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Abstract—Localisation methods often fuse measure-
ments from both proprioceptive and exteroceptive sen-
sors. Such exteroceptive sensors can be used in mul-
tilateration by measuring the distance to pre-installed
beacons; however, these position estimates can be biased
due to Non-Line-of-Sight (NLoS) errors, caused by an
occlusion between receiver and beacon, resulting in
the measured Time of Arrival increasing, elongating
distance measurement.
This paper proposes a method to NLoS identification
and mitigation, where a robot’s position estimate is
obtained using an Extended Kalman Filter (EKF),
which fuses IMU data with distance measurements
from an Ultrasonic Beacon System. The NLoS detection
is done using LiDAR measurements, to compare the
position of the detected surroundings with the position
of the currently measured beacon; if the object is
detected to be on a direct path between the LiDAR
and current beacon, the needed occlusion height is
calculated and compared to a Workspace Height Model
(WHM). Subsequently, if NLoS is detected, the R-value
in the EKF decreases, so the distance measurement
from the occluded beacon is weighted less. The system is
tested in a manufacturing laboratory, where the results
for the NLoS scenario with a LiDAR-augmented EKF
is compared to a baseline EKF position estimator. The
results show no significant difference between the two
mentioned methods.

Keywords: Indoors Localization, LiDAR, Ultra-Sonic
Beacons, Kalman Filter, Non-Line-Of-Sight mitigation.

I. INTRODUCTION

With the on-going fourth industrial revolution,
innovation is regularly done in industrial envi-
ronments and production facilities; this includes
flexible production lines and mobile robots for
transportation, both systems requiring knowledge

on their location [1]. There are localisation methods
relying on proprioceptive sensors, such as odome-
try and inertial navigation, that localise based on
previous local measurements (i.e. dead-reckoning).
On the other hand, there are methods relying on
exteroceptive sensors, focusing on absolute position
measurements (i.e. global reference-based systems),
that localise relative to global features, e.g. active
beacons, global positioning systems (GPS), mag-
netometers, landmark localisation using computer
vision or map matching. [2]
In GPS-denied environments, a proprioceptive sen-
sors based localization stack on the robot is of-
ten combined with active beacon architecture. The
proprioceptive sensors can provide high precision
estimates over short ranges, but they can suffer
from drift, which can be alleviated by fusing it
with infrastructural localization, while the local
reference system results provide increased precision
to the infrastructural system [3] [4]. Nevertheless,
if something occludes the path between the robot’s
receiver and the beacon transmitter, the Time-of-
Arrival (TOA) measurement that the active beacon
localisation system uses would be skewed, which
leads to an error in distance measurement. This is
called a Non-Line-of-Sight (NLoS) error [5].
There are different solutions for detecting and miti-
gating the NLoS error. It was shown that NLoS can
be detected with the difference in Euclidean dis-
tance [6], or by using the Mahalanobis distance [7].
When it comes to NLoS mitigation, geometry-
based methods have shown promise for radio-based
localization [8]; however, these methods cannot be
applied to sound-based localisation as they use
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assumptions inherent to the reflection properties of
electromagnetic waves. It was also shown that it can
be set up as a minimization problem [9], although
that solution is computation heavy. Lastly, it was
shown that applying a dual-filter with a Kalman
Filter and a Friedland filter [10] can also mitigate
the NLoS error.
Sensor fusion is beneficial for robot localisation,
as it is used to augment the weak-points of one
sensor, with the benefits of another, thereby result-
ing in a stronger and more reliable overall system.
As such, the robot position is estimated, based
on multiple sensor readings. There are different
methods for sensor fusion based on probabilistic
models. A widely used sensor fusion method is
the Kalman Filter (KF), derived from Bayes Filter,
which assumes linearity of the system and Gaussian
distribution of a measurement noise. However, real-
world robot systems are non-linear and that is where
Extended Kalman Filter can potentially be applied
(EKF), with a local linearization of the observed
state. [11] [12] [13]
LiDARs are regularly used for obstacle avoidance
and mapping. Therefore, it is plausible to assume
many mobile robots are equipped with such a
sensor. It is worth investigating if a distance mea-
surement obtained by a LiDAR can be fused with an
EKF localization system, to alleviate NLoS errors.
This paper seeks to mitigate the NLoS-errors of
an Ultrasonic Beacon System (GOTposition [14])
fused with localization stack using an accelerometer
and gyroscope, with a low-end RPLiDAR A1 [15].
The LiDAR is used to detect obstacles between
the detected beacon and the differential drive robot,
thereby introducing a way to quantify the level of
NLoS of a beacon distance measurement in the
EKF, which is explained in the following section II
along with test methodology. The test results are
shown in section III and discussed in section IV.

II. METHODS AND MATERIALS

This paper seeks to conclude if detecting possible
NLoS with LiDAR can improve the localisation
estimate of a robot operating in an industrial en-
vironment.

Fig. 1: A flow-diagram illustrating how the system
works, where system inputs are marked in blue boxes,

whilst the system outputs are marked in red boxed,
which are position estimates. The position estimate is
obtained simultaneously with two EKFs, where one is
augmented with LiDAR and based on the LiDAR scan
that is fed to a Height Model subsystem; if NLoS is

detected, it changes the measurement covariance
estimate R in the EKF, so the beacon distance

measurement is weighted less.

The implementation of the system is done by
obtaining distance measurements provided by active
beacons mounted on the ceiling in the tested area,
fused with positioning data obtained with an on-
board IMU. When the LiDAR detects an obstacle
in the path of the current beacon measurement, a
probability of that obstacle creating NLoS is cal-
culated with the Workspace Height Model (WHM)
and fed to the EKF.

The beacons used for testing are provided by Aal-
borg University based on the GOT hardware [14]. It
was observed that the system received beacon data
at a rate of approximately 5 Hz.
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A. Extended Kalman Filter

The implementation of the IMU-driven EKF [16]
uses the on-board accelerometer and gyroscope data
as inputs and fused with the distance measurement
to an active beacon. The idea behind Kalman filters
is to estimate the posteriori process state x̂t in terms
of a priori process state x̂t−1, with a weighted
difference (so-called residual) between the actual
measurement zt and predicted (priori) measurement
H(x̂t) [12]. The state xt at time t is defined to be:

xt = [pT , v, hT ]T (1)

where p is a 2d position vector, v is a 1d forward
velocity and h is a 2d heading unit vector. The
dynamics for each component are the following:

d

dt
p = v · h (2)

d

dt
v = ax (3)

d

dt
||h|| = Rot90 · h · ωz (4)

where ax is linear acceleration along the robot’s
x-axis, ωz is angular velocity around the robot’s z-
axis and Rot90 is a 90 degree rotation matrix. The
measurement residual is calculated as a squared dif-
ference between the actual measurement zt and the
estimated measurement ẑt, which are the following:

zt = d2 (5)

ẑt = (p− bi)
2 (6)

where d is a ToA-calculated distance between the
robot and the currently active beacon, p is a calcu-
lated 2d position vector described by equation 2 and
bi is a set of known 2d beacon positions, where i
denotes the currently active beacon. The mentioned
d distance measurement is projected down to the
robot’s operational plane, making it a 2d compo-
nent. Now, the state xt can be updated, based on
the obtained measurement residual. The weight of
a measurement is based on the measurement noise
covariance R, which residual noise covariance S

depends on; R is a constant of 0.01. The process
noise covariance Q, which predicts the covariance
estimate P , is chosen to be an identity matrix
multiplied by 100.

The state transition Jacobian F , used for the
predicted covariance estimate P , is a 5x5 matrix,
resulting in:

F =


1 0 hx ·∆t v ·∆t 0
0 1 hy ·∆t 0 v ·∆t
0 0 1 0 0
0 0 0 1 −ωz ·∆t
0 0 0 ωz ·∆t 1


based on Euler discretization of state models

described in equations 2, 3 and 4. The observation
Jacobian H , used for the residual covariance, is a
1x5 matrix, resulting in:

H =
[
−2(bix − px) −2(biy − py) 0 0 0

]
which maps the true state space into the ob-

served state space, using a residual described as a
difference between the actual measurement z (see
equation 5) and the estimated measurement ẑ (see
equation 6).

B. LiDAR Occlusion Likelihood Estimator

The LiDAR Occlusion Likelihood Estimation
(LOLE) system was developed to detect NLoS
during the position estimation process. As the EKF
is operating in 2d space, the position of the currently
active beacon is initially projected down to the
same 2d plane that the LiDAR is operating in.
With LiDAR measurements, the system continu-
ously checks if there is any obstacle between the
LiDAR and the projected beacon position; if there
is, the system calculates how tall the obstacle needs
to be to create NLoS. This calculated minimum ob-
stacle height Oh is then fed to the WHM, explained
in method II-C. The LOLE system also accounts for
cases of non-LiDAR detected obstacles - if the Li-
DAR does not detect an obstacle, but the difference
between the estimated D̂ and measured D distance
between the robot and the beacon differs more
than 5%, then the system assumes the detection of
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NLoS and the R-value in the EKF is updated to be
the maximum of 100, meaning the beacon reading
will now be weighted less. If the occlusion is not
detected through either methods, then the R-value
stays the same as in the original EKF, meaning 0.01.
This is summarized in algorithm 1. As such, the
R-value of the system will either be R = 0.01, if
the measurement is trusted; R = 100, if the system
deems the measurement to be noisy or R = the
probability of the object occluding, gotten from the
height model II-C, if the LiDAR detects an obstacle
in the signal path.

Algorithm 1 LiDAR Occlusion Likelihood Estima-
tor

1: if |D − D̂| > 5% of D̂ then
2: set bell = 100;
3: end if
4: for the LiDAR detects an obstacle (at LiDAR angle

[i]) between itself and the beacon (±2 degrees) do
5: if the distance to the LiDAR-detected-object is <

the projected distance to the beacon then
6: save measurement in array
7: end if
8: if last run of the for Loop then
9: find the smallest measurement in array

10: find the angle between the floor and the
beacon from the robot’s point of view

11: find the minimum obstacle height(Oh) needed
to introduce occlusion at the measured distance

12: find the percentage of objects in the
workspace with a height above Oh using the
Workspace-height-model

13: bell = percentage of taller objects, multiplied
with 10

14: end if
15: else
16: bell = 0.01
17: end else
18: end for
19: R = bell

C. Workspace Height Model

As illustrated in figure 3, the obstacle is in
the path between the LiDAR and currently active
beacon, but it is not tall enough to create NLoS.
The WHM was created for this reason, in order to
limit the number of beacons filtered out by LOLE
(explained in section II-B).

Fig. 2: The Gaussian density curve, truncated to
positive values (as object height cannot be negative); the

x-axis represents occlusion height, whilst the y-axis
represents likelihood. This function is used to find the

probability of an object being over a certain height; the
area under the curve from Oh to infinity represents the

percentage of objects exceeding the height of the
minimum occlusion. The found percentage is then used
in method II-B. This plot is a rough approximation of

the workspace obstacle heights measured in the
workspace, based on the observed distribution of object

heights measured.

Fig. 3: This figure illustrates the reasoning for
modelling the WHM, explained in method 2; the
LiDAR detects an obstacle between itself and the

beacon that is currently transmitting the data, where the
needed height for occlusion is extrapolated.
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Here, each calculated object’s height is compared
to the WHM and the likelihood of the object
occluding the beacon is used to weigh the beacon
measurement (without this solution, each time an
obstacle was detected between the beacon and the
robot, the distance measurement would result in a
fixed R-value).
The height model was created by measuring the
heights of a majority of objects in the testing
facility. The model only represents the object’s
height and does not account for the rest of their
volume. The mean and variance for this data-set
was calculated and used to create a Gaussian density
curve, truncated to positive values, as seen in figure
2.

D. Testing Description

The tests were performed at Aalborg Univer-
sity in an industrial manufacturing laboratory of
12x45 m. The testing area within this laboratory
was limited to the area where initial static tests
showed a good beacon-based position estimate, with
5 beacons in range and minimal foot-traffic during
the test periods (see the testing area in figure 4).
The NLoS was introduced by constructing a 2 m
high tower, using 0.5 m cubes. This tower obscured
the Line-of-Sight (LoS) to a single beacon within
a limited area of the full scope of the 2.78 m
testing path. The approximate ground truth was
measured in relation to a specific beacon, where
the approximated starting and ending position are
at (22653,1039) mm and (22673,3822) mm, respec-
tively, relative to the world frame origo. The test
setup is sketched in figure 5.

To ensure repeatability, the tests were performed
by moving the robot along a pre-determined path,
which was encompassed with metallic rails. The
path was measured relative to a beacon, to enable
a ”ground-truth” path for result comparisons. The
data provided by the EKF and LOLE-augmented
EKF was recorded simultaneously for each of 40
test (20 for LoS scenario and 20 for NLoS scenario).

The test results are analysed using the t-test
methodology [17], to see if the LiDAR addition
to the EKF makes any significant difference. This
method was used for both the LoS and NLoS

scenarios. The critical t-value used in the test is
an α of 95 percent.

Fig. 4: This map shows the testing facility, where
functioning beacons are marked in red and faulty

beacons are marked in blue. The blue not-infilled dot
represents a beacon that is disregarded from the system
due to discrepancies between the ”known” and actual

beacon position. The testing area marked in this figure
represents the area that was initially found to have good
coverage, with 5 beacons in range (sketched in figure 5).
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Fig. 5: A sketch of the test setup, where the robot is
pulled with a rope along rails. The setup was placed in

the ”Testing area” shown in figure 4.

III. RESULTS

The tests were conducted according to the
method explained in section II-D. The tests were
performed in the testing area, shown in figure 4,
repeated 20 times for the LoS scenario and another
20 times for the NLoS scenario. This section shows
the results of the mentioned tests, where the visuali-
sation of the obtained position estimate is presented
in figure 6. For the calculated position estimate, an
absolute mean is calculated, along with standard
deviation, which is summarized in table I. These
results are only representing the position estimation
error perpendicular to the path travelled (marked in
red in figure 6) and not the position estimation error
parallel to this path.

Table I shows the test results; here, the column
”Absolute Mean[mm]” is the mean position esti-
mate error and the ”Standard Deviation[mm]” is
the standard deviation from this mean. The results
in the table are not fully representative, as the
error along the x- and y-coordinates is assumed to
be correlated, however the error along the path of
travel(x) is not analysed.

NLoS Absolute Mean error[mm] STD of error[mm]
Kalman 205.35 169.84
LiDAR 192.41 141.44

LoS Absolute Mean error[mm] STD of error[mm]
Kalman 263.25 321.92
LiDAR 265.16 328.88

TABLE I: This table show the average results from the
tests with and without NLoS. The data is projected down
to a line perpendicular to the ”true path”. Therefore, the
STD is the relative deviation from the mean error.

A t-test was performed to analyse if the LOLE
augmentation of the EKF significantly differed from
the baseline EKF. In LoS conditions, the two setups
resulted in a t-score of -0.0002 with a 95% confi-
dence and under NLoS conditions, the t-score was
-0.0023.

IV. DISCUSSION

In this paper, two systems for indoor positioning
were tested, namely the baseline EKF was com-
pared to its LOLE-augmented version, where the
LOLE evaluates NLoS occurrence on the beacon
measurements by weighing obstacle NLoS, based
on the likelihood of the obstacle heights occluding.
Both systems were tested in a controlled LoS and
NLoS environment. The purpose was to investigate
whether the inclusion of such a LiDAR NLoS esti-
mation system would be an improvement over the
baseline EKF position estimator. The results were
analysed with a t-test, where the results showed a
non-significant difference between the two solutions
(seen in section III). It is concluded that the used
system implementation does not, in fact, improve
the position estimation to a significant degree, per-
pendicular to the path travelled.

It is theorized that potential improvements could
be made by better managing some observed error
sources, such as the solution assuming a levelled
plane of operation for the robot and receiver, as
it was observed that the used testing facility had
some minor variance along the floor plane. The
tests were performed by manually pulling the robot
along a track, wherein the velocity was not constant,
which limited the data analysis options. If the tests
were repeated with a constant velocity and/or better
position tracking along the path over time, then
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Fig. 6: This figure shows the obtained test results for the position estimate; the red line is the true path travelled
by the robot, the blue dots are the recorded position estimates throughout 20 repetitions of tests. This is presented

for both NLoS and LoS conditions.

the results could be comparable in both x- and
y-dimensions, as the NLoS introduces error along
both of them.

It was assumed that both systems should have no
significant differences in the LoS scenario, since the
LOLE-augmented EKF should not change anything;
this was successfully observed in the t-test, giving a
-0.0002 t-score, with a confidence of 95%. The tests
performed under NLoS conditions was assumed
to have an actual impact on the method, thereby
having a significant difference between the two
methods; however, the t-score was calculated to
be -0.0023 and shows a non-significant difference,
with a confidence of 95%. While the difference is

deemed insignificant, it can be observed that there
is a factor 10 between the results, as such there
is an impact and further system tuning would be
recommended.

As it was observed that the position estimate error
increased over time, it is believed that the EKF
system models requires further work as well.

Overall, this implementation of augmenting the
position estimation EKF with the LOLE system has
shown no significant improvements in alleviating
the Non-Line-of-Sight error. It is still believed that
the concept has promise, however, the implementa-
tion used in this project requires further refinement
and tuning.
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