
Structural Reductions of Colored Petri Nets and

P/T Nets with Inhibitor Arcs

Jesper A. van Diepen Nicolaj Ø. Jensen Mathias M. Sørensen

Cassiopeia, Department of Computer Science, Aalborg University, Denmark

{jvandi15, naje17, mmsa17}@student.aau.dk

Thesis Summary

System correctness of critical systems is crucial. One method to ensure that a
system adheres to its specification is through the method of model checking,
which is an algorithmic approach to verify properties of systems. However, most
real-life systems are complicated with multiple concurrent components, which
means that there is a huge number of states. This is known as the state space
explosion problem, and one method to mitigate it is to perform structural reduc-
tions, where the structure of the system is analyzed and reduced while preserving
the properties in question.

P/T nets and colored Petri nets are model formalisms for modeling concur-
rent systems, and in this thesis we present novel structural reduction rules for
both, extensions to some existing P/T net reduction rules, and we generalize a
handful of existing P/T net reductions to colored Petri nets. In regard to struc-
tural reductions on P/T nets, we extend Rule C from [5] by Bønneland et al. to
be more general and therefore applicable in more nets. We also define a novel
Rule S for P/T nets that combines the concept of a free agglomeration [28] and
atomicity from Rule R in [10]. For colored petri nets we introduce rules C, D,
E, F, I, Q, and U. Rules D, E, F, I, and Q are generalizations of corresponding
rules from [5], such that the rules are applicable on colored Petri nets. Colored
Rule C is a generalization to colored Petri nets on top of the extension mentioned
earlier.

Rule U is a generalization of the atomic free agglomeration Rule S to colored
Petri nets. However, we restrict Rule U to only handle equally weighted arcs, as
we found this version to perform better.

We prove the correctness of all rules we present in this thesis for either the
logic CTL* or one of its fragments. This is done using concepts like bisimilarity,
stutter-bisimilarity, and stutter-equivalent traces. We also implement the rules
in verifypn, which is the verification engine in the Petri net model checking tool
TAPAAL. TAPAAL previously had no color reduction rules.

We do extensive testing of all rules, and several rule application sequences,
where we apply the rules in different permutations. The testing is performed
with the Model Checking Contest 2021 model suite. For the structural rules on
P/T nets we use the 1181 P/T nets, and for the rules on colored petri nets,
we use the 230 colored Petri nets. There are 6 categories of 16 queries available
for each model about cardinality and fireability for CTL, LTL, and reachability
logic. This gives us a total of 113.376 queries for our P/T net experiments and
22.080 queries for our colored Petri net experiments. During testing we measure
metrics such as rule applicability, the time it takes to reduce the net, and time
taken in verification of the property. For colored Petri net experiments we also
measure the time taken to apply the colored structural reductions and the time
it takes to unfold the colored Petri net. We compare the results we obtain from
using our rules, to a base experiment that consists of using verifypn without
our rules. We present and discuss results mainly from the reachability fireability
category, but also summarize results from the other categories.

We check the correctness of our implementation of our rules, by making sure
the answer to the queries are the same between experiments with and without
our rules applied. Additionally, we test the correctness of all rules on a modified
version of the MCC2021 models containing inhibitor arcs. We find that our rules
are correct, also on models with inhibitor arcs.

Regarding performance, we find that Rule S on P/T nets get 393 more an-
swers than the baseline. These answers are primarily from the queries in the
reachability category. On CPNs we gain 162 more answers using the rule se-
quence IUC, which is the best performing permutation. We generally see that
we are faster in unfolding. State space size is a lot better, which is what we
expect.

The thesis starts with an introduction followed by preliminaries and defini-
tions of CTL* and Petri nets. Then we present the concepts needed for structural
reductions and the setup of our benchmark. The P/T net reduction rules and
colored Petri net reductions rules are then presented in two separate sections,
and each of these sections ends with a presentation of our results using the rules
of that section. Finally, we discuss and conclude on our rules and findings and
then propose some future work.

Structural Reductions of Colored Petri Nets and

P/T Nets with Inhibitor Arcs

Jesper A. van Diepen Nicolaj Ø. Jensen Mathias M. Sørensen

Cassiopeia, Department of Computer Science, Aalborg University, Denmark

{jvandi15, naje17, mmsa17}@student.aau.dk

Abstract Structural reductions of Petri nets allow for more efficient model
checking by mitigating the state space explosion problem. For a colored
Petri net (CPN) there is an additional potential explosion in the size of
the net during unfolding, and therefore structural reduction of CPNs is
an effective technique to improve model checking performance.
We present novel structural reduction rules for both P/T nets and CPNs
as well as generalizations of existing reduction rules. These include re-
moval of parallel structures, removal of redundant structures, and ag-
glomerations. We prove the correctness of all presented rules and exten-
sions, and implement the rules in verifypn, the verification engine of
TAPAAL. To test the implementation and performance of our rules we
apply the rules on models from MCC2021. We measure multiple metrics
during testing and compare these metrics against a baseline without our
presented rules. We find that our Rule S, an atomic free agglomeration,
provide 393 additional answers across all categories on the P/T nets.
Our best rules on CPN models, Rule I, U, and C, provide an additional
162 answers across all categories. We conclude that many of our colored
rules are generalizations of rules on P/T nets, and does the same re-
duction, but on a higher abstraction level. However, there is next to no
overhead in applying the colored rules on CPNs, and we gain time during
unfolding and reducing.

Keywords: Colored Petri net, P/T net, structural reductions, MCC2021,
agglomeration, LTL, CTL, Reachability, model checking, inhibitor arcs

1

1 Introduction

Model checking [7] is a computer-aided method to verify properties in a model of
one or more systems and processes, e.g. a transmission protocol, the activation
of an airbag, or a traffic light. For a traffic light, important properties include
that all lanes eventually have green light or that two crossing lanes do not have
a green light at the same time among others. Model checking is especially useful
in critical systems, where reliability and correctness are main priorities. The
simplest form of model checking is searching through the state space of the
model until we can verify that the model satisfies the given property. One of the
main difficulties in model checking, therefore, lies in the size of the state space.
Model checking, unfortunately, suffers from the state space explosion problem [7],
especially when modelling concurrent processes, as all the possible interleavings
of these introduce a large number of states, that has to be explored.

One way of reducing the state space explosion is by using structural reduc-
tions [7, 28, 5]. The idea in this approach is that we analyse the structure of
the given model to remove redundant parts of the model with respect to the
property that we wish to verify. Some structural reductions lead to an exponen-
tial reduction in the state space size, while others simply make the net smaller,
saving us processing resources and memory usage.

P/T nets (or Petri nets) [25] are a modelling formalism that can be used to
model concurrent systems, and many extensions exist incorporating time [15],
colors/types [19], and games [9]. P/T nets have gained popularity due to their
graphical nature and their intuitiveness for modelling concurrent processes. A
petri net is a bipartite graph with two types of nodes: places and transitions. Arcs
connect a place to a transition (input arc) or a transition to a place (output arc).
Each place is marked with a non-negative number of tokens, and the marking
across all places makes up the state of the net. When the transition is fired, the
marking is updated by removing (consuming) tokens from the input places and
adding (producing) tokens to the output places. To fire a transition, all places
with arcs to the given transition must have one or more tokens. Arcs can also be
weighted changing how many tokens a transitions consumes and produces in each
place. An inhibitor arc is a special kind of arc from a place to a transition and it
inhibits the firing of the given transition if the place contains tokens equal to or
more than the weight on the inhibitor arc. Tokens thus elegantly model resources,
signals, or messages while transitions models actions and synchronization.

In this thesis we also focus on colored Petri nets (CPN) with inhibitor arcs.
In a CPN each token has a color, i.e. a type, and transitions can have guards
restricting which types of tokens it consumes and produces. A CPN hereby
allows additional abstractions resulting in more compact nets. Every CPN can
be unfolded into an equivalent P/T net [20]. This is typically desirable as many
model checking techniques are developed for P/T nets. However, this unfolding
often results in much larger nets. It is therefore beneficial to apply structural
reductions on the CPNs, as the unfolded net is potentially exponentially smaller,
and the unfolding itself will be faster with a smaller CPN.

2

1.1 Our contributions

We present novel structural reductions and extensions of structural reductions
for both colored Petri nets and P/T nets. We define and prove the correctness
of two new structural reduction rules for P/T nets with inhibitor arcs. One of
which is a relaxation of the Rule C from [5] by Bønneland et al. that removes
places in parallel. The other is a novel atomic free agglomeration, Rule S, which
is more general than a free agglomeration as defined by Thierry-Mieg in [28],
since it is able to remove one consumer at a time and handle in- and out arcs
with different weights. This is based on the similar atomic post agglomeration
described in [10]. We then generalize these two rules as well as four rules by
Bønneland et al. [5] and one rule by Thierry-Mieg [28] to colored Petri nets
with inhibitor arcs. We prove the correctness of each rule. Table 1 shows our
structural reduction rules and which categories of properties they preserve. We
also implement the rules in the engine of the verification tool TAPAAL, which
previously had no reduction rules for colored Petri nets. Finally, we also test the
rules on the Petri nets of Model Checking Contest [21] and compare the new
version of TAPAAL that includes our rules, to a baseline which does not use our
new rules.

Supported properties

P/T rules Reach LTL CTL CTL* Stutter Deadlock

Rule C: Parallel P ✓ ✓ ✓ ✓ ✓ ✓
Rule S: Atomic F agglo ✓ - - - - -

Rule T: Pre agglo ✓ ✓ - - - ✓
CPN rules

Rule C: Parallel P ✓ ✓ ✓ ✓ ✓ ✓
Rule D: Parallel T ✓ ✓ ✓ ✓ ✓ ✓
Rule E: Dead T ✓ ✓ ✓ ✓ ✓ ✓
Rule F: Redundant P ✓ ✓ ✓ ✓ ✓ ✓
Rule I: Irrelevant P+T ✓ - - - - -

Rule S: Atomic F agglo ✓ - - - - -

Rule T: Pre agglo ✓ ✓ - - - ✓
Rule U: Atomic F agglo k=1 ✓ - - - - -

Rule Q: Prefire T ✓ ✓ ✓ ✓ - ✓

Table 1: Rules and the properties they preserve. The Stutter column refers to
support for the neXt operator, and similarly for the Deadlock column refers
to support for the deadlock proposition. E.g. Rule Q preserves CTL*\X. Rules
which are not novel are given a gray background. They are still included since
they were implemented by us and will be used for comparison.

3

1.2 Related Work

Berthelot in [2, 1] introduces some of the first structural reductions on Petri
nets with a focus on preserving liveness and boundedness of the net. Later
in [23], Murata presents a survey of structural reductions, related techniques
such as linear equations and marked graphs, as well as a wider range of Petri
net properties. These techniques are the foundation of the model checking tool
TAPAAL and its structural reductions which is presented by Bønneland et al.
in [5]. In [10] by van Diepen et al. these reductions are extended and additional
reductions are added, some focusing on inhibitor arcs. Structural reductions can
also be combined with SMT solvers and over- and under-approximations in a
counterexample-guided abstraction refinement framework as shown by Thierry-
Mieg in [28]. A special type of structural reductions, called agglomerations, are
heavily studied by Haddad et al. [13, 14]. Agglomerations reduce interleavings
in the underlying transition system and thus reduce the number of states sig-
nificantly. Agglomerations in CPNs for transitions without guards have been
presented by Haddad et al. in [13].

This work was extended to consider the syntax of guard- and arc expres-
sions by Evangelista et al. in [12]. In this thesis we present an atomic free ag-
glomeration for CPNs that considers guards, generalizing Thierry-Mieg’s free
agglomeration [28] to CPNs and making it atomic, a concept introduced by
van Diepen et al. in [10].

1.3 Thesis outline

In Section 2 we give a definition of transitions systems as well as the syntax
and semantics of CTL* and its fragments. Then in Section 3 we define colored
Petri nets and their components, as well as the special case of a colored Petri
net with just one color, called a P/T net. We give a brief overview of structural
reductions and the setup of our experiments in Section 4. Then in Section 5, we
introduce our work on structural reductions on P/T nets, and in the subsection,
Section 5.3, we discuss our results using those rules. Similarly, we then define our
novel colored structural reduction rules in Section 6, and discuss our results using
those rules in Section 6.8. We discuss overall findings and results in Section 7
and conclude on our findings in Section 8. Lastly, we present our ideas for future
work in Section 9. We only show a subset of the results and figures generated
from testing during the discussion of the results. The full range of figures can be
found in Appendix C, showing results on other logics, and tables not included
in the main text.

Bibliographic Remarks Parts of this thesis originate from our previous work
in [10]. In particular, the two opening paragraphs of the introduction of Sec-
tion 1, major parts of Section 2.2 about the formalism CTL* and its fragments,
the definition of labeled transition systems in Section 2.1, the definitions of
places(φ), invisibility, and correctness and related paragraphs in Section 4, as

4

well as the description of DEIS MCC in Section 4.2. Some sentences in the afore-
mentioned parts have been rephrased in order to fit this thesis and typos have
been fixed.

2 Preliminaries

Let N0 be all natural numbers including 0, and let N∞ be the natural numbers
including ∞.

2.1 Labeled transition systems

Definition 1 (Labeled Transition System). A labeled transition system (LTS)
is a triple TS = ⟨S, A,→⟩ where

– S is a non-emtpy set of states,
– A is a set of actions, and
– →⊆ S ×A× S is a transition relation.

We write s
a−→ s′ whenever ⟨s, a, s′⟩ ∈→. We write s

a−→ whenever ⟨s, a, s′⟩ ∈→
for some s′ ∈ S and say that a is enabled in s. We write s→ s′ if there exists an
action a ∈ A such that s

a−→ s′, and s ̸→ if no such action a exists. For a state s
where s ̸→ we say that it is a dead state or in a deadlock. We extend the relation
a−→ inductively to traces w ∈ A∗ such that s

ε−→ s and s
wa−−→ s′ if s

w−→ s′′ and
s′′

a−→ s′. We write s →n s′ if there exists a w ∈ An such that s
w−→ s′, and we

write s→∗ s′ if s→n s′ for some n ≥ 0. If w ∈ Aω it is an infinite trace. Given a
set X we let X⋆ = X∗∪Xω be all finite and infinite sequences of elements from
X. We say that a is fireable if s0 is the initial state of an LTS and s0 →∗ s′

a−→.

2.2 CTL* and its fragments

In this section we introduce the formalism computation tree logic star (CTL*) [11],
which is a superset of computation tree logic (CTL) [6] and linear temporal logic
(LTL) [26]. We also cover these two logics, as well as reachability (Reach), and
stutter-sensitive properties. The relationship between these logics can be seen in
Figure 1.

2.2.1 CTL* There are two types of CTL* formulas: state formulas and path
formulas. Formally, a CTL* formula has one of the following forms:

φ ::= ⊤ | π | ¬φ1 | φ1 ∧ φ2 | Aψ1 | Eψ1

ψ ::= φ1 | ¬ψ1 | ψ1 ∧ ψ2 | Xψ1 | Fψ1 | Gψ1 | [ψ1Uψ2]

where φ is the state formulas, ψ is the path formulas, and π ∈ Π is an
atomic proposition. In the context of P/T nets where states are markings, such
a proposition π has the form αM ▷◁ k, where M is the given marking, α ∈ RP

5

Reach

LTL\XCTL\X

CTL*\X
LTLCTL

CTL*

Figure 1: Logic formalisms and their relationship in a lattice.

is a vector of coefficients, and k ∈ R a constant, and ▷◁ ∈ {<,≤,=≥, >} is a
comparison operator. Often we write αM as a linear equation using the place
names to represent the number of tokens at that place, e.g. 2p1 + p2 ≤ 5. Two
special propositions are en(t), that asserts that the transition t ∈ T is enabled,
and deadlock, that asserts that no transition is enabled. Furthermore, A (all)
and E (exists) are path quantifiers, and X (next), F (eventually), G (globally),
U (until) are temporal operators. Additional boolean and temporal operators can
be derived.

CTL* describes properties of LTSs. Let TS = ⟨S, A,→⟩ be an LTS with
initial state s0. In the semantics below, we let λ ∈ S⋆ denote a path such that
λ0 → λ1 → . . . and let λ[i] denotes the sub-path of λ starting from λi. A
maximal path λ′ is either infinite or ends in a deadlock. For state formulas the
semantics are defined inductively such that s ⊨ φ denotes a state s satisfying
the state formula φ.

s ⊨ ⊤ ≡ ⊤
s ⊨ π ≡ π(s)
s ⊨ ¬φ ≡ s ⊭ φ
s ⊨ φ1 ∧ φ2 ≡ (s ⊨ φ1) ∧ (s ⊨ φ2)
s ⊨ Aψ ≡ λ ⊨ ψ for all maximal paths λ starting in s
s ⊨ Eψ ≡ λ ⊨ ψ for some maximal path λ starting in s

Path formulas are also defined inductively, such that λ ⊨ ψ denotes path λ
satisfying path formula ψ.

λ ⊨ φ ≡ λ1 ⊨ φ
λ ⊨ ¬ψ ≡ λ ⊭ ψ
λ ⊨ ψ1 ∧ ψ2 ≡ (λ ⊨ ψ1) ∧ (λ ⊨ ψ2)
λ ⊨ Xψ ≡ λ[1] ⊨ ψ
λ ⊨ Fψ ≡ λ[n] ⊨ ψ for some n ≥ 0
λ ⊨ Gψ ≡ λ[n] ⊨ ψ for all n ≥ 0
λ ⊨ ψ1Uψ2 ≡ (λ[k] ⊨ ψ1) ∧ (λ[n] ⊨ ψ2) for some n ≥ 0, for all k, 0 ≤ k < n

We write TS ⊨ φ iff s0 ⊨ φ.
Given a set of atomic propositions Π and a labeling function L : S → 2Π , we

can label each state of a transition system with a subset of propositions, which

6

are true in the given state. This can be used to determine if two transition
systems are bisimilar and satisfy the same CTL* properties.

Definition 2 (Bisimilarity [3]). Given two LTSs TS = ⟨S, A,→⟩ and TS′ =
⟨S ′, A′,→′⟩ with initial states s0 and s

′
0, TS and TS′ are said to be bisimilar w.r.t

some set Π of atomic propositions and two labeling functions L : S → 2Π and
L′ : S ′ → 2Π , if there exists a bisimulation R such that s0Rs′0. A bisimulation
R is a relation on S × S ′ such that whenever s1Rs′1 then:

1. L(s1) = L′(s′1),
2. if s1 → s2 then there exists a s′2 such that s′1 → s′2 and s2Rs′2, and
3. if s′1 → s′2 then there exists a s2 such that s1 → s2 and s2Rs′2.

Theorem 1 (LTS Equivalence [3]). Given two states s, s′, and a bisimulation
R such that sRs′, then s ⊨ φ iff s′ ⊨ φ for all φ ∈CTL*.

2.2.2 CTL CTL is a fragment of CTL* that describes branching properties
of systems. This is reflected in the syntax, specifically, all temporal operators
must be preceded by a path quantifier. CTL formulas have the following form:

φ ::= ⊤ | π | ¬φ1 | φ1 ∧ φ2 | AXφ1 | AFφ1 | AGφ1 | A[φ1Uφ2] |
EXφ1 | EFφ1 | EGφ1 | E[φ1Uφ2]

The semantics of the operators are unchanged from description in the earlier
section.

2.2.3 LTL LTL is another fragment of CTL*. This fragment of CTL* de-
scribes properties of traces and uses no path quantifiers, except for an implicitly
prefixed A operator. LTL formulas have the following form:

ψ ::= π | ¬ψ1 | ψ1 ∧ ψ2 | Xψ1 | Fψ1 | Gψ1 | [ψ1Uψ2]

There are two types of semantics for LTL. The first semantic is the one
presented earlier for CTL*, and the alternative LTL semantics considers only
infinite traces. Traces that normally end in a deadlock are extended by letting the
system repeat the deadlock state infinitely, i.e. the system stutters infinitely. The
Model Checking Competition [21] uses the alternative semantics. The structural
reductions presented in this thesis work for both semantics.

2.2.4 Stuttering To proceed, we first define stuttering and stutter equival-
ence. Given a set of atomic propositions Π and a labeling function L : S → 2Π ,
a stutter occurs when a transition system transitions from one state to another
state where the same subset of the atomic propositions are true, i.e. if s → s′

and L(s) = L(s′).

7

Properties that use the temporal next operator X are called stutter-sensitive
properties. Not all reductions are applicable when checking stutter-sensitive
properties and these reductions are therefore called stutter insensitive [24].

We use CTL*\X, CTL\X, and LTL\X to denote stutter-insensitive CTL*,
CTL, and LTL without the next operator X. Clearly, these are respectively
proper subsets of CTL*, CTL, and LTL.

Definition 3 (Stutter equivalence). Let Π be a set of atomic propositions,
and let σ, σ′ ∈ (2Π)⋆ be two sequences of subsets of propositions such that
σ = ρ0, ρ1, ρ2, . . . and σ′ = ρ′0, ρ

′
1, ρ

′
2, Then σ and σ′ are said to be stut-

ter equivalent iff there exists two infinite sequences 0 = i0 < i1 < . . . and
0 = j0 < j1 < . . . such that for all k ≥ 0 we have ρik = ρik+1 = · · · = ρik+1−1 =
ρ′jk = ρ′jk+1 = · · · = ρ′jk+1−1

Given an LTS ⟨S, A,→⟩, a set of atomic propositions Π, and a labeling func-
tion L : S → 2Π , a path λ ∈ S⋆ defines a sequence of subsets of propositions
L(λ1), L(λ2), Hence we say that two paths λ, λ′ ∈ S⋆ are stutter equival-
ent w.r.t. L if their underlying sequences of subsets of propositions are stutter
equivalent. Similarly, a trace w ∈ A⋆ where s0

w1−−→ s1
w2−−→ s2 . . . for some initial

state s0 ∈ S defines a path visiting states s0, s1, Hence, we say that two
traces w,w′ ∈ A⋆ are stutter equivalent w.r.t. L if the paths that they visit are
stutter equivalent w.r.t. L.

Theorem 2 (LTL stutter invariance [26]). Let σ, σ′ ∈ (2Π)⋆ be two stutter
equivalent sequences of subsets of propositions, and let ψ be an LTL\X formula.
Then σ ⊨ ψ iff σ′ ⊨ ψ.

Definition 4 (Stuttering bisimilarity [3, 7]). Given two LTSs
TS = ⟨S, A,→⟩ and TS′ = ⟨S ′, A′,→′⟩ with initial states s0 and s′0, TS and TS′

are said to be stuttering bisimilar w.r.t some set Π of atomic propositions and
two labeling functions L : S → 2Π and L′ : S ′ → 2Π , if there exists a stuttering
bisimulation R such that s0Rs′0. A stuttering bisimulation R is a relation on
S × S ′ such that whenever s1Rs′1 then:

1. L(s1) = L′(s′1),

2. for each maximal path λ = s1s2 · · · ∈ S⋆ where s1 → s2 → . . . there exists
a maximal path λ′ = s′1s

′
2 · · · ∈ S ′⋆ where s′1 →′ s′2 →′ . . . such that λ

and λ′ can be partitioned into consecutive subpaths B1B2 . . . and B′
1B

′
2 . . . ,

respectively and sRs′ for every s in Bi and s
′ in B′

i, for all i > 0.

3. symmetrically, for each path λ′ from s′1 there exists a subpathwise matching
path λ from s1.

Theorem 3 (Stutter invariance [3]). Let s and s′ be two states. If sRs′ for
some stuttering bisimulation R, then s ⊨ φ iff s′ ⊨ φ for every CTL*\X formula
φ.

8

2.2.5 Reachability and safety In many cases we are only interested in very
simple properties. E.g. that the system eventually reaches some good state, or
that it never reaches some bad state, like a deadlock. These properties are called
reachability and safety properties (Reach), and consist of exactly one outermost
EF and AG pairs of operator, respectively. Since EFφ ≡ ¬AG¬φ, reachability
and safety properties are duals. They are fragments of both fragments of CTL
and LTL.

3 Petri nets

A multiset A : S → N0 is a set where each element is also associated with a
multiplicity. Let MS(S) be all multisets with elements from the set S. Given
a multiset A ∈ MS(S), let the support set Supp(A) = {s ∈ S | A(s) ≥ 1}
be the elements of S with a multiplicity of at least 1 in A. We assume the
standard operations on multisets, like cardinality | · |, membership ∈, summation
⊎, subtraction \, multiplication with a scalar, and inclusion ⊆. We will use the
following notation to describe a multiset A : S → N0:∑

s∈S

A(s)′s

E.g. if A(x) = 3 and A(y) = 1, then A = 3′x+ 1′y. Remark that 1′x+ 1′x and
2′x denotes the same multiset.

3.1 Colors

In colored Petri nets, tokens have colors, which represent their type. A color is
a tuple of integers and

U =
⋃
n∈N

Nn
0

is the universe of colors containing all colors. Singleton colors are said to be base
colors and are contained in N0. Given α, β ∈ N0, let [α, β] ⊆ N0 be an integer
range with integers between α and β (inclusive). A color type is a product
D = [α1, β1] × · · · × [αn, βn] with αi ≤ βi for all i ∈ [1, n]. E.g. if D = [0, 5] ×
[0, 5] × [0, 10], then ⟨4, 2, 10⟩ ∈ D. Let D be a fixed finite set of color types.
Singleton color types are denoted C = [α, β], and C = {D ∈ D | |D| = 1} is the
set of all singleton color types.

We also define successor and predecessor functions succC : C → C and
predC : C → C for all C ∈ C. Given c ∈ [α, β] = C, these shift colors as follows:

succC(c) =

{
c+ 1 if c < β

α if c = β

predC(c) =

{
c− 1 if c > α

β if c = α

9

3.2 Variables and bindings

Let Var be a finite set of variables and let Y : Var → C be a type assignment
function that assigns a color type to each variable. Given a C ∈ C we use
VarC = {x ∈ Var | Y(x) = C} to denote the set of variables of type C. Variables
are assigned to colors using a binding b : Var ⇀ N0 such that b(x) ∈ Y(x). Let
B be the set of all bindings.

Color expressions The set of all color expressions with type C ∈ C is TC , where
a color expression τC ∈ TC is defined as:

τC ::= c | x | τC++ | τC--

with c ∈ C and x ∈ VarC .
The semantics of color expressions are given by the function J·KTC

: TC×B →
C which is defined inductively as:

Jc, bKTC
= c (constant)

Jx, bKTC
= b(x) (variable)

JτC++, bKTC
= succC(JτC , bKTC

) (successor)

JτC--, bKTC
= predC(JτC , bKTC

) (predecessor)

The binding b must bind the relevant variables of course.
We also let Vars(τC) denote all variables in τC , i.e.:

Vars(c) = ∅ (constant)

Vars(x) = {x} (variable)

Vars(τC++) = Vars(τC) (successor)

Vars(τC--) = Vars(τC) (predecessor)

Guard expressions Let Γ be a set of guards that evaluates to true or false when
given a binding. A guard γ is defined inductively using the following syntax:

γ ::= ⊤ | ⊥ | ¬γ1 | γ1 ∧ γ2 | γ1 ∨ γ2 | τ1C ▷◁ τ2C

where τ1C , τ
2
C ∈ TC and ▷◁∈ {<,≤,=,≥, >, ̸=}.

The semantics of guards are given by the function J·KΓ : Γ × B → {⊤,⊥}
which is defined inductively as:

J⊤, bKΓ = ⊤ (true)

J⊥, bKΓ = ⊥ (false)

J¬γ, bKΓ = ¬Jγ, bKΓ (negation)

Jγ1 ∧ γ2, bKΓ = Jγ1, bKΓ ∧ Jγ2, bKΓ (and)

Jγ1 ∨ γ2, bKΓ = Jγ1, bKΓ ∨ Jγ2, bKΓ (or)

Jτ1C ▷◁ τ2C , bKΓ = Jτ1C , bKTC
▷◁ Jτ2C , bKTC

(comparison)

10

When Jγ, bKΓ = ⊤ for some guard expression γ and a binding b, we say that
b is a valid binding for γ.

Finally, Vars(γ) denotes all variables in γ, i.e.:

Vars(⊤) = ∅ (true)

Vars(⊥) = ∅ (false)

Vars(¬γ) = Vars(γ) (negation)

Vars(γ1 ∧ γ2) = Vars(γ1) ∪Vars(γ2) (and)

Vars(γ1 ∨ γ2) = Vars(γ1) ∪Vars(γ2) (lor)

Vars(τ1C ▷◁ τ
2
C) = Vars(τ1C) ∪Vars(τ2C) (comparison)

3.3 Colored Petri nets

Now that we have defined all the color components, we will now define a colored
Petri net as a bipartite graph of places and transitions including these colors
and expressions.

Definition 5 (Colored Petri net). A colored Petri net (CPN) is a 7-tuple
⟨P, T,X ,⊟,⊞, I, G⟩, where

– P is a non-empty finite set of places,
– T is a finite set of transitions,
– X : P → D is the color domain function assigning color types to places,
– ⊟ : (P×T) → MS(Var×· · ·×Var) and ⊞ : (T×P) → MS(Var×· · ·×Var)

are the pre- and post-incident weight functions such that if p ∈ P and t ∈ T
then

∀⟨x1, . . . , xn⟩ ∈ ⊟(p, t).Y(x1)× · · · × Y(xn) = X (p), and

∀⟨x1, . . . , xn⟩ ∈ ⊞(p, t).Y(x1)× · · · × Y(xn) = X (p)

– I : P × T → N∞ is the inhibitor weight function,
– G : T → Γ assigns guards to transitions such that the guard only contains

variables that are on the associated arcs to the transition. I.e. let Vars(t)
be the set of all variables that appear in the tuples of the multiset ⊟(p, t) or
⊞(t, p) for any p ∈ P , then Vars(G(t)) ⊆ Vars(t).

Remark 1. Our definition of CPNs differs slightly from the traditional definition.
Without loss of generality, we do not allow expressions on arcs, only a multiset
of variables. We instead assume such expressions are given in the guard instead.

A marking is a function M : P → MS(U) that assigns a number of colored
tokens to each place such that M(p) ∈ MS(X (p)) for all p ∈ P . The initial
marking of a CPN is denoted M0, and the set of all markings of a CPN N is
denoted M(N).

Figure 2 shows a CPN using circles for places, filled squares for transitions,
arrows for arcs representing the pre- and post-incidental weight functions, and

11

p1

t1

p2

p3

t2

p4
t3

p5

t4

p6

p7
t5

p8t6B
4′0 + 4′1

A
1′A.all

AB

A

A

A

A

B

z = 1 ∧ x = y++

x = y

x = 1 ∨ z = 1

1′z

1′x

1′⟨x, z⟩

1′⟨x, z⟩

1′y

2′x 2′y

1′x

2′x

1′x 1′x

1′z

1′x

1′x 1′z

Color types:
A = [1, 5]
B = [0, 1]
AB = A×B

Var types:
Y(x) = A
Y(y) = A
Y(z) = B

Figure 2: Example CPN

circle-head arrows for inhibitor arcs. We have that D = {A,B,AB} and Var =
{x, y, z}. The type of a place, and the initial marking is written next to the place.
Note that 1′A.all is a conventional shorthand for

∑
c∈A 1′c. Lastly, guards that

are not ⊤ are also written next to the relevant transition.
For a transition t ∈ T to fire, it requires a binding b : Vars(t) → N0 that

binds exactly the relevant variables. Let B(t) denote all bindings for transition t
that binds exactlyVars(t). We also define a set of all valid bindings for transition

t as B⃗(t) = {b ∈ B(t) | JG(t), bKΓ = ⊤}. Given a binding b ∈ B(t) and a multiset
of variables like ⊟(p, t), we will write b(⊟(p, t)) to denote a multiset of colors
created by summing the multiplicity of variables that are mapped to the same
color. Specifically, using multiset sum notation:

b(⊟(p, t)) =
∑

x∈⊟(p,t)

(⊟(p, t)(x))′b(x)

A marking M can transition to marking M ′ by firing transition t ∈ T using

binding b ∈ B⃗(t), denoted M
t,b−→M ′, if JG(t), bKΓ = ⊤ and ∀p ∈ P.b(⊟(p, t)) ⊆

M(p) ∧ |M(p)| < I(p, t) such that ∀p ∈ P we have

M ′(p) =M(p) ⊎ b(⊞(t, p)) \ b(⊟(p, t))

We say that transition t is enabled in marking M , if there exists a binding

b such that M
t,b−→. We will write M

t−→ if there exists a binding b ∈ B(t) such

12

that M
t,b−→. A CPN N = ⟨P, T,X ,⊟,⊞, I, G⟩ thus encodes an LTS TS(N) =

⟨S, A,→⟩ where S = M(N), A = T × B, and M t,b−→M ′ is defined as above.
We also define the following notation:

– the pre set (producers) of a place p ∈ P as •p = {t ∈ T | ⊞(t, p) ̸= ∅},
– the post set (consumers) of a place p ∈ P as p• = {t ∈ T | ⊟(p, t) ̸= ∅},
– the pre set of a transition t ∈ T as •t = {p ∈ P | ⊟(p, t) ̸= ∅},
– the post set of a transition t ∈ T as t• = {p ∈ P | ⊞(t, p) ̸= ∅},
– the inhibiting pre set of a transition t ∈ T as ◦t = {p ∈ P | I(p, t) <∞},
– the inhibited post set of a place p ∈ P as p◦ = {t ∈ T | I(p, t) <∞},
– the increasing pre set for a place p ∈ P as ⊞p = {t ∈ •p | | ⊞ (t, p)| >

|⊟ (p, t)|},
– the decreasing post set for a place p ∈ P as p⊟ = {t ∈ p• | | ⊞ (t, p)| <

|⊟ (p, t)|},
– the transmuting pre set of a place p ∈ P as ∇p = {t ∈ •p | ⊞(t, p) ̸= ⊟(p, t)},
– the transmuted post set of a transition t ∈ T as t∇ = {p ∈ t• | ⊞(t, p) ̸=

⊟(p, t)}.

For a set X of either places or transitions, we extend the notation as •X =⋃
x∈X

•x and X• =
⋃

x∈X x•, and likewise for the other operators.

3.4 P/T nets

Consider a colored Petri net N = ⟨P, T,X ,⊟,⊞, I, G⟩ where there is just one
colour, and as such X (p) = {•} for all p ∈ P . This implies that b(x) = • for all

variables x ∈ Var{•} and all bindings b ∈ B⃗(t) where t ∈ T . Hence, all variables
are equivalent and there might as well only be one variable x. However, this
implies that there is only one binding too. Since there is only one binding, all
guards G(t) = ⊤ or semantically equivalent for all transitions t ∈ T , otherwise
t has no valid bindings and is superfluous. Moreover, we have that for all p ∈ P
there exists a w1 ∈ N0 such thatM0(p) = w1

′•, and for all p ∈ P and t ∈ T there
exists w2, w3 ∈ N0 such that ⊟(p, t) = w2

′x and ⊞(t, p) = w3
′x. In other words,

the initial marking and arcs are defined by their cardinality alone. Such a colored
Petri net is also called a place/transition net (P/T net) or simply a Petri net.
Since there is only one color, variables, bindings, and guards are unnecessary.
From the observations above, we define a P/T net as follows from now on.

Definition 6. A place/transition net (P/T net) is a CPN N =
⟨P, T,X ,⊟,⊞, I, G⟩ where

– X (p) = {•} for all p ∈ P ,
– G(t) = ⊤ for all t ∈ T ,
– Var{•} = {x} and for all p ∈ P and all t ∈ T there exists weights w1, w2 ∈

N0 such that ⊟(p, t) = w1
′x and ⊞(t, p) = w2

′x.

In the context of P/T nets, a marking M is treated as a function P → N0

that returns the number of tokens in the given place. Similarly, the pre- and post

13

incident weight functions, ⊟ and ⊞, are respectively treated as functions of the
type (P × T) → N0 and (T × P) → N0, that return the weight of the given arc.

A markingM can transition toM ′ using transition t ∈ T , denotedM
t−→M ′,

if ∀p ∈ P.⊟ (p, t) ≤ M(p) < I(p, t) such that ∀p ∈ P we have M ′(p) = M(p) +
⊞(t, p)−⊟(p, t). Note the absence of bindings.

All CPNs can be unfolded to an isomorphic P/T net [19]. The unfolded net
will typically be exponentially larger than the original CPN. Hence, performing
structural reductions on the CPN can lead to a much smaller unfolded net,
and reduce overhead in unfolding and subsequent model checking techniques.
Unfolding is desirable, since there are many verification techniques developed for
P/T nets such as linear state equations, marked graphs, stubborn reductions,
and heuristics [23, 5, 18]

4 Strutural reductions

A structural reduction is a modification of the structure of a model, such that
the resulting model is either smaller or simpler. However, the reduction must also
preserve any properties of interest to be useful. An analysis of local structures
is therefore needed to check if the preconditions for a reduction is satisfied.

When performing a structural reduction on a Petri net, we cannot remove
places and transitions relevant for the atomic propositions of the property in
question. Therefore, given a CTL* formula φ we use the function places(φ) to
represent all the places mentioned in the formula φ. Specifically, the function
places is defined inductively as:

places(⊤) = ∅
places(αM ▷◁ k) = {p ∈ P | α(p) ̸= 0}
places(en(t)) = ∅
places(deadlock) = ∅
places(¬φ) = places(φ)

places(φ1 ∧ φ2) = places(φ1) ∪ places(φ2)

places(Aψ) = places(ψ)

places(Eψ) = places(ψ)

places(¬ψ) = places(ψ)

places(ψ1 ∧ ψ2) = places(ψ1) ∪ places(ψ2)

places(Xψ) = places(ψ)

places(Fψ) = places(ψ)

places(Gψ) = places(ψ)

places([ψ1Uψ2]) = places(ψ1) ∪ places(ψ2)

14

Similarly, the function transitions(φ) returns all transitions mentioned in φ.
Specifically:

transitions(⊤) = ∅
transitions(αM ▷◁ k) = ∅
transitions(en(t)) = {t}
transitions(deadlock) = ∅
transitions(¬φ) = transitions(φ)

transitions(φ1 ∧ φ2) = transitions(φ1) ∪ transitions(φ2)

transitions(Aψ) = transitions(ψ)

transitions(Eψ) = transitions(ψ)

transitions(¬ψ) = transitions(ψ)

transitions(ψ1 ∧ ψ2) = transitions(ψ1) ∪ transitions(ψ2)

transitions(Xψ) = transitions(ψ)

transitions(Fψ) = transitions(ψ)

transitions(Gψ) = transitions(ψ)

transitions([ψ1Uψ2]) = transitions(ψ1) ∪ transitions(ψ2)

Definition 7 (Invisibility). If φ ∈CTL*\X then a transition t ∈ T is said to
be invisible to φ if

– for all p ∈ places(φ) we have that |⊟ (p, t)| = |⊞ (t, p)|,
– for all p ∈ •transitions(φ) we have that ⊟(p, t) ⊆ ⊞(t, p), and
– for all p ∈ ◦transitions(φ) we have that |⊟ (p, t)| ≥ |⊞ (t, p)|.

Hereby, firing t does not affect the satisfaction of the atomic propositions in φ.

Our structural reductions will be presented as rules in Section 5 and Section 6.
Each rule (except Rule I) consists of a list of precondition which must hold, and
a list of updates which describe the modifications that are made to the net
on application of the rule. While the preconditions can be checked in any order,
some updates must happen sequentially which is emphasized by the word ”then”
between two items in the update list. Rule I is instead presented as an algorithm.
Each rule will be proven correct for CTL* or some of its fragments. We define
the correctness of a rule below:

Definition 8 (Correctness of Rule X for logic L).
Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a Petri net and let M0 ∈ M(N) be its initial
marking. Let Nφ = ⟨Pφ, Tφ,Wφ

⊟ ,W
φ
⊞ , I

φ⟩ with initial marking Mφ
0 ∈ M(Nφ)

be the Petri net obtained by applying Rule X on N once for some formula φ of
logic L. Rule X is correct for logic L if:

M0 ⊨ φ in N iff Mφ
0 ⊨ φ in Nφ for all φ ∈ L.

15

When a rule is correct for a class of logic, it is also correct for its fragments.
Unless otherwise specified, a CPN presented asN ′ = ⟨P ′, T ′,X ′,⊟′,⊞′, I ′, G′⟩

refers to the CPN N = ⟨P, T,X ,⊟,⊞, I, G⟩ reduced using one application of the
discussed rule.

4.1 Structural reduction categories

We categorise our proposed structural reductions into three overall categories.
These categories are redundant structures, parallel structures, and agglomera-
tions.

4.1.1 Redundant structures Redundant structures do not provide the net
with interesting behaviour. They can be places that never disable their con-
sumers, transitions that are never enabled, or transitions which can only be
fired in one way. These structures are often completely redundant and unneces-
sary for the properties and can thus be removed. We define four rules, Rules E,
F, I, and Q in Section 6.3, 6.4, 6.5, and 6.7 that focus on removing these redund-
ant structures. Rule I is more specialized and focuses on structures that cannot
affect the places mentioned in the property.

4.1.2 Parallel structures When two places or transitions exist in the net
such that one shares all of its pre- and post-set with the other, these can be
considered parallel to each other. See Figure 3 for an example of parallel places.
Here p1 always imposes more strict conditions on t1, and as such we can remove
p2 as it is redundant. Similar cases can be made for parallel transitions. Rule C
and D, introduced in Section 6.1 and 6.2 remove parallel structures in the net.

p1 p2

t1

1 1

2 1

Figure 3: Places in parallel

16

4.1.3 Agglomerations The main idea in agglomerations is to combine trans-
itions which must also be fired in sequence. See Figure 4 for an example of a
simple agglomeration. An agglomeration does not necessarily result in a smaller
net depending on the number of sequences possible. However, interleavings in the
underlying concurrent behaviour is removed, resulting in a smaller state space.
Our Rule S for P/T nets introduced in Section 5.2 and later generalized to CPNs
in Section 6.6 is an atomic free agglomeration only removing a single consumer
at a time, which makes the rule more general than a free agglomeration [28].

p0

t1

t2 t3

⇒
⟨t1t2⟩ ⟨t1t3⟩

Figure 4: Example of agglomeration

4.2 Benchmark and experimental setup

In Section 5 and 6 we present our structural reductions for P/T nets and CPNs,
respectively. At the end of these sections, we present the results of applying the
presented rules. Therefore, we present our experimental setup now, as this is
used in both of these result sections.

We implement the reductions rules described in the following sections in
verifypn [17, 4] which is the verification engine used in the Petri net verification
tool TAPAAL [8]. The engine verifypn is written in C++ and prior to this
thesis, had no structural reductions for CPNs. Our presented rules for P/T nets
has been implemented along the existing structural rules. The modified version
of verifypn can be found on GitHub. All results from testing, and all generated
figures can also be found on GitHub.

We experimentally test the performance of our rules using the CPN and P/T
net models from the Model Checking Contest, MCC2021 [21]. For the P/T rules
in Section 5 we use the 1181 P/T nets, while for the CPN rules in Section 6
we use the 230 CPNs. We use both the cardinality and fireability queries of
the reachability, LTL, and CTL categories. This gives us a test suite of 113.376

17

https://github.com/DAT10CPN/verifypn/tree/exam-handin
https://github.com/DAT10CPN/results

queries for P/T nets and 22.080 queries for CPNs. The hardware we use for
testing is the DEIS MCC, which is a computer cluster at Aalborg University,
configured for repeatability and stability and memory-intensive computations.
Each query is allocated a maximum of 15GB memory and 2 cores on a Xeon e5
2680 CPU. If the memory limit is reached, the query is automatically terminated.

Our experiments are compared to a base experiment which uses verifypn

without our rules presented in this thesis, but with the existing P/T reduction
rules enabled. For all queries, we measure multiple metrics:

– colored reduce time is the time spent applying colored structural reductions
(time limit of 4 seconds).

– unfolding time is the time spent unfolding the net.
– reduce time is the time spent applying structural reductions on the unfolded

P/T net (time limit of 30 seconds).
– verification time is the time spent on verification.
– total time is the sum of the colored reduce time, unfolding time, reduce time,

and verification time.
– applications of X is the number of times rule X was applied.
– size of the net is the size given by adding the number of places and transitions

together. This is measured before, and after the reduction and unfolding
phases.

– answers is the number of answers found within the time and memory limit.

If a query reaches the time limit of any reduction phase, then the engine proceeds
to the next phase. If the answer to the query is not found within 4 minutes, the
query is also terminated. Separately, if possible within 2 minutes, we measure
the state space size, i.e. the number of states in the final unfolded and reduced
P/T net.

We run the experiments with different search strategies during verification
of the property, including depth-first search, random depth-first search, and a
heuristic search using the manhattan distance to a marking satisfying the prop-
erty [16]. However, we find that the effect of using our rules does not vary
much across different search strategies. Therefore, we present only the results
using depth-first search, as this generally performed the best amongst the tested
search strategies, both with and without our rules applied.

In addition to testing on the models mentioned, we have also created a mod-
ified version of all P/T nets and CPNs in the MCC2021 with inserted inhibitor
arcs. We do this in order to test the correctness of our presented rules on nets
with inhibitor arcs. The nets have been modified, by inserting a number of
inhibitor arcs proportional to the size of the net between random places and
transitions, and their weight was set to either 1 or 2, chosen randomly. Because
of this randomness, the modified models become nonsensical, but still useful for
verifying the correctness of our rules.

The results of the experiments using our P/T net rules are presented in
Section 5.3. The results of the experiments using CPN our rules are presented
in Section 6.8. In Section 7 we discuss our overall findings.

18

5 Structural reductions for P/T nets

In this section we present our structural reduction rules for P/T nets.

5.1 Rule C: Parallel Places (P/T)

If a pair of places are parallel and one may accumulate tokens because the other
always limits its consumers, then Rule C will remove the one that is not the
limiting factor. See Figure 5. By convention min ∅ = −∞ and max ∅ = ∞. The
fraction d describes how quickly tokens can be consumed from p2 compared to
p1, while f describes how slowly tokens can be fed to p2 compared to p1. If d ≤ f

p1 p2

w1 w3

w2 w4

⇒
where
w4
w2

≤ w3
w1

p1

w1

w2

Precondition Update

Fix places p1 and p2 s.t.:

C1) p2 /∈ places(φ)
C2) p◦2 = ∅
C3) p•1 ̸= ∅
C4) p•1 ⊇ p•2
C5) •p1 ⊆ •p2
C6) M(p2) ≥ M(p1) · d
C7) d ≤ f

where

d = max
t∈p•1

⊟(p2, t)

⊟(p1, t)

f = min
t∈•p1

⊞(t, p2)

⊞(t, p1)

UC1) remove p2

Figure 5: Rule C: Parallel places (P/T)

19

p1 p2

2 1

3 1

⇒where
d = 1

3

f = 1
2

d ≤ f

p1

2

3

Figure 6: A reduction that our Rule C can perform, but Rule C from [5] cannot

then p2 is always fed faster than it is emptied compared to p1, which means p2
can be removed, since it will always be p1 which is missing tokens and disables
their consumers.

Rule C is a generalization of Rule C from [5]. Our Rule C is able to reduce
the net shown in Figure 6 while Rule C by Bønneland et al. cannot.

Theorem 4. The P/T net Rule C shown in Figure 5 is correct for CTL*.

Proof. Using contradiction we will show that a net reduced by Rule C is bisimilar
to the original net since no behaviour is removed. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩
be a P/T net with initial marking M0 and let φ ∈CTL*. Let N ′ and M ′

0 be
the P/T net and initial marking after applying Rule C once on N . Let M be a
reachable marking s.t.M0 →∗ M . To argue for the correctness of Rule C, we will
show that if any t ∈ T is disabled due to the number of tokens in p2 in marking
M , then it is also disabled due to the number of tokens in p1. In other words,
that M(p2) < ⊟(p2, t) implies M(p1) < ⊟(p1, t) for all t ∈ T . To show this, we
must realize that in conjunction with C4 and C5, that d is the fastest rate at
which p2 can be emptied compared to p1, and conversely, that f is the slowest
rate at which p2 can be fed compared to p1. Both d and f are well defined by
C3 and that by convention that min ∅ = −∞.

We will now show thatM(p2) < ⊟(p2, t) impliesM(p1) < ⊟(p1, t) by contra-
diction. Assume there exist a transition t ∈ T and a reachable marking M such
thatM0 →∗ M whereM(p1) ≥ ⊟(p1, t) andM(p2) < ⊟(p2, t). By the definition
of d, this means thatM(p2)/M(p1) < d. By C6, we have thatM0(p2)/M0(p1) ≥ d
and thus M0 ̸= M . Since M where M(p2)/M(p1) < d is reachable there must
exist a transition t′ ∈ T that either:

1. consumes at least d times more tokens from p2 than from p1, i.e. ⊟(p2, t
′)/⊟

(p1, t
′) > d, or

20

2. produces at most d times more tokens to p1 than to p2, i.e. ⊞(t′, p2)/ ⊞
(t′, p1) < d.

Case 1. is impossible by C4 and the definition of d. Case 2. is also impossible
due to the C5, C7, and the definition of f . Alas we have a contradiction.

In combination with C2, we can conclude that N ′ must be bisimilar, and
hence Rule C is correct for CTL* by Theorem 1.

5.2 Rule S: Atomic free agglomeration

An agglomeration aims to replace sequences of transition firings with new trans-
itions which are for all query-relevant purposes identical to firing the original
sequence in immediate succession. An agglomeration is centered around a single
place, whose producers and consumers are the transitions that will be merged.
This place will be referred to as p0. For an illustration of this refer to Figure 4.

In a pre agglomeration, the p0 has a disjoint pre set and post set, and p0
is the only place produced to by its pre set. Hence, the firing of any consumer
f ∈ p•0 must be preceded by exactly one producer h ∈ •p0 and the firing of
h can be delayed until needed. A pre agglomeration introduces this delay by
merging every pair h and f , which in turn removes interleavings in the net. See
Appendix A for the definition of Rule T which is a pre agglomeration.

A free agglomeration [28] is a variant of a pre agglomeration, which does not
require the pre set of h to only have h as their post set, but as a result only
preserves reachability properties without deadlock.

Our Rule S, described in Figure 7, is an atomic free agglomeration. By atomic,
we mean, that we do not have to merge every consumer f ∈ p•0 with every
producer h ∈ •p. Instead, we find one f0 ∈ p•0 which, after firing any h ∈ •p0,
can be fired k ≥ 1 times with no leftover tokens in p0. Rule S removes the original
f0 and creates for every i ∈ [1, k] a transition equivalent to firing h and then
f0 i times. The intuition is, that every firing of h is used to fire f0 a number
of times, and since a merged transition is created for every possible number of
times, no behaviour is lost, and thus reachability properties are preserved. Safety
properties are preserved since the pre set of h is unobserved, i.e. •h∩places(φ) =
∅.

Rule S is a generalization of the free agglomerations by Thierry-Mieg in [28]
in the following ways:

– Atomic: Rule S only agglomerates one consumer at a time and is still ap-
plicable even if not all consumers can be agglomerated.

– Weighted: Rule S allows weights on the arcs to and from p0. It also allows the
p0 to have an initial marking greater than 0, as long as it does not initially
enable consumers to be agglomerated.

– k-scaled: The pre- and post arcs of the agglomerated place can have different
weights. All weights on the pre arcs must be a multiple of the weight of
the consumer arc. Rule S produces a transition for every possible number of

21

p0

h1
. . . hn

f0

k1 · w kn · w

w

u v

⇒

for all i and j s.t.
1 ≤ j ≤ n
1 ≤ i ≤ kj

⟨hjf
i
0⟩

i · u i · v

p0

h1
. . . hn

k1 · w kn · w

(kj − i) · w

Precondition Update

Fix place p0 and transition f0 s.t.:

S1) {p0} ∩ places(φ) = ∅
S2) (f0 ∪ •p0) ∩ transitions(φ) = ∅
S3) M0(p0) < ⊟(p0, f0)
S4) •p0 ∩ p•0 = ∅
S5) f0 ∈ p•0

and for all h ∈ •p0 there exists a k ∈ N s.t.:

S6) h• = {p0}
S7) •h ∩ places(φ) = ∅
S8) p◦0 = ◦h = (•h)◦ = ∅
S9) ⊞(h, p0) = k ·⊟(p0, f0)

S10) k > 1 =⇒ (f•
0)

◦ = ∅
S11) k > 1 =⇒ •f0 = {p0}

Create transition ⟨hf i
0⟩ for all i ∈ [1, k], for k =

⊞(h, p0)/ ⊟ (p0, f0), for all h ∈ •p0. For each such
transition:

US1) ⊞(⟨hf i
0⟩, p0) = ⊞(h, p0)− i ·⊟(p, f0)

and for all p ∈ P \ {p0}:

US2) ⊟(p, ⟨hf i
0⟩) = ⊟(p, h) ⊎⊟(p, f0)

US3) ⊞(⟨hf i
0⟩, p) = i ·⊞(f0, p)

US4) I(p, ⟨hf i
0⟩) = I(p, f0)

and

US5) Remove f0
US6) Then, if p•0 = ∅, remove p0 and all transitions

in •p0 \ transitions(φ)

Figure 7: Rule S: Atomic free agglomeration

times the consumer could have been fired as a consequence of firing the given
producer once. Since every variation is created, no reachability is altered
aside from deadlock.

Ultimately, multiple applications of Rule S can accomplish the same reduction
as the free agglomeration as described in [28], but Rule S is also more applicable.

Before proving that Rule S is correct for reachability properties without the
deadlock proposition, we give the intuition for how an equivalent trace is found
in the reduced net. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a P/T net and let N ′ be

22

p0

h

f0 f1 f2

4

2 1 3

N1 :

⇒ p0

h⟨hf0⟩⟨hf0f0⟩

f1 f2

42

1 32

N ′
1 :

(a)

· · · h · · · f0 · · · h · · · f1 · · · f0 · · · f1 · · · h · · · f0 · · · f2 · · · f0 · · ·

• ••
••

••
••

••
••

· · · · · · ⟨hf0 f0⟩ · · · · · · f1 · · · · · · ⟨hf0⟩ f1 · · · · · · · · · ⟨hf0⟩ f2 · · · · · ·

Trace w:

Assignment:

Transformation:

Trace w′:

(b)

Figure 8: Example of an assignment and transformation of a trace. (a) shows a
P/T net N1 and N ′

1 where N ′
1 is N1 after one application of S agglomerating f0.

(b) shows a trace w fireable in N1 and how it is transformed into the equivalent
trace w′ which is fireable in N ′

1.

N after one application of Rule S. Let w ∈ T ∗ be a trace which is fireable in
N . If w contains one or more firings of f0 then the reachability-equivalent trace
w′ ∈ T ′∗ in N ′ contains one or more firings of ⟨hf i0⟩ for some i > 0. By S6 and
S8, we can delay firings of h ∈ •p0 until tokens produced by it are needed in p0.
And if k > 1 then we can also advance the firings of f0. However, f0 may not be
the only consumer of p0, so which firings of h and f0 can be merged is not trivial
to find. We have to consider when the tokens are produced and which firings of

23

f ∈ p•0 consumes them. Consider the example in Figure 8, which shows how a
trace w ∈ T ∗ is transformed to an equivalent trace w′ ∈ T ′∗. The transformation
is based on an assignment which assigns each firing of f ∈ p•0 to a set of tokens
which it consumes, and firings f0 are always assigned to tokens originating from
a single firing of h. In the transformation, firings of h are delayed until they are
needed, and each firing of f0 is advanced to right after the h which produces the
tokens f0 is uniquely assigned to. Lastly, the firings of h and f0 are merged to
⟨hf i0⟩. Such a transformation is always possible given the preconditions of Rule S
and since w is fireable in N .

Theorem 5. Rule S in Figure 7 is correct for reachability without deadlock

Proof. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a P/T net with initial marking M0 and
let φ ∈Reach without deadlock. Let N ′ and M ′

0 be the P/T net and initial
marking after applying Rule S once on N . We will now argue that any reachable
marking M such that M0 →∗ M in N has a corresponding reachable marking
M ′ such that M ′

0 →∗ M ′ in N ′ where M and M ′ are equivalent w.r.t. the
atomic propositions of φ, and conversely, every reachable marking M ′ in N ′ has
an corresponding reachable marking M in N equivalent w.r.t. φ.

Let w ∈ T ∗ be the trace such that M0
w−→ M . By S5, every firing of f ∈ p•0

in w consumes tokens from p0, which were either there since the initial marking
M0 or produced by one or more producers in •p0. To proceed, we identify tokens
in p0 based on when they were produced. That is, every token is associated with
the position in the trace where it is created. By S3, we have that f0 cannot be
fired without firing an h ∈ •p0 first, and by S9, every firing of f0 can consume
tokens which solely originate from one unique firing of an h ∈ •p0. We must now
realize, that we can associate every firing of an f ∈ p•0 to a set of tokens which
it consumes, such that every firing of f0 is associated with a set of tokens which
all originate from the same firing of some h. We call such an association between
firings of f and its consumed tokens for an assignment. More than one of such
assignments may exists, but we only need to consider one of them. Based on this
assignment we will now transform w to a trace w′. The transformation satisfies

that M ′
0

w′

−→M ′ and M and M ′ are equivalent w.r.t. the atomic propositions of
φ. The steps of the transformation are:

1. Delay the firing of every h ∈ •p0 to right before the first firing of an f ∈ p•0
which consumes tokens produced by the given firing of h according to the
assignment.

2. Advance each firing of f0 to right after the unique firing of h ∈ •p0 which
the tokens that f0 consumes originate from according to the assignment.

3. Replace every occurrence of the subtrace hf i0 with a firing of ⟨hf i0⟩ ∈ T ′∗
where i is the greatest number such that the subtrace is not followed by
additional firings of f0.

We will now argue for the fireability of the resulting trace and the equivalence
of the resulting state.

24

1. By S8 and S10, delaying the firing h does not affect which transitions are
inhibited. By S6, only the transitions of p•0 require tokens produced by h and
thus the resulting trace is fireable and results in the same state.

2. Let k = ⊞(h, p0)/⊟ (p0, f0). If k = 1 then the relevant firing of h was moved
to right before the given firing of f0 in step 1 and no transformation occurs
in this step. Otherwise, if k > 1, then by S10 and by S11, firing f0 does not
affect which transitions are inhibited and f0 only consumes from p0, which
implies that the advancing of the firing of f0 is possible without changing
the resulting state.

3. By step 1 and 2, every firing of f0 now immediately succeeds the firing of
the h ∈ •p0 which produces the tokens that the firings of f0 consume. Let i
be the number of firings of f0 following a given h. By S9 and the definition
of the assignment, we have that i ≤ k = ⊞(h, p0)/⊟ (p0, f0). By US1, US2,
US3, and US4, the reduced net has a transition ⟨hf i0⟩ which has the same
effect as firing h followed by i firings of f0.

This proves that every reachable marking M such that M0
∗−→M in N has a

corresponding reachable marking M ′ such that M ′
0

∗−→ M ′ in N ′ where M and
M ′ are equivalent w.r.t. the atomic propositions of φ.

Now we prove it in the other direction. Let w′ ∈ T ′∗ be a trace such that

M ′
0

w′

−→M ′. Let w be identical to w′ but with every occurrence of ⟨hf i0⟩ replaced
with hf i0. By US1, US2, US3, and US4, these subtraces have the same effect, and

thusM0
w−→M such thatM andM ′ are equivalent w.r.t. the atomic propositions

of φ, which concludes our proof.

As Thierry-Mieg argues in [28], free agglomerations do not preserve deadlock
properties, since it can remove deadlocks. However, our atomic free agglomera-
tion Rule S can also introduce new deadlocks. An example of this is shown in
Figure 9.

Our implementation of Rule S does not follow the definition above. Since
the atomic free agglomeration Rule S and the pre agglomeration Rule T given
in Appendix A share several preconditions, the implementation of Rule S falls
back to a Rule T depending on what is possible given the net structure around
p0 and the query. This fallback also happens on categories for which Rule T is
valid but Rule S is not.

5.3 P/T results

In this section we show the results of experiments involving our structural re-
ductions for P/T nets. We have implemented Rules C and S in verifypn [17, 4],
that already includes structural reductions Rules A-R which will be used along-
side our new rules. The base experiment uses the Rule C described in [5], while
experiment base+C uses our Rule C as defined in Section 5.1. In experiment
base+CS, we also use our Rule C and the Rule S is appended to the structural-
reduction-rule application sequence and is thus used at the end of each iteration

25

p1

h

p0f0 f1

2

N :

⇒

p1

h

p0

⟨hf0⟩

f1

2

N ′ :

Figure 9: Example of Rule S introducing deadlocks to the P/T net N . In N we
have N ⊨ AG¬deadlock while in the reduced net N ′ after one application of

Rule S, we have that N ′ ̸⊨ AG¬deadlock because M ′
0

h−↛→.

Experiment base base+C base+CS

Category ⧹ Rule C C C S

ReachabilityCardinality 25.4% 25.4% 26.1% 29.8%
ReachabilityFireability 25.8% 25.8% 26.6% 41.3%

LTLCardinality 23.6% 23.6% 23.6% 4.8%
LTLFireability 23.3% 23.3% 23.3% 6.3%

CTLCardinality 22.6% 22.6% 22.7% 1.4%
CTLFireability 20.3% 20.3% 20.3% 1.7%

Table 2: Percentages of queries where the given rule was applied at least once
for the given experiment and category

of rule applications. Recall that we are using the P/T nets of MCC2021 for these
experiments, and there are 113.376 queries in total, which is 18.896 per category.

In Table 2 we see the percentages of queries where the given rule was used at
least once in the given experiment. In Table 3 we see the absolute number of ap-
plications of each rule in each experiment across all queries. Although we proved
that our Rule C is more general than Rule C by Bønneland et al. [5] in Sec-
tion 5.1, we find that our Rule C does not result in more applications, and most
likely due to noise it is a few times less for ReachabilityCardinality. However,
Rule S finds many applications, especially on reachability queries. Despite not
being correct for LTL and CTL, Rule S is applied here as well. This is because
some LTL and CTL queries in MCC2021 are or can be simplified to a reachabil-
ity query, which means Rule S can be used anyway. Also recall, that Rule S falls
back to a standard pre agglomeration on non-reachability and on deadlock prop-

26

Experiment base base+C base+CS

Category ⧹ Rule C C C S

ReachabilityCardinality 228425 228407 233247 7829495
ReachabilityFireability 236375 236375 243677 10874826

LTLCardinality 205686 205686 206740 32307
LTLFireability 222829 222829 241645 56086

CTLCardinality 153761 153761 154210 354542
CTLFireability 126458 126458 126465 901723

Table 3: Number of applications of the given rule in the given experiment and
category

Category ⧹ Experiment base base+CS base+CS

ReachabilityCardinality 17482 -3 +144
ReachabilityFireability 16615 -1 +228

LTLCardinality 17488 -1 +9
LTLFireability 17001 -2 +3

CTLCardinality 15217 +1 +5
CTLFireability 12120 +4 +4

Sum 95923 -2 +393

Table 4: The number of answers found by the base experiment and the number
of additional answers found with our rules compared to the base experiment.

erties, resulting in further applicability on LTL. We can see that when Rule S is
used, Rule C are applied more, especially on ReachabilityFireability.

Table 4 shows the number of answers found in each experiment within the
time limit of 4 minutes. See Appendix C where we split this table into several
tables and show answers gained per model. Our rule C seems to lose a few an-
swers compared to the baseline in the reachability and LTL categories, but gain
a few in the CTL. These differences are however not greater than what can be at-
tributed to noise. Although our Rule C is more general than the old Rule C, the
benchmark did not contain a significant number of cases where that generality
made a difference, which we had hoped. On the other hand, Rule S clearly leads
to more results, primarily found in the reachability categories. These new an-
swers are mainly found on the following models: CloudDeployment, DLCflexbar,
DLCround, DLCround, DLCshifumi, FlexibleBarrier, MAPK, NoC3x3, and Util-
ityControlRoom.

Figure 11 shows the total time spent, time spent in the reduction phase,
the time spent in the verification phase, and the state space size of the reduced
net for the reachability fireability queries. All four graphs further confirms that
Rule C is on par with the base experiment. Rule S reduces the time spent on
verification and the size of the state space significantly, and while it does add
additional overhead in the reduction phase, the total time is better. We only
present the ReachabilityFireability results here, because the improvements of

27

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 11: Reachability fireability test results for P/T nets. (a) Total time spent in the reduction- and verification
phase for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

our rules are more modest on the other categories. The graphs for the remaining
categories can be found in Appendix C.1. The effects of Rule S are much less
pronounced on the other categories, obviously due to the applicability of Rule S
on CTL and LTL, while Rule C remains equal to base. The most interesting
thing to note is that on LTL fireability Rule C achieves further reduction of the
state space size compared to the baseline. However, as discussed earlier, it does
not result in more answers.

6 Structural reductions for CPNs

In this section we present our structural reduction rules for CPNs.

6.1 Rule C: Parallel places (CPN)

We now generalize Rule C from Section 5.1 that removes parallel places to CPNs.
Rule C generalized to CPNs is defined in Figure 12. Again, the fraction d de-
scribes how quickly tokens can be consumed from p2 compared to p1, while f
describes how slowly tokens can be fed to p2 compared to p1, and if d ≤ f then
p2 never disables their post set unless p1 also does. However, for CPNs we have
to take every color into account when defining d and f . Hence, we must compare
all tuples of variables that appear on the arcs, but also the supports of the arc
multisets and the initial markings must match. Otherwise, it is possible to add
a color to one place without adding it to the other, which makes the rule not
applicable.

Theorem 6. The CPN Rule C shown in Figure 12 is correct for CTL*.

Proof. This proof is similar to the proof for Theorem 4 about the P/T net version
of Rule C correctness. We will show that a net reduced by Rule C is bisimilar to
the original net using contradiction. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with
initial marking M0 and let φ ∈CTL*. Let N ′ and M ′

0 be the CPN and initial
marking after applying Rule C once on N . Let M be a reachable marking s.t.
M0 →∗ M . To argue for the correctness of Rule C, we will show that if any t ∈ T
is disabled due to a lack of tokens in p2 in marking M , then it is also disabled
due to a lack of tokens in p1. In other words, that M(p2) ⊂ b(⊟(p2, t)) implies

M(p1) ⊂ b(⊟(p1, t)) for any t ∈ T and b ∈ B⃗(t). To show this, we must realize
that in conjunction with C5, that d is the fastest rate at which p2 can be emptied
compared to p1 for any color, and conversely, that f is the slowest rate at which
p2 can be fed compared to p1 for any color. Both d and f are well defined by
convention that min ∅ = −∞ and max ∅ = ∞. Let D = X (p1) = X (p2) as of C1.

We will now show that M(p2) ⊂ b(⊟(p2, t)) implies M(p1) ⊂ b(⊟(p1, t)) by

contradiction. Assume that there exists a transition t ∈ T , a binding b ∈ B⃗(t),
and a reachable markingM such thatM0 →∗ M whereM(p1) ̸⊂ b(⊟(p1, t)) and
M(p2) ⊂ b(⊟(p2, t)).

29

p1 p2

w1
′x w3

′x

w2
′y w4

′y

⇒
where
w4
w2

≤ w3
w1

p1

w1
′x

w2
′y

Precondition Update

Fix places p1 and p2 s.t.:

C1) X (p1) = X (p2)
C2) p2 /∈ places(φ)
C3) p◦2 = ∅
C4) p•1 ̸= ∅
C5) For all t ∈ T :

Supp(⊟(p1, t)) = Supp(⊟(p2, t))∧
Supp(⊞(t, p1)) = Supp(⊞(t, p2))

C6) Supp(M0(p1)) = Supp(M0(p2))∧
M0(p1) · d ⊆ M0(p2)

C7) d ≤ f

where

d = max
t∈p•1 ,v⃗∈⊟(p1,t)

⊟(p2, t)(v⃗)

⊟(p1, t)(v⃗)

f = min
t∈•p1,v⃗∈⊞(t,p1)

⊞(t, p2)(v⃗)

⊞(t, p1)(v⃗)

UC1) remove p2

Figure 12: Rule C: Parallel places (CPN)

By C5 and the definition of d, this means that ∃c ∈ D.M(p2)(c)/M(p1)(c) <
d. By C6, we have that ∀c ∈ D.M0(p2)(c)/M0(p1)(c) ≥ d and thus M0 ̸= M .
Since M where ∃c ∈ D.M(p2)(c)/M(p1)(c) < d is reachable there must exist a

transition t′ ∈ T and binding b′ ∈ B⃗(t′) such that firing t′ using b′ either:

1. consumes at least d times more tokens of color c from p2 than from p1, i.e.
b′(⊟(p2, t

′))(c)/b′(⊟(p1, t
′))(c) > d, or

30

2. produces at most d times more tokens of color c to p1 than to p2, i.e.
b′(⊞(t′, p2))(c)/b

′(⊞(t′, p1))(c) < d.

Precondition C5 implies that we cannot add a color to one place without
adding at least one to the other place too. Thereby, case 1. is impossible by the
definition of d. But case 2. is also impossible due to the C7 and the definition of
f . Alas we have a contradiction.

In combination with C3, we can conclude that N ′ must be bisimilar, and
hence Rule C is correct for CTL* by Theorem 1.

6.2 Rule D: Parallel transitions

Our Rule D extends Rule D by Bønneland et al. from [5] with colors and inhibitor
arcs. Rule D handles parallel transitions where the effect of firing one of them
is equivalent to firing the other exactly k times. In such a case, we remove the
transition with higher arc weights. The definition of Rule D can be seen in
Figure 13. In precondition D2, we state that the valid bindings of the guard
G(t1) must be a subset of the valid bindings of G(t2), i.e. B⃗(t1) ⊆ B⃗(t2). This
can be expensive to check depending on the complexity of the guards and the
number of variables in the guard. A cheap overapproximation is to check whether
G(t1) = G(t2) or G(t2) = ⊤ instead, which we do in our implementation. As
seen in D3 we stricten the preconditions of Rule D if the query φ is a CTL
property or contains the next operator X. In D7 we loosen the preconditions if
φ is a reachability query.

Proving the correctness of Rule D is two-fold. First we prove correctness for
LTL\X where k ≥ 1 and then for CTL* where k = 1.

Theorem 7. Rule D described in Figure 13 is correct for LTL\X.

Proof. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with initial marking M0 and
let φ ∈LTL\X. Let N ′ and M ′

0 be the CPN and initial marking after applying
Rule D once on N . Assume φ /∈ Reach. We shall now argue, that Rule D
is correct by showing that every maximal path starting from M0 in N has a
stutter-equivalent trace starting from M ′

0 in N ′ and vice versa.

⇒: Let w ∈ T⋆ be a maximal trace such that M0
w1−−→ M1

w2−−→ M2
w2−−→

Let w′ be w with all occurrances of t1 replaces with k times t2. By D2, we know
that if t1 has a valid binding b ∈ B⃗(t1), then t2 has a similar valid binding

b ∈ B⃗(t2). By D4, the effect of firing t1 with b has the same effect as k firings
of t2 with b. Lastly, by D5 and D6, we have that t2 is not inhibited unless t1
is also inhibited and firing t2 cannot inhibit t2. Together, the means that any
firing of t1 can be replicated by k firings of t2. By assumption that φ /∈ Reach,
the transitions t1 and t2 are invisible to φ. Hence, w′ must be stutter-equivalent
to w.

⇐: Let w ∈ T ′⋆ be a maximal trace such that M ′
0

w1−−→ M ′
1

w2−−→ M ′
2

w2−−→

Since T ′ ⊆ T , the trace w is also trivially fireable in N such thatM0
w1−−→M1

w2−−→
M2

w2−−→

31

p1 p2

p3 p4

t2t1

W1 · k

W
1

W
2
· k

W2

W3 · k

W
4 · k W

3

W4

⇒where
k ≥ 1

p1 p2

p3 p4

t2

W
1 W2

W
3

W4

Precondition Update

Fix transitions t1 and t2 and k ∈ N s.t.:

D1) t1 /∈ transitions(φ)
D2) B⃗(t1) ⊆ B⃗(t2)
D3) φ ∈ CTL ∨X ∈ φ =⇒ k = 1
D4) For all p ∈ P :

⊟(p, t1) = ⊟(p, t2) · k
⊞(t1, p) = ⊞(t2, p) · k

D5) ◦t2 ∩ t•2 = ∅
D6) ∀p ∈ P.I(p, t1) ≤ I(p, t2)
D7) φ /∈ Reach(•t1 ∪ t•1) ∩ (places(φ) ∪

•transitions(φ)) = ∅

UD1) Remove t1

Figure 13: Rule D: Parallel transitions

If φ ∈ Reach then every state reachable in N must also reachable in N ′.
This is easily proven similarly to above, except that the traces do not have to
be stutter-equivalent. Hence, by D7 and by Theorem 2 the Rule D is correct for
LTL\X.

Theorem 8. Rule D described in Figure 13 is correct for CTL* if k = 1.

Proof. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with initial marking M0 and let
φ ∈CTL*. Let N ′ andM ′

0 be the CPN and initial marking after applying Rule D
once on N with k = 1. We shall now argue, that Rule D is correct.

Let ≡D⊆ M(N) × M(N ′) be an equivalence relation such that M ≡D M ′

iff M =M ′. Since Rule D does not remove places, obviously M0 ≡D M ′
0.

We will now show that if M ≡D M ′ then:

1. M and M ′ satisfies the same propositions w.r.t. φ,

32

2. if M
t−→M1 then either M ′ t−→M ′

1 or M ′ t2−→M ′
1 s.t. M1 ≡D M ′

1, and

3. if M ′ t−→M ′
1 then M

t−→M1 s.t. M1 ≡D M ′
1.

1. : Let M ≡D M ′. Since Rule D only removes t1. By 1. and 2. the deadlock
proposition is preserved. So together with D1, M and M ′ satisfies the same
propositions w.r.t. φ.

2. : Let M ≡D M ′ and let M
t−→M1. There are two cases:

– Case t ̸= t1. Trivially, M
′ t−→M ′

1 and M1 ≡D M ′
1.

– Case t = t1. By D6 we have that t2 is not inhibited, otherwise t1 would have
been inhibited too. By precondition D2 and D4 we know that the effect of
firing t1 can be replicated by firing t2 exactly k times using a similar valid

binding, and k = 1. Therefore, it must be the case that M ′ t2−→ M ′
1 and

M1 ≡D M ′
1.

3. : Let M ≡D M ′ and let M ′ t−→M ′
1. Trivially, M

t−→M1 and M1 ≡D M ′
1.

In conclusion ≡D is a bisimulation, and hence by Theorem 1, Rule D must
be correct for CTL* when k = 1.

p2

p1

p3

t1

t2

t3

2

2

N :

⇒ p2

p1

p3

t1

t3

N ′ :

(a)

2′p2 p2 + p3 2′p3

p1 + p2 p1 + p3

2′p1

t3 t3

t1

t3

t1

t2

(b)

Figure 14: Example of Rule D not preserving a CTL\X formula φ = E[(EFp3 =
2)U(¬EFp3 > 0)]. (a) shows two P/T nets N and N ′ where N ′ is the net N
after one application of Rule D (with k = 2). We have that N ⊨ φ while N ′ ̸⊨ φ.
(b) shows the underlying transitions system of N and N ′. Transtion t2 only exist
in N .

33

Obviously, Rule D does not preserve stutter-sensitive properties unless k = 1.
The reason that k = 1 for CTL\X in D3 is shown in Figure 14. We have that
φ = E[(EFp3 = 2)U(¬EFp3 > 0)] ∈CTL\X and N ⊨ φ while N ′ ̸⊨ φ. This
is easily seen in Figure 14b, which shows the underlying transition system of N
and N ′. In N , we have 2′p2 ⊨ EFp3 = 2 and if t2 is fired, then the resulting state
is 2′p1 and 2′p1 ⊨ ¬EFp3 > 0, and hence φ is satisfied. It is not possible to fire
t2 in N ′ and there exists no path where EFp3 = 2 is satisfied until ¬EFp3 > 0
is satisfied.

6.3 Rule E: Redundant transitions

We can remove transitions that will never be enabled from the initial marking,
without removing behaviour from the net. The exact definition of this reduction
is shown in Figure 15. We make sure that the initial marking of the given place
does not enable the given consumer, and that the place will not receive more
tokens in the future. We also make sure that the transition is never enabled, by
checking all bindings in the current marking for the place p0, seeing if any avail-
able binding enables the transition t0. If there are too many bindings, we skip
this check and do not consider removing the transition, due to the overhead in
applying the rule. A further improvement in this check, is to do a simple overap-
proximation, where we only consider the cardinalities of the markingM0(p0) and
⊟(p0, t0). As we have that if |M0(p0)| < |⊟ (p0, t0)|, no binding makes firing of

mp0

t0

W1 W2

⇒where
∀b ∈ B(t0).b(W2) ⊆ m

mp0

Precondition Update

Fix place p0 and transition t0 s.t.:

E1) ∀b ∈ B(t).b(⊟(p0, t0)) ̸⊆ M0(p0)
E2) ∀t ∈ •p0 : ⊞(t, p0) ⊆ ⊟(p0, t) or ∀b ∈

B(t).b(⊟(p0, t)) ̸⊆ M0(p0)
E3) t0 /∈ transitions(φ)

UE1) If p0 ̸∈ places(φ) and
p•0 = {t0}, remove p0

UE2) Remove t0

Figure 15: Rule E: Redundant transitions

34

this transition possible. We do this cardinality check before evaluating bindings,
as this cardinality check is faster, and if this fails, the binding check will also fail.
If these conditions are met, we can safely remove the consumer. If this leaves
the place with no consumers, and the place is not mentioned in the query, we
can remove the place as well. This rule is an extension of the Rule E from [5],
but adapted to work on CPNs.

Precondition E3 can be ignored if we allow rewriting of φ, in which case all
instances of en(t0) can be replaced with ¬⊤.

Theorem 9. Rule E in Figure 15 is correct for CTL* queries.

Proof. By precondition E1 transition t0 is not enabled in M(p0), no matter the
binding of the variables on the arcs. Furthermore, E2 tells us that all consumers
of p0 are either also disabled in marking M0, or that the effect of firing it is to
remove tokens from p0. This means that no firing of any t ∈ T , will add tokens
to p0 and thereby enable t0. Therefore, we can safely remove t0 as this transition
will never be enabled.

6.4 Rule F: Redundant places

The idea behind Rule F, shown in Figure 16, is to remove places, which will
always have enough tokens with the correct colors to fire its consumers, making it
redundant. For this rule, it makes sense to check every binding of the consumers,
since an overapproximation may make the rule applicable in very few cases.

However, if there are too many bindings, the overhead in applying the rule
will eliminate the benefit. Therefore, if there are more than 10000 bindings to
check for precondition F4, we skip the application of this rule on the given place.
Our Rule F is a colored extension of Rule F presented by Bønneland et al. in [5].

Theorem 10. Rule F in Figure 16 is correct for any CTL* formula.

Proof. By precondition F3 we know that all transition t ∈ p•0 can only add tokens
to p0. Additionally, by F4 we know that t can fire using all bindings B(t) in the
initial marking M0. As a result, p0 can never disable any transition t ∈ p•0. It
will also never inhibit by F2. Combined with F1 is therefore safe to remove p0
as it does not change the behaviour of the net.

6.5 Rule I: Irrelevant places and transitions

Only some places and transitions are relevant for the query. Algorithm 1 shows
how we can remove everything that is irrelevant. Overall the algorithm is straight
forward. We start by marking the transitions that we know are relevant for the
query, i.e the transitions of transitions(φ) and •places(φ) ∪ places(φ)•. Then
we traverse the net to find and mark all transitions that can enable any of these.
Lastly, we remove all transitions that was not marked, and remove all places not
in the preset of any marked transition. This algorithm is very similar to Rule I
presented by Bønneland et al. in [5] which works for P/T nets. However, for

35

mp0

t0

W1 W2

⇒
where
W2 ⊆ W1

∀b ∈ B(t0).b(W2) ⊆ m

t0

Precondition Update

Fix place p0 s.t.:

F1) p◦0 = ∅
F2) p0 ̸∈ places(φ)

and for all t ∈ p•0:

F3) ⊟(p0, t) ⊆ ⊞(t, p0)
F4) ∀b ∈ B(t).b(⊟(p0, t)) ⊆ M0(p0)

UF1) remove p0

Figure 16: Rule F: Redundant places

CPNs there is another way to enable a transition, and that is by transmuting
the color of tokens. Hence, in line 7, we have to not only consider transitions
with positive effect on the preset of t, i.e. transitions that increase the number
of tokens, but also transitions that modify the colors of tokens in the preset of
transition t. In other words we enqueue ∇(•t) instead of ⊞(•t), where

∇p = {t ∈ •p | ⊞(t, p) ̸= ⊟(p, t)}

is the transmuting preset of p ∈ P af defined in Section 3.

Theorem 11. Rule I in Algorithm 1 is correct for reachability without deadlock.

Proof. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with initial marking M0 and
let φ ∈EF\X, deadlock. Let N ′ and M ′

0 be the CPN and initial marking after
applying Rule I (Algorithm 1) once on N . Let P ′ and T ′ be the places and
transitions of the net N ′, respectively. We shall now argue that Rule I is correct
using the relation ≡I⊆ M(N)×M(N ′) where M ≡I M

′ if and only if

1. M(p) =M ′(p) for all p ∈ places(φ),
2. M(p) ⊆M ′(p) for all p ∈ •T ′, and
3. |M(p)| ≥ |M ′(p)| for all p ∈ ◦T ′.

36

Algorithm 1: Rule I: Irrelevant places and transitions

Input: A CPN N = ⟨P, T,X ,⊟,⊞, I, G⟩, initial marking M0 and EF formula
φ without deadlock

Output: A reduced net N ′ and its initial marking M ′
0

1 X := ∅ /* Relevant transitions */

2 Q := transitions(φ) ∪ •places(φ) ∪ places(φ)• /* Queue of transitions */

3 while Q ̸= ∅ do
4 Pick any t ∈ Q
5 Q := Q \ {t}
6 X := X ∪ {t} /* Mark as relevant */

7 Q := Q ∪ ∇(•t) \X /* Enqueue transitions that can enable t */

8 Q := Q ∪ (◦t)⊟ \X
9 P ′ := •X ∪ ◦X ∪ places(φ)

10 T ′ := X
11 N ′ := a copy of N but every place p /∈ P ′ and every transition t /∈ T ′ have

been removed.
12 M ′

0 := a marking s.t. M ′
0(p) = M0(p) for all p ∈ P ′.

13 return N ′ and M ′
0

Let M ≡I M
′. Then clearly, M ⊨ φ iff M ′ ⊨ φ due to the definition of ≡I , and

the fact that places(φ) ⊆ P ′ and transitions(φ) ⊆ T ′. Moreover, we have that
M0 ≡I M

′
0.

⇒: LetM ≡I M
′. We will now show that ifM

t,b−→M1 then eitherM ′ t,b−→M ′
1

such that M1 ≡I M
′
1 or M1 ≡I M

′. There are two cases:

– Case t ∈ T ′. Due to the second and third condition in the definition of ≡I ,

we have that t is also enabled in M ′ using binding b and so M ′ t,b−→M ′
1. By

definition, firing t using binding b preserves all three conditions of ≡I and
hence M1 ≡M ′

1.

– Case t /∈ T ′. We shall argue that M1 ≡I M ′. Algorithm 1 ensures that
∇(•T ′) ⊆ T ′ and (◦T)⊟ ⊆ T ′. Hence, firing t /∈ T ′ in N cannot add or
transmute tokens in any place from •T ′ and cannot remove tokens from
any place in ◦T ′. Additionally, the firing of t cannot change the tokens in
places(φ) as •p ∪ p• ⊂ T ′ for all p ∈ places(φ). As a result, the three
conditions in the definition of ≡I are preserved and M1 ≡I M

′.

⇐: For this direction, it is enough to notice that N ′ is a subnet of N . Hence,
whenever M ′

0
w−→M ′ for some w ∈ T ′∗ then also M0

w−→M and M ≡I M
′.

Rule I does not preserve deadlock- and stutter sensitive properties, because
the removed parts can contain loops.

37

6.6 Rules T and U: Pre agglomeration and atomic free
agglomeration

This section covers our colored variants of pre agglomerations and atomic free
agglomerations. While colored pre agglomerations have already been presented
by Evangelista et al. in [12], we present Rule T, an alternative definition of
colored pre agglomerations matching the other definitions of structural reduction
rules in TAPAAL as by in [5]. The atomic free agglomeration for P/T nets, which
we present as Rule S in Section 5.2, has a colored variant which can be found in
Appendix B. However, we found that it performs better when restricted to k = 1,
and therefore we instead present Rule U in this section, which is equivalent to
Rule S for CPNs, but with k = 1.

p0

h1 h2

f1 f2

1′x 1′x

1′y 1′y

⟨h1f1⟩ ⟨h1f2⟩ ⟨h2f1⟩ ⟨h2f2⟩

Figure 17: A example of an agglomeration in a CPN

Figure 17 shows an example of a simple colored agglomeration. The basis of a
pre agglomeration around a place p0, is establishing that there is no meaningful
difference between firing a producer h ∈ •p0, and postponing that firing until
the moment a consumer f ∈ p•0 needs the token(s) produced by h. When this is
the case for all pairs of producers and consumers, the place p0 can be replaced
entirely by a series of transitions ⟨hf⟩ representing each such combination of
firing a producer and consumer.

The atomic free agglomeration agglomerates individual consumers of the
place p0. In cases where all consumers f ∈ p•0 can be agglomerated, this replic-
ates the outcome of a pre agglomeration. But if not all f fulfill the requirements
for agglomeration, the atomic free agglomeration can still be applied and replace
individual consumers f0 ∈ p•0 that do fulfill the conditions. In this case the place
p0, the producers •p0, and f ∈ p•0 \ {f0} will not be removed from the net. Ap-

38

plying this rule will then increase the overall number of transitions in the net,
but reduce the interleavings in the underlying transition system. This can also
introduce deadlocks where h is fired and the tokens get stuck in p0, exactly as
shown in Figure 9.

The main differences between agglomerations on CPNs and P/T nets arise
from the fact that tokens are not interchangeable. This means that a consumer
f ∈ p•0 can have different behavior depending on the color of the token it con-
sumes from p0. A firing of f that consumes tokens produced by two separate
producers h1, h2 ∈ •p0 is no longer necessarily interchangeable with a firing con-
suming tokens from only h1. This also extends to separate firings of the same
producer, with different bindings, such as h1 being fired twice with different
bindings for x. As such, the preconditions for the agglomerations are modified
to only apply in cases where the replacement transitions ⟨hf⟩ represent not only
each firing sequence hf , but exactly the same possible variable bindings of the
original firing sequence.

This is accomplished by restricting the arc expressions on the arcs in and out
of p0 to only contain exactly one color at a time. Under that condition, there
is exactly one way to match any binding of variable x to a binding of variable
y, and any firing of the consumer can be attributed to exactly one firing of a
producer that enabled it. The other restriction on bindings is guards. As each
replacement transition ⟨hf⟩ simply represents firings of h and f in sequence,
the guards restricting either one of them also restrict the firing sequence, so the
guard of ⟨hf⟩ is simply a conjunction of the guards of h and f . This means the
guard of f now also prevents the firing of h, but as mentioned earlier in this
section, the basis of the pre- and free agglomerations is that delaying h until f
is ready to fire is valid.

For the following formal definitions, we define a transformation function for
the renaming of variables:

Definition 9. The transformation rename(t, v, v′) replaces all occurrences of
variable v with variable v′ in the guard and in all arcs of transition t.

The definition of the pre agglomeration, Rule T, can be found in Figure 18.
The definition of the atomic free agglomeration, Rule U, can be found in Fig-
ure 19.

Theorem 12 ([12]). Rule T in Figure 18 is correct for LTL\X.

Theorem 13. Rule U in Figure 19 is correct for reachability without deadlock.

Proof. This proof will follow the same approach as the proof for Rule S for P/T
nets in Section 5.2. It will not include the considerations for k-scaled arc weights
as these are not allowed by U10. It will include how the given preconditions are
sufficient for the proof method to hold for CPNs.

Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with initial marking M0 and let
φ ∈Reach without deadlock. Let N ′ and M ′

0 be the CPN and initial marking
after applying Rule U once on N .

39

p0

h1
. . .

. . .

hn

f1 fm

w′x w′x

w′y w′y

⇒ ⟨hjfi⟩

for all i and j s.t.
1 ≤ j ≤ n
1 ≤ i ≤ m

Precondition Update

Fix place p0 s.t.:

T1) ({p0} ∩ places(φ) = ∅
T2) (p•0 ∪ •p0) ∩ transitions(φ) = ∅
T3) M0(p0) = ∅
T4) •p0 ∩ p•0 = ∅

and for all h ∈ •p0:

T5) (•h)• = {h}
T6) h• = {p0}
T7) •h ∩ places(φ) = ∅
T8) p◦0 = ◦h = (•h)◦ = ∅

and for all f ∈ p•0

T9) |Supp(⊞(h, p0))| = |Supp(⊟(p0, f))| = 1
T10) |⊞ (h, p0)| = |⊟ (p0, f)|

For all h ∈ •p, for all f ∈ p•, create a transition
⟨hf⟩ s.t. for all p ∈ P \ {p0}:

UT1) For all v ∈ Vars(f), rename(f, v, v′) with
some v′ ∈ VarsX (p)\Vars(h)

then
UT2) ⊟(p, ⟨hf⟩) := ⊟(p, h) ⊎⊟(p, f)
UT3) ⊞(⟨hf⟩, p) := ⊞(f, p)
UT4) G(⟨hf⟩) := G(h) ∧G(f)
UT5) I(⟨hf⟩) := I(f)
then
UT6) Given that ⊞(h, p0) = w′⟨x1, x2, . . . , xn⟩

and ⊟(p0, f0) = w′⟨y1, y2, . . . , yn⟩
For i ∈ [1, n]
Let a be the smallest index s.t. xa = xi

holds:
rename(⟨hf⟩, xi, ya)
rename(⟨hf⟩, yi, ya)

then after all such transitions are made:

UT7) Remove p•, •p0, and p0

Figure 18: Rule T: Pre agglomeration

Let w ∈ T ∗ be a trace inN such thatM0
w−→M for some markingM . We shall

now show how w can be transformed into a trace w′ ∈ T ′∗ such that M ′
0

w′

−→M ′

in N ′ and where M and M ′ are equivalent w.r.t. the atomic propositions of φ.
First, we transform w to w′′, and then we transform w′′ to w′.

40

p0

h1
. . . hn

f0

w′x w′x

w′y

⇒ p0

h1
. . . hn

⟨hif0⟩

for all i s.t.
1 ≤ i ≤ n

w′x w′x

Precondition Update

Fix place p0 and transition f0 s.t.:

U1) ({p0} ∩ places(φ) = ∅
U2) (•p0 ∪ p•0 ∪ (•(•p0)

•))∩ transitions(φ) = ∅
U3) M0(p0) = ∅
U4) •p0 ∩ p•0 = ∅
U5) f0 ∈ p•0

and for all h ∈ •p:

U6) |Supp(⊞(h, p0))| = |Supp(⊟(p0, f0))| = 1
U7) h• = {p0}
U8) •h ∩ places(φ) = ∅
U9) p◦0 = ◦h = (•h)◦ = ∅

U10) |⊞ (h, p0)| = |⊟ (p0, f0)|

For all h ∈ •p0, create a transition ⟨hf0⟩ s.t. for
all p ∈ P \ {p0}:

UU1) For all v ∈ Vars(f0), rename(f0, v, v
′)

with some v′ ∈ VarX (p)\Vars(h)
then
UU2) ⊟(p, ⟨hf0⟩) := ⊟(p, h) ⊎⊟(p, f0)
UU3) ⊞(⟨hf0⟩, p) := ⊞(f0, p)
UU4) G(⟨hf0⟩) := G(h) ∧G(f0)
UU5) I(⟨hf0⟩) := I(f0)
then
UU6) Given that ⊞(h, p0) = w′⟨x1, x2, . . . , xn⟩

and ⊟(p0, f0) = w′⟨y1, y2, . . . , yn⟩
For i ∈ [1, n]
Let a be the smallest index s.t. xa = xi

holds: rename(⟨hf0⟩, xi, ya)
rename(⟨hf0⟩, yi, ya)

then after all such transitions are made:

UU7) Remove f0
UU8) If p•0 = ∅, remove p0 and all transitions in

•p0 \ transitions(φ)

Figure 19: Rule U: Pre agglomeration

By U4 and U7, h only produces tokens to p0, and by U1, U2, U8, and U9, h
does not affect which transitions are inhibited or the atomic propositions of φ.

41

This implies that a firing of h ∈ •p0 can be delayed until a firing of f ∈ p•0 needs
the tokens that the firing of h produces.

By U10, all arcs from h ∈ •p0 to p0 and the arc from p0 to f0 has the same
weight, and by U6, the arcs produces or consumes exactly one color. Hence, a
firing of any h can feed exactly one firing of f0 if the guards allow it. By U3, p0
contains no tokens in M0, and thus every firing of f0 in w can be matched with
a previous firing of an h ∈ •p0 which produced the tokens which the firing of f0
consumes.

Let w′′ ∈ T ∗ be w but where the firings of h ∈ •p0 which later feed a firing
of f0 are delayed to right before that firing of f0. By the observations above, we

have that M ′
0

w′′

−−→M too.
Rule U creates for each h ∈ •p0 a transition ⟨hf0⟩. We shall now argue

that firing ⟨hf0⟩ is equivalent to firing the sequence hf0. Initially, UU1 renames
variables which h and f0 have in common in order to avoid name clashing of
variables. Then UU2 and UU3 ensures that ⟨hf0⟩ have the same effect on p ∈
P \ {p0} as the sequence hf0. By U6 we have that h and f0 produces and
consumes a single color, respectively. UU6 ensures that this is the same color,
by renaming the corresponding variables. Hence, by UU4, UU5, and UU6, the
resulting transition ⟨hf0⟩ is fireable if and only if hf0 is fireable, and there exists

a valid binding b ∈ B⃗(⟨hf0⟩) such that firing ⟨hf0⟩ using b have the same effect
as the sequence hf0 using any pair of valid bindings. The transition ⟨hf0⟩ is
therefore equivalent to the sequence hf0, and by U1 and U9, both h, f0, and
⟨hf0⟩ are invisible to φ. Let w′ ∈ T ′ be w′′ but where every sequence of hf0 is

replaced with ⟨hf0⟩. We have that M ′
0

w′

−→ M ′ s.t. M and M ′ is equivalent to
M w.r.t. the atomic propositions of φ.

Finally, we will show the converse: That if w′ ∈ T ′∗ is a trace in N ′ such

that M ′
0

w′

−→M ′ for some marking M ′, then w′ can be transformed into a trace

w ∈ T ∗ such that M0
w−→M in N and where M and M ′ are equivalent w.r.t. the

atomic propositions of φ. As argue above, there exist valid bindings such that
the effect of ⟨hf0⟩ is equivalent to the effect of the sequence hf0. Hence w is w′

but where every occurrence of ⟨hf0⟩ is replace with the sequence hf0.

Both Rule T and Rule U have an edge case where guards referring to vari-
ables that only appear in the arcs to or from p0 after the reduction can end
up referring to variables that do not appear on the transition’s guards. While
technically valid, these guards can vastly expand the possible number of bind-
ings. As such it may be worth making a function for normalizing such guards
where possible, or disallowing the conditions under which they are made. Our
implementation does the latter, by including an extra precondition that expli-
citly disallows the rules if the variable matching used in UT6/UU6 would result
in V ars(G(⟨hf⟩)) containing any variables that do not appear on any arc of ⟨hf⟩.

A more thorough textual description of the purpose of each precondition can
be found in Appendix B.1. Also covered in Appendix B is a description of the
variation of atomic free agglomeration for CPN that we experimented with but

42

did not cover in the main thesis because of its similarity to and worse test results
than Rule U.

p0h f

1′x+ 1′y 1′⟨x, y⟩ ⟨a, b⟩ 1′a+ 1′b
⇒

p0h f

1′a+ 1′b 1′⟨a, b⟩ 1′⟨a, b⟩ 1′a+ 1′b

Figure 20: If h is always immediately followed by f and p0 has an empty initial
marking, ⟨x, y⟩ = ⟨a, b⟩ will always hold as p0 never retains any tokens outside
of hf sequences.

6.7 Rule Q: Preemptive firing

Rule Q, defined in Figure 21, does not reduce structures in the net as the other
rules, but will instead move tokens by simulating firing of transitions, which
reduces the state space size and sometimes allow other rules to remove the
emptied places. The fired transition t0 must be the only consumer of its pre set.
Furthermore, its guard must be G(t0) = ⊤ and every in- and out going arc must
have the same variables. This way, every token is essentially just transferred
through the transition. Of course, transition t0, its pre set, post set, and the
post set of its post set, cannot be in the query.

Remark 2. If t0 is part of a loop in the net, then it is possible for Rule Q to
be applied indefinitely. We avoid this by applying Rule Q at most once on each
transition.

Theorem 14. Rule Q in Figure 21 is correct for CTL*\X.

Proof. Let N = ⟨P, T,X ,⊟,⊞, I, G⟩ be a CPN with initial marking M0 and let
φ ∈CTL*\X. Let N ′ and M ′

0 be the CPN and initial marking after applying
Rule Q once on N . We argue that Rule Q is correct using an equivalence relation
≡Q⊆ M(N)×M(N ′) such that M ≡Q M ′ iff:

– M(p) =M ′(p) for all p ∈ P \ ({p0} ∪ t•0), and
– there exists a multiset m ⊆M0(p0) such that n · |⊟ (p0, t0)| = |m| for some
n ∈ N0 and M(p0) \m =M ′(p0) and M(p) ⊎m =M ′(p) for all p ∈ t•0.

Clearly, by UQ1 and UQ2, M0 ≡Q M ′
0. Our proof now follows from the next

three properties. Let M ≡Q M ′, then

1. M and M ′ satisfies the same propositions w.r.t. φ,

2. if M
t−→M1 then either M1 ≡Q M ′ or M ′ t−→M ′

1 s.t. M1 ≡Q M ′
1, and

43

m0 p0

m1p1 · · · m2 p2

t0

W

W W

⇒
where
m3 = m1 ⊎m0

m4 = m2 ⊎m0

∅ p0

m3p1 · · · m4 p2

t0

W

W W

Precondition Update

Fix place p0 and transition t0 s.t.:

Q1) p•0 = {t0} and •t0 = {p0}
Q2) G(t0) = ⊤
Q3) ({p0} ∪ t•) ∩ places(φ) = ∅ and

({t0} ∪ (t•)•) ∩ transitions(φ) = ∅
Q4) p◦0 = ∅ and (t•0)

◦ = ∅
Q5) ◦t0 = ∅
Q6) ∃k ∈ N.k · |⊟ (p0, t0)| = |M0(p0)|
Q7) •p0 ̸= ∅ =⇒ |⊟ (p0, t0)| = 1

and for all p ∈ t•0:

Q8) X (p) = X (p0)
Q9) ⊟(p0, t0) = ⊞(t0, p)

UQ1) ∀p ∈ t•0.M
′
0(p) := M0(p) ⊎M0(p0)

UQ2) M ′
0(p0) := ∅

Figure 21: Rule Q: Preemptive firing

3. ifM ′ t−→M ′
1 thenM (i) isM after i firings of t0 andM (0) t0−→M (1) t0−→ · · · t0−→

M (n) t−→M1 s.t. M (i) ≡Q M ′ for 0 ≤ i ≤ n and M1 ≡Q M ′
1.

1. : Let M ≡Q M ′. We have that M and M ′ only differs in the places
of {p0} ∪ t•0, so by Q1 and Q3, we know that M and M ′ satisfies the same
propositions w.r.t. φ.

2. : Let M ≡Q M ′ and let M
t−→ M1. By definition of ≡Q there exists a

multiset m ⊆ M0(p0) such that n · | ⊟ (p0, t0)| = |m| for some n ∈ N0 and
M(p0)\m =M ′(p0) andM(p)⊎m =M ′(p) for all p ∈ t•0. There are three cases:

– Case m = ∅, i.e. M(p) = M ′(p) for all p ∈ P : Trivially, since Rule Q does

not alter the net except the initial marking, we have that M ′ t−→ M ′
1 s.t.

M1 =M ′
1 and thus M1 ≡Q M ′

1.
– Case m ̸= ∅ and t = t0. We will show that M1 ≡Q M ′ by showing that there

exists a multiset m1 ⊆M0(p0) and an integer n1 such that n1 · |⊟ (p0, t0)| =

44

|m1| and M1(p0) \m1 = M ′(p0) and M1(p) ⊎m1 = M ′(p) for all p ∈ t•0. If
•p0 ̸= ∅, then by Q7, W = ⊟(p0, t0) contains exactly one variable, |W | = 1,
which implies that n1 = |m1|. By Q2, Q5, and Q9, it follows that there exists

a binding b ∈ B⃗(t0) such that m1 = m \ b(W) and M1(p0) \m1 = M ′(p0)
and M1(p) ⊎m1 = M ′(p) for all p ∈ t•0. And since t0 only affects {p0} ∪ t•0,
it follows that M1 ≡Q M ′. Otherwise, if •p0 = ∅, then W may contain more
variables as of Q7, so |W | ≥ 1 and we must now prove that n1 · |W | = |m1|.
However, since •p0 = ∅, the only tokens to ever occur in p0 in N are those
from the initial markingM0(p0) or a subset thereof. Specifically, we have that
M(p0) = m, because by Q1, t0 is the only transition removing tokens from

p0. By Q2, Q5, and Q9, this implies that there exists a binding b ∈ B⃗(t0)
such that m1 = m\ b(W) and n1 = n−1 and that n1 · |W | = |m1|. So again,
we find that M1 ≡Q M ′.

– Case m ̸= ∅ and t ̸= t0. We will show that M ′ t−→M ′
1 such that M1 ≡Q M ′

1.
Together, Q1 and the definition of ≡Q, implies that M(p) ⊆ M ′(p) for all
p ∈ •t. Additionally, by Q4, we have that t is not inhibited. Thus we can fire

t in M ′ using the same binding such that M ′ t−→M ′
1, and the effect of t will

be the same in both nets, which implies that m is also the difference between
M1 and M2 in {p0} ∪ t•0, i.e. M1(p0) \m =M ′

1(p0) and M1(p) ⊎m =M ′
1(p)

for all p ∈ t•0, and therefore M1 ≡Q M ′
1.

3. : Let M ≡Q M ′ and let M ′ t−→ M ′
1. By definition of ≡Q there exists a

multiset m ⊆ M0(p0) such that n · | ⊟ (p0, t0)| = |m| for some n ∈ N0 and
M(p0) \m =M ′(p0) and M(p) ⊎m =M ′(p) for all p ∈ t•0. This means, by Q2,
Q4, Q5, and Q9, that we can fire t0 n times in M , i.e. if M (i) is M after i firings

of t0 then M =M (0) and M (0) t0−→M (1) t0−→ · · · t0−→M (n). Moreover, there exists
multisets m0,m1, . . . ,mn such for all i, 0 ≤ i ≤ n we have that mi ⊆ M0(p0)
and (n − i) · |W | = |mi| and M (i)(p) = M ′(p) for all p ∈ P \ ({p0} ∪ t•0) and
M (i)(p0)\mi =M ′(p0) andM

(n)(p)⊎mi =M ′(p) for all p ∈ t•0. In other words,
M (i) ≡Q M ′ for all 0 ≤ i ≤ n since the size of mi is divisible by |W |. We have

that mn = ∅ so M (n) =M ′, and since M ′ t−→M ′
1, trivially, M

(n) t−→M1 too and
M1 ≡Q M ′

1.
The properties 1., 2., and 3., implies that ≡Q is a stuttering bisimulation. So

by Theorem 4, Rule Q must be correct for CTL*\X.

6.8 CPN results

As described in Section 4.2 we have implemented the colored reduction rules C,
D, E, F, I, Q, and U in verifypn [17, 4], which now applies these structural
reductions to the CPN before it is unfolded. Our experiments include using each
rule individually to compare rules directly, and two rule sequences: IUDCEFQ
applying all rules, and IUC applying our best performing rules. There are many
permutations of sequences in which the rules can be applied, and we chose the
IUDCEFQ sequence as the permutation where we apply all our rules. We chose
this as Rule I and U are the rules that reduce the CPNs the most, and having

45

Rule I and U early on in the rule application sequence should result in an overall
faster reduction of the CPN. Since TAPAAL did not have any color reduction
prior to this thesis, the base experiment does not perform any colored structural
reductions. Recall that all experiments use the structural reductions available
for P/T nets in verifypn as they are defined in [5] by Bønneland et al. and
in [10] by van Diepen et al. This way we investigate if our CPN reduction rules
contribute to an already well-developed suite of structural reductions for P/T
nets. Also recall that we are using the CPNs of MCC2021 for the colored struc-
tural reduction experiments, and there are 22.080 queries in total, which is 3.680
per category.

In Table 6 we see the number of applications of each rule in each experiment,
and in the Table 5 we see the percentages of queries where the given rule was
applied at least once. We see that Rule C, D, E are rarely applied when used
individually. This is because they remove parallel structures and dead transitions
of which there are few in the MCC2021 benchmark. Rule F is used in more
cases, since stable places are common. In absolute terms, Rule I is not applied
many times, but percentage-wise it is applied in one third of reachability queries.
Rule I is however only rarely appliedon CTL and LTL, only when these can
be simplified to a reachability query. This low number of absolute number of
applications, is because it can at most be applied once per query when used
alone, as it removes all irrelevant parts of the net in once application. Rule U is
the most-often applied rule according to the percentages. In Section 6.5 and 6.6
we showed that Rule I and U are only applicable for reachability properties.
However, Rule I and U are also applied on the LTL and CTL queries whenever
they can be simplified to a reachability query. Also recall that Rule U falls back to
a standard pre agglomeration on non-reachability and on deadlock properties,
which results in more applications on LTL queries. When the rules are used
together the applicability of Rule C doubles in the reachability category, from
about 4%, to about 9%, and its absolute number of applications more than
doubles. Conversely, the applicability of F and Q are about halved in the IUC
and IUDCEFQ experiments as compared to when used alone. However, Rule F
and Q are used last in this rule sequence, which clearly reduces the number
of possible applications, as there have been other reductions before these. The
number of applications of Rule D, E, and I are less affected in the experiments
containing other rules. We find that every rule is able to remove parts of the
net which the others cannot, as all rules still has applications in the experiment
which tries to apply all rules.

Table 7 shows the number of answers found in each experiment within the
time limit of 4 minutes. The number of answers is shown as differences compared
to the base experiment, which shows the absolute number of answers. See Ap-
pendix C where we split this table into several tables and show answers gained
per model. Considering that noise may be at fault for small differences in the
results, most of our rules do not seem to affect the number of answer found when
used individually. Rule C is an exception, especially on ReachabilityFireability
queries where it gains a total of 65 more answers. Rule U also has a positive

46

E
x
p
er
im

en
t

C
D

E
F

I
Q

U
IU

C
IU

D
C
E
F
Q

C
a
te
g
o
ry

⧹
R
u
le

C
D

E
F

I
Q

U
I

U
C

I
U

D
C

E
F

Q

R
ea
ch
a
b
il
it
y
C
a
rd
in
a
li
ty

4
.3
%

7
.4
%

5
.7
%

3
3
.0
%

3
4
.7
%

8
.8
%

4
3
.9
%

3
5
.7
%

4
4
.4
%

9
.3
%

3
5
.7
%

4
4
.5
%

3
.5
%

9
.3
%

9
.6
%

1
3
.6
%

5
.2
%

R
ea
ch
a
b
il
it
y
F
ir
ea
b
il
it
y

4
.3
%

6
.8
%

5
.6
%

4
0
.9
%

4
0
.3
%

8
.1
%

4
3
.1
%

4
0
.6
%

4
3
.8
%

9
.0
%

4
0
.7
%

4
4
.0
%

5
.0
%

9
.0
%

9
.6
%

1
5
.1
%

4
.8
%

L
T
L
C
a
rd
in
a
li
ty

4
.3
%

1
.5
%

5
.7
%

3
4
.5
%

0
.0
%

2
.4
%

6
.3
%

0
.0
%

6
.3
%

5
.5
%

0
.0
%

6
.3
%

1
.2
%

5
.5
%

6
.8
%

3
4
.7
%

1
.5
%

L
T
L
F
ir
ea
b
il
it
y

4
.3
%

7
.0
%

5
.6
%

4
0
.9
%

0
.0
%

2
.1
%

6
.2
%

0
.0
%

6
.2
%

5
.6
%

0
.0
%

6
.2
%

7
.0
%

5
.6
%

6
.7
%

4
1
.1
%

1
.3
%

C
T
L
C
a
rd
in
a
li
ty

2
.6
%

0
.5
%

5
.7
%

1
5
.2
%

0
.8
%

1
.6
%

1
.1
%

0
.8
%

1
.1
%

2
.8
%

0
.8
%

1
.1
%

0
.5
%

2
.8
%

6
.6
%

1
5
.1
%

1
.5
%

C
T
L
F
ir
ea
b
il
it
y

4
.3
%

1
.5
%

5
.6
%

4
0
.9
%

1
.1
%

1
.2
%

1
.0
%

1
.2
%

1
.0
%

4
.6
%

1
.2
%

1
.0
%

1
.5
%

4
.6
%

6
.1
%

4
0
.2
%

1
.1
%

T
ab

le
5:

P
er
ce
n
ta
ge
s
of

q
u
er
ie
s
w
h
er
e
th
e
gi
ve
n
ru
le

w
a
s
a
p
p
li
ed

a
t
le
a
st

o
n
ce

fo
r
th
e
g
iv
en

ex
p
er
im

en
t
a
n
d
ca
te
g
o
ry

E
x
p
er
im

en
t

C
D

E
F

I
Q

U
IU

C
IU

D
C
E
F
Q

C
a
te
g
o
ry

⧹
R
u
le

C
D

E
F

I
Q

U
I

U
C

I
U

D
C

E
F

Q

R
ea
ch
a
b
il
it
y
C
a
rd
in
a
li
ty

1
5
9
2
7
2
6
5
6
4
8
2
0
1
2
7
6
3
2
3
1
8
9
6
2
1
3
4
7
1
8
2
0
2
9
1
4
1
3
6
4
1
8
7
1
5
1
2
8
1
0
5
8
7
2
8
1
2
9
7
1
9
1

R
ea
ch
a
b
il
it
y
F
ir
ea
b
il
it
y

1
6
0
2
4
9
5
9
2
5
7
9
2
1
4
8
4
2
9
8
1
6
6
8
8
1
5
0
5
1
5
6
8
7
8
9
1
1
5
2
5
1
6
1
3
7
1
8
5
1
0
2
6
7
9
3
1
4
5
3
1
7
8

L
T
L
C
a
rd
in
a
li
ty

1
6
0

5
4

6
5
6
4
9
6
0

0
8
8

2
7
9
5

0
2
8
6
1

3
1
1

0
3
2
3
2

4
3

4
2
3

6
9
8
5
5
6
7

5
6

L
T
L
F
ir
ea
b
il
it
y

1
6
0
2
5
8
6
9
5
5
7
9
2

0
7
9

2
9
6
3

0
3
0
4
3

3
3
3

0
3
4
8
5

2
5
9

4
8
3

7
3
5
6
3
9
7

4
9

C
T
L
C
a
rd
in
a
li
ty

9
5

2
0

6
5
6
2
1
6
7

3
0

5
9

4
9
3

3
1

5
3
4

1
3
3

3
1

5
3
8

1
8

1
3
3

6
9
2
2
2
0
1

5
6

C
T
L
F
ir
ea
b
il
it
y

1
6
0

5
4

1
6
4
5
7
9
2

4
2

4
4

4
6
4

4
3

5
0
3

2
0
1

4
3

5
3
0

5
6

2
1
1

1
8
4
5
7
7
2

3
9

T
ab

le
6:

N
u
m
b
er

of
ap

p
li
ca
ti
o
n
s
o
f
th
e
g
iv
en

ru
le

in
th
e
g
iv
en

ex
p
er
im

en
t
a
n
d
ca
te
g
o
ry

47

Category ⧹ Experiment base C D E F I Q U IUC IUDCEFQ

ReachabilityCardinality 3113 +20 -3 -1 -1 +2 -4 +2 +29 +26
ReachabilityFireability 2796 +65 +3 +1 -1 +8 +2 +19 +87 +84

LTLCardinality 3205 +9 +0 +0 +0 +0 +0 -2 +9 +0
LTLFireability 3068 +10 -1 +5 +0 +1 +0 +3 +15 +9

CTlCardinality 2903 -3 +0 -3 -2 -3 -3 +0 +0 -2
CTLFireability 2322 +21 +1 +0 +1 +1 +1 +1 +22 +21

Sum 17407 +122 0 +2 -3 +9 -4 +23 +162 +138

Table 7: The number of answer found by the base experiment and the number
of answers found compared to the base experiment

effect on the number of ReachabilityFireability answers found. Surprisingly, the
experiment IUDCEFQ finds about the same number of answers as experiment
C, with only some more in ReachabilityFireability but less in LTLCardinality.
The experiment IUC performs better than IUDCEFQ with a few more answers
across all reachability and LTL categories, and IUC is hence our best perform-
ing experiment. The new answers are primarily found on the model PolyORBNT
when using Rule C and to a small extent on SharedMemory when using Rule U.

Figure 23 shows various measures for the ReachabilityFireability queries and
how each experiments performs. We have chosen to highlight results from the
ReachabilityFireability category, as this is the category where our rules are most
applicable, and we have obtained the best results. Results for the other categories
are more modest, but are still performing better than or equal to base. They can
be found in Appendix C. We will not show the results from measuring colored
reduce time, as the time spent using the colored reductions were neglible in
comparison to the other metrics, such as unfold time and applying structural
reductions on the P/T nets. This is due to the size of the CPNs, where the
structures are generally much smaller than the P/T nets, and are as such faster
to apply structural reduction rules to. For reference, for most models it took on
the order of 10−2 seconds to apply the colored structural rules, and the graphs
for this metric can also be found in Appendix C

The Subfigure (a) in Figure 23 shows that experiment C, IUC, and IUDCEFQ
uses less total time and thus answers more queries. Rule U and I also uses slightly
less time than the baseline, but the other experiments are similar to the baseline.
Regarding the size of the state space shown in Subfigure (b), Rule F seem to
increase it compared to the baseline, despite the fact that Rule F only removes
redundant places that never disables or inhibits transitions. Experiments U, IUC,
and IUDCEFQ all significantly improve the unfold time as seen in subfigure (c).
These three experiments are also the ones decreasing the time spent on structural
reductions of the unfolded net according to subfigure (d). Subfigure (e) shows the
time spent verifying the property, and experiments using Rule C are performing
the best here. As seen on subfigure (f), Rule C barely removes any structure from
the CPN, but what it does remove seem to have a big impact on the number of
answers.

48

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 23: Reachability fireability test results for CPN. (a) Total time spent (color reduction, unfolding, reduction
and verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced
nets for each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time spent in
reduction phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment, > 30
sec. (f) Top 25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted by size.

As mentioned, similar graphs can be found for the other categories in Ap-
pendix C.2. But we will now summarise the results for the other categories. The
results are similar for the reachability cardinality although less pronounced. One
thing to note, is that Rule Q has a small negative impact on verification time in
all categories. On LTL and CTL, Rule U can rarely be applied, so the biggest
reductions are made by Rule I. It is, however, still experiments using Rule C
which reduces the state space the most, no matter the category. Compared to
the baseline, experiment E spends much less time spent on structural reductions
of the unfolded net, except on CTL fireability queries, while IUDCEFQ spends
less CTL cardinality and more time on LTL fireability queries. IUDCEFQ also
spends much more time on unfolding of CTL cardinality queries.

The conclusion on the results from using our colored structural reduction
rules, is that Rule C, I, and U are the most benefiting rules. The main goal
of applying structural rules is to obtain more answers within the given time
limit, and we see from Table 7 that it is these three rules that obtains the most
additional answers. Unfortunately, Rule I and U are only correct for reachability
queries, which limits their usefulness. The benefit from using these new colored
rules are primarily time saving in unfolding- and application of rules in P/T
nets.

7 Discussion

In this section we will discuss how our results have been affected by the exist-
ing P/T net reductions, reduction rules which we have not created a colored
variant of, and a canonical form for CPNs which may benefit future structural
reductions.

7.1 CPN reductions vs P/T net reductions

With the exception of Rule U, the colored structural reduction rules presented
in this thesis have P/T net variants either from [5] by Bønneland or from [28] by
Thierry-Mieg, and each of those P/T net variants is implemented in verifypn

already. In our CPN experiments we compared base which uses the existing P/T
net reductions in verifypn to IUDECFQ which uses both the existing P/T
net reductions and our new CPN reductions. This comparison shows what our
new CPN reductions offer to the existing verifypn engine. We find that CPN
reductions indeed reduce the size of the CPNs and thus the unfolding time and
the size of the unfolded net. The reduction rules are also able to affect the query
simplification in ways the P/T net reductions cannot, since query simplification
happens after unfolding of the net but before P/T net reductions. In many cases,
however, our colored variants of the reduction rules simply performs a similar
reduction at a higher abstraction level in an earlier phase of the engine. After the
unfolding, similar P/T net reductions are performed but with finer granularity.
This may be one reason why our colored Rule D, E, F, I, and Q does not help

50

reduce the final state space compared to our baseline. They reduce the time
spent unfolding, but does not create a smaller net in the end.

Specifically for Rule F, another reason for the lack of additional answers is
that the unfolder of verifypn does not unfold stable places, i.e. places which
never gains or loses tokens according to its arcs. These stable places are also
what Rule F removes from the CPN. Hence, Rule F barely affects the unfolding
time, and simply only enables other colored structural reductions.

7.2 Additional reductions rules

There are P/T reductions rules from [5, 10, 28] which we have not defined a
colored variant of due to time constraints. However, we believe many of them
have a colored variant. We attempted to define a colored variant of Rule M by
van Diepen et al. in [10]. Rule M uses fixed-point iteration to find and remove all
places which will never gain or lose tokens. The transitions which the removed
places disable or inhibit in the initial marking are also. Rule M is therefore a
more general rule than Rule E.

However, we found that generalizing Rule M to CPNs requires checking all
bindings of all transitions potentially multiple times while keeping track of all
colors in all places. Therefore, colored Rule M is computationally infeasible, and
we opted to define the overapproximation that is colored Rule E.

7.3 Canonical form

Some colored structural reduction rules, e.g Rule D, involves checking if two
guards are semantically equivalent. This check is significantly easier if the CPNs
have a canonical form for their guard, and arc, expressions. In our definition
of CPNs in Section 3 we do not allow arc expressions, but instead move such
constraints into the guard on the transition. Instead of expressions on the arcs,
we then have multisets of tuples of variables, which is easier to compare against
one another. Hence, we need only a canonical form for guard expressions, and we
present such a conceptual canonical form in Appendix D, including an algorithm
to rewrite any guard expression to its canonical form. Notice that we do not
prove the canonical form to be canonical, but merely a concept. We did not
finish the work on the canonical form, because the MCC2021 benchmark models
are extremely well-formed already, and we did not find cases, where the canonical
form prevented the applicability of our reductions. However, a user of TAPAAL
is not guaranteed to create well-formed CPNs and a canonical form may still be
beneficial.

8 Conclusion

We presented further work on structural reductions and in particular intro-
duced several structural reductions for colored Petri nets. We have implemented
these new structural reductions in a new colored structural reduction phase

51

of the model checking tool TAPAAL [8]. For P/T nets we presented a more
general version of the structural reduction rule, Rule C, previously described
by Bønneland et al. in [5] which removes parallel places. We also presented
Rule S, an atomic free agglomeration which agglomerates one consumer at a
time. Rule S is the counterpart to the atomic post agglomeration, Rule R, by
van Diepen et al [10]. For CPNs we presented colored variants of Rule D, E,
F, and I described in [5] by Bønneland et al. and Rule Q described initially
by Thierry-Mieg in [28]. We also presented colored variants of aforementioned
Rule C and Rule S for P/T nets, however, the colored variant of Rule S fixes
k = 1 due to better performance and we call it Rule U. Additionally, we proved
the correctness of each presented rule for CTL* or a fragment thereof. We also
gave counter-examples to show why some rules are not correct for some frag-
ments of CTL*.

The presented rules was implemented in the model checking engine of TAPAAL
to complement the existing P/T net reduction, and then experimentally tested
on the P/T nets and CPNs from the Model Checking Contest [21] 2021 edition
using all categories of queries. We found that Rule C for P/T nets did not provide
any difference over the previous Rule C, despite being more general in theory.
On the other hand, Rule S allowed us to find 393 more answers combined across
all categories when added to the existing rules in TAPAAL. On CPNs, colored
Rule C alone gave us an additional 122 answers across all categories, primarily
on the model PolyORBNT. Rule U significantly reduced models like FamilyRe-
union, but only resulted in a few additional answers overall. While Rule D, E,
F, and Q reduced the CPNs, they did not affect the verification overall. The
best sequence of rules found was IUC with 162 answers more than the baseline
in total. The experiment IUC reduced the time spent unfolded and reducing the
net with non-colored structural reductions. Since Rule S and U are not applic-
able on LTL and CTL, our results were more modest on these categories. In
conclusion, our CPN reduction rules do not exceed the existing P/T net rules,
as they perform similar reductions earlier.

9 Future work

In this section we will briefly describe potential future work. As mentioned in
Section 7, we believe many of the P/T net reductions from [5, 10, 28] can be
generalized to CPNs, and that would be an obvious thing to do next. However,
based on our observations, we believe that only some of them are suited for
CPN reductions while others contribution is neglible. We therefore recommend
thoroughly experimenting with each rule to test if it most beneficial as a CPN
reduction, P/T net reduction, or both.

Next we would like to discuss potential future work regarding combinatorial
agglomerations, which is an alternative to atomic agglomerations like Rule S,
and an extension of Rule Q. The following subsections are dedicated to those
two topics.

52

9.1 Rule S variations

While we did explore some variations of pre- and free agglomerations, there are
more variations that could be worth experimenting with. Our experiments with
translating the k-scaling that sets Rule S apart over to CPNs produced generally
worse results than those of Rule U, but this is not necessarily universally the
case. It could warrant further exploration of what situations it is worth using in.

An alternate approach to the k-scaling could be to apply it without the atomic
agglomeration, instead relying on being able to identify and produce transitions
for every permutation of producers and consumers that can be matched together.
This would limit its application to the situations where it is likely the most im-
pactful, but the question still remains if the state space reduction is worth the
potentially large increase in transition count and reduction time.

Another agglomeration that was not touched upon is post agglomeration.
Like the free agglomeration of Rule S, post agglomeration can also be made
atomic such as was done with Rule R in [10], which can most likely also be
translated to CPNs. It could also be tested with the types of variations as were
tried with Rule S.

9.2 Rule Q extension

We presented Rule Q in Section 6.7 which finds places that can safely be emptied
by firing its sole consumer, without affecting the satisfiability of the property.
The presented Rule Q requires that the place being emptied, p0, has the same
type, as all of the places in the post set of the firing transition, t0. Moreover, the
expression on the arc from p0 to t0, has to be the exact same as on the arc from
t0 to any p ∈ t•0. These are the conditions Q8 and Q9 in Figure 21. However, we
believe that we can relax these conditions for reachability queries, by allowing
a different set of tokens being produced to any p, as long as we do not disable
future behaviour. A concrete example of an application of this extension is shown
in Figure 24 where neither Q8 nor Q9 holds, if we fix Weight Left Wheel as p0.
We can notice, that there are only two colours that can be produced to stp1 from
firing SampleLW, either Weight0 or Weight1. The only consumer of the place
stp1 has a guard which only valid binding of the variable w is Weight0. We can
therefore safely empty the placeWeight Left Wheel and put one token ofWeight0
into stp1. Then we would also be able to remove both Weight Left Wheel and
SampleLW with rule I, and rewrite the arc from stp1 to CCT3, such that the
guard becomes True, and simply takes a 1’dot from stp1 instead. This specific
example occurs in the CPN AirplaneLD-COL-0200 in MCC2021 using query 6
of the ReachabilityCardinality category after having applied all of our proposed
colored reduction rules on it,. The guard has more conditions in the CPN, which
has been left out in this example, but the idea holds.

53

stp1

Weight Left Wheel1′dot

SampleLW

CCT3w = Weight0

1′dot

1′w

1′w

⇒where
w ∈ {Weight0,Weight1}

stp11′Weight0

Weight Left Wheel

SampleLW

CCT3w = Weight0

1′dot

1′w

1′w

Figure 24: Rule Q: Preemptive firing extension - single valid color

Acknowledgement We would like to thank Jǐŕı Srba and Peter G. Jensen for
supervising.

References

[1] Gérard Berthelot. ‘Checking properties of nets using transformation’. In:
Applications and Theory in Petri Nets. 1985.

[2] Gérard Berthelot, Gérard Roucairol and Rüdiger Valk. ‘Reductions of nets
and parallel programs’. In: Net theory and applications. Springer, 1980,
pp. 277–290.

[3] M.C. Browne, E.M. Clarke and O. Grümberg. ‘Characterizing finite Kripke
structures in propositional temporal logic’. In: Theoretical Computer Sci-
ence 59.1 (1988), pp. 115–131. issn: 0304-3975. doi: https://doi.org/
10.1016/0304-3975(88)90098-9. url: https://www.sciencedirect.
com/science/article/pii/0304397588900989.

[4] Frederik Bønneland et al. ‘Simplification of CTL Formulae for Efficient
Model Checking of Petri Nets’. In: Jan. 2018, pp. 143–163. isbn: 978-3-
319-91267-7. doi: 10.1007/978-3-319-91268-4_8.

[5] Frederik M. Bønneland et al. ‘Stubborn versus structural reductions for
Petri nets’. In: Journal of Logical and Algebraic Methods in Programming
102 (2019), pp. 46–63. issn: 2352-2208. doi: https : / / doi . org / 10 .

54

https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989
https://www.sciencedirect.com/science/article/pii/0304397588900989
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.09.002

1016/j.jlamp.2018.09.002. url: https://www.sciencedirect.com/
science/article/pii/S235222081830035X.

[6] Edmund M. Clarke and E. Allen Emerson. ‘Design and synthesis of syn-
chronization skeletons using branching time temporal logic’. In: Logics
of Programs. Ed. by Dexter Kozen. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1982, pp. 52–71. isbn: 978-3-540-39047-3.

[7] Edmund M Clarke et al. Handbook of model checking. Vol. 10. Springer,
2018.

[8] A. David et al. ‘TAPAAL 2.0: Integrated Development Environment for
Timed-Arc Petri Nets’. In: Proceedings of the 18th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS‘12). Vol. 7214. LNCS. Springer-Verlag, 2012, 492–497.

[9] Martin Didriksen et al. ‘Automatic Synthesis of Transiently Correct Net-
work Updates via Petri Games’. In: Application and Theory of Petri Nets
and Concurrency. Ed. by Didier Buchs and Josep Carmona. Cham: Springer
International Publishing, 2021, pp. 118–137. isbn: 978-3-030-76983-3.

[10] Nicolaj Ø. Jensen Jesper A. van Diepen and Mathias M. Sørensen. ‘Im-
provements to Structural Reductions of Petri Nets with Inhibitor Arcs’.
In: (2021).

[11] E. Allen Emerson and Joseph Y. Halpern. ‘“Sometimes” and “Not Never”
Revisited: On Branching versus Linear Time Temporal Logic’. In: J. ACM
33.1 (1986), 151–178. issn: 0004-5411. doi: 10.1145/4904.4999. url:
https://doi.org/10.1145/4904.4999.

[12] S. Evangelista, S. Haddad and J. F. Pradat-Peyre. ‘Syntactical Colored
Petri Nets Reductions’. In: Automated Technology for Verification and
Analysis. Ed. by Doron A. Peled and Yih-Kuen Tsay. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 202–216. isbn: 978-3-540-31969-6.

[13] Serge Haddad and Jean-François Pradat-Peyre. ‘Efficient reductions for
LTL formulae verification’. In: Paris, France (2004).

[14] Serge Haddad and Jean-François Pradat-Peyre. ‘New Efficient Petri Nets
Reductions for Parallel Programs Verification’. In: Parallel Process. Lett.
16 (2006), pp. 101–116.

[15] Lasse Jacobsen et al. ‘Verification of Timed-Arc Petri Nets’. In: SOFSEM
2011: Theory and Practice of Computer Science. Ed. by Ivana Černá et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 46–72. isbn:
978-3-642-18381-2.

[16] Jonas Jensen, Thomas Nielsen and Lars Oestergaard. Petri Nets with Dis-
crete Variables. Jan. 2011.

[17] Jonas F. Jensen et al. ‘TAPAAL and Reachability Analysis of P/T Nets’.
In: Transactions on Petri Nets and Other Models of Concurrency XI.
Ed. by Maciej Koutny, Jörg Desel and Jetty Kleijn. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 307–318. isbn: 978-3-662-53401-4.
doi: 10.1007/978-3-662-53401-4_16. url: https://doi.org/10.
1007/978-3-662-53401-4_16.

55

https://doi.org/https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.09.002
https://www.sciencedirect.com/science/article/pii/S235222081830035X
https://www.sciencedirect.com/science/article/pii/S235222081830035X
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-662-53401-4_16

[18] Jonas Finnemann Jensen et al. ‘TAPAAL and Reachability Analysis of
P/T Nets’. English. In: Transactions on Petri Nets and Other Models of
Concurrency XI. Lecture Notes in Computer Science. Germany: Springer,
2016, pp. 307–318. isbn: 978-3-662-53400-7. doi: 10.1007/978-3-662-
53401-4_16.

[19] Kurt Jensen. ‘Coloured Petri nets’. In: Petri Nets: Central Models and
Their Properties: Advances in Petri Nets 1986, Part I Proceedings of an
Advanced Course Bad Honnef, 8–19 September 1986. Ed. by W. Brauer,
W. Reisig and G. Rozenberg. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1987, pp. 248–299. isbn: 978-3-540-47919-2. doi: 10.1007/BFb0046842.
url: https://doi.org/10.1007/BFb0046842.

[20] Kurt Jensen and Grzegorz Rozenberg. High-level Petri nets: theory and
application. Springer Science & Business Media, 2012.

[21] F. Kordon et al. Complete Results for the 2020 Edition of the Model Check-
ing Contest. http://mcc.lip6.fr/2021/results.php. 2021. (Visited on 2021).

[22] Alberto Martelli and Ugo Montanari. Unification in linear time and space:
A structured presentation. Istituto di Elaborazione della Informazione,
Consiglio Nazionale delle Ricerche, 1976.

[23] T. Murata. ‘Petri nets: Properties, analysis and applications’. In: Proceed-
ings of the IEEE 77.4 (1989), pp. 541–580. doi: 10.1109/5.24143.

[24] Emmanuel Paviot-Adet et al. LTL under reductions with weaker conditions
than stutter-invariance. 2021. arXiv: 2111.03342 [cs.CL].

[25] Carl Adam Petri. ‘Communication with automata’. In: (1966).
[26] Amir Pnueli. ‘The temporal logic of programs’. In: 18th Annual Symposium

on Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57. doi:
10.1109/SFCS.1977.32.

[27] Denis Poitrenaud and Jean-François Pradat-Peyre. ‘Pre- and Post-agglomerations
for LTL Model Checking’. In: vol. 1825. June 2000, pp. 387–408. isbn: 978-
3-540-67693-5. doi: 10.1007/3-540-44988-4_22.

[28] Yann Thierry-Mieg. ‘Structural Reductions Revisited’. In: Application and
Theory of Petri Nets and Concurrency. Ed. by Ryszard Janicki, Natalia
Sidorova and Thomas Chatain. Cham: Springer International Publishing,
2020, pp. 303–323. isbn: 978-3-030-51831-8.

A Rule T: Pre agglomearation

Rule T in Figure 25 is a pre agglomeration [28].

Theorem 15. [27] A pre agglomeration (Rule T) described in Figure 25 is cor-
rect for LTL\X.

B Rule S: Colored atomic k-scaled free agglomeration

This appendix covers the expansion of the colored Rule U to include the same
k-scaling that was applied to uncolored nets in Rule S. This variant was not in-

56

https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/BFb0046842
https://doi.org/10.1007/BFb0046842
https://doi.org/10.1109/5.24143
https://arxiv.org/abs/2111.03342
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-44988-4_22

Precondition Update

Fix place p0 s.t.:

T1) ({p0} ∩ places(φ) = ∅
T2) (p•0 ∪ •p0) ∩ transitions(φ) = ∅

for all h ∈ •p0 and f ∈ p•0:

T3) M0(p0) < ⊟(p0, f)
T4) •p0 ∩ p•0 = ∅
T5) (•h)• = {h}
T6) h• = {p0}
T7) •h ∩ places(φ) = ∅
T8) p◦0 = ◦h = (•h)◦ = ∅
T9) ⊞(h, p0) = ⊟(p0, f)

Create transition ⟨hf⟩ for all h ∈ •p0 and f ∈ p•0 s.t.
for all p ∈ P \ {p0}:

UT1) ⊟(p, ⟨hf⟩) = ⊟(p, h) +⊟(p, f)
UT2) ⊞(⟨hf⟩, p) = ⊞(f, p)
UT3) I(p, ⟨hf⟩) = I(p, f)

and

UT4) Remove •p0, p
•
0 and p0

Figure 25: Rule T: Pre agglomeration.

cluded in the final experiments as it showed generally worse results than variants
without k-scaling.

Theorem 16. Rule S in Figure 19 is correct for reachability without deadlock.

B.1 Preconditions pointwise

This section will got through the preconditions of Rules T, U, and S in more
detail.

T1/U1/S1, T2/U2/S2, and T7/U8/S8 collectively establish that the places
in which the delayed transitions produce and consume tokens are not in the
query, and that the transitions these places may enable are not in the query.

T3/U3/S3 establishes that no firings of f0 are possible without the previous
firing of some h, as ⟨hf⟩ would not replicate such a firing.

T4/U4/S4 establishes that no transition both produces and consumes from
p0, as such a transition could facilitate an infinite applications of this rule pro-
ducing an infinite number of additional transitions.

U5/S5 is that f0 is a consumer of p0. In T this is given by the ”for all f ∈ p•0”
clause instead.

T5 establishes that only a single transition may consume tokens from each
place in ••p0. This is necessary to preserve deadlock and LTL\X but not reach-
ability, and as such there is no equivalent precondition in S.

57

p0

h1
. . . hn

f0

k1 · w′x kn · w′x

w′x

v1 v2

⇒ ⟨hjf
i
0⟩

for all i and j s.t.
1 ≤ j ≤ n
1 ≤ i ≤ kj

i · v1 i · v2

p0

h1
. . . hn

w′x w′x

((kj − i) · w)′x

Precondition Update

Fix place p0 and transition f0 s.t.:

S1) ({p0} ∩ places(φ) = ∅
S2) (•p0 ∪ p•0 ∪ (••p0)

•) ∩ transitions(φ) = ∅
S3) M0(p0) = ∅
S4) •p0 ∩ p•0 = ∅
S5) f0 ∈ p•0
S6) |Supp(⊟(p0, f0))| = 1

and for all h ∈ •p:

S7) h• = {p0}
S8) •h ∩ places(φ) = ∅
S9) p◦0 = ◦h = (•h)◦ = ∅

S10) |⊞ (h, p0)| = k ∗ |⊟ (p0, f0)|
S11) k > 1 =⇒ •f0 = {p0}
S12) k > 1 =⇒ (f•

0)
◦ = ∅

And for each variable v ∈ ((⊞(h, p0)∪⊟(p0, f0))∩
(Vars(G(h)) ∪Vars(G(f0)))
there exists a p ∈ P\{p0} such that:

S13) v ∈ (Vars(⊞(h, p)) ∪Vars(⊟(p, f0)))

For all h ∈ •p0, create a transition ⟨hf⟩ s.t. for all
p ∈ P \ {p0}, for all i ∈ [1, k] for the k such that
|⊞ (h, p0)| = k ∗ |⊟ (p0, f0)|:

US1) For all v ∈ Vars(f0), rename(f0, v, v
′)

with some v′ ∈ VarX (p)\Vars(h)
then
US2) ⊟(p, ⟨hf i

0⟩) := ⊟(p, h) ⊎⊟(p, f0)
US3) ⊞(⟨hf i

0⟩, p) := i ∗⊞(f0, p)
⊞(⟨hf i

0⟩, p0) := (k − i) ∗⊟(p0, f0)
US4) G(⟨hf i

0⟩) := G(h) ∧G(f0)
US5) I(⟨hf i

0⟩) := I(f0)
then
US6) Given that ⊞(h, p0) = {⟨x1, x2, . . . , xn⟩}

and ⊟(p0, f0) = {⟨y1, y2, . . . , yn⟩}
For j ∈ [1, n]
Let l be the smallest number s.t. xl = xi

holds:
rename(⟨hf i

0⟩, xj , yl), rename(⟨hf i
0⟩, yj , yl)

then after all such transitions are made:

US7) Remove f0
US8) If p•0 = ∅, remove p0 and all transitions in

•p0 \ transitions(φ)

Figure 26: Rule S: Atomic k-scaled free agglomeration

T6/U7/S7 establishes that no h may produce tokens in places aside from p0,
as those could cause the timing of firing h to matter independently of f , which

58

agglomeration would not preserve.

T8/U9/S9 establishes that no h may be inhibited, and none of the places
any h produces or consumes tokens in may be inhibiting, as those could cause
the timing of firing h to matter. Note that there are no such restrictions on f ,
as any ⟨hf⟩ in the reduced net is fired exactly when its f would have fired in
the original net.

T9/U6/S6 is necessary because arcs on h with multiple variables can produce
tokens with colors X,Y twice, and then fire the next transition with X,X and
Y,Y. Agglomeration would remove that ability.

Collectively S6 + S10 establishes that all arcs into p0, and the arc from p0
to f0 must all have a support of exactly one. This means that any binding of
any h enables exactly one binding for f0. If one firing of such an h produces a
number of tokens that is an integer multiple k of the weight of f0, that firing
enables k firings of f0 with the same single possible binding. Without S6 + S10,
there may exist possible firings of f0 using tokens from separate firings of h that
would not exist after the agglomeration. Without S6 + S10, the ability to swap
which token is bound to which variable between transitions would be lost in the
agglomeration.

T10 requires all arcs into and out of p0 to carry the same number of tokens,
so any firing of some f can be matched with exactly one firing of some h. This is
still valid when the token count shared by all the arcs is greater than 1 because
of T9: Even if multiple different h are fired before any f, each subsequent firing
of any f must consume tokens of only a single color, which can be attributed to
a single firing of some h that produced tokens in that color.

T11/U11/S13 are equivalent preconditions. They ensure that an agglomera-
tion is not allowed if it would result in a guard containing a variable that appears
nowhere else on the transition. This is the only precondition on guards that is
necessary.

The k > 1 cases of S rely on the understanding that in the logic EF/AG
without deadlock, for any firing of some h, you can make a ’guess’ of how many
of the produced tokens are to be used by a given f , and just the possibility of
guessing the correct amount is enough to preserve reachability. Rule S produces
one transition for each possible ’guess’.

T places conditions on all f ∈ p•. In U and S however, there is no need for
any conditions on other transitions than f0 that might consume the tokens in
any of the affected places, because to preserve correctness for EF/AG without
deadlock, it is enough to preserve the possibility for any given state to be reached

59

without regard for preserving ways to not reach it.

As these k firings of f will all happen simultaneously, additional preconditions
S11 and S12 are necessary to ensure agglomeration is not done in cases where
the relative timing of the k firings of f matters. Preconditions S11 and S12 are
only applicable to k > 1 cases, as they are trivially true for k = 1 because f
firing number 1 and f firing number k are the same firing, so there can’t be other
transition firings between them.

S11 disallows f0 from having input arcs from other places than p0 in the
k > 1 case. Such arcs can make possible situations where f0 is able to fire (k-i)
times without being able to fire k times, which the agglomeration would remove.

S12 disallows f0 from placing tokens in inhibiting places in the k > 1 case.
This covers cases where f0 is inhibited by its own postset, and for the case of
weighted inhibitors, where k firings of f0 at once can activate weighted inhibit-
ors that k individual firings interleaved with other transition firings would not
necessarily do.

UT1/UU1/US1 prevents introduction of name clashes by renaming all the
variables on one of the transitions to variables not on the other. The consumer
is chosen for this, as it is later removed by UT6 anyway.

Updates 2 to 5 for both T and U give ⟨hf⟩ all the arcs of the transitions they
replace, with the arcs to and from p0 treated as canceling each other out.

The same holds for US2, US4 and US5, but US3 and US3-2 instead give ⟨hf⟩
arcs that combine to the same effect as firing h once and f0 i times.

UT6/UU6/US6 renames different variables that refer to the same color within
the same token into being the same variable. An alternate way this could be rep-
resented is by adding guards xi = yi for all i ∈ [1, n]. See Figure 20

UT7/UU7/US7, and US8, remove all places and transitions that are made
redundant by the new transitions.

60

C Additional figures

In this appendix, we show additional figures and tables generated from our test-
ing, that we did not fit into the main text. In Appendix C.1 we show the graphs
on the metrics measured during testing of our P/T reduction rules of the other
categories. The next Appendix C.2 also shows additional graphs of the metrics
on the other categories, but for our colored rules testing. Then in Appendix C.3
we show which models we have obtained additional answers in, for our colored
rules testing. Similarily in Appendix C.4 we show additional answers by model
for our P/T reduction rule testing.

C.1 P/T net reduction graphs

This section contains additional figures of the performance of our P/T net re-
duction rules for the various categories. The total time spent, time spent on re-
duction, time spent on verification, and state space size can be seen on Figure 28
(ReachabilityCardianlity), Figure 30 (LTLCardianlity), Figure 32 (LTLFireab-
ility), Figure 32 (CTLCardinality), and Figure 32 (CTLFireability). The figure
with ReachabilityFireability results is found in the main text, Section 5.3.

61

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 28: Reachability cardinality test results for P/T nets. (a) Total time spent in the reduction- and verification
phase for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 30: LTL cardinality test results for P/T nets. (a) Total time spent in the reduction- and verification
phase for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 32: LTL fireability test results for P/T nets. (a) Total time spent in the reduction- and verification phase
for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 34: CTL cardinality test results for P/T nets. (a) Total time spent in the reduction- and verification
phase for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

(a) Total time (b) State space size

(c) Reduce time (d) Verification time

Figure 36: CTL fireability test results for P/T nets. (a) Total time spent in the reduction- and verification phase
for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for each
experiment. (c) Time spent in reduction phase for each experiment, > 5 sec. (d) Time spent in verification phase
for each experiment, > 30 sec. All data points are sorted by size.

C.2 CPN reduction graphs

This section contains additional figures of the performance of our CPN reduc-
tion rules for the various categories. Various performance measures can be seen
on Figure 38 (ReachabilityCardianlity), Figure 40 (LTLCardianlity), Figure 42
(LTLFireability), Figure 42 (CTLCardinality), and Figure 42 (CTLFireability).
The figure with ReachabilityFireability results is found in the main text, Sec-
tion 6.8. Figure 48 shows the time spent applying color reduction rules in the
CPNs, for all categories.

67

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 38: Reachability cardinality test results for CPN. (a) Total time spent (color reduction, unfolding, re-
duction and verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of
reduced nets for each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time
spent in reduction phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment,
> 30 sec. (f) Top 25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted
by size.

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 40: LTL cardinality test results for CPN. (a) Total time spent (color reduction, unfolding, reduction and
verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for
each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time spent in reduction
phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment, > 30 sec. (f) Top
25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted by size.

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 42: LTL fireability test results for CPN. (a) Total time spent (color reduction, unfolding, reduction and
verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for
each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time spent in reduction
phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment, > 30 sec. (f) Top
25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted by size.

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 44: CTL cardinality test results for CPN. (a) Total time spent (color reduction, unfolding, reduction and
verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for
each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time spent in reduction
phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment, > 30 sec. (f) Top
25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted by size.

(a) Total time (b) State space size

(c) Unfold time (d) Reduce time

(e) Verification time (f) CPN Reduced size

Figure 46: CTL fireability test results for CPN. (a) Total time spent (color reduction, unfolding, reduction and
verification) for each experiment, > 30 sec. (b) Top 5% state space sizes found within timeout of reduced nets for
each experiment. (c) Time spent in unfolding phase for each experiment, > 30 sec. (d) Time spent in reduction
phase for each experiment, > 5 sec. (e) Time spent in verification phase for each experiment, > 30 sec. (f) Top
25% size (places+transitions) of Color reduced colored Petri nets. All data points are sorted by size.

(a) CTLCardinality color reduction times (b) CTLFireability color reduction times

(c) LTLCardinality color reduction times (d) LTLFireability color reduction times

(e) Reachability Cardinality color reduction times (f) Reachability Fireability color reduction times

Figure 48: Color reduction times for experiments on in all categories

C.3 CPN answers by model type

In this appendix we have split the results shown in Section 6.8 Table 7 into
each model type. This allows us to see if we uniformly gain answers no matter
the model, or if there are specific models certain rules gain additional answers
in. Table 8 shows additional answers by model in the Reachability categories.
Table 9 shows additional answers by model in the CTL categories. Table 10
shows additional answers by model in the LTL categories.

74

75

base C D E F I Q U IUC IUDCEFQ
model name

ReachabilityCardinality

AirplaneLD 144 - - - - - - - - -

BART 128 - - - - - - - - -

BridgeAndVehicles 297 - - - - - - - - -

CSRepetitions 90 - - - - - - - - -

DatabaseWithMutex 68 - - - - - - 1 1 1

DrinkVendingMachine 112 - - - - - - - - -

FamilyReunion 77 - - - - 2 - -7 -2 -7

GlobalResAllocation 112 - - - - - - - - -

LamportFastMutEx 103 - - - - - - - - -

NeoElection 112 - - - - - - - - -

PermAdmissibility 96 - - - - - - - - -

Peterson 89 - - - - - - - - -

Philosophers 144 - - - - - -1 1 1 1

PhilosophersDyn 67 - - - - - - - - -

PolyORBLF 263 - - - - - - 3 3 3

PolyORBNT 105 21 - - - - - - 21 21

QuasiCertifProtocol 109 - - - - - - - -1 -1

Referendum 128 - - - - - - - - -

SafeBus 107 -1 -1 -1 - - -1 - - -

SharedMemory 96 - - - - - - 5 7 8

Sudoku 261 - - - - - - - - -

TokenRing 122 - -2 - -1 - -2 -1 -1 -

UtilityControlRoom 270 - - - - - - - - -

VehicularWifi 13 - - - - - - - - -

ReachabilityFireability

AirplaneLD 144 - - - - - - - - -

BART 126 - - - - - - - - -

BridgeAndVehicles 221 -1 - -1 - - - - - -

CSRepetitions 70 - - - - 1 - - 1 1

DatabaseWithMutex 76 - - - - - - - - -

DrinkVendingMachine 112 - - - - - - - - -

FamilyReunion 76 - - - - 1 - -5 -3 -7

GlobalResAllocation 112 - - - - - - - - -

LamportFastMutEx 104 - - - - - - - - -

NeoElection 109 - - - - - - - - -

PermAdmissibility 96 - - - - - - - - -

Peterson 80 - - - - - - - - -

Philosophers 136 - - - - - - 7 7 7

PhilosophersDyn 67 -1 - - - - - - - -

PolyORBLF 193 1 - 1 - 1 1 1 1 1

PolyORBNT 57 64 1 1 -1 1 - -2 56 58

QuasiCertifProtocol 100 - - - - 4 - 2 5 5

Referendum 128 - - - - - - - - -

SafeBus 96 2 1 - - - 1 1 2 3

SharedMemory 84 - - - - - - 11 11 11

Sudoku 256 - - - - - - - - -

TokenRing 90 - - - - - - - 3 1

UtilityControlRoom 248 - 1 - - - - 4 4 4

VehicularWifi 15 - - - - - - - - -

Table 8: CPN reachability additional answers for each model type

76

base C D E F I Q U IUC IUDCEFQ
model name

CTLCardinality

AirplaneLD 144 - - - - - - - - -

BART 126 - - - - - - - - -

BridgeAndVehicles 245 - - - - - - - - -

CSRepetitions 88 - - - - - - - - -

DatabaseWithMutex 63 - - - - - - - - -

DrinkVendingMachine 109 - - - - - - - - -

FamilyReunion 39 - - - - - - - - -

GlobalResAllocation 106 - - - - - - - - -

LamportFastMutEx 98 - - - - - - - - -

NeoElection 101 - - - - - - - - -

PermAdmissibility 81 - - - - - - - - -

Peterson 85 - - - - - - - - -

Philosophers 133 - - - - - - - - -

PhilosophersDyn 69 - 1 -1 - -1 -1 - - -

PolyORBLF 258 - - - - - - -1 -1 -1

PolyORBNT 144 - - - - - - - - -

QuasiCertifProtocol 82 - - - - - - - - -

Referendum 128 - - - - - - - - -

SafeBus 90 -1 -1 - -1 - - - - -

SharedMemory 88 - - - - - - 1 1 1

Sudoku 267 - - - - - - - - -

TokenRing 118 -2 - -2 -1 -2 -2 - - -2

UtilityControlRoom 231 - - - - - - - - -

VehicularWifi 10 - - - - - - - - -

CTLFireability

AirplaneLD 144 - - - - - - - - -

BART 94 - - - - - - - - -

BridgeAndVehicles 195 - - - - - - - - -1

CSRepetitions 61 - - - - - - - - -

DatabaseWithMutex 51 - - - - - - - - -

DrinkVendingMachine 104 - - - - - - - - -

FamilyReunion 36 - - - - - - - - -1

GlobalResAllocation 94 - - - - - - - - -

LamportFastMutEx 89 - - - - - - - - -

NeoElection 78 - - - - - - - - -

PermAdmissibility 76 - - - - - - - - -

Peterson 63 1 1 1 1 1 1 1 1 1

Philosophers 127 - - - - - - -1 -1 -

PhilosophersDyn 67 - - - - - - - - -

PolyORBLF 187 - - - - - - - - -

PolyORBNT 91 21 - - - - - - 21 21

QuasiCertifProtocol 75 - - - - - - - - -

Referendum 128 - - - - - - - - -

SafeBus 64 - - - - - - - - 1

SharedMemory 53 -1 - -1 - - - 1 1 -

Sudoku 180 - - - - - - - - -

TokenRing 73 - - - - - - - - -

UtilityControlRoom 180 - - - - - - - - -

VehicularWifi 12 - - - - - - - - -

Table 9: CPN CTL additional answers for each model type

77

base C D E F I Q U IUC IUDCEFQ
model name

LTL Cardinality

AirplaneLD 144 - - - - - - - - -

BART 128 - - - - - - - - -

BridgeAndVehicles 295 - - - - - - -1 -1 -1

CSRepetitions 87 - - - - - - - - -

DatabaseWithMutex 69 - - - - - - - - -

DrinkVendingMachine 111 - - - - - - - - -

FamilyReunion 62 - - - - - - - - -10

GlobalResAllocation 111 - - - - - - - - -

LamportFastMutEx 111 - - - - - - - - -

NeoElection 110 - - - - - - - - -

PermAdmissibility 90 - - - - - - - - -

Peterson 94 - - - - - - - - -

Philosophers 176 - - - - - - - - -

PhilosophersDyn 75 - - - - - - - - -

PolyORBLF 269 - - - - - - - - -

PolyORBNT 145 9 - - - - - -2 9 9

QuasiCertifProtocol 96 - - - - - - - - -

Referendum 128 - - - - - - - - -

SafeBus 109 - - - - - - - - -

SharedMemory 106 - - - - - - - - -

Sudoku 289 - - - - - - - - -

TokenRing 124 - - - - - - - - -

UtilityControlRoom 261 - - - - - - 1 1 2

VehicularWifi 15 - - - - - - - - -

LTLFireability

AirplaneLD 144 - - - - - - - - -

BART 119 - - - - - - - - -

BridgeAndVehicles 275 - - - - - - - - -

CSRepetitions 91 - - - - - - - - -

DatabaseWithMutex 69 - - - - - - 1 1 1

DrinkVendingMachine 110 - - - - - - - - -

FamilyReunion 60 - - - - - - 1 2 -9

GlobalResAllocation 109 - - - - - - - - -

LamportFastMutEx 107 - - - - - - - - -

NeoElection 104 - - - - - - - - -

PermAdmissibility 90 - - - - - - - - -

Peterson 95 - - - - - - - - -

Philosophers 181 - - - - - - - - -

PhilosophersDyn 72 - - - - - - - - -

PolyORBLF 255 - - - - - - 1 1 1

PolyORBNT 129 10 - - - - - -1 10 10

QuasiCertifProtocol 95 - -1 - - - - -1 -1 -1

Referendum 128 - - - - - - - - -

SafeBus 98 - - - - 1 - - - -

SharedMemory 108 - - - - - - - - -

Sudoku 269 - - - - - - - - -

TokenRing 98 - - 5 - - - - - 5

UtilityControlRoom 247 - - - - - - 2 2 2

VehicularWifi 15 - - - - - - - - -

Table 10: CPN LTL additional answers for each model type

C.4 P/T answers by model type

In this appendix we have split the results shown in Section 5.3 Table 4 into each
model type. As there are many more model types for P/T nets than what we
can reasonably fit into the thesis, rows which contains no additional answers are
left out. Tables are sorted first by number of additional answers by the base+CS
column, and then base+C. This allows us to see if we uniformly gain answers
no matter the model, or if there are specific models certain rules gain additional
answers in. Table 11 shows additional answers by model in the Reachability
categories. Table 12 shows additional answers by model in the CTL categories.
Table 13 shows additional answers by model in the LTL categories.

78

79

base base+C base+CS
model name

ReachabilityCardinality

DLCround 315 0 37

MAPK 140 0 25

DLCflexbar 202 0 22

DLCshifumi 138 0 22

CloudDeployment 168 0 21

NoC3x3 217 0 12

FlexibleBarrier 310 0 10

MultiCrashLeafsetExtension 347 2 2

CSRepetitions 91 0 2

Kanban 205 0 2

RobotManipulation 196 0 2

SemanticWebServices 234 0 2

UtilityControlRoom 269 0 2

TwoPhaseLocking 346 -1 2

ClientsAndServers 317 0 1

DoubleExponent 97 0 1

EnergyBus 13 0 1

GPUForwardProgress 316 0 1

ShieldIIPt 290 0 1

ShieldRVt 335 0 1

RERS17pb114 31 -1 0

AirplaneLD 144 0 -1

PolyORBLF 260 0 -1

RERS17pb113 78 0 -1

Raft 143 0 -1

RERS17pb115 35 -1 -1

DatabaseWithMutex 79 0 -2

PermAdmissibility 91 0 -2

HealthRecord 271 0 -4

SharedMemory 91 -2 -4

ASLink 223 0 -8

ReachabilityFireability

DLCround 279 0 73

DLCflexbar 175 0 49

DLCshifumi 136 0 24

FlexibleBarrier 296 -1 22

NoC3x3 176 0 14

UtilityControlRoom 246 0 14

MultiCrashLeafsetExtension 272 0 11

CloudDeployment 182 -1 10

ShieldRVt 309 -1 6

CSRepetitions 78 0 4

FamilyReunion 72 0 4

SafeBus 66 -1 4

CANConstruction 154 0 3

PolyORBNT 85 1 2

SharedMemory 78 0 2

ShieldPPPt 331 0 2

SimpleLoadBal 70 0 2

DNAwalker 199 1 1

RERS17pb113 30 1 1

SmallOperatingSystem 296 1 1

CloudReconfiguration 351 0 1

DES 310 0 1

MultiwaySync 13 0 1

PolyORBLF 238 0 1

RERS17pb115 2 -1 0

Raft 134 0 -1

HealthRecord 270 0 -2

AirplaneLD 143 0 -7

ASLink 135 0 -15

Table 11: P/T Reachability additional answers for each model type

base base+C base+CS
model name

CTLCardinality

MAPK 67 1 2

DLCround 293 0 2

MultiCrashLeafsetExtension 375 1 1

DLCflexbar 188 0 1

NoC3x3 208 0 1

RERS17pb113 93 0 1

TCPcondis 90 0 1

Kanban 102 0 -1

PolyORBLF 262 0 -1

SquareGrid 44 0 -1

CloudReconfiguration 328 -1 -1

CTLFireability

DLCshifumi 72 0 2

NoC3x3 138 0 2

Solitaire 44 3 1

GlobalResAllocation 23 1 1

BART 79 0 1

CloudDeployment 145 0 1

DLCflexbar 123 0 1

ClientsAndServers 211 0 -1

PolyORBNT 95 0 -1

SafeBus 54 0 -1

ASLink 201 0 -2

Table 12: P/T CTL additional answers for each model type

80

base base+C base+CS
model name

LTLCardinality

MultiCrashLeafsetExtension 407 0 2

HouseConstruction 191 -1 2

CloudDeployment 173 0 1

DLCround 340 0 1

MAPK 164 0 1

RERS17pb115 114 0 1

RobotManipulation 205 0 1

LTLFireability

DLCflexbar 196 0 3

SwimmingPool 150 0 2

HouseConstruction 200 0 1

CloudReconfiguration 328 -1 1

BridgeAndVehicles 280 0 -1

ERK 93 0 -1

FlexibleBarrier 290 0 -1

SmallOperatingSystem 300 -1 -1

Table 13: P/T LTL additional answers for each model type

81

D Canonical form and term unification

In CPNs, some guards may be syntactically different, but equivalent semantic-
ally, e.g. let x, y ∈ VarC then x = y and x ≤ y ∧ x ≥ y are equivalent. For
structural reductions, it is beneficial to know if two guards are semantically
equivalent. Hence, we want to rewrite such guards to a canonical form, making
it easier to compare guards. In this rewrite we can also consider term unification.
E.g. if x = y according to the guard, then we can replace all occurances of y
with x in the guard and on the associated arcs.

In short, our guards consist of disjunctions, conjunctions, negations, and com-
parisons. In short, our guards consist of disjunctions, conjunctions, negations,
and comparisons. Hence, a disjunctive normal form (DNF) is fitting. We can
also eliminate all negations, since comparisons can be negated. To achieve syn-
tactical equivalence between semantically equivalent guards, we must also define
an order in which conjunction clauses and the comparisons in the conjunctions
appear. Assume that (Var,⪯) is a total order of all variables. This order induces
a lexicographical order of comparisons, which induces a lexicographical ordering
of conjunctions in the DNF. From now on assume all guards are written lexico-
graphically. To construct the canonical form, we must also simplify, reduce, and
combine as many comparisons as possible. Another thing to note is, that the term
unification algorithms, such as Martelli/Montanari’s algorithm [22], operate on
a set of equalities (i.e. a single conjunction), while we have disjunctions and more
types of comparisons. Therefore, term unification is only possible, when every
conjunction clause of the DNF contain the comparison x = τC , in which case we
can substitute every x with τC .

With all of the above in mind, a potential algorithm to construct a canonical
form of transition t with guard G(t) follows:

1. Let σ : VarC → C be a substitution/unification mapping, with initially
σ := {}.

2. Reduce color expressions by noticing that τC++ and τC-- are dual functions
with one parameter. Hence we have that:

τC++-- ⇒ τC

τC--++ ⇒ τC

3. Decompose comparisons when both sides are a successor or predecessor ex-
pressions:

τ1C++ ▷◁ τ
2
C++ ⇒ τ1C ▷◁ τ2C

τ1C-- ▷◁ τ
2
C-- ⇒ τ1C ▷◁ τ2C

4. Prefer successor over predecessor:

τ1C-- ▷◁ τ
2
C ⇒ τ1C ▷◁ τ2C++

τ1C ▷◁ τ2C-- ⇒ τ1C++ ▷◁ τ
2
C

82

5. Push all negations to the bottom using De Morgan’s law and double negation
elimination:

¬(γ1 ∧ γ2) ⇒ ¬γ1 ∨ ¬γ2
¬(γ1 ∨ γ2) ⇒ ¬γ1 ∧ ¬γ2
¬¬γ ⇒ γ

6. To eliminate the remaining negations, we negate comparisons

¬(τ1C < τ2C) ⇒ τ1C ≥ τ2C

¬(τ1C ≤ τ2C) ⇒ τ1C > τ2C

¬(τ1C = τ2C) ⇒ τ1C ̸= τ2C

¬(τ1C ≥ τ2C) ⇒ τ1C < τ2C

¬(τ1C > τ2C) ⇒ τ1C ≤ τ2C

¬(τ1C ̸= τ2C) ⇒ τ1C = τ2C

7. Consider ▷◁∈ {<,≤,=,≥, >, ̸=}. We can flip some of these comparisons,
reducing ▷◁ to {<,≤,=, ̸=}

τ1C < τ2C ⇒ τ1C < τ2C

τ1C ≤ τ2C ⇒ τ1C ≤ τ2C

τ1C = τ2C ⇒ τ1C = τ2C

τ1C ≥ τ2C ⇒ τ2C ≤ τ1C

τ1C > τ2C ⇒ τ2C < τ1C

τ1C ̸= τ2C ⇒ τ1C ̸= τ2C

8. Rewrite to minimal disjunctive normal form (DNF) using the Quine–McCluskey
algorithm. Each comparison τ1C ▷◁ τ2C is considered a boolean variable during
this algorithm, and syntactically equivalent comparisons are considered to
be the same boolean variable.

83

9. Let c1, c2 ∈ C and reduce and combine comparisons by applying the following
equivalences:

γ ∧ γ ⇒ γ

γ ∨ γ ⇒ γ

⊤ ∨ γ ⇒ ⊤
⊥∨ γ ⇒ γ

⊤ ∧ γ ⇒ γ

⊥ ∧ γ ⇒ ⊥
c1 < c2 ⇒ ⊤ if c1 < c2

c1 < c2 ⇒ ⊥ if c1 ≥ c2

c1 ≤ c2 ⇒ ⊤ if c1 ≤ c2

c1 ≤ c2 ⇒ ⊥ if c1 > c2

c1 = c2 ⇒ ⊥ if c1 ̸= c2

c1 = c2 ⇒ ⊤ if c1 = c2

τC = τC ⇒ ⊤
τ1C < τ2C ∨ τ1C = τ2C ⇒ τ1C ≤ τ2C

τ1C < τ2C ∨ τ2C < τ1C ⇒ τ1C ̸= τ2C

τ1C < τ2C ∨ τ2C ≤ τ1C ⇒ ⊤
τ1C < τ2C ∧ τ1C ≤ τ2C ⇒ τ1C < τ2C

τ1C < τ2C ∨ τ1C ≤ τ2C ⇒ τ1C ≤ τ2C

τ1C < τ2C ∧ τ1C = τ2C ⇒ ⊥
τ1C < τ2C ∧ τ2C < τ1C ⇒ ⊥
τ1C ≤ τ2C ∧ τ1C ̸= τ2C ⇒ τ1C < τ2C

τ1C ≤ τ2C ∧ τ2C ≤ τ1C ⇒ τ1C = τ2C

τ1C = τ2C ∧ τ2C ̸= τ1C ⇒ ⊥

10. If x = τC appears in every conjunction clause of the DNF, then update
σ := σ ∪ {x 7→ τC} and then replace every occurrance of x with τC .
If at least one reduction was done in step 9, go back to 8.

11. We cannot have substitute variables with concrete colors on the arcs, so we
have to re-insert those in the guard. For every (x 7→ τC) ∈ σ do:
– If τC ̸= y, then insert the comparison x = τC in every conjunctive clause

of the DNF.
– If τC = y, then for all p ∈ P update ⊟(p, t) to ⊟′(p, t) such that

⊟′(p, t)(y) := ⊟(p, t)(y) + ⊟(p, t)(x) and ⊟′(p, t)(x) := 0. Similarly, for
⊞(t, p).

12. For every color type C ∈ D let VarC = {x1, x2, . . . , xn} such that x1 ≺ x2 ≺
· · · ≺ xn and let Vars(t) ∩VarC = {y1, y2, , ym} such that y1 ≺ y2 ≺ · · · ≺
yn. For each integer i ∈ [1,m] starting for 1, replace all occurrences of yi

84

with xi in G(t) and on every arc’s multiset, ⊟(p, t) and ⊞(t, p). This way,
the transition now uses the smallest variables while lexicographical order is
maintained.

In the CPNs in MCC2021, we found no transitions for which the normal form
allows us to do additional reductions (so far).

85

	1 Introduction
	1.1 Our contributions
	1.2 Related Work
	1.3 Thesis outline

	2 Preliminaries
	2.1 Labeled transition systems
	2.2 CTL* and its fragments
	2.2.1 CTL*
	2.2.2 CTL
	2.2.3 LTL
	2.2.4 Stuttering
	2.2.5 Reachability and safety

	3 Petri nets
	3.1 Colors
	3.2 Variables and bindings
	3.3 Colored Petri nets
	3.4 P/T nets

	4 Strutural reductions
	4.1 Structural reduction categories
	4.1.1 Redundant structures
	4.1.2 Parallel structures
	4.1.3 Agglomerations

	4.2 Benchmark and experimental setup

	5 Structural reductions for P/T nets
	5.1 Rule C: Parallel Places (P/T)
	5.2 Rule S: Atomic free agglomeration
	5.3 P/T results

	6 Structural reductions for CPNs
	6.1 Rule C: Parallel places (CPN)
	6.2 Rule D: Parallel transitions
	6.3 Rule E: Redundant transitions
	6.4 Rule F: Redundant places
	6.5 Rule I: Irrelevant places and transitions
	6.6 Rules T and U: Pre agglomeration and atomic free agglomeration
	6.7 Rule Q: Preemptive firing
	6.8 CPN results

	7 Discussion
	7.1 CPN reductions vs P/T net reductions
	7.2 Additional reductions rules
	7.3 Canonical form

	8 Conclusion
	9 Future work
	9.1 Rule S variations
	9.2 Rule Q extension

	References
	A Rule T: Pre agglomearation
	B Rule S: Colored atomic k-scaled free agglomeration
	B.1 Preconditions pointwise

	C Additional figures
	C.1 P/T net reduction graphs
	C.2 CPN reduction graphs
	C.3 CPN answers by model type
	C.4 P/T answers by model type

	D Canonical form and term unification

