Detecting Possible Timing Attack
Vulnerabilities in OpenTitan Big
Number Accelerator Programs

Master’s Thesis

Rasmus Ngrgaard Fjeldsg
Simon Svendsgaard Nielsen

Aalborg University

Aalborg University

Department of Computer Science
Selma Lagerlafs Vej 300

Phone: +45 99 40 99 40

Fax: 445 99 40 97 98
http://www.cs.aau.dk

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Detecting Possible Timing Attack Vul-
nerabilities in OpenTitan Big Number
Accelerator Programs

Topic:

Security

Project period:
February 1st 2022 - June 10th 2022

Project group:
cs-22-ds-10-01

Authors:

Rasmus Ngrgaard Fjeldsg
Simon Svendsgaard Nielsen

Supervisors:

René Rydhof Hansen
Danny Bggsted Poulsen

Page count: 50
Total page count: 54

The content of this report is publicly available, but publication (with bibliography) has to be in agreement

with the authors.

Abstract:

OpenTitan is a chip designed to secure
a wide range of devices. We focus on
the OpenTitan Big Number Accelera-
tor, a co-processor of the OpenTitan
chip, used for security-sensitive asym-
metric cryptographic algorithms. In this
work, we implement a tool to detect po-
tential timing attack vulnerabilities in
OTBN programs. The tool utilises dif-
ferent techniques, such as model check-
ing, statistical model checking and sym-
bolic execution. For model checking and
statistical model checking, we use Up-
PAAL and UppAAL SMC, respectively.
We first construct a control flow graph
(CFG) representing the OTBN program,
which we use to construct various Up-
PAAL models representing the program.
We then apply model checking and sta-
tistical model checking to find possible
time differences. Some models are over-
approximating, detecting time-differing
traces unreachable in the original OTBN
program.

We extend the implemented interpreter
to work with symbolic values, which we
use for the TraceChecker capable of test-
ing whether the traces are unreachable.
Lastly, we use the implemented tool to
show a timing difference in the RSA
3072 verify. We then remove the tim-
ing difference and use the implemented
tool to verify that the program run in
constant time.

Summary

OpenTitan is an open source silicon Root of Trust (RoT) project with many different use-
cases ranging from data centre integrations to embedded security applications such as secu-
rity keys and smart cards.

We focus on the Big Number Accelerator (OTBN), a co-processor designed to execute
security-sensitive asymmetric algorithms like RSA or Elliptic Curve. We first examine
and present the different parts of this co-processor, namely the host communication and
operational states, register files, controller, memory, errors and the instruction set. The
description of the instruction set focuses on the instructions that impact the control flow
or, contrary to most of the instructions, uses more than a single cycle. After introducing
the OTBN co-processor, we construct an interpreter for OTBN programs, which we use to
test different programs, and as an initial point for making several different analyses. We use
these analyses to detect possible timing attack vulnerabilities in OpenTitan Big Number
Accelerator (OTBN) programs.

The different analyses all rely on a control flow graph. To create this control flow graph,
we make some assumptions regarding sub-routines, which includes the assumption that the
OpenTitan team checks with their tools.

We omit the JALR instruction, which uses a run-time computed address to determine where
to jump, complicating the static CFG construction. Furthermore, the OpenTitan team
never uses the instruction in any available programs. We also present and discuss the
official guidelines for using the hardware-assisted loops, which we assume to be followed to
ease the modelling of the hardware-assisted loops when constructing UPPAAL models from
the CFG.

The first model (UPPAAL no-data) we create disregards data manipulation. We use this
model to check whether it can be verified that the program does not have any time-differing
traces when we disregard the data operations. We facilitate this test using the model
checking capabilities of UPPAAL, particularly the liveness property. However, this property
only answers whether there is a timing difference but does not provide any information
about the size of the possible difference. To answer this question, we make the UPPAAL
no-data-SMC model and use another tool from the UPPAAL family, UrpPAAL SMC. We can
then determine whether or not the timing difference is great enough to proceed with other
types of analyses.

We make the UPPAAL with-data model, which considers the data manipulation of the mod-
elled program to remove the over-approximation from the UPPAAL no-data model. Applying
model checking to verify the UPPAAL with-data model is unfeasible due to the input range
for OTBN programs, which leads to state-space explosion. However, the UPPAAL with-data
model can still be used with model checking to verify small ranges of input.

As an alternative, we create the UPPAAL with-data-SMC model, which we use for simu-
lations instead of verification. With this approach, we simulate the model with randomly

iii

Group ¢s-22-ds-10-01 Summary

selected input, trying to find the inputs, which results in a timing difference if such input
exists.

We extend the implemented interpreter to do symbolic execution for OTBN programs to
test whether both the two traces received as the counter-example from the UPPAAL no-
data model are reachable. This is done by directing the symbolic execution to follow the
traces which we want to test. To be considered complete, this solution, however, still needs
the additional feature of removing traces in order to make UPPAAL propose other possible
differences.

Lastly, we use the implemented analyses on a test case, the program RSA 3072 verify, which
originates from the official repository of OpenTitan. We find a potential time difference
ranging between 144942 and 148062 cycles. We find two branch instructions causing the
difference, which we remove by inserting no-operation (NOP) instructions into the shorter
branches of the program. We then use the implemented tool to verify that the program
executes in constant time.

v

Contents

Summary

Contents

1

2

Introduction

OpenTitan Big Number Accelerator (OTBN)

2.1 OTBN

2.1.1
2.1.2
2.1.3
214
2.1.5
2.1.6

Host Communication and Operational States
Register Files.o
Controllero
Memory o
Errors
Instruction Set

2.2 Interpreter

Control Flow Graphs
3.1 Control-Flow-Graph Construction

Rules for Hardware-Assisted Loops (LOOP and LOOPI)
4.1 Discussion
4.2 Checking Compliance with Guidelines

Timing Attacks
5.1 (Time channel attacks) Discovering time-channels
5.2 Model Checking

5.2.1

UPPAAL o e e

5.3 UpPAAL no-data Model Construction
5.4 Statistical Model Checking on UPPAAL no-data
5.5 UPPAAL with-data

Symbolic execution
6.1 Introducing Symbolic Execution o 0 L.

6.1.1
6.1.2

Satisfiability Modulo Theory (SMT) Solvers
Symbolic Execution Challenges

6.2 Implementation

6.2.1
6.2.2

Symbolic Data Memory
Indirect Addressing L L

6.3 TraceChecker: Testing UPPAAL Traces for Reachability
6.4 TraceChecker Example

Possible Timing Attack Vulnerabilities in RSA 3072 verify
7.1 Verifying UPPAAL no-data

iii

=

0~ O O U WWwWwW

17
17
19

21
22
22
23
26
28
29

33
33
35
35
36
37
37
37
39

41
41

Group cs-22-ds-10-01

Contents

7.2 Simulating UPPAAL no-data-SMC

7.3 Removing Timing Difference

8 Conclusion

9 Future Work

9.1 Addinga Guard

9.2 Counterexample Trace Automata

Bibliography

vi

Chapter 1

Introduction

In the modern world, software systems are integrated into all sorts of products, ranging from
complex systems in satellites to embedded software systems in coffee machines. According
to Statista', the number of IoT devices will almost double from 16.4 billion in 2022 to 30.9
billion in 2025.

OpenTitan is a chip designed to secure a wide range of devices. According to the official
web page, this ranges from data centre integrations to embedded security applications such
as security keys and smart cards [1]. One of the core elements facilitating the security of the
OpenTitan chip is the co-processor named OpenTitan Big Number Accelerator (OTBN) [2].
We will refer to our previous work [3] for an informal description of the OTBN co-processor
and a formal definition of the execution of OTBN programs. However, in Section 2.1 we
present the most relevant elements of the OTBN co-processor as preliminary for the rest of
this work. For the description of the OTBN assembly instructions, we focus on the most
interesting ones in terms of executed cycles and control flow. In Chapter 4 we present and
discuss the guidelines to follow when using the hardware-assisted loops constructed with the
LOOP and LOOPI instruction and the problems caused by not following them. For the models
we construct later, we assume that the OTBN programs follow these guidelines.

The OTBN co-processor is designed to execute security-sensitive asymmetric cryptographic
algorithms like RSA and Elliptic Curve. The programs for OTBN are written using the
OTBN assembly language and will mostly be implementations of different cryptographic
algorithms [2].

In [4], Kocher shows that an attacker may be able to break different cryptosystems by
measuring the amount of time required to perform private key operations. The time dif-
ferences are due to performance optimisations, branching and conditional statements, and
instructions running in non-fixed time [4].

In this work, we focus on possible timing attack vulnerabilities in OTBN assembly programs.
To look for time differing executions of OTBN programs, we implement a tool to generate
various models representing the control flow of OTBN programs, which we use to apply
various formal methods. We use model checking with UPPAAL [5], statistical model checking
with UPPAAL SMC [6]. Some of the models we construct do not consider the program input,
which is an over-approximation because some time-differing traces discovered using these
models are possibly unreachable. To test traces for reachability, we implement a symbolic
interpreter using CVC4 [7], which we describe in Chapter 6.

The OpenTitan project also has various tools to check for common problems in OTBN

Ihttps://wuw.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/

Group cs-22-ds-10-01 1. Introduction

programs and compliance with assumptions made regarding OTBN programs 2. One of the
tools checks for correct use of the call stack. This tool checks that only the jump instructions
use the call stack. Another tool checks for the correct use of the loop instructions. This
includes checking if an inner loop is fully contained within an outer loop and that there are
no branches into or out of loop bodies. This tool returns warnings rather than errors since
this is allowed but cannot be checked statically.

In Chapter 7 we utilise the developed tool to test the RSA 3072 verify program. As expected
from the description of the program, we find a timing difference. We then examine the
program and add additional no-operation instructions to the shorter paths, making the
program run in constant time, which we verify using model checking.

2The different tools currently developed: https://github.com/lowRISC/opentitan/tree/master/hw/
ip/otbn/util

https://github.com/lowRISC/opentitan/tree/master/hw/ip/otbn/util
https://github.com/lowRISC/opentitan/tree/master/hw/ip/otbn/util

Chapter 2

OpenTitan Big Number Accelerator
(OTBN)

OpenTitan is an open source silicon Root of Trust (RoT) project. Since the project is
open source, it will make the silicon RoT design more transparent, trustworthy, and se-
cure [8]. The use-cases for OpenTitan are many. Adopters can integrate the design into
data centre servers, storage devices, and other types of hardware [1]. As stated on the offi-
cial OpenTitan documentation page, the mission for OpenTitan is to raise the security bar
industry-wide [1]. One of the critical elements of this mission is the OpenTitan Big Number
Accelerator (OTBN), which we will describe in Section 2.1. In Section 2.2 we describe the
interpreter of the OTBN instruction set developed as part of this work.

2.1 OTBN

In this section, we introduce the OTBN co-processor, which, as mentioned in the introduc-
tion, is designed to execute security-sensitive asymmetric algorithms like RSA or Elliptic
Curve [2]. We will examine the host communication and operational states, controller,
memory, register files and the instruction set for the OTBN co-processor. We first explore
how the host processor communicates with the OTBN co-processor to start operations and
thereby change the operational state of the OTBN co-processor.

2.1.1 Host Communication and Operational States

There are multiple registers that the host processor has access to, which include the Com-
mand Register, Status Register, and the Operation and Result Register [2, Register Table].
As the name suggests, the host processor uses the Command register to issue commands to
the OTBN co-processor. There are three possibly commands, SEC_WIPE _DMEM securely wipes
the data memory and is performed after a program has been executed. The SEC_WIPE_IMEM
command is similar to SEC_.WIPE_DMEM but wipes the instruction memory [2, Operations and
Commands]. The most interesting command for this work is the EXECUTE command which
makes the OTBN co-processor start executing the program instructions currently in the
instruction memory.

When the host processor issues the EXECUTE command, the OTBN co-processor transitions
from the IDLE state to the BUSY state [2, Operational States]. If OTBN is not in the
IDLE state when the command is issued, it will be ignored. The last operational state is
the LOCKED, which happens whenever a fatal error occurs. The operational states of
OTBN is illustrated on Figure 2.1.

Group ¢s-22-ds-10-01 2. OpenTitan Big Number Accelerator (OTBN)

fatal error

operation
completed

fatal error

performing
operation

idle terminal state

Figure 2.1: The operational states of OpenTitan [2, Operational States]

2.1.2 Register Files

In addition to the registers used to communicate with the host processor, the OTBN co-
processor has two register files, both consisting of 32 registers. These are the General
Purpose Registers (GPRs) and the Wide Data Registers (WDRs) [2, Processor State]. The
registers in GPRs are 32-bit wide and named z1 to x31, while the wide registers in WDRs
are 256-bit wide and named wl to w3l. There are two of the GPRs which have special
behaviour, 0 ignores writes and always reads as zero, and x1 is the register used for reading
or writing to the call stack. The registers in GPRs are accessible by the instructions in the
base instruction subset, mainly used for control flow. In contrast, the WDRs can be accessed
by the big number instruction subset, mainly used for data processing. Besides the GPRs
and WDRs, OTBN also has 32-bit wide Control and Status registers (CSRs). These registers
are used for special purposes, and can be seen on Table 2.2 and Table 2.1.

Register Number | Name Register Number | Name
0x7C0 FGO 0x7D0 MODO
0x7C1 FG1 0x7D1 MOD1
0x7C8 FLAGS 0x7D2 MOD2
0x7D8 RND_PREFETCH 0x7D3 MOD3
0xDCO0 RND 0x7D4 MOD4
0xFC1 URND 0x7D5 MOD5
0x7D6 MOD6
0x7D7 MOD7
Table 2.1: This table shows one half of Table 2.2: This table shows the other half
the CSRs of the CSRs

The first three registers in Table 2.1 are for accessing the flag groups. In OTBN, there are
two different flag groups, FGO and FG1, which contain four different flags. The FLAGS
register provides access to the collection of both FGO and FG1 [2, Flags]. The four different
kinds of flags are as follows.

e The Carry Flag (C) is 1 if the last arithmetic operation caused an overflow. Otherwise,
it is 0.

e The MSb Flag (M) stores the most significant bit from the last arithmetic or shift

2.1. OTBN Aalborg University

operation.

e The LSb Flag (L) stores the least significant bit from the last arithmetic or shift
operation.

e The Zero Flag (Z) stores a 1 if the result of the last operation was zero. Otherwise, it
stores a 0.

The remaining three CSRs in Table 2.1 are for random numbers. The random number which
can be read from RN D are fetched from an in-built Entropy Distribution Network (EDN).
The random numbers coming from the EDN is primarily used for key generation [2, Wide
Special Purpose Registers]. RND_PREFETCH is used to start a request to fill the RND
cache, whenever the RN D cache is empty [2, Wide Special Purpose Registers]. The random
numbers read from U RN D does not have guaranteed secrecy properties or specific statistical
properties unlike RN D [2, Wide Special Purpose Registers].

The MODO0...MOD?7 in Table 2.2 are for reading a 32-bit subset of the MOD register,
which can be found in WDRs. Since the register in WDRs is 256-bit, the M OD register
only needs a single entry to retrieve the entire number. The RN D and U RN D registers in
WDRs are similar to the RN D and URN D registers in CSRs, but generate 256-bit random
numbers. Last, we have the accumulator ACC register, which as the name states, is used
to accumulate 256-bit information through the use of specific instructions.

Register Number | Name
0x0 MOD
0x1 RND
0x2 URND
0x3 ACC

Table 2.3: This table shows the WDRs, which are analogous to the CSRs but instead used
by the big number instruction subset

2.1.3 Controller

The controller utilises a loop stack and a program counter (PC) to control the order in
which the instructions are executed. For most instructions in the instruction set, the PC is
incremented to hold the address of the consecutive instruction in the instruction memory.
However, for some instructions, the PC is updated differently, for example, the branching
(BNE) instruction, which sets the PC to a specified location if the values stored at two
registers are distinct. If not, the PC is set to the consecutive instruction.

OTBN supports hardware-assisted loops, provided by the LOOP and LOOPI instructions. The
controller maintains a loop stack, which it uses to update the program counter, such that
the loop-body will be executed the correct number of times. Each element in the loop stack
is a 3-tuple consisting of the number of iterations and the address of both the first and last
instruction in the loop [2, Loop Stack]. LOOP and LOOPI each push a an element onto the
loop stack, which allows for nested loops. However, the maximum depth of the stack is
eight, meaning that a max of eight nested hardware-assisted loops is supported.

Algorithm 1 describes how the controller utilises the loop stack to update the program
counter. The first condition in Algorithm 1 is a check to see if the loop stack is non-empty.
If it is non-empty, the controller checks if the PC points to the end address of the loop at
the top of the loop stack. If it does, it is checked whether the number of iterations is zero,

Group ¢s-22-ds-10-01 2. OpenTitan Big Number Accelerator (OTBN)

for which the loop-tuple at the top of the stack must be popped. If it is non-zero, the PC
is updated to point at the start address of the loop. If the loop stack is empty, the PC will
not be modified.

Algorithm 1 Pseudo code for the Controller

1: while STATUS = BUSY do

2 if loopStack not empty then

3 if CurrentPC = EndAddress then
4 LoopCount — —

5: if LoopCount =0 then
6

7

8

9

LoopStack.pop
else
ProgramCounter = Start Address

Run(InstructionAt(Current PC'))

2.1.4 Memory

The layout for the memory follows the Harvard architecture [2, Design Details]. The two
different memories in OTBN are both 4 kB. These are the instruction memory (IMEM) and
the data memory (DMEM).

The instructions are stored in the instruction memory (IMEM). Each instruction in the
OTBN instruction set, including both subsets, is 32-bit long, meaning that the instruction
memory can contain a maximum of 1024 instructions. Since changes to the instruction in
the IMEM are prohibited by the user, it cannot be read from or written to by user code.

The data memory contains 128 256-bit wide values and is accessible from both the base and
the big number instruction subsets. Even though the DMEM, like the IMEM, is 4 kB, only
the first 2 kB can be accessed by the host processor. This security feature makes OTBN
applications able to store sensitive information in the second half of the DMEM, making it
harder to leak confidential information [2, Design Details].

2.1.5 Errors

OTBN errors are classified into two categories, software errors and fatal errors [2]. If OTBN
is not under attack, the software errors are due to a programmer’s mistakes in the running
OTBN program, and if OTBN is under attack, the software might not be the programmer’s
mistake, but this cannot be guaranteed [2, Errors|. Fatal errors are typically due to security
properties being violated [2, Errors]. In this section, we only present the software errors,
which can be seen on Table 2.4.

The BAD_INSN_ADDR occurs when an instruction memory access is out of bounds or
unaligned. An instruction, which could cause this error, is JAL since the jump location
could be unaligned. Similar to BAD_INSN_ADDR, there is also an error for illegal use
of DMEM, BAD_DATA_ADDR, which occurs if data memory access is out of bounds or
unaligned. The CALL_STACK error occurs if an instruction pops an element from the call
stack when it is empty or if an instruction pushes an element onto the stack when it is full.

The LOOP error occurs if a branch, jump, or a loop instruction occurs as the last instruction
in a loop, if the number of iterations in a loop is zero, or if the loop stack is full. The
last software error is ILLEGAL_INSN, which occurs if the current instruction has illegal
operands. This could be that the second operand of CSRRS is not a legal CSRs or that the
value at grd is greater than 31 in BN.LID.

2.1. OTBN Aalborg University

Software Errors

The BAD_INSN_ADDR error
The BAD_DATA_ADDR error
The CALL_STACK error

The LOOP error

The ILLEGAL_NSN error

Table 2.4: This table shows the possible software errors [2, Errors]

2.1.6 Instruction Set

The OTBN instruction set consists of the base instruction subset and the big number in-
struction subset. These contain many ”standard” instructions such as ADD and BN.ADD for
the addition of 32-bit and 256-bit words, respectively. However, in this section, we only
present the instructions, which have a special impact on the techniques we use in later parts
of this work.

The LOOP and LOOPI instructions are used to construct the hardware-assisted loops. These
instructions take an immediate value k, representing the loop size. The instructions con-
tained in the loop are then the & instructions following the loop instruction. How the number
of iterations is defined is the only difference between the instructions. LOOPI uses an imme-
diate value provided as an operand, and LOOP has to lookup the value of a provided register.
The two different branching instructions are BEQ and BNE. They compare the two provided
registers and jump to an address in the instruction memory provided as an immediate. The
difference between the instructions is the condition on which they have to jump, BNE jumps
when the values at the register are not equal, and BEQ jumps if they are equal. The JAL
and JALR instructions jump to a specified address in the instruction memory. They writes
address of the following instruction (return address) onto a register provided as an operand.
If x1 is used, the return address is pushed onto the call stack. The significant difference
is that JALR can add the values stored at a register to the jump address, resulting in a
computed jump.

The ECALL instruction terminates the program execution by setting INTR_STATE.done,
which signals to the host processor that the program is terminated. Additionally, when this
instruction is executed, the error flags are cleared to ensure that the host processor sees the
program termination as successful completion.

The UNIMP instruction aborts the execution of the program, and triggers the ILLEGAL_INSN
error. The NOP instruction is a pseudo-operation, which have no effect, but it does increment
the number of cycles.

Most of the instructions in the instruction set completes in a single cycle. However, some
of them do not. The LI instruction uses two operands, namely a register and an immediate
value, which it writes into the register. LI uses either one or two cycles depending on the
value of said immediate. The reason for this is that LI is a pseudo operation, and it uses LUI
for the 20 most significant bits and ADDI for the 12 least significant bits. The instruction
LA takes the same operands as LI. The immediate, which is a named address, is stored in
the register such that it is easier to refer to the value. LA is also a pseudo operation that,
similar to LI, also varies between one and two cycles depending on the immediate value.

The instructions LW and SW both take two register and an immediate value. These instruction
loads and stores to the data memory, respectively. SW takes a single cycles, while LW takes

7

Group ¢s-22-ds-10-01 2. OpenTitan Big Number Accelerator (OTBN)

Intermediate _j_)-
Representation __}-

Figure 2.2: Representation of the different parts needed to make the interpreter and the
further analysis.

OTBN program —>» Parser —>

two cycles. LW and SW are from the base instruction subset and therefore reads and writes
32-bit registers.

The BN.LID and BN.SID instructions are the big number instruction subset instructions for
DMEM manipulations. The major difference from LW and SW, apart from using 256-bit
values, is that BN.LID and BN.SID uses indirect addressing to specify which WDRs to use.
This means that they both lookup values of the specified register — which must be from
GPRs— to find which WDRs to write or read from. The instruction BN.MOVR also uses
indirect addressing for selecting the content of a WDRs and copying it into another WDRs.

The BN.SEL instruction uses the value of a specified flag to select which of two provided
registers to lookup. The result of the lookup is written to the specified destination register.

The CSRRS instruction is used to read and set bits in the special purpose register. The
number of cycles changes if it uses the RN D as the csr and the cache is empty. This is due
to the generation of the random number. The time used is not specified in the [9]. However,
observing the official simulator, we see that the amount of additional cycles is 18, which
means that the total is 19 for one of these instructions when they use RN D. This number
of cycles is also the number we continue to use throughout this work. The instruction CSRRW
reads/writes a special purpose register. This instruction is always completed in a single cycle.
However, if it uses RND_PREFETCH as the csr, it starts the generation of a new random
number, and the cache will therefore be non-empty. This means that CSRRS instruction does
not take additional cycles, even when using RN D. The instruction BN.WSRR can like CSRRS
read from RN D, which takes 18 cycles if the cache is empty. However, RND_PREFETCH
is only accessible from the CSRs, which means that the instruction BN.WSRW does not take
additional cycles.

To better reason about the behaviour of OTBN programs and measure the execution time,
we implement an interpreter for all instruction in the instruction set.

2.2 Interpreter

To implement the interpreter, we first create a parser for OTBN programs, which stores the
instructions as an intermediate representation, which will be the input for the interpreter.
It will also be the basis for the analysis presented later. This is illustrated on Figure 2.2.
To ease the parsing of the OTBN programs, we make minor changes to the OTBN label
syntax. The changes add lb: as a prefix in label declarations, and when using a label, said
label adds 1b as a prefix.

The intermediate representation consists of all the information required to execute the in-
structions, namely the operands, i.e. the immediate and registers. Additionally, each in-
struction does also have a function describing how it modifies the state.

An example of such a function is shown on Listing 2.1. This function implements the se-

8

2.2. Interpreter Aalborg University

mantics for the SUB instruction. As seen in the function, it checks for the possible errors, in
this case, the CALL_STACK error, and if the error occurs, the interpreter stops the entire
execution and reports what instruction failed. Besides the error handling, it also implements
the desired operation. In this instance, it is a subtraction between two registers and after
that operation, it increments the program counter such that the interpreter knows which
function should run next.

The interpreter itself runs the instructions in the OTBN program until it reaches an ECALL
instruction or an error has occurred. During execution, the interpreter counts the number of
cycles used. It is also the interpreter which implements the controller functionality described
in Section 2.1.3.

i void Sub::run(State &s) {

2 ErrorChecker::checkForCallStackError(s.errorStatus, 7
—~this->readsFrom (), this->writeTo(), s.callStack);

3 if (s.errorStatus.anyError()) {

1 return;

5 }

7 uint32_t grsiValue = s.lookUpGPR(grsi);

8 uint32_t grs2Value = s.lookUpGPR(grs2);

9 s.popCallStackIfNeeded (this->readsFrom());
10 s.writeGPR(grd, grsiValue - grs2Value);

11 s.programCounter++;

Listing 2.1: The function implementing the SUB instruction.

Chapter 3

Control Flow Graphs

For control-flow sensitive analysis, it is more convenient to view the program as a control
flow graph. Frances E. Allen [10] expresses the control flow relationships in a directed
graph, which was one of the first descriptions of control flow graphs. Control flow graphs
are directed graphs with nodes representing basic blocks and edges representing control flow
paths.

A basic block is a sequence of program statements with a single entry point and a single
exit point [10]. The programs written for OTBN are relatively small, and we, therefore,
represent each instruction in a program as a node in the control flow graph for the program
instead of constructing basic blocks. Figure 3.1 shows the control flow graph for the short
OTBN program at Listing 3.1 consisting of four instructions.

In the following section, we examine how we can construct the control flow graphs.

1 1i o x2, 2
> 1i x3, 3

3 add x4, x3, x2
1 ecall

Listing 3.1: A small OTBN program.

3.1 Control-Flow-Graph Construction

Due to the choice of having no basic blocks and instead a node in the graph for each
instruction, the first step to construct a CFG is to create a node for each instruction in
the program. To make sure that the control flow graphs have a single entry and exit point,
the non-instruction nodes, StartNode and EndNode are added [11], as illustrated at
Figure 3.1.

The next step will be to connect the nodes with edges representing the program’s control
flow. As illustrated by the control flow graph on Figure 3.1 this is done by connecting

StartNode @ @ @ EndNode

Figure 3.1: Control flow graph for the small OTBN program at Listing 3.1.

11

Group ¢s-22-ds-10-01 3. Control Flow Graphs

each instruction-node to the instruction-node for the instruction which will be executed
next. For most instructions, this will be the instruction at the consecutive address in the
instruction memory. However, this is not the case for the JALR, JAL, BEQ, BNE, LOOP, LOOPI
and RET instructions. Furthermore, no instruction will be executed after an UNIMP or ECALL
instruction, which we model as an edge from the UNIMP or ECALL-node to the EndNode. For
the other instructions mentioned above, we start by omitting the JALR instruction, which
performs a jump to a run-time computed instruction address. It would be necessary to
over-approximate the possible addresses. However, we omit it since none of the currently
available OTBN programs on the official GitHub page uses the JALR instruction®.

To model the instructions in a control flow graph, we will make some assumptions about
their use regarding sub-routines. However, the OTBN language does not have any function
construct. To make separating the ”main” program and the sub-routines easier, we assume
that the programmer has annotated where each sub-routine starts and ends using startf
and endf. Listing 3.2 shows a simple OTBN program with a single call (at line 2) to a
sub-routine defined at lines 5-9. We can then trivially slice the program into sub-routines
and the "main”-program, which are the instructions not encapsulated by startf and endf.

1 1i x2, 20
2 jal x1, 1bfun
3 ecall

5 startf

1b:fun

7 1i x30, 123
8 ret

9 endf

Listing 3.2: OTBN program with an annotated sub-routine using startf
and endf.

The assumptions we make are all created to prohibit jumping between sub-routines. We
assume the following.

1. The call stack (z1) is only used for calls to sub-routines, such that the RET instruction
can read the return address at the top of the call stack. The official tool mentioned
in the Chapter 1 is used to check exactly this, making it a fair assumption. The
instruction at line 3 in Listing 3.3 is therefore not allowed, while the instruction at
line 2 is allowed.

2. The only approach used to call sub-routines is by using the JAL instruction with x1
as the first operand, such that the return value is stored on the call stack. The JAL
instruction at line 1 in Listing 3.3 is therefore allowed, while the JAL instruction at
line 2 is not.

3. JAL instructions with other registers than x1 as the first operand should only jump to
instructions within the same sub-routine as the JAL instruction itself (a normal jump,
which is not a call to a sub-routine). The JAL instruction at line 4 in Listing 3.3 is
therefore not allowed, while the JAL instruction at line 5 is allowed.

IThe programs in crypto https://github.com/1owRISC/opentitan/tree/master/sw/otbn

12

https://github.com/lowRISC/opentitan/tree/master/sw/otbn

3.1. Control-Flow-Graph Construction Aalborg University

4. All sub-routines must end with a RET instruction. The instruction on line 17 in List-
ing 3.3 does not break this assumption allowed

5. RET instructions only appear within sub-routines. This instruction on line 10 in List-
ing 3.3 does break this assumption since the RET instruction is not within a sub-
routines.

6. The BEQ and BNE instructions only jump to addresses within the same sub-routine as
the BEQ or BNE instruction itself.

1 jal x1, 1lbfunc // good #1 and #2

2 jal x2, 1bfunc // bad #2

3 1i x1, 4 // bad #1

jal x2, lbInAnotherFunc // bad #3

5 jal x2, lbwithinSameFunc // good #3
6 nop

7 lb:withinSameFunc

s nop

10 ret // bad #5

12 startf

13 1b:func

14 nop

15 1b:InAnotherFunc
16 nop

17 ret // good #4
15 endf

Listing 3.3: OTBN program exemplifying both allowed and disallowed
instructions. The numbers in the comments (//) refer to the assumption
number.

We can statically check if the assumptions are fulfilled. If they are, we can construct the
control flow graph for a program by following a technique similar to the one Anders Mgller
et al. describe in [11].

The first step is to slice the program into sub-routines and the remaining instructions, which
we refer to as the main-program. Similar to Anders Mgller et al. [11] we use a EnterFunc
and a ExitFunc node to represent calls to subroutines and returning from subroutines,
respectively. By using the non-instruction nodes, the CFGs for the main program and
the sub-routines can be constructed separately and glued together afterwards. To ease the
CFG construction for sub-routines with multiple return instructions, we use additional non-
instruction nodes to give each sub-routine a single entry and exit point (StartFunc and
EndFunc).

We start by constructing the CFG for the main-program. If the original program contained
calls to sub-routines, the graph would not be connected, but a EnterFunc and ExitFunc
node-pair is inserted where a sub-routine CFG will be connected. For the program in
Listing 3.2, the CFG for the main-program is the two left-most sub-graphs of Figure 3.2.
For each pair of EnterFunc and ExitFunc nodes, we construct a CFG for the sub-routine
and connect the EnterFunc to the StartFunc, and the ExitFunc to the EndFunc node.

13

Group cs-22-ds-10-01 3. Control Flow Graphs

StartNode ExitFunc_12_8

© @
@ EndNode @

EnterFunc_12_7

Figure 3.2: The two left-most sub-graphs is the CFG for the main-program in Listing 3.2.
The right-most graph is the CFG for the sub-routine also from Listing 3.2.

This results in the control flow graphs for the sub-routines to be in-lined. After connecting
the subroutine on Figure 3.2 to the main-program, we get the graph depicted on Figure 3.3.

We handle each type of OTBN instruction in the following manner to construct the sub-
routine CFGs that we later connect to the main-program.

L 1i x2, 20
> jal x0, 1bSkip
1i x3, 30

. 1b:Skip

¢ loopi 10, 3

7 beq x2, x3, lbjump
8 jal x1, 1lbfun

9 nop

10 1b: jump

11 ecall

13 startf

14 1b:fun

15 1i x30, 123
16 ret

17 endf

Listing 3.4: OTBN program, which exemplifies all the rules for CFG
construction.

e There are two different scenarios for the JAL instruction. The first scenario is when
the register for JAL is x1 and is, therefore, a call to a sub-routine. For this scenario,
we create a EnterFunc connected to the JAL instruction node and an ExitFunc node
connected to the node for the instruction following the JAL instruction, namely the
instruction to which the sub-routine will return. For the second scenario, where the
JAL is a simple jump, we add an edge connecting the JAL-node to the node for the
instruction at the jump address.

14

3.1. Control-Flow-Graph Construction Aalborg University

StartNode

EnterFunc_12_7

ExitFunc_12_8

EndNode

Figure 3.3: The final CFG for the program at Listing 3.2, after connecting the CFG for the
sub-routine to the CFG of the main-program.

e To model BEQ and BNE, we create two edges from the branch instruction. One of the
edges will connect to the node for the instruction to which the branch instruction can
jump. We connect the second edge to the node for the instruction following the branch
instruction.

e For the LOOP and LOOPI instructions, we add two edges—one from the node for the
loop instruction to the node for the first instruction in the loop. The second edge is
from the node for the last instruction in the loop to the node for the first instruction
in the loop.

e For RET instructions, we create a EndFunc node and an edge from the RET instruction
node to this node.

e ECALL and UNIMP are modelled by adding an edge from the node for the instruction to
the EndNode.

e All other instructions are modelled by adding an edge from the node for the instruction
to the node for the consecutive instruction in the instruction memory.

15

Group cs-22-ds-10-01 3. Control Flow Graphs

StartNode

ecall_28

EndNode

Figure 3.4: CFG using some of the special instructions, mentioned in Section 2.1.6.

We utilise all of the rules above to construct a control flow graph for the program at List-
ing 3.4, which includes a loop constructed using the LOOPI instruction. The loop contains
a branching point that will either go to a function call or directly to the ECALL instruction,
which is the end of the program.

Now that we have explored how to construct control flow graphs for OTBN programs, we
can utilise them for multiple analyses.

16

Chapter 4

Rules for Hardware-Assisted Loops
(LOOP and LOOPI)

In an earlier work [3], we explored the guidelines for the programmer to follow in order to
avoid polluting the loop stack. In the this chapter, we revisit the rules, the consequences
of not following them, and describe how to statically check if a program adheres to some of
the rules.

A loop-tuple is pushed to the stack using the LOOP or LOOPI instructions. The controller
afterwards uses the information in the tuple to execute the loops correctly. OTBN permits
loop nesting and both branching and jumps inside a loop. However, the only way a loop-
tuple can be popped from the loop stack is by executing the last instruction of the loop.
Therefore, there is no support for early termination of loops, and only one loop-tuple can be
popped per instruction. These limitations give rise to unexpected behaviour if a programmer
tries to short circuit a hardware-assisted loop. Because of this, the documentation states
the following three guidelines a program must adhere to in order to avoid polluting the loop
stack and experiencing surprising behaviour[2, Using hardware loops].

e Even if there are branches and jumps within a loop body, the final instruction of the
loop body gets executed exactly once per iteration [2, Using ardware loops].

e Nested loops have distinct end addresses [2, Using ardware loops].

e The end instruction of an outer loop is not executed before an inner loop finishes [2,
Using ardware loops].

4.1 Discussion

The first and third guidelines are a bit unclear, and we will therefore discuss them in the
following. We know that the only possible way the iteration count in the loop stack can be
decremented is by running the last instruction in the loop. Therefore, it is impossible to
run the last loop instruction more than once per iteration due to how the controller works.
Therefore, we interpret the first guideline as saying that if the execution flow leaves the
loop-body, it must return to run the last instruction. The consequence of not following the
first guideline is that the loop-tuple representing the loop will never be popped from the loop
stack, which does not necessarily lead to surprising behaviour. However, if the guideline is
violated multiple times, the loop stack will eventually run out of space, which leads to a
software error and a stopped program.

17

Group cs-22-ds-10-01 4. Rules for Hardware-Assisted Loops (LOOP and LOOPI)

1i x2, 3000 1 1i x2, 3000
loop x2, 2 2 loop x2, 3
loopi 4, 1 3 loopi 4, 1
addi x3, x3, 2 4 addi x3, x3, 2
5 nop
1i x7, 12 6 1i x7, 12
Qutput: ¢ Output:
x3 = 8 9 x3 = 24000
Listing 4.2: Inner and outer loop with the Listing 4.3: Inner and outer loop with
same end-address. distinct end-addresses.

The program in Listing 4.1 violates the first guideline by skipping the last instruction in
the loop (the LI instruction) and never returning to the loop-body again. If this is done for
eight different loops, the program will terminate due to a call stack error.

1 loopi 3, 3

2 lui x4, 6

3 jal x2, 1lbout_of_loop
| 1i x4, 6

5 1b:out_of_loop

6 nop

7 ecall

Listing 4.1: OTBN program not following the third guideline.

The second guideline exists because the controller cannot pop more than a single loop-tuple
from the loop stack at a time. This means that when the last instruction of the inner loop
is executed, the controller will not consider the new top of the stack and restart the loop if
there are more iterations left of the outer loop but instead move on with the next instruction
in the instruction memory. As a side note, there is a GitHub Issue! for OpenTitan where
some contributors discuss the need for a style/secure guideline for OTBN programs. One of
the mentioned guidelines is that the versions of LOOP and LOOPI supporting labels should be
used when available, which indicates that the team know the syntax where the programmer
needs to count instructions to see where a loop ends is problematic.

The consequence of not following the second rule is that the outer loop will only be exe-
cuted once. An example is provided in the following. Listing 4.2 and Listing 4.3 contains
almost identical programs with the only exception that Listing 4.3 have an additional NOP
instruction to make sure that the two loops have distinct end addresses. For the program in
Listing 4.2, where the rule is violated, the controller will not make the control flow return to
the beginning of the outer loop, which results in the behaviour that the outer loop is only
executed once. The erroneous program’s output is therefore 8, while the correct program’s
output is 24000.

The third guideline is somewhat similar to the first. To execute the outer loop’s last in-
struction before the inner loop is finished, some jump instruction must have been used.
Again, the loop-tuple is left on the loop stack and never popped unless a jump into the

Ihttps://github.com/1owRISC/opentitan/issues/2967

18

https://github.com/lowRISC/opentitan/issues/2967

4.2. Checking Compliance with Guidelines Aalborg University

- CORCD

Figure 4.1: CFG representing the program Listing 4.1 illustrating the unreachable end of
loop (li_12).

loop is performed afterwards. The consequence of not following the guideline is similar to
the consequences of violating the second guideline. When the last instruction of the outer
loop is reached after the jump out of the inner loop, the controller does not restart the loop
because it only compares the current program counter to the top of the loop stack, which is
the inner loop that was skipped.

4.2 Checking Compliance with Guidelines

Instead of polluting the loop stack and possibly getting unexpected behaviour, it would
be helpful for OTBN programmers if they would get some error if they do not follow the
guidelines. The team working on OpenTitan is already working on some tools that help the
programmer follow the guidelines.

For the second guideline, the one regarding nested loops, we have implemented a check sim-
ilar to the one in the tool built by the OpenTitan team. Whether loops are properly nested
can be checked relatively easily. The start and end address of a loop can be determined
statically. Using these values, we need to check if the outer loop surrounds the inner loop as
required. The implementation of this can be seen on Algorithm 2. We loop through all the
loops in the program and check if a loop’s start address is contained inside another loop,
and if that is the case, the inner loop’s end address also has to be contained inside the same
loop.

Algorithm 2 Pseudo code for checking the second rule.

1: for all outerLoop do

2: for all innerLoop do
3: if innerLoop.start > outerLoop.start and innerLoop.start < outerLoop.end then
4: assert innerLoop.end < outerLoop.end

The first guideline is satisfied if a jump out of the loop is followed by a jump back into
the loop. Due to our assumptions listed concerning the control flow graph construction in
Chapter 3, calls to sub-routines within a loop-body will always return to the loop-body
again. The remaining possible jumps are BEQ, BNE and JAL that do not uses the call stack
(x1). The tool built by the OpenTitan team ? looks for these instructions and checks if the
jump is to an address outside of the loop-body where the instruction is found. Even if the
jump address is outside the loop, it is not necessarily a problem since a jump back to the
loop-body may be made. For this reason, the tool only issues a warning about the potential
problem. However, in some situations, it is relatively simple to check that it is impossible
to reach the end instruction of the loop-body. One example is the program at Listing 4.1,
where the last instruction in the loop-body (LI) is made unreachable from the StartNode
because of the JAL instruction, illustrated on Figure 4.1.

2The tool for checking loop rules can be found at https://github.com/lowRISC/opentitan/blob/
master/hw/ip/otbn/util/check_loop.py

19

https://github.com/lowRISC/opentitan/blob/master/hw/ip/otbn/util/check_loop.py
https://github.com/lowRISC/opentitan/blob/master/hw/ip/otbn/util/check_loop.py

Group cs-22-ds-10-01 4. Rules for Hardware-Assisted Loops (LOOP and LOOPI)

The problem remains with the BEQ and BNE instructions, for which we do not know if the
jump branch will ever be executed. To test this, other techniques such as symbolic execution
can be utilised.

20

Chapter 5

Timing Attacks

For the remaining part of this work, we focus on the problem regarding timing channels and
different techniques we can use to look for possible timing attack vulnerabilities. Before we
begin exploring how we can utilise different formal methods to unveil the existence of timing
attack vulnerabilities in OTBN assembly programs, we first examine what a timing attack
vulnerability is.

As described by Frangois-Xavier Standaer [12], a cryptographic primitive can be viewed as
an abstract mathematical object or black box, which transforms some input, possibly pa-
rameterised with a key, into some output. However, to provide practical value, the abstract
mathematical object has to be implemented in a program that a processor will execute in a
physical environment.

The physical environment enables a lot of different physical attacks. According to Frangois [12]
the numerous physical attacks are usually sorted among two orthogonal axes, namely inva-
sive vs. non-invasive attacks and active vs. passive attacks.

e Invasive vs. non-invasive. Invasive attacks involve opening the chip to get physical
access to the inside components. Non-invasive attacks exploit externally available
information, which is often unintentionally available.

e Active vs. passive attacks. Active attacks try to tamper with the device’s nor-
mal functioning. Passive attacks simple observes the device’s behaviour during its
processing.

The OTBN chip has security features to cope with invasive physical attacks[2, Security Fea-
tures]. However, these features do not cope with side-channel attacks since, as mentioned in
the Chapter 1, a naive cryptographic implementation can leak information through various
side channels.

The information used in the non-invasive attacks can be execution time [13], power con-
sumption, electromagnetic radiation [14] and more. However, we only focus on non-invasive
attacks using execution time as a side-channel, called timing attacks. These attacks can leak
information by an unintentional correlation between the secret information in the program
and the program’s execution time.

As a naive example, one can imagine an algorithm to check if a given input is a specific secret
password. The algorithm checks if one input character at a time corresponds to the known
password’s character at the same index. A tempting performance optimisation for such an
algorithm is to stop checking characters when the program discovers the first non-correct

21

Group ¢s-22-ds-10-01 5. Timing Attacks

W)

StartNode EndNode

Figure 5.1: CFG for program vulnerable to timing attacks.

character. However, this results in a correlation between the execution time of the program
and the correctness of the input. This example is trivial, but as the complexity rises, it
can be tough to keep track of whether the execution time of a program depends on secret
information.

5.1 (Time channel attacks) Discovering time-channels

For a program to be vulnerable to timing attacks, the program’s control flow must depend
on some secret value, and these variations in control flow should lead to different execution
times. Like other safety properties, this property cannot be expressed as properties for
individual execution traces of a system because it relates to events of two or more executions.
Another example is noninterference, which is a confidentiality policy prescribing that actions
performed by one group of users using a certain ability do not affect what some other group
of users sees [15]. These types of properties are known as hyper-properties [16].

The control flow graph on Figure 5.1 is constructed for a program with a branch instruction
(BEQ) that, if the condition is true, skips one of the program instructions, thereby making one
of the possible traces through the program one instruction shorter than the other possible
trace. If the value stored in at least one of the compared registers are secret values, the
program is vulnerable to timing attacks. On a practical level, a difference on a single cycle
will, in most cases, not lead to a vulnerability, which we will explore further in Section 5.4.

In the remaining part of this work, we use different techniques to look for possible timing
attack vulnerabilities in OTBN programs. To begin with, we will construct a UPPAAL [5]
model similar to the control flow graph of the program without considering the data oper-
ations of the program. Because we disregard the data operations, we do not consider the
comparison of registers usually used in BEQ, BNE, and both branches from these instructions
will be feasible. Likewise, the computed number of iterations for LOOP constructed loops
cannot be computed, and both the edge restarting and exiting the loop is always feasible.
We use UpPAAL [5] to test whether all possible paths in the model will lead to the same
amount of executed cycles, even if we disregard the data operations performed by the pro-
gram. This means that BEQ and BNE instructions jumping backwards and LOOP constructed
loops effectively will be unbounded loops, making the set of possible execution paths seem
infinite. However, loops constructed with the LOOPI instruction have statically known loop
constraints, which we will consider in the analyses.

For UPPAAL to verify the property, none of these unbounded loops can be present in the
program, making the number of traces finite. Furthermore, all the traces must have the same
execution time. If UPPAAL can verify the property, the program cannot vary in execution
time, and we do not have to analyse the program further.

Before examining how we construct the UPPAAL models without data, we explore model
checking and the UPPAAL model checker tool.

5.2 Model Checking

In the following section, we briefly introduce model checking and UPPAAL [5, 6]. We base
the description of model checking on [17, p. 1-7]. There are overall three elements in model

22

5.2. Model Checking Aalborg University

Figure 5.2: A simple Kripke structure.

checking. These are a model, a specification and a decision procedure for determining
whether the model models the specification. The model of the system, which we want to
verify, can be expressed in different ways. One of them is the Kripke structure, which
represents a system as some model P in the form of a state-transition graph. The Kripke
structure is a directed labelled graph, where vertices are states and edges is transitions. In
[17] the structure are defined as K = (S, R, L) where S is a finite set of states, often referred
to as state space. R € S xS is the transition relation, and L : S — 24 is a function that
assigns a set of atomic propositions to states. An example of a Kripke structure can be seen
on Figure 5.2, where the path through this structure describes the possible behaviour of the
model. The specification can be expressed as a temporal-logic formula denoted as ¢, and
the algorithm, the model checker itself, can determine if the model models the specification
written as P E ¢.

One challenge in relation to model checking is the state explosion problem, which happens
because each state represents the system status at a given point in time, and each state is
a memory snapshot of the modelled system. The state space size is therefore exponential in
the size of the memory [17, p. 3].

An approach to mitigate the state explosion problem is by simulation instead of model-
checking. Techniques using this approach are known as Statistical Model Checking (SMC).
In this approach, a finite number of simulations is made, and well-known techniques from
statistics are applied to infer, through statistical evidence, whether the specification is vi-
olated or satisfied. This also gives the advantage of easy parallelization of the algorithms,
which can help scale to large systems [18].

The techniques in SMC can be used to answer Qualitative and Quantitative questions. The
quantitative question asks what the probability that a stochastic system satisfies a property
¢ is [18]. The qualitative question asks whether a stochastic system’s probability of satisfying
a property ¢ is greater or equal to a certain threshold.

5.2.1 UprpPAAL

The model checking tool UPPAAL is used for verification of real-time systems [5]. The
models developed and used in UPPAAL are either a timed automata or a network of timed
automata, and consists of locations and edges. The timed automata are extended with
bounded integers, urgency, broadcast channels, committed locations, user-defined types,
functions, and more. The system state are defined as the locations of all automata, the
clock values, and the values of the variables [5].

The edges can be labelled with select statements, guards, synchronisations, and updates.
Guards are side-effect free expressions evaluating to a boolean variable. If the guard state-
ment evaluates to false, the transition is disabled and cannot be taken. Otherwise, it can.
There are two different kinds of synchronisation, binary synchronisation, which is declared
as chan Expression and broadcast synchronisation, which is declared as broadcast ~
—chan Expression. Binary synchronisation on a edge can labelled with Expression!
< synchronises with another edge labelled Expression?. If no receiver is available, the edge
labelled Expression! are not enabled. The broadcast synchronisation Expression! broad-

23

Group ¢s-22-ds-10-01 5. Timing Attacks

value = 0
O ——=—O
value =i value = 2
(a) select statement. (b) Unrolled select statement.

Figure 5.3: Hlustrating the effect of the select statement.

press?
y=0

press!

(a) Lamp (b) User

Figure 5.4: This shows a simple UPPAAL model of the interaction between a lamp and a
user [5].

cast on the specified channel, and any receivers with the corresponding Expression?, which
must synchronise. Unlike binary synchronisation, ff there are no receivers, then the sender
can still execute the action. An Update is an expression with a side-effect, which can change
the values of clocks, integers, and constants. An update expression can also be a function
which updates some variables. A Select statement is used to non-deteministically select be-
tween a range of values. Figure 5.3 shows how the select statement works. On Figure 5.3b
the integer ¢ is non-deterministically chosen from the interval [0 : 2], which results int the
same behaviour as the automaton on Figure 5.3a.

A location can have an invariant, which is a side-effect-free expression that evaluates to a
boolean variable. For a system state to be valid, the invariants of all active locations must
evaluate to be true.

The example on Figure 5.4 shows some of the different labels. The example is a model of
a lamp and a user. The lamp can be either be off, low or high, represented by the three
locations in Figure 5.4a. The edge on Figure 5.4a, from the initial state off to low, can
be taken when the binary synchronisation press! from the User, Figure 5.4b, is sent to the
lamp. This binary synchronisation is the same for every edge in Figure 5.4a. The transition
off to low, then perform the update statement y = 0, resetting the clock. The opposite
edge from low to off, is only available if y >= 5. The edge low to high is transversely only
available if y < 5, which represents a fast double-click by the user.

The queries for verifying properties in UPPAAL is a simplified version of Timed Computation
Tree Logic (TCTL) [5, p.7]. The TCTL queries that are used to describe a single state are
called state formulae, which are expressions describing which location a process is in [5]. A
path or trace through a system is a path formula categorised into reachability, safety, or
liveness properties. There are five different types of UPPAAL queries [5].

24

5.2. Model Checking Aalborg University

E<> ¢ E[] ¢ A<> @ All ¢

i

Figure 5.5: The different path formulae possible in UPPAAL. ¢ or ¢ are satisfied in the
green nodes [5].

e E<> ¢ is used to express reachability properties. It is satisfied if there exists a state
where ¢ is satisfied, as illustrated on the leftmost sub-figure of Figure 5.5.

e E[] ¢ is used for checking safety proprieties. It is satisfied if there exists a path where
all states satisfies ¢. This is illustrated on the second sub-figure of Figure 5.5.

e A<> ¢ is used for checking liveness properties. It is satisfied if ¢ eventually will be
satisfied for each path. This is illustrated as the middle sub-figure of Figure 5.5.

e A[] ¢ is used for checking safety properties. It is satisfied if all states satisfies ¢. An
illustration of this is the fourth sub-figure of Figure 5.5.

e ¢ — 1 is also used for checking liveness. It is satisfied if ¢ is satisfied and 1 even-
tually becomes satisfied in all following traces. This is illustrated as the right-most
sub-figure of Figure 5.5.

In addition to the standard model checking queries above, UPPAAL SMC, another model-
checking tool in the UPPAAL family, provides additional queries. These queries from Up-
PAAL SMC relate to the stochastic interpretation of timed automata [6]. UPPAAL SMC gives
five new possibilities.

e simulate N [<= bound]{exprl,...,exprk}, where N indicates the number of simula-
tions to be performed, bound is the time bound for the simulation, and exprl,....exprk
are the k expressions to be monitored or visualised.

e Pr[bound] (ap), where ap is a conjunction of predicates over the state of a Networks
of Stochastic Timed Automata. This query is used for probability estimation, which
computes the number of runs needed to produce an approximated interval with con-
fidence 1 - .

e Pr[bound] (¢)) > Py where, bound is one of three different ways to bound a run, implicit
by time < M, explicit by cost x < M (x is a specific clock) or a number of discrete steps
< M. The formula 1 is either <>q or [1q where q is a state predicate. This query is
used for hypothesis testing, and the probability to test for is specified as FP.

e Pr[boundl](+3) > Pr[bound2](t)2) where boundl and bound2 is the same possibility
as the item above, and 1, and 15 is likewise the same as ¢ from the item above. This
query is used for probability comparison.

25

Group ¢s-22-ds-10-01 5. Timing Attacks

e E[bound; N] (min: expr) or E[bound; N] (max: expr) where bound is the same as
the previous queries, N is the number of runs, and expr is the expression to evaluate.
This query is used for evaluation of expected values for min or max respectively.

5.3 UPPAAL no-data Model Construction

To use UPPAAL to test if all possible paths through the control flow graph results in the
same number of executed cycles, even when disregarding the data, we construct a UPPAAL
template representing the CFG of a given OTBN program. As mentioned in Section 5.1
hyper-properties relates the events of multiple executions. To handle this in UPPAAL we use
the constructed template to instantiate two processes denoted as Process® and Processl.
We will refer to processes instantiated using the above described template as interpreter
processes. We make the end-location, representing the EndNode of the control flow graph,
of the constructed UPPAAL model urgent such that only one of the models can reach the
end of the program unless they reach the end at the same time and thereby have used
the same amount of cycles. To keep the processes synchronised, we will construct a third
process, representing a CPU, which broadcasts a message for each time unit, where each of
the processes must respond with done? if they can. The models will be constructed such
that this is always the case.

We refer to the model, constructed in this section as UPPAAL no-data, which consists of
Process0, Processl and a CPU process.

We make UPPAAL try to verify that all possible traces reaches the end node of both processes.
If UPPAAL can verify the query, the program is proved not to be vulnerable to timing attacks.
However, if UPPAAL cannot verify the query, it can show two traces through the program
with a different number of executed instructions.

The first step in constructing a UPPAAL template corresponding to the given control flow
graph is to transfer the vertices and edges from the CFG into UPPAAL locations and edges,
respectively. The locations representing the non-instruction nodes, such as the StartNode
and EndNode on Figure 5.1, added to the CFG for easier assemble, are made urgent such
that no time is spent in these locations. The urgent nodes can be seen on Figure 5.7.

The second step is to handle the instructions, which take more than a single cycle and
the instructions that differ in the number of cycles taken depending on their operands.
Examples of these instructions are LI, LW, and when CSRRS and BN.WSRR are used to read
a random number from the RN D special purpose register. We will examine how we model
LI, which is a pseudo instruction which takes either one or two cycles, as mentioned in the
Section 2.1.6. LI takes a single instruction when the most significant 20 bits are zeros, or the
least significant 12 bits are zeros, handled by a single LUI or ADDI instruction, respectively.
Otherwise, it uses both LUI and ADDI and thereby uses two cycles. This is shown at Figure 5.7
at 1i_0 and 1i_4. However, if the most significant 20 bits and the 12 least significant bits are
non-zero, the instruction requires both a LUI and an ADDI instruction, and it is represented
as 1i_8 where the guards ensure that the simulation visits the location twice since, making
it take two time cycles.

The UPPAAL model must also imitate the behaviour of the OTBN controller, which changes
the program counter when needed, to execute the hardware-assisted loops with the correct
number of iterations. To do this, the UPPAAL model needs the same information as the
controller, namely the loop stack. However, since we assume that the program complies
with the loop guidelines, we will model the controller without the loop stack and instead
store a number for each loop, holding the number of iterations.

In the following, we describe how we model the controller and refer to the UPPAAL model at

26

5.3. UPPAAL no-data Model Construction Aalborg University

done?
StartNode loopi_0 lui_4 1E£g_f 1 is ecall_12 EndNode
@ () () ()) @
start?” "/ itr@ = 3 itre = 1~ & done?
done? done?
done?

Figure 5.6: UPPAAL model for describing the controllers behaviour.

StartNode 1i_0 1i_4
()
Gi) start? N done? <:>
done?
1i.8.2 =2
1i8.2=1 1i_8_2+
® O C 1182 = 2
? ? ?
EndNode dones ecall_12 dones 1i_8 dones

Figure 5.7: Interpreter template.

Figure 5.6 as an example. The edge going into the location representing the first instruction
of the loop (lui_4) have an update statement itr@ = 3 specifying the number of iterations.
The edge leaving the last location in the loop, 1i_8, has the guard itr@® == 1, disabling the
edge until the loop has been executed the correct number of times. The edge going from
the last location, 1i_8, in the loop to the first location, lui_4, in the loop also has a guard
itr@ > 1, that enables said edge until the number of iterations is equal to one. This edge
also has an update statement itr0- -, which decrements the remaining number of iterations.

Without the assumptions from Section 3.1 and Section 4.1 this modelling will result in a
different behaviour than the one described in Section 2.1.3. The reason is that the controller
can read the number of iterations for all loops and not just the one at the top of the loop
stack. This means that when a jump from an inner nested loop to the outer loop is performed,
the controller will be able to restart the outer loop when the last instruction is reached, which
is normally not possible, as exemplified in Section 4.1.

Since LOOP reads the number of iterations from a register, the value is only known at run
time. Therefore, we cannot set the number of iterations statically in the model. Since the
model abstracts away all the data manipulation, it will not compute the value at run time.
Therefore, the edges in a LOOP constructed loop will not have any guards, which leads to
unbounded loops, as mentioned in Section 5.1.

The last step is to construct the CPU template and annotate the interpreter template with
synchronisations start? and done?, which allows for the synchronisation with the CPU
process.

The construction of the CPU template is the same for all OTBN programs. The model is
shown on Figure 5.8 and consists of the start location, which synchronises on the broad-
casting channel start!, making the interpreter process transition from StartNode to the
following location. The Error location is only relevant for models considering the data op-
erations, which we explore in Section 5.5.

The loop from Idle to Run and back again is the main loop, where the CPU broadcasts

27

Group ¢s-22-ds-10-01 5. Timing Attacks

errors() done!
lerrors()

Figure 5.8: CPU template.

on the synchronisation channel done! to ensure that progression through the interpreter
processes happens in a synchronised manner.

We construct a UPPAAL no-data model using the template at Figure 5.7, which UPPAAL
tries to verify using the query A<> Process0.EndNode && Processl.EndNode. The result
of this query is Property is satisfied, meaning that there is not any possibility for a
timing difference. However, when trying to verify the UPPAAL template corresponding to
Figure 5.1 with the same query, the result is Property is not Satisfied meaning there is
a timing difference. This is because there are two possible traces through the model.

With this implementation, we can determine whether there is a timing difference in the Up-
PAAL no-data model. However, it does not show how much the different traces differentiate
in time, which is important since a few cycles of difference are often acceptable.

5.4 Statistical Model Checking on UPPAAL no-data

Due to the EndNode being urgent in the UPPAAL no-data model, we only know that one
of the processes has reached the EndNode and the other has not. We cannot determine the
number of cycles required for the second process to reach the EndNode. Additionally, the
standard UPPAAL queries only answer whether or not a property is satisfied, and therefore,
we use the queries from UPPAAL SMC to get the timing difference. We also have to insert a
variable indicating the number of cycles, cycles, for each of the processes, such that we can
compare their amount of cycles at the end of the simulation. In this section, we, therefore,
modify the UPPAAL no-data model such that both processes can reach their EndNode. We
will refer to the modified model as UPPAAL no-data-SMC.

The models in UpPAAL SMC do not support input-determinism, which requires that the
state following a synchronisation can be uniquely determined. This is not the case when
the processes have multiple options following the done? synchronisation. We remove the
input-nondeterminism by adding an additional committed location immediately after every
location with multiple outgoing edges to the UPPAAL no-data-SMC models.

On Figure 5.9, we have added the update statement cycles++ to the edges which have the
synchronisation done?, and the committed location additional. This location is placed
after the branch instruction BNE, and the outgoing edges from BNE is then added to the
committed location.

As an example, we simulate the UPPAAL no-data-SMC model constructed with the template
on Figure 5.9, with the query simulate 1 [<=6]{Processl.EndNode, Process0.EndNode,
— (Process0.cycles), Processl.cycles}. The result is the simulation presented on Fig-
ure 5.10, which shows that Process0 reached its EndNode after 5 cycles and Process1 reached
its EndNode after only 2 cycles.

28

5.5. UPPAAL with-data Aalborg University

StartNode bne_4 additional add_8 add_12 1i_16 ecall_20 EndNode
O O) M @ _done? M) O
start?” & done? cycles++ N cycles++ N cycles++ cycles++ p cycles+
done? done? done?

cycles++

Figure 5.9: This example shows an additional committed location, which removes the input
non-determinism, and update statement cycles++.

Simulations (1)

4.95
4.62
4.29

3.96
3.63
3.30

2.97

2.64 - Process1.EndNode
[Process0.EndNode
2.31 [Process0.cycles
1.98 E Process1.cycles

value

1.65
1.32

0.99

0.66
0.33

0 0.42 0.84 1.26 1.68 2.10 2.52 2.94 3.36 3.78 4.20 4.62 5.04 5.46 5.88
time

Figure 5.10: This graph shows that the UPPAAL no-data-SMC model made from the tem-
plate on Figure 5.9 have a timing difference, since Process0.EndNode is entered after 3
cycles, and Process1.EndNode is entered after 5 cycles.

Both the UPPAAL no-data and UPPAAL no-data-SMC models are over-approximations be-
cause they do not include the execution of the instructions in the original program. This
means that the time-differing traces might be unreachable in the original program. To
accommodate for this we make UPPAAL no-data and UPPAAL no-data-SMC perform com-
putations.

5.5 UpPpPAAL with-data

To remove the over-approximation, one theoretically possible solution is to implement the
interpreter form Section 2.2 into UPPAAL and make UPPAAL select the input values through
a select-statement. This solution is not practically possible due to the range the input can be
within, leading to state-space explosion, which makes model checking infeasible. However,
we implement the solution anyway and try to verify the property with 8-bit input. If UPPAAL
can find a counterexample, we have proven the existence of a timing difference. If UPPAAL
cannot find a counterexample, timing differences might still exist for non-explored input.

As mentioned in Section 2.2 the operations of each instruction in the instruction set is
implemented as a function, modifying the state. To extend the UPPAAL no-data and UPPAAL
no-data-SMC models we create an external library including all the features of the interpreter
from Section 2.2. The function implementing the behaviour of LI in the external library is
shown on Listing 5.1.

29

Group ¢s-22-ds-10-01 5. Timing Attacks

StartNode Ei:? 1i(GPR, CallStack, top, ERROR,1,1) .4
C) start? N\ done? <:>
initDMEM()

1i(GPR, CallStack, top, ERROR,3,2)
done?

1i(GPR, CallStack, top, ERROR,4,4112),

1i.8.2 =1 1i.8.2 = 2
© O C 1i_8_2++
done? N\ | 5 d .y
EndNode ecall 12 dones 1i_8 ones

1i8.2 = 2

Figure 5.11: The same model as Figure 5.7, but annotated with extra information for data
manipulation.

1 extern "C" void 1li(uint32_t *gprs, uint32_t *
—~stack, uint32_t *top, bool *err, uint32_t 7
—grd, uint32_t imm) {

2 State state = createState(gprs, stack, top, V
— err);

3

4 ErrorChecker::checkForCallStackError (state.

—errorStatus, {}, {grd}, state.callStack);
5 if (state.errorStatus.anyError()) {
6 return;

7 T

9 state.writeGpr (grd, imm) ;

0 ¥

Listing 5.1: The implementation of LI instruction from the external
library.

The library functions are added as update labels to the UPPAAL models, which is shown
on Figure 5.11. The edge leaving 1i_8, have the update function 1i(GPR, CallStack v
<, top, ERROR, 3, 4112). The LI functions parameter is the information necessary for
implementing the behaviour of LI. The first four parameters are the same across every
instruction in base instruction subset, and the last parameters — in this case, two — are the
register and immediate values. This means that in the update function leaving 1i_8, we
write the immediate value 4112 into the fourth register, x3.

Another important addition to this model is the select statement, 1 : int[0,2048], on the
transition from StartNode to 1i_0. This addition allows us to specify the range of inputs
which UPPAAL must non-deterministically choose from. This can be a register or a DMEM
address where the initial secret should be saved. This is done through an update, GPR
—[2] = i, which assigns i to register x2. This feature allows for verifying whether any
integer in the specified range impacts the control flow or not.

Instead of testing a range of input but random values instead, we can use a similar approach
to the one in Section 5.4, except that the added data in this model prevent input non-
determinism, so the extra committed location is not needed. Another modification needs
to run the with-data model is to remove the select statement since we only can utilise this

30

5.5. UPPAAL with-data Aalborg University

done?

cycles++,

add(GPR, CallStack, top, ERROR,5,4,3)
add_8

add_12

GPR[2] = GPR[3] done?
done? cycles+,

StartNode cycles+ add(6PR, CallStack, top, ERROR,5,4,2)

© 1i_16
O start? _ GPR[2] == GPR[3] O

initDMEM(), done? done?
GPR[2] = rand(3), cycles++ cycles+,
GPR[3] = rand(3) 1i(GPR, CallStack, top, ERROR,3,1)

50

O~———— O ecanze
done?
EndNode cycles+

Figure 5.12: This shows the UPPAAL template from Figure 5.9 with data, and the addition
of saving random input into 22 and z3.

Simulations (1)

4.94
4.56
4.18
3.80
3.42

3.04

2.66 = Process0.EndNode
5 =] Process0.cycles
E] 2.28 []Process1.EndNode

E= Process1.cycles

1.90
1.52

1.14

0.76
0.38

0

0 0.45 0.90 1.35 1.80 225 2.70 3.15 3.60 4.05 4.50 4.95 5.40 5.85
time

Figure 5.13: The result of simulating the UPPAAL with-data-SMC model using the template
on Figure 5.12 a single time. The result shows that Process®.EndNode is entered at time 3,
and Processl.EndNode entered at time 5.

in model-checking. Instead, we need a function which can create random numbers for each
run and check if this number changes the execution, meaning that a specific number could
impact the timing.

Figure 5.12 shows an example of the implementation described above, where the update func-
tions GPR[2] = rand(3) and GPR[3] = rand(3) saves the input into different registers x2

and z3, respectively. With these update functions, we then perform a simulation to see if ei-

ther of the two inputs affects the execution. In this case, it is trivial since the execution relies

on a comparison between these inputs. The result of the simulation query, simulate 1
—[6]1{Process0.EndNode, Process0.cycles, Processl.EndNode, Processl.cycles} isshown
on Figure 5.13. It should be noted that we only ran this simulation once since, in this case,

the input values range is small. We see that the simulation gives an identical result to
Figure 5.10, and can therefore see that the timing problem found is present even when the
data manipulation is considered.

With this solution, we try to guess the inputs, showing a timing difference. Another approach
is to test whether the time-differing traces found using the UPPAAL no-data and UPPAAL
no-data-SMC are executable. For this, we will examine symbolic execution.

31

Chapter 6

Symbolic execution

In this chapter, we explore the overall theoretical idea behind symbolic execution and ex-
amine how we can extend the interpreter described in Section 2.2 to do symbolic execution.

6.1 Introducing Symbolic Execution

In this section, we briefly review the theory behind symbolic execution. We start by de-
scribing the general idea, followed by an exploration of some of the key challenges, such as
symbolic memory addresses and symbolic loop conditions.

Symbolic execution was first presented by James C. King in [19]. The fundamental idea is
to execute a program with symbolic input values rather than concrete values, which allows
to reason about the behaviour of a program on many different inputs [20].

When a program is symbolically executed, input values are represented as symbols, and
every operation must therefore be able to operate on both concrete and symbolic values.
According to [21] a symbolic execution engine maintains the three following elements for
each operation.

e stmt: The statement to be executed next.

e store: A symbolic store, which associates program variables with either concrete or
symbolic values.

e path condition (m): A formula that describes all the constraints for the symbols, such
that stmt can be reached. The path condition starts being true.

How the symbolic engine updates store and 7 depends on stmt. If stmt is an assignment
expression z = e, the store must be updated such that z is associated with e (x — e), which is
evaluated in the context of the current store and can range over both symbols and concrete
values [21].

If stmt is a conditional branch (if expr then eirye else €fqise), the path condition must be
updated. The symbolic execution engine then forks the execution by creating two execution
states, one for the true branch and one for the false branch, having the path conditions
TirueBranch = (true A expr) and TfqiseBranch =(true A —expr), respectively [21].

If stmt is a jump label statement, the stmt is updated to be the instruction at label [21].
The stmt can also be a loop, which for OTBN programs are pushed to the loop stack and

33

Group ¢s-22-ds-10-01 6. Symbolic execution

1 stmt: 11 x5, 6
store: {x2 —> var}
m: true

2 stmt: beq x2, x5
store: {x2 — var, x5 —> 6}

T true

x2=x5/ \ X2 # x5

3 [stmt: bne x2, x5 4 stmt: addi x2, x2, 5

store: {x2 — var, x5 — 6} store: {x2 +— var, x5 > 6}
7: true N (var = 7 true A (var # 6)

6)
X2 #y x2 = x5 \

5 [stmt: unimp 6 [stmt: addi x5, X0, -2 7

store: {x2 — var, x5 > 6} store: {x2 — var, x5 — 6}
m: true A (var =6) A (var # 6) m: true N\ (var = 6) A (var = 6)

store: {x2 — (var +5), x5 — 6}
m:true A (var + 5) # 6)

stmt: ecall]

\ 4

stmt: ecall
store: {x2 —> var, x5 — 4, x7 —10}
m: true A (var = 6) A (var = 6)

Figure 6.1: The program from Listing 6.1 as a symbolic execution graph.

then handled by the controller. For now, we will not go further into loops, but we describe
the challenge of unbounded loops later.

1 1i x5, 6

> beq x2, x5, 1bj1

3 addi x2, zero, 5
4 ecall

6 1b:j1

7 bne x2, x5, 1bj2

8 addi x5, x2, -2
9 ecall

11 1b:j2
12 unimp

Listing 6.1: OTBN program used to exemplify Symbolic Execution. z2
holds a symbolic variable.

In the following we exemplify how the store and path condition (7) are updated during
symbolic execution, based on the OTBN program at Listing 6.1. For this example, the
program are represented as a graph at Figure 6.1, which illustrates the control flow together
with the current state of the store and path condition for each instruction (stmt). The
numbers at the top left corner of each node in the graph are used to refer to specific nodes.

Through the example, register 2 is considered the register holding the input value. There-
fore, the store includes the binding 2 — wvar at node number 1, where var is a symbolic
value. All other registers and data-memory addresses store the value 0, to begin with, but

34

6.1. Introducing Symbolic Execution Aalborg University

we omit zero values in the figure. When a program starts, the path condition will be true.
The stmt at node 1 is a LI instruction writing the value 6 to register 5.

For node number 2, the store is updated according to the LI instruction, and the new
stmt is a BEQ instruction, which is a conditional branch and the execution is forked. The
two following nodes (labelled 3 and 4) then gets the path conditions ¢rue A (var = 6) and
true A (var # 6) for the true and false branch, respectively. When branching, an SMT solver
can be utilised to test whether both of the path conditions are satisfiable and, therefore,
should be further explored.

There are two possible states that the symbolic execution engine can explore. The example
continues at node 3 with stmt¢ being a BNE instruction. As before, this is a conditional
branch, and the execution is split into the nodes labelled 5 and 6. For node 5, where the
stmt is an UNIMP instruction, the path condition will then be true A (var = 6) A (var # 6).
The path should not be explored any further since the path condition cannot be satisfied,
which is lucky since the UNIMP instruction triggers an ILLEGAL_INSN error.

The other path starting from node 6, where stmt is an ADDI instruction, updates the value
stored at register 5, which can be seen at node 8, the end of the path.

Now, we continue where we left of with the other branch from node 2. The stmt is an ADDI
instruction, which adds 5 to the symbolic var, updating 22, such that 22 ~ (var +5). Node
7 is an ECALL, which terminates the execution.

6.1.1 Satisfiability Modulo Theory (SMT) Solvers

Satisfiability modulo theory (SMT) solvers extends Boolean satisfiability solvers (SAT solvers)
and can check the satisfiability of first-order formulas using operations from multiple theories
such as bit-vectors, arithmetic, arrays and more. One SMT solver is the Cooperating Valid-
ity Checker (CVC4) [7], which we will utilise for the implementation of symbolic execution
for OTBN programs.

6.1.2 Symbolic Execution Challenges

Multiple challenges exist for symbolic execution, one being the symbolic memory address
problem addressed in [20]. In the concrete setting, any expression representing a memory
address can be evaluated to a value representing a particular memory address. However,
when doing symbolic execution, the expression can include symbolic variables, and we can,
in most cases, not determine a particular memory address. In the OTBN setting, the prob-
lem arises with the LW, SW, BN.LID, and BN.SID instructions. For a load from an address
specified by a symbolic expression, a sound strategy considers it a load from any possible
concrete address created with a satisfying assignment of the variables in the symbolic ex-
pression [20]. The same is the case for writes to symbolic addresses, which can be considered
a overwrite/assignment to any satisfying assignment to the address-expression [20].

Fully symbolic memory can be modelled using multiple different strategies like state forking
or if then else formulas. However, some SMT solvers have the expressive power to model
fully symbolic addresses. By using a theory of arrays, both load and store to arrays can
be expressed as first-class entities in constraint formulas. This is utilised by tools such as
EXE [22] and KLEE [23].

Another challenge when implementing symbolic execution is symbolic loop conditions. For
OTBN programs, the problem arises with the use of the LOOP instruction, which reads the
number of iterations from a register, potentially being a symbolic value. If we, for each
iteration, apply the SMT solver to check whether the path condition still can be verified

35

Group ¢s-22-ds-10-01 6. Symbolic execution

while the execution is potentially forked for each iteration, we can end up with a path
explosion problem. To avoid this, it is common to bound the exploration of loops up to a
limited number of iterations. However, potentially interesting paths are left unexplored [21].

6.2 Implementation

To test whether any concrete input will lead to executing the traces proposed by UPPAAL,
we have extended the interpreter described in Section 2.2 to work with both concrete values
and symbolic expressions. The data type representing the values stored at different locations
in the state is extended to be a wrapper around a symbolic expression and a concrete value,
32-bit integers for general purpose registers and 256-bit integers for wide data registers and
data memory. The wrapper also holds an additional boolean to specify whether it is a
symbolic value or not, which will be updated according to the operations performed on it.
For example, if at least one of the operands of addition is symbolic, the result will also be
a symbolic value. We refer to the wrapper datatype as Value.

As mentioned in Section 2.2, we have implemented a function for all instructions, which
modifies the input state. For the symbolic execution version of the interpreter, all the
instruction functions are updated to either do the same operation as the concrete interpreter
presented in Section 2.2, if the values used are concrete, or construct a symbolic expression
representing the operation performed by the instruction.

For example, the ADD instruction computes the usual addition and writes the result to the
destination register if both the operands are concrete values. If not, the instruction creates a
symbolic expression and writes it to the destination register. If 2 and 3 stores the symbolic
expressions el and e2, respectively, the destination register will hold the expression el + e2.

A subset of the instructions in the big number instruction subset updates the flags described
in Section 2.1.2. One example is the BN.ADD instruction, which updates all four flags in the
specified flag group, according to the result of the performed addition. Since the result
will be a symbolic value if one of the operands is symbolic, the flags must also store a
Value variable. If the result of the operation are el + e2, where el and e2 are some kind of
expression, which can be evaluated to a bit-vector the flags are updated as follows.

e For the L (least) flag we use the bit-vector extract functionality of CVC4, such that
the flag after BN.ADD holds the expression: extractLSB(el +e2).

e The M (most) flag are handled almost similar, but with extractM SB(el + €2).

e The Z (zero) flag value cannot be extracted from the result expression. The flag
should be 0 if the result is non-zero and 1 otherwise. One possible strategy to test
both cases is by forking the state and making the symbolic execution engine explore
both possibilities. However, when using this solution to test if a given trace proposed
by UPPAAL is reachable, we will have to test if at least one of these forks is reachable.
Instead, we will utilise the if-then-else expression supported by CVC4, such that the Z
flag will hold the expression i f (varl+var2 == 0) then 1 else 0. If the result-expression
evaluates to 0, the flag is 1 and vice versa.

e The C (carry) flag is handled likewise, but instead of testing for evaluation to 0, we
test for overflow.

As mentioned in Section 2.1.6, BN.SEL writes the value stored at one of two registers to a
destination register, depending on a flag value. To handle this symbolically, we utilise the
if-then-else statements provided by CVC4.

36

6.3. TraceChecker: Testing UPPAAL Traces for Reachability Aalborg University

6.2.1 Symbolic Data Memory

CV (4 supports the theory of arrays, which we use to model a fully symbolic data memory.
To ease the load and store for 32-bit integers with LW and SW, respectively, we model the
memory as a 32-bit data memory instead of 256-bit. Because of this, the 256-bit load
instruction (BN.LID) reads eight values from the date memory starting from the provided
address and concatenates the bit-vectors into one, using the SMT library’s concatenation
functionality.

6.2.2 Indirect Addressing

As mentioned in Section 2.1.6, the BN.SID and BN.LID instructions use a wide register
through indirect addressing. The value stored at a general-purpose register determines
which wide register to use. Because the value at the register can be a symbolic expression,
this leaves us with the same problem as with the symbolic memory addresses. However,
none of the available OTBN programs on the official GitHub project utilises this feature.
Every time either BN.SID or BN.LID is used, the value at the general-purpose register is
explicitly assigned to an immediate using LI. Therefore, we assume that the register stores
a concrete value when BN.SID and BN.LID are executed, and we will not provide support
for symbolic indirection.

6.3 TraceChecker: Testing UrpPAAL Traces for Reachability

We utilise the symbolic extension of the interpreter to execute the traces proposed by Up-
PAAL symbolically and then apply the SMT solver to check whether the path condition is
satisfiable or not. If we find that both traces proposed by UPPAAL are reachable, we have
found a potential timing attack vulnerability. Because the proposed UPPAAL trace leads the
execution, the TraceChecker implementation avoids the problems related to the symbolic
loop conditions. Generally, we do not have to explore more than the paths UPPAAL propose.

To follow a trace proposed by UPPAAL, we will use the control flow graph originally used to
construct the UPPAAL model, the trace to be tested, and information about what parts of
the store/state should store symbolic variables to begin with.

In the following, we present how the TraceChecker is implemented. For the presentation we
refer to Algorithm 3. The TraceChecker works by traversing the same path in the CFG as
UppPAAL did while symbolically executing the instructions at the path.

The trace is followed in the while loop from line 6 to 35 in Algorithm 3. Each iteration in
the while-loop corresponds to one step through the trace. Overall, two different cases are
considered in the while-loop. The first case (from lines 8 to 11 in Algorithm 3) is where the
current node only has a single adjacent node. For this case, we update the current node to
be the adjacent node, and if the previous, current node was an instruction node, we execute
the instruction such that the store is updated. At line 38 in Algorithm 3 the current position
in the given trace is incremented for the next iteration of the while loop.

The second case in the while-loop is when the current node has more than one adjacent
(from line 13 to 35 in Algorithm 3). This reflects the situation where UPPAAL took a non-
deterministic choice.

First, we find the edge from the current node to the node corresponding to the choice made
by UPPAAL at lines 16-17. The edge is used to provide information about what kind of
choice UPPAAL took. There exist two different scenarios where UPPAAL can take a choice
leading to four different outcomes. UPPAAL can non-deterministic choose to either restart

37

Group ¢s-22-ds-10-01 6. Symbolic execution

Algorithm 3 Pseudo code for TraceChecker.

1: maxPosition = trace.size()
2: currentPositionInTrace =0
3: currentNode = cfg.startNode
4: pathCondition = true
5:
6: while currentPositionInTrace #+ mazxPosition do
T
8: if currentNode.numberO f Adjacent == 1 then
9: if currentNode.isInstructionNode then
10: current N ode.instruction.run
11: currentNode = current Node.adjacent[1]
12:
13: uppaalChoice = trace.at(current PositionInTrace)
14: if current Node.numberO f Adjacent > 1 then
15: adjacentList = currentNode.adjacent
16: uppaalChoiceNode = adjacent. find(uppaal Choice)
17: edge = cfg.findEdge(currentNode, uppaal Choice N ode)
18:
19: if edge is loopRestart then
20: loopStack.top.loopCount — —
21:
22: else if edge is loopExit then
23: pathCondition = pathCondition A (loopstack.top.loopCount == 0)
24:
25: else if edge is trueBranch then
26: if edge. from is BEQ then
27: pathCondition = pathCondition A (regl.val == reg2.val)
28: if edge.from is BNE then
29: pathCondition = pathCondition A (regl.val + reg2.val)
30:
31: else if edge is false Branch then
32: if edge.from is BEQ then
33: pathCondition = pathCondition A (regl.val + reg2.val)
34: if edge. from is BNE then
35: pathCondition = pathCondition A (regl.val = reg2.val)
36:
37: currentNode = uppaal ChoiceN ode
38: currentPostionInTrace + +

39: Test path condition using SMT solver and return result

38

6.4. TraceChecker Example Aalborg University

addi_8 » ecall_12

: P
StartNode — 1i_.0 —» beq 4 \
CO R CE

Figure 6.2: CFG for program at Listing 6.1, with a marked trace.

addi_8 »{ ecall_12
StartNode —» 1i_0 —» beq 4
T

bne_16 —» addi 20 —» ecall 24 —» EndNode

Figure 6.3: CFG for program at Listing 6.1, with a marked trace.

or exit a loop when the last instruction in a loop body is reached. Furthermore, for BEQ and
BNE instructions, UPPAAL can choose to either jump to the specified instruction or continue
with the consecutive instruction in the instruction memory.

On line 19, we test if the edge is a loop-restart edge. If it is the case, the top of the loop stack
is updated such that the number of iterations are decremented, either concrete or symbolic,
depending on value originally used to construct the loop.

On line 22, we test if the edge is a loop-exit edge. If it is, the path condition will be updated
to reflect that the expression or value at the top of the loop stack must be equal to zero,
m = (7w A loopStack.top.loopCount == 0).

On lines 25 and 30, we check if the edge is a true or false branch, respectively. Taking into
account if the instruction is a BEQ or BNE, the path condition are updated accordingly.

When the while-loop terminates, the SMT solver is applied to test whether the path condition
is satisfiable. Figure 6.2 show the CFG for the program at Listing 6.1 with a trace highlighted
with grey. If the program at Listing 6.1, together with the CFG and the grey trace, are
given as input to the TraceChecker, it will start following the trace while executing the
instructions symbolically. When the BEQ instruction is reached, it will look in the trace to
check which path to follow. At the end, when the last node in the trace is reached (in this
case ECALL), the SMT solver is applied, which in this case will return SAT.

6.4 TraceChecker Example

Using the UPPAAL no-data model, UPPAAL can either verify that the program is not vulnera-
ble to timing attacks or show two traces through the program with different execution times.
However, there is no guarantee that program input exists, such that the traces proposed by
UpPPAAL can be executed. To test whether the traces are executable, we use symbolic exe-
cution with the TraceChecker. If both of the traces are reachable, we have found a potential
timing attack vulnerability. As an example, we look at the program from Listing 6.1. Using
this program as input, UPPAAL could find the two traces shown on Figure 6.2 and Figure 6.3,
which differ in the number of executed cycles. Using the TraceChecker, we see that both
traces are reachable, and we have thereby shown the existence of a timing difference.

However, if at least one of the traces proposed by UPPAAL is unreachable, which will be the
case if the proposed traces are the ones from Figure 6.3 and Figure 6.4, we have only shown

39

Group ¢s-22-ds-10-01 6. Symbolic execution

addi_8 ecall_12
StartNode —» 1i_0 —» beq 4

R
bre_16 @ EndNode

unimp_28

Figure 6.4: CFG for program at Listing 6.1, with a unreachable marked trace.

that the two specific traces does not create a potential timing attack vulnerability.

We, therefore, want to explore some other traces than the initially proposed by UPPAAL.
However, there is no built-in feature in UPPAAL to get another counter-example to the
query. In Chapter 9 we propose different possibilities to further explore the possible counter-
examples for future work.

40

Chapter 7

Possible Timing Attack Vulnerabilities
in RSA 3072 verify

In this chapter, we utilise the implemented tools to look for possible timing attack vulnera-
bilities in the RSA 3072 verify program available from the OpenTitan official GitHub-page
L which are used in the ROM extension ROM_EXT stage of the secure boot process.
Most of the programs available on the GitHub-page consist of multiple files, which should
be linked together, but the interpreter implemented as part of this work (mentioned in Sec-
tion 2.2) only supports OTBN programs contained in a single file and the .word directive
is the only supported directive. The RSA 3072 verify program considered in this chapter
is, therefore, manually constructed by collecting all used sub-routines in a single file, and
.skip and .zero directives are replaced by the appropriate number of .word directives. In
the constructed program, we have also changed the syntax of the labels and annotated all
sub-routines using startf and endf. The GitHub repository also contains a test program
for the RSA 3072 verify, which includes concrete input values, namely the signature, mod-
ulus of test key, Montgomery constant, and squared Mongomery Radix. The program also
contains the expected result written as a comment in the program. Before we perform any
tests, we run the program with the concrete input listed above and get the expected result,
indicating that the program is constructed correctly. Running the program used 142538
cycles.

7.1 Verifying UPPAAL no-data

First, we apply the UPPAAL no-data setup to check if all possible paths take the same amount
of cycles, even if we disregard the data manipulation. If UPPAAL can satisfy the query, it
is proved that the program cannot vary in execution time. However, as mentioned earlier,
this requires a finite number of paths through the constructed UPPAAL no-data model, and
all these paths should take the same amount of cycles.

When trying to verify the query A<> Process0.EndNode && Processl.EndNode described

in Section 5.3, we get the result of Property is not satisfied, which means that one of
the traces has reached the EndNode while the other has not.

7.2 Simulating UPPAAL no-data-SMC

The two traces received as the counter-example to the UPPAAL query used in the UPPAAL no-
data test do not indicate how big the possible time difference is. We construct a UPPAAL no-

Ihttps://github.com/1owRISC/opentitan/tree/master/sw/otbn/crypto

41

https://github.com/lowRISC/opentitan/tree/master/sw/otbn/crypto

Group cs-22-ds-10-01 7. Possible Timing Attack Vulnerabilities in RSA 3072 verify

Simulations (1000)

0.927
0.618

(]
7’3 0.309 E Process0.EndNode

0

0 47000 94000 141000 188000
time
Figure 7.1: This graph shows the different amount of cycles used before the end node of the
model representing the RSA 3072 verify was reach. The amount of cycles ranges between
144942 and 148062.

data-SMC model to simulate a selected number of times, which provides information about
some possible execution times. When testing the UPPAAL no-data-SMC model with the
query, simulate 1000 [200000]{Process0.EndNode}, we get the graph on Figure 7.1, which
shows that the observed execution times is between 144942 and 148062 cycles. The problem
with this query is that we cannot guarantee that the maximum execution time is below
200000 cycles. However, the value is chosen based on execution with the concrete values
provided in the official program, which used 142538 cycles. Additionally, the maximum
difference between the number of cycles performed by the two instantiated processes is
148062 — 144942 = 3120

Some traces discovered with the UPPAAL no-data and UPPAAL no-data-SMC are possibly
unreachable, making the time difference non-problematic. We could proceed with the anal-
ysis of the RSA 3072 verify by either using the TraceChecker to test whether the traces
are executable or test whether we can use the models considering the data operations and
still find a time difference. Instead of using either of these, we will, in the following section,
locate the reason for the timing differences and remove it.

7.3 Removing Timing Difference

An approach to remove timing differences without altering the program’s behaviour is in-
serting no-operation (NOP) instructions to the shorter paths. We examine the program for
instructions leading to possible timing differences. The RSA 3072 wverify program does
not contain any LOOP constructed loops, backwards-jumping, and does not read the RN D
special purpose register. The remaining possibilities for time difference are BEQ and BNE
instructions.

We find that the program contains a single BEQ and a single BNE instruction. The BEQ instruc-
tion is in the mont_loop sub-routine and the BNE instruction is in the modexp_var_3072_f4
sub-routine.

Above the mont_loop sub-routine in the official program, a comment mentions that the
sub-routine is a variable time sub-routine. We can see this by examining Listing 7.1 which
is an excerpt of the mont_loop sub-routine. The BEQ instruction is shown at line 2. If the
compared registers are distinct, the instructions from lines 3 to 15 will be executed. Four
of these instructions are executed for 12 iterations in a loop, one of them being a BN.LID
instruction, which takes two cycles. The instructions from lines 3 to 15 take together 67
cycles to complete. If the values stored at the compared registers used in BEQ are equal, only
the instructions at lines 14 and 15 at Listing 7.1 will be executed, taking only two cycles.

42

7.3. Removing Timing Difference Aalborg University

Simulations (500)

0.927
0.618
[
= 0.309 E Process0.EndNode
>

0

0 62000 124000 186000
time

Figure 7.2: The graph shows the difference in cycles, after inserting the additional NOP
instructions in Listing 7.1.

> beq x2, x0, lbmont_loop_no_sub

3 1i x12, 30

| 1i x13, 24

5 addi x16, x22, 0

6 1i x8, 4

7 loopi 12, 4

8 bn.lid x13, 0(x16++)
9 bn.movr x12, x8

10 bn. subb w24, w30, w24
11 bn.movr x8++, x13

13 lb:mont_loop_no_sub

14 1i x8, 4
15 1i x10, 4
16

17 ret

Listing 7.1: Excerpt of the mont_loop sub-routine.

To make the above-described branches take the same amount of cycles without changing the
operations, we can add 65 cycles as NOP instructions to the shorter path. Furthermore, we
add an additional jump (JAL) instruction to the long path to skip the added NOP instructions
such that they only extend the short path. Because of this, we now need to add 66 cycles as
NOP instructions. The program excerpt at Listing 7.2 is the same as the one in Listing 7.1,
but includes a loop (1 cycle) running a NOP for 65 cycles.

After inserting the additional NOP instructions to make the two branches from the BEQ
instruction use a constant number of cycles, we create a UPPAAL no-data-SMC model, which
we simulate 500 times. The result of the simulations at Figure 7.2 includes only two different
execution times, 153478 and 153479 cycles, with a single cycle difference. Practically, it can
be challenging for an adversary to observe such a small difference, but in the following, we
remove it.

43

Group cs-22-ds-10-01 7. Possible Timing Attack Vulnerabilities in RSA 3072 verify

2 beq x2, x0, lbmont_loop_no_sub

3

4 /* Start of false-branch */
5 1i x12, 30

6 1i x13, 24

7 addi x16, x22, 0

8 1i x8, 4

9 loopi 12, 4

10 bn.1lid x13, 0(x16++)
11 bn.movr x12, x8

12 bn.subb w24, w30, w24
13 bn.movr x8++, x13

15 jal x0, 1lbskip

17 /* End of false-branch */
18 /* Start of true-branch */

20 lb:mont_loop_no_sub
21 loopi 65, 1

22 nop

24 /* End of true-branch */

26 1lb:skip

27 1i x8, 4
28 1i x10, 4
29

30 ret

Listing 7.2: Excerpt of the mont_loop sub-routine with inserted NOP
instructions.

We now examine Listing 7.3, which is an excerpt of the modexp_var_3072_f4 sub-routine. If
the compared registers in the BNE instruction store equal values, the instructions from lines
3 to 10 will be executed. Two of these instructions are executed for 12 iterations in a loop.
The instructions from lines 3 to 10 take 27 cycles to complete. If, instead, the values stored
at the compared registers are distinct, only the instructions at lines 7 and 10 at Listing 7.1
will be executed, taking only 26 cycles. As expected, due to the results on Figure 7.2 this
only leaves a difference on a single cycle.

To make the two branches in Listing 7.3 take the same number of cycles, we can add an
additionally NOP instruction. Firstly, we make the branches distinct by ensuring that the
false-branch does not execute instructions from the true-branch, which we do by inserting
an additional JAL instruction on line 7 in Listing 7.4. Since this jump takes an additional
cycle, we add two NOP instructions to the true-branch.

44

7.3. Removing Timing Difference Aalborg University

2 bne x2, x0, 1bf4_no_sub
3 1i X8, 16

5 1b:f4_no_sub

7 addi x21, x24, 0

8 loopi 12, 2

9 bn.sid x8, 0(x21++)
10 addi x8, x8, 1

11

12 ret

Listing 7.3: Excerpt of the modexp_var_3072_f4 sub-routine.

2 bne x2, x0, 1bf4_no_sub

3
4 /* Start of false-branch */
5 1i x8, 16

7 jal x0, 1lbskip2
8 1b:f4_no_sub

9 nop
10 nop

11 /* Start of false-branch */
12 /% Start of true-branch */
13 lb:skip2

14

15 addi x21, x24, 0

16 loopi 12, 2

17 bn.sid x8, 0(x21++)

18 addi x8, x8, 1

19

20 ret

Listing 7.4: Excerpt of the modexp_var_3072_f4 sub-routine with inserted
NOP instructions.

After including the NOP instructions, we verify that no timing difference exists in the pro-
gram. The result of using the query A<> Process0.EndNode && Processl.EndNode, to
check, is Property is Satisfied, which means that we successfully removed the time dif-
ference from the RSA 3072 verify. The running time of the constant time program is 153480
cycles.

45

Chapter 8

Conclusion

In this work, we made a tool utilising techniques such as model checking, statistical model
checking and symbolic execution to discover timing differences in OTBN assembly programs.
In Section 2.1 we introduce the relevant features of OTBN, namely the communication
with the host processor, the register files, the controller, the memory, the different types
of errors, and the instructions which have a significant impact on the execution time of
OTBN programs. We have implemented an interpreter for OTBN programs, described in
Section 2.1. The interpreter implements all 58 different instructions in the OTBN ISA.
Among other things, we use the interpreter to check the execution time of programs.

The models constructed throughout this work are based on control flow graphs, constructed
by translating the OTBN program into a CFG, where the different instructions are repre-
sented as nodes, and the edges connecting the nodes describe the control flow in the program.
To ease the implementation of the CFG construction, we have some assumptions regarding
sub-routines, described in Section 3.1. Additionally, we present and discuss the loop guide-
lines in Chapter 4, which we assume are followed, to ease the construction of the UPPAAL
models presented in Section 5.3.

The desired property of having no executions varying in time relates multiple traces, making
it a hyperproperty. Therefore, the constructed UPPAAL models are based on two processes
representing the program under test and a CPU process used to synchronise them. After
constructing the UPPAAL models, we use both model checking and statistical model checking
(SMC) to find the possibility of a timing difference and the size of the possible differences
using the UPPAAL no-data and UPPAAL no-data-SMC models, respectively. For standard
model checking, we use the UPPAAL no-data model to make UPPAAL test whether the desired
property is satisfied. The UPPAAL no-data model does not consider the data operations of
the program under test and is, therefore, an over-approximation. This means that if the
property cannot be verified, the counter-examples cannot be guaranteed to be a problem.
However, if the property can be verified, the program is guaranteed to have no timing
difference. To approximate the size of the time difference, we use UPPAAL SMC to simulate
UPPAAL no-data-SMC model.

However, the UPPAAL no-data model disregards the data operations of the instructions,
and we, therefore, made the UPPAAL with-data model, which executes the instructions. To
facilitate this, we have made an external library which supports all the instructions in the
OTBN ISA.

Another approach to removing the unreachable traces, instead of using UPPAAL with-data,
is to use symbolic execution based on the two traces we received as the counter-example,

47

Group cs-22-ds-10-01 8. Conclusion

which UPPAAL provides whenever a property is unsatisfied. However, this implementation
still needs to be extended with the ability to remove unreachable traces. Possible approaches
to removing traces are explained in Chapter 9.

We used the developed tool to find timing differences in RSA 3072 verify, which originates
from the official repository of OpenTitan. In this program, we found a timing difference
and the potential difference to range between 144942 and 148062 cycles. We inserted no-
operation (NOP) instructions into the program to make all paths constant time. We then
constructed a new UPPAAL no-data model for this program and verified the program’s
execution time to be constant.

48

Chapter 9

Future Work

In this chapter, we propose different approaches to explore other traces than the originally
proposed as the counter-example to the UPPAAL query. The common problem for all of
these approaches is that the set of all possible counter-examples can be infinite, and we,
therefore, have to implement some threshold for how many traces we will explore.

9.1 Adding a Guard

One strategy could be to apply the SMT solver each time UPPAAL took a choice at BEQ, BNE,
restarting or exiting loops and then add a guard to the first edge leading to an unsatisfiable
path condition, such that UPPAAL are unable to take the edge. However, most likely, other
reachable traces, which we want to be proposed by UPPAAL, may also include this specific
transition, making it miss potential traces that possibly differ in execution time and are
reachable.

To make the approach exclude fewer potentially time-differing traces, the added guard should
only disable the transition when the number of cycles is the same as when the initially
proposed trace used the transition. With this addition, we will only miss traces that reach
the same transition after the same amount of executed cycles, which is still not optimal.

We see this problem on Figure 9.1, which have the guard cycles != 10 added on the
edge between addi_12 and ecall_16 since the symbolic execution found the trace where
ecall_16 reached at time 10 unreachable. However, as mentioned above, adding this guard
also disallow other combination of loop executions, where the edge is reached after ten cycles.

done?
StartNode lo/op_@ done? W done?
© N\ Y Loop_8
start?
add_4
done?
cycles == 10
() :
Gg) N\ done? addi_12
done?
EndNode © ecall_l6
done?

Figure 9.1: This shows a model with the guard cycles != 10, which disables the edge, since
the TraceChecker found a problem when taken this transition at time 10.

49

Group cs-22-ds-10-01 9. Future Work

done?
nextInstr[n] = add

?
StartNode start? loop_0 done? done?

M
\/ nextInstr[n] = add _/ nextInstr[n] = Lloop <:>'Loop_8
add_4

nextInstr[n] = loop

done?
nextInstr[n] = addi

nextInstr[n] = ecall
© O Qi 12
done?

EndNode done? cal1_16

nextInstr[n] = addi
done?
Figure 9.2: This model is similar to the model on Figure 9.1, but we encode the execution
into the model.

9.2 Counterexample Trace Automata

Another approach could be to express that the counterexamples must not be some of the
traces we already have shown to be unreachable. This can be done by encoding each un-
reachable trace as an automaton, which we refer to as an unSAT-automaton.

For each trace found unreachable, we construct two unSAT-automata, one for Process0
and one for Processl. We synchronise the unSAT-automata with the CPU process in the
same manner as Process® and Processl, through the done channel. In addition to the
synchronisation, we add guards for each step in the unSAT-automata, ensuring that already
seen traces will eventually enter the EndNode. Figure 9.3 shows how we construct such an
automata.

Furthermore, Process® and Processl have an id (0 and 1). This id determines which index
in the global array each of them writes to. The information these models write to the array
is information about the instruction it will run next. This can be seen on the model on
Figure 9.2, which have an update statement nextInstr[n], where n is the id. The value at
the corresponding index in the array is updated to the next instruction’s opcode.

The values stored in the global array are read by the unSAT-automata, which takes a
transition, either to Done or the next instruction depending on the value it read.

After the construction of these automata, we use the query E<> (!Process0.EndNode
—&& Processl.EndNode) && (!trace@.EndNode && !tracel.EndNode). If no trace satis-
fies the property, we have found all time-differing traces to be unreachable.

50

9.2. Counterexample Trace Automata Aalborg University

StartNode nextInstr[n] = add

S M M done?
@ & nextInstr[n] = loop N q
start?
done?

done? nextInstr[n] == loop

nextInstr[n] = add

Done C

nextInstr[n] == ecall

nextInstr[n] = Tloop
done?

done?
nextInstr[n] == addi
O O O
nextInstrin] = ecall " nextInstr[n] = addi
EndNode done? done?

Figure 9.3: This unSAT-automata represent a specific trace through the model on Figure 9.2.

o1

Bibliography

[14]

[15]

OpenTitan, OpenTitan Use Cases. https://docs.opentitan.org/doc/security/
use_cases/, Retrieved: 01/03/2022.

OpenTitan, OpenTitan Big Number Accelerator (OTBN) Technical Specification.
https://docs.opentitan.org/hw/ip/otbn/doc/, Retrieved: 01/02/2022.

R. N. Fjeldsg and S. S. Nielsen, Formalising the Fxecution of OpenTitan Big
Number Accelerator Programs, 2022. https://projekter.aau.dk/projekter/
files/459466352/Formalising_the_Execution_of_OpenTitan_Big_ Number_
Accelerator_Programs.pdf.

P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” in Annual International Cryptology Conference, pp. 104—113, Springer, 1996.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal 4.0,” Department of
computer science, Aalborg university, 2006.

A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen, “Uppaal smc
tutorial,” International journal on software tools for technology transfer, vol. 17, no. 4,

pp. 397-415, 2015.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovié, T. King, A. Reynolds,
and C. Tinelli, “Cvc4,” in International Conference on Computer Aided Verification,
pp. 171-177, Springer, 2011.

OpenTitan, Introduction to OpenTitan. https://docs.opentitan.org/, Retrieved:
01/04/2022.

OpenTitan, OpenTitan Big Number Accelerator (OTBN) Instruction Set Architecture.
https://docs.opentitan.org/hw/ip/otbn/doc/isa, Retrieved: 01/02/2022.

F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7, pp. 1-19, 1970.
A. Mgller and M. 1. Schwartzbach, “Static program analysis,” Notes. Feb, 2012.

F.-X. Standaert, “Introduction to side-channel attacks,” in Secure integrated circuits
and systems, pp. 27-42, Springer, 2010.

Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing attack on openssl
constant-time rsa,” Journal of Cryptographic Engineering, vol. 7, no. 2, pp. 99-112,
2017.

T. Roche, V. Lomné, C. Mutschler, and L. Imbert, “A side journey to titan,” in 30th
USENIX Security Symposium (USENIX Security 21), pp. 231-248, 2021.

J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, pp. 11-11, IEEE, 1982.

53

https://docs.opentitan.org/doc/security/use_cases/
https://docs.opentitan.org/doc/security/use_cases/
https://docs.opentitan.org/hw/ip/otbn/doc/
https://projekter.aau.dk/projekter/files/459466352/Formalising_the_Execution_of_OpenTitan_Big_Number_Accelerator_Programs.pdf
https://projekter.aau.dk/projekter/files/459466352/Formalising_the_Execution_of_OpenTitan_Big_Number_Accelerator_Programs.pdf
https://projekter.aau.dk/projekter/files/459466352/Formalising_the_Execution_of_OpenTitan_Big_Number_Accelerator_Programs.pdf
https://docs.opentitan.org/
https://docs.opentitan.org/hw/ip/otbn/doc/isa

Group ¢s-22-ds-10-01 Bibliography

[16]

[17]

[18]

[19]

[20]

M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of Computer Security,
vol. 18, no. 6, pp. 1157-1210, 2010.

E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem, et al., Handbook of model checking,
vol. 10. Springer, 2018.

A. Legay, A. Lukina, L. M. Traonouez, J. Yang, S. A. Smolka, and R. Grosu, “Statistical
model checking,” in Computing and Software Science, pp. 478-504, Springer, 2019.

J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385-394, 1976.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid to
ask),” in 2010 IEEE symposium on Security and privacy, pp. 317-331, IEEE, 2010.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1-
39, 2018.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: Auto-
matically generating inputs of death,” ACM Transactions on Information and System
Security (TISSEC), vol. 12, no. 2, pp. 1-38, 2008.

C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs.,” in OSDI, vol. 8, pp. 209-224,
2008.

o4

	Frontpage
	Summary
	Contents
	Introduction
	OpenTitan Big Number Accelerator (OTBN)
	OTBN
	Host Communication and Operational States
	Register Files
	Controller
	Memory
	Errors
	Instruction Set

	Interpreter

	Control Flow Graphs
	Control-Flow-Graph Construction

	Rules for Hardware-Assisted Loops (LOOP and LOOPI)
	Discussion
	Checking Compliance with Guidelines

	Timing Attacks
	(Time channel attacks) Discovering time-channels
	Model Checking
	Uppaal

	Uppaal no-data Model Construction
	Statistical Model Checking on Uppaal no-data
	Uppaal with-data

	Symbolic execution
	Introducing Symbolic Execution
	Satisfiability Modulo Theory (SMT) Solvers
	Symbolic Execution Challenges

	Implementation
	Symbolic Data Memory
	Indirect Addressing

	TraceChecker: Testing Uppaal Traces for Reachability
	TraceChecker Example

	Possible Timing Attack Vulnerabilities in RSA 3072 verify
	Verifying Uppaal no-data
	Simulating Uppaal no-data-SMC
	Removing Timing Difference

	Conclusion
	Future Work
	Adding a Guard
	Counterexample Trace Automata

	Bibliography

