
Vocoding with Differentiable Digital Signal Processing: Development of a
Real-Time Vocal Effect Plugin

David Südholt
Master’s Thesis in Sound and Music Computing at Aalborg University Copenhagen

dsudho20@student.aau.dk

ABSTRACT

This project explores two approaches to creating vocal ef-
fects using Differentiable Digital Signal Processing (DDSP).

In the first approach, a pretrained DDSP decoder is used to
generate a signal based on pitch and loudness information
extracted from the incoming vocal content. The generated
signal and the vocal input are then blended together in the
spectral domain to preserve the phonetic content.

In the second approach, autoencoder models are trained
on datasets consisting of both vocal and instrument training
data. To apply the effect, the trained autoencoder recon-
structs the vocal input. The latent space is able to encode
information about the phonetic content, while the inclusion
of other instruments in the training data affects the timbre
of the reconstructed signal.

A real-time vocal effect plugin based on the first approach
is designed and implemented. The two methods are com-
pared through a perceptual evaluation.

1. INTRODUCTION

Synthesizing and manipulating the sound of the human
voice through signal processing methods has a long history.
Homer Dudley’s ”Voice Operating Demonstrator” (Voder)
was introduced in 1939 [1] and musical applications of the
same principle soon followed [2]. Using a series of band-
pass filters, analog devices like the Moog Vocoder 1 could
analyze the spectral content of an incoming modulator sig-
nal, and process an incoming carrier signal through the
same filterbank to output a hybrid signal. When a synthe-
sizer is used as the carrier and a singing or speaking voice
as the modulator, this creates the ”robot voice” effect made
famous by artists such as Kraftwerk, Daft Punk and Electric
Light Orchestra.

When the effect is implemented digitally, it is common
to make use of the forward and inverse Fourier transform
as the analysis-synthesis framework instead of bandpass
filters [3, 4].

Neural network models have seen immense success in
countless fields of study over the past decade, and the sound
and music computing field is no exception. WaveNet [5]
was able to generate realistic-sounding speech and music
by generating raw audio sample-by-sample. Used in an
autoencoder architecture, it allowed seamless morphing
between different instrument timbres [6].

1 https://www.moogmusic.com/news/
moog-vocoder-returns

Differentiable Digital Signal Processing (DDSP) [7] moved
away from directly generating audio in the time or spectral
domain, and achieved impressive results in multiple tasks by
predicting controls for a library of synthesizer components.
This carries the added advantage of directly interpretable
model output.

In this project, the potential of creating vocal effects by
combining DDSP with classic vocoding techniques is ex-
plored and implemented as a real-time vocal effect plu-
gin. Additionally, methods of exploiting latent variables of
DDSP models as vocal effects are investigated.

The rest of this report is structured as follows. Section 2
gives an overview of the relevant background concerning
vocoding methods and DDSP. Section 3 describes the two
approaches to creating vocal effects in detail. Section 4
covers the design and implementation of the plugin. A
perceptual evaluation of selected effects is performed and
discussed in section 5. Section 6 concludes the report.

2. BACKGROUND

2.1 Vocoding

In the context of musical applications, vocoding typically
refers to the process of cross-synthesis, where the modulator
is a vocal signal and the carrier typically a spectrally rich
synthesized signal, such as a saw wave. Vocoders can
be characterized as either channel vocoders, which is the
typical approach used by analog devices, or phase vocoders,
which use digital signal processing (DSP) methods.

2.1.1 Channel Vocoder

The channel vocoder can be traced back to Homer Dud-
ley’s Voder [1]. It follows an encoder-decoder architecture.
The encoder processes a speech signal through a number of
bandpass filters (channels), whose center frequencies are
chosen to cover the frequency range relevant to understand-
ing human speech. The output of each channel is measured
by an amplitude follower. The decoder uses a noise source
or an oscillator rich in harmonics to generate a carrier signal.
The carrier is filtered through the same channels, and the
output of each channel is multiplied with the correspond-
ing amplitude extracted by the encoder. All channels are
then added together to reconstruct the speech signal. This
initially found use in transmitting and encrypting speech,
since only the channel amplitudes need to be communicated
instead of the entire signal.

1

dsudho20@student.aau.dk
https://www.moogmusic.com/news/moog-vocoder-returns
https://www.moogmusic.com/news/moog-vocoder-returns

2.1.2 Phase Vocoder

The phase vocoder segments a digital input signal into over-
lapping windows, which are transformed to the spectral
domain via the Fast Fourier Transform (FFT), yielding a
time-varying spectrum. The spectral information - phase
and amplitude - can then be modified, before the spectra
are converted back to the time domain via the inverse FFT
(IFFT). The output signal is obtained by overlapping-and-
adding the resulting windowed output segments. A popu-
lar application is found in time-scale modification, which
is achieved by manipulating the phase derivatives before
resynthesis.

The phase vocoder is somewhat related to the channel
vocoder, since the FFT can be interpreted as a bank of
complex bandpass filters. This view also allows to perform
a perfect resynthesis via a sum of sinusoids, one for each of
the bins of the FFT. Vocoding in the musical sense can be
achieved by manipulating the amplitudes of the sinusoids
according to the spectral content of a modulator signal.

2.2 Differentiable Digital Signal Processing

Differentiable Digital Signal Processing (DDSP) [7] pro-
poses an end-to-end learning approach for neural audio
synthesis. Instead of generating signals sample-by-sample
in the time domain, or time-varying spectra in the frequency
domain, DDSP offers a library of synthesizer components
implemented entirely within a framework supporting auto-
differentiation. A variational autoencoder (VAE) model is
trained to encode audio into pitch, loudness and timbre in-
formation, and to reconstruct it by generating time-varying
control parameters for the synthesizers. The loss is calcu-
lated by comparing the spectrogram of the generated audio
from the synthesizers to that of the original audio on mul-
tiple timescales. The auto-differentiable implementation
allows the gradient of the loss to backpropagate through the
synthesizers to update the model weights of the VAE.

2.2.1 Model Architecture

Figure 1 details how the VAE and the synthesis compo-
nents work together to reconstruct audio. An encoder ex-
tracts pitch and loudness information, and optionally a la-
tent timbre encoding z, from the input. In the original paper,
the pitch is detected using a pretrained CREPE [8] model,
whose weights are frozen during training. The loudness
calculation is based on the root-mean-square (RMS) value.

The decoder predicts control parameters for the synthe-
sizer components. The decoder architecture most com-
monly used in the original paper consists of a stack of fully
connected layers for each of the inputs (pitch, loudness,
optionally z). The outputs of the stacks are concatenated
and processed through a recurrent neural network (RNN)
layer and finally projected into the control parameter space.

2.2.2 Synthesis Components

DDSP was conceived as a modular library, so the choice
of synthesis method is independent from the model archi-
tecture. This project focuses on the harmonic + noise +
reverb synthesizer structure that was used in the original

DDSP paper, which is based on the concept of Spectral
Modeling Synthesis (SMS) [9]. A synthesis method based
on a dictionary of learnable wavetables has recently been
shown to be effective [10].

In the SMS framework, the harmonic components of the
sound are generated by a sum of K sinusoids, where K is a
manually chosen hyperparameter. The decoder predicts K
time-varying amplitudes Ak(n), referred to as the harmonic
distribution, since the sinusoids are defined to oscillate at
integer multiples of the (also time-varying) fundamental
frequency f0(n) extracted by the encoder. Thus, the output
of the harmonic component xh can be formulated as

xh(n) = a(n)

K∑
k=1

Ak(n) · sin(ϕk(n)) , (1)

where a(n) is a global amplitude predicted by the decoder,
and ϕk is the instantaneous phase of the k-th harmonic,
given as

ϕk(n) = 2π

n∑
m=0

kf0(m) . (2)

Filtered noise is used to generate the non-harmonic compo-
nents of the sounds. The decoder predicts the time-varying
magnitude responses of a finite impulse response (FIR) fil-
ter. The magnitudes are transformed into the time domain
through an IFFT, where the resulting impulse responses
(IRs) are windowed. White noise is generated and filtered
through convolution with the IR, implemented as multipli-
cation in the frequency domain.

The final component of the synthesizer structure is a
learned IR for convolution reverb. The IR is not time-
varying and thus not part of the parameters predicted by the
decoder. Dereverberation can then easily be achieved by
omitting the reverb component during reconstruction.

In summary, the synthesizer controls generated by the
decoder are a time-series of global amplitude, harmonic
distribution, and filter magnitudes. The pitch detected by
the encoder is an additional parameter to the synthesis. A
single time step is used to generate a manually defined
number of samples.

2.2.3 Timbre Transfer

Timbre transfer was one of the use cases in the original
DDSP paper that garnered the most attention. A decoder
solely conditioned on pitch and loudness features is trained
on audio recordings of a specific instrument, e.g. a violin.
After training has completed, extracting pitch and loudness
from any input audio can be used to generate the same
melody line in the sound of a violin by using the trained
decoder to predict corresponding synthesizer controls. A
web demonstration 2 of this principle was made available
online by Google Magenta.

2.2.4 Applications to Speech and Singing Synthesis

The model architecture depicted in figure 1 was shown to
be capable of synthesizing a human singing voice using a

2 https://sites.research.google/tonetransfer

2

https://sites.research.google/tonetransfer

Figure 1: DDSP autoencoder architecture (taken from [7]).

latent z encoding generated from Mel Frequency Cepstral
Coefficients (MFCCs) processed through an RNN layer
[11].

In [12], explicit phonetic information was added to the
decoder input, resulting in an effective algorithm for voice
conversion following the same principles as in the timbre
transfer task.

2.3 Real-Time Neural Audio Synthesis

While neural audio synthesis has made great progress over
several years, high-fidelity real-time applications have only
emerged very recently, but the field seems to move at a very
quick pace.

The original DDSP release written in TensorFlow worked
in a strictly offline manner, although a PyTorch reimple-
mentation capable of running in real-time as a PureData
external was quickly made available 3 . An interface for
interacting with the synthesis parameters in real-time was
proposed in [13]. Since then, the library has been extended
by decoder architectures meant for online synthesis such
as in a VST plugin. The spring of 2022 saw beta releases
of two plugins capable of performing timbre transfer in
real-time: Mawf 4 and DDSP-VST 5 .

At the same time, a real-time implementation [14] of the
RAVE autoencoder [15] was released, which is based on
generating the time-domain audio waveform at multiple
frequency bands, combined with a DDSP-like filtered noise
synthesizer.

3. VOCAL EFFECTS WITH DDSP

This section describes the main two approaches to gener-
ating vocal effects with DDSP that were explored in this
project.

The vocoding approach is based on utilizing timbre trans-
fer to generate control parameters for the synthesizer com-
ponents, which are then modified with vocoding-like meth-
ods to preserve the lyrical content of the input.

3 https://github.com/acids-ircam/ddsp_pytorch
4 https://mawf.io/
5 https://magenta.tensorflow.org/ddsp-vst

In the latent encoding approach, the encoder calculates
MFCCs from the input and processes them through an RNN
to generate the latent variable z. The decoder-generated
control parameters are not modified in this approach, and no
traditional vocoding methods are used. Effects are achieved
through manipulation of the latent variable and the training
data.

Jupyter notebooks for inference with both approaches are
supplied, named Vocode and Latent.

3.1 Vocoding Approach

For the vocoding approach, pitch and loudness are ex-
tracted from the vocal input. The decoder will then out-
put a global amplitude and a harmonic distribution Ak for
k = 1, . . . ,K, which are used to generated the harmonic
output as described in equation (1), and filter magnitudes.
Let

Vm =

N∑
n=0

v(n)e−i2πm
N (3)

denote the N -point short-time Fourier transform of the
windowed vocal input v(n) of length N at the current time
step.
Ak is the amplitude of the k-th harmonic, i.e. an oscillator

with frequency k · f0. The spectral information of the vocal
input corresponding to the frequency k · f0 is contained in
the frequency bin Vmk

. The index mk can be calculated as

mk =

⌊
k · f0
fs

N

⌋
, (4)

where fs is the sampling rate of the vocal input.
The idea of the vocoding approach is to obtain a modified

harmonic distribution A′
k by interpolating between the vocal

input amplitude spectrum |V | and the decoder-generated
harmonic distribution Ak. To that end, two user-supplied
control parameters are introduced: An interpolation factor
p ∈ [0, 1] and the number of neighboring bins B ∈ N0 that
will also be taken into account. The modified distribution
can then be calculated as

3

https://github.com/acids-ircam/ddsp_pytorch
https://mawf.io/
https://magenta.tensorflow.org/ddsp-vst

Figure 2: The training process of a latent encoding model
on the CSD + Brass dataset (cf. section 3.3.1). Early during
training, it cannot reconstruct intelligible lyrics yet. Then
it transitions into the “sweet spot” where lyrical content
is preserved, but the timbre is affected by the additional
instrument. After further training, that effect disappears,
and the model performs regular voice transfer.

A′
k =

(1− p)Ak +
p

2B + 1

B∑
b=−B

|Vmk+b| kf0 < fs
2

0 else

,

(5)
taking care not to include oscillators at frequencies ex-
ceeding the Nyquist limit of fs/2. Note that for p = 0,
A′

k = Ak.

3.2 Latent Encoding Approach

In the latent encoding approach, the encoder generates a
vector z in addition to pitch and loudness information. This
project used an encoder provided in the DDSP library that
calculates MFCCs of the input audio at every time step, and
processes them through an RNN before projecting them to
the latent space.

In this approach, no modifications are applied to the de-
coder output. Instead, the effect is generated through se-
lection of the training datasets. As explored in [11] and
confirmed through preliminary experiments, simply train-
ing a VAE as shown in Figure 1 on recordings of a singing
voice can be sufficient to obtain a model capable of recon-
structing a vocal input from a different singing voice in the
style of the training data with intelligible lyrics.

The idea behind this approach is to add in other mono-
phonic instruments, such as a trumpet or a synthesizer, to
the training data, in the hopes that it will influence the
timbre of the reconstructed vocals in musically interesting
ways.

During the experiments, it became clear that if the model
is trained until the training loss converges, the decoder
learns to distinguish between vocal input and the additional
instrument, and is able to reconstruct both accurately. This
results in a model that is effectively just performing voice
transfer.

However, there seems to be a “sweet spot” early on in
training, where the model is already able to reproduce the
lyrical content of the input, but has not yet learned to fully
distinguish between the different input sources. At this
point, the timbre of the reconstructed vocals is affected
noticeably by the additional instrument. This is illustrated
in Figure 2.

Another explored approach was to add an explicit label
l = 0, . . . , L to the training data indicating whether it is a
recording of a singing voice or a specific instrument, with
L being the number of different sources in the total dataset.
The model was then extended to include L different en-
coders with their own sets of weights, but a single shared
decoder. During training, the label of the training data
determined which encoder would generate the latent en-
coding. During inference, both the vocal encoder and an
instrument encoder would be used to generate the encoding,
in the hopes that interpolating between them would lead
the decoder to generate lyrically intelligible vocals with a
modified timbre.

In preliminary experiments however, the different en-
coders produced embeddings sufficiently close to each other
that interpolation barely affected the sound.

3.3 Experiments

The nature of the project does not lend itself to a traditional
evaluation of model performance using cross-validation and
a hold-out test set. There is no “ground truth” by which to
evaluate the models when the goal is the highly subjective
creation of a “musically interesting” effect. Accordingly,
the training runs were mostly evaluated by manual inspec-
tion of the resulting audio.

3.3.1 Datasets

Data for vocal performances was collected from the Chil-
dren’s Song Dataset (CSD) [16] and from the MUSDB18
corpus [17]. A voice transfer model was trained on a single
performer from the CSD corpus. From the MUSDB18 cor-
pus, shorter excerpts from multiple singers from the medley
recordings named “Music Delta” were compiled and used
to train models on joint datasets with instrument recordings.

Brass, string, and wind instrument datasets were created
by combining respective instrument recordings taken from
the University of Rochester Multi-Modal Music Perfor-
mance dataset (URMP) [18]. Additionally, a synthesizer
performance was obtained by processing randomized MIDI
at varying velocities and pitches through the ”Harsh Lead
1” preset of the Helm synthesizer 6 .

The recordings were transformed into DDSP-readable
datasets using the ddsp prepare tfrecord command.

3.3.2 Training

For the vocoding approach, models are trained using the
standard timbre transfer setup presented in the original
DDSP paper, where an estimate of 30k-50k training steps is
given as a good balance between accuracy and overfitting.
Training hyperparameters such as learning rate were left to
the default settings of the DDSP library, version 3.2.0.

6 https://tytel.org/helm/

4

https://tytel.org/helm/

Training models for the latent encoding approach also
followed the default settings found in the ae.gin file
of the DDSP library. The multi-encoder experiments re-
quired a minor custom subclassing of data provider and
encoder classes to implement the labeling and encoder se-
lection, which can be found in the supplied file named
MultiEncoderClasses.py.

4. REAL-TIME PLUGIN

Based on the vocoding approach, a real-time vocal effect
plugin was designed and implemented using the JUCE
framework 7 . The reason for only including the vocod-
ing approach in the plugin was that the DDSP library at
version 3.2.0 provides a mechanism for training decoders
for online synthesis (i.e. generating synthesis parameters a
single step at a time), but not for the MFCC encoders which
are necessary for the latent encoding approach.

The plugin can be built for Windows and Mac environ-
ments by opening the provided .jucer file in the Projucer
application, which is the standard way to generate build
configurations for JUCE projects.

4.1 User Interface

A screenshot of the user interface is shown in Figure 3. The
controls are grouped by function.

4.1.1 Pre- and Postprocessing

The plugin offers an input noise gate to remove unwanted
background noise. After the vocoded audio is generated,
the user can choose to apply dynamic range compression,
controllable by the standard parameters of threshold, ratio,
attack and release. Finally, the overall output volume can
be adjusted.

4.1.2 Synthesis

The Synthesis group of controls affects the generated carrier
signal. By default, a preset, fixed harmonic distribution is
used. The “Load Model” button opens up a file selection
dialog to load a JSON file containing weights of a DDSP
decoder exported with the provided “Save to JSON” Jupyter
Notebook. While a model is loaded, the button text (and its
functionality) is changed to “Unload Model”.

While no model is loaded, random noise is still generated
when unvoiced input is detected, to be able to preserve
unvoiced consonants. The volume of this noise can be
controlled by adjusting the “Unvoiced Strength” parameter.

The “Harmonic Sensitivity” controls a volume threshold
that the input needs to cross to be considered “harmonic”
and affect the pitch of the synthesized signal.

4.1.3 Vocoding

The Vocoding group offers two controls to insert the lyrical
content of the vocal input into the signal generated in the
Synthesis section. “Vocal Clarity” can be interpreted as the
strength of the vocoding; at high values, the input signal will
dominate, at low values, little of the input will be audible
in the final output.

7 https://juce.com/

The “Formant Shift” control is used to shift the center
frequencies used during vocoding. This can be used to
give the impression of a “higher” or “lower” voice without
altering the pitch.

4.1.4 Tuning

The Tuning group offers controls for explicit pitch shifting
as well as an automatic pitch correction functionality. When
the “Enable Tuning” box is ticked, the pitch extracted from
the input vocals will be adjusted to lock to the chosen scale
before the carrier signal is generated. Twelve major and
minor scales are available, as well as a “chromatic” option.
The “Tuning Attack” control affects how aggressively the
pitch will be corrected. A setting of 0 ms immediately
locks the pitch to the scale, while higher settings apply the
correction more gently.

“Shift Input Pitch” will be applied to the detected pitch
before the correction, “Shift Output Pitch” after the correc-
tion.

4.2 Implementation

The bulk of the processing is done in the HumanoidEngine
class. The engine provides a processBlock method,
which is repeatedly called from the plugin host and delivers
a chunk of audio samples to process. Algorithm 1 provides
an overview of the method’s structure.

Algorithm 1 The main processing algorithm.

1: Copy the received samples into the input buffer
2: while input buffer size ≥ wa do
3: Calculate pitch and RMS of the current analysis win-

dow
4: Perform FFT on input
5: if model is loaded then
6: Calculate power based on RMS
7: Call decoder to generate controls
8: Set harmonic distribution to decoder output
9: Generate ws samples of noise filtered with gener-

ated magnitudes
10: else
11: Set harmonic distribution to chosen preset
12: if current analysis window is unvoiced then
13: Generate ws samples of noise and perform

vocoding with the input magnitudes
14: end if
15: end if
16: Add ws samples of harmonic output to the noise,

based on harmonic distribution and amplitude spec-
trum of the input

17: Advance the input buffer by ws samples
18: end while
19: Fill received buffer with samples from output buffer

The analysis frame size wa (referred to in code as the
frameSize) and the synthesis frame size ws (referred to
in code as the hopSize) are determined by the how the
loaded decoder was trained, or set to a fixed default value
while no model is loaded.

5

https://juce.com/

Figure 3: User interface of the plugin.

To account for variable sizes of the buffer passed to the
processBlock method, which might be changed at any
time depending on the run-time environment of the plugin,
the processing is decoupled from the externally received
buffer. Instead, the input is written to and retrieved from
an internal circular buffer. Similarly, the output is written
to an internal buffer in chunks of size ws, from which the
externally received buffer is filled as needed.

4.2.1 Pre- and Postprocessing

For the noise gate, compressor, and output gain, standard im-
plementations offered by the JUCE library are used. There-
fore, the plugin only needs to expose the respective param-
eters to the user interface and the plugin host. These pre-
and postprocessing steps are applied to the input and output
of the engine, rather than by the engine itself.

4.2.2 Loading DDSP Decoders

To enable running pretrained decoders inside of the plu-
gin, the inference operations of an RnnFcDecoder as
provided by the DDSP library were implemented using the
Eigen linear algebra library [19].

This required the implementation of two main types of
layers. Fully connected layers as used in the DDSP library
refer to the following sequence of operations:

1. Dense layer: Multiplication with a weight matrix
followed by addition with bias vector

2. Layer normalization: Subtract the mean, divide by
the variance, followed by the application of a learned
element-wise linear function

3. Application of the Leaky ReLU nonlinearity

The RNN structure used in all models is a Gated Recurrent
Unit (GRU). Omitting biases for notational simplicity, at
time step t the GRU uses its previous output ht−1 and the
current input vector xt to produce the output ht according
to the following operations:

rt = σ(Wirxt +Whrht−1) (6a)
zt = σ(Wizxt +Whzht−1) (6b)

nt = tanh(Winxt + rt ∗ (Whnht−1)) (6c)
ht = (1− zt) ∗ nt + zt ∗ ht−1 (6d)

Here, rt, zt and nt refer to the “reset”, “update” and “new”
gate, respectively. σ is the logistic sigmoid function and ∗
denotes element-wise multiplication. All weight matrices
W are learnable parameters.

The Decoder class in the nn folder uses these layers
to implement the decoder architecture as described in sec-
tion 2.2.1. The DecoderLoader is responsible for read-
ing the JSON file containing the weights and creating a de-
coder with the appropriate dimensions – number of layers,
hidden nodes etc. The JSON file also contains information
about the sampling rate, frame rate and hop size that the
decoder was trained to operate with, which is important to
performing the synthesis accurately.

4.2.3 Synthesis and Vocoding

The pitch of the current analysis window is estimated us-
ing the YIN algorithm [20]. Rather than using a fixed
confidence threshold for the pitch detection, the window
is treated as not containing voiced content if the detected

6

pitch is outside of human singing range 8 .
The harmonic distribution either comes from the decoder

output, if one is currently loaded, or one of two presets.
In either case, the vocoding is performed as described in
section 3.1, where the interpolation parameter p from equa-
tion (5) is controlled by the “Vocal Clarity” knob. The
“Formant Shift” knob is implemented by introducing a scal-
ing factor α into the index calculation from equation (4):

mk =

⌊
αk · f0
fs

N

⌋
(7)

If a decoder is loaded, the sampling rate it was trained with
determines the Nyquist limit, but the plugin sampling rate
is used for the index calculation. The hop size and plugin
sampling rate together determine the amount of samples
produced per frame by the HarmonicSynth. The filtered
noise on the other hand is generated with respect to the
model’s original sampling rate and then resampled to the
plugin sampling rate.

To avoid clicks and discontinuities, the HarmonicSynth
stores the harmonic distribution from the previous time step.
When called with a new distribution, it linear interpolates
between the two sample-by-sample.

If no decoder is loaded, noise is only generated when
the input is determined to be unvoiced. In that case, the
amplitude spectrum of the vocal input is used as the filter
for the noise, so that the specific consonant is preserved.

4.2.4 Tuning

Tuning is implemented as simply modifying the recognized
pitch before synthesis. Locking to a scale is done by linearly
scaling the recognized pitch to the closest note belonging
to that scale in MIDI space.

5. EVALUATION

Four models were chosen for a perceptual evaluation of the
created effects:

VC-Synth: Timbre transfer model trained on the synth
dataset, vocoding approach

VC-Brass: Timbre transfer model trained on the brass
dataset, vocoding approach

Z-Vocals: Latent encoding voice transfer model trained on
the CSD

Z-Mixed: Latent encoding model trained on a mixed dataset
from the MUSDB18 medley vocals and the synth
dataset

5.1 Listening Test Design

Two vocal samples, one performed by a male, one by a
female singer, were processed by all four models. Although
not necessarily matching the intended use case, the Multiple
Stimuli with Hidden Reference and Anchor (MUSHRA)
format was determined to be a good fit for the perceptual

8 Arbitrarily defined to be between 100Hz and 700Hz, roughly corre-
sponding to the notes G2 and F5

evaluation, due to the availability of a user-friendly imple-
mentation as a web application [21].

Participants performed the test 9 without supervision. At
the start of test, participants were asked to adjust their vol-
ume to a comfortable level. Each of the two samples, to-
gether with its four processed versions, was then presented
to the participants three times. Every time, they were asked
to compare the (unlabeled) recordings under a different
aspect using the interface shown in Figure 4. The three
aspects are:

1. Perceived audio quality

2. Intelligibility of the lyrics

3. How musically interesting the effect is

After completing the test, participants were asked about
their age, their experience with music and vocal production,
and the listening environment.

5.2 Results

A total of 15 participants took part in the test. The general
participant demographic consisted of university students
from Denmark, Germany and Estonia. 9 of the participants
reported no experience with music or vocal production.
Ages ranged from 21 to 38, with a mean age of 25.9 years.
The listening devices were distributed rather evenly between
in-ear headphones, over-ear headphones, and speakers. Fig-
ure 5 plots the results of the 6 total evaluations.

The clearest result can be found in the rating of the lyrical
intelligibility aspect on the female input sample, where the
latent encoding models clearly outperform the vocoding
models. The same trend, although to a lesser degree, is
shown in the evaluation of the male input sample. This
seems to confirm that the MFCC + RNN encoder is already
capable of reproducing intelligible lyrics without any ex-
plicit phonetic information. The Z-Vocals model performs
noticeably better under this aspect on the female than the
male input; a likely reason for this difference is that the
model was trained exclusively on female performances.

None of the models are rated particularly favorably under
the aspect of perceived audio quality, although the latent
encoding models perform slightly better than the vocoding
models. All of the evaluated models were trained with a
sampling rate of 16 kHz. A comparison with models trained
on higher-fidelity audio would be desirable; however, some
experimentation showed that training at higher sampling
rates is much more computationally intensive and prone to
instability. More time would be needed to obtain usable
high-fidelity models.

Unsurprisingly, the highly subjective rating according to
“musical interest” shows the highest variance of the ratings,
although a slight trend favoring the latent encoding models
seems to exist.

9 available online at http://dsuedholt.de

7

http://dsuedholt.de

Figure 4: The webMUSHRA interface used for the evaluation.

6. CONCLUSION

Two methods of producing vocal effects with the DDSP
library were designed, implemented and perceptually evalu-
ated. A vocal effects plugin capable of performing real-time
timbre transfer as well as the vocoding-inspired vocal effect
was designed and implemented.

While the vocoding approach is more straight-forward and
lends itself to easily explainable control parameters, such as
the interpolation and formant shift parameters, the evalua-
tion suggests that the latent encoding approach is perceived
to be of higher quality and to preserve the lyrical content
to a higher degree. Following the success of RAVE, this
would suggest that the next step for this project could be to
extend the real-time plugin to include models implementing
the latent encoding.

Additionally, the latent space potentially offers the pos-
sibility for creative controls affecting the sound. While
the multi-encoder approach explored in this project was
unsuccessful, further experimentation with varying archi-
tectures and datasets seems promising to develop interesting
DDSP-based vocal effects.

8

Figure 5: Results of the perceptual evaluation. All individual ratings are displayed as a scatter plot. A box plot marks the
median rating with a horizontal line. The box itself extends from the first to the third quartile of the ratings.

9

7. REFERENCES

[1] H. W. Dudley, “The vocoder,” Bell Labs Rec., 1939.

[2] W. Meyer-Eppler, Elektrische Klangerzeugung: Elektronische Musik und synthetische Sprache. Ferd. Dümmlers Verlag,
1949.

[3] U. Zölzer, X. Amatriain, D. Arfib, J. Bonada, G. De Poli, P. Dutilleux, G. Evangelista, F. Keiler, A. Loscos, D. Rocchesso
et al., DAFX – Digital audio effects, 2nd Edition. John Wiley & Sons, 2011.

[4] J. O. Smith, Spectral Audio Signal Processing. http://ccrma.stanford.edu/˜jos/sasp/, accessed 2022,
online book, 2011 edition.

[5] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[6] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan, “Neural audio synthesis of musical
notes with wavenet autoencoders,” in International Conference on Machine Learning. PMLR, 2017, pp. 1068–1077.

[7] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP: Differentiable Digital Signal Processing,” International
Conference on Learning Representations, 2020.

[8] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE: A convolutional representation for pitch estimation,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 161–165.

[9] X. Serra and J. O. Smith, “Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus
stochastic decomposition,” Computer Music Journal, vol. 14, no. 4, pp. 12–24, 1990.

[10] S. Shan, L. Hantrakul, J. Chen, M. Avent, and D. Trevelyan, “Differentiable wavetable synthesis,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022.

[11] J. Alonso and C. Erkut, “Latent space explorations of singing voice synthesis using DDSP,” in Proc. of the 18th Sound
and Music Computing Conference, July 2021.

[12] S. Nercessian, “End-to-end zero-shot voice conversion using a DDSP vocoder,” in 2021 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), 2021.

[13] F. Ganis, E. F. Knudsen, S. V. K. Lyster, R. Otterbein, D. Südholt, and C. Erkut, “Real-Time Timbre Transfer and Sound
Synthesis using DDSP,” in Proc. of the 18th Sound and Music Computing Conference, July 2021.

[14] A. Caillon and P. Esling, “Streamable neural audio synthesis with non-causal convolutions,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.07064

[15] ——, “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.05011

[16] S. Choi, W. Kim, S. Park, S. Yong, and J. Nam, “Children’s song dataset for singing voice research,” in International
Society for Music Information Retrieval Conference (ISMIR), 2020.

[17] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The MUSDB18 corpus for music separation,” Dec.
2017. [Online]. Available: https://doi.org/10.5281/zenodo.1117372

[18] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma, “Creating a multitrack classical music performance dataset for
multimodal music analysis: Challenges, insights, and applications,” IEEE Transactions on Multimedia, vol. 21, no. 2,
2019.

[19] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[20] A. Cheveigné and H. Kawahara, “YIN, A fundamental frequency estimator for speech and music,” The Journal of the
Acoustical Society of America, vol. 111, pp. 1917–30, 2002.

[21] M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess, S. Westphal, B. Edler, and J. Herre, “webMUSHRA — A
Comprehensive Framework for Web-based Listening Tests,” Journal of Open Research Software, vol. 6, p. 8, 2018.

10

http://ccrma.stanford.edu/~jos/sasp/
https://arxiv.org/abs/2204.07064
https://arxiv.org/abs/2111.05011
https://doi.org/10.5281/zenodo.1117372

	 1. Introduction
	 2. Background
	2.1 Vocoding
	2.1.1 Channel Vocoder
	2.1.2 Phase Vocoder

	2.2 Differentiable Digital Signal Processing
	2.2.1 Model Architecture
	2.2.2 Synthesis Components
	2.2.3 Timbre Transfer
	2.2.4 Applications to Speech and Singing Synthesis

	2.3 Real-Time Neural Audio Synthesis

	 3. Vocal Effects with DDSP
	3.1 Vocoding Approach
	3.2 Latent Encoding Approach
	3.3 Experiments
	3.3.1 Datasets
	3.3.2 Training

	 4. Real-Time Plugin
	4.1 User Interface
	4.1.1 Pre- and Postprocessing
	4.1.2 Synthesis
	4.1.3 Vocoding
	4.1.4 Tuning

	4.2 Implementation
	4.2.1 Pre- and Postprocessing
	4.2.2 Loading DDSP Decoders
	4.2.3 Synthesis and Vocoding
	4.2.4 Tuning

	 5. Evaluation
	5.1 Listening Test Design
	5.2 Results

	 6. Conclusion
	 7. References

