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Chapter 1

Introduction

The process of design serves as a base for the formulation of theoretical analysis
and a deeper understanding of the design itself. According to Oxman [60], there
are four certain major classes describing the process of design: problem formula-
tion, synthesis/generation, representation, and evaluation. By the mid-80s, Schön
[71] shifted the focus of design toward the designer and initiated the study of De-
sign Thinking. More specifically, Schön emphasizes the interaction of the designer
with a given problem and creates a topological mind map of the process. There-
fore, he suggests that design thinking is constituted of the following: a process of
reception (perception), reflection (interpretation), and reaction (transformation).

Rowe et al. [68] summarize the understanding of design thinking in archi-
tecture and suggest its categorization between the properties of incompleteness -
what Schön describes as design thinking (reception, reflection, and reaction) and
precision - the evaluation and functionality of the results of design thinking. He,
therefore, redefines design thinking as the process that lingers between the two,
aiming to balance for continued problem-space structuring.

Already by the 1990s, architectural projects, conferences, competitions, and ex-
hibitions start to formulate a theoretical discourse regarding digital design [60]. By
the 2000s, most of the design processes had come under the spell of the digital age.
This digitalization of processes enhances architectural design thinking by serving
as a mediator between incompleteness and precision [68]. The digital age has made
considerable contributions to design thinking in at least four areas:

• The exploration of conceptual and technical options regarding new repre-
sentational methods (e.g. renders) and tools that provide higher precision
(e.g. CAD drawings).

• The iterative power of generate-and-test procedures results in the generation
of a plausible array of satisfactory outcomes. Therefore, it may assist in better
problem-space structuring.

1



2 Chapter 1. Introduction

• Broader access to information. The evaluation and assessment of outcomes
may be executed with higher degrees of accuracy, scope, and technical so-
phistication.

• Better research capabilities and simulation techniques.

The prominent link between all the processes of design is the role of the de-
signer. Even though this role is also evolving along with contemporary tech-
nologies, it still retains a vital position in the design process. The contemporary
designer interacts with generative and performative mechanisms, while data has
become a "new material" for them. The role of the designer adapts to the con-
temporary world, as practitioners, nowadays, adapt to the new technological tools,
and sometimes even create their own apparatuses and digital equipment.

What the digital age has succeeded in is the improvement of capacities for ac-
quirement, manipulation, and assessment of information. That said, further inves-
tigation of contemporary tools and methods should be applied in order to advance
the workflow of architectural design. In Speculative Hybrids, we aim to explore
the potentials of Machine Learning for architectural design, and therefore inves-
tigate how its use enhances design processes in the early design phases. More
specifically, we suggest the implementation of a Generative Adversarial Network
(GAN), trained with a dataset of building geometries in the form of annotated
point clouds.

Speculative Hybrids are newly generated building geometries that are charac-
terized by the features of the dataset that was used to train the model. Our hypoth-
esis lays upon those hybrids and their ability to inspire architectural practitioners
in the ideation phase through exploration, within the context of site-specific rules.
Their purpose is to bridge the gap between incompleteness and precision. We be-
lieve that the iterative power of such a tool and the design solutions it can provide
can inspire practitioners of the field and assist them in structuring fundamental
problem-space.

1.1 Reconsidering Otherness

Speculative Hybrids is building on the research project Reconsidering Otherness,
led by Anca-Simona Hovarth at the Research Laboratory for Art and Technology
at Aalborg University. Reconsidering Otherness investigates the use of Machine
Learning in designing conceptual architecture. The project proposes a method to
assist practitioners in the field during the ideation phase. The project consists of
three steps:

• The collection of two datasets: one dataset of texts describing conceptual ar-
chitecture proposals, and one dataset of the representational images of those
proposals.
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• Training Machine Learning algorithms to generate new architectures: 3 Ma-
chine Learning models generating text from text, images from images (se-
lected results can be seen in fig. 1.1), and images from text.

• The submission of a proposal to the eVolo architectural competition with the
generated results.

Figure 1.1: Images generated from a model trained with images that describe skyscrapers. The
image is a part of Reconsidering Otherness, which aims to explore new 2D conceptual architecture
mediums.

This initial work proved to be valuable in understanding and establishing de-
sign processes that involve Machine Learning in the design of conceptual archi-
tecture. However, while images and texts can be a source of inspiration dur-
ing the ideation phase, the actuality of the design process must necessarily in-
volve 3-dimensional (3D) shapes. Speculative Hybrids will shift from text and
2-dimensional (2D) images to 3D point clouds. The Speculative Hybrids project
aims to:

• Establish a theoretical background regarding the use of Machine Learning in
the formation of conceptual architecture.

• Investigate existing datasets of annotated point clouds resulting from 3D
scanning technologies that have been processed and classified through deep
learning algorithms.
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• Create a dataset consisting of annotated point clouds that describe simple
building geometries.

• Train a state-of-the-art 3D GAN model to generate new architecture volumes
based on the created dataset.

• Explore if and how such a method can shape the contemporary design think-
ing.

Exploring text, 2D, and 3D Machine Learning algorithms for the creation of con-
ceptual architecture, Speculative Hybrids, and Reconsidering Otherness together
will create a multi-faceted perspective on design processes and the possible bene-
fits and pitfalls of designing with Machine Learning.



Chapter 2

Background and literature review

The notion of digital design, Generative Adversarial Networks, and point clouds
in the context of architectural design are explained and evaluated.

2.1 Digital Age in Architecture

There is no doubt that architecture has been significantly influenced by digital me-
dia and information technology. Digital technology, which can be described as
the combination of the two, is assisting the field of architecture in areas such as
design, fabrication, construction, maintenance, as well as in the way architecture
is taught. However, contemporary technology has revolutionized not merely the
way humans act upon designing but also the way they think [4]. Hovarth [32]
analysed texts written between 2005 and 2020 that form a part of critical discourse
in computational architecture in order to gain a better understanding of the evo-
lution brought upon architecture due to the digitalization processes. There is a
radical change in the perception of design because of the use of digital media,
which are not only used as representative tools but also for design development,
and manufacturing.

There is an extended number of state-of-the-art projects that describe the multi-
dimensional approaches within which digital technology has influenced architec-
ture. For instance, the application of digital technologies to architectural design has
been the subject of research in a number of areas including the use of computer-
aided design (CAD) in the design process [29], the use of integrated systems in
architectural practice [22], the role of virtual environments in design [51, 86], the
impact of digital technologies on the built environment [44], and the way architec-
ture is taught and learned. [4] All these tools have provided the ability to generate
construction information directly from design information, and evaluate the built
environment by controlling and improving building components or systems. In
conclusion, researchers in the field investigate how digital technology has changed

5



6 Chapter 2. Background and literature review

the architectural workflows, the thinking processes of the practitioners, and the
communication of the ideation phase [48, 87].

2.1.1 Machine Learning applications in Architecture

The increasing implementation of Machine Learning algorithms and models is
severely affecting the development of architecture. Tamke et. al [76] suggest
that new architectural design practices might be based on Machine Learning ap-
proaches to better leverage data-rich environments and workflows. In their re-
search, they propose five emergent practices for Machine Learning implementa-
tion:

• Analysis of design space - emergent parameterization [10, 91].

• Designing - short-circuiting simulation [3, 40].

• Analysis - defining descriptors for learning and classification [33, 50].

• Operation and life data - adapting ongoing behavior [35, 64].

• Making - adapting fabrication [9].

Caetano et al. [13] proposed a taxonomy for parametric, generative, and algo-
rithmic design, all key terms of Computational Design in Architecture. Regarding
the first emerging practice, a great interest has been gathered around generative de-
sign and its implementation in the design processes. More specifically, As et al. [7]
are implementing Deep Neural Networks in order to generate conceptual designs.
Additionally, Huang and Zheng proposed, in 2018 [33] a twofold project in which
they recognized architectural drawings and then generated new ones. Algeciras-
Rodriguez [6] utilized Self-organizing Maps [54] in order to produce hybrid forms
that acquire characteristics from several input references. Dimensionality reduction
tools are used for design data visualizations [50] and generative design exploration
[31]. Finally, Campo et al. [21] question whether machines can dream. In order
to come to an answer, they suggest a two dimensional approach to designing with
the aid of Machine Learning, which serves as a proof of the concept. Steinfeld
[75] summarizes the impact of Machine Learning processes in design within three
categories: Machine Learning as actor1, as material2, and as provocateur3.

1Machine Learning models that co-designs along with the designer.
2Generative models that provide new form of design “material”, usually curated by a designer.
3Machine Learning models that form new imagery.
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2.2 Growing Neural Gas Algorithm

Feature space optimization and clustering methods are important factors regard-
ing Machine Learning algorithms. Several algorithms attempt to succeed in the
aforementioned techniques such as Self Organizing Maps [54], k-means [39], Prin-
cipal Component Analysis [1], T-SNE [46], and Growing Neural Gas (GNG) [24].
The last one is an unsupervised topology learning algorithm that constructs a data
space by interconnected units that focus on the most dense areas of that space [24,
82].

Growing Neural Gas is able to learn the important topological relations in a
given set of input vectors using Hebbian Learning Rule [56]. The Hebbian Learn-
ing Rule is a learning rule that specifies how much the weight of the connection
between two units should be increased or decreased in proportion to the product of
their activation. The GNG dynamically adds or removes nodes and approximates
the input space more accurately than a network with a predefined structure, such
as the Kohonen self-organizing feature map [61].

More specifically, GNG algorithm initiates its process by creating two randomly
placed neurons connected with each other by an edge. Then, a random data point
is chosen from the given data distribution. The algorithm finds the neuron closer
to that point, also known as the best-performing unit (BPU), and moves it closer
to it, along with all the other neurons directly connected to it. The age of the edge
between BPU and the second closest neuron to the selected point (SBPU) is set to
zero, if it does not exist yet, it is at this point that it gets created. If an edge is
older than a predefined maximum age, then that edge is deleted. New neurons
spawn every once in a while in the in-between distance of the worst-performing
neuron4 so far and its worst-performing neighbour, and the edge between them
gets deleted. The process is usually terminated by a boundary condition, such as
when the number of spawned neurons or the maximum number of iterations is
reached. Fig. 2.1 shows the implementation of the GNG algorithm on an image.
Additionally, the algorithm can utilized for spatial data. Orts-Escolano et al. ?? are
proposing a method for 3D colour object reconstruction based on Growing Neural
Gas.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were introduced in mid-2014 by Ian
Goodfellow [28]. Generative modeling [27] is an unsupervised Machine Learn-
ing task that involves distinguishing and learning complex data distributions of
input data, i.e. the training dataset, [59] in order to generate new samples that

4Worst-performing Units (WPU) are the neurons with the highest cumulative error (sum of dis-
tance from each data point over each iteration)
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Figure 2.1: An example of a Growing Neural Gas algorithm performing. The parameters for GNG
are: max_Nodes = 2400, n_iter_before_neuron_added = 100, after_split_error_decay_rate =
0.5, error_decay_rate = 0.995, min_distance_for_update = 0.01, step = 0.2, n_start_nodes = 2,
max_edge_age = 50, and neighbour_step = 0.005

could have been part of the initial training dataset, meaning they have similar data
distributions.

Generative Adversarial Networks consist of two sub-models: the generator model,
which is trained to generate new samples, and the discriminator model, which con-
sequently aims to classify these samples as either fake or real [28]. Fig. 2.2 demon-
strates the basic architecture of a Generative Adversarial Network. Typically, the
generative network learns to map data points from a latent space to a data dis-
tribution of a given training set, while the discriminative network distinguishes
whether a sample is from the generative model distribution or the training dataset
distribution. The two sub-models are trained together in a zero-sum game until
the discriminator model cannot distinguish whether the sample that is evaluating
is generated or pooled from the initial training set [18].

GANs have been successful in many applications including image synthesis,
semantic image editing, style transfer, image super-resolution, and classification
[18]. The implementation of Generative models has proven fruitful using a variety
of data types, including text [8], images [36], and videos [5]. However, the increas-
ing attention toward 3D (spatial) data has led GANs to succeed in several other
research areas.
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Figure 2.2: The overview of a Generative Adversarial Network’s structure.

2.3.1 3D GANs

The implementation of 3D GANs focuses on a variety of topics mostly using point
clouds as input or output data. Applications of generative models have shown
results in image-to-point-cloud transformation [42], text-to-voxel [70], point-cloud-
to-point-cloud completion [94], and point cloud upsampling [43]. These methods
have achieved impressive results in enhancing Computer Vision applications.

For the purposes of Speculative Hybrids, we investigate the capabilities of Gen-
erative Adversarial Networks in generating 3D point clouds from random latent
codes. Even though Generative Adversarial Networks computing with 3D point
clouds, are still under-explored [2], there are already several algorithms attempting
to succeed in the task.

Achlioptas et al. [2] were the first ones in the field to suggest and implement a
method for point cloud generation. Raw point cloud GAN (r-GAN) was the initial
model for generating point clouds from raw data points, while latent-space GAN
(l-GAN) was a simplified version of r-GAN incorporating pre-trained autoencoders
for pre-processing the data [2]. Another GAN proposed by Valsesia et al. [80] is
using a dynamic graph convolutional network instead of a typical generator. Tree-
GAN was proposed in 2019 by [73] which shapes a hierarchical structure in feature
space by using tree-structured graph convolutions. Finally, the most recent attempt
at generating point clouds is introduced by Yang et al. in 2021 [90].

Controllable Point Cloud Generative Adversarial Network (CPCGAN) not only
succeeds in higher performance rates regarding results and computational effec-
tiveness than previous algorithms, but it also allows the manipulation of the gen-
erated output towards specific directions of preference. Additionally, CPCGAN
provides semantic segmentation of the generated point clouds. In fig 2.3 a quanti-
tative comparison can be seen between the performance metrics of the models as
proposed by Achlioptas et al. [2], and performed by Yang et al. [90].
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Figure 2.3: The red and the blue values highlight the best and the second-best results respectively.
The * indicates that the results were reported in [73] and [80], while [90] is cited for the implementa-
tion of the comparison.

2.3.2 CPCGAN

CPCGAN [90] succeeds in generating point clouds from random latent codes by
implementing a two-stage GAN framework. The first network of CPCGAN is
called Structure GAN while the second network is called Final GAN. Structure
GAN is learning the distribution of 32-point structure point clouds, and outputs
newly generated structure point clouds, along with their semantic labels. Subse-
quently, the output of the Structure GAN serves as an input for the Final GAN that
learns the distribution of complete point clouds and therefore is able to populate
the structure point clouds. A detailed representation of the algorithm can be seen
in fig.2.4. The GANs are implementing typical generator models and PointNet-
based [66] discriminators. Yang et al. [90] have used the ShapeNet-Partseg [92] in
order to showcase the effectiveness of CPCGAN.

Figure 2.4: A diagram of the structure of the network of Controllable Point Cloud Generative Ad-
versarial Network.
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2.4 Point clouds

Even though there are many ways of storing 3D (spatial) information, most 3D
Generative Adversarial Networks are employing point clouds. A point cloud is a
set of data points in a three-dimensional coordinate system, defined by x,y, and
z coordinates [30]. Besides the coordinate values, the dataset may also contain
other features and attributes depending on the creation processing pipeline, such
as reflection intensities and RGB color values.

The reason why point clouds are popular lies in the simplicity of their compo-
nents. Using single points, with no attributes of scale, rotation, etc. can be handled
and computed much easier in a large amount. This makes point clouds quite easy
to edit, display, and filter. Additionally, the variety and accessibility of sensors (
LiDar, Kinect, etc.) that construct point clouds have been raising more attention to
this specific data type. Fig. 2.5 is depicting a point cloud captured with a LiDar
Camera [85], consisting of x,y,z coordinates and R,G,B color values.

Figure 2.5: The 3D scan of an interior space exported and represented as a point cloud.

2.4.1 Point cloud datasets

Several research projects in the past have developed new approaches towards col-
lecting or generating segmented point clouds. Most of these studies have been fo-
cusing on advancing the field of Computer Vision in different scopes. The KITTY
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Vision Benchmark [25] was realized in order to assist autonomous driving by im-
plementing urban scale spatial information such as cars, trees, roads, pedestrian
streets, and building blocks. The ModelNet dataset [88] has a variety of indoor
space data, mostly focusing on objects and furniture detection. The ShapeNet-
Partseg [92] consists of 16 object classes, each of them segmented according to its
parts (e.g. Airplane: tail, body, wheels, wings). The ArCH dataset [47] consists
of large-scale heritage annotated point clouds. Finally, Croce et al. [19] present
a semi-automated way of labeling heritage buildings and provide a dataset of 16
annotated point clouds of heritage buildings.

For the purposes of Speculative Hybrids, a dataset with segmented point clouds
describing building geometries is needed. A dataset contains related data values
that are usually collected or measured as part of a cohort study. However, in the
context of Speculative Hybrids, no research has been done providing a suitable
dataset. Therefore, the creation of a dataset consisting of annotated point clouds
that describe building geometries is realized.

2.5 Dataset creation and augmentation

The output results of a Machine Learning model are determined by the dataset
used to train it. The quality and size of the dataset is thus crucial for the learning
process of the algorithm [15]. If a dataset is inadequate, the model can return
inaccurate results (by learning things wrong) [84], or possibly not be able to learn
anything at all.

Several aspects need to be taken into consideration when creating a new dataset
[63]. Firstly, a dataset should reflect the world as realistically a possible, and be
characterized by high fidelity regarding the information it is providing. Addition-
ally, the biases that are possibly incorporated into a dataset should be eliminated
or at least minimized. As far as privacy is concerned for copyrights and ownership,
the dataset should be anonymized if necessary.

As mentioned above, the size of the dataset used to train a Machine Learning
model will have a great impact on the quality of the resulting output. Deep learn-
ing algorithms typically require datasets of considerable size. Therefore, several
data augmentation techniques can be used to expand the size of a dataset. Some
data augmentation techniques are flip, rotate, scale, crop, translation, and adding
noise [81].



Chapter 3

Design and Implementation

Several processes were tested in order to acquire the suitable data for the Specula-
tive Hybrids project. In this report, we are demonstrating the methodology used
to create and transform data, as well as the implementation of CPCGAN for the
generation of mass building conceptual architecture.

3.1 Dataset Creation

As mentioned in the Subsec. 2.4.1, there is a lack of point cloud datasets of seg-
mented building geometries. For the purpose of Speculative Hybrids a simple
dataset is created manually in order to serve as an input for the CPCGAN algo-
rithm. The created dataset is inspired by modern single-family houses around
Denmark, some of which can be seen in fig. 3.1.

Figure 3.1: A variation of summer houses in Denmark.

The creation of the dataset is accomplished within four stages:

13
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• Module Geometries: Creation of module geometries that represent wall com-
ponents in Rhinoceros® [49].

• Mesh Conversion: Transformation of module geometries into mesh.

• Point cloud Generation: Conversion of the geometries into point clouds with
the Cockroach plug-in [83].

• Data Pre-processing: Export of point clouds and file formatting in order to
fit the purposes of CPCGAN.

3.1.1 Module Geometries

In order to be able to generate an adequate amount of building solutions, the
implementation of module geometries was decided. 25 modules, describing wall
variations, were created within the Rhinoceros® environment for an automated
generation of a building series. Data augmentation methods were also applied in
order to maximize the size of the dataset. More specifically, the modules were
mapped into 3 different scales, and rotated 90 degrees for a wider feature map.
A number of plan variations according to the wall modules can be seen in fig.
3.2. Additionally, 35 different roof modules were created and combined with each
aforementioned wall module respectively, those variations are shown in fig. 3.3.
Additional to the wall and roof modules, the generation of floor modules as sim-
ple surfaces was realized. The single components (surfaces) of each module were
placed in specific layers, which in the end served as the segmentation and classi-
fication labels of the point cloud. The layers are: WALL_Module, ROOF_Module, and
FLOOR_Module.

3.1.2 Mesh Conversion

An amount of generated building geometries are demonstrated in fig. 3.4. After
the completion of the building generation, all surfaces included in one layer are
joined and then converted into a mesh, which is saved in a new corresponding
layer. The same process is repeated for all the three pre-existing modules. The new
layers that host the meshes are named: WALL_Mesh, ROOF_Mesh, and FLOOR_Mesh.
These meshes serve as an input for the generation of point clouds. This process is
described in the following subsection.

3.1.3 Point cloud Generation

The Cockroach plug-in [83] was used in order to convert the meshes into point
clouds. More specifically, Cockroach is a plugin that allows the implementa-
tion of various commands for point cloud post-processing and meshing into the
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Figure 3.2: An array of the wall modules that shape the building geometries.

Figure 3.3: The 35 chosen roof versions.
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Figure 3.4: The complete array consists of 2.904 simple building geometries that were transformed
into point clouds for the training of CPCGAN. In the picture more diverse building generations are
showcased.

Mesh Number of Points

Wall Meshes 1200
Roof Meshes 1000
Floor Meshes 400

Table 3.1: The input parameter for the PopulateMesh function of the Cockroach plug-in.

Rhinoceros® environment. The plugin is based on reference functions already ex-
isting in the open-source libraries Open3D [95], CGAL [11], Cilantro [93], and PCL
[69].

For the generation of points, the function PopulateMesh is used. The particular
function uses selected meshes, number of points for each mesh and the type of
sampling as input. The PopulateMesh function is used three times, one for each
building component, and its implementation can be seen on fig. 3.5. Poisson Disk
Sampling [12] was preferred over random sampling, in order to provide a more
uniform distribution of sample points along the converted meshes. Table 3.1 lists
the set of inputs for each of the three times the function was used. The output of
the function is a point cloud for each building component, which is then merged
into a unified point cloud.

Further to the point cloud generation, further procedures apply for an auto-
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Figure 3.5: The implementation of the PopulateMesh function of the Cockroach plug-in.

mated dataset generation. When the points of each mesh are calculated, a list of
the labels corresponding to the class to which each point belongs is created (i.e.,
wall = 1, roof = 2, and floor = 3). The implementation of this step is shown in
fig. 3.6. Moreover, for each building the point cloud is shifted so that the center
of its mass will lie on the origin of the global coordinate system. The methodol-
ogy followed in order to accomplish this can be seen in fig. 3.7. The lists for the
different components of a building are then merged with each other into a single
list with all the points of a point cloud. In a similar way, the segmentation lists
are merged into a single list with the labels of each point of the point cloud. The
lists are then saved as .csv files in a local folder. A schematic representation of the
overall workflow can be seen in fig. 3.8.

Figure 3.6: The grasshopper script architecture used to generate the segmentation lists.

Figure 3.7: The grasshopper script architecture used to alter the point clouds local coordinate system.



18 Chapter 3. Design and Implementation

Figure 3.8: A. A screenshot taken from Grasshopper. B. A diagram describing the generation process
of the dataset, the one that is demonstrated in the screenshot of image A..

3.1.4 Data Pre-processing

Fig. 3.9 represents the result of a completed point cloud. Consequently, both
segmentation and point .csv files are edited through a python [78] script. The
script, called csv_to_pts_seg.py, as seen in the Appendix Sec. A.1, reads the
.csv files, removes the commas and generates two new files. A .pnt file stores
information about the points and a .seg file storing information about the labels of
each point cloud. The two different files have the same name and are stored in two
separate folders. The .pnt files are stored in a folder called train_data, while the
.seg files are saved in a folder called train_label. The procedure is repeated for
all the coupled .csv files (point.csv and seg.csv) that are describing the point cloud
of a building. The format of the two files can be seen in fig. 3.10

Figure 3.9: An example of a dense point cloud that was generated from the manual building solutions
through the Cockroach plug-in.
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Figure 3.10: The .seg file describing the labels of each point and the .pnt file with the x,y, and z
coordinates of each point.

3.2 Building a virtual environment for training CPCGAN

For developing and running the application, Visual Studio Code (VSCode) [52] and
Docker [67] were used. Docker is an open platform that allows the separation of
an application from the computer’s infrastructure, and is therefore able to deliver
software quickly. Additionally, Docker provides the ability to package and run an
application in a loosely isolated environment called a container. The creation of
a container is accomplished through Docker Images (Dockerfile), which are read-
only template instruction files.

The steps for creating a development container in VSCode are:

• Configuring the development container, e.g. installing new software, through
the use of a Dockerfile, see Appendix Sec. A.2.

• Creating a devcontainer.json file, see Appendix Sec. A.3, which describes
how VSCode should start the initialization of the container.

For the purpose of Speculative Hybrids, the implementation of the CPCGAN
required the creation of an Ubuntu 18.04 [45] environment with PyTorch 1.7.0 [65]
and CUDA 11.0 [58]. More specifically, a Dockerfile was created hosting infor-
mation about the environment where the algorithm was trained. The instructions
of the Docker Image are creating an environment with the following characteris-
tics: Ubuntu 18.04, PyTorch 1.7.0, CUDA 11.0, Python 3.8.3, Git [26], H5py [17],
Joblib [23], Pandas [62], Numpy [57], SciPy [72], TensorBoard [77], Sklearn [41],
and DLNest [89]. In order to run such a container in a Windows11 [53] environ-
ment, the Windows Subsystem for Linux (WSL2) [55] was used. The information
included in the devcontainer.json file are: naming the container, initializing it, run-
ning the Dockerfile, and installing some extensions to VSCode, namely the PyTorch
Code Snippets, and Python for VSCode.
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3.2.1 Implementation of CLAAUDIA

For the use of higher levels of computational power CLAAUDIA [79], the AI cloud
of Aalborg University, was used. CLAUUDIA is working with Singularity [34]
instead of Docker, therefore the Docker Image of Speculative Hybrids needed to be
pulled and transformed into a Singularity Image. All the tasks that require high
computational power run on the cloud.

3.3 Training CPCGAN and generating Samples

Foreword to the creation of a dataset and the set up of the environment is the
training of CPCGAN and the generation of new Samples. The algorithm is divided
into three steps:

• Preprocess the data

• Train CPCGAN

• Generate a sample / Control the generation

3.3.1 Pre-process the data

The original training of CPCGAN was realized with the implementation of the
ShapeNet-PartSeg dataset. The particulat dataset contains more than 13,000 seg-
mented point-clouds of 16 different classes. In order to succeed in the generation of
conceptual massing models the ShapeNet-PartSeg dataset was replaced. In more
detail, a Building Class containing 2,904 segmented point clouds, within which
each point is categorized by 1 out of 3 segmentation labels was used. The process
of the creation of the Building Class was demonstrated in the Sec. 3.1.

Consequently, the data are passing through two scripts, the sample_points.py
and the sample_structure_points.py in order to fit the purposes of CPCGAN.
Both scripts can be seen in Appendix Sec. A.4 and A.5 respectively. The first
script takes the .pnt and the .seg files and randomly samples 2048 points for the
implementation of the training. Consequently, the same script is creating a samples
folder where it saves all these chosen points in a .sam file for each point cloud. If
one of the point clouds has less than 2048 points the script is printing a message
communicating the problem.

In addition, the sample_structure_points.py scripts processes the sampled
data and creates a structure point cloud for each point cloud in the dataset. The
structure point cloud consists of 32 points and is created using the Growing Neural
Gas algorithm. The script is shown in Appendix Sec. A.6. The maximum number
of neurons, max_neurons, for each semantic label is determined by the percentage
of the points with that label in the complete point cloud. The maximum amount of
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iterations, max_iter, is 100, while the maximum age, max_age, is 10. The rest of the
parameters were chosen as suggested by the creator of the algorithm [15]. Finally,
the labels of the structure points are inherited through the GNG procedure.

In the original repository of CPCGAN, K-means was used instead. This choice
was made in order to achieve higher performance rate in the creation of the struc-
ture point clouds, aiming for better topology preservation. K-means clustering
may be faster, but GNG provides better results [20].

3.3.2 Training CPCGAN

The train of CPCGAN is achieved using DLNest [89]. DLNest is an experimental
framework for training deep neural networks. The specific framework allows the
training and automatic loading of Machine Learning models for experiments. For
the purposes of Speculative Hybrids 3 models with different characteristics were
created: a model of 10 epochs with applied FPD metrics, a model of 500 epochs
with applied FPD metrics, and finally a model of 2600 epochs with no FPD metrics.
The duration of the training for each model was approximately 20 minutes, 30
hours, and 96 hours. The results of the last training are the ones demonstrated in
the following chapters.

3.3.3 Generate a sample

The generation of the new point clouds is realized after the training of the two
GANs. This process is also achieved using DLNest, and through a script called
gen_a_sample.py. This file consists of a function within which the model is called
and generates a 32-point structure point cloud and a 2048-point fully populated
point cloud.

Control the generation

In order to control the generation, a script was created in Python. The script is
called gen_from_spc_and_z.py and is mapping the building generation towards
a site and its specific building regulations. This is a mediating step between the
Structure and the Final GAN, the two sub-models of CPCGAN. More specifically,
all the points of the newly generated structure point cloud are set to have a maxi-
mum distance limit, both regarding width and length and according to the building
percentage of the site. Regarding the wall points, a maximum height limit is set
in order for the generation to respect the maximum facade height allowed. Addi-
tionally, the points of the roof have also a maximum height limit (usually different
than the facade height) in order to follow the rule for the maximum total height of
the building. The script can be seen in Appendix Sec. A.8.
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Visualize results

After the generation of fully populated point clouds, the saved .pts files are pro-
cessed through the pts_pto_csv.py file. The script can be seen in Appendix Sec.
A.7. This file reads the .pts files and saves them as .csv files. For visualization
purposes the .csv files are then imported into the Rhinoceros environment, where
the point normals are calculated, and converted into mesh, through the CloudMesh
function of the Cockroach plugin. The implementation of the function can be seen
in fig. 3.11.

Figure 3.11: The CloudMesh function from the Cockroach plugin, that was used to transform the
newly generated point clouds back to mesh.
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Evaluation

4.1 Participants

In total 23 subjects, 4.3% under 25, 87% 25-35, 8.7% 36-45 years old, participated
in the method evaluation. The participants come from different educational back-
grounds 1: AUTH2, Polytechnic University of Milan, SciArc3, IAAC4, KADK 5,
UCL 6, Harvard GSD 7, and field specialisations: junior architect/designer, junior
computational designer/researcher, landscape architect, master student and Phd
Candidate in Architecture. The study aims to reach practitioners in architecture of
different backgrounds and ages, therefore the selection of the participants was not
based in any other particular criteria.

4.2 Creativity Support Index

The Creativity Support Index (CSI) is a psychometric method designed to evalu-
ate how a creativity support tool assists a user engaged in creative work (Carroll
and Latulipe 2009). Based on current research, CSI can be effectively utilized to
prove the usefulness of computational creativity tools (Cherry and Latulipe 2014).
The CSI measures creativity support within the context of six categories: Explo-
ration, Collaboration, Engagement, Effort/Reward Trade-off , Tool Transparency,
and Expressiveness.

In addition, the CSI highlights the aspects of the creativity support tool that

1All schools are from the global north, and most focus on Technology and Architecture.
2Aristotle University of Thessaloniki
3Southern California Institute of Architecture
4Institute for Advanced Architecture in Catalonia
5The Royal Danish Academy of fine Arts in Copenhagen
6The Bartlett School of Architecture in London
7Harvard University Graduate School Of Design in Massachusetts
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might need further attention. The six factors are evaluated based on one statement
each and a final CSI score of 100 is generated for the tool being used. The for-
mula for calculating the CSI score requires the mean values of the answers to the
questions for each of the six categories in a scale of 20. Additionally, comparison
factors, regarding the importance weight of each category, are implemented in or-
der to yield higher accuracy evaluation results. The mean values are multiplied by
each comparison factor, then summed all together and divided by 3.

The higher the score is, the better it indicates creativity support. A score above
90 is an “A,” and indicates excellent support for creative work. On the other hand,
a score below 50 is an “F”, showing that the tool does not support creative work
that well.

4.3 Measurements

Self-reporting measurements8 were used in order to evaluate Speculative Hybrids.
The participants were introduced to the method and provided with a case study of
a specific architectural site and its building regulations. Ten building options were
generated and served as a starting point for their design process. The participants
were asked to answer questions regarding how the results of the method described
would support their creativity in the early design stages. Additionally, we men-
tioned that this is a showcase of the tool, that the method can implement more
complicated building geometries from a specific architectural type (e.g. brutalism),
or a specific architect (e.g. Gaudi), and can help practitioners in the field to explore
larger solution space.

The items of the questionnaire were divided into three sections:

• Demographic Information

• Introduction to task and CSI metrics

• Open-ended questions regarding computational design: tools, limitations,
and ethical considerations

The questionnaire items are shown in fig. B.4 and fig. B.5, while the complete
questionnaire can be seen in Appendix Sec. B.1.

Open-ended questions were also added to the questionnaire in order to acquire
qualitative feedback for the method. The questions were the following:

• Which software or tools do you use in the conceptual design phase?

• How do you currently use technology in the ideation phase of the design
process?

8The questionnaire was created and distributed through Google forms.
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• What are the limitations of computational design tools?

• What are the ethical implications of using generative design tools?

• How the increasing use of computational design tools will help the future of
design?

• Further feedback

An additional section was created and distributed to the participants in order
to estimate the comparison factors for each one of the six categories. In this last
section the subjects were asked to show their preference between dual combina-
tions of the categories (e.g. Exploration or Collaboration). The section can be seen
in Appendix Sec. B.2.
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Results

In this chapter, the generated outputs of CPCGAN trained with buildings is demon-
strated. Additionally, we are showcasing the results of the CSI evaluation of the
proposed method.

5.1 Model Generations

The initial output of the algorithm is a 32-point structure point cloud. Forward
to that, a 2048-point point cloud is created from the population of the initially
generated structure point cloud. An example of the two generations can be seen in
fig. 5.1.

Figure 5.1: On the left side of the image a newly generated structure point cloud is shown, while on
the right side of the image we see a fully populated point cloud of 2048 points.

For a better understanding of the results, as mentioned in Subsec. 3.3.3, the
fully populated point clouds are converted into a mesh. To demonstrate the func-
tionality of the tool, 25 generations are converted into mesh and depicted in fig.

27
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5.2 - perspective view of the generations, and in fig. 5.3 - top view of the buildings.

Figure 5.2: The generated Speculative Hybrids from a perspective view.

Figure 5.3: The top view of the generated hybrids.

5.2 Questionnaire Results

In this chapter both the quantitative and qualitative results gathered from the ques-
tionnaire are demonstrated.
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5.2.1 CSI Metrics

An overview of the results regarding the 6 categories for measuring creative sup-
port can be seen in the figure 5.4. The overall scores gathered from the question-
naire for each category are: Exploration = 77%, Collaboration = 78%, Engagement
= 75%, Effort/Reward Trade-off = 76%, Tool Transparency = 72%, and Expressive-
ness = 73%. Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 show the distribution of answers for
various CSI related dimensions. In general, the tool gathered an average score of
75 out of 100, which means it ranks as a "C" in the aforementioned scale.

Figure 5.4: Overall CSI score for each category.

Figure 5.5: The question and the answers regarding Exploration, on a scale from 1-10, where 1 =
Strongly disagree and 10 = Strongly agree.
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Figure 5.6: The question and the answers regarding Collaboration, on a scale from 1-10, where 1 =
Strongly disagree and 10 = Strongly agree.

Figure 5.7: The question and the answers regarding Engagement, on a scale from 1-10, where 1 =
Strongly disagree and 10 = Strongly agree.

Figure 5.8: The question and the answers Effort/Reward Trade-off , on a scale from 1-10, where 1 =
Strongly disagree and 10 = Strongly agree.
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Figure 5.9: The question and the answers regarding Tool Transparency, on a scale from 1-10, where
1 = Strongly disagree and 10 = Strongly agree.

Figure 5.10: The question and the answers regarding Expressiveness, on a scale from 1-10, where 1
= Strongly disagree and 10 = Strongly agree.
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5.2.2 Open-ended Questions

due to the open-ended questions, practitioners in the field stated that they use
both digital and analogue tools for their ideation phase. More specifically, they
mentioned that they use hand drawings and sketches, digital drawings (Adobe
Creative Suite, Miro, Autocad), physical modeling (blue foam, cardboard models),
and digital 3D sculpting (Rhinoceros, SketchUp, Archicad, Grasshopper). Most of
the subjects noted that they initiate their design process with conceptual sketches
on paper and then they facilitate digital software in order to test the accuracy of the
sketch (scale, proportions, etc). Some participants mentioned that they use gener-
ative algorithms in order to produce different solutions, while some highlighted
the importance of performance calculated by technology (scripts), and therefore
indicate that technological tools steer the design outcomes.

Additionally, in this section of the questionnaire participants note probable
limitations of computational design tools. Most of the subjects highlight a dis-
connection regarding the creative process of the designer (mind-output). One of
the participants, specifically mentioned that " (such tools)... force you to think like
a technologist rather than to think like a creative". They also added that the rea-
soning of the design investigations in some tools are too strictly framed or without
any socio-spatial considerations, and does not provide big or high quality solution
space. High fidelity -especially in the field of performance and simulation studies-
often lead to computationally intensive workflows, and therefore result in higher
costs and processing time.

Regarding ethical consideration of the use of generative design tools, practi-
tioners in the field seem to linger between two opposite positions. Some of them
find no ethical implication in using such tools, especially if they are not used as a
monopoly but as a tool for negotiation and collaborative design. However, some
stated that potential biases might be implanted in the tool from their creators. On
the other hand, some architects are doubting whether these tools will eliminate the
functionality and role of the designer, and oversimplify the design process. They
added that generative design processes might oversee human-scale, social respon-
siveness or contextual consideration, all features that are conventionally regarded
as being central to design. Finally, the fact of social unfairness is also commented,
with regard to the people who actually have access to such tools.

When the participants were asked how the use of computational design tools
will help the future of design several different answers were given. They stated
that architectural design practice is facing higher demand in terms of predictabil-
ity and performance of its outcomes, therefore such tools will assist the field to
evolve into more functional solutions. More specifically, they expect material use
optimization, efficient management and enhanced properties of built environment,
and sustainable design options. Moreover, the subjects would hope to see technol-
ogy successfully incorporating in the future human psychology parameters, and to
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be accessible to everyone.
Finally, the subjects stated that computational design gives the opportunity to

generate and handle massive amounts of information, numerous editions of an
idea, and complex geometries. However, aspects like: connection with the sur-
roundings, view and orientation, aesthetics and ergonomics, are leading to deci-
sions that need to be taken outside of an algorithm. They added that technology
is undoubtedly the future in every field and suggest to find ways to make it work
for our benefit. Additionally, one of the participants mentioned that they would
like to have more information regarding the function of the tool, and another one
questioned whether the tool is directed to AI-specialized practitioners only.
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Discussion

Speculative Hybrids is a mixed-method research consisting of computational re-
search and deployment, design research, and quantitative and qualitative evalua-
tion techniques. The project aims to make a contribution to architectural design
processes and inform theories about how design thinking for architecture change
with the use of digital and computational tools by suggesting a new generative
method to it. This is achieved by the implementation of Generative Adversarial
Networks, in order to ease and inspire architectural practitioners in the early de-
sign phase.

Initially, the documentation of a theoretical background for understanding de-
sign thinking is set, and followed by the set-up of a method capable of generating
multiple variants of buildings that abide to site-specific regulations. These genera-
tions, so called Speculative Hybrids, may enhance design thinking while providing
a tangible description of the solution space.

Fig. 6.1 shows a particularly instructive subset of the input and output of the
CPCGAN algorithm. Evidently, some of the generated outputs presented features
that were not included in the initial dataset (e.g. differentiated curves). This is
precisely the intended outcome since it proves the usefulness of Machine Learning
with respect to the creativity aspect (incompleteness) of the design process.

In addition, by inspecting the geometries of the generated buildings, we con-
firmed that these comply with site-specific regulations. On the contrary, the same
does not apply for all the input samples used to train the network. This was
achieved by controlling the output of the Structure GAN, before it is fed to the
Final GAN. It is thus obvious the relevance of the method in relation to the func-
tionality aspect (precision) of the design process.

The two previous observations demonstrate how the proposed approach is able
to facilitate a connection between incompleteness and precision. This is achieved
thanks to the architecture of the CPCGAN which, being composed of two sub-
models, allows for generation control. However, there are several aspects of the
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Figure 6.1: A closer look at the input and output data regarding the trained CPCGAN model.

project that require deeper understanding and further exploration.

6.1 Design

Speculative Hybrids serves as a proof of concept for the implementation of Gen-
erative Adversarial Networks for the creation of 3D conceptual architecture. Both
the dataset creation and the training of the algorithm could be further explored
and improved.

Despite exhibiting a significant variety, all the outputs belong to the same build-
ing typology as those used to train the model. Being limited to an artificially gener-
ated dataset, they are also less detailed than real-life buildings. A sufficiently large
collection of segmented point clouds of realistic buildings would have allowed us
to explore even further the potentiality of this tool.

As stated in Sec. 3.3.2, the last training of the algorithm consisted of 2600
epochs, which already provided satisfactory results. However, a larger number of
iterations would have improved the quality even more. The number was decided
due to the time-limitation of usage of the computational resources of CLAAUDIA.

As mentioned in the Sec. 3.3.1, the algorithm was slightly altered in order for
his performance to be increased. Specifically, the GNG was implemented to create
the structure point clouds preserving the same proportion between the number
of points for each label as in the original point cloud. Our point clouds were
created using Poisson Disc Sampling, therefore they have no density differentiation
regarding each category. However, the use of the proposed method would achieve
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significant results if applied to point clouds deriving from scanning technologies,
since these would most likely present non homogeneous densities.

6.2 Evaluation Process

The Creativity Support Index evaluation has provided fruitful feedback regarding
the proposed method. However, the low number of participants in the evalua-
tion process is concerning with regard to the overall accuracy of the results. To
counterbalance that, the quantitative metrics taken from the questionnaires were
supplemented by corresponding open-ended questions which were analyzed qual-
itatively using grounded theory [16].

The sample of architectural practitioners that took part in the evaluation pro-
cess was verbally informed about the method. As mentioned in the questionnaire
Appendix Sec. B.1, the participants were asked to answer the questions depend-
ing on the description of the method and the generated results. The results could
have been even more insightful if the participants would have had the possibility
of using the method themselves.

The Comparison Factors questionnaire (Appendix Sec. B.2) was distributed to
the subjects in a second phase. Carroll and Latulipe [14] mention in their research
that the factor comparison can be tedious for a participant. Therefore, they suggest
that the factors should be ranked independently of the actual conditions. It is
thus justifiable to administer the factor comparison part of the survey just once,
at the end of the study. That choice led to a smaller sample of answers regarding
the comparison factors, but since it is an independent scale we believe there is no
significant impact regarding the overall CSI score.

6.3 User feedback

The CSI evaluation process was very informative and provided an invaluable in-
sight regarding how the method could be further improved. The overall CSI score
for Speculative Hybrids is 75%, which translates as a "C" in an "A" to "F" scale. As
mentioned in the Evaluation chapter, an "A" ranking indicates excellent support for
creative work, while a ranking of "F" means that the tool does not provide creativ-
ity support that well. Therefore, Speculative Hybrids seem to provide creativity
support at a satisfactory level.

6.3.1 Quantitative Results

Taking a closer look at the results, interesting observations can be made. The in-
dividual scores for each one of the 6 evaluated categories are between a range
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of 72-78%. Therefore, the tool provides good performance in supporting the cre-
ative process. As revealed/highlighted by the comparison factor questionnaire,
Engagement and Expressiveness were the two most relevant factors. These cat-
egories acquired a score of 75% and 73% percent respectively. The second most
relevant factors were Exploration (77%), and Effort/Reward Trade-off (76%). The
Collaboration factor, which had the highest ranking score (78%), gathered a small
comparison factor. It was exceptionally interesting that the Tool Transparency fac-
tor was not relevant at all regarding the suggested method, even though it achieved
a 72% score. This may be caused due to the fact that the participants were intro-
duced to the method but did not implement it themselves. From our perspective,
we expected that the most relevant categories would be: Exploration, Expressive-
ness, Effort/Reward Trade-off and Collaboration, since our method aims to inspire
architectural practitioners in the early design phase. The overall score and and
the individual score of each one of them are promising, opening a road-map for
further research on the method and its implementation.

6.3.2 Qualitative Results

Even more fruitful insights were gathered by the open-ended questions. Some
practitioners of the field still favor analogue techniques for expressing themselves
and for initiating their conceptual design phase. On the contrary, some others
implement computational design tools, and base their designs on results account-
able for sustainability and performance. This may be caused by the limitations of
computational design tools, due to their inaccessibility, or due to the cost of their
implementation. However, we foresee a future were such tools will be accessible
by everyone and embedded in the educational systems of architecture.

Additionally, participants correctly noticed that the reasoning of the design
investigations in most tools are too strictly framed or without any socio-spatial
considerations. Therefore, we would like to do further research in order to suggest
a process of choosing the best generated outputs. Several tools can be used for such
an analysis, for example considering environmental impacts with computational
tools such as Ladybug [40], and LearnCarbon [37].

Even though some of the participants find no ethical implications in using gen-
erative design tools, it is important to take them under consideration, especially
while designing them. Potential biases might be included in a Machine Learn-
ing model, and therefore the designer of the tool needs to be cautious with the
implemented dataset. Moreover the use of these tools does not aim to eliminate
the functionality and role of the designer, but rather assist their workflow. It is
inevitable that the role of the architect is changing as technology progresses, but
the final outcome always needs to be evaluated and realized upon human factors.

Computational design gives the opportunity to generate and handle massive
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amounts of information, numerous editions of an idea, and complex geometries.
Speculative Hybrids succeeds in providing solutions and assist the field in formu-
lating inspirational shape-making.





Chapter 7

Conclusion

By the 2000s, most of the design processes had started to incorporate digital tools.
This digitalization of processes enhances architectural design thinking by serving
as a mediator between incompleteness (creative exploration) and precision (func-
tionality and evaluation) - both inherited properties of the design process. More
specifically, the contemporary technologies are currently assistive in many archi-
tectural areas such as design, fabrication, construction, and maintenance. However,
the incorporation of Machine Learning approaches may assist architectural design
practices to better leverage data-rich environments and workflows. In our attempt
to bridge the gap between incompleteness and precision, we suggest the imple-
mentation of CPCGAN, which is an unsupervised Machine Learning Generative
Adversarial Network, that allows the control of its output generations.

The implementation of Generative models has proven fruitful using a variety
of data types including text, images, and videos. However, architectural design
practices often communicate their ideas through the use of 3D models, that include
a plethora of information regarding shape, building components, materials etc.
Point clouds are a method of representing spatial information, and they are raising
in popularity because of the simplicity of their components. For the purposes of
the project, a dataset of annotated point clouds describing building geometries is
required. There is, to the best of our knowledge no such dataset, and therefore we
suggest a semi-automated method for its realization.

The quality and size of the dataset is crucial for the learning process of an algo-
rithm. If a dataset is inadequate, there is the possibly that the model will not man-
age to learn anything at all. Therefore, we decided to create a simple dataset in-
spired by a specific building typology: single-family summer houses in Denmark.
The realization of the dataset is completed within four stages: the creation of wall,
roof, and floor modules combined in different ways, their conversion into meshes,
the point cloud generation through the PopulateMesh function of the Cockroach
plug in, and finally, the point clouds export and file formatting. Throughout this
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process a dataset of 2.904 segmented point clouds describing architectural forms
was realized.

Forward to the dataset creation, the point clouds were downsized to 2048
points, and a structure point cloud of 32 points was created using the Growing
Neural Gas algorithm, a topology learning, and preservation algorithm, for each
one of them. The structure and complete point clouds serve as an input to the CPC-
GAN’s two adversarial sub-models: the Structure GAN and the Final GAN. CPC-
GAN was trained with different numbers of iterations, however, the 2600 epochs
training, lasting approximately 96 hours, was the most successful. Consequently, a
script was created in order to map the the generation of new building geometries
depending on the regulations of a specific site (building percentage, facade height,
total height).

For the evaluation of the proposed method 25 buildings were generated, out of
which 10 were introduced to 23 practicing architects, along with a description of
the method. The Creativity Support Index was used to acquire quantitative results
for the performance of the method regarding 6 categories: Exploration, Collabora-
tion, Engagement, Effort/Reward Tradeoff, Tool Transparency and Expressiveness.
Additionally, qualitative feedback was gathered regarding the use of technology in
conceptual design phases, its ethical implications, limitations, and the future of it.

The method achieved an overall score of 75%, which is promising, opening a
road-map for further research on the method and its implementation. We foresee a
future where such tools will be accessible to use by everyone and embedded in the
educational systems of architecture. In the present study we proposed a method
for generating Speculative Hybrids. These hybrids are able, at a certain level,
to inspire architectural practitioners in the ideation phase through exploration,
within the context of site-specific regulations. Concluding, we believe that there is a
great potential in exploring new methods to enhance creativity in the architectural
design with respect to functionality and precision, in order to find new solutions
for a better future.

7.0.1 Future perspectives

A number of investigation avenues emerge as a natural continuation of this project.
The dataset that was used to train CPCGAN is relatively simple, describing

different scales of single-family houses. Despite its simplicity, generating such a
dataset is a rather time-consuming process. Therefore, we are planning to make
the dataset publicly accessible for the research community.

In order to automate and expand the process of the dataset creation, generative
algorithms could be implemented. More specifically, the Wave Function Collapse
algorithm (WFC) [38] which is a constraint-based algorithm that takes an input im-
age, either 2D or 3D, and procedurally generates a larger space in the same style.
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The implementation of the algorithm is realised within the Rhinoceros environ-
ment though the Monoceros [74] plugin.

Additionally, we would like to explore the possibility of using real-life data for
the same process. This could be achieved with the use of 3D scanning technolo-
gies like LiDar cameras [85]. As mentioned before, CPCGAN requires segmented
point clouds, therefore the use of 3D scanning outputs requires the development
of a method for segmenting them. A PointNet classification model [66] would
be the most suitable algorithm for this purpose. Implementing and testing this
method would be a logical next step. Moreover, a collaboration with an architec-
tural practise could be established in order to train the CPCGAN with point clouds
generated from their own BIM models.

Regarding the performance of CPCGAN, we would like to employ the Growing
Neural Gas algorithm for downsizing the point clouds to 2048 points, a process that
happens randomly in CPCGAN in its current implementation.

Another logical development would be to implement the proposed method
in a ready-to-use Rhinoceros plugin. In combination with a wider availability of
suitable datasets, this would allow us to explore in even more depth the potential
of this approach. It would thus be extremely valuable to address the evaluation to
architectural practitioners by asking them to implement and utilize the plugin. It
is thus clear that the present work opens a road-map for future investigations.
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[54] Dubravko Miljković. “Brief review of self-organizing maps”. In: 2017 40th In-
ternational Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE. 2017, pp. 1061–1066.

[55] craigloewen msft. Install WSL. Microsoft.com, Feb. 2022. url: https://docs.
microsoft.com/en-us/windows/wsl/install.

[56] Yuko Munakata and Jason Pfaffly. “Hebbian learning and development”. In:
Developmental science 7.2 (2004), pp. 141–148.

[57] Numpy. NumPy — NumPy. Numpy.org, 2009. url: https://numpy.org/.

[58] NVIDIA. CUDA Toolkit 11.0 Download. NVIDIA Developer, Aug. 2020. url:
https://developer.nvidia.com/cuda-11.0-download-archive (visited on
05/31/2022).

[59] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent
Neural Networks. proceedings.mlr.press, June 2016. url: https://proceedings.
mlr.press/v48/oord16.html (visited on 05/13/2022).

[60] Rivka Oxman. “Theory and design in the first digital age”. In: Design Stud-
ies 27 (May 2006), pp. 229–265. doi: 10.1016/j.destud.2005.11.002. url:
https://www.sciencedirect.com/science/article/pii/S0142694X05000840#
fig5 (visited on 01/22/2020).

[61] George Palamas and J Andrew Ware. “Sub-goal based robot visual naviga-
tion through sensorial space tesselation”. In: International Journal of Advanced
Research in Artificial Intelligence 2.11 (2013).

[62] Pandas. Python Data Analysis Library — pandas: Python Data Analysis Library.
Pydata.org, 2018. url: https://pandas.pydata.org/.

[63] Amandalynne Paullada et al. “Data and its (dis) contents: A survey of dataset
development and use in machine learning research”. In: Patterns 2.11 (2021),
p. 100336.

[64] Panagiota Pouliou et al. “Sensing Behavior Framework: Acquisition of occu-
pancy behavior data.” In: Symposium on Simulation for Architecture and Urban
Design. SimAUD (July 2022).

[65] PyTorch. PyTorch. www.pytorch.org. url: https://pytorch.org/get-started/
previous-versions/ (visited on 05/31/2022).

[66] Charles R Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classifica-
tion and Segmentation”. In: arXiv preprint arXiv:1612.00593 (2016).

https://www.microsoft.com/en-us/windows/windows-11-specifications
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://numpy.org/
https://developer.nvidia.com/cuda-11.0-download-archive
https://proceedings.mlr.press/v48/oord16.html
https://proceedings.mlr.press/v48/oord16.html
https://doi.org/10.1016/j.destud.2005.11.002
https://www.sciencedirect.com/science/article/pii/S0142694X05000840#fig5
https://www.sciencedirect.com/science/article/pii/S0142694X05000840#fig5
https://pandas.pydata.org/
https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/previous-versions/


50 Bibliography

[67] Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. “An in-
troduction to docker and analysis of its performance”. In: International Journal
of Computer Science and Network Security (IJCSNS) 17.3 (2017), p. 228.

[68] Peter G Rowe et al. Design Thinking In The Digital Age. StenbergPress, 2018.

[69] Radu Bogdan Rusu and Steve Cousins. Point Cloud Library (PCL): PCL API
Documentation. pointclouds.org, 2011. url: https://pointclouds.org/documentation/
(visited on 05/25/2022).

[70] Aditya Sanghi et al. “CLIP-Forge: Towards Zero-Shot Text-to-Shape Gener-
ation”. In: arXiv:2110.02624 [cs] (Apr. 2022). url: https://arxiv.org/abs/
2110.02624 (visited on 05/14/2022).

[71] Donald A. Schön. The Reflective Practitioner. Routledge, Mar. 2017. doi: 10.
4324/9781315237473. url: https://www.taylorfrancis.com/books/9781351883160.

[72] SciPy. SciPy.org — SciPy.org. Scipy.org, 2020. url: https://scipy.org/.

[73] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3D Point Cloud Gen-
erative Adversarial Network Based on Tree Structured Graph Convolutions. ope-
naccess.thecvf.com, 2019. url: https://openaccess.thecvf.com/content_
ICCV_2019/html/Shu_3D_Point_Cloud_Generative_Adversarial_Network_
Based_on_Tree_Structured_ICCV_2019_paper.html (visited on 05/14/2022).

[74] Subdigital s.r.o. Monoceros. monoceros.sub.digital, 2021. url: https://monoceros.
sub.digital/ (visited on 05/31/2022).

[75] Kyle Steinfeld. “Significant others: Machine learning as actor, material, and
provocateur in art and design”. In: The Routledge Companion to Artificial Intel-
ligence in Architecture. Routledge, 2021, pp. 3–12.

[76] Martin Tamke, Paul Nicholas, and Mateusz Zwierzycki. “Machine learning
for architectural design: Practices and infrastructure”. In: International Journal
of Architectural Computing 16.2 (2018), pp. 123–143.

[77] Get started with TensorBoard. Get started with TensorBoard | TensorFlow.
TensorFlow, 2019. url: https://www.tensorflow.org/tensorboard/get_
started.

[78] Python TM. Python Release Python 3.8.3. Python.org. url: https : / / www .
python.org/downloads/release/python-383/ (visited on 05/31/2022).

[79] Aalborg University. CLAAUDIA - Research Data Services. www.claaudia.aau.dk.
url: https://www.claaudia.aau.dk/ (visited on 05/31/2022).

[80] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning Localized Gen-
erative Models for 3D Point Clouds via Graph Convolution. openreview.net, Sept.
2018. url: https://openreview.net/forum?id=SJeXSo09FQ&source=post_
page--------------------------- (visited on 05/13/2022).

https://pointclouds.org/documentation/
https://arxiv.org/abs/2110.02624
https://arxiv.org/abs/2110.02624
https://doi.org/10.4324/9781315237473
https://doi.org/10.4324/9781315237473
https://www.taylorfrancis.com/books/9781351883160
https://scipy.org/
https://openaccess.thecvf.com/content_ICCV_2019/html/Shu_3D_Point_Cloud_Generative_Adversarial_Network_Based_on_Tree_Structured_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Shu_3D_Point_Cloud_Generative_Adversarial_Network_Based_on_Tree_Structured_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Shu_3D_Point_Cloud_Generative_Adversarial_Network_Based_on_Tree_Structured_ICCV_2019_paper.html
https://monoceros.sub.digital/
https://monoceros.sub.digital/
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/tensorboard/get_started
https://www.python.org/downloads/release/python-383/
https://www.python.org/downloads/release/python-383/
https://www.claaudia.aau.dk/
https://openreview.net/forum?id=SJeXSo09FQ&source=post_page---------------------------
https://openreview.net/forum?id=SJeXSo09FQ&source=post_page---------------------------


Bibliography 51

[81] David A Van Dyk and Xiao-Li Meng. “The art of data augmentation”. In:
Journal of Computational and Graphical Statistics 10.1 (2001), pp. 1–50.

[82] Elio Ventocilla et al. “Scaling the Growing Neural Gas for Visual Cluster
Analysis”. In: Big Data Research 26 (2021), p. 100254.

[83] Petras Vestartas and Andrea Settimi. Cockroach. Food4Rhino, Dec. 2020. url:
https://www.food4rhino.com/en/app/cockroach (visited on 05/25/2022).

[84] Bertie Vidgen and Leon Derczynski. “Directions in abusive language training
data, a systematic review: Garbage in, garbage out”. In: Plos one 15.12 (2020),
e0243300.

[85] Ulla Wandinger. “Introduction to lidar”. In: Lidar. Springer, 2005, pp. 1–18.

[86] Jennifer Whyte and Jennifer Whyte. Virtual Reality and the Built Environment.
Routledge, Aug. 2007. doi: 10.4324/9780080520667. (Visited on 05/25/2022).

[87] Thomas Wortmann and Bige Tunçer. “Differentiating parametric design: Dig-
ital workflows in contemporary architecture and construction”. In: Design
Studies 52 (2017), pp. 173–197.

[88] Zhirong Wu et al. “3d shapenets: A deep representation for volumetric shapes”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1912–1920.

[89] Ximing Yang. DLNest. GitHub, May 2022. url: https://github.com/SymenYang/
DLNest (visited on 05/31/2022).

[90] Ximing Yang et al. CPCGAN: A Controllable 3D Point Cloud Generative Adver-
sarial Network with Semantic Label Generating. May 2021. url: https://www.
aaai.org/AAAI21Papers/AAAI-4341.YangX.pdf.

[91] Zhangsihao Yang, Haoliang Jiang, and Lan Zou. “3D Conceptual Design Us-
ing Deep Learning”. In: Advances in Intelligent Systems and Computing (Apr.
2019), pp. 16–26. doi: 10.1007/978-3-030-17795-9_2. (Visited on 05/25/2022).

[92] Li Yi et al. A Scalable Active Framework for Region Annotation in 3D Shape
Collections. web.stanford.edu, Nov. 2016. url: http://web.stanford.edu/
~ericyi/project_page/part_annotation/index.html (visited on 05/14/2022).

[93] Konstantinos Zampogiannis, Cornelia Fermuller, and Yiannis Aloimonos.
kzampog/cilantro. GitHub, 2018. url: https://github.com/kzampog/cilantro
(visited on 05/25/2022).

[94] Junzhe Zhang et al. Unsupervised 3D Shape Completion Through GAN Inver-
sion. openaccess.thecvf.com, 2021. url: https://openaccess.thecvf.com/
content / CVPR2021 / html / Zhang _ Unsupervised _ 3D _ Shape _ Completion _
Through_GAN_Inversion_CVPR_2021_paper.html (visited on 05/14/2022).

[95] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D – A Modern Library
for 3D Data Processing. Open3d, 2018. url: http://www.open3d.org/.

https://www.food4rhino.com/en/app/cockroach
https://doi.org/10.4324/9780080520667
https://github.com/SymenYang/DLNest
https://github.com/SymenYang/DLNest
https://www.aaai.org/AAAI21Papers/AAAI-4341.YangX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-4341.YangX.pdf
https://doi.org/10.1007/978-3-030-17795-9_2
http://web.stanford.edu/~ericyi/project_page/part_annotation/index.html
http://web.stanford.edu/~ericyi/project_page/part_annotation/index.html
https://github.com/kzampog/cilantro
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Unsupervised_3D_Shape_Completion_Through_GAN_Inversion_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Unsupervised_3D_Shape_Completion_Through_GAN_Inversion_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Unsupervised_3D_Shape_Completion_Through_GAN_Inversion_CVPR_2021_paper.html
http://www.open3d.org/




Appendix A

Scripts

A.1 csvtoptsseg.py

from re import S
import pandas as pd
import numpy as np
#from sqlalchemy import column, false
import os

from requests import head

#--------Set file paths--------

dirPoints= ’rawData\points’
dirSeg= ’rawData\segments’
i = 1
a = 1

#--------Creating .pts file--------

for filename in os.listdir(dirPoints):
f = os.path.join(dirPoints,filename)
if os.path.isfile(f):

#Read .csv file
df = pd.read_csv(str(f), usecols=[0,1,2], names=[’x’, ’y’, ’z’])

first_column = df.iloc[:, 0]
sec_column = df.iloc[:, 1]
third_column = df.iloc[:, 2]
#third_column = third_column.replace("}", "")
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f_list = first_column.values.tolist()
f_list = [w.replace(’{’, ’’) for w in f_list]

f_df = pd.DataFrame(f_list)

th_list = third_column.values.tolist()
th_list = [w.replace(’}’, ’’) for w in th_list]

th_df = pd.DataFrame(th_list)

f_df[’y’] = sec_column
f_df[’z’] = th_df

new_header = f_df.iloc[0] #grab the first row for the header
f_df = f_df[1:] #take the data less the header row
f_df.columns = new_header #set the header row as the df header

#print (f_df)

#Save as .csv file
f_df.to_csv("Datas/csvs/" + str(i) +".csv", index=False,

header=False)

text = open("Datas/csvs/" + str(i) +".csv", "r")

#Remove "," and ’"’
text = ’’.join([i for i in text]) \

.replace(",", " ")
x = open("A_oldProcess/Dump/output_pnt.csv","w")
x.writelines(text)
x.close()

read = pd.read_csv("A_oldProcess/Dump/output_pnt.csv")

read.to_csv("Datas/train_data/" + str(i) +".pts", index=False,
header=False)

i = i + 1

#--------Creating .seg file--------

for filename in os.listdir(dirSeg):
b = os.path.join(dirSeg,filename)
if os.path.isfile(b):

#Read .csv file
s_df = pd.read_csv(str(b))
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#Save as .csv file
s_df.to_csv("Datas/segs/" + str(i) +".csv", index=False,

header=False)

text = open("Datas/segs/" + str(i) +".csv", "r")

x = open("A_oldProcess/Dump/output_seg.csv","w")
x.writelines(text)
x.close()

read = pd.read_csv("A_oldProcess/Dump/output_seg.csv")

#Save as .seg file
read.to_csv("Datas/train_label/" + str(a) +".seg", index=False,

header=False)

a = a + 1

A.2 Dockerfile

FROM pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel

# [Optional] Uncomment this section to install additional OS packages.
RUN apt-get update -y && export DEBIAN_FRONTEND=noninteractive

#Import CV2
RUN apt-get update && apt-get install git -y

RUN conda install -y ipython h5py nltk joblib pandas scipy \
# Install DLNest
&& pip install git+https://github.com/SymenYang/DLNest.git \
# Install other libs
&& pip install tensorboard

RUN pip install sklearn

RUN pip install numpy

RUN pip install igraph

RUN pip install plyfile
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A.3 devcontainer.json

// For format details, see https://aka.ms/devcontainer.json. For config
options, see the README at:

//
https://github.com/microsoft/vscode-dev-containers/tree/v0.217.4/containers/docker-existing-dockerfile

{
"name": "Pytorch 1.7.0 Ubuntu 18.04",
"runArgs": ["--init", "--network=host","--gpus=all"],

// Sets the run context to one level up instead of the .devcontainer
folder.

"context": "..",

// Update the ’dockerFile’ property if you aren’t using the standard
’Dockerfile’ filename.

"dockerFile": "../Dockerfile",

// Set *default* container specific settings.json values on container
create.

"settings": {},

// Add the IDs of extensions you want installed when the container is
created.

"extensions": ["ms-python.python","sbsnippets.pytorch-snippets"],

"features": {
"git": "latest",
"github-cli": "latest"

}

}

A.4 samplepoints.py

import pathlib
from pathlib import Path
import json
import random

root = Path(__file__).absolute().parent.parent
config_file = root / "dataset_config.json"
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def sample_k_points(config,k=2048):
cat = {}

cat_path = root / config["category_information_path"]
with cat_path.open("r") as f:

for line in f:
ls = line.strip().split()
cat[ls[0]] = ls[1]

meta = {}
for item in cat:

meta[item] = []
dir_point = root / Path(config["full_pointcloud_path"] ) / cat[item]
dir_seg = root / Path(config["semantic_label_path"] ) / cat[item]
dir_sampling = root / Path(config["pointcloud_sample_path"] ) /

cat[item]

fns = dir_point.iterdir()

for fn in fns:
token = fn.stem
meta[item].append((

dir_point / (token + ’.pts’),
dir_seg / (token + ’.seg’),
dir_sampling / (token + ’.sam’),
dir_sampling
))

for cls_key in meta:
print(cls_key)
cls_list = meta[cls_key]
for item in cls_list:

ifp = item[0].open(’r’)
if not item[3].exists():

item[3].mkdir(parents=True,exist_ok=True)
ofp = item[2].open(’w’)

lines = ifp.readlines()
lst = [str(i) + ’\n’ for i in range(len(lines))]
if len(lst) < k:

ifp.close()
ofp.close()
item[0].unlink()
item[1].unlink()
item[2].unlink()
print("points not enough ",item[0])
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continue
slines = random.sample(lst,k)
ofp.writelines(slines)
ifp.close()
ofp.close()

if __name__ == "__main__":
with config_file.open("r") as f:

config = json.load(f)["dataset_config"]
print("Sampling ground truth points")
sample_k_points(config)

A.5 samplestructurepoints.py

import pathlib
from pathlib import Path
import json
from pyexpat import model
import numpy as np
from sklearn.cluster import KMeans

root = Path(__file__).absolute().parent.parent
config_file = root / "dataset_config.json"

def read_pointclouds(points_path,semantic_path,sample_path):
"""

args:
points_path: pathlib.PATH for pointclouds
semantic_path: pathlib.PATH for semantic labels
sample_path: pathlib.PATH for pointcloud sample

return:
points: [n,3] sampled points
sem_labels: [n] sampled labels

"""
points = np.loadtxt(points_path).astype(np.float32)
sample = np.loadtxt(sample_path).astype(np.int64)
sem_label = np.loadtxt(semantic_path).astype(np.int64)

points = points[sample]
sem_label = sem_label[sample]

return points,sem_label
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def get_sem_counts(sem_label):
"""

args:
sem_label: [n] semantic label

return:
classes: INT semantic label classes count
counts: [k] points num for every of k semantic label

"""
counts = []
for item in sem_label:

while item > len(counts):
counts.append(0)

counts[item - 1] += 1
return len(counts),counts

def get_sem_split(sem_counts,points_num,k):
"""

args:
sem_counts: [k] points num for every of k semantic label
points_num: INT number of points in pointcloud
k: INT number of sampled points

output:
dvi: [k] sampled points num for every semantic label

"""
ratio = [sem_counts[i] / points_num * k for i in range(len(sem_counts))]
ratio_int_part = [int(ratio[i]) for i in range(len(ratio))]
ratio_float_part = [(ratio[i] - ratio_int_part[i],i) for i in

range(len(ratio))]
dvi = ratio_int_part
cnt = 0
for item in ratio_int_part:

cnt += item
rest = k - cnt

ratio_float_part.sort(key=lambda x : -x[0])
for i in range(rest):

dvi[ratio_float_part[i][1]] += 1

return dvi

def k_means(points,k,id):
"""
args:

points: [n] point cloud of same semantic label
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k: INT the k in k_means
id: INT id of the semantic label

return:
sampled_points: [k,4] center of k clusters

"""
estimator = KMeans(n_clusters=k)
estimator.fit(points)
centroids = estimator.cluster_centers_
ids = [[id] for i in range(k)]
print (centroids)
return np.concatenate([centroids, ids],axis=1)

from GNG_implementation.neuralgas import GrowingNeuralGas

def gng(points,k,id):

arr = np.array(points)
print (np.shape(arr))

"""
args:

points: [n] point cloud of same semantic label
k: INT the k in k_means -> n_inputs
id: INT id of the semantic label

return:
sampled_points: [k,4] center of k clusters

"""

gng = GrowingNeuralGas(
max_neurons = k,
max_iter = 100,
max_age= 10,
eb = 0.1,
en = 0.006,
alpha = 0.5,
beta = 0.995,
l =1,
dataset = arr

)

centroids, model = gng.learn()
centroids = np.array(centroids)
centroids = centroids[:-1]

print (k)
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print(np.shape(centroids))

ids = [[id] for i in range(k)]
ids = np.array(ids)
print(np.shape(ids))
print(type(ids))

return np.concatenate([centroids, ids],axis=1)

def get_avg_sem_samples(points,sem_label,k):
"""
args:

points: [n,3] pointclouds
sem_label: [n] semantic label
k: INT number of sampled points we want to get

return:
sem_classes: INT number of semantic classes
sampled_points: [k * 4] k points from sampled results concat with

its semantic label
"""
sem_classes,counts = get_sem_counts(sem_label)
points_num = len(points) #2048?

sub_points = [[] for i in range(sem_classes)] #In our case
sub_points=[[],[],[],[],[]]

sem_split = get_sem_split(counts,points_num,k) #This is a list with the
number of points ??that all have to sum at 32?? on each label ex. 1
-> 17pnts 2->5 3->5 3-> 100 4-> 4 5-> 1

for i in range(points_num):
sem = sem_label[i] # =1 =wall
sub_points[sem - 1].append(points[i]) # appends all the points of

the same label in an array. all arrays from all labels are in
one array called sub_points

sampled_points = None
for i in range(sem_classes):

if sem_split[i] == 0:
continue

if sampled_points is None:
sampled_points = gng(sub_points[i],sem_split[i],i + 1) #chanche

with gng
else:

sampled_points = np.concatenate(



62 Appendix A. Scripts

[sampled_points,
gng(sub_points[i],sem_split[i],i + 1)], #chanche with gng
axis = 0

)
return sem_classes,sampled_points

def sample_semantic_points(config,k = 32):
"""
args:

config: {} config dict
k: INT number of sampled points
type: "avg" or "equal" or "nosem"

return:
None

"""
cat = {}

cat_path = root / config["category_information_path"]
with cat_path.open("r") as f:

for line in f:
ls = line.strip().split()
cat[ls[0]] = ls[1]

meta = {}
for item in cat:

meta[item] = []
dir_point = root / Path(config["full_pointcloud_path"] ) / cat[item]
dir_seg = root / Path(config["semantic_label_path"] ) / cat[item]
dir_sampled = root / Path(config["pointcloud_sample_path"] ) /

cat[item]
dir_sem_sampling = None
dir_sem_sampling = root /

Path(config["semantic_avg_sampled_pointcloud_path"]) / cat[item]

fns = dir_point.iterdir()

for fn in fns:
token = fn.stem
meta[item].append((

dir_point / (token + ".pts"),
dir_seg / (token + ".seg"),
dir_sampled / (token + ".sam"),
dir_sem_sampling / (token + ".pts"),
dir_sem_sampling

))
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meta_info = {}
for cls_key in meta:

print(cls_key)
cls_list = meta[cls_key]
max_sem_classes = 0
cnt = 0

for item in cls_list:
if cnt % 100 == 0:

print(cnt)
cnt += 1
if not item[4].exists():

item[4].mkdir(parents=True,exist_ok=True)
out_fp = item[3].open(’w’)

points,sems = read_pointclouds(item[0],item[1],item[2])
#points_path,semantic_path,sample_path

sem_classes,out_pointclouds = get_avg_sem_samples(points,sems,k)

max_sem_classes = max(sem_classes,max_sem_classes)
np.savetxt(

out_fp,
out_pointclouds

)
out_fp.close()

meta_info[cls_key] = {
"max_sem_classes": max_sem_classes,
"item_num": len(cls_list)

}
print(meta_info[cls_key])

path_meta = root / Path(config["semantic_avg_sampled_pointcloud_path"])
/ "meta.json"

meta_fp = path_meta.open(’w’)
json.dump(

meta_info,
meta_fp

)
meta_fp.close()

if __name__ == "__main__":
with config_file.open("r") as f:

config = json.load(f)["dataset_config"]
print("Sampling structure points")
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sample_semantic_points(config)

A.6 neuralgas.py

from tqdm import tqdm
from sys import stdout

import igraph as ig

import numpy as np
from numpy.linalg import norm

class GrowingNeuralGas:

def __init__(self, max_neurons, max_iter, max_age, eb, en, alpha, beta,
l, dataset):
’’’
---------------------------------------------
Growing Neural Gas’ Parameter Declarations
---------------------------------------------
1. max_neurons ; Maximum # of neurons generated by the network
2. max_iter ; Maximum # of iterations the
3. max_age ; Maximum # of age
4. eb ; fraction of distance betweeen nearest neuron and input signal
5. en ; fraction of distance betweeen neighboring neurons and input

signal
6. alpha ; multiplying scalar for local error
7. beta ; multiplying scalar for global error
8. l
9. dataset
’’’
# Parameters declared by user
self.max_neurons = max_neurons
self.max_iter = max_iter
self.max_age = max_age
self.eb = eb
self.en = en
self.alpha = alpha
self.beta = beta
self.l = l
self.dataset_original = dataset.copy()
self.dataset = dataset.copy()
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# Variable for tracking learning evolution
self.verts_evolve = []
self.edges_evolve = []

def initialize_gng(self):
’’’
Initialize Growing Neural Gas
’’’
# Get random datapoints from target dataset
t0 = np.random.randint(0, int(self.dataset.shape[0] / 2))
#print (t0)
t1 = np.random.randint(int(self.dataset.shape[0]/2),

self.dataset.shape[0])
#print (t1)

# Initialize Growing Neural Gas
self.gng = ig.Graph()
s = self.gng.add_vertex(weight = self.dataset[t0,:], error = 0)
self.gng.add_vertex(weight = self.dataset[t1,:], error = 0)
self.gng.add_edge(0, 1, age = 0)
print (s[’weight’])

def learning_position(self):
for _ in range(0, self.l):

# Step 1. Get a random datapoint from target dataset
t = np.random.randint(0, self.dataset.shape[0])
random_input = self.dataset[t, :]
#print (t)

# Step 2. Find 2 nearest neuron from random_input
nearest_index = np.array([norm(weight - random_input)**2 for

weight in self.gng.vs[’weight’]]).argsort()
neuron_s1 = self.gng.vs[nearest_index[0]]
#print (neuron_s1)
neuron_s2 = self.gng.vs[nearest_index[1]]
#print (neuron_s2)

# Step 3. Increase the age of all neighboring edges from nearest
neuron (neuron_s1)

for edge_id in self.gng.incident(neuron_s1.index):
self.gng.es[edge_id][’age’] += 1

# Step 4. Add error to the nearest neuron
self.gng.vs[neuron_s1.index][’error’] +=

norm(neuron_s1[’weight’] - random_input)
# Step 5.1. Update position of nearest neuron
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neuron_s1[’weight’] += (self.eb * (random_input -
neuron_s1[’weight’]))

# Step 5.2. Update position of nearest neuron’s neighbors
for neuron in self.gng.vs[self.gng.neighbors(neuron_s1.index)]:

neuron[’weight’] += (self.en * (random_input -
neuron_s2[’weight’]))

# Step 6. Update edge of nearest neurons
EDGE_FLAG = self.gng.get_eid(neuron_s1.index, neuron_s2.index,

directed = False, error = False)
if EDGE_FLAG == -1: # FLAG for no edge detected

self.gng.add_edge(neuron_s1.index, neuron_s2.index, age = 0)
else:

self.gng.es[EDGE_FLAG][’age’] = 0

# Step 7.1. Delete aging edge
for edge in self.gng.es:

src = edge.source
tgt = edge.target
if edge[’age’] > self.max_age:

self.gng.delete_edges(edge.index)

# Step 7.2. Delete isolated neuron
for neuron in self.gng.vs:

if len(self.gng.incident(neuron)) == 0:
self.gng.delete_vertices(neuron)

# Step 8. Reduce global error
for neuron in self.gng.vs:

neuron[’error’] *= self.beta

# Step 9.1. Remove generated random input from target dataset
self.dataset = np.delete(self.dataset, t, axis = 0)
# Step 9.2. Reset dataset if datapoints are depleted
if self.dataset.shape[0] == 1:

self.dataset = self.dataset_original.copy()
#print (self.dataset)

def update_neuron(self):
# Adding new neuron from previous learning
if len(self.gng.vs) <= self.max_neurons:

# Get neuron q and f
error_index = np.array([error for error in

self.gng.vs[’error’]]).argsort()
neuron_q = self.gng.vs[error_index[-1]]
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error = np.array([(neuron[’error’], neuron.index) for neuron in
self.gng.vs[self.gng.neighbors(neuron_q.index)]])

error = np.sort(error, axis = 0)
neuron_f = self.gng.vs[int(error[-1, 1])]

# Add neuron between neuron q and f
self.gng.add_vertex(weight = (neuron_q[’weight’] +

neuron_f[’weight’]) / 2, error = 0)
neuron_r = self.gng.vs[len(self.gng.vs) - 1]

# Delete edge between neuron q and f
self.gng.delete_edges(self.gng.get_eid(neuron_q.index,

neuron_f.index))

# Create edge between q-r and r-f
self.gng.add_edge(neuron_q.index, neuron_r.index, age = 0)
self.gng.add_edge(neuron_r.index, neuron_f.index, age = 0)

# Update neuron error
neuron_q[’error’] *= self.alpha
neuron_f[’error’] *= self.alpha
neuron_r[’error’] = neuron_q[’error’]

pnts=[]
for neuron in self.gng.vs:

pnts.append(neuron[’weight’])

return pnts

def learn(self):
# Initialize GNG
self.initialize_gng()
# GNG learning iteration
for iter, _ in zip(range(0, self.max_iter),

tqdm(range(self.max_iter))):
# Track evolution
self.verts_evolve.append(np.array([neuron[’weight’] for neuron

in self.gng.vs]))

self.edges_evolve.append(np.array([(neuron.source + 1,
neuron.target + 1) for neuron in self.gng.es]))

# Learn new posititon
self.learning_position()
pnts = self.update_neuron()

return pnts, self.gng
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A.7 ptstocsv.py

import pandas as pd
import numpy as np
from sqlalchemy import column, false
import os
import csv

def read_pts(filename):
return np.loadtxt(filename, comments=("version:", "n_points:", "{",

"}"))

dir= ’Output’
i=0
for filename in os.listdir(dir):

f = os.path.join(dir,filename)

n_array = read_pts(f)

df = pd.DataFrame(n_array, columns = [’Column_A’,’Column_B’,’Column_C’])

test=df.to_csv("Output\Transformed\csvForRhino_" + str(i) +".csv",
index=False, header=False)

i=i+1

A.8 gen_from_spc_and_z.py

from pathlib import Path
import numpy as np
import torch
import pandas as pd
from sqlalchemy import column, false
import os
import csv

def modify_pc_0(pc_0_path):
def read_pts(filename):

return np.loadtxt(filename, comments=("version:", "n_points:", "{",
"}"))
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def distance(x, y):
if x >= y:

result = x - y
else:

result = y - x
return result

dir = pc_0_path
i=0

for filename in os.listdir(dir):
f = os.path.join(dir,filename)

n_array = read_pts(f)

df = pd.DataFrame(n_array, columns =
[’Column_A’,’Column_B’,’Column_C’, ’Column_D’, ’Column_E’,
’Column_F’, ’Column_X’])

#print(df)
#print(len(df))

labels = []
for i in range(0,len(df)):

a = df[’Column_D’].values[i]
b = df[’Column_E’].values[i]
c = df[’Column_F’].values[i]

largest = 0

if a > b and a > c:
largest = 1

if b > a and b > c:
largest = 2

if c > a and c > b:
largest = 3

labels.append(largest)

df[’Labels’] = labels

for i in range(0,len(df)):
label = df[’Labels’].values[i]
x = df[’Column_A’].values[i]
y = df[’Column_B’].values[i]
z = df[’Column_C’].values[i]
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##PARAMETERS AND RULES FOR MAPPING regarding building width -
length

for s in range(0,len(df)):
xs = df[’Column_A’].values[s]
distanceX = distance(x,xs)
limitX = 25 #The limit is a variable chosen by the user

(depending on the field) maximoum x distance

if distanceX > limitX:
w = distance/2
if x>=xs:

if x>=0:
cent = x - w

df.replace(x, cent+(limitX/2))
df.replace(xs, cent-(limitX/2))

else:
if xs>=0:

cent = xs - w
df.replace(x, cent-(limitX/2))
df.replace(xs, cent+(limitX/2))

ys = df[’Column_B’].values[s]
distanceY = distance(y,ys)
limitY = 20 #The limit is a variable chosen by the user

(depending on the field) maximoum y distance

if distanceY > limitY:
w = distance/2
if y>=ys:

if y>=0:
cent = y - w

else:
cent = w + y

df.replace(y, cent+(limitY/2))
df.replace(ys, cent-(limitY/2))

else:
if y>=0:

cent = ys - w
else:

cent = w + ys

df.replace(y, cent-(limitY/2))
df.replace(ys, cent+(limitY/2))
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##PARAMETERS AND RULES FOR MAPPING regarding Facade height
if label == 1:

limitZ = 5.5 #The limit is a variable chosen by the user
(depending on the field) maximoum z distance from wall
points

if z>limitZ:
df.replace(z, limitZ)

##PARAMETERS AND RULES FOR MAPPING regarding Maximum B height
height

if label == 2:
limitZmin = 5.5 #The limit is a variable chosen by the user

(depending on the field) maximoum z distance from wall
points (limitZ)

limitZmax = 9.5 #The limit is a variable chosen by the user
(depending on the field) maximoum z distance (total
buinding height)

if z<limitZmin:
df.replace(z, limitZmin)

if z>limitZmax:
df.replace(z, limitZmax)

df = df.drop([’Labels’], axis=1)

print(df)

#Save as .pts
df.to_csv(pc_0_path, index=False, header=False)
i=i+1

with pc_0_path.open("r") as f:
pc_0 = np.loadtxt(f)

return pc_0

def experience(self):
model = self.model
# load z and structure point cloud
z_path = Path("./z.npy")
pc_0_path = Path("./pc_0.pts")
z,pc_0 = None,None
with z_path.open("rb") as f:

z = torch.load(f).view(1,-1)

# Modify the structure point cloud
pc_0 = modify_pc_0(pc_0_path)
# To GPU
z = z.cuda()
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pc_0 = torch.from_numpy(pc_0).float().view(1,-1,7).cuda()

f_pc_1 = model.gen_from_given_z_and_pc0(z,pc_0)

# Save generated point cloud
pc_1_path = Path("./pc_1.pts")
with pc_1_path.open("w") as f:

np.savetxt(f,f_pc_1[0].cpu().numpy())



Appendix B

CSI Metrics

B.1 Creative Support Index Questionnare

Figure B.1: The first section of the questionnaire regarding demographic information.
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Figure B.2: The second section of the questionnaire, describing the method proposed by Speculative
Hybrids, and the the regulations of the building site.
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Figure B.3: The second section of the questionnaire, depicting the generations of CPCGAN on the
chosen building site, and introducing the participants to their task.

Figure B.4: The second section of the questionnaire, the questions regarding Exploration, Collabora-
tion, and Engagement.
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Figure B.5: The second section of the questionnaire, the questions regarding Effort/Reward Tradeoff,
Tool Transparency, and Expressiveness.

B.2 Comparison Factors Questionnaire
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Figure B.6: The third section of the questionnaire, asking participants some open-ended questions.
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Figure B.7: The questionnaire regarding the Comparison Factors.
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Figure B.8: The questionnaire regarding the Comparison Factors.
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Figure B.9: The questionnaire regarding the Comparison Factors.
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