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Preface
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thesis in Applied Mathematics at Aalborg University under guidance of Horia Cornean
and Anton Evgrafov.

Citations are stated with numbers, [number], with a corresponding number in the bibli-
ography.

When reading this report, we assume that the reader is familiar with the main concepts
from Lebesgue integration theory and fundamental concepts from functional analysis,
including the concepts of weak derivatives, weak solutions of partial differential equations,
Sobolev spaces, and the finite element method. We refer the interested reader to [1] and
[2] for a thorough exposition on these subjects.

We would like to thank our supervisors Horia and Anton for guidance throughout the
project.
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Notation and terminology

The following is a list of notation and terminology used throughout the project:

• We let R denote the set of real numbers.

• For any positive integer d, we let Rd denote the usual d-dimensional Euclidean space
equipped with its usual norm, denoted by | · |.

• Whenever Ω ⊂ Rd is an open subset of Rd, we define the following function spaces:

– For p ∈ [1,∞), the space Lp(Ω) denotes the set of p-Lebesgue integrable
functions f : Ω → R, and L∞(Ω) denotes the set of essentially bounded
functions f : Ω → R. In both cases, we equip these spaces with the norms

∥f∥Lp(Ω =

(∫
Ω

|f |p dx
)1/p

,

∥f∥L∞(Ω) = ess sup
x∈Ω

|f(x)|

– For any positive integer k and any p ∈ [1,∞], we let W p
k (Ω) denote the Sobolev

space defined by

W k,p(Ω) = {f : Ω → R : f and all its weak derivatives up to order k belong to Lp(Ω)},

and we equip these spaces with the Sobolev norms

∥f∥Wk,p(Ω) =

∑
|α|≤k

∥Dαf∥pLp(Ω

1/p

.

In the case p = 2, we also write Hk(Ω) = W k,2(Ω) in order to emphasize this
space’s property of being a Hilbert space.

– The space H1
0 (Ω) is defined as the closure of the set of smooth functions with

compact support in Ω under the H1(Ω)-norm. Whenever Ω has sufficiently
smooth boundary, we may identify H1

0 (Ω) as the space of functions f ∈ H1(Ω)
whose trace vanishes at the boundary.

• Whenever (V, ∥ · ∥V ) is a normed function space and d is a positive integer, we let
V d denote the set of vector-valued functions f = (f1, . . . , fd) whose components
f1, . . . , fd belong to V . Furthermore, we endow V d with the obvious norm

∥f∥V d =

(
d∑

i=1

∥fi∥dV

)1/d

.
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Chapter 1. The main problem AAU

1 | The main problem

In this chapter, we present the problem of interest, namely the evolution of a mixture
of two fluids with distinct viscosities and densities contained in a vertical slab, then
formulate a model for the evolution of said fluid. Furthermore, we also show that the
mixture will reach an equilibrium after some finite amount of time, in which the two
fluids are completely separated, with the fluid with lighter density resting on top of the
other fluid.

1.1 A model of the problem

Let Ω be an open subset of Rd with d ∈ {2, 3} contained in the vertical slab Rd−1× [0, H]
for some H > 0, and suppose that Ω is filled with an incompressible mixture of two
fluids with distinct densities ρ1, ρ2 and distinct viscosities µ1, µ2 such that the fraction
of volume ϕ0 of fluid 1 at time t = 0 lies strictly between 0 and 1. If we suppose that
ρ2 < ρ1, then at any time t > 0, we can distinguish between at most four regions within
the mixture:

1. A region Ω ∩ (Rd−1 × [hs(t), H]), occupied solely by fluid 2;

2. A sedimentation region Ω ∩ (Rd−1 × [hd(t), hs(t)]);

3. A region Ω ∩ (Rd−1 × [h1(t), hd(t)]), densely packed with spheres of fluid 2;

4. A region Ω ∩ (Rd−1 × [0, h1(t)]), occupied solely by fluid 1.

At time t = 0, we assume that we have have h1(0) = hd(0) = 0 and hs(0) = H.
Furthermore, we assume that the fraction of volume ϕd of fluid 1 within the densely
packed region satisfies 0 < ϕ0 < ϕd < 1 and that the fraction of volume of fluid 1 in the
sedimentation region is constant and equal to ϕ0. By the conservation of the volume of
fluid 1 across regions, we obtain the relation

Hϕ0 = h1(t) + (hd(t)− h1(t))ϕd + (hs(t)− hd(t))ϕ0. (1.1)

The goal is to write down a dynamical system of equations that models the time evo-
lution of these four regions. In accordance with observations in physical experiments,
we will show that at some finite time Ts > 0, the sedimentation region disappears, i.e.
that hs(Ts) = hd(Ts). For any t ≥ Ts, the equation (1.1) remains valid if we simply dis-
card the last term on the right-hand side. Furthermore, we will show that h1 converges
exponentially to hd.
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1.1.1 The dynamic system of equations

As stated previously, the initial conditions for the functions h1,hd, and hs are given by

h1(0) = hd(0) = 0, hs(0) = H.

The first equation in our dynamical system, describing the evolution of h1, is given by

h′s(t) = −K1t− a. (1.2)

The second equation in our dynamical system, describing the evolution of hd, follows
directly from equation (1.1) and is given by

h′d(t) = − ϕ0

ϕd − ϕ0

h′s(t)−
1− ϕd

ϕd − ϕ0

h′1(t). (1.3)

The third and final equation in our dynamical system, describing the evolution of h1, is
given by

h′1(t) =
K2(hd(t)− h1(t))

1 + K3

D2(t)
(hd(t)− h1(t))

, D(t) =
√
D2

0 + bt. (1.4)

In the equations (1.2)-(1.4), a, b,D0, K1, K2, and K3 are all positive constants. Notice
first that the equation (1.2) combined with the initial condition hs(0) = H clearly has
the solution

hs(t) = H −K1
t2

2
− at. (1.5)

1.1.2 Vanishing of the sedimentary region

In order to show our desired properties, i.e. that the sedimentary region between hd
and hs vanishes and that h1 converges exponentially to hd, we require a description of
the solutions of equations (1.3) and (1.4). To this end, we start by introducing the new
unknown function f := hd − h1. In doing so, we may combine (1.3) and (1.4) into the
more “canonical” form

f ′(t) =
ϕ0

ϕd − ϕ0

(K1t+ a)− 1− ϕ0

ϕd − ϕ0

h′1(t), f(0) = 0, , (1.6)

h′1(t) =
K2f(t)

1 + K3

D2(t)
f(t)

, h1(0) = 0,

hd(t) = h1(t) + f(t), hd(0) = 0.

The advantage of introducing f is that f obeys the regular ODE (1.6) near t = 0, hence
we obtain a smooth local solution. Furthermore, f ′(0) > 0 and f(0) = 0, hence f(t) > 0
for all t ∈ (0, ε) for a sufficiently small ε > 0. Hovever, the ODE remains regular so long
as f ≥ 0, hence we may extend the solution so long as f remains non-negative.

The key insight is that f cannot become negative at any point; indeed, if f were to
become negative at some point, it follows from the intermediate value theorem that there
exists some t1 > 0 such that f(t1) = 0. From this, we see that f(t) > 0 = f(t1) for all
t ∈ (0, t1); however, f ′(t1) > 0 by (1.6), hence f is strictly increasing around t1, which is
a contradiction.
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From this argument, we conclude that f(t) = hd(t)− h1(t) > 0 for all t > 0, i.e. h1(t) <
hd(t) for all t. Furthermore, we can use (1.6) to obtain the following solutions of (1.3)
and (1.4):

h1(t) =
ϕ0

1− ϕ0

(K1t
2/2 + at)− ϕd − ϕ0

1− ϕ0

f(t),

hd(t) =
ϕ0

1− ϕ0

(K1t
2/2 + at) +

1− ϕd

1− ϕ0

f(t).

(1.7)

From (1.5) and (1.7), we see that

hd(t)− hs(t) =
ϕ0

1− ϕ0

(K1t
2/2 + at) +

1− ϕd

1− ϕ0

f(t)− (H −K1t
2/2− at)

=
1

1− ϕ0

(K1t
2/2 + at) +

1− ϕd

1− ϕ0

f(t)−H

can assume both negative and positive values for some finite Ts > 0, hence there exists
some Ts > 0 such that hd(Ts)− hs(Ts) = 0, i.e. hs(Ts) = hd(Ts).

1.1.3 Exponential convergence of h1 to hd

Consider again the equation (1.1). Letting f = hd − h1 as in the previous subsection, we
see that

h1(t) = Hϕ0 − f(t)ϕd, t ≥ Ts. (1.8)

Combining(1.4) and (1.8), we see that

f ′(t) = −K2

ϕd

f(t)

1 + K3

D2(t)
f(t)

, t ≥ Ts. (1.9)

Similarly to before, this equation has a unique solution so long as f(t) > 0. From (1.9),
we see that f is decreasing for t ≥ Ts; as D2(t) is linearly increasing, it follows that

1 +
K3

D2(t)
f(t) ≤ 2max{1, K3

D2(Ts)
f(Ts)},

− 1

1 + K3

D2(t)
f(t)

≤ −1

2
min{1, K3

D2(Ts)
f(Ts)} =: −Ks < 0

for t ≥ Ts. Furthermore, (1.9) also implies that

f ′(t) ≤ −K2Ks

ϕd

f(t), t ≥ Ts,

from which it follows that f(t) exp(tK2Ks/ϕd) is decreasing for t ≥ Ts, hence

0 < f(t) ≤ f(Ts) exp(−(t− Ts)K2Ks/ϕd), t ≥ Ts.

From this, we see that f = hd − h1 converges exponentially fast towards zero, but the
evolution never stops in the sense that the difference never becomes exactly zero for any
finite t ≥ Ts.
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2 | Theoretical aspects of modelling an
incompressible two-phase flow

In this chapter, we first introduce the system of partial differential equations that govern
the evolution of the pair consisting of a velocity vector field and a scalar pressure field,
which together describe the flow of a mixture of two fluids such as the one considered in
Chapter 1. Using these equations, we describe a classical method for approximating said
velocity field and pressure field. Said method involves

2.1 The governing equations of motion of a two-phase
fluid

The evolution of said mixture of fluids can be described via the velocity vector field u
indicating both the direction and velocity of the mixture’s flow. This pair of the velocity
field u and the pressure field p defined on Ω× [0,∞) must satisfy the equations

∂t(ρu) +∇x · (ρuuT ) = −∇xp− ρge3 +∇x · (µ(∇xu+ (∇xu)
T )), (2.1)

∇x · u = 0, (2.2)
∂tC + u · ∇xC = 0, (2.3)

subject to the initial conditions

u(x, 0) = 0, p(x1, x2, x3; 0) = p∞ + ψ(x1, x2, x3; 0) ds (2.4)

for all x = (x1, x2, x3) ∈ Ω and the boundary conditions

u(x, t) = 0, p(x1, x2, x3; t) = p∞ + ψ(x1, x2, x3; t) ds (2.5)

for all (x, t) = (x1, x2, x3; t) ∈ ∂Ω × [0,∞), where C is the volume fraction function of
fluid 1, ρ = ρ(C) and µ = µ(C) are the fluid density and fluid viscosity functions defined
by

ρ(C(x, t)) = ρ1C(x, t) + ρ2(1− C(x, t)),

µ(C(x, t)) = µ1C(x, t) + µ2(1− C(x, t)),

p∞ is the atmospheric pressure, and ψ : Ω× [0,∞) is defined by

ψ(x1, x2, x3; t) =

∫ H

x3

ρ(C(x1, x2, s; t)) dx.
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2.2 Variational formulation

Let ∆t > 0 be a fixed time step. We define a sequence of points in time {tn}n≥0 by
tn = n∆t, n ≥ 0. Furthermore, whenever f is a function defined on R3 × [0,∞), we write
fn = f(·, tn).

Taking a forward difference in time in (2.3) yields the equation

Cn+1 − Cn

∆t
+ un · ∇xC

n = 0, (2.6)

which can be solved for Cn+1 using a volume-of-fluid method. With the volume fraction
field updated, we now turn towards updating the velocity field and the pressure field.
We shall make use of a classical technique first introduced in [3] called the projection
method or Chorin’s method that decouples the velocity and the pressure from each other
and updates both fields in three steps. Our approach to this method is based on the
particular variant of the projection method called the incremental pressure correction
scheme (IPCS) due to [4], and our exposition of this method is largely based on [5, sec.
3.4.2]. In the first step, we compute a tentative update for the velocity field, denoted u∗,
by taking a forward difference in time in (2.1), yielding the equation

ρ(Cn+1)− ρ(Cn)

∆t
un + (un(un)T )∇xρ(C

n) + ρ(Cn)

(
u∗ − un

∆t
+ (un · ∇x)u

n − ge3

)
= (∇xu

n + (∇xu
n)T )∇xµ(C

n) + µ(Cn)(∇x · (∇xu
n) + ∆xu

n)−∇xp
n.

(2.7)

Note that

ρ(Cn+1)− ρ(Cn)

∆t
= (ρ1 − ρ2)

Cn+1 − Cn

∆t
,

∇xρ(C
n) = (ρ1 − ρ2)∇xC

n,

(un(un)T )∇xρ(C
n) = un((un)T∇xρ(C

n)) = (ρ1 − ρ2)(un · ∇xC
n)un,

hence we may reduce (2.7) to

ρ(Cn)
u∗ − un

∆t
+ ρ(Cn)(un · ∇x)u

n +∇xp
n + ρ(Cn)ge3

= (∇xu
n + (∇xu

n)T )∇xµ(C
n) + µ(Cn)(∇x · (∇xu

n) + ∆xu
n).

(2.8)

by applying the calculations above and (2.6). Rearranging terms, we may restate (2.8)
as

u∗ = un +∆t
(
(un · ∇x)u

n − ge3 +
1

ρ(Cn)

[
(∇xu

n + (∇xu
n)T )∇xµ(C

n)−∇xp
n

+ µ(Cn)(∇x · (∇xu
n) + ∆xu

n)
])
.

(2.9)

By taking a dot product with a test function v belonging to a function space to be defined,
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then integrating over Ω on both sides of (2.9), we obtain the equation∫
Ω

u∗ · v dx =

∫
Ω

un · v dx+∆t

(∫
Ω

(un · ∇x)u
n · v dx−

∫
Ω

ge3 · v dx

+

∫
Ω

1

ρ(Cn)

[(
∇xu

n + (∇xu
n)T
)
∇xµ(C

n)
]
· v dx

+

∫
Ω

1

ρ(Cn)
[µ(Cn) (∇x · (∇xu

n) + ∆xu
n)−∇xp

n] · v dx
)
.

(2.10)

Notice that (2.10) makes sense whenever u∗ and v belong to the space H1
0 (Ω)

3, the
previous velocity field un belongs to the space

V (Ω) := H2(Ω)3 ∩ {f ∈ H1
0 (Ω)

3 : ∇x · f = 0 a.e. in Ω},

and the previous pressure field pn belongs to the space

P n(Ω) := {f ∈ H1(Ω) : f = p∞ + ψn on ∂Ω}.

Defining a bilinear form a1 : H
1(Ω)3 ×H1(Ω)3 → R by

a1(u,v) =

∫
Ω

u · v dx (2.11)

and a linear functional ℓ1 : H1(Ω)3 → R by

ℓ1(v) =

∫
Ω

un · v dx+∆t

(∫
Ω

(un · ∇x)u
n · v dx−

∫
Ω

ge3 · v dx

+

∫
Ω

1

ρ(Cn)

[(
∇xu

n + (∇xu
n)T
)
∇xµ(C

n)
]
· v dx

+

∫
Ω

1

ρ(Cn)
[µ(Cn) (∇x · (∇xu

n) + ∆xu
n)−∇xp

n] · v dx
)
,

(2.12)

we obtain the following variational problem from (2.10):

find u∗ ∈ H1
0 (Ω)

3 such that a1(u
∗,v) = ℓ1(v) ∀v ∈ H1

0 (Ω)
3 (2.13)

Whenever a variational problem such as (2.13) is introduced, it makes sense to ask
whether said problem has a weak solution, and whether said solution is unique. The
following proposition gives an affirmative answer to both of these questions.

Proposition 2.1. The variational problem (2.13) has a unique weak solution u∗ ∈
H1

0 (Ω)
3.

Proof:
Using the definitions of a1 and ℓ1 as given in (2.11) and (2.12), respectively, it suffices
to prove that a1 is continuous and coercive and that ℓ1 is bounded, i.e. that there exist
constants C1, C2, C3 > 0 such that

|a1(u,v)| ≤ C1∥u∥H1(Ω)3∥v∥H1(Ω)3 ,

a1(u,u) ≥ C2∥u∥2H1(Ω)3 ,

ℓ1(v) ≤ C3∥v∥H1(Ω)3
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for all u,v ∈ H1(Ω)3. Once these properties have been verified, we may invoke the Lax-
Milgram theorem to directly obtain both existence and uniqueness of a weak solution u∗

of (2.13). The proof naturally splits into three parts, each concerned with verifying one
of the three properties listed above.

Let u = (u1, u2, u3)
T ,v = (v1, v2, v3)

T ∈ H1(Ω)3. We start by showing continuity of
a1. Using the definition of a1 and Hölder’s inequality along with the obvious inequalities
∥ui∥L2(Ω) ≤ ∥u∥H1(Ω)3 , i = 1, 2, 3, it follows that

|a1(u,v)| =

∣∣∣∣∣
∫
Ω

3∑
i=1

uivi dx

∣∣∣∣∣ ≤
3∑

i=1

∫
Ω

|uivi| dx

≤
3∑

i=1

∥ui∥L2(Ω)∥vi∥L2(Ω) ≤ ∥u∥H1(Ω)3

3∑
i=1

∥vi∥L2(Ω)

≤ ∥u∥H1(Ω)3∥v∥H1(Ω)3 ,

hence a1 is continuous with C1 = 1. Next, we turn to coercivity of a1. We start by
writing

a1(u,v) =
3∑

i=1

∫
Ω

uivi dx =
3∑

i=1

a1,i(ui, vi),

where a1,i : H1(Ω)×H1(Ω) → R is the bilinear form defined by

a1,i(u, v) =

∫
Ω

uv dx, i = 1, 2, 3.

Each of the bilinear forms a1,i is can be shown to be coercive over H1(Ω) × H1(Ω) by
using the Poincaré-Friedrichs inequality; for a proof of this, see [6, pp.12-22]. Using this
fact, we obtain coefficients Ci > 0, i = 1, 2, 3 such that

Ci∥u∥2H1(Ω) ≤ a1,i(u, u)

for all u ∈ H1(Ω). Letting C∗ = min
{

1
Ci

: i = 1, 2, 3
}

, we see that

∥u∥2H1(Ω)3 =
3∑

i=1

∥ui∥2H1(Ω) ≤ C∗
3∑

i=1

a1,i(ui, ui) = C∗a1(u,u),
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hence a1 is coercive with constant C2 =
1
C∗ . Finally, to prove continuity of ℓ1, note that

|ℓ1(v)| ≤
∫
Ω

3∑
i=1

|uni vi| dx+∆t

(∫
Ω

3∑
i,j=1

|uni ∂xi
unj vj| dx+

∫
Ω

|gv3| dx

+

∫
Ω

∣∣∣∣ 1

ρ(Cn)

∣∣∣∣ 3∑
i,j=1

(
|∂xj

uni |+ |∂xi
unj |
)
|∂xi

µ(Cn)||vi| dx

+

∫
Ω

∣∣∣∣ 1

ρ(Cn)

∣∣∣∣ 3∑
i,j=1

(
|µ(Cn)|

(
|∂2xjxi

unj |+ |∂x2
j
ui|
)
+ |∂xi

pn|
)
|vi| dx

)

≤
3∑

i=1

∥uni ∥L2(Ω)∥vni ∥L2(Ω) +∆t

(
3∑

i,j=1

∥uni ∥L4(Ω)∥∂xi
unj ∥L4(Ω)∥vj∥L2(Ω)

+
|µ1 − µ2|

min{ρ1, ρ2}

3∑
i,j=1

(
∥∂xj

uni ∥L2(Ω) + ∥∂xi
unj ∥L2(Ω)

)
|∂xi

Cn|∥vi∥L2(Ω)

+
3∑

i,j=1

max{µ1, µ2}
min{ρ1, ρ2}

(
∥∂2xjxi

unj ∥L2(Ω) + ∥∂x2
j
ui∥L2(Ω)

)
∥vi∥L2(Ω)

+ g
√
λ(Ω)∥v3∥L2(Ω) +

1

min{ρ1, ρ2}

3∑
i=1

∥∂xi
pn∥L2(Ω)∥vi∥L2(Ω)

)
≤ C3∥v∥H2(Ω)3 ,

where C3 > 0 is a constant depending on Ω,un
i , ρ(C

n), and µ(Cn). In order to obtain the
second inequality, we have made the following observations:

• The term
∫
Ω

∑3
i,j=1 |uni ∂xi

unj vj| dx can be bounded upwards using the generalized
Hölder inequality, yielding the estimate∫

Ω

3∑
i,j=1

|uni ∂xi
unj vj| dx ≤

3∑
i,j=1

∥uni ∥L4(Ω)∥∂xi
unj ∥L4(Ω)∥vj∥L2(Ω).

This is due to the fact that uni and ∂xj
uni belonging to H2(Ω) implies that they

belong to L6(Ω) by the Sobolev embedding theorem, since q = 6 satisfies 1
q
=

1
p
− 1

d
= 1

6
. By the Riesz-Thorin interpolation theorem, it follows that uni and ∂xj

uni
in particular belongs to the intermediate space L4(Ω) for i, j = 1, 2, 3. As vj belongs
to L2(Ω) for j = 1, 2, 3 and 1

4
+ 1

4
+ 1

2
= 1, the generalized Hölder inequality implies

that each term uni ∂xi
unj vj belongs to L1(Ω) and yields the estimate∫

Ω

|uni ∂xi
unj vj| dx ≤ ∥uni ∥L4(Ω)∥∂xi

unj ∥L4(Ω)∥vj∥L2(Ω), i, j = 1, 2, 3.

• The partial derivatives ∂xi
Cn are bounded on Ω, hence the partial derivatives

∂xi
µ(Cn) = (µ1 − µ2)∂xi

Cn are also bounded on Ω.

• Every term on the right-hand side of the first inequality besides the term mentioned
in the first point can be bounded upwards by applying Hölder’s inequality.

Having shown the desired properties of a1 and ℓ1, we are now in a position to invoke the
Lax-Milgram theorem and obtain a unique solution u∗ of (2.13). □
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The tentative velocity u∗ obtained from the variational problem (2.13) has one defect,
namely that there is no guarantee that it satisfies the divergence-free condition (2.2).
In order to ensure the next velocity field satisfies (2.2), we will compute a correctional
pressure term that will be used to modify the tentative vector field u∗ such that the new
vector field is divergence-free.

We obtain this correctional pressure term as follows: By taking a forward difference in
time in (2.1) at the nth time step and using the pressure field pn+1, we obtain the equation

ρ(Cn+1)− ρ(Cn)

∆t
un + (un(un)T )∇xρ(C

n) + ρ(Cn)

(
un+1 − un

∆t
+ (un · ∇x)u

n − ge3

)
= (∇xu

n + (∇xu
n)T )∇xµ(C

n) + µ(Cn)(∇x(∇x · un) + ∆xu
n)−∇xp

n.

(2.14)

Notice here that we use the actual velocity field un+1 in the forward difference instead of
the tentative velocity u∗. Subtracting (2.14) from (2.7) and dividing through by ρ(Cn)
yields

un+1 − u∗

∆t
+

∇xp
n+1 −∇xp

n

ρ(Cn)
= 0. (2.15)

Taking the divergence of both sides of (2.15) and requiring that the (n + 1)th velocity
field un+1 satisfies the divergence-free condition (2.2), the equation

1

ρ(Cn)
∆xp

∗ − ρ1 − ρ2
(ρ(Cn))2

(∇xC
n) · (∇xp

∗) =
1

∆t
∇x · u∗ (2.16)

follows, where p∗ = pn+1 − pn and we used the fact that

∇x ·
(

1

ρ(Cn)
∇xp

∗
)

=

(
∇x

1

ρ(Cn)

)
· (∇xp

∗) +
1

ρ(Cn)
∇x · (∇xp

∗)

=
1

ρ(Cn)
∆xp

∗ − ρ1 − ρ2
(ρ(Cn))2

(∇xC
n) · (∇xp

∗).

Multiplying both sides of (2.16) by ρ(Cn) and a scalar test function q ∈ H1
0 (Ω), then

integrating over Ω yields∫
Ω

(∆xp
∗)q dx−

∫
Ω

ρ1 − ρ2
ρ(Cn)

(∇xC
n) · (∇xp

∗)q dx =
1

∆t

∫
Ω

ρ(Cn)(∇x · u∗)q dx. (2.17)

Using integration by parts on the first integral on the left hand side of (2.17) and recalling
that q vanishes on ∂Ω, we obtain∫

Ω

(∆xp
∗)q =

∫
∂Ω

q(∇xp
∗ · n∂Ω) dS −

∫
Ω

(∇xp
∗) · (∇xq) dx

= −
∫
Ω

(∇xp
∗) · (∇xq) dx;

using this equation, we may restate (2.17) as∫
Ω

(∇xp
∗) · (∇xq) +

ρ1 − ρ2
ρ(Cn)

(∇xC
n) · (∇xp

∗)q dx+
∫
Ω

ρ(Cn)

∆t
(∇x · u∗)q dx = 0. (2.18)
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Similarly to (2.10), the equation (2.18) makes sense when the correctional pressure field
p∗ belongs to the space

P̃ n(Ω) := {f ∈ H1(Ω) : f = ψn+1 − ψn on ∂Ω}.

Defining a bilinear form a2 : H
1(Ω)×H1(Ω) → R by

a2(p, q) =

∫
Ω

(∇xp) · (∇xq) dx+
∫
Ω

ρ1 − ρ2
ρ(Cn)

(∇xC
n) · (∇xp)q dx (2.19)

and a linear functional ℓ2 : H1(Ω) → R by

ℓ2(q) = − 1

∆t

∫
Ω

ρ(Cn)(∇x · u∗)q dx, (2.20)

we obtain the following variational problem:

find p∗ ∈ P̃ n(Ω) such that a2(p
∗, q) = ℓ2(q) ∀q ∈ H1

0 (Ω). (2.21)

Similarly to Proposition 2.1, we are able to show existence and uniqueness of a weak
solution of (2.21):

Proposition 2.2. The variational problem (2.21) has a unique weak solution u∗ ∈
(H2(Ω) ∩H1

0 (Ω))
3.

Proof:
As in the proof of Proposition 2.1, it is enough to show that the bilinear form a2 defined
by (2.19) is continuous and coercive and the linear functional ℓ2 defined by (2.20) is
continuous. Once we have shown these properties, we may finish the proof by directly
invoking the Lax-Milgram theorem. To this end, let p, q ∈ H1(Ω). Recalling that 1

ρ(Cn

and the partial derivatives ∂xi
Cn are bounded, applying Hölder’s inequality directly to

(2.19) shows that

|a2(p, q)| ≤
∫
Ω

3∑
i=1

|∂xi
p∂xi

q| dx+
∫
Ω

∣∣∣∣ρ1 − ρ2
ρ(Cn)

∣∣∣∣ |q| 3∑
i=1

|∂xi
Cn∂xi

p| dx

≤
3∑

i=1

∥∂xi
p∥L2(Ω)∥∂xi

q∥L2(Ω) + C∥q∥L2(Ω)

3∑
i=1

∥∂xi
p∥L2(Ω)

≤ C ′∥q∥H1(Ω)

3∑
i=1

∥∂xi
p∥L2(Ω)

≤ C ′′∥p∥H1(Ω)∥q∥H1(Ω),

hence a2 is continuous. Furthermore, by arguing as in [6, pp.12-22], we obtain coercivity
of a2.

It remains to show that ℓ2 is continuous. Recalling that u∗ belongs to H1
0 (Ω)

3, an appli-
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cation of Hölder’s inequality shows that

|ℓ2(q)| ≤
1

∆t

∫
Ω

|ρ(Cn)||q|
3∑

i=1

|∂xi
u∗i | dx

≤ 1

∆t
∥q∥L2(Ω)

3∑
i=1

∥∂xi
u∗i ∥L2(Ω)

≤ 1

∆t
∥q∥H1(Ω)

3∑
i=1

∥∂xi
u∗i ∥L2(Ω),

hence ℓ2 is continuous. □

With the correctional pressure term p∗ obtained from (2.21), we are ready to update both
the velocity field un and the pressure field pn in time. We obtain the (n+ 1)th pressure
field pn+1 simply by recalling that pn+1 = pn + p∗ by the very definition of p∗. To obtain
the (n + 1)th velocity field un+1, consider the equation (2.15). Taking a scalar product
with a vector test function v ∈ H1

0 (Ω)
3 and integrating over Ω on both sides, we obtain

the equation ∫
Ω

un+1 · v dx =

∫
Ω

u∗ · v dx−∆t

∫
Ω

1

ρ(Cn)
∇xp

∗ · v dx. (2.22)

Similarly to the previous steps, we define a bilinear functional a3 by

a3(u,v) =

∫
Ω

u · v dx (2.23)

and a linear functional ℓ3 by

ℓ3(v) =

∫
Ω

u∗ · v dx−∆t

∫
Ω

1

ρ(Cn)
∇xp

∗ · v dx, (2.24)

then consider the following variational problem based on (2.22):

find un+1 ∈ E(Ω) such that a3(u
n+1,v) = ℓ3(v) ∀v ∈ H1

0 (Ω)
3, (2.25)

As with the previous variational problems, we start by ensuring existence and uniqueness
of a weak solution:

Proposition 2.3. The variational problem (2.25) has a unique weak solution u∗ ∈
E(Ω).

Proof:
As before, we wish to show that a3 as defined by (2.23) is continuous and coercive and
that ℓ3 as defined by (2.24) is continuous in order to invoke the Lax-Milgram theorem to
directly obtain the existence of a weak solution of (2.25).

The continuity and coercivity of a3 follows by analogous arguments to the ones made for
the same properties of the bilinear form a1 in the proof of Proposition 2.1, since the two
bilinear forms are defined by the same expression. As for the continuity of ℓ3, we recall
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that u∗ ∈ H1(Ω)3 and p∗ ∈ H1(Ω), hence we may once again apply Hölder’s inequality
to show that for any v ∈ H1(Ω),

|ℓ3(v)| ≤
∫
Ω

3∑
i=1

|u∗i vi| dx+∆t

∫
Ω

∣∣∣∣ 1

ρ(Cn)

∣∣∣∣ 3∑
i=1

|∂xi
p∗vi| dx

≤
3∑

i=1

∥u∗i ∥L2(Ω)∥vi∥L2(Ω) + C
3∑

i=1

∥∂xi
p∗∥L2(Ω)∥vi∥L2(Ω)

≤ C ′∥v∥H1(Ω),

hence ℓ3 is continuous. □

2.3 Numerical experiments

Hvaing introduced the IPCS, we now turn back to the original problem presented in
Chapter 1, i.e. the question of whether a two-phase flow reaches an equilibrium in which
the two fluids are separated. To this end, we have conducted a range of numerical
experiments using an implementation of the IPCS in the open-source computing platform
FeNICSx [7, 8, 9, 10, 11, 12, 13, 14, 15]. In the appended Python script “num_exp.py”,we
have created a scripts which implements the IPCS in order to simulate a mixture of water
and oil in the slab Ω = [0, 1]2 × [0, 5].
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3 | Conclusion

Through this thesis, we have managed to show theoretical properties of the evolution
of a two-phase flow in a vertical slab and managed to verify them numerically as well.
However, the field still contains several open questions, including but not limited to:

• Investigating more general subsets Ω ⊂ R3 and their effects on the stability of the
methods

• Incorporating several more concepts from the theory of finite element analysis and
finite volume analysis in order to achieve new results, e.g. a priori estimates on the
error committed in the approximations

• Conducting more numerical experiments.
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