
Dansk Referat
Hver dag krydser mere end 50 tusinde skibe verdenshavene med varer mellem lande. Derfor er skibsnavigation og sikkerhed et afgørende
emne indenfor transport af materialer og varer over havene. FN har udpeget et særligt agentur, Den Internationale Søfartsorganisation (IMO),
til at gå i spidsen for arbejdet med navigations- og sikkerhedsaspekterne ved sejlads samt forebyggelse af atmosfærisk og havforurening
fra skibe. Det automatiske identifikationssystem (AIS), udviklet af IMO, er et system, hvor skibsmonterede enheder sender og modtager
skibsdata til nærliggende skibe og AIS-basestationer. Dataene indeholder information såsom skibsposition, skibsspecifikation og aktuelle
navigationsoplysninger. Skibs bevægelsesdata leveret af AIS har uden tvivl kickstartet digitaliseringens æra inden for skibsindustrien på
grund af dens høje frekvens, informationsrige struktur og fornuftige kvalitet.

I denne artikel præsenterer vi et multifunktionel data warehouse som er designet til at fungere som et effektivt og organiseret centralt
lager, der er i stand til at indeholde store mængder af historiske AIS-data. For at eksemplificere det multifunktionelle aspekt af systemet,
designer og implementerer vi en full-stack applikation, der bruger vores data warehouse specifikt til batymetrisk analyse. Gennem tæt
samarbejder med Geodatastyrelsen (GST) har vi påvist den potentielle anvendelse af AIS-data inden for batymetrisk analyse. Mere specifikt
har vi sammenlignet et Minimum Depth Chart (MDC) genereret af vores system med en Dybdemodel leveret af GST. MDC’en blev genereret
ved hjælp af 1,8 milliarder AIS-data punkter, der spændte over fem måneder i 2021, og begge modeller var baseret på data indsamlet i danske
farvande. Resultaterne fra vores sammenligning viser, at vores model kan identificere områder af interesse, der kan kræve yderligere eller nye
batymetriske undersøgelser. Feedback modtaget fra GST bekræfter, at vores system beviser, hvordan AIS-data kan bruges til at levere hurtige
og billige analyser som kan besvare spørgsmål fra den virkelige verden vedrørende skibe på havet. Ydermere er systemet skræddersyet til at
være fleksibelt for at understøtte forskellige use-cases. Dette gøres ved at gemme data omkring skibe, ture og celler som ikke direkte bruges
til MDC. F.eks. kan systemet lave et heatmap ved at tælle ture der går igemmen celler i stedet for dybten.

Vores applikation kan betragtes som et proof-of-concept for hvordan man kan benytte vores data warehouse som fundament i et
analyseværktøj som alt sammen er baseret på AIS data.



Preface
This paper is a continuation of the previous paper Egede et al. in which the potential of AIS data within a multi-purpose data warehouse was
described and brought to attention. In this paper, we introduce new topics whilst reusing some of the findings from the previous paper. In
the following table, we describe the overall change for each section in relation to the previous paper. A change is described as either: minor,
medium, major, or new. A minor change describes small changes such as commas, wording, or reformulation. Medium changes describe
that we have supplemented or changed values in a section. Major changes describe sections where we introduce new techniques, topics, or
principles. And finally, the new change describes sections that have not been introduced before.

Section Change type
1 Introduction NEW
2 Related Work MEDIUM
3 Analysis
3.1 AIS Data MEDIUM
3.2 Data Reliability MAJOR
3.3 Data Assumptions MINOR
3.4 Data Cleaning MEDIUM
3.5 Trajectories MEDIUM
3.6 Missing Draughts MEDIUM
3.7 , 3.8 NEW
4 Data Warehouse Design
4.1 Logical Level MAJOR
4.2 Physical Level MAJOR
5 Trajectory Reconstruction MAJOR
6 Implementation
6.1 System Overview MAJOR
6.2 Extract, Transform, and Load MAJOR
6.3, 6.4, 6.5, 6.6, NEW
7 Results
7.1, 7.2, 7.3, 7.4, 7.5 NEW
8 Conclusion NEW
8 Future Work MAJOR

To clarify what we have changed, we will describe the changes to each minor, medium, or major section. Related Work is medium and
mostly the same with the addition of the new trustworthiness paragraph. AIS Data is medium because the core idea of explaining the AIS
format is still present while there has been added some more analysis regarding the fields and their data quality. Data Reliability is major and
describes how reliable the data is. We discuss the transponder types and noisy data which can contribute to an improper analysis. Data
Assumptions has minor changes regarding assumptions. Data Cleaning is medium and has the same cleaning rules with some supplemented
descriptive text. Trajectories is medium because the core concept of points, journeys, and trajectories are the same but they have been
formally defined in this paper. Missing Draughts is medium and the analysis on null draught is more condensed than in the previous paper.
Logical Level and Physical Level has major additions to the previous data warehouse design regarding fact tables and other design features.
Trajectory Reconstruction is major because the basic idea is retained but the implementation has brand new code and features. System
Overview and Extract, Transform, and Load are major because the data warehouse has been extended with a system consisting of an API,
frontend, and more ETL processes to support the new data warehouse design features. Future Work is major as we propose more future
work to be done on the system.

We would like to thank the Danish Geodata Agency for their contribution and willingness to work together closely. More specifically we
would like to express our gratitude to Ove Andersen for his continuous feedback, insights, and expertise. Furthermore, we thank Anne Mette
Egge Olsen for providing a map outlining the coastal areas of Denmark, which greatly helped us during our data cleaning process.
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ABSTRACT
The vessel movement data provided by the Automatic Identifica-
tion System (AIS) has arguably kickstarted the era of digitalization
within the shipping industry due to its high frequency, information-
rich structure, and reasonable quality. In this paper, we present
a multi-purpose data warehouse designed to operate as an effi-
cient and organized central repository capable of containing large
amounts of historical AIS data. To exemplify the multi-purpose
aspect of the system, we design and implement a full-stack applica-
tion that utilizes our data warehouse specifically for bathymetric
analysis. Through close collaborations with the Danish Geodata
Agency (DGA), we have demonstrated the potential application of
AIS data within bathymetric analysis. More specifically, we have
compared a Minimum Depth Chart (MDC) generated by our system
to a Depth Model provided by the DGA. The MDC was generated
using 1.8 billion AIS records spanning five months in 2021, and
both models were based on data gathered within Danish waters.
The results from our comparison show that our model can identify
areas of interest that may require additional or new bathymetric
surveys. Feedback received from the DGA confirms that our system
proves how AIS data can be used to provide fast and cheap analysis
for real-world questions regarding ships on the sea.
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1 INTRODUCTION
The seaborn trade is essential to the global trading economy. Every
day more than 50 thousand ships traverse the oceans bearing goods
for foreign countries [43]. Ship navigation and safety are crucial
for transporting a large number of materials and goods across the
oceans. The United Nations have assigned a special agency, The
International Maritime Organization (IMO), to take the lead in
working with the navigation and safety aspects of sailing as well
as preventing atmospheric and marine pollution by ships. The IMO
presents guidelines and regulations for all aspects of international
shipping, i.e. ship design, construction, equipment, operation, and
disposal [1]. As the IMO influences every part of the shipping
process, it enables them to drive the industry towards a green
economy with the end goal being a more sustainable future [8].

(a) Data points combined into trajectories

(b) Raster representation of an MDC

Figure 1: Example showing part of the process when creating
an MDC

The Automatic Identification System (AIS), developed by the
IMO, is a system where ship-mounted devices transmit and re-
ceive ship data to nearby ships and AIS base stations [13]. The data
contains information such as ship position, ship specification, and
current navigational information. The data is transmitted every
3rd minute or more often, depending on navigational status such
as if the ship is turning or sailing at a fast speed. AIS data is plen-
tiful because it is required on ships larger commercial ships, i.e.
above 300 Gross Tonnage [13]. This combined with the fact that it
is freely available in Denmark makes it widely used in trajectory

3



Alihan Øztürk, Kasper Suamchiang Hvitfeldt Nielsen, Marcus Egge Olsen, and Peter Kiib Egede

research [43]. The AIS was created for safety reasons such as avoid-
ing ship collisions, but over time, researchers have shown that it
can be used in many other areas as well [13]. The data obtained
from the AIS transponders can be quite erroneous due to positional
technology inaccuracy at sea, equipment failure, human errors, and
areas with no reception [23, 30, 38]. Therefore, before using AIS
data for any kind of analysis, it is crucial to clean or rectify erro-
neous data entries to ensure that future data analysis will provide
a more truthful analysis.

The International Hydrographic Organisation (IHO) is respon-
sible for bathymetry, i.e. mapping the seafloor and water depth.
Their bathymetry data is freely available and the IHO makes use of
crowd-sourcing the data from a range of suppliers. Amore complete
bathymetry chart of the world will contribute to understanding
ocean circulation, tides, fishing resources, and much more [4]. Cur-
rently, the bathymetric mapping is done using expensive multibeam
and single-beam sonars that are equipped on oceanographic vessels
during surveys [6]. These sonars are expensive to deploy and do not
cover a wide area. It is estimated that we currently have mapped
less than 18% of the deep ocean floor, and approximately 50% of
the world’s coastal waters remain unsurveyed as of 2019 according
to GEBCO [4]. AIS data can be used to contribute to IHO’s depth
mapping by using ship position and inferring depth out of the AIS
message as seen in [21]. By utilizing draught information from AIS
data, the data can be used to create a Minimum Depth Chart (MDC).
A simple example of an MDC is illustrated in Figure 1 where Fig-
ure 1a shows three trajectories with different draught values, and
Figure 1b illustrates the result of using the trajectories to gener-
ate an MDC. The chart is based on the maximum ship draughts
recorded in an area and we, therefore, infer that the depth of an
area is at least this deep. In [21], an 50m x 50m MDC was created
based on five months of AIS data and resulted in a coverage of
62.5%.

The Danish Geodata Agency (DGA) is the authority in Denmark
that surveys and maps all of the Danish land and sea domains [5].
Every year, 65 thousand ships pass through Danish waters, and the
DGA is responsible for providing nautical charts that enable safe
navigation [5]. According to the DGA, the nautical charts contain
measurements that are very old and contain sparse data for areas
that are not designated waterways [14]. The DGA has expressed
interest in the potential of using AIS data in combination with their
current analytical tools for bathymetric-related analysis.

In this paper, we extend the system from [21] by refining the
trajectory reconstruction process and introducing a representation
of the world as geographical cells in the data warehouse. The cells
contain aggregated information about AIS data to enable more in-
depth analysis in specific areas. A web-based frontend presents the
cell information to the user and provides a set of filters that can be
adjusted based on the user’s preferences. The data warehouse serves
as a foundation for many analytical use-cases but is exemplified
through bathymetric analysis in this paper.

2 RELATEDWORK
In this section, we review related work for creating data warehouses
based on AIS data, the process of generating trajectories based on
AIS data, methods for exploring bathymetry exploration based on

AIS data, and finally, we look at related work in which the concept
of trustworthiness is introduced.

Creating an AIS data warehouse. Tsou created a data ware-
house for AIS data to apply online analysis processes to AIS data.
They created fact tables based on the AIS data, with measures such
as the count of trajectories, and average, minimum, and maximum
speed over ground which were used for generating maps showing
different information regarding the speed of the ships. In addition,
a grid was imposed on the maps to attach the aforementioned tra-
jectory information to the cells where the trajectory intersects the
cells. Examples of dimensions used by Tsou to facilitate Online
Analytical Processing operations are a temporal dimension, a ship
dimension and an area dimension [42]. C. Tang et al. and F. Zhu also
create a multidimensional data warehouse, with a focus on traffic
flow and maritime surveillance respectively [41, 47]. We create a
similar data warehouse design using many of the same principles as
Tsou, C. Tang et al. and F. Zhu, however instead of having one kind
of analysis in mind, we have a focus on creating a multi-purpose
data warehouse which can be useful for many different kinds of
analysis, in this paper exemplified by bathymetry related analysis.

Trajectory reconstruction. The trajectory reconstruction pro-
cess aims to prepare data for subsequent analysis by utilizing anom-
aly removal studies, and partitioning techniques to combine AIS
data into their respective trajectories [17, 19, 44]. L. Zhao et al. pro-
posed a faster and more efficient method of AIS data compression
by using an improved version of the Douglas-Peucker algorithm
that can retain the characteristics of the original trajectory [46].
Y. Sun et al. introduce an Artificial Neural Network-based frame-
work that suppresses outliers within trajectories via Hampel Filter
and Butterworth Filter [40]. K. Sheng et al. have utilized a logistic
regression model to construct a ship classifier. The classifier can
split trajectories based on one of three proposed basic movement
patterns: anchored-off, turning, or straight-sailing [39]. Similarly, Z.
Yan et al. propose a model that can extract ship traffic routes based
on AIS data [43]. The model split trajectories into similar types of
movement patterns as [39]. Z. Yan et al. propose a multi-regime
trajectory reconstruction model through a three-step process that
allows trajectories to be constructed in different navigation states,
namely hoteling, maneuvering, and normal-speed sailing. A char-
acteristic that is shared among Z. Yan et al., K. Sheng et al., and
L. Zhang et al. is that they all utilize the ship’s sailing speed to
determine the partitioning of trajectories [39, 43, 45]. More specifi-
cally K. Sheng et al. first split their trajectories into anchored-off
and straight-sailing by using a speed threshold in relation to the
distance traveled, and afterward the straight-sailing trajectories are
split into turning.

We introduce an algorithm for trajectory reconstruction that uses
advanced partitioning techniques capable of generating trajectories
and splitting them based on one of two movement patterns: sailing-
or stopped based on speed and time between records. It utilizes the
speed over ground (SOG) values, in combination with calculated
speed from the geographical and temporal values from the AIS data
during reconstruction to ensure that outliers are skipped. Upon
completion of the trajectory reconstruction, we utilize the Douglas-
Peucker compression algorithm to greatly decrease our data sizes.

Bathymetry exploration. Seafloor mapping is essential for
marine management and marine spatial planning. In combination
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with the continuous change of the seafloor, we experience areas
that are so outdated that the nautical data available no longer are
reliable [15, 31, 37]. In an effort to minimize the costs of bathymetric
surveys, E. Novaczek et al. propose a method to generate regional
bathymetry and geomorphometry maps from crowd-sourced depth
soundings [31]. A. Alessandrini et al. introduce a number of in-
formative demonstrations that help us understand which kind of
trends, and behaviors that exist on the sea [15]. When using AIS
data to explore bathymetric features, we often use one of two ap-
proaches: a draught-based, or sailing trends-based approach. In a
draught-based analysis, the draught of a ship is determined either
from calculations or based on the supplied AIS data. C. O’Brian et
al. presents a Draught Information System that can calculate the
under-keel clearance of a ship in real-time, thus able to provide a
reliable maximum draught for a ship. The value of a ship’s draught
can then be used to determine the minimum depth of the area that
a ship has sailed [32]. In the sailing trends-based approach, areas
are determined of interest if there is a shift in the sailing trends. For
instance, if all ships are starting to avoid a particular area, it may in-
dicate that the area has become very shallow, or possibly something
is blocking the way. This approach is used by the Alaska Ocean
Observing System (AOOS) among other things, to identify areas
that require a bathymetric survey [9]. We utilize a draught-based
approach to create a minimum depth chart based on the reported
draughts from the AIS data.

Trustworthiness Trustworthiness describes and addresses the
quality of information and its sources. It is often used to measure
and quantify the quality of information coming from online re-
sources and systems [33].

mPASS is a system designed to collect data from crowdsourcing
and crowdsensing to map urban and architectural accessibility by
providing reliable information coming from different data sources.
The system is specifically designed for people with specific needs
and is capable of providing personalized paths based on their pref-
erences. When working with data coming from many different
sources, the levels of trustworthiness varies a lot. The articles [35],
[34] and [36] describe how they categorize their sources based on
one of three categories: sensor data, user data, and authoritative
data. This allows them to rank the categories by how reliable the
data is, which is particularly important when working with crowd-
sourced data. In this paper, we take inspiration from the definition
of trustworthiness, by adopting a pragmatic approach to define
trustworthiness within our data. More specifically we introduce a
function that estimates if the draught values reported by a ship are
considered trustworthy.

3 ANALYSIS
In this section, we explore the characteristics of the AIS data pro-
vided by DMA. We present assumptions regarding the AIS data and
analyze how we can determine the reliability. Finally, we present
how to represent trajectories and geographical cells in our system.

3.1 AIS Data
AIS data is transmitted by AIS transmitters on one of two VHF
frequencies. Anyone can install a transceiver and start transmitting
data, and it is often used by sailors to not only receive positional

details about other ships in the area but also to ensure that other
ships know their position at any given time [22].

Ships of more than 300 gross tonnages are subject to the SOLAS
Convention [13]. These ships are required to be equipped with
Class A transceivers, which not only provide a larger broadcast
range and more frequent transmissions but often also automatically
read data about the ship through onboard sensors [22].

AIS data contains 26 different fields as seen in Appendix Table 5
and Appendix Table 6. The data found in Appendix Table 5 are
static data such as the size of the ship, draught, and identifiers.
The static data is provided by the ship crew and is sent every 6
minutes. The data found in Appendix Table 6 are dynamic data
such as navigational status, latitude, longitude, and heading. The
dynamic data is sent every few seconds or minutes depending on
their navigational status and speed [18]. Some of the values in both
the static and dynamic data are set manually by the crew and are
therefore error-prone, while other values are set automatically by
the equipment. Which values are set manually and automatically
varies by ship, but we have found that freetext fields such as des-
tination and ETA are of poor data quality because they are often
manually reported, e.g., a ship going to Copenhagen may report
cph port, koebenhavn or simply home.

The fields introduced within the tables, on Appendix A, are fields
that are general for AIS data. Depending on the provider we see that
most, if not all, of the fields are included, but typically differ in the
naming convention. AIS data providers also tend to add additional
fields such as ETA_PREDICTED or LOCODE which are fields that are
computed and appended to the data specified in their system [2, 3].

3.2 Data Reliability
As AIS data can be transmitted by anyone with a suitable device, it
is important to assess how reliable the data is, because it otherwise
may contribute to incorrect conclusions. In 2017, Harati-Mokhtari
et al. analyzed the reliability of AIS data and defined a number of
common errors, all of which originated from human errors [24].
Harati-Mokhtari et al. conclude that AIS is rather unreliable, in-
dicating that it is necessary to identify and remove data that are
detected as error-prone, before further analysis. A description of
how data cleaning processes can be utilized to improve the quality
of AIS data is described in Section 3.4.

As mentioned in Section 3.1, AIS data transmitted by Class A
transceivers are typical of higher quality and often read data from
onboard sensors, and thus can be considered a more reliable source
of information. An example in which data reliability is particularly
important is when we want to explore the draught of ships’ to
assess the bathymetry details of certain areas. Even though only
considering Class A draughts may prove to be more reliable, it is
still worth considering that if many different Class B ships report
a similar draught that it might also be considered reliable. Such
analysis would allow us to utilize both types of transceivers and
in theory, also give us a more accurate and reliable answer if done
correctly. When comparing the amount of data received by Class A
versus Class B we see that our data is close to equally distributed
between the two. Approximately 46,3% are of type Class A and
53,6% are Class B.
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Apart from determining the reliability of AIS data, another im-
portant consideration is noise. Noisy data is a term for data that
have no contribution during analysis. Examples of such data can be
corrupted data, unrealistic or gibberish values, or varying intervals
within temporal data. Unfortunately, we observe noisy data in AIS
and if not handled properly, it can ultimately result in incorrect con-
clusions or improper analysis. Specifically for AIS data provided by
The Danish Maritime Authority (DMA), we identified a time period
in the datasets, in which almost all static data fields are set to null
values. This means that a large amount of noisy data is included
every day. Upon consultation with DMA, we were made aware that
the null values are a result of restarting their services at midnight
and that AIS transceivers only transmit details about their static
data once approximately every 6 minutes, ultimately resulting in
many rows with changing dynamic data fields but without any
static data associated.

Another type of noisy data which we have observed is noise
in the geographical data. In Figure 2, a section of the data points
from the ship with MMSI 266473000 from 26-10-2021 are shown.
The ship sailed from Copenhagen to Göteborg, via a route going
east of Anholt. Figure 2 shows part of this trajectory as a red line
consisting of many data points very close together as well as a
single red data point that does not reside on the line. The red data
point highlighted by the black square is an outlier. Because a ship
can’t sail on a line and then for one second be many kilometers
away from the line, and then the next second be back on the line
again.

Figure 2: A segment from a ship’s journey, where the red
data point surrounded by a square is a geographical outlier
(MMSI: 266473000, date: 26-10-2021) [21]

3.3 Data Assumptions
While examining the data we observed that in very rare cases, ships
changed their MMSI during a journey. Since it is very infrequent,
we assume that the MMSI is a unique identification for ships. When
analyzing bathymetry details, the tide is something you often take
into account. In this paper, we assume that ships only sail where
they are able to sail at both high and low tide. A more detailed tide
model could be considered for future work. We assume that we can
get a steady stream of AIS data from everywhere to avoid handling
areas with no signal reception.

To summarize, we make the following assumptions about the
AIS data:

• A ship’s MMSI is a unique identifier
• A ship only sails where they are able to sail at both low and

high tide
• A ship sending an AIS signal always reaches a base station

3.4 Data Cleaning
To improve the overall quality of our data, a data cleaning process
is applied based on some prerequisites and a set of cleaning rules.
In this section, we explain and list these preliminaries.

The majority of the rules are designed to filter out general noise
that exists in AIS data, while other rules function as additions
that are specific to our use-cases. The use of case-specific rules is
denoted in the list below with the asterisk (*) symbol.

(1) Duplicate data entries
(2) AIS data that does not follow the MMSI ship format [10]
(3) Ships with a draught above 28.5 meters [11]
(4) Ships with a length above 488 meters [11]
(5) Ships with a width above 74 meters [11]
(6) *AIS data points that are outside Danish waters
(7) *AIS data points that are on mainland Denmark
By following the cleaning rules when extracting data, we can

ensure that our other data processes are not impacted by the noise
that otherwise may have resulted in incorrect data.

3.5 Trajectories
When working with the geographical aspect of AIS data it can
be beneficial to view the data as continuous lines instead of dis-
tinct points. This can be accomplished by performing trajectory
reconstruction based on the journey of a ship. When talking about
trajectories and the reconstruction of these we use the following
definitions.

Figure 3: Example data for one ship showing the relation
between points (𝑡𝑠𝑖 , 𝑝𝑖 ), trajectories𝑇1 and𝑇2, and a journey 𝐽

Point: A point 𝑝 = (𝑙𝑎𝑡, 𝑙𝑛𝑔) which includes latitude lat, longi-
tude lng

• A point contains the spatial information
Journey: A journey 𝐽 = {(𝑡𝑠1, 𝑝1), (𝑡𝑠2, 𝑝2), ..., (𝑡𝑠𝑛, 𝑝𝑛)}, where

𝑡𝑠𝑖 is the timestamp of point 𝑝𝑖 , and where 𝑡𝑠𝑖 < 𝑡𝑠𝑖+1.
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• A journey represents the complete set of points for a ship.
Trajectory:A trajectory𝑇 = {(𝑡𝑠1, 𝑝1), (𝑡𝑠2, 𝑝2), ..., (𝑡𝑠𝑚, 𝑝𝑚)} ⊂

𝐽 where ∀𝑇 |𝑇𝑘 ∩𝑇𝑙 = ∅ whenever 𝑘 ≠ 𝑙 , where 𝑘 and 𝑙 are trajectory
ids.

• A trajectory is a disjoint subset of a journey, determined by
the sailing patterns of the ship.

An example of a journey which is split into two trajectories can
be seen in Figure 3.

The trajectory reconstruction used in this paper is described in
Section 5. When splitting a journey into different trajectories, we
distinguish between sailing and stopped states, since having this
distinction can be useful for analyzing the data. This distinction is
described also described in Section 5.

3.6 Missing Draughts
When analyzing the AIS data we observed that 30.7% of the un-
cleaned AIS records and 24.9% of the cleaned do not include a
draught value. This shows that the dirty data has a larger percent-
age of the data with no draught value compared to the cleaned data
and that we improve the quality of the draught data with our data
cleaning process.

Another observation regarding the draught data is that in many
coastal areas we only have data with no draught. This is partly due
to the fact that it is mostly sailing and pleasure ships that sail in the
coastal areas. These ship types have a very large percentage of data
points with no draught value as seen in Figure 4. The impact of this
is shown in Section 7.4, where we see that missing draughts have a
large impact on the ability to cover coastal areas with MDCs.

Figure 4: Bar chart showing the respective distribution of
null values in draught information based on ship types [21]

3.7 Trustworthiness
Trustworthiness describes whether a trajectory is considered re-
liable based on a set of criteria. This evaluation is particularly
important when working with AIS data because our analysis shows
data in which ships have reported abnormal draught values, which
our cleaning process has not filtered. We still want to include the
data in our data warehouse, since these data may still be useful for
analysis. Therefore, we introduce a trust flag that is assigned
during data processing.

We however observed that this intuition is not always true with
small ships, where the relation does not follow the same pattern.

Because of this, we introduce a minimum draught threshold, under
which we trust all values. We do this because small draughts do not
contaminate our MCDs to the same degree as large draughts. As a
result, we flag the trajectories that have reported draught values
that are very abnormal in relation to the ship size, because the data
would otherwise contaminate our MDCs.

Figure 5: MDC around of Læsø, where the black area (25.5m
draught) is from a single fishing ship with MMSI 220334000

Table 1: Distribution of ship sizes (length ∗width) per draught
interval

In Equation 1 we show the equation used for assigning the flag,
which we refer to as is_draught_trusted. The values 60 and 3 were
chosen based on initial testing, as these values showed good results
with regards to flagging abnormal draughts. If the formula is im-
proved or optimized, it can be changed in the code with little effort,
but it requires some reprocessing.
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𝑖𝑠_𝑑𝑟𝑎𝑢𝑔ℎ𝑡_𝑡𝑟𝑢𝑠𝑡𝑒𝑑 =



𝑡𝑟𝑢𝑒, 𝑖 𝑓 draught < 3
𝑓 𝑎𝑙𝑠𝑒, 𝑖 𝑓 draught = 𝑛𝑢𝑙𝑙

𝑓 𝑎𝑙𝑠𝑒, 𝑖 𝑓 width = 𝑛𝑢𝑙𝑙

𝑓 𝑎𝑙𝑠𝑒, 𝑖 𝑓 length = 𝑛𝑢𝑙𝑙

𝑓 𝑎𝑙𝑠𝑒, 𝑖 𝑓
𝑙𝑒𝑛𝑔𝑡ℎ∗𝑤𝑖𝑑𝑡ℎ

𝑑𝑟𝑎𝑢𝑔ℎ𝑡
< 60

𝑡𝑟𝑢𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

3.8 Representing the World in Grids
When working with large amounts of data it can often be more
useful to look at aggregated values instead of individual data be-
cause we can generalize patterns and draw conclusions if many
are following the same patterns. To accomplish such analysis we
introduce a technique to represent the world in grids. The idea is
that we want to be able to create aggregated measures on a cell
basis, e.g. if 1000 ships have sailed through a single cell we can
accumulate the draughts reported by ships sailing through the cell
and store them for future analysis. Not only does this allow us to
store aggregated values separately based on specific cells, but it also
allows us to faster retrieve information on areas because we can
utilize the aggregated values directly instead of computing them.

(a) 50m x 50m (b) 100m x 100m

(c) 500m x 500m (d) 1000m x 1000m

Figure 6: All possible representations of our geographical
cell design

On Figure 6 the idea of representing areas in grids is shown.
Here we have illustrated how we can vary the granularity of our
cells in case we want to be more precise. The goal is to represent
the world in such grids and refer to each cell in the grid with a
unique identifier.

4 DATAWAREHOUSE DESIGN
In this section, we describe the two abstraction levels of our data
warehouse design, namely the logical- and physical level. The logi-
cal level describes the data warehouse’s overall structure as seen
in Figure 7, and the physical level describes how data is stored
in the data warehouse. Furthermore, compression-, indexing- and
partitioning techniques are also explained as part of the physical
level.

4.1 Logical Level
The logical level describes the data warehouse’s overall structure
as well as the relationships between data tables. In this section, we
describe the data warehouse scheme in terms of dimensions and
fact tables, as well as the relationships that reside between them.

Enterprise Bus Matrix. The enterprise bus matrix provides a high-
level abstraction of the data warehouse’s architectural level. It gives
an overview of the relationships between the dimensions and the
fact tables providing further context to understand the purpose of
the fact tables [25]. To retain the multi-purpose design of the data
warehouse, it is desirable to be able to obtain as much information
as possible. We retain the information across the different fact tables
by having foreign keys to most of the dimensions in the fact tables.
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(STAGING) fact_ais ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fact_ais_clean ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fact_trajectory_sailing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fact_trajectory_stopped ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fact_cell_sailing ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Enterprise bus matrix

Dimensions. During the design of the data warehouse, it was de-
cided that all dimensions are fixed, meaning that once a row has
been inserted, it can never be changed. The decision was made for
simplification purposes. In Figure 7, the dimensions are visualized
and can be recognized by the dim_ prefix in the table names, further-
more, the dimensions are also color-coordinated to represent their
respective area of interest. The red dimension is a spatial dimension
adding locality context by determining which geographical cell
a trajectory or point is located in. The blue dimensions contain
ship-specific information such as MMSI, ship type, and name. The
brown dimensions contain metadata for processed records. The
green dimensions describe the temporal aspect. The purple dimen-
sions contain AIS meta information such as which positional device
has been used or the data source type. The yellow dimension con-
tains attributes that do not belong in the other dimensions or fact
tables.

The relations between the tables are shown by color coding and
naming conventions. The color of the foreign key corresponds to
the color of the table it references. The naming of the foreign keys
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is the same as the primary key in the table it references, except for
the cases where a table has multiple references to the same table
where another classifier has been added to the name of the foreign
key.

The dim_date and dim_time dimensions store temporal infor-
mation that we derive from a timestamp. None of the dimensions
store information about time zones which makes it possible to
represent both local and UTC time for any entry. Both tables’ pri-
mary keys have been constructed as smart keys, which allows us
to represent any date or time in a human-readable integer format
making queries faster. For example, the 20th of June 2022 15:00 has
the dim_date key value of 20220620 and dim_time key value of
150000.

The dim_destination contains entries of destinations that have
been extracted from the AIS data. The destinations are reported
in a free text format directly by a crew member on the ship and
therefore vary widely in quality and consistency. Apart from the re-
ported destination, the dimension also has a mapped_destination
attribute which contains a cleaned version of the destination.

The dim_navigational_status dimension contains entries of
the navigational states that a ship can be in at any point in time.
The entries are a fixed set of AIS navigational states as described in
[27].

The dim_data_source_type dimension stores information about
the data source that has been used while transmitting the AIS data.
Currently, it only contains AIS but may contain other sources in
the future.

The dim_cargo_type dimension includes a fixed set of available
AIS cargo types.

The dim_audit dimension has one entry for each load operation
that has been performed on the data warehouse. The dimension
includes six attributes to describe the ETL process such as processed
records, load time, and ETL-version.

The dim_junk_ais_clean dimension is a junk dimension as
described by Kimball [25]. The dimension contains flags for meta-
data from the data cleaning, such as whether an attribute has been
patched.

The dim_ship dimension has three foreign keys and ten at-
tributes that describe a specific ship. A ship is identified by a com-
bination of its MMSI number, ship type, positional type, and mobile
type. The other attributes describe general static ship information
such as size, name, and callsign.

The dim_ship_type dimension contains all recorded ship types
such as cargo, pleasure, or passenger. The types are defined by a
fixed set of AIS ship types as described in [28].

The dim_type_of_position_fixing_device dimension con-
tains the various types of position fixing devices that are used to
determine the position of a ship. Examples are GPS, GLONASS,
Galileo, and Loran-C.

The dim_type_of_mobile dimension contains the various types
of AIS transponders that have been transmitted in the AIS data.
For example, the class A and class B transponder types are stored
within this dimension. Class A and B are outfitted on ships where
class A is required by law on internationally traveling ships over
300 gross tonnages while class B is optional, and can be used for
ships that do not fit the requirement [7].

The dim_cell stores grid representations of the world. This is
done using the EPSG:3034 map projection. The grids are created in
four levels starting from the finest cell size of 50m x 50m, and then
increasing to 100m x 100m, 500m x 500m, and finally, the coarsest
level being 1000m x 1000m. The hierarchy of such design is as strict
as we can represent all of the coarser grids with a set of 50m cells.
With a strict design, we can assure that we can represent any cell
using the 50m grid as an identifier. The finest cell size of 50m x
50m was chosen because the DGA uses this granularity. The entries
in the dimension are pre-loaded for a given area and enable us to
easily convert between different grid sizes. Each row contains a
unique 50m cell, as well as coarser cells in which it resides, making
it fast to create views with a coarser granularity. The geographical
dimension is described in greater detail in Section 4.2.

Fact Tables. The fact tables contain foreign keys to the dimensions,
described in Section 4.1, and measures that describe the analytical
information that the users can aggregate. The data warehouse de-
sign consists of five fact tables. The measures were determined in
collaboration with domain experts from the DGA.

The fact_ais is the fact table containing raw AIS records loaded
from the data sources during the ELT process. It is used as a staging
area. Having the raw data available, means that if the data process-
ing changes, it can always be reprocessed from its original state.
The table has foreign keys to dim_navigational_status, dim_-
cargo_type, dim_destination, dim_time, dim_type_of_mobile,
dim_date, dim_data_source_type, dim_audit, dim_ship_type,
dim_ship, and dim_type_of_position_fixing_device.

The measures coordinates, longitude, and latitude describes the
ships location. The measures heading, SOG, COG, ROT are dynamic
values that describes the ship’s movement. The final measure is
draught.

The fact table fact_ais_clean contains a subset of records de-
rived from fact_ais. The subset has been cleaned in accordance with
the rules described in Section 3.4. The table has foreign keys to the
same dimensions as fact_ais with the addition of the dim_cell.
Furthermore, fact_ais_clean has two foreign key references to
the two fact tables fact_trajectory_sailing and fact_trajec-
tory_stopped. Only one of these foreign keys will contain a valid
reference since a point cannot be both stopped and sailing. Finally
fact_ais_clean has a foreign key to dim_junk_ais_clean, which
contains meta data from the cleaning operation. The measures are
identical to those in fact_ais.

The fact_trajectory_sailing is the trajectory fact table that
stores ship trajectories satisfying our sailing definition described in
Section 5. The table has foreign keys to dim_destination, dim_-
cargo_type, dim_date, dim_data_source_type, dim_type_of_-
position_fixing_device, dim_type_of_mobile, dim_audit, dim_-
ship, dim_ship_type, and dim_time. Additionally, this fact table
has a bridge table to dim_cell. The measures are draught, coor-
dinates, duration in minutes, the total number of points used, the
sailed length, average speed, and lastly, whether the draught value
is trusted. The coordinates measure is a linestring representation
of the trajectory.

The fact_trajectory_stopped is the trajectory fact tablewhere
the ship’s trajectories are assigned to a stopped state. The foreign
keys and measures are identical to the previously mentioned table,
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Figure 7: Full data warehouse design

fact_trajectory_sailing. We choose to also represent the tra-
jectory of a stopped state as a linestring because this makes it easy
to reconstruct the journey of a ship by combining the sailing and
stopped linestrings.

The fact_cell_sailing is the fact table that will be queried by
the frontend application when creating MDCs. These queries will
be OLAP-based queries that enable the user to filter and refine the
data to enhance their understanding of ship activity in the query
area. The table contains foreign keys to dim_cell, dim_date, dim_-
type_of_mobile, dim_ship_type, and dim_audit. The measures
are trajectory_count, that is the number of trajectories that has
passed through the cell. min_draught, max_draught, mean_draught,
and avg_draught covers the draught observed in the cell. min_-
traj_speed, max_traj_speed, mean_traj_speed, and avg_traj_speed
concerns the trajectories that has passed in the cells. histogram_-
draught, histogram_traj_speed, and histogram_traj_speed are fixed
size arrays where the counts of the particular unit is stored.

4.2 Physical Level
The physical design depicts how data is stored physically in the
system. The design is particularly important due to the size of data
warehouses and can have a large effect on query performance. In
this section, we explain how indexing, partitioning, and column

alignment techniques have been utilized to increase query perfor-
mance.

Indexing. Indices are crucial for query performance when only a
small fraction of the rows in a table need to be fetched. PostgreSQL
automatically creates indices on the primary keys, and we will
therefore not include these in the following. To increase perfor-
mance on ETL processes, an index is created on the ts_date_id
column in fact_ais, because the cleaning process only uses data
from one day at a time. Therefore this index will speed up this
query significantly when fact_ais contains data spanning many
days.

To increase the speed of creating MDCs with different filters, the
following indices are added:

• A btree index on the cell_id column in dim_cell
• SPGist indices on the 50m_boundary, 100m_boundary, 500m_-

boundary, and 1000m_boundary columns in dim_cell
• A btree index on the cell_id column in fact_cell_sail-

ing
• Amulticolumn btree index on the date_id, ship_type_id,

type_of_mobile_id, and is_draught_trusted columns
in fact_cell_sailing

Partitioning. Partitioning is the process of separating the data into
logical segments on the physical hardware level. Partitioning of
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the fact tables will be based on a range partition. A data range
distribution was chosen because all requests that the users will
query are based on AIS data with a specified date range. By utilizing
a range partitioning, we improve the query time on the fact_ais_-
clean fact table as the DBMS does not need to do a sequential scan
of the whole fact table.

An example could be that the user wants to see the ship activity
in the Limfjord on the dates spanning the summer months of 2021.
By having utilized partitions, the DBMS is able to filter unnecessary
data and perform queries on the partitions that are relevant, based
on the date range specified by the user. [26]

Column Alignment. To reduce the row size and possibly the number
of IO operations, column alignment is utilized. The technique is
used to order columns so that they do not cross alignment bound-
aries. PostgreSQL aligns data values in fixed-size values, and if a
value does not match the alignment, padding is used to fill out
the alignment gap. The fixed size is typically 8 bytes. For example,
aligning two int(4 bytes) and a double(8 bytes) with the follow-
ing order: int,double,int will result in 4 bytes padding on both
integers resulting in three blocks of 8 bytes each making the to-
tal 24 bytes. However, aligning the values in the following order:
int,int,double will avoid padding and the total usage will be
two blocks of 8 bytes each which is a total of 16 bytes. That is a
reduction of 8 bytes per row, and making small changes like this
can improve the IO operations as the tables are smaller. [16] This
type of column alignment has been done on all tables in the data
warehouse.

Geographical Cells. As described, in Section 6.1, we wish to provide
the frontend with data retrieved by the data warehouse. Due to the
nature of presenting data to the frontend, we wish to handle such
requests in a timely manner such that the end-user is able to make
analysis efficiently. To account for the desired low response time,
we have specifically designed our geographical cell tables so that
they can be pre-processed and then queried in a reasonable time.
This section provides details on the specifications of our tables that
ultimately allow for such use-cases.

As described in Section 4.1 the geographical dimension is cre-
ated using the EPSG:3034 map projection. We use a projection with
meters as units instead of degrees since this allows us to easily
create a 50m x 50m map which we can compare to a 50m x 50m
map provided by the DGA. The dimension dim_cell contains con-
version information between the different levels of grid granularity.
Each entry stores a PostGIS geometry representation of the bound-
ary of the cell as well as values for the column and row in the
raster representation of the grid. For example, if we want to know
which column and row that a particular cell resides on, on the 500
meter raster, we can retrieve the attributes 500m_row and 500m_-
column. By including the raster row and columns, we can simplify
the calculation for mapping points and trajectories to their cells.

On Figure 6, we have visualized the difference in granularity by
showcasing how we represent cells in a grid, based on the level. The
level of granularity was based upon discussion with the Geodata
agency and frontend limitations for viewing large amounts of data.

5 TRAJECTORY RECONSTRUCTION
In this section, we describe the algorithm used for trajectory re-
construction and techniques used to handle trajectory data. As
described in Section 3.5, we perform trajectory reconstructing on
the AIS records, since this enables us to view the data as continuous
lines instead of distinct points.

While analyzing the trajectory data, it is useful to distinguish
whether the trajectory is in a sailing or a stopped state. Such infor-
mation on states is useful depending on the type of analysis. When
reconstructing the trajectories we, therefore, split the trajectories
based on whether they are in one of the two states.

Egede et al. [21] also use the distinction between sailing and
stopped states, which is visualized in Figure 8. We expand on the
definition presented by defining the sailing and stopped trajectory
states as follows.

• A stopped trajectory is defined as a series of consecutive
points where the ship has had a speed over ground (SOG)
of less than X knots in Y minutes.

• A sailing trajectory is defined as the points that lie between
two stopped trajectories.

• A trajectory consists of more than P points.
• A sailing trajectory is split if more than Z minutes have

elapsed between two consecutive points.
• A point is an outlier if it has a speed of over W knots, and

thus will not be included in any trajectory.

X, Y, Z,W, and P are parameters that can be fine-tuned based
on the speed and broadcast intervals of the ships in the datasets
used. It is trivial to expand this definition to have different X, Y, Z,
W, and P values per ship type or other factors.

The datasets used in this paper we have used X = 0.5 knots,
Y = 5 minutes, Z = 5 minutes, andW = 100 knots, since these
values have shown good results in initial testing, with regards to
splitting trajectories at points which seem natural. Changing these
values is associated with a large computational cost since all of the
trajectory reconstruction needs to be reprocessed.

For splitting the journeys into sailing- and stopped trajectories,
we have created the algorithms shown in Algorithm 1, 2, 3, 4, and
5, where 𝐹𝑝𝑁ℎ is the first point not handled, 𝐿𝑝𝑇ℎ is the last point
over X knots,𝑇𝑠𝑇ℎ is the time since a point had a speed above the
threshold X knots, 𝐿𝑝𝑁𝑠 is the last point not skipped, Δ𝑡 is the
time since the previous point, and Δ𝑑 is distance to the previous
point.

The trajectory reconstruction process is divided into different
algorithms, but they operate in the same global scope, meaning
that all variables are shared.

Algorithm 1 is the entry point for the algorithm. In line 1, the
input for the algorithm is a complete journey for a ship, meaning all
of the data points from a ship in a given period, ordered by time, as
well as the values for the parameters X, Y, Z,W, and P. 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 and
𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 are temporary lists of AIS points that store trajectories
while they are being reconstructed. Once a trajectory ends, it is
pushed to the corresponding list of trajectories 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔 or 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑 .
The primary processing of the algorithm happens within the for
loop shown on lines 11 to 27. We loop over each point in the journey
and check if it should be a part of a sailing or stopped trajectory,
or if it is an outlier. For each point, we set Δ𝑡 and Δ𝑑 to the time
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Figure 8: Illustration of trajectory splitting based on sailing and stopped movement patterns. Furthermore, outliers that exist
on the trajectory have been highlighted [21]

and distance since the last point in lines 12 and 13, respectively. In
line 14, we determine the speed since the last point. This is done
by calculating the speed based on Δ𝑡 and Δ𝑑 and comparing it
to the SOG value from the AIS record. If the absolute difference
between the calculated speed and SOG is above a threshold (2 knots
in our implementation), we use SOG since we deem it accurate
enough. Otherwise, we use the calculated speed. This is done to be
able to remove geographical outliers while being resilient to small
variations in the accuracy of the coordinates.

In line 16, we check if the time since the last point in the journey
is above the threshold Z, and in case it is, we end the current
trajectory. This is done because we have observed large time gaps
between AIS records. If we do not handle these large time gaps,
we risk creating very inaccurate trajectories which, e.g., may be
trajectories that go over land.

Lines 20 to 26 are three different ways of handling the point
depending on the speed since the last point. The first case on line 20,
is the outlier detection. The calculated speed is above the threshold
possible for a vessel, and the point is, therefore, an outlier. The
outlier point is skipped, as described in Algorithm 3. The second
case is when the speed is above or equal to the minimum threshold
W, meaning it should be part of a sailing trajectory, which is handled
in Algorithm 4. The last case is that the speed is below the minimum
threshold, meaning that it should be a part of a stopped trajectory,
depending on how long it has been since a point had a speed greater
than the threshold. This is handled in Algorithm 5.

Upon finishing the for loop, the remaining trajectories are added
to either the 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔 or 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑 lists, after which we return both
lists as the output of the algorithm.

EndCurrentTrajectory. . The intuition behindAlgorithm 2 is to check
if we are currently working on a sailing or stopped trajectory. We
add any unhandled points, excluding the current point, to the tra-
jectory, and then reset 𝐹𝑝𝑁ℎ. If the trajectory consists of more than
P points, we add it to the list of trajectories. Finally, we clear the
temporary list of points 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 or 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 .

SkipPoint. . The intuition behind Algorithm 3 is to add any unhan-
dled points, excluding the current point, to the trajectory being
constructed and then resetting 𝐹𝑝𝑁ℎ.

HandleSailingPoint. . The intuition behind Algorithm 4 is to end a
stopped trajectory if it is under construction and add all unhandled

points including the current point to the sailing trajectory. We then
set 𝐹𝑝𝑁𝑠 to the current point and finally reset both𝑇𝑠𝑇ℎ and 𝐹𝑝𝑁ℎ.

HandleSlowPoint. . The intuition behind Algorithm 5 is to first
check if too much time has passed since a point had a speed above
the minimum threshold Y. If this is the case, the sailing trajectory is
ended if it is currently under construction, and all unhandled points,
including the current point, are added to the stopped trajectory.
Finally, the 𝐿𝑝𝑁𝑠 is set to the current point, and 𝐹𝑝𝑁ℎ is reset.

The draughtmeasure in fact_trajectory_sailing and fact_-
trajectory_stopped is populated with an array consisting of
all of the reported draughts from the data points making up the
trajectory. The draught which is reported most often is the first
element in the array and is the value that is used for the tra-
jectory throughout the system. The foreign keys to dim_ship_-
type, dim_cargo_type, dim_destination, dim_type_of_mobile,
dim_data_source_type, and dim_type_of_position_fixing_-
device are populated with the value which occurs most often in
the data points making up the trajectory.

After the trajectory reconstruction and before the trajectories
are added to the data warehouse, we simplify the trajectories using
Douglas-Peuckers, with a tolerance of 0.001 degrees, because initial
testing showed that this value gives a good balance between data
reduction and information retention [20]. This is done to signif-
icantly reduce the amount of data used to store the trajectories.
Simplifying using Douglas-Peuckers is especially effective because
ships primarily move in straight lines, and we, therefore, see a
reduction in data size of approximately 98%, as seen in Table 3.

6 IMPLEMENTATION
In this section, we describe how the system is implemented and
when the implementation differs from the design. The section cov-
ers the overall system, how we process AIS data, and how the pro-
cessed data is presented to the user through a web-based frontend.
The source code for our implementation can be found on GitHub
in which we have included a guide on running the system [48]. A
web demo of the system is available at http://130.225.39.233:3000/.

6.1 System Overview
The system overview consists of various components, each with
its own responsibility and role when defining the architecture of
our multi-purpose data warehouse. A system overview diagram
can be seen on Figure 9, in which the data flow is denoted with
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Figure 9: System overview illustrating the existing components and data flow within the system

arrows starting from the left-most component, the AIS data source.
Furthermore, the primary technologies that have been utilized are
displayed above each component. The versions used during the
implementation are PostgreSQL v14.2, PostGIS v3.2, Python v3.10,
and React v17.0.

The flow within our system can be separated into three primary
processes: (i) initial ETL, (ii) primary ETL, and (iii) presentation.
The initial ETL process consists of the AIS data source and Initial
ETL components, and the process is responsible for extracting data
from AIS sources and loading the data into our data warehouse.
Upon completion, the next process, primary ETL, can be started.
This process consists of two components, the Data Warehouse and
Primary ETL. The process is responsible for extracting and trans-
forming raw AIS data retrieved from the initial ETL process, into
cleaned data, trajectories, and cell details. After the transformation
phase, the new data is loaded into their respective tables in the data
warehouse. In Section 6.2, a detailed description of this process can
be found. The final process, presentation, is responsible for display-
ing data to the user. It utilizes the API component to transfer data
between the data warehouse and the frontend. The data transfer is
based on which requests the user makes.

6.2 Extract, Transform, and Load
The extract, transform, and load (ETL) process facilitates extracting
data from source systems, transforming the data (e.g., applying
calculations), and finally loading the data into the data warehouse.
The process is particularly important when working with AIS data
due to the amount of data, and the noise that exists in the datasets. In
this section, we describe the three steps and explain their connection
to our system.

Specifically for the AIS data provided to us by DMA, the AIS data
is contained within CSV files that are generated on a per-day basis.
During the extract step, data is extracted from the CSV files into a

staging area. The staging area is a part of the transformation step
and acts as a buffer between the data warehouse and the source
system. As data may come from different sources, be corrupted, or
vary in terms of format, it could be risky to directly transfer the
data to the data warehouse. Therefore, the staging area is essential
for data validation, cleaning, and organization.

In relation to our system, we have defined an initial staging area
that only performs validation and organizational operations such
as identifying the correct dimension or performing type validation
on the data. This allows us to retain a representation of the original
data within the data warehouse before cleaning and filter rules are
applied. We refer to this data as the raw data. To ensure that we do
not try to load corrupted, or incorrect data types, we still have to
validate the extracted data. The validation process includes opera-
tions such as: ensuring data integrity, a uniform representation of
unknown values, and setting initial values.

Apart from the initial staging area, we also define another staging
area that is responsible for cleaning the raw data to improve the
overall data quality and to filter data that are out of scope e.g., AIS
data sent from helicopters. The second staging area is therefore a
part of the primary ETL process in our system because it enforces
domain-specific cleaning rules that are applied to the raw data.

The transformation step is also responsible for performing domain-
specific operations such as patching of ship references and trajec-
tory reconstruction. These steps are explained in details in Sec-
tion 6.3 and Section 5 respectively. Furthermore, the transforma-
tion step is also responsible for populating the fact_cell_sailing
table. The population is done by grouping data from fact_trajec-
tory_sailing based on the foreign keys in fact_cell_sailing,
and aggregating the measures.

After the transformation step has finished, the final loading step
can begin. The loading step is responsible for loading the newly
transformed data into the data warehouse. We use full loading
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Algorithm 1 TrajectoryReconstruction
1: INPUT: complete journey for a ship as 𝑗𝑜𝑢𝑟𝑛𝑒𝑦, 𝑋 , 𝑌 , 𝑍 ,𝑊
2: OUTPUT: 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔 , 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑
3: Begin
4: 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 , 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ← empty lists of points
5: 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔 , 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ← empty lists of trajectories
6:
7: 𝑇𝑠𝑇ℎ ← 0 // Used in Algorithm 4,5
8: 𝐿𝑝𝑁𝑠, 𝐿𝑝𝑇ℎ ← First point in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦

9: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙 // Used in Algorithm 2,3,4,5
10:
11: for each 𝑝𝑜𝑖𝑛𝑡 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦 do
12: Δ𝑡 ← 𝑔𝑒𝑡𝑇𝑖𝑚𝑒 (𝑝𝑜𝑖𝑛𝑡, 𝐿𝑝𝑁𝑠)
13: Δ𝑑 ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑜𝑖𝑛𝑡, 𝐿𝑝𝑁𝑠)
14: 𝑠𝑝𝑒𝑒𝑑 ← 𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 (Δ𝑡,Δ𝑑, 𝑝𝑜𝑖𝑛𝑡)
15:
16: if Δ𝑡 > 𝑍 then
17: endCurrentTrajectory() //Algorithm 2
18: end if
19:
20: if 𝑠𝑝𝑒𝑒𝑑 >𝑊 then
21: SkipPoint() // Algorithm 3
22: else if 𝑠𝑝𝑒𝑒𝑑 ≥ 𝑋 then
23: HandleSailingPoint() // Algorithm 4
24: else if 𝑠𝑝𝑒𝑒𝑑 < 𝑋 then
25: HandleSlowPoint() // Algorithm 5
26: end if
27: end for
28:
29: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > 0 then
30: add 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 to 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑
31: else if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > 0 then
32: add 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 to 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔
33: end if

return 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔,𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑
34: End

when loading into our fact tables, meaning that everything from the
transformation goes into new, unique records in the tables. For the
dimension tables, however, we utilize incremental loading, meaning
that the incoming data is compared to the existing data, and we
only produce additional records if new and unique information is
found.

6.3 Patching References to Ships
As described in Section 6.2, all of our dimensions utilize incremental
loading, meaning that new data is compared to existing data so
that we do not have multiple entries of the same object. Specifically
for dim_ship the lookup attributes used for comparison are: MMSI
number, ship type, positional type, and mobile type, all of which are
described in details in Section 3.1 and Section 4.1. For each unique
combination in our data, we create an entry in the ship dimension.
Unfortunately, we do experience multiple entries that represent the
same ship, which is a result of, error-prone AIS data and the noise
that we have described in Section 3.2. To account for the duplicate

Algorithm 2 EndCurrentTrajectory
1: Begin
2: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > 0 then
3: if 𝐹𝑝𝑁ℎ ≠ 𝑁𝑢𝑙𝑙 then
4: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡[ do
5: append 𝑝 to 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
6: end for
7: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙

8: end if
9: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > P then
10: add 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 to 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔
11: end if
12: clear 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
13: end if
14: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > 0 then
15: if 𝐹𝑝𝑁ℎ ≠ 𝑁𝑢𝑙𝑙 then
16: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡[ do
17: append 𝑝 to 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
18: end for
19: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙

20: end if
21: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > P then
22: add 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 to 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑
23: end if
24: clear 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
25: end if
26: End

Algorithm 3 SkipPoint
1: Begin
2: if 𝐹𝑝𝑁ℎ = 𝑁𝑢𝑙𝑙 then
3: return
4: end if
5: if 𝑙𝑒𝑛(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > 0 then
6: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡[ do
7: append 𝑝 to 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
8: end for
9: end if
10: if 𝑙𝑒𝑛(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > 0 then:
11: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡[ do
12: append 𝑝 to 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
13: end for
14: end if
15: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙

16: End

representations of ships, we have implemented a patching method
that can fix the ship references on our data.

The patching is performed during the transformation step in
the primary ETL process allowing us to utilize some of the organi-
zational steps that already have been made. More specifically, the
method utilizes a list of records being processed, grouped by their
MMSI number. For each group, all ship references are counted, and
the reference that occurs the most times is identified as the cor-
rect reference. We believe this approach is appropriate for our data
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Algorithm 4 HandleSailingPoint
1: Begin
2: 𝐿𝑝𝑇ℎ ← 𝑝𝑜𝑖𝑛𝑡

3: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > 0 then
4: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ) > P then
5: add 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑 to 𝑇𝑠𝑡𝑜𝑝𝑝𝑒𝑑
6: end if
7: clear 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
8: end if
9: if 𝐹𝑝𝑁ℎ ≠ 𝑁𝑢𝑙𝑙 then
10: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡] do
11: append 𝑝 to 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
12: end for
13: 𝐿𝑝𝑁𝑠 ← 𝑝𝑜𝑖𝑛𝑡

14: else
15: append 𝑝𝑜𝑖𝑛𝑡 to 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
16: 𝐿𝑝𝑁𝑠 ← 𝑝𝑜𝑖𝑛𝑡

17: end if
18: 𝑇𝑠𝑇ℎ ← 0
19: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙

20: End

Algorithm 5 HandleSlowPoint
1: Begin
2: if 𝐹𝑝𝑁ℎ = 𝑁𝑢𝑙𝑙 then
3: 𝐹𝑝𝑁ℎ ← 𝑝𝑜𝑖𝑛𝑡

4: end if
5:
6: 𝑇𝑠𝑇ℎ ← 𝑝𝑜𝑖𝑛𝑡 .𝑡𝑖𝑚𝑒 − 𝐿𝑝𝑇ℎ.𝑡𝑖𝑚𝑒

7: if 𝑇𝑠𝑇ℎ ≤ 𝑌 then
8: return
9: end if
10:
11: if 𝑇𝑠𝑇ℎ > 𝑌 then
12: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > 0 then
13: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔) > P then
14: add 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔 to 𝑇𝑠𝑎𝑖𝑙𝑖𝑛𝑔
15: end if
16: clear 𝑃𝑠𝑎𝑖𝑙𝑖𝑛𝑔
17: end if
18: if 𝐹𝑝𝑁ℎ = 𝑁𝑢𝑙𝑙 or 𝑝𝑜𝑖𝑛𝑡 = 𝐹𝑝𝑁ℎ then
19: append 𝑝𝑜𝑖𝑛𝑡 to 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
20: 𝐿𝑝𝑁𝑠 ← 𝑝𝑜𝑖𝑛𝑡

21: else
22: for each 𝑝 in 𝑗𝑜𝑢𝑟𝑛𝑒𝑦[𝐹𝑝𝑁ℎ:𝑝𝑜𝑖𝑛𝑡] do
23: append 𝑝 to 𝑃𝑠𝑡𝑜𝑝𝑝𝑒𝑑
24: end for
25: 𝐿𝑝𝑁𝑠 ← 𝑝𝑜𝑖𝑛𝑡

26: end if
27: 𝐹𝑝𝑁ℎ ← 𝑁𝑢𝑙𝑙

28: end if
29: End

because our observations show that in most cases, the duplicate
references only exist because of noise in the AIS data from a specific
time period. When a group has been identified to have more than
one reference, we change the foreign key of dim_junk_ais_clean
to the entry which indicates that the records have had their ship
references patched. By doing so we are able to assign a flag that
indicates the data have been modified and to what degree.

6.4 Data Warehouse
The data warehouse has been implemented in accordance with the
design described in Section 4 with the exception of the changes
that will be described in this section.

The data warehouse design shown on Figure 7 has been mostly
implementedwith the exception of some foreign keyswithin fact_-
ais_clean, namely the trajectory_sailing_id and trajectory_stopped_-
id. These foreign keys are part of the data warehouse design but
are currently set to null values as we experienced some limita-
tions within the Python library: PygramETL, which was used to
implement our ETL processes. When a reconstructed trajectory is
inserted in either fact_trajectory table, a reference to the row is
not returned. This means that we lose the reference to which AIS
records are used to construct the trajectory. We also did not popu-
late the bridge_traj_stopped_cell because of time constraints
in terms of CPU time on the server and it was not a priority for
the use-case of making MDCs. The idea is exactly the same as
with bridge_traj_stopped_cell, and it is, therefore, trivial to
implement.

To improve performance when inserting many rows into the
large fact tables, we utilize a combination of batch loading, disabling
of triggers, dropping, and reconstruction of primary- and foreign
key constraints.

Furthermore, to increase query performance for our frontend, we
have implemented fact_cell_sailing as two fact tables, namely
fact_cell_sailing_50m and fact_cell_sailing_1000m. Asmen-
tioned in Section 4.1, the cell size granularity is 50 meters and 1000
meters, and to aggregate cells from 50 meters to 1000 meters the
resulting table is 400 times larger. This means that a lot of the
computation time will be spent aggregating the cells up to 1000
meter cells, and this can be avoided by separating fact_table and
storing the pre-aggregated 1000 meter cell values in a separate table.
To obtain the query performance gain, the dim_cell dimension
needs to be separated as well, one dimension for 50 meters and
one for 1000 meters. Finally, as there is a many-to-many relation
between fact_tractory_sailing and dim_cell, we construct a
bridge table for both 50 meters and 1000 meters. Splitting fact_-
cell_sailing into multiple more granulated fact tables will of
course incur a storage increase, which we deem worthwhile in
relation to the performance gain.

Section 4.2 describes the indices used for the fact tables and
dimensions, and the same type of indices is of course applied to the
aforementioned fact_cell_sailing, 50 meters and 1000 meters
as well as dim_cell, 50 meters and 1000 meters.

The dimension dim_date has been pre-filled with 2000 days
starting from 1 January 2021. The same is true for dim_time. These
two dimensions have been pre-filled as they contain static data.
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The dimension dim_junk contains flags to categorize a record
in fact_ais_clean. It currently holds two different kinds of flags,
but more flags can be implemented to further categorize the data.
The two flags are is_patched_ship and is_outlier. is_patched_ship is
implemented and the flag is set when a ship has had its reference
patched as described in Section 6.3. The flag is_outlier is imple-
mented in the data warehouse and describes whether a record has
been marked as an outlier in the trajectory reconstruction described
in Section 5, however, this flag is always set to false because it has
not been implemented in the transformation phase.

Tables Sizes. A summary of the table sizes in our data warehouse
can be seen on Table 3. All dimensions and fact_ais are based on
data spanning the whole year 2021, while the rest of the fact tables
and bridge tables use data spanning from 01/05/2021 to 30/09/2021.
The table name, number of rows, table size, index size, and total size
are listed for each table. The total size for all tables in the current
version of our data warehouse adds up to approximately 3.14 TB of
storage.

6.5 API
Our API is written in Python using the web framework Flask, in
addition with the RESTful extension to build a REST API. The
API provides communication between the data warehouse and the
frontend as seen in Figure 9. To get an MDC, the user creates a
request based on their preferred filters. The filtering parameters are
passed to the get endpoint in the API which processes the request
by making a SQL query on the data warehouse with the provided
parameters. The API receives the resulting data as a GeoJSON,
i.e., a format that provides a representation of simple geographical
features along with their non-spatial attributes [12]. The GeoJSON
is returned to the frontend and is rendered as the resulting MDC.
An example of a query that is sent to the data warehouse from the
API is shown in Appendix Listing 1.

The histogram of draught for a cell is retrieved through a get
request that include a cell_id within the request parameters. The
API queries the data warehouse with the particular cell_id and
retrieves an array representing the draught histogram. The array is
returned to the frontend after which the array is transformed into
an interactive graph.

6.6 Web-based Frontend
As described in Section 6.1, the system includes a frontend compo-
nent within the presentation process. The frontend is implemented
using the JavaScript library React in combination with Leaflet. The
frontend is responsible for displaying the aggregated data retrieved
from the data warehouse through HTTP requests made to the API.
Furthermore, the frontend provides the user with a user interface
(UI) that allows the addition of filters to the requests. Filters are a
valuable way to give the user control of which type of data they
wish to query. The currently supported filtering is based on the: date
range, ship type, AIS transponder type, and data trustworthiness.

Upon choosing new filters, the frontend creates a new request
to the API, which returns the aggregated cell data in a GeoJSON
format, ultimately producing the MDC. Based on the zoom level
when the request is made, the API determines the cell sizes used.
Specifically for our implementation, we provide the user with two

possible granularities: 50- and 1000-meter cells, ultimately allowing
us to restrict the amounts of cells being shown to the user at the
same time because too many cells cause poor performance due to
browser limitations.

On the sidebar, we also provide the user with a switch button
that can swap between showing an MDC or a heatmap of trajectory
counts based on the fetched data. An example of an MDC with 1000
meter cells is shown in Figure 10, and an example of a heatmap can
be seen in Appendix Figure 17

Figure 10 shows the user interface (UI) of our frontend. The UI
consists of a from date-picker and a to date-picker that together
represents the date range to query on. The filters have 3 categories:
ship types, AIS transponder type, and trustworthiness. The ship
types filter allows for selection of which ship types to include in the
query, e.g, Cargo, Fishing or Sailing. The AIS transponder type
can filter data based on the transponder types such as Class A and
search and rescue transponders. Lastly, the trustworthiness filter
includes ships with a trusted draught as described in Section 3.7.
Clicking apply and fetch will retrieve the data based on the filters.
In addition, the user can dynamically choose to view the MDC or
the heatmap of the area, by toggling the associated button.

Figure 11: Histogram for a cell in Vejle Fjord. 50 meter cells.

Including all ship- and transponder types, Figure 10 shows the
resulting MDC where pink areas near coastal areas indicate cells
with only null draughts, and the depth grading scale goes from light
blue to dark blue indicating low to high depth respectively. The two
aforementioned colors are default values and can be customized
through the color picker. Clicking on a cell will bring up a cell details
box in which the maximum-, average-, and minimum draught and
trajectory count are displayed. To display more detail about the
cell, a histogram of the draughts can be requested. An example of
the histogram is shown in Figure 11.

7 RESULTS
In this section, we first present our performance tests of the system.
Next, a comparison between our MDC and a depth model provided
by the DGA is analyzed and explained. Afterward, we address the
use of waterways in Danish waters by utilizing heatmaps and then
discuss the potential of including data without draught information
when producing our MDCs. Finally, we summarize our most recent
meeting with the DGA in which we presented the system and all
of our results.
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Table Name Rows Table Size Index Size Total Size
dim_type_of_position_fixing_device 12 8 kB 16 kB 24 kB
dim_navigational_status 21 8 kB 16 kB 24 kB
dim_data_source_type 2 8 kB 16 kB 24 kB
dim_type_of_mobile 8 8 kB 16 kB 24 kB
dim_junk_ais_clean 4 8 kB 16 kB 24 kB
dim_destination 29,751 1,792 kB 672 kB 2,464 kB
dim_cargo_type 8 8 kB 16 kB 24 kB
dim_ship_type 27 8 kB 16 kB 24 kB
dim_ship 88,550 8,232 kB 1,976 kB 10,208 kB
dim_date 2,002 312 kB 64 kB 376 kB
dim_time 86,400 3,776 kB 1,904 kB 5,680 kB
dim_audit 976 168 kB 40 kB 208 kB
dim_cell_50m 131,502,552 72 GB 15 GB 86 GB
dim_cell_1000m 329,430 53 MB 32 MB 84 MB
bridge_traj_sailing_cell_50m 1,044,225,732 43 GB 42 GB 85 GB
bridge_traj_sailing_cell_1000m 52,940,381 2,236 MB 2,143 MB 4,379 MB
fact_ais 4,084,765,528 652 GB 112 GB 765 GB
fact_ais_clean 1,641,590,137 424 GB 376 GB 801 GB
fact_trajectory_stopped 8,494,357 4,294 MB 356 MB 4,649 MB
fact_trajectory_sailing 2,514,635 4,043 MB 114 MB 4,157 MB
fact_cell_50m 814,984,634 1,320 GB 34 GB 1,354 GB
fact_cell_1000m 22,896,139 38 GB 841 MB 39 GB
Total 7,804,451,286 2.56 TB 582.60 GB 3.14 TB

Table 3: Table sizes

Figure 10: MDC of Fyn and Zealand with all ship- and AIS transponder types and with both trusted and untrusted draughts
(150 km x 250 km)
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7.1 System Performance
The performance of the system implemented in this paper can be
split into two parts: the ETL performance and the query perfor-
mance. The processing times were recorded on a server running
Ubuntu 20.04 with 64GB of RAM and 8 AMD EPYC CPU cores
running at 2GHz in a virtualized cloud environment.

ETL Performance. The ETL performance describes the processing
time of extracting data from a CSV file and loading it into the data
warehouse as described in Section 6.2. The processing times for the
different ETL steps can be seen in Table 4. All of the processing
was done on a per-day basis, and the numbers in Table 4 are based
on the processing of data from 04/10/2021 consisting of 11,288,659
raw AIS records with data from 5 months already processed and
inserted into the data warehouse. The exact processing times for
each day vary based on the amount of data from that day, and the
numbers in the table are therefore only approximate values. All of
the transformation processing is independent of the amount of data
in the data warehouse. However, inserts and especially constraint
checks and index rebuilding are sensitive to the amount of data and
gradually becomes slower.

The main takeaway from the processing times is that the total
processing time of one day is comfortably within 24 hours, meaning
that the system can handle data faster than it is generated.

Process Time
Loading of AIS records 34 minutes
Cleaning of raw AIS records 34 minutes
Trajectory reconstruction 1 hour 19 minutes
Population of fact_cell_sailing 44 minutes
Constraint checks and index rebuilding 1 hour 57 minutes
Total 5 hours 3 minutes

Table 4: ETL processing times for data from 1 day

Query Performance. The query performance describes the time to
perform the queries used in the frontend. These queries are highly
sensitive to the number of cells in the queried area, how many
trajectories have passed through the cells, as well as if the area has
been queried recently as the result gets cached automatically by
PostgreSQL. The fact that the server is in a virtualized environment
alsomeans that the performance can changewithout our knowledge
and can also have an impact on the query times.

For queries within a short time span, which are either the same or
very similar, we have experienced query times of below 5 seconds.
If a longer time has passed since a query has been made or if it is
an area that has not been queried before we have observed query
times of up to 10 minutes.

The query times are higher than what is users are willing to wait
for a response on a website [29]. The target users of the website
are, however, domain experts who want to analyze the data and are
willing to wait for a longer time. We believe the response times are
within reason based on the domain and the amounts of data but
could use some more optimization. The query times for histograms
are very low and are within what regular users want to wait.

7.2 Verifying Ship Traffic
Figure 12 shows a heatmap of Kattegat for all ships in the period
01/05/2021 to 30/09/2021. The color gradient goes from light blue
which means low intensity, to dark blue meaning high intensity. It
is clear to see heavy traffic lines going into the harbors, and more
interestingly, we can see two lines side by side north of Skagen go-
ing into the eastern part of Kattegat. These two lines are waterways
where larger ships are required to sail due to safety regulations. The
waterways split up close to Læsø depending on whether a ship’s
route goes to different destinations. Analyzing these waterways
suggests that ships follow the guidelines set by the DMA when
sailing within Danish waters. And the two close parallel lines verify
that ships sail in the designated waterways.

Figure 12: Heatmap of Kattegat

7.3 DGA Depth Model Comparison
Through collaboration with the DGA, we were provided a confiden-
tial depth model. The depth model is a raster consisting of 50m x
50m cells over Danish waters and is expected to be released in late
2022. The cells contain depth information that is either interpolated
or measured and these data are based on the average depth for that
area. Comparing the depth model to a raster version of our MDC,
we can identify interesting areas in which there are inconsisten-
cies. Making the comparison we are aware that our model uses a
maximum reported draught based on AIS data, which will result
in areas with large differences because the actual depth is much
higher than any ship draught.

The scales on Figure 13 and Figure 14 annotate the value dif-
ference of the reported depth between the two models. The color
gradient used in the scale goes from red to white to green. Red
means our MDC shows a larger depth than the DGA model, and
green means the DGA model shows a larger depth. White in be-
tween means the two charts show equal depth. Darker color means
a larger difference and lighter color is a lower difference.

When looking at the entirety of Denmark, in Figure 13, we see
almost only green, and this is as expected. Because ships should
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Figure 13: Comparison of the depth difference between DGA
depth model and an MDC based on 5 months of data

not sail where their draught is larger than the depth, they will sail
aground. In open waters far away from the coast, we see dark green.
This is also as expected since our observations show that the depth
can go beyond 25.5 meters, which is above the maximum draught
for any ship. Light green areas such as Kattegat are interesting
because these areas indicate that our MDC is close to the depth
model that the DGA has provided.

Figure 14: A comparison of our MDC and the DGA depth
model in the Limfjord. TheMDC is generated using 5months
of data

When looking closer into inlets at Figure 14, we observe red areas.
Areas with red indicate that the MDC has recorded draughts that
exceed the depth values reported by the DGA’s depth model. These
areas are of particular interest because they indicate that there may
exist inconsistencies which imply that these areas require further
investigation by the DGA. However, it is also worthmentioning that
the inconsistencies may be a result of the constant change in the
sea floor, inaccurate interpolated data, or outdated measurements.

Also, the DGA model is based on an average depth within a cell,
whereas our MDC is based on the maximum observed draught for
that cell thus comparing these values may also contribute to a larger
difference in depths, especially near coastal areas and waterways.

Figure 15: Histogram for a cell in the Limfjord

In Figure 15, a draught histogram of a 50m x 50m cell is shown.
In this particular cell, from the Limfjord depicted in Figure 14, our
MDC indicates a depth of 7.6 meters, marked with the red marker,
while the DGA’s model shows 3.1 meters, marked with the green
marker. Further analyzing the depth inconsistency, we see that out
of the 49 ships, 33 of them have reported draughts that exceed
the depth reported by the DGA depth model. This demonstrates
how we can utilize data from the histogram to further refine our
analysis.

7.4 Including Missing Draught Data
Figure 16 shows an MDC of Vejle Fjord. In Figure 16a, Vejle Fjord
is depicted without null draught values and in Figure 16b null
draught values as highlighted with a pink color. Otherwise, darker
color means deeper and lighter means shallower water. Overall,
Figure 16 highlights the potential of patching missing draught, as
it could greatly increase the coverage of near coastal areas, and the
trustworthiness with more measurements.

Analyzing the coverage of our data over Danish waters, we see
that the coverage is 77,8% when we exclude data with null draughts
and 88,7% when we include null draughts. It is an increase of 10.9
percentage points, and the coverage is greatly increased in near
coastal areas. This is in line with our assumption that bigger ships,
with class A transponders, sail in the open waters or where there
are deep enough to sail. While smaller ships, typically with a class
B transponder, sail in more shallow water. Therefore, by outfitting
smaller ships with a trusted transponder, we can get more near
coastal coverage. This is further discussed in Section 8.

7.5 Final Meeting with the DGA
In the final meeting with our collaboration partners at the DGA,
we demonstrated our system, MDCs, and comparisons with their
50m depth model. The DGA had several representatives from dif-
ferent departments with different areas of interest. There was a
very positive sentiment towards our system and its usefulness as a
supportive tool for validation of existing bathymetry analysis, as
well as a tool for determining which areas are most important for
future surveys. It is important to select the areas for future surveys
with care since the DGA is limited to surveying 2% of Danish waters
using multi-beam per year. A topic of discussion was the west coast
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(a) Vejle Fjord with only trusted draughts

(b) Vejle Fjord with non-trusted draughts

Figure 16: Vejle Fjord with and without trusted ship draughts.
Five months data

of Denmark where their bathymetry data is very old. Through our
tool, we showed that our MDC showed similar depth data, thus
asserting that surveying the west coast may not be that high of a
priority.

Representatives from the DGA also showed interest in using our
system and the methods described for mapping secure waterways
in very sparsely charted areas such as the waters around Greenland
and the Lake Volta in Ghana. In general, they were very impressed
with the possibilities of using AIS for bathymetric analysis.

8 CONCLUSION
In this paper, the design and implementation of amulti-purpose data
warehouse model and a web-based application have been described.
The goal has been to extend the data warehouse design that can
efficiently store AIS data introduced in [21], and answer real-world
questions regarding ships on the sea. Furthermore, the system is
tailored to be flexible in order to support different use-cases, thereby
making it multi-purpose. To demonstrate and prove the capabilities
of our system, a web-based application was created that can request,
process, and render data from the multi-purpose data warehouse.
The application was demonstrated during a presentation for the
Danish Geodata Agency (DGA) and received positive feedback
in terms of capabilities and relevance. Specifically, they reacted
positively to the usefulness of the MDC and histogram functionality
of our system, the comparison with their 50m depth model, and the
general usefulness of AIS for bathymetric analysis.

In Section 3, we analyzed the characteristics and reliability of AIS
data, and also address some of the common errors that exist in the

data.We further explain how trajectories can be utilized to represent
sets of data as lines and describe our cleaning techniques and data
assumptions. In Section 4, we describe how the data warehouse was
specifically designed to store all attributes that exist in AIS data to
support the data foundation for a variety of use-cases. Doing so has
allowed us to exchange disk space for more detailed data, enabling
analysis inmany areas and not just bathymetry. The data warehouse
consists of 4 billion raw AIS records that have been transmitted
within Danish waters during 2021. To ensure data reliability we
have processed the data for the period 01/05/2021 to 30/09/2021
and stored the 1.6 billion resulting records in a separate table which
functions as the foundation for our analysis. Working with big data
and AIS data, in particular, we gained most of our performance by
creating indices, partitions, reconstruction of trajectories, and data
compression.

Section 6 explain how we have implemented our system as an
application that can generate and present an MDC or heatmap on
an interactive map displayed within a web-based solution. Feedback
received during meetings with DGA emphasizes the potential of
our system as a supportive tool during their analysis of danish
waters. The application allows DGA to analyze specific areas fast
and cheaply, which they can utilize in addition to their own analysis.
Such analysis does not only allow DGA to potentially identify areas
that require additional or new bathymetric surveys but may also
provide additional information because our model utilizes data from
the ships. As DGA have mentioned, our system can be considered
a proof-of-concept that not only proves to be relevant in their field
of research but also addresses the potential of using AIS data for
answering other real-world questions.

In Section 7.3 we describe the comparison of an MDC that was
generated by our system, to a depth model provided by the DGA.
The comparison shows the differences between the two models
and as expected we do see that DGA often reports a much higher
depth than our model which we did expect due to the nature of
using reported draughts for ourmodel. However, more interestingly,
we identify areas in which our model indicates that ships have
sailed at areas that the DGA model deems too shallow, indicating
that our model may be able to find areas that contain incorrect
depth data. These findings were presented during a meeting with
DGA, and their feedback confirmed that our system potentially
can find areas where their measurements may be outdated and
require new surveys. Our findings have started internal discussions
in DGA because our results have presented ideas as to how AIS
data can be beneficial for their existing work which they hope to
pursue in the future. Furthermore, our model has contributed to
further confirming some of the assumptions that DGAhas regarding
their own data. For example, the assumption that there are a lot of
changes in the seafloor in Limfjorden, and that the measurements
on the west coast of Denmark are pretty reliable even though their
measurements date many years back.

Future Work
There are different aspects of the multi-purpose data warehouse
that could be improved on as future works. Including null draught
patching, additional purposes, and query performance.
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We want to emphasize the potential in patching missing draught
values for future work. With the currently stored data, almost
half of all sailing trajectories have reported null draught values.
If a patching process could reliably estimate a draught for these
trajectories, we potentially could increase the coverage of the MDC
by a significant amount, especially near the coastal areas.We believe
patching missing draughts can provide a lot of value and if a good
data source for ship draughts can be found, it can be integrated into
the existing system with little work.

The data warehouse is used for bathymetric analysis, but the
multi-purpose aspect enables the data warehouse to be used for
many different use-cases. For future work, we think analyzing sail-
ing routes, near misses, or abnormal sailing patterns could be some
interesting areas to look into. Even though the data warehouse
holds this data, the system contains no implementation for analyz-
ing or showing it, and it requires significant work to incorporate
other types of analysis. We also believe it can be interesting to inte-
grate new sources of AIS data that extend beyond danish waters,
especially if combined with tide levels to more precisely assess the
bathymetric details on the sea.

Query performance is an area that could benefit from more work.
Even though we deemed our query times to be within reason, we
believe this is an area where large improvements could be achieved
with little work. For these improvements, tools like materialized
views and partitioning could be used. This will make analyzing
data more smooth and interactive.
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A AIS DATA STRUCTURE

Static
Field name Source Comment
IMO IMO number of the vessel Only propelled, seagoing vessels of

100 gross tons and above are assigned
an IMO number.

Callsign Callsign of the vessel
Name Name of the vessel
Ship type Describes the AIS ship type of this vessel
Cargo type Type of cargo from the AIS message
Width Width of the vessel
Lenght Lenght of the vessel
Type of position fixing device Type of positional fixing device from the AIS message
Draught Draugth field from AIS message
Destination Destination from AIS message Manually set by the crew
Type of mobile Type of target the message is received from
ETA Estimated Time of Arrival
Data source type Data source type, e.g. AIS
Size A Length from GPS to the bow
Size B Length from GPS to the stern
Size C Length from GPS to starboard side
Size D Length from GPS to port side

Table 5: AIS data format 1

Dynamic
Field name Source Comment
MMSI MMSI number of vessel
ROT Rate of turn from AIS message
SOG Speed over ground from AIS message
COG Course over ground from AIS message
Latitude Latitude of message report Set using the device in "Type of posi-

tion fixing device"
Longitude Longitude of message report Set using the device in "Type of posi-

tion fixing device"
Heading Heading from AIS message
Timestamp Timestamp from AIS basestation
Navigational status Navigational status from AIS message Manually set by the crew

Table 6: AIS data format 1
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B EXAMPLES FROM APPLICATION

Figure 17: Heatmap of Vejle Fjord with low activity indicated by green and high activity indicated by red. Activity color gradient
is from green to red. 50 meter cells.

C EXAMPLE QUERY FROM API

Listing 1: Example query of an MDC called by the API
1 SELECT

2 json_build_object(

3 'type',

4 'FeatureCollection ',

5 'features ',

6 json_agg(

7 ST_AsGeoJSON(result .*):: json

8 )

9 )

10 FROM

11 (

12 SELECT

13 ST_Transform(boundary , 4326),

14 max_draught ,

15 min_draught ,

16 trajectory_count ,

17 cell_data.cell_id ,

18 avg_draught

19 FROM

20 dim_cell_1000m d

21 inner join (

1Gatehouse Maritime https://gatehouse.com/maritime/ and [18]
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22 SELECT

23 MAX(max_draught) max_draught ,

24 MIN(min_draught) min_draught ,

25 cell_id ,

26 SUM(trajectory_count) trajectory_count ,

27 SUM(avg_draught * trajectory_count )/

28 CASE WHEN SUM(

29 CASE WHEN avg_draught IS NOT NULL

30 THEN trajectory_count ELSE 0 END

31 ) > 0 THEN SUM(

32 CASE WHEN avg_draught IS NOT NULL

33 THEN trajectory_count ELSE 0 END

34 ) ELSE 1 END avg_draught

35 from

36 fact_cell_sailing_1000m

37 WHERE

38 cell_id in (

39 SELECT

40 cell_id

41 FROM

42 dim_cell_1000m

43 WHERE

44 ST_Intersects(

45 boundary ,

46 ST_Transform(

47 ST_MakeEnvelope (

48 9.335632324218752 ,

49 55.390812118753104 ,

50 11.972351074218752 ,

51 56.11493571902954 ,

52 4326

53 ),

54 3034

55 )

56 )

57 )

58 AND date_id BETWEEN 20210501 AND 20210507

59 AND ship_type_id IN (

60 SELECT

61 ship_type_id

62 from

63 dim_ship_type

64 WHERE

65 ship_type IN (

66 'Unknown ', 'Other ', 'Passenger ', 'Cargo ',

67 'Pilot ', 'Tanker ', 'Sailing ', 'Fishing ',

68 'Dredging ', 'SAR', 'Undefined ', 'HSC',

69 'Tug', 'Port␣tender ', 'Reserved ',

70 'Not␣party␣to␣conflict ', 'Military ',

71 'Law␣enforcement ', 'Pleasure ', 'Diving ',

72 'Towing␣long/wide', 'Anti -pollution ',

73 'Towing ', 'Medical ', 'Spare␣2', 'Spare␣1',
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74 'WIG'

75 )

76 )

77 AND type_of_mobile_id IN (

78 SELECT

79 type_of_mobile_id

80 from

81 dim_type_of_mobile

82 WHERE

83 mobile_type IN (

84 'Unknown ', 'Class␣A', 'Class␣B', 'Base␣Station ',

85 'AtoN', 'SAR␣Airborne ', 'Search␣and␣Rescue␣Transponder '

86 )

87 )

88 AND is_draught_trusted

89 GROUP BY

90 cell_id

91 ) cell_data on cell_data.cell_id = d.cell_id

92 ) as result(

93 geom , maxDraught , minDraught , trajectory_count ,

94 cellId , avgDraught

95 );
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