from faster wear of the moving mechanical parts
[15]. Therefore an additional LTID-SMO control schemes are proposed to overcome the
chattering issue.

The second method presented in Section 5.3, is the boundary layer method that replaced
the discontinuous sign function with a saturation function. This will inherently reduce
the chattering in the drive system as the saturation function can be seen as a linear
approximation of the sign function and the problem with discontinuity will be solved.
This is further illustrated in Figure 5.2, where ∆ = 0 would entail the same response as
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the Signum function. The boundary layer method has the controller output given as:

u(σ, t) = −K · sat
(
σ(t)

∆

)
(5.2)

where K ∈ R+ and ∆ determines the limit of the boundary around the switching surface.
In addition, further improvement of the LTID-SMO using a saturation function is made by
implementing an extra feedback loop in the load torque observer to improve the estimation
accuracy.

The third method presented in Section 5.4, is the Power-Sigmoid method, a proposed
method based on the characteristic response of an odd-power function[16] and a Sigmoid
function. If combining the odd-power function with a Sigmoid function, by raising the
sliding variable, σ, to the power of α the controller output is defined by Equation 5.3. An
example of the profile of the Power-Sigmoid function can be seen in Figure 5.2.

u(σ, t) = −K · σ(t)α

|σ(t)|α + δ
(5.3)

with α ∪ {2n− 1 |n ∈ N} and δ > 0.
Using this controller have the advantages of suppressing chattering in areas for low σ values.
For high σ values the controller can be tuned to have similarly effect as the boundary layer
method, by tuning the α and δ value.

The fourth method presented in Section 5.4, are taking basis in the third method where the
sliding mode gain, K, is replaced with PI controller, which gives the following controller
output:

u(σ, t) = −
(
KP +

KI

s

)
· σ(t)α

|σ(t)|α + δ
(5.4)

with α ∪ {2n− 1 |n ∈ N} and δ > 0.
The advantages by using this method is to further reduce the chattering by controlling the
sliding variable towards zero, where the Switching Function Output is very low.

Each method will be mathematically derived to present the principles of the observer
structure, where a stability analysis will be carried out for each of the methods. Finally,
the sliding mode gains will be determined based on the stability analysis.
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Figure 5.2. A comparison of the profiles for the sign function, saturation function and power-
sigmoid functions.

5.2 LTID-SMO using Signum Switching Function

To derive the LTID-SMO using Signum Switching Function (LTID-SMO-Sign), Equation
3.12 and 3.15 is utilized, and is given by the motion equation and the torque equation
respectively. The LTID-SMO takes basis in the acceleration (ω̇e) of the SPMSM and can
be found by substituting Equation 3.15 into 3.12 and isolating for the acceleration, yielding:

dωe

dt
=

KTNpp

J
iq −

B

J
ωe −

Npp

J
TL where KT =

3

2
λmpmNpp (5.5)

Taking the electrical angular speed and load torque as the observer object, the LTID-SMO
can be obtained and shown with Equation 5.6. The load torque indication signal, Zs, is
determined by the Sign function, depended on the speed error (ω̃e = ω̂e − ωe), multiplied
by the sliding mode gain Ksign.

dω̂e

dt
=

KTNpp

J
iq −

B

J
ω̂e − Zs where Zs = Ksign · sign(ω̂e − ωe) (5.6)

Defining the sliding surface as the speed error the following is obtained:

σ(t) = ω̃e = ω̂e − ωe (5.7)
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In accordance with [17], when σ̇(t) = 0 the system state variable has reached the sliding
surface and by that having achieved steady-state conditions. Utilizing the steady-state
condition, the load torque can be obtained by subtracting Equation 5.6 from 5.5 and
isolate for TL:

dω̃e

dt
=

Npp

J
TL − B

J
ω̃e − Zs = 0 (5.8)

⇒ TL =
J

Npp
Zs +

B

Npp
ω̃e (5.9)

where B
Npp

ω̃e ≪ J
Npp

Zs, leaving that the term B
Npp

ω̃e can be neglected.

In addition, as previously described, the sign function in the LTID-SMO can lead to high-
frequency noise and increased chattering. Therefore to effectively reduce the chattering in
the estimated load torque, an LPF is implemented. Thus the estimated load torque may
be formulated as:

T̂L =
J

Npp
Zs ·

ωc

s+ ωc
(5.10)

To gain an enhanced overview, a block diagram is presented in Figure 5.3 showing the
above described principles of the LTID-SMO using a signum function.

+
-

Figure 5.3. A block diagram showing the principles of the LTID-SMO using a signum function.

5.2.1 Stability analysis

The Lyapunov function is used to prove the stability of the observer and define the observer
gain. The Lyapunov candidate function is defined as:

V =
1

2
σ2 (5.11)

The Lyapunov function given by Equation 5.11 is chosen since it is positive definite (P.D). If
taking the derivative of the Lyapunov function, a stability analysis can be made. Providing
the correct values for the tunable observer parameters will ensure that the state does not
tend to infinity but goes to zero. For the observer to be stable, V̇ needs to be at least
negative semi-definite (N.S.D) and most optimal if V̇ is negative definite (N.D), meaning
the equilibrium is asymptotically stable and tends to zero in a finite time [18].

V̇ = σ · σ̇ < 0 (5.12)
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Utilizing that σ̇ =
dω̃e

dt
, the derivative of the Lyapunov candidate may be defined as:

V̇ = σ · σ̇ =

(
Npp

J
TL − B

J
σ − Zs

)
σ (5.13)

As the switching function for the SMO-LTID uses a sign function the following conditions
must be applied:

V̇ =

−B
J σ

2 +
(
Npp

J TL −Ksign

)
σ , σ ≥ 0

−B
J σ

2 +
(
Npp

J TL +Ksign

)
σ , σ < 0

(5.14)

According to the Lyapunov stability criteria, V̇ is negative definite if all terms in Equation
5.14 are negative. The term −B

J σ
2 will always be negative as σ2, B, and J always will be

positive values. Therefore to have all terms negative, the sliding mode gain is defined as:

Ksign >
NppTL

J
(5.15)

To ensure a stable observer, the above-described condition must be satisfied. Therefore a
sanity check is made by investigating the stability of the observer when applying a load
torque of TL = 5.8 [Nm] which leaves Equation 5.15 to become:

Ksign > 1856 Threshold value for : TL = 5.8 [Nm] (5.16)

Therefore if Ksign is chosen to be above the threshold value, the observer is stable for all
cases of TL ≤ 5.8 [Nm]. To further elaborate on this, the Simulink model are given a load
step from TL = 0 [Nm] to TL = 7 [Nm], where it is expected the observer becomes unstable
and not able to estimate the load torque when reaching a load step of TL = 5.8 [Nm]. The
analysis is presented in Figure 5.4.
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Figure 5.4. Sanity check of Equation 5.15, where the sliding variable σ have be analyzed when
above the threshold value set by Ksign. Throughout the analysis the low-pass filter cutoff frequency
remains the same at ωc = 500 [rad/s].

As seen in Figure 5.4 the SMO is stable for TL ≤ 5.8 [Nm] and becomes unstable for
TL > 5.8 [Nm] and is thereby unable to estimate the load torque for the given sliding mode
gain of Ksign = 1856. From the sanity check, it can be concluded that the condition given
by Equation 5.15 must remain satisfied at all times, to ensure a stable operation of the
SMO.

5.2.2 Impact of parameters of the LTID-SMO using a signum function

The Simulink model is used to analyze the sliding mode gain and the LPF’s cutoff
frequency. To choose the sliding mode gain and cutoff frequency, three performance criteria
are used as guidelines to determine the most suitable values. The performance criteria are
given as follows:

1. Ensure the SMO can handle all cases of TL ≤ TL,max.
2. Improve the transient response for the estimated load torque.
3. Chattering should remain as low as possible.

The first criteria are mainly used when determining the sliding mode gain and are
considered the only hard requirement of the performance criteria. After that, criteria
2 and 3 are used to define the sliding mode gain and the cutoff frequency.
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Stipulation of the Sliding Mode Gain

The first part of the analysis is carried out by investigating the impact of the sliding mode
gain. The SMO is disconnected from the FOC, and the LPF are bypassed when analyzing
the sliding mode gain. The sliding mode gain contributes to how large the chattering is.
Therefore, if the sliding mode gain is reduced, less chatter will be present and vice versa
for an increase in Ksign. This is further illustrated in Figure 5.5.
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Figure 5.5. Increased chattering in the SMO without any load step. The Ksign values
was calculated by using Equation 5.15 to determine benchmark values from TL = 1 [Nm] to
TL,max = 5.8 [Nm].

To ensure the SMO can operate under all load conditions, the load torque dynamics are
investigated by applying TL,max to the SPMSM model, where the load torque dynamic
described in Section 3.2 has been included. The investigation of the load torque is carried
out by applying a step response of TL,max = 5.8 to the Simulink model. The result is seen
in Figure 5.6.
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Figure 5.6. Analysis of the load dynamic, with a step input of TL,max = 5.8 [Nm].

As seen in the figure, when including the load dynamic, the maximum load torque during
the transient part of the step response is increased to TL,transient ≈ 8 [Nm]. Therefore if
the transient part is taken into account, the sliding mode gain should at least be above
Ksign > 2560 ensuring a stable SMO during operation for all load torque cases. However,
the disadvantage of determining Ksign above TL,transient, resulting in the Ksign value, will
be over-dimension in cases of TL < TL,max and further filtering is needed to compensate
for the increased chattering.

Next, the transient response for the estimated load torque is analyzed when increasing
the sliding mode gain. To analyze the transient response of T̂L, the transfer function for
the LTID - SMO is derived. Thereby classical control theory can be used to analyze the
dynamical response of T̂L when a load is applied. To derive the linear model of the SMO
with the output/input relation of T̂L

TL
, Equation 5.8 and 5.10 is used.

Equation 5.8 and 5.10 is brought to the Laplace domain and rearranged to obtain the
following transfer functions:

Gω̃e(s) =
ω̃e

TL
=

Npp

JB

s+
Ksign

B

(5.17)

GT̂L,sign
(s) =

T̂L

ω̃e
=

JKsignωc

Npp

s+ ωc
(5.18)

The linear model described by the relationship of T̂L
TL

is obtained by multiplying Equation
5.17 with 5.18:

GSMO,sign(s) =
T̂L

TL
=

Ksignωc

B

(s+
Ksign

B )(s+ ωc)
(5.19)
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To verify the linear model can represented by the non-linear model, the transfer function
given by Equation 5.19 is implemented into the Simulink model with the load dynamic
described by Equation 3.17. Then, a step input of TL,max is applied to both the linear and
non-linear model. Finally, the validation results are presented in Figure 5.7.
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Figure 5.7. Validation results for the linear model of the estimated load torque with the transfer
function: G(s) = GSMO,sign(s) ·GLoad(s).

The figure shows that the linear model can follow the non-linear model with high precision.
Therefore, the linear model can be further used to investigate the dynamical response of
the estimated load torque.

The transfer function given by Equation 5.19 consist of two first-order transfer functions,
with two real poles given from Gω̃e(s) and GT̂L,sign

(s), where ωc ≪ Ksign

B which entails

only the pole located at s = −ωc will influence the dynamical response of T̂L when being
varied. Therefore it is concluded that the sliding mode gain can not improve the transient
response of T̂L when Ksign is increased. The sliding mode gain should be chosen to remain
as low as possible to decrease the chattering in the system while still being large enough
to ensure the SMO is stable. As previously described, the sliding mode gain should at
least be above Ksign > 2560 to ensure a SMO stability. However, as this requirement is
determined based on the calculated load torque without LTID-SMO connected to the FOC
and with a motor speed at 600 [RPM]. An extra 50% safety margin is added to ensure
stability for higher speeds and with the LTID-SMO connected to the FOC, leaving the
sliding mode gain is determined as:

Ksign = 3840
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Stipulation of the LPF Cutoff Frequency

The next part of the analysis is carried out by investigating how the LPF impacts the
estimated load torque and the speed response. Therefore, the SMO is connected to the
FOC by feeding forward the current, î∗q , given from the estimated load torque, making it
possible to investigate how the speed response is affected by a change in ωc.

In general, adding an LPF into the observer structure will contribute to some amount of
phase delay to the estimated load torque. This will affect the estimation accuracy, which
then leads to the error between the real and estimated load torque being greater than zero
(eTL

= TL − T̂L > 0). When eTL
> 0 it will impact the performance of the drive system

negatively as the PI controllers in the FOC will have to take this offset into account,
resulting in a larger overshoot in the speed response when a load step is applied. To grasp
this idea, an illustration is made in Figure 5.8 and 5.9 for eTL

≈ 0 and eTL
> 0.
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Figure 5.8. Top Figure showing the error between the estimated and real load torque with
ωc = 300 [Hz]. Bottom Figure showing the corresponding speed response.
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Figure 5.9. Top Figure showing the error between the estimated and real load torque with
ωc = 10 [Hz]. Bottom Figure showing the corresponding speed response.

Figure 5.8 and 5.9 showing two cases with a high and low value of ωc, which only serve
the purpose of illustrating how the speed response is affected. It is, however, clear the
transient part of the speed response is improved when driving the error between the real
and estimated load torque close to zero. To drive eTL

close to zero, the cutoff frequency
will have to be increased significantly to minimize the phase delay from the LPF. However,
the disadvantages of choosing a high cutoff frequency will result in large chattering, as seen
in Figure 5.8, which may cause the system to become unstable. Therefore when choosing
ωc, it is decided the cutoff frequency should not exceed a value of 45 [Hz] ensuring the
chattering is kept to an acceptable level.

For the determination of the cutoff frequency, an analysis is made with Equation 5.19 in
combination with the load dynamic, leaving the transfer function for the estimated load
torque to be defined as:

G(s) =
T̂L

TL
=

Kωc
B

(s+ K
B )(s+ ωc)

· 135.8s+ 9813

s2 + 109s+ 9743
(5.20)

For analyzing the cutoff frequency, a step response is made with a sweep for different
values of ωc from 10 [Hz] to 45 [Hz]. The objective is to choose ωc without compromising
the dynamical response of T̂L too much while still reducing eTL

. The analysis is presented
in Figure 5.10 and 5.11.
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Figure 5.10. Analysis of the cutoff frequency with a sweep from ωc = 10 [Hz] to ωc = 45 [Hz] for
G(s). The load torque are given by Equation 3.17.
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Figure 5.11. The error eTL
between the real and estimated load torque, shown for its

corresponding linear models. The error was calculated based on Figure 5.10, with the sweep
of the cutoff frequency from ωc = 10 [Hz] to ωc = 45 [Hz].
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As seen in Figure 5.10 and 5.11, the dynamical response of T̂L and the error eTL
does

not change significantly for values above 35 [Hz]. Based on this observation, the cutoff
frequency is determined to be:

ωc = 35 [Hz] ≈ 220 [rad/s]

Using the above determined observer gains for the LTID-SMO-Sign, the simulation results
for the estimated load torque and the corresponding speed response are shown in Figures
5.12 and 5.13 where the actual load torque is used. The speed response shows a small
reduction in recovery time and a large improvement on the peak to peak speed error
compared to with no SMO. The estimated load torque shows a lot of chatter however still
managing to estimate the actual load well.
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Figure 5.12. Simulation result for the speed response where the actual load torque are used.
The speed response are made with the predetermined parameters for the sliding mode gain and
cutoff frequency.
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Figure 5.13. Simulation result for the estimated load torque compared to the actual load torque.
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5.3 LTID-SMO using Saturation Switching Function

When deriving the LTID-SMO with the saturation function (LTID-SMO-Sat), the same
procedure is applied as described with the conventional SMO using a Sign function, by
substituting Equation 3.15 into 3.12, leaving the motion equation to be defined as:

dωe

dt
=

KTNpp

J
iq −

B

J
ωe −

Npp

J
TL where KT =

3

2
λmpmNpp (5.21)

The LTID-SMO can be determined by taking the angular speed and load torque as observer
objects and is therefore formulated as:

dω̂e

dt
=

NppKT

J
iq −

B

J
ω̂e − Zs − LZes (5.22)

By defining the sliding surface as the speed error as σ(t) = ω̃e = ω̂e − ωe, and subtracting
the motion Equation 5.21 from Equation 5.22 the derivative of the speed error is obtained:

dω̃e

dt
=

TLNpp

J
− Bω̃e

J
− Zs − LZes (5.23)

If utilizing the steady-state condition when σ̇(t) = 0 the estimated load torque can be
defined as:

T̂L = (Zs + LZes)
J

Npp
+

B

Npp
ω̃e (5.24)

Where the term B
Npp

ω̃e is neglected, as B
Npp

ω̃e ≪ (Zs + LZes)
J

Npp
, leaving that:

T̂L = (Zs + LZes)
J

Npp
(5.25)

The estimated load torque contains the motor inertia, viscous friction, feedback gain, L,
and the two components Zs and Zes defined as [19]:

Zs = Ksat · sat
(
ω̃e

∆

)
and Zes = Zs

ωc

s+ ωc
(5.26)

Here the term Zs is the output signal from the saturation function. The term Zes is the
filtered Zs through a LPF, and contains mostly the lower frequency components of Zs.

In addition, from Equation 5.23, it should be clear the main difference from the LTID-SMO
with a sign function is the use of a saturation function and added feedback term LZes,
to represent the average estimated load torque. The added term will introduce an extra
component to increase the damping in the SMO and the overall system state, making it
possible to further improve the estimation accuracy.

Figure 5.14 presenting a schematic shown with a block diagram for the above-described
principles of the LTID-SMO using a saturation function.
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Figure 5.14. A block diagram showing the principles of the LTID-SMO using a saturation
function.

5.3.1 Stability analysis

To prove stability of the observer and to determine the observer gains, the Lyapunov
candidate function and its derivative, defined in Section 5.2.1, is again used and repeated
here:

V =
1

2
σ2 and V̇ = σ · σ̇ < 0 (5.27)

During the stability analysis, the load torque is assumed to be constant, and the system
has reached steady-state, leaving Zs = Zes if the cutoff frequency of the LPF is high
enough. This means: When σ ≥ ∆, the output from the saturation function is constant
and Zs = Zes = Ksat. For the case when σ ≤ −∆ it becomes Zs = Zes = −Ksat. When
the SMO is sliding around the sliding surface −∆ < σ < ∆ it can be approximated that
Zs = Zes = Ksat

σ
∆ .

It was defined that σ̇ =
dω̃e

dt
. If Equation 5.23 is inserted into the Lyapunov function

derivative, given by Equation 5.27, the following 3 cases of switching operation is obtained
in Equation 5.28:

σ · σ̇ =


−Bσ2

J +
[
NppTL

J − (1 + L)Ksat

]
σ , σ > ∆

−Bσ2

J +
[
NppTL

J − (1 + L)Ksat
σ
∆

]
σ , −∆ < σ < ∆

−Bσ2

J +
[
NppTL

J + (1 + L)Ksat

]
σ , σ < −∆

(5.28)

Analyzing Equations 5.28, the stability can be proved based on the choice of the
parameters. The Lyapunov theory states that V̇ (σ) < 0 ∀ σ ̸= 0 (N.D.) and V (σ) → ∞
for |σ| → ∞ (P.D.), to be globally asymptotically stable [18]. This is true if all the terms
in V̇ add together to be negative. The term −Bσ2

J < 0 is valid as B and J are positive
parameters, σ2 will always be positive, and −(1 + L)Ksat

σ2

∆ < 0 is also true.

For Equation 5.27 to be fulfilled, the following has to be true:[NppTL

J
− (1 + L)Ksat

]
σ < 0 (5.29)
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Isolating each part yields:

NppTL

J
< (1 + L)Ksat (5.30)

K and L can be chosen together to satisfy Equation 5.30. The load torque will be assumed
to be the maximum possible torque the motor will experience. If isolating for the feedback
gain L, the relation between Ksat and L becomes:

L >
NppTL,max

J Ksat
− 1 (5.31)

The observer can then perform sliding mode motion as this will satisfy the stability criteria
for Equation 5.27. Figure 5.15 demonstrates the load steps being increased and the
correlated estimated load torque to show a situation where the relationship is not satisfied.
The maximum load torque is TL,max = 5.8 [Nm]. Thereby, if the load torque exceeds this,
the relation 5.31 is no longer true, and the SMO cannot estimate the correct load torque
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Figure 5.15. Load torque steps to demonstrate that feedback gain L will cause the observer
to be unstable, thereby not estimating correctly, if the load torque is higher than the maximum
expected load torque of TL,max.

Therefore, to ensure Equation 5.31 is always true, a factor of kf = 2 is multiplied onto parts
of the equation to give some extra safety margin. Ensuring the feedback gain, L, always
will be appropriately large and the system always fulfills the stability criteria. However,
when tuning the observer gains, the factor, kf , may be changed if it can improve the
estimation performance.

L = kf ·
NppTL,max

J Ksat
− 1 (5.32)
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5.3.2 Impact of parameters of the LTID-SMO using a saturation
function

As stated earlier, Zs = Zes = Ksat
σ
∆ when operating around sliding surface, and as there

due to the switching function will be some chattering in the estimated output, the LPF is
used to suppress this. The signal through the LPFs primary function, is to suppress the
chatter in the estimated torque during steady state, where the load torque doesn’t change.
As a LPF also adds a phase lag, a feedback that is directly fed back without filtering is
used to estimate the torque in the transient part of the load changes to have fast response.

The error Equation 5.23 defining the sliding surface is converted to the Laplace domain:

sω̃e = −B

J
ω̃e +

Npp

J
TL − Ksat

∆
ω̃e

(
1 + L

ωc

s+ ωc

)
(5.33)

(s+ ωc) is multiplied on all terms gives:

(s+ ωc)sω̃e = −(s+ ωc)
B

J
ω̃e + (s+ ωc)

Npp

J
TL − Ksat

∆
ω̃e

(
(s+ ωc) + Lωc

)
(5.34)

By rearranging the terms in order of the Laplace operator yields:

s2ω̃e +
(B
J

+
Ksat

∆
+ ωc

)
sω̃e +

(B
J

+
Ksat

∆
(1 + L)

)
ωcω̃e =

Npp

J

(
TLs+ ωcTL

)
(5.35)

Collecting everything on the right side of the equation by diving through with the left side,
then isolating ω̃e

TL
gives the transfer function:

ω̃e

TL
=

Npp(s+ ωc)

J
(
s2 +

(
B
J + Ksat

∆ + ωc

)
s+

(
B
J + Ksat(1+L)

∆

)
ωc

) (5.36)

From this it can be seen the system is stable, based on the Routh-Hurwitz criteria [14],
if: (BJ + Ksat

∆ + ωc) > 0 and
(
B
J + Ksat(1+L)

∆

)
ωc > 0, which is always true if the values are

positive and follows the criteria from Equation 5.31.

The damping factor for the transfer function can be written as:

ζ =

(
B
J + Ksat

∆ + ωc

)
2

√(
B
J +

kfNppTL

J∆

)
ωc

(5.37)

A sweep of ∆ shows the change of the damping ratio seen in Figure 5.16. This shows
that besides at very low ∆, increasing ∆ should provide more damping to the speed error
estimation.
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Figure 5.16. Damping ratio with a sweep of different ∆ values. In addition, the damping ration
is calculated based on Equation 5.37.

Load Torque Dynamics
The real load torque is as described in Section 3.2. As the perfect step in load torque is
not possible in reality, to more accurately understand the behavior of the observer when
a load torque is applied in lab, this load dynamic will be included in the analysis when
understanding the effect of the parameters. By multiplying the transfer function from
Equation 5.36 with the load dynamic transfer function from Equation 3.17 the following
is obtained:

ω̃c

TL
=

Npp(s+ ωc)

J
(
s2 +

(
B
J + Ksat

∆ + ωc

)
s+

(
B
J + Ksat(1+L)

∆

)
ωc

) · 135.8s+ 9813

s2 + 109s+ 9743
(5.38)

The parameters should be tuned to give low chattering and good estimation of the sliding
variable when a load torque is applied. However, due to the influences of the dynamics
of a load torque, the parameters is also considered in relation to the actual load torque.
By looking at the poles of the observer and the load torque transfer function it should be
possible to learn some insides into the system behavior.

5.3.3 Tuning in simulation

The load step used for the simulation is based on the measurement from the lab setup, as
described in Chapter 4 Section 3.2. The simulation runs at 600 RPM and are given a load
step from 0− 5 [Nm]. However, it should be noted in the analysis that the estimated load
torque reaches a steady-state value above the 5 [Nm] and is primarily caused by a static
offset from the Coulomb friction.

43



Group MCE4 - 1027 5. Load Torque Identification Sliding Mode Observer

Stipulation of the sliding mode gain Ksat

The three graphs below, Figure 5.17, 5.18 and 5.19 is showing the simulation running with
three different sliding mode gains Ksat. The additional parameters are kept constant at
∆ = 25, kf = 2 and a cutoff frequency of ωc = 250 [rad/s].

From Figure 5.17 the estimated load torque are presented. Here, for Ksat = 800, the
estimated load torque is close to the actual load torque in amplitude but does not manage
to closely follow the actual load torque during the transient part of the step response. For
Ksat = 11000, the estimated load torque is slightly closer to the actual load torque during
the transient part and is, therefore, better to estimate the actual load torque. This is also
seen Figure 5.18, where a Ksat = 11000 is resulting in the smallest speed error. From
Figure 5.19 a pole-zero map is shown, where it is noted that the poles for higher Ksat

values will result in the complex conjugated poles only consisting of a real part, where one
of the poles will move further into the LHP and the other towards zero. Suppose Ksat is
increased to values above 11000. In that case, one pole will move toward the right half
plane and become more dominating where the other will move further to the left. Faster
poles will result in a faster dynamical response, which should give a better estimation of
the actual load torque. Where as slower poles will in the lab test result in dominating
behavior from the observer, potentially causing a bad response. The gain should therefor
not be too high as to not influence the actual load torque dynamic too much by having a
slow observer pole. Based on these considerations, the sliding mode gain is chosen to be
Ksat = 11000.
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Figure 5.17. A comparison of estimated load torques for different sliding mode gains with the
actual applied load torque.
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Figure 5.18. A comparison of the speed response for different sliding mode gains, where the
recovery time and peak-to-peak values are made to better compare each sweep.
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Figure 5.19. Pole-zero map, showing the corresponding placement of the pole for each sweep of
the sliding mode gain.

Stipulation of ∆

The three graphs below, Figure 5.20, 5.21 and 5.22 is showing the simulation results for
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three different values of ∆, with Ksat = 4000 and L = 2. The LPF has a cutoff frequency
of ωc = 250 [rad/s].

From Figure 5.20, it is clearly seen how an increase in ∆ also increased the damping in
the system. This behavior is also expected from the theory, as Figure 5.16 shows the
same characteristic. Therefore, to obtain a closer estimation of the actual load torque, the
damping should be decreased by lowering the ∆ value. As a result, the speed response
becomes significantly improved, which is further seen in Figure 5.21. However, the issue
with lowering ∆, will also entail the SMO being much more susceptible to chatter, which
can pose serious issues in physical lab setup. In Figure 5.22 a pole-zero map is shown to
describe how the poles are located when ∆ is being varied. Here it should be noted, that no
complex conjugated poles are shown, due to the chosen parameters for Ksat and L results
in the system being over-damped and thereby only real poles are shown. By increasing
∆ the poles move further toward the RHP and becomes more dominating. As a result,
the damping increases and the bandwidth decreases. Based on these considerations, the
∆ value is chosen to be ∆ = 25.
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Figure 5.20. The estimated load torques for different ∆ values compared with the actual load
torque.
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Figure 5.21. A comparison of the speed response for different ∆ values, where the recovery time
and peak-to-peak values are shown to better compare each sweep.
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Figure 5.22. Pole-zero map, showing the corresponding placement of the pole for each sweep of
∆.

Stipulation of kf

The three graphs below, Figure 5.23 to 5.25 is showing the simulation running with three
different factors on L, with Ksat = 4000 and ∆ = 25. The LPF has a cutoff frequency of
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ωc = 250 [rad/s]. The idea from the extra feedback is to improve steady state performance.
L is calculated based on Equation 5.32, this means the gain Ksat affects the size of L,
however the factor kf allows to tune L independently as well. The factor kf can minimum
be 1 as to not fail the criteria from Equation 5.31. It can be notices that a larger kf gives
better approximation of the load torque which improves the speed response. From the
pole plot it can be seen that increasing kf , makes the poles complex conjugate, which can
improve transient response of the estimation. A fast response with some under damping
seems to improve the overall estimation speed and accuracy. Based on these considerations,
the kf value is chosen to be kf = 2.5.
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Figure 5.23. The estimated load torques for different kf values compared with the actual load
torque.
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Figure 5.24. A comparison of the speed response for different kf values, where the recovery time
and peak-to-peak values are shown to better compare each sweep.
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Figure 5.25. Pole-zero map, showing the corresponding placement of the pole for each sweep of
kf .
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5.4 LTID-SMO using Power-Sigmoid Function

The LTID-SMO using Power-Sigmoid function (LTID-SMO-PS) are derived based on the
aforementioned process given by LTID-SMO-Sat-and Sign, where the torque Equation
3.15 is substituted into the Newtons second law, Equation 3.12, which yields the following
equation as:

dωe

dt
=

KTNpp

J
iq −

B

J
ωe −

Npp

J
TL where KT =

3

2
λmpmNpp (5.39)

By defining the sliding surface as the speed error, σ(t) = ω̃e = ω̂e − ωe, the LTID-SMO is
obtained and defined as:

dω̂e

dt
=

KTNpp

J
iq −

B

J
ω̂e − Zs where Zs = KPS · σ(t)α

|σ(t)|α + δ
(5.40)

The derivative of the speed error is derived by subtracting Equation 5.39 from 5.40, which
leaves the derivative of the speed error to be defined as:

dω̃e

dt
=

TLNpp

J
− Bω̃e

J
− Zs (5.41)

Utilizing the steady-state condition, when σ̇ = 0, the estimated load torque is derived from
Equation 5.41, and formulated as:

T̂L =
J

Npp
KPS · σ(t)α

|σ(t)|α + δ
+

B

Npp
ω̃e (5.42)

Where B
Npp

ω̃e ≪ J
Npp

Zs, leaving that the term B
Npp

ω̃e is neglected and the estimated load
torque may therefore be formulated as:

T̂L =
J

Npp
KPS · σ(t)α

|σ(t)|α + δ
(5.43)

From previously described, the SMO with a signum and saturation function uses a LPF
in the estimate the load torque, as T̂L contains high frequency ripples chatter. The idea
behind implementing a Power-Sigmoid function (PS-function) is to obtain an estimated
load torque with low chatter without utilizing an LPF. Thereby, from a theoretically point
of view, minimizing the phase delay and improve the accuracy of the estimated load torque.
Figure 5.26 is showing the observer structure of the above-described LTID-SMO-PS.

+
-

Figure 5.26. A block diagram showing the principles of the LTID-SMO using a PS-function.
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5.4.1 Stability analysis

According to Lyapunov stability, the Lyapunov function and its derivative is defined as:

V =
1

2
σ2 and V̇ = σ · σ̇ < 0 (5.44)

Utilizing that σ̇ = dω̃e
dt , the derivative of the Lyapunov candidate function may be

formulated as:

V̇ = σ · σ̇ =

(
Npp

J
TL − B

J
σ − Zs

)
σ (5.45)

From Equation 5.45 the following conditions must be applied:

V̇ =

−B
J σ

2 +
(
Npp

J TL −KPS · σα

|σ|α+δ

)
σ , σ ≥ 0

−B
J σ

2 +
(
Npp

J TL +KPS · σα

|σ|α+δ

)
σ , σ < 0

(5.46)

The output of the Power Sigmoid function is ups = σα

|σ|α+δ . Since the characteristic response
of the PS-function never reaches an output values of ups = ±1, an approximating is made,
by defining the output of the PS function to be ups,max = 1 and ups,min = −1, and
Equation 5.46 can then be simplified to:

V̇ =

−B
J σ

2 +
(
Npp

J TL −KPS

)
σ , σ ≥ 0

−B
J σ

2 +
(
Npp

J TL +KPS

)
σ , σ < 0

(5.47)

To satisfy the stability condition of Lyapunov function, V̇ < 0, the sliding mode gain of
the LTID-SMO-PS is determined by Equation 5.48.

KPS >
NppTL

J
(5.48)

To ensure the LTID-SMO-PS is stable with the presented stability condition of Equation
5.48, the threshold value for KPS at TL,max = 5.8 [Nm] is calculated, leaving that:

KPS > 1856 Threshold value for : TL,max = 5.8 [Nm] (5.49)

If chosen the sliding mode gain to be greater than the threshold value, the observer is
stable for all cases of TL ≤ TL,max. This is further illustrated in Figure 5.27.
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Figure 5.27. Power Sigmoid with KPS = 1856, making the system unstable from 5.8 Nm load
torque

5.4.2 Impact of parameters of the LTID-SMO using a Power-Sigmoid
function

To analyze the impact of the observer gains for the LTID-SMO-PS, a linear model is derived
with the output/input of T̂L

TL
. A linear model of the system enables one to describe how

the system behaves when each parameter is being varied by investigating the placement
of the poles and zeros as previously described.

To derive the linear model, Equation 5.41 and 5.43 are used. Here it should be noted
the PS-function is a non-linear function, leaving that Equation 5.41 and 5.43 are firstly
linearisared using a first-order Taylor approximation, which yields the following:

∆ ˙̃ωe = K ˙̃ωeω̃e
∆ω̃e +K ˙̃ωe TL

∆TL (5.50)

∆T̂L = KT̂Lω̃e
∆ω̃e (5.51)

In Equation 5.50 and 5.51 ∆ is denoted as the change variable of the systems states. The
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linearization coefficients is the partial derivative of the state equations and are given as:

K ˙̃ωeω̃e
= − d

d ω̃e
( ˙̃ωe) =

B

J
+K0 α0 ·

(
ω̃
(α0−1)
e0

ω̃α0
e0 + δ0

− ω̃
(2α0−1)
e0

(ω̃α0
e0 + δ0)

2

)

K ˙̃ωe TL
=

d

d TL
( ˙̃ωe) =

Npp

J

KT̂Lω̃e
=

d

d ω̃e
(T̂L) = K0 α0 ·

J

Npp
· ω̃

(α0−1)
e0 δ0

(ω̃α0
e0 + δ0)

2

If Equation 5.51 is substituted into Equation 5.50 and brought to the Laplace domain, the
linear model can be obtained, which yields the following transfer function:

Gsigmoid(s) =
T̂L

TL
=

K ˙̃ωe TL
·KT̂Lω̃e

s+K ˙̃ωeω̃e

(5.52)

The linearization points, K0, δ0 and α0 is chosen based on the corresponding values for
KPS , δ and α used in the non-linear model. ω̃e0 is the only unknown linearization point
and can be solved for in Equation 5.41 by utilizing steady-state condition, with: ˙̃ωe = 0.
Next, the linear model is validated, where the actual load torque of TL = 5 [Nm] from
experimental data is used as input to both the linear and non-linear model. For this
particular case the non-linear control parameters and the linearization points are given as:

KPS = 3000 , δ = 1000 , α = 5

K0 = 3000 , δ0 = 1000 , α0 = 5 and ω̃e,0 = 12.4

The validation results are presented in Figure 5.28.
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Figure 5.28. Validation results for the linear model of the estimated load torque with the transfer
function: Gsigmoid(s). In addition, the real load torque, obtained through experiments, are used
as input.
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From Figure 5.28, it should again be noted that the estimated load torque reaches a steady-
state value above the 5 [Nm], caused by a static offset from the Coulomb friction. However,
by inspecting the figure it is seen that the linear model resembles the non-linear model and
can capture all of the dynamics from the non-linear system. Therefore, the linear model
can be further used to analyze the observer gains.

To analyze the impact of the observer gains, the Simulink model is used, as done in Section
5.3.3, where one parameter will be varied. In contrast, the additional parameters are kept
constant. When analyzing the dynamical behavior of the parameters, the estimated load
torque is investigated in combination with the corresponding speed response, pole-zero
map, and the characteristic response of the Power-Sigmoid function (PS-function).

Stipulation of the power constant α

The power constant α is analyzed with α = 3, α = 5 and α = 7. The analysis are presented
with Figure 5.29, 5.30 and 5.31. The additional parameters are kept at:

δ = 1500 , KPS = 3000 (5.53)

Before analyzing the load torque estimation and the corresponding speed response, the
PS-function’s characteristic response will be analyzed to understand the behavior of the
estimated load torque and speed response for different α values. Figure 5.29 is used to
analyze the characteristic response of the PS-function, which shows the correlation between
the convergence rate and the placement of the poles.
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Figure 5.29. The Power-Sigmoid function for a sweep of α and its the corresponding convergence
rate and pole-zero map.
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Characteristic response of the PS-function

• From the top plot in Figure 5.29, the characteristic response of the PS-function is
shown. By investigating the characteristic response for each α value, it should be
noted, that having a high α value, will entail a steeper slope, resulting in a faster
dynamical response and higher output values, ups. Having a low α value, will result in
the opposite, with a slower dynamical response and lower output values. In addition,
by having a low output value, ups, it would be beneficial to increase the sliding mode
gain, KPS , as this will contribute to a faster dynamical response.

Convergence rate to the sliding manifold

• From the middle plot in Figure 5.29, the convergence rate is shown for each α value.
The convergence rate illustrates how fast the sliding variable reaches the sliding
surface. Here an initial value of σ(0) = 50 is used to illustrate the convergence rate.
The plot can be further used to understand the correlation between the characteristic
response of the PS-function and the convergence rate. Where a high α value will
results in a faster convergence rate. Therefore if the PS-function has a steeper slope,
a faster convergence rate occurs.

Pole-Zero Map for the LTID-SMO

• From the bottom plot in Figure 5.29, the pole-zero map is shown for each α value.
The pole-zero map is shown to understand how a faster convergence rate can be
achieved when increasing the α value. Here it is seen that when α is increased,
the poles move further into the LHP, which indicates the dynamics of the observer
become faster.

The main idea for this short analysis of the PS-function is to give an intuitive understanding
of how the PS function can be used to design a proper observer regarding convergence rate,
placement of the poles, and overall dynamical response of the observer.

Figure 5.30 presents the load torque estimation for the presented α values. Here the effect
of a steeper slope in the PS-function is clearly seen. By noticing how an α value of α = 5

and α = 7 showing the best tracking ability of the actual load torque. However, having
a high α value also make the observer more susceptible to chatter. For α = 3 the slope
gradient in the PS-function is significantly lower, which entail the load torque estimation
having a slower dynamical response. This is also be seen in the figure, where the estimation
accuracy of the estimated load torque is low and not able to capture all the actual load
torque dynamics. Despite the slower tracking ability for α = 3, it reduces the chatter
notably.

In Figure 5.31 the speed response is shown, where it is clear seen that α = 5 and α = 7

shows a less peak-to-peak value and the fastest recovery time. For α = 3 the highest peak-
to-peak value is shown, which is expected, since the load torque estimation is less accurate
for this α value. On top of this, the recovery time is also significantly slower for low α
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values than for the higher ones.
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Figure 5.30. The estimated load torques for different α values compared with the actual load
torque.
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Figure 5.31. A comparison of the speed response for different α values, where the recovery time
and peak-to-peak values are shown to better compare each sweep.

Stipulation of δ

When analysing δ, the values of δ = 1000, δ = 1500 and δ = 2000 are used and compared.
From the preciously analysis, the value of δ = 1000 in combination with α = 3 showed
good results regarding chattering reduction. Therefore, the additional parameters are kept
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constant at:

α = 3 , KPS = 3000 (5.54)

The characteristic response of the PS-function in combination with a pole-zero map is
shown in Figure 5.32. The convergence rate has been omitted for this analysis, as the
pole-zero map may show the same conclusion.
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Figure 5.32. The Power-Sigmoid function for a sweep of δ and its the corresponding pole-zero
map.

From Figure 5.32, the effect of δ is seen, where it is noted how larger values for δ extend
the surface area around the σ ≈ 0, which will entail the SMO is more robust against
chattering in areas of low σ values. However, when applying a load step, the sliding
variable will increase above −5 < σδ=2000 ≤ 5, meaning the SMO will be more susceptible
to chatter. This may also be seen in the load torque estimation figures, where all figures
start with only slightly chattering. In the time after the load step, the chattering increases,
due to the sliding variable increases. To better understand this, an analysis is made in
Section 5.4.3, showing how the chattering increases when the sliding variable increases. In
addition, it may also be noted that higher values for δ will decrease the slope gradient
of the PS-function, as can be explained by the poles moving further towards the RHP,
entailing a slower dynamical response.

Figure 5.33 presents the load torque estimation for the presented δ values. As seen in
the figure, all values of δ almost has same tracking ability and chatter level, however, the
trend can conclude that increasing δ, decreases the accuracy of tracking but improves the
chatter reduction.
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In Figure 5.34 the corresponding speed response is shown. Here it is seen that δ = 1000

shows the smallest peak-to-peak value. This is also expected, as this δ value showed slightly
better tracking of the actual load torque. For δ = 2000 the highest peak-to-peak value occur.
From the analysis, it can be concluded that if δ is kept around 1000 to 2000, it does not
contribute to any significantly changes for the chosen α.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time [s]

-1

0

1

2

3

4

5

6

7

8

Actual Load

 = 1000

 = 1500

 = 2000

0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

Figure 5.33. The estimated load torques for different δ values compared with the actual load
torque.
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Figure 5.34. A comparison of the speed response for different δ values, where the recovery time
and peak-to-peak values are shown to better compare each sweep.
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Stipulation of the sliding mode gain KPS

To analyse the impact of the sliding mode gain KPS , the analysis is made with KPS = 2000,
KPS = 2560 and KPS = 3000. The additional parameters are kept constant at:

α = 3 , δ = 1500 (5.55)

The characteristic response of the PS-function in combination with a pole-zero map is
shown in Figure 5.35. The sliding mode gain acts purely on the output of the PS-function
and can therefore not alter the characteristic response. Therefore only one PS-function is
shown with the parameters given by Equation 5.55.
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Figure 5.35. The PS-function shown for the parameters given by Equation 5.55 and its
corresponding pole-zero map.

If increasing the sliding mode gain, the accuracy of load torque estimation can be improved.
The reason for the improved estimation accuracy should be found by investigating the pole-
zero map in Figure 5.35, where it is seen that a high sliding mode gain will cause the poles
to move further into the LHP, which in return makes the SMO’s dynamical response faster.
However, if decreasing the sliding mode gain the pole will move towards to imaginary axis
and eventually become the dominating pole, which will leave the dynamical response of
the LTID-SMO being too damped, and not able to estimate the actual load torque.

Further, the sliding mode gain should not be chosen to be below KPS = 2560 as this will
cause the SMO to become unstable due to the transient part of the load torque, reaching
a maximum value of TL,transient ≈ 8 [Nm]. In Figure 5.36, the load torque estimation is
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shown. It shows as described, that having a KPS of 2000 will limit the torque estimation
to be lower than the actual torque input. A gain KPS of 2560 and 3000, both gives better
tracking performance, but the latter is the best. This is also seen in the speed response
from Figure 5.37, where KPS = 3000 shows the lowest peak-to-peak value. However, as
chattering causes the SMO to decrease in performance, a very high sliding mode gain KPS

can make the observer to become unstable due to chatter issues. In this case a sliding
mode gain of KPS = 3000 is performing well.
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Figure 5.36. The estimated load torques for different sliding mode gains compared with the
actual load torque.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time [s]

575

580

585

590

595

600

605

610

615

S
p
ee

d
 [

R
P

M
]

K
PS

 = 2000

K
PS

 = 2560

K
PS

 = 3000

 peak-to-peak = 35.4 

 T
RT

 = 144 ms 

 peak-to-peak = 29.3 

 T
RT

 = 118 ms 

 peak-to-peak = 26.8 

 T
RT

 = 118 ms 

Figure 5.37. A comparison of the speed response for different sliding mode gains, where the
recovery time and peak-to-peak values are shown to better compare each sweep.
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From the above analysis for α, δ and KPS the final parameters are given as follows:

α = 3 , δ = 1500 , KPS = 3000 (5.56)

5.4.3 Chatter attenuation

Throughout section 5.4.2 the designed PS-function showed good results for attenuating
chatter for low σ values, occurring at no load conditions. However, when a load is applied,
the σ value increases and the PS-function is no longer able to attenuate the chattering as
well. This may further be seen in Figure 5.38, where the chattering increases when a load
torque is applied.
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Figure 5.38. Chatter analysis for the estimated load torque, with the control parameters as:
KPS = 3000 , δ = 1500 , α = 3

From Figure 5.38 it is clearly seen that the sliding variable increases when the load torque
increases. Further, it should be noted that the chattering is only slightly present during
no load condition. After the load step is applied the chattering increases significantly.
The reason for the increased chattering, should be found by inspecting the characteristic
response of the PS-functions, which can be seen in Figure 5.39.
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Figure 5.39. Switching surface, showing low chatter area in red and high chattering area in blue.
The parameters: δ = 1500 , α = 3 are used.

From Figure 5.39 the low chattering area is highlighted with red. If operating above
or below the highlighted area the sliding variable is placed in the high chattering area.
Therefore, to benefit from the design of the PS-function, the sliding variable should during
steady-state be driven towards zero (the low chattering area). This would make the output
from the switching function close to zero and thereby reducing chatter even at higher load
torque.

To do this, the SMO gain KPS is replaced with a PI controller to allow for fast
transient response while in the process drive the sliding variable towards zero, due to
the characteristic of the integrator.

LTID-SMO-PS Using a PI Controller

In Figure 5.40, the block diagram shows the principles of the observer structure using a PI
controller. Here it should be noted that the only difference from the LTID-SMO-PS with
KPS (LTID-SMO-PS-KPS) is the replacement of KPS with a PI controller. Therefore the
fundamental equations for deriving the LTID-SMO-PS with a PI controller (LTID-SMO-
PS-PI) remain the same as for LTID-SMO-PS-KPS. However, as the controller output has
changed, a new stability analysis is made and presented in Appendix B.

+
- ++

Figure 5.40. Diagram of the LTID-SMO-PS-PI
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From the stability analysis in Appendix B the observer gain KP,SMO is determined as:

KP,smo =
NppTL,transient

J

(
1 +

δ

σa

)
≈ 3000 (5.57)

The observer gain KP,SMO is calculated with the parameters given by Equation 5.58 where
the load torque of TL,transient = 8 [Nm] is used to ensure a stable SMO during the transient
response.

α = 3 , δ = 1500 , σ = 20 (5.58)

The sliding variable is chosen to σ = 20, and relates to what the sliding variable reaches,
when the load torque is at TL,transient and under the special condition that KI,smo · t = 0.
The observer gain KI,SMO is a tuned value to satisfy a fast reduction of the sliding variable
and is determined to be:

KI,SMO = 15000 (5.59)

Using the above-described observer parameters, a comparison of the sliding variable is
made for the two LTID-SMO-PS methods where a load torque of TL = 5 [Nm] is applied.
The results are presented in Figure 5.41.
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Figure 5.41. The sliding variable σ seen decreasing after a load step

From Figure 5.41, it is seen that the LTID-SMO-PS-PI drives the sliding variable, σ,
towards zero. Whereas the sliding variable for LTID-SMO-PS-KPS remains unchanged
during steady-state. As previously described, driving the sliding variable towards zero
will entail that the sliding variable eventually enters the low chattering area, which will
reduce the chattering during steady-state. The effect of the PI controller is clearly seen
by inspecting the estimated load torque in Figure 5.42 and the corresponding steady-state
response in 5.43.
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Figure 5.42. Load torque estimation at 600 RPM and 0-5 Nm load step
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Figure 5.43. The reduced chatter for the load torque estimation 0.75s after the load step, running
at 600 RPM and 0-5 Nm load step

From Figure 5.42, it is seen that the LTID-SMO-PS-PI has a similar transient response as
LTID-SMO-PS-KPS and can estimate the actual load torque. However, some initial delay
is seen during the beginning of the load step. This delay causes the estimation accuracy to
decrease and may affect the overall performance of the speed response. The initial delay
can be explained by the sliding variable being approximately zero before the load step.
Therefore, only the integrator contributes to estimate the load torque.

From Figure 5.43, the steady-state response of the estimated load torque is presented.
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Here, it is seen that the chattering is reduced to almost nonexistent by driving the sliding
variable towards zero.

To conclude on the overall performance for the LTID-SMO-PS-PI, the speed response is
shown for both LTID-SMO-PS methods, showing the peak-to-peak value and recovery
time. The results are presented in Figure 5.44.
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Figure 5.44. Speed response at load step using the load torque estimation as feed forward
compensation

From Figure 5.44, the LTID-SMO-PS-PI shows a good ability to reduce the speed error.
However, like the previous observers, an overshoot happens. For the LTID-SMO-PS-PI,
the peak-to-peak value is 30 [RPM], and the total recovery time is 130 [ms], which leaves
the LTID-SMO-PS-PI to perform slightly worse than the LTID-SMO-PS-KPS, which the
initial delay can explain at the beginning of the estimated load torque.

5.5 Improving Recovery Time

It is clear from the previous sections 5.2, 5.3 and 5.4, that the recovery time often isn’t
improved by much when using the LTID-SMOs. Ideally, when the SMOs are used the effect
from load change should be mitigated as much as possible, reducing both speed error and
recovery time.
When a load step is applied, a speed error appears. The SMO is used to remove this
speed error as fast as possible. The estimated load torque from the SMO is converted to
a current, îq

∗
, which is added to the reference i∗q current before the current PI controller.

There will always be a slight delay between the actual load step and the estimated load
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step, this means perfect estimation is not possible.
Simultaneously to the load step estimation, the speed PI controller sees a speed error
which it tries to correct by changing the output current i∗q . However, with both the Speed
PI controller and the feed forward compensation, an over correction of the speed occurs
due to too much produced torque. This means further overshoot in the speed response,
resulting in a slower recovery time. The integrator from the speed PI controller contains
information of the past, and the output is therefore not only for the present but also the
sum of all the previous integration’s. Resetting the integrator can therefore be used to
reduce the contribution the speed PI controller have during a load step and allow more of
the control effort to come from the observer output. By doing this correctly, the overshoot
can be removed and thereby avoid the slow decrease in speed error.

Reset Speed PI Integrator
The reset option can either be on or off. It is off, when a load change have not been
detected. This ensures that the integrator is not reset accidentally if small torque ripples
are occurring. It is also off during reference speed changes as to allow the controller to
always work when changing the reference speed.

When a load and speed change is detected, it triggers a timer for x amount of time, after
which the reset is activated. The time delay from detection to the reset is activated, is to
wait for the speed response to be back around the speed reference. This can be seen in
Figure 5.45 where the red line corresponds to the detection point and the yellow line is
the reset point. If the timer is increased the yellow line moves further to the right and the
reset occurs later. The initial condition after reset is set to the output from the integrator
to be the same as before the detection point.
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Figure 5.45. Speed and torque response with no reset of integrator in speed PI controller.

66



5.6. Simulation Results and Comparison Aalborg University

From Figure 5.46 it can seen that in this case, having the timer for the reset wait for 0.025
[s] has reduced the recovery time from 113 [ms] to 44 [ms]. The initial condition is 0.14 in
this case.
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Figure 5.46. Speed response under a load with a reset period of 0.025 s for the integrator
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Figure 5.47. Output from the integrator in speed PI controller, with an initial condition is 0.14.

5.6 Simulation Results and Comparison

This section compares the simulation results for the different LTID-SMO methods. The
observer gains obtained through Section 5.2 to 5.4 is implemented into its respectively
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LTID-SMO method, where the result of these is shown. Finally, some performance criteria
are used to compare each LTID-SMO method. The performance criteria are as follows:

• Overshoot in the speed response.
• Recovery time for the speed response.
• Error between the estimated and real load torque
• Chattering in estimated load torque.

The above-described criteria, compare each method more accurately and conclude pros
and cons of each LTID-SMO strategy.

The speed response and the estimated load torque were investigated to compare the
different SMOs. Each analysis presented, is made with a fixed load step of TL = 5 [Nm].
The reference speed will be at low and higher speed to show how each method performs
when the motor is running at different reference speeds.

The structure of the analysis consists of three parts. The first part is the analysis of the
resulting speed response. The second part of the analysis presents the dynamical response
of the estimated load torque and explains the speed response. The last part summarizes
the above-described performance criteria for each LTID-SMO method.

Analysis of the speed response:
Figure 5.48 and 5.49 is showing the comparison of the SMOs, with a reference speed of
nref = 600 [RPM] and nref = 1800 [RPM]. From Figure 5.48, it is clear that using LTID-
SMO-Sat function, is best at reducing the speed error under a load step, achieving 18
[RPM] peak-to-peak, however, the recovery time longer than the other methods at 60
[ms]. The LTID-SMO-Sign, have the largest speed error, peak-to-peak of 23 [RPM]. Its
recovery time is only 43 [ms]. The LTID-SMO-PS-KPS with a proportional gain, has
a recovery time of 43 [ms], same as LTID-SMO-Sign, but has a lower speed error of 18.
[RPM]. The final observer is LTID-SMO-PS-PI using a PI controller also having a recovery
time of 43 [ms], but its speed error is 21 [RPM] slightly worse than LTID-SMO-PS-KPS .
However, but still being better than the conventional LTID-SMO-Sign. From Figure 5.52,
the observers are experiencing a 5 [Nm] load step at 1800 [RPM]. The results are similar
what was seen when running at 600 [RPM], as LTID-SMO-Sat was having the lowest peak-
to-peak error but also longest recovery time. LTID-SMO-Sign has slightly longer recovery
time than LTID-SMO-PS with and without PI, and has the highest peak to peak error of
20 [RPM].
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Figure 5.48. Resulting speed response with a reference speed of nref = 600 [RPM].
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Figure 5.49. Resulting speed response with a reference speed of nref = 1800 [RPM].

Analysis of the dynamical response for the estimated load torque:
Figure 5.50 and 5.51 showing the comparison of the estimated load torque at 600 RPM,
with the estimation error, eTL

, between the actual and estimated load torque being shown
in the bottom subplot of each figure. The LTID-SMO-Sign clearly shows the most chatter
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in the estimated load torque, with its error is peaking at 3.5 [Nm] in the transient part
and having a RMSE of 0.18 [Nm]. During the steady-state figure 5.51, LTID-SMO-Sign
estimates between 5.1 to 5.6 [Nm], with multiple peaks reaching down to 4.7 [Nm]. The
LTID-SMO-Sat showing the fastest transient response during the load step, resulting in
the estimation error only reaches up to 2.6 [Nm] its RMSE torque error estimation is
however the highest at 0.19 [Nm]. Its chatter level is low, even lower than the ripples seen
in the actual load torque. This also means the error during the steady-state area is low,
only between -0.25 to 0.25 [Nm]. LTID-SMO-PS-KPS has slightly better load torque error
as the LTID-SMO-Sign, and with much less chatter in the estimation. This is especially
clear in the steady-state area where the chatter level is on a par with the LTID-SMO-
Sat. Lastly, LTID-SMO-PS-PI shows largest estimation error of 3.9 [Nm] but best RMSE
torque estimation error of 0.1 [Nm]. The large error happens as the initial increase is slower
than the other three SMOs, however, it quickly reduces the error to catch the other three
SMOs. Its chatter level is during the transient part, on a similar level as LTID-SMO-Sat
and LTID-SMO-PS-KPS. However, in the steady-state area, LTID-SMO-PS-PI shows its
ability to reduce chatter to near zero.
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Figure 5.50. Top figure showing the actual load torque in comparison to the estimated load
torque for each LTID-SMO method. Bottom figure showing the resulting error between the
estimated and actual load torque. The figure is made with reference speed of nref = 600 [RPM].
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Figure 5.51. The steady state load torque estimation of 5 [Nm] and the load torque estimation
error running at speed of 600 [RPM].

The Figures 5.52 and 5.53 is showing the estimated load torque at 1800 [RPM]. The
SMOs performances are the showing similar performance as seen at 600 [RPM]. The most
noticeable difference can be seen in the last figure showing the steady-state part, it can
be seen from the actual load torque that there is a sine wave with a period of around 0.03
[s] which corresponds to about 33 [Hz]. This sine wave is related to the mechanical rotor
speed at, this is further discussed in Chapter 7 Section 7.3.
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Figure 5.52. Top figure showing the actual load torque in comparison to the estimated load
torque for each LTID-SMO method. Bottom figure showing the resulting error between the
estimated and actual load torque. The figure is made with reference speed of nref = 1800 [RPM].
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Figure 5.53. The steady state load torque estimation of 5 [Nm] and the load torque estimation
error running at speed of 1800 [RPM]
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Summary of the analysis:
To conclude on the simulation, the above-described performance criteria are shown for
each LTID-SMO method. The final results are presented in the two tables next. The
RMSE and Max eLT

is calculated based on 0.2 seconds of data starting at 0 seconds on
Figure 5.50 and 5.52.

LTID-SMO RMSE Torque Max eLT
Recovery Time Peak-to-Peak

Sign 0.18 Nm 3.5 Nm 43 ms 23 RPM
Sat 0.19 Nm 2.6 Nm 60 ms 16 RPM

PS-KPS 0.15 Nm 3.2 Nm 43 ms 18 RPM
PS-PI 0.1 Nm 3.9 Nm 43 ms 21 RPM

No SMO - - 156 ms 62 RPM

Table 5.2. Performance marks for 5 Nm load step at 600RPM

LTID-SMO RMSE Torque Max eLT
Recovery Time Peak-to-Peak

Sign 0.18 Nm 3.9 Nm 51 ms 20 RPM
Sat 0.19 Nm 3 Nm 62 ms 16 RPM

PS-KPS 0.15 Nm 3.4 Nm 48 ms 18 RPM
PS-PI 0.1 Nm 4 Nm 47 ms 19 RPM

No SMO - - 156 ms 61 RPM

Table 5.3. Performance marks for 5 Nm load step at 1800RPM
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In the following chapter, the experimental data for the four different LTID-SMO methods,
described in Chapter 5, are presented. To describe the performance for each LTID-SMO
method, the recovery time, load torque estimation error, speed error, and RMS errors are
used to conclude the performance during each analysis. The following chapter is structured
by first showing the control parameters used in each LTID-SMO method. Then, the results
from the experiments are presented in a table, describing the above-formulated performance
parameters. The experimental graphs will be thoroughly described and analyzed. Finally,
the comparison of the experimental test conducted for each LTID-SMO method will be
presented in Chapter 7.

6.1 Experimental Test without LTID-SMO

To create benchmark values for comparing the performance of the LTID-SMO methods,
two tests were conducted, one for 600 [RPM] and one for 1800 [RPM] without the LTID-
SMO connected to the FOC. A load torque is applied for 1 [Nm] and 5 [Nm] during each
test. The speed, nmeas, is measured during each test with the load torque, TL, being
calculated based on the approach described in Section 3.2. The experimental data are
presented in Figures 6.1 and 6.2. The results of the two tests are given in Tables 6.2 and
6.3. These performance parameters will be used as benchmark values for the drive system
when utilizing the LTID-SMO methods connected to the FOC. The RMSE is calculated
by averaging the errors caused by the load step at 1 [Nm] and 5 [Nm]:

RMSE =
RMSE1[Nm] +RMSE5[Nm]

2
(6.1)

Where the RMSE1[Nm] and RMSE5[Nm] is calculated using data for 0.5 [s] before and
after the load step.

To determine the recovery time, error bands are used as described in Section 2.3.
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Parameter Value Unit
RMSE Speed 7 [RPM]

Max Speed Error 62 [RPM]
TRT for 1 [Nm] 113 [ms]
TRT for 5 [Nm] 161 [ms]

Table 6.2. Final results for 600 [RPM]

Parameter Value Unit
RMSE Speed 7 [RPM]

Max Speed Error 60 [RPM]
TRT for 1 [Nm] 90 [ms]
TRT for 5 [Nm] 127 [ms]

Table 6.3. Final results for 1800 [RPM]

From Figure 6.1, the left graphs displays the speed change under a 1 Nm load step. The
speed decreases with approximately 12 RPM, with a recovery time of 113 [ms]. For the
right graphs a 5 Nm load step is added and the speed decreases with 62 RPM while
taking 161 [ms] to recover. It is expected that a high load torque causes a high speed
change as torque can be related to acceleration, meaning higher torque can cause a higher
acceleration. The PI speed controller will need to increase its output by more to counter
act the deceleration seen when 5 Nm is applied compared to 1 Nm load step.
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Figure 6.1. Experimental test conducted for 600 [RPM], where the speed and load torques are
shown with a zoomed view of the transient response and error graphs for the speed and estimated
load torque.

From Figure 6.2, it is seen that the speed error and recovery time do not change by much
when increasing the rotor speed to 1800 [RPM]. However, the speed ripples have slightly
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increased, which indicate that the amplitude of the ripples is influenced by the speed of
the rotor.
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Figure 6.2. Experimental test conducted for 1800 [RPM], where the speed and load torques are
shown with a zoomed view of the transient response and error graphs for the speed and estimated
load torque.
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6.2 Experimental Test of LTID-SMO-Sign

The LTID-SMO-Sign described in Section 5.2 is implemented and tested on the
experimental setup. It is analyzed for different speeds and load torque changes. During
the analysis, the final parameters determined in Section 5.2.2 are used as initial guess.
However, during each test conducted, it was noted that the chattering was too high,
resulting in the PMSM being auditory noisy. Therefore, further reducing of the cutoff
frequency ωc was required. The final parameters used for each test are presented with
Table 6.4.

Parameter Simulation Laboratory Unit
Ksign 3840 3840 [-]
ωc 35 25 [Hz]

Table 6.4. Control parameters used in the physical lab setup for LTID-SMO-sign.

The results from the test can be seen in Figure 6.3 and 6.4 where a zoomed view of the
transient dynamics for the speed and load torque is displayed as well during each test.

The performance parameters of the LTID-SMO-Sign for each test are presented in Table
6.5 and 6.6. The performance parameters includes the speed error (nref − nmeas), the
estimated load torque error (TL − T̂L), recovery time, and lastly speed and torque RMSE.
Where the recovery time and RMSE are determined with the same approach described in
Section 6.1.

Parameter Value Unit
RMSE Speed 1.7 [RPM]
RMSE Torque 0.4 [Nm]

Max Speed Error 33 [RPM]
Max Torque Error 5.4 [Nm]

TRT for 1 [Nm] 164 [ms]
TRT for 5 [Nm] 111 [ms]

Table 6.5. Performance for 600 [RPM]

Parameter Value Unit
RMSE Speed 1.85 [RPM]
RMSE Torque 0.43 [Nm]

Max Speed Error 32 [RPM]
Max Torque Error 4.3 [Nm]

TRT for 1 [Nm] 70 [ms]
TRT for 5 [Nm] 76 [ms]

Table 6.6. Performance for 1800 [RPM]

From Figure 6.3 it can be seen that the recovery time for low and high torque load is
respectively 164 [ms] and 111 [ms], which is a reduction compared to the response without
SMO. There is a slight overshoot in the speed response as it tries to recover from the 1
[Nm] load step, which can be seen in the speed error slightly decreasing shortly below 0
[RPM] error. In the case of the larger load step, the overshoot is less noticeable; however,
small oscillations occur during the speed recovery. These oscillations are coming from the
actual load torque and estimated load torque influencing each other from when feeding
forward the current î∗q to the FOC. Therefore, when calculating the actual load torque,
described in Section 3.2, the iq current will now include the extra added dynamics from
the LTID-SMO, which causes the actual load torque dynamic to change.
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The maximum speed error under a 5 [Nm] load step is 33 [RPM], with a load torque
estimations error of 5.4 [Nm]. This means the reduction in speed error is also improved
compared to the result without SMO.
The maximum load estimation error happens as the load torque increases initially while
the estimated load torque tries to catch up to the actual load torque. In this attempt,
during settling, the estimated load torque is higher than the actual load torque at short
instances. This can be seen in the right torque error plot for 5 [Nm] when the error is
negative. During this time, the speed will be increased too much, causing the oscillating
effect in the speed and load torque, which will propagate back to the estimated load torque
due to measured speed and current being used in the observer. For the LTID-SMO-Sign,
the issue is caused by chattering, which is very prominent in the 1 [Nm] load torque step,
almost covering up the actual load torque. Too much chatter can cause issues as this is
fed into the FOC as current, which will cause minor rippling in the speed response.
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Figure 6.3. Result using LTID-SMO-Sign in lab, running at 600 [RPM]. Left column is for 0 to
1 [Nm] load step and right column is 0 to 5 [Nm] load step.

79



Group MCE4 - 1027 6. Experimental Test and Tuning

From Figure 6.4 a similar trend is seen, as for 600 [RPM] test in terms of maximum load
torque error and maximum speed error. The actual load torque in left plots for 1 [Nm],
actually reaches around 3 [Nm], whereas the estimated load torque tops at just above 2
[Nm]. At the 5 [Nm] load step, the estimated load torque lags slightly behind the actual
load torque, primarily due to the low pass filter having a low cutoff frequency.
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Figure 6.4. Result using LTID-SMO-Sign in lab, running at 1800 [RPM]. Left column is for 0 to
1 [Nm] load step and right column is 0 to 5 [Nm] load step.
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6.3 Experimental Test of LTID-SMO with Satuation
Function

The LTID-SMO-Sat described in Section 5.3 is implemented into the experimental setup
and analyzed for the same speed and load torque changes as described in Section 6.2. The
determined simulation parameters are again used as benchmark values when implementing
the LTID-SMO to the drive system. During the test, it was noticed that the simulation
parameters were too aggressive for the experimental setup, and some retuning was made
to obtain satisfactory results. The final parameters used for each test are presented with
Table 6.7.

Parameter Simulation Value Laboratory Value Unit
Ksat 11000 6000 [-]
∆ 25 25 [-]
kf 2 2 [-]
ωc 40 40 [Hz]

Table 6.7. Control parameters used in the physical lab setup for LTID-SMO-Sat.

The results from the test can be seen in Figure 6.5 and 6.6, showing the measured speed
and load torques. In addition, the final performance parameters are given by Table 6.8
and 6.9.

Parameter Value Unit
RMSE Speed 1.5 [RPM]
RMSE Torque 0.3 [Nm]

Max Speed Error 24 [RPM]
Max Torque Error 4.3 [Nm]

TRT for 1 [Nm] 88 [ms]
TRT for 5 [Nm] 103 [ms]

Table 6.8. Performance for 600 [RPM]

Parameter Value Unit
RMSE Speed 1.6 [RPM]
RMSE Torque 0.35 [Nm]

Max Speed Error 28 [RPM]
Max Torque Error 4.6 [Nm]

TRT for 1 [Nm] 16 [ms]
TRT for 5 [Nm] 90 [ms]

Table 6.9. Performance for 1800 [RPM]

From Figure 6.5 it can be seen that the LTID-SMO-Sat can effectively reduce the speed
error while in the process have lower chattering in the load torque estimation and speed
response compared to the conventional method. The improvement is expected since the
LTID-SMO-Sat was designed to attenuate chattering and increase the accuracy of the
estimated load torque by adding the additional feedback term Zes·L, which mainly contains
the low-frequency component of the estimated torque and replacing the sign function with
a saturation function. As a result, a faster convergence time and increased bandwidth of
the LTID-SMO-Sat can be obtained. The chatter is small without considerable phase lag
between estimated and actual load. This is beneficial for the speed response, which results
in minor errors and quick recovery.
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Figure 6.5. Result using LTID-SMO-Sat in lab, running at 600 [RPM]. Left column is for 0 to
1 [Nm] load step and right column is 0 to 5 [Nm] load step.

Figure 6.6 is the LTID-SMO-Sat running at 1800 RPM. Similar to lower speed the
estimated load torque is good, resulting in low speed error through the transient part.
Besides this, the chatter in the load torque is low both during transient and steady state.
The recovery time is for 1 and 5 Nm is 16 [ms] and 90 [ms] respectively, with the RMSE
for torque and speed being only 0.35 [Nm] and 1.6 [RPM] respectively. The oscillations
with a frequency of 30 Hz which was also seen when running without the LTID-SMO, is
still present. The amplitude is slightly increased compared to without the observer but
still within a acceptable range.
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Figure 6.6. Result using LTID-SMO-Sat in lab, running at 1800 [RPM]. Left column is for 0 to
1 [Nm] load step and right column is 0 to 5 [Nm] load step.
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6.4 Experimental Test of LTID-SMO with Power-Sigmoid
Function

The LTID-SMO-PS described in Section 5.4 was implemented into the experimental setup
and analyzed for the same speed and load torque changes as preciously described for LTID-
SMO-Sat- and Sign. Furthermore, the following section is divided into two parts. The first
part 6.4.1, describes the experimental data for the LTID-SMO with a regular sliding mode
gain KPS . In the second part 6.4.2, the experimental data for the LTID-SMO with the PI
controller implemented is displayed.

6.4.1 LTID-SMO-PS-KPS

The simulation parameters are used in the experimental setup, where only the sliding
mode gain KPS has been marginally retuned to obtain a satisfactory result. The final
parameters are given by Table 6.10.

Parameter Simulation Value Laboratory Value
KPS 3000 2800
α 3 3
δ 1500 1500

Table 6.10. Control parameters used in the physical lab setup for LTID-SMO-PS-KPS.

The results from the experimental tests can be seen in Figure 6.7 and 6.8 with the final
performance parameters are given by Table 6.11 and 6.12.

Parameter Value Unit
RMSE Speed 1.7 [RPM]
RMSE Torque 0.3 [Nm]

Max Speed Error 32 [RPM]
Max Torque Error 4.5 [Nm]

TRT for 1 [Nm] 96 [ms]
TRT for 5 [Nm] 106 [ms]

Table 6.11. Performance for 600 [RPM]

Parameter Value Unit
RMSE Speed 2 [RPM]
RMSE Torque 0.37 [Nm]

Max Speed Error 32 [RPM]
Max Torque Error 4.8 [Nm]

TRT for 1 [Nm] 21 [ms]
TRT for 5 [Nm] 76 [ms]

Table 6.12. Performance for 1800 [RPM]

From Figure 6.7, it is seen on the right subplots, that the estimated load torque for
5 [Nm] does not manage to closely follow the actual load torque during the initial part of
the transient response. Therefore, indicating the sliding mode gain should be increased
to obtain better estimation accuracy. However, increasing KPS will also result in more
chatter in the estimation. Therefore no further tuning of the sliding mode gain is made.
The speed response for 1 [Nm] shows a minor overshoot above the reference at 600 [RPM],
which is due to to the torque error being shortly negative during the transient part of the
load step. Negative torque error means the estimated load torque is higher than the actual
load torque. High estimated load torque will result in increased acceleration, hence the
overshoot is seen.
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Figure 6.7. Result using LTID-SMO-PS-KPS in lab, running at 600 [RPM]. Left column is for 0
to 1 [Nm] load step and right column is 0 to 5 [Nm] load step.

From Figure 6.8, it is seen that the LTID-SMO-PS-KPS for 1800 [RPM] shows similar
results as the test conducted for 600 [RPM], where the estimated load torque for 5 [Nm]

does not manage to reach all the actual load torque dynamic fully. If looking at the
estimation accuracy for 1 [Nm], the estimated load torque manages to capture most of the
actual load torque dynamic. The most noticeable difference between the two tests is the
recovery time, which has been significantly reduced for 1800 [RPM]. Due to the design of
the PS-function, the chattering is effectively reduced. Thereby, the oscillation in the speed
response remains smaller than the error band of ±3 [RPM] which in return results in a
fine recovery time. To final conclude the above analysis, the overall performance for both
tests conducted shows the LTID-SMO-PS-KPS managed to reduce the errors for the speed
response and improve the chattering and the recovery time in the drive system.
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Figure 6.8. Result using LTID-SMO-PS-KPS in lab, running at 1800 [RPM]. Left column is for
0 to 1 [Nm] load step and right column is 0 to 5 [Nm] load step.
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6.4.2 LTID-SMO-PS with PI controller

The simulation parameters are used in the experimental setup, where no additionally
retuning was made for the following two tests. The final parameters are given by Table
6.13.

Parameter Simulation Value Laboratory Value
KP,SMO 3000 3000
KI,SMO 15000 15000

α 3 3
δ 1500 1500

Table 6.13. Control parameters used in the physical lab setup for LTID-SMO-PS with PI.

The results from the experimental tests can be seen in Figure 6.9 and 6.10 with the final
performance parameters are given by Table 6.14 and 6.15.

Parameter Value Unit
RMSE Speed 2.5 [RPM]
RMSE Torque 0.4 [Nm]

Max Speed Error 41 [RPM]
Max Torque Error 5.7 [Nm]

TRT for 1 [Nm] 144 [ms]
TRT for 5 [Nm] 125 [ms]

Table 6.14. Performance for 600 [RPM]

Parameter Value Unit
RMSE Speed 2.4 [RPM]
RMSE Torque 0.4 [Nm]

Max Speed Error 43 [RPM]
Max Torque Error 6 [Nm]

TRT for 1 [Nm] 72 [ms]
TRT for 5 [Nm] 97 [ms]

Table 6.15. Performance for 1800 [RPM]

Figure 6.9 present the test conducted at 600 [RPM]. From the load step at 1 [Nm] and
5 [Nm] the recovery time is respectively 144 [ms] and 125 [ms]. The recovery time at 5
[Nm], could be faster if oscillations was reduced more quickly or complete eliminated. The
speed quickly rises back to the reference speed but oscillates around it for approximately
75 [ms] before settling within the error band. The larger overshoot for 1 [Nm] is due to
the estimated load torque not being able to follow the actual load torque during the first
part of the transient response. Whereas the estimated load torque for 5 [Nm] is better
at quickly estimating the actual load torque throughout the transient part. If inspecting
the chattering in the load torque estimation, it is seen that the chattering is small before
and after the load step is applied. This is also expected, as the LTID-SMO-PS-PI method
was designed to better attenuate chatter after an applied load step due to the integrator
driving the sliding variable towards zero.
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Figure 6.9. Result using LTID-SMO-PS-PI, running at 600 [RPM]. Left column is for 0 to 1
[Nm] load step and right column is 0 to 5 [Nm] load step.

From Figure 6.10, it is seen that the LTID-SMO-PS-PI, under 1800 [RPM] test shows
similar results as the test conducted for 600 [RPM], with only minor deviation in the
speed and estimated load torque errors. From the load step at 1 [Nm] and 5 [Nm] the
recovery time is respectively 72 [ms] and 97 [ms]. The fastest recovery time occurs at 1
[Nm]. Here it is seen that the estimated load torque error at 1 [Nm] does not have large
negative values, which will cause the overshoot above the reference to be smaller, thereby
settling quicker than the speed response at 5 [Nm].
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Figure 6.10. Result using LTID-SMO-PS-PI in lab, running at 1800 [RPM]. Left column is for
0 to 1 [Nm] load step and right column is 0 to 5 [Nm] load step.

89





Discussion 7
In this chapter, a comparison between the simulation and experimental results are made.
Afterward, a comparison is made for the experimental results of the four different LTID-
SMO methods, described in Chapter 6. Finally, a short FFT analysis is presented,
investigating the mechanical frequency occurring in the drive system.

7.1 Comparison of Simulation and Experiment results

The LTID-SMOs in lab and in simulation is compared and discussed in this section. It
is shown if there is a good fit between them and if they have similar trend, so it can be
confirmed if the simulated SMO is valid. The simulated system in this section is using the
load torque which is calculated based on the lab result running with the observer. That
is, for simulating the observer with a sign function, the load torque comes from lab test
using the sign function with the same parameters.

Figure 7.1 shows the lab test and simulation using the sign function. Both the speed
response and the load torque estimation is similar when getting same load torque profile,
which can be seen as the blue line hides under the yellow line. The chatter has similar
magnitude and the load estimation lag compared to the actual load torque is the same.

Figure 7.2 is the comparison when using saturation switchign function. As before, the
response is similar and between simulation and lab test. The lab test have slightly larger
torque oscillation amplitude than the simulation, but only by a small amount, so that the
recovery time is still the same. The chatter level is smaller than the actual load torque for
both the lab and the simulation showing the benefit of the saturation function in reducing
chatter while still having fast estimation.
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Figure 7.1. Comparison of the experimental and simulated results for the LTID-SMO-Sign.
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Figure 7.2. Comparison of the experimental and simulated results for the LTID-SMO-Sat.
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Figure 7.3. Comparison of the experimental and simulated results for the LTID-SMO-PS-KPS.
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Figure 7.4. Comparison of the experimental and simulated results for the LTID-SMO-PS-PI.

Figure 7.3 is the third LTID-SMO-PS-KPS. The speed and torque response has a similar
trend between the two when using the exact same SMO parameters, both having the
oscillating behavior due to the load torque. The first 0.2 [s] of the response is a little
different between each other, however, this can be explained by the initial conditions. As
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the simulation is started different initial conditions can be given. Both for the initial speed
which is running at 600 [RPM], the current iq may not be zero, etc. This explains why it
is seen that the simulation after some time stabilizes around the lab measurement.

The forth Figure 7.4 shows the Power-Sigmoid using a a PI after the switching function,
LTID-SMO-PS-PI. Both simulation and experiment is able to reduce the ripples seen, some
time after the load step appears, as is expected due to the PI controller in the LITD-SMO.
The estimation is the same for both lab and simulation. As the previous Figure 7.3, the
start is due to some mismatch in initial conditions, but otherwise no major differences is
to be seen.

For all SMO used, the simulation matches the lab test well. The trends are the same and
chatter level is about the same as well, proving the simulation as a good tool to develop
the LTID-SMOs.

7.2 Comparison of LTID-SMO Methods

In this section, the performance of the LTID-SMO methods is analyzed and compared
against each other. The speed response and estimated load torque are used to compare
each method. Furthermore, the steady-state response is used to compare the methods.
The comparison is only made for a load step of 5 [Nm], running at 600 and at 1800 [RPM].

7.2.1 Test at 600 [RPM] for 5 [Nm] load step

The speed and load torque RMSE, the maximum speed error(peak to peak) and torque
errors obtained though Chapter 6 are presented again in Table 7.2.

Speed Error [RPM] Torque Error [Nm]
RMSE Max RMSE Max

Without LTID-SMO 7 62 - -
LTID-SMO-Sign 1.7 33 0.4 5.4
LTID-SMO-Sat 1.5 24 0.3 4.3

LTID-SMO-PS-KPS 1.7 27 0.3 4.5
LTID-SMO-PS-PI 2.5 41 0.4 5.7

Table 7.2. Error summary at 600 [RPM].

Figure 7.5 presents the speed response. To analyse and compare the LTID-SMO methods
the peak-to-peak value and recovery time will be analysed separately, where Table 7.2 will
be used to further understand each speed response.

In Figure 7.6 and 7.9 shows peak-to-peak error and RMSE. These values in the figures are
based on the data seen in the respective graphs.

Peak-to-peak error: From the Figure 7.5, it is seen that all the LTID-SMO methods have
similar behavior, where all overshoots above the reference of 600 [RPM] before settling,
explained by the SMO adding extra dynamic to the drive system. The LTID-SMO-Sat
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is showing the best result regarding the peak-to-peak value. This is also expected, as
the same may be concluded from Table 7.2 where the LTID-SMO-Sat is showing the best
results for the RMSE and lowest maximum errors. The LTID-SMO-PS-KPS have similar
results as LTID-SMO-Sat with only minor deviation.

The LTID-SMO-Sign and LTID-SMO-PS-PI have the worst peak-to-peak values, where
the LTID-SMO-PS-PI has the slowest response and by far largest peak-to-peak value of
36.4 [RPM] during the transient part. Logically, this can be explained if considering what
happens to the sliding variable. Due to the PI, as mentioned in previous chapter 5.4.2,
the sliding variable is driven to zero. When a load step then happens, the sliding variable
increases, thereby increasing its output to estimate a load torque. Initially, with a sliding
variable between -4 to 4, the output changes very little, since a σ in this area almost
outputs zero. Therefor, the sliding variable needs to be above σ = 4, for the switching
function output to have a real impact. The LTID-SMO-PS-PI will therefor always suffer
in the start of the transient estimation of a load torque, compared to the other methods.
This is further explained later in this subsection when analysing the load torque and sliding
variable in Figures 7.7 and 7.8.

Recovery time: In Figure 7.5, it can be seen the LTID-SMO-Sat shows the best recovery
time, which its peak-to-peak value can explain. Having a low peak-to-peak value will
contribute to a lower recovery time. This is seen around the error band, where the SMOs
with high peak-to-peak values also have the highest recovery time due to their oscillations.
The estimated load torque is analyzed next in Figure 7.7 and 7.9 to explain the speed
response further.
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Figure 7.5. Experimental comparison of the LTID-SMO methods for the speed response.

Speed in steady state: If investigating the steady-state part of the speed response seen
in Figure 7.6, the LTID-SMO-PS-PI shows the best improvement for reducing chatter
between the previous described LTID-SMO methods. The LTID-SMO-PS-PI was designed
to reduce chattering in steady-state due to the integrator driving the sliding variable
towards zero, which is proved by the low chatter in steady state. Suppose, comparing
the LTID-SMO-PS-PI to the system without any LTID-SMO during the steady state part
in Figure 7.6, the highest absolute RPM value and RMSE are almost identical. The LTID-
SMO-PS-PI has an peak to peak RPM value of 0.73 and an RMSE of 0.15. Thereby
only deviating from the system without the LTID-SMO by 0.09 RPM which is negligible.
The LTID-SMO-Sign shows the highest RMSE, and peak to peak value, which is also
expected as the sign function contributes to larger chattering due to its nature, as it has
a discontinuity jump at σ = 0, leading to greater chattering.
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Figure 7.6. Experimental comparison of the LTID-SMO methods for the speed response in
steady-state.

In Figure 7.7 the estimated load torque is presented for each LTID-SMO method. A direct
comparison of the LTID-SMO regarding the estimation accuracy is not possible in this
case, as each LTID-SMO methods contribute to different iq measurements, leading to the
actual load torque being different for each method. However, it is possible to analyze the
chattering and transient performance for each LTID-SMO method. Figure 7.9 displays the
load torque estimation in steady state and Figure 7.8 shows the sliding variable.

Transient response: Figure 7.7 is the transient load torque estimation. From the response,
it is clear that the LTID-SMO-Sat is showing the best performance, as it has fast torque
estimation over the other methods, which can be seen by it leading the others. This
can be explained by the feedback, Zs, in the observer structure of the LTID-SMO-Sat
method. The feedback Zs is directly fed back without filtering through the LPF, giving
fast dynamics. This results in a fast transient response for the estimated load torque and
low chatter. On the other hand, the LTID-SMO-PS-PI has the slowest transient response
as it has some initial delay at the start of the load step resulting in the LTID-SMO-PS-
PI lagging behind the other methods throughout the transient part. This can be furhter
understood by investigating the sliding variable next.
The sliding variable is displayed in Figure 7.8. It is seen that the sliding variable starts at
σ ≈ 0 for LTID-SMO-PS-PI, resulting in the output of the PS-function being close to zero
(ups ≈ 0). Leaving that, for the first part of the transient response, only the integral term
KI
s are contributing to the estimated load torque, resulting in slow initial response, thereby,
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an delay is occurring at the beginning of the estimated load torque with this method. The
saturation can also be seen having a low sliding variable under no load, but its switching
output increases linearly with the sliding variable, thereby having greater output at same
sliding variable value. For example, the output from the switching function for saturation
and PS-PI is calculated as: σ

25 and σ3

|σ|3+1500
. This means for example when σ = 1 the

Saturation switching function outputs 0.04 while the PS-PI switching function outputs
only 0.0007. The saturation therefor allow for the fast transient dynamics which is not
seen in the PS-PI.
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Figure 7.7. Experimental comparison of the LTID-SMO methods for the estimated load torque.

Chattering: In Figure 7.9 is the torque estimation during steady state. The LTID-SMO-
Sign clearly shows the highest chattering level. In contrast, as before the LTID-SMO-PS-PI
shows the best results by the smoothness of the estimated load torque. The LTID-SMO-Sat
and -PS-KPS show a similar chattering level.
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Figure 7.8. Experimental comparison of the LTID-SMO methods for the sliding variable.
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Figure 7.9. Experimental comparison of the LTID-SMO methods for the estimated load torque
in steady-state.
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Summary for the test at 600 [RPM]

To summarize the above analysis for the test at 600 [RPM], each LTID-SMO method will
shortly be described based on their overall performance to improve the speed response.

LTID-SMO-Sign:

• This method showed an overall good result in the estimation of the actual load
torque resulting in a peak-to-peak of 33 [RPM] with a corresponding recovery time
at TRT = 111 [ms]. The main drawback of this method is the chattering, which is
heavily present in both the speed response and estimated load torque.

LTID-SMO-Sat:

• This method is considered the better option for LTID-SMO method by having the
lowest recovery time at TRT = 103 [ms] and the lowest peak-to-peak value of 24
[RPM]. This also corresponds to having the best estimation accuracy, as it obtained
a fast transient response during the load step.

LTID-SMO-PS-KPS:

• This method showed similar results as LTID-SMO-Sat with slightly slower recovery
time at TRT = 106 [ms] and a peak-to-peak value of 32 [RPM]. However, this method
showed minor improvement in reducing the chattering compared to LTID-SMO-Sat.

LTID-SMO-PS-PI:

• This method showed good results in reducing the chattering in steady-state.
However, it could not perform well under the transient response, resulting in a lower
estimation accuracy than the above LTID-SMO methods. Its overall performance
for the recovery time and peak-to-peak value was TRT = 125 [ms] and 41 [RPM]
respectively.

7.2.2 Test at 1800 [RPM] for 5 [Nm] load step

The summary of the speed and load torque RMSE and maximum errors obtained though
Chapter 6 are presented in Table 7.3.

Speed Error [RPM] Torque Error [Nm]
RMSE Max RMSE Max

Without LTID-SMO 7 60 - -
LTID-SMO-Sign 1.85 32 0.43 4.3
LTID-SMO-Sat 1.6 28 0.35 4.6

LTID-SMO-PS-KPS 2 32 0.37 4.8
LTID-SMO-PS-PI 2.4 43 0.4 6

Table 7.3. Summary of the errors at 1800 [RPM].

From Figure 7.10 the speed response is shown for each of the LTID-SMO methods. To
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analyze and compare the LTID-SMO methods, the peak-to-peak value and recovery time
will be analyzed separately, where Table 7.3 will be used to understand each speed response
further. In Figure 7.11 and 7.14 shows peak-to-peak and RMSE. These values are based
on the data seen in the respective graphs.

Peak-to-peak: The Figure 7.10 shows that the LTID-SMO-Sat shows the best performance
regarding the peak-to-peak value just as what was seen at lower speed. Again it is expected
as the LTID-SMO-Sat also shows the lowest RMSE and max errors from Table 7.3. Similar
to lower speed, the LTID-SMO-PS-PI has the highest peak-to-peak value during the
transient part of the speed response, which corresponds to the RMSE and max errors
in the summary table. If analyzing the peak-to-peak value for LTID-SMO-PS-KPS and-
Sign, it is seen that both methods have the same peak-to-peak value at 32 [RPM].

Recovery time: The recovery time for LTID-SMO-PS-KPS and -Sign are showing the best
performance with a recovery time of TRT = 76 [ms]. This can be explained by having
the same peak-to-peak values and similar oscillating tendencies during the steady-state
response. The LTID-SMO-PS-PI has the highest recovery time at TTR = 97 [ms], on top
of having the highest peak-to-peak value of the SMOs.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time [s]

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

S
p
ee

d
 [

R
P

M
]

No SMO

LTID-SMO-Sign

LTID-SMO-Sat

LTID-SMO-PS-K

LTID-SMO-PS-PI

 peak-to-peak = 60 

 T
RT

 = 127 ms 

 peak-to-peak = 32 

 T
RT

 = 76 ms 

 peak-to-peak = 28 

 T
RT

 = 90 ms 

 peak-to-peak = 32 

 T
RT

 = 76 ms 

 peak-to-peak = 43 
 T

RT
 = 97 ms 

Figure 7.10. Experimental comparison of the LTID-SMO methods for the speed response at
1800 [RPM].

Speed during steady state: If analyzing the steady-state response in Figure 7.11, it can
be seen that the LTID-SMO-PS-KPS has the highest RPM error and RMSE during the
steady-state part, with the highest speed RMSE of 1.25 [RPM] when all other methods are
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far below 1. The peak to peak error is also highest compared to the other methods when
looking at the steady state. Suppose, comparing the steady-state response for LTID-SMO-
PS-KPS at 600 [RPM], the steady-state response is significantly increased. This indicates
some oscillations which seems to be speed dependent. An additional frequency analysis is
made to describe the sudden increase in amplitude when running the drive system at 1800
[RPM]. The frequency analysis is presented with an FFT analysis described in Section 7.3.
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Figure 7.11. Experimental comparison of the LTID-SMO methods for the speed response at
1800 [RPM] in steady-state.

From Figure 7.12 the estimated load torque is presented for each LTID-SMO method, where
the chattering and transient performance for each LTID-SMO method will be analyzed and
compared. Figure 7.13 is the sliding variable and Figure 7.14 is the torque estimation in
steady state.

Transient response: From the transient response of the estimated load torque, similar
results are seen, as for the test at 600 [RPM], where the LTID-SMO-Sat is showing the
best performance, as it leads the other methods. On the other hand, again the LTID-
SMO-PS-PI has the slowest dynamical response. The behavior of the sliding variable is as
seen earlier for 600 [RPM]. No further explanation is made, as the explanation from the
test at 600 [RPM] may also be valid for the test at 1800 [RPM].
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Figure 7.12. Experimental comparison of the LTID-SMO methods for the estimated load torque
at 1800 [RPM].
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Figure 7.13. Experimental comparison of the LTID-SMO methods for the sliding variable at
1800 [RPM].
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Chattering: By inspecting the chattering in the estimated load torque in Figure 7.14, it is
seen that chattering tendencies are similar to the test at 600 [RPM]. However, from the
steady-state response, the noticeable difference between the two tests is again the increased
chattering for LTID-SMO-PS-KPS. Here the torque RMSE is now at 0.23, which is larger
than what was seen for sign at 600 [RPM] and 1800 [RPM]. Its chatter level is lower than
for sign, but seemingly more susceptible to the mechanical oscillation. The LTID-SMO-
PS-PI is again almost zero in both peak to peak and RMSE error. The LTID-Sat is still
proving to be good by only being slightly worse at higer speed compared to its performance
at lower speed, and now clearly beating the LTID-SMO-PS-KPS in steady state load torque
estimation. The increased amplitude for the observers of the oscillation is being fed into
the speed response, which is partly why the larger oscillations is seen in the steady-state
speed response in Figure 7.11.
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Figure 7.14. Experimental comparison of the LTID-SMO methods for the estimated load torque
in steady-state at 1800 [RPM].

Summary for the test at 1800 [RPM]

To summarize the above analysis for the test at 1800 [RPM], each LTID-SMO method will
shortly be described based on their overall performance to improve the speed response.

LTID-SMO-Sign:

• This method showed overall good results in the estimation of the actual load torque
resulting in a peak-to-peak of 32 [RPM], with a corresponding recovery time at
TRT = 76 [ms]. Thereby a slight reduction in both the recovery time and peak-to-
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peak value compared to the speed response at 600 [RPM].

LTID-SMO-Sat:

• For the test at 1800 [RPM], this method remains the superior LTID-SMO method
by having the lowest peak-to-peak value of 28 [RPM] and a recovery time at
TRT = 90 [ms]. In addition, the recovery time showed minor improvements for
this test, compared to the test at 600 [RPM]. However, the peak-to-peak value has
increased slightly.

LTID-SMO-PS-KPS:

• This method showed similar results as LTID-SMO-Sign with a peak-to-peak value of
32 [RPM] and a recovery time of TRT = 76 [ms]. Thereby having the same behavior
as LTID-SMO-Sign during the transient response. However, this method showed
higher oscillation than the other LTID-SMO methods in steady-state.

LTID-SMO-PS-PI:

• This method showed good results in reducing the chattering in steady-state.
However, it could not perform well under the transient response, resulting in a lower
estimation accuracy than the above LTID-SMO methods. Its overall performance
for the recovery time and peak-to-peak value was TRT = 97 [ms] and 43 [RPM]
respectively.

7.3 FFT Analysis of Speed at 1800 [RPM] Under 5 [Nm]
Load

Specific oscillations with a constant time period indicate something in the motor are
causing these. The appearance of these oscillations will be discussed in the following
analysis.

Figure 7.15 shows the FFT result of the speed measurement, running at 1800 [RPM]
under a constant load torque of 5 [Nm]. The FFT is made with the data from Figure 7.11.
From the FFT analysis, it is clear that a sine wave with a frequency of 30 [Hz] is present
through all measurements. The frequency of 30 [Hz] is also present during the observations
without any LTID-SMO (the top graph). Therefore, it is not the LTID-SMOs that causes
this frequency but likely something mechanical from the structure of the motor.

In Appendix C, an FFT is shown with no load torque applied. This shows that the
mechanical frequency is also present without the load torque. Entailing that the load
machine probably does not cause this frequency either. Besides this, 30 [Hz] corresponds
with 1800 [RPM], as 30 · 60 = 1800[RPM]. Further suggesting that this frequency is due
to a mechanical issue. In the Appendix C, it is also shown for the motor running at 600
[RPM], where a similar result is shown. However, with a significantly reduced mechanical
frequency amplitude compared to 1800 [RPM]. It indicates that higher RPM amplifies this
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mechanical frequency more. However, as the issue lies in the mechanical parts that make
up the motor, no compensation can be made to reduce the mechanical frequency.
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Figure 7.15. FFT of speed at 1800 [RPM] at constant 5 [Nm] load torque
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Conclusion 8
Four different LTID-SMO to identify the Load torque have been successfully made
and tested against each other, both through simulation and experimental tests. The
conventional LTID-SMO-Sign using a sign function worked as expected, had a reasonably
good estimation, recovery time and decreased the speed error, however with high chatter
due to the discontinues Sign function. It did though improve the over all response both
at lower and higher speed at different torque levels compared to system running without
LTID-SMO.

The second method is the improved LTID-SMO-Sat, where the switching function was
changed to the continues saturation function combined with an extra feedback term with a
LPF. This method showed much improved load torque estimation accuracy, faster recovery,
lower speed error and low chatter in the estimation compared to conventional LTID-
SMO-Sign method and the system running without an LTID-SMO. It had quick transient
response, and good steady state performance as was intended. It worked well both at low
and high speed with different load torque levels.

Two methods was proposed methods based on using a Power Sigmoid as the switching
function. The intention for the first proposed method LTID-SMO-PS-KPS was for low
chatter during no load, which it succeeded with. Its load torque estimation accuracy was
similar to the LTID-SMO-Sat using Saturation. It successfully reduced the recovery time,
reduced speed error compared to running without an LTID-SMO. Its chatter level was low,
especially at lower speeds, however suffered slightly at higher speeds due to the mechanical
frequency.

The second proposed method LTID-SMO-PS-PI used a PI controller to reduce the sliding
variable during steady state, to reduce chatter in steady state performance. This method
did reduce the chatter level substantially during the steady state compared to the other
three methods. It is shown that its recovery time and speed error was reduced well
compared to the system without an LTID-SMO. However, during the transient response,
its estimation was not on par with the previous three methods, showing slower descent in
load torque estimation, and a slower speed error rejection.
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Relative Gain Array

Analysis A
To analyze the coupling effect of the two states [iq id]

T , a relative gain array (RGA) analysis
is made, taking basis in [20]. The RGA analysis is a steady-state measure of the interaction
between the input/output paring. The coupling effect is analyzed with Equation 3.10 and
3.11 and repeated here:

vd(t) = Rsid +
d

dt
(Ldid + λmpm)− ωeLqiq (A.1)

vq(t) = Rsiq +
d

dt
Lqiq + ωe(Ldid + λmpm) (A.2)

where d
dt(λmpm) = 0 as the pm flux is assumed to be constant. From Equation A.1 and

A.2 the coupling items are shown in the back-EMF terms defined as:

ed = −ωeLqiq (A.3)

eq = ωe(Ldid + λmpm) (A.4)

By converting the above-voltage equations, A.1 and A.2, from the time domain to the
Laplace domain the following can be obtained:

Vd(s) = (Rs + sLd)id − ωeLqiq (A.5)

Vq(s) = (Rs + sLq)iq + ωeLdid + ωeλmpm (A.6)

If representing the Laplace transformed voltage equations by state-space notification, the
following transfer function matrix is obtained:[

Vd

V ′
q

]
=

[
Vd

Vq − ωeλmpm

]
=

[
Rs + sLd −ωeLq

ωeLd Rs + sLq

]
·

[
id

iq

]
(A.7)

If defining the transfer function matrix as in [20], Equation A.7 can be written in terms of
static gains, if evaluated at s = 0, leaving that:[

y1

y2

]
=

[
h11 h12

h21 h22

]
·

[
u1

u2

]
(A.8)

where h11 = Rs , h12 = −ωeLq , h21 = ωeLd and h22 = Rs (A.9)
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The RGA of a non-singular square matrix (determinant is not zero) are defined as:

RGA =

[
λ11 λ12

λ21 λ22

]
=

[
λ11 1− λ11

1− λ11 λ11

]
where λ11 =

1

1− h12h21
h11h22

(A.10)

The RGA consists only of the λ11 element, where a fully decoupled system would entail
that λ11 = 1. This would further mean that y1 only depends on u1 and y2 only depends
on u2. Furthermore, the RGA evaluates the coupling between the outputs and inputs in
steady-state, leaving λ11 to be calculated as:

λ11 =
1

1− −ωeLq ·ωeLd

Rs·Rs

=
R2

s

R2
s + ω2

eL
2
s

(A.11)

where Ls = Ld = Lq as the d and q axis inductance is equal for a SPMSM.

From Figure A.1 the input/output paring are shown with a sweep for ωe. The system is
fully decoupled at ωe = 0. As the speed increases, a stronger coupling is seen. Therefore,
the back-EMF is decoupled to compensate for the coupling between the d and q axis voltage
equations.
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Figure A.1. RGA Analysis, where the input/output paring are shown for an increase in ωe.
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Power Sigmoid with PI -

Stability Proof B
B.1 PI stability

The stability proof for LTID-SMO-PS-PI is made here:

σ =
Npp

J
TL,max −

B

J
σ − Zs where Zs =

σα

|σ|α + δ
·
(
KP,smo +

KI,smo

s

)
(B.1)

V =
1

2
σ2 (B.2)

V̇ = σ̇σ =

[
Npp

J
TL − B

J
σ −

σα
(
KP,smo +

KI,smo

s

)
|σ|α + δ

]
· σ (B.3)

The observer is stable if V̇ < 0. From Equation B.3 it is seen that −B
J σ

2 is always negative.
Therefor if

0 >
[Npp

J
TL −

σα
(
KP,smo +

KI,smo

s

)
|σ|α + δ

]
· σ (B.4)

is fulfilled the observer is able to do sliding mode action.

V̇ =


NppTL

J −
σα

(
KP,smo+

KI,smo
s

)
|σ|α+δ , σ ≥ 0

NppTL

J +
σα

(
KP,smo+

KI,smo
s

)
|σ|α+δ , σ < 0

(B.5)

Isolating for KP,smo

KP,smo =
NppTL

J
+

NppTLδ

Jσa
−

KI,smo

s
(B.6)

KP,smo =
NppTL

J
+

NppTLδ

Jσa
−
∫ t

0
KI,smo dt (B.7)

If the variables are defined as Npp = 4;TL,max = 5.8; J = 0.0125; δ = 1500;σ = 20; a =

3;KI,smo = 15000. σ is chosen as where the sliding variable will increase to when a max
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load step is provided. It is however important to note that during the transient part, the
load torque will reach as high as 8 [Nm]. Therefor to ensure stability in this scenario,
TL,transient = 8[Nm].

KP,smo =
NppTL,transient

J

(
1 +

δ

σa

)
−KI,smot (B.8)

KP,smo = 3040− 15000 · t (B.9)

where t is the time. At time t = 0 seconds, KP,smo = 3040.
To check if KP,smo fulfills the criteria at t=0 it can be calculated that

NppTL,max

J
= 2560 (B.10)

and

σα (KP,smo +
∫ t
0 KI,smo dt )

|σ|α + δ
=

203 (3040− 15000 t+ 15000 t)

|20|3 + 1500
= 2560 (B.11)

meaning the Lyapunov stability criteria in Equation B.5 is fulfilled.
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FFT Analysis C
Figure C.1 is the FFT analysis based on data from Figure 7.6. The Top graph is the system
when running without an LTID-SMO at 600 RPM under 5Nm of load. At first, it can be
noticed that a frequency of 10Hz is appearing. Likely this is due some mechanical issue,
happening for every physical rotation as this corresponds with 600 RPM. Besides this, a
higher frequency of 40 Hz is also noticed. This may come from the electrical part, as there
is 4 pole pairs and the electrical frequency of 600 RPM corresponds to 40 Hz. For the
LTID-SMO using Sign and Saturation functions the 40 Hz frequency has increased where
as the 10 Hz has been reduced. The reason for the reduction at 10 Hz, could be due to
the load torque estimation. It is clear that the mechanical frequency seen is present even
during no added load torque and therefor not due to the load torque production from the
load machine. This claim can be found in next Figure C.2. Therefor, as the LTID-SMO
for Sign and Saturation gets the measured speed as an input, it sees the change in speed
as a load torque. It therefor estimates a small load torque which is fed back to the FOC
to counteract the ripples. The reason for increased 40 Hz amplitude has not definitively
been found, but likely also stems from the estimation of load torque due to the current
iq and measured speed being used in the calculation. Using the LTID-SMO-PS-KPS the
10 Hz frequency has also been mitigated well, and the 40 Hz frequency has doubled in
amplitude. However a sub harmonic with almost same magnitude is also seen at 35 Hz.
The bottom graph is LTID-SMO-PS-PI is having a seeing a small reduction of the 10 Hz
harmonic, however an even 2 nd harmonic at 20 Hz is also present. This could be due to
nonlinear inverter characteristics [21].
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Figure C.1. FFT for 5 Nm running at 600 RPM

Figure C.2 shows the FFT during no load. It can be seen from this that the mechanical
frequency is still present when no load is added from the load machine.
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Figure C.2. FFt at speed 1800 RPM with no load on.

117




	Front page
	Titelblad
	Summary
	Preface
	Nomenclature
	Indholdsfortegnelse
	Introduction
	System Description

	Problem Statement
	Objectives
	Project Limitations
	Performance Evaluation of the Sliding Mode Observers

	PMSM Modeling
	SPMSM Model Equations
	Load Torque Dynamic

	Control of the SPMSM
	Field Oriented Control
	Design of Current Control
	Design of the Speed Control

	Validation of the Non-Linear Model

	Load Torque Identification Sliding Mode Observer
	Strategy
	LTID-SMO using Signum Switching Function
	Stability analysis
	Impact of parameters of the LTID-SMO using a signum function

	LTID-SMO using Saturation Switching Function
	Stability analysis
	Impact of parameters of the LTID-SMO using a saturation function
	Tuning in simulation

	LTID-SMO using Power-Sigmoid Function
	Stability analysis
	Impact of parameters of the LTID-SMO using a Power-Sigmoid function
	Chatter attenuation

	Improving Recovery Time
	Simulation Results and Comparison

	Experimental Test and Tuning
	Experimental Test without LTID-SMO
	Experimental Test of LTID-SMO-Sign
	Experimental Test of LTID-SMO with Satuation Function
	Experimental Test of LTID-SMO with Power-Sigmoid Function
	LTID-SMO-PS-KPS
	LTID-SMO-PS with PI controller


	Discussion
	Comparison of Simulation and Experiment results
	Comparison of LTID-SMO Methods
	Test at 600 [RPM] for 5 [Nm] load step
	Test at 1800 [RPM] for 5 [Nm] load step

	FFT Analysis of Speed at 1800 [RPM] Under 5 [Nm] Load

	Conclusion
	Bibliography
	Relative Gain Array Analysis
	Power Sigmoid with PI - Stability Proof 
	PI stability

	FFT Analysis

