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Synopsis:

The position of autonomous robot is of
great significance for the purpose of nav-
igation in an indoor environment. The
goal of this project is improved localisa-
tion in Non Line of sight(NLoS) condi-
tions. The current technologies during
Line of sight (LoS) such as GPS, Bluetooth
has an uncertainty of greater than 20 cm,
whereas Ultra Wide Band sensors are ac-
curate with a lower uncertainty of less than
8 cm. In this project, the tracking of an
autonomous robot, assisted by Ultra Wide
Band (UWB) sensors, in an indoor envi-
ronment by deploying Unscented Kalman
Filter (UKF) has been explored to miti-
gate effect NLoS. The autonomous robot
in this project is addressed as "Deepcar",
provided by a company known as SMPL
robotics. A machine learning classifica-
tion model is employed to detect whether
a robot is in NLoS or LoS with the beacon
by analysing the power of the impulse re-
sponses received at the beacon. This clas-
sification model is developed using TREK
1000 evaluation kit.
In the proposed approach, during NLoS
conditions, persons in the indoor environ-
ment, who also carry UWB tags are used
as non stationary beacons and are assigned
variable weights in UKF, hence aiding in
position estimation of the Deepcar, along
with stationary beacons.
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Introduction 1
As technology continuously progresses, the need of robots becomes more significant

and especially autonomous robots. The field of interest is increasingly pointed towards the
ability to autonomously navigate in an indoor environment and nonetheless the property
of avoiding static and dynamic obstacles.

An another field that is heavily researched is the use of robots in warehouses. For
example, this could be to pack or move goods within the warehouse. Big companies like,
Amazon, Proshop, Alibaba and BMW are just a few of the companies that utilize robot
technology to their advantages [1], [2], [3].

Robot being aware of its own position is an integral part of enabling precise navigation.
Complex indoor environment such as coal mines, hospitals, and warehouses have an
essential need of more precise localisation[4]. The order of localisation, that utilises
GPS and other outdoor satellite systems, is in meters, which is suitable for outdoor
purposes[5], but indoor environment necessitates even more precision. Ultra Wide Band
(UWB) Technology is a wireless communication technology, which is especially suitable for
indoor positioning because of its superior advantages such as low power consumption and
good resistance to interference[6]. Based on Time Difference of Arrival (TDOA) approach,
Ultra Wide Band has a capacity to localise the robot in order of centimeters. Hence, it is
decided to explore the topic of indoor localisation using UWB sensors.

1



Group 935 1. Introduction

1.1 Project setting

The application of autonomous robots has a great variety of usage. Ranging from

• Eldercare.
• Parcels allocation.
• Cleaning.
• Autonomous car.
• etc.

In all sectors, accuracy, cost-efficiency and reliability plays a significant role in order
to avoid damaging or hurting the people and the environment where robot is operated.
Especially, in real-time systems created for indoor navigation face the problem of accuracy
with technologies such as GPS, bluetooth and Wi-Fi, however a new aspect has made a
prominent appearance in the later years, which is UWB. It has the opportunity to fill-in
the gap [7]. Hence, an autonomous robot, with Ultra Wide Band sensors mounted, has
been considered in this project.

1.2 Initial problem statement

Based on the project setting described in the section 1.1, the problem statement can
be reformulated in the following way:

"How an autonomous robot can be localised using Ultra Wide Band Sensors
in an indoor environment?"

1.3 State of the art

Robot localization implies the robot’s capacity to determine its orientation and
position within a defined coordinate system (frame of reference).

The problem of localisation in an indoor environment can be solved in multiple
ways. This section deals with exploring the current methodologies employed in NLoS
identification and localisation techniques. The NLoS identifications are done based on
statistical information, channel diagnostic algorithm, machine learning classifiers and these
are discussed in [8] [9] [10]. The localisation is a two step approach where in the first step
certain position parameters are obtained and in the second step the position is determined
by deploying position estimation algorithms and these are discussed in [11] [12].

For NLoS Identification: In the approach of using relevant statistical tools the
characteristics of the received multipath components are used. This is employed by using
the kurtosis, the rms delay spread and the mean excess delay to view the delay and
amplitude information during NLoS and LoS conditions. If this information is available
prior for both LoS and NLoS conditions in a particular environment then likelihood ratio
tests can be conducted to determine the hypothesis (LoS or NLoS). In the approach of using
channel diagnostic algorithm(CDA), we use two received signal strengths for identifying
the LoS or NLoS condition. One is first-path signal power level(FSL) and the other is

2



1.4. Scope and limitations Aalborg Universitet

received signal power level(RSL). The unit of these two power levels is dBm. A CDA

uses the difference between RSL and FSL, and if the difference greater than 10dB then
it is said to be in NLoS condition whereas when the difference is lesser than 6dB it is said
to be in LoS condition. However the region of difference between 6dB and 10dB is not
defined and hence may cause improper identification. In the approach of using Machine
Learning classifier, a set of features are selected for the training data set. The classification
of LoS and NLoS can be done using SVM. SVM is a supervised learning classifier and it
is one of the most widely used because of its low generalization error, requires only a few
user defined variables[10].

For Localisation: The position parameters are determined initially and the next step
is estimation of the position. The positioning algorithms are classified by the signal
properties they utilise. The position parameters that can be used for positioning are
Channel Impulse response (CIR), multipath power delay profile (PDP ), Angle of arrival
(AOA), Time of arrival (TOA), Time Difference of Arrival (TDOA) and Received Signal
Strength Indication(RSSI)[11]. The signal properties such as AOA, TOA, TDOA and
RSSI are used for geometric methods of position estimation and the signal properties
such as CIR and PDP is used by fingerprinting. The positioning algorithms convert the
recorded signal properties into distances and angles after which the position of the actual
object to be tracked is computed. Hence both the signal property and the positioning
algorithm work cohesively to estimate the position of the target node. The accuracy
of the estimated position is determined by the positioning algorithm deployed and it is
also determined by the accuracy of the signal information collected[12]. The prominent
positioning algorithms are :

• Fingerprinitng or Scene Analysis
• Trilateration
• Triangulation
• Proximity

1.4 Scope and limitations

This project employs the use of an autonomous robot named "Deepcar". It is equipped
with camera, LIDAR sensor and UWB decawave module. Deepcar is designed for many
functionalities such as self driving using camera, mapping of environment using LIDAR,
indoor localization. One of the functionalities explored in this project is indoor localization
using UWB decawave module.

Due to the insufficient documentation of deepcar, the state model and the controller
for the deepcar are not designed in this project. Position localization of deepcar must be
accurate for better navigation in an indoor environment. UWB positioning is accurate
when the tag on deepcar is in line of sight (LoS) with all the anchors. But UWB is prone
to many problems such as clock synchronization between two transceivers, Non Line of
sight (NLoS) interference, interference due to environment, and so forth[13]. In case of
Non Line of sight (NLoS) with one of the anchors, the positioning is greatly affected by the
reflection of waves from the obstacles, that are causing NLoS. The positioning of deepcar
can be made better by utilising persons.

3



Group 935 1. Introduction

This project builds on the work presented in article [14]. Identification of LoS/NLoS
has been given more significance, and hence different metrics for the classifier are considered
to deploy it in real-time. The environment in which the deepcar is operated is considered
to be of much importance because it should be mapped before implementation. The
environment that does not vary much with time is preferably considered such as warehouse
in an industry, but if the environment is unpredictable such as home, the deepcar might
not be the best option. This report is aimed to analyse the effect of interference due to
NLoS conditions on localisation of robot using Ultra Wide Band technology and exploring
approaches to improve accuracy of localisation [15].

1.5 Use case for indoor navigation of Deepcar

Deepcar is navigated in a closed environment (such as room, inventory house) which is
mapped into a 2D grid, including all the stationary obstacles (such as walls, racks, pillars).
A fixed number of anchors, which are decawave UWB modules configured as anchors, are
positioned at the corners of the environment. The number of anchors should be chosen on
the basis of location of stationary obstacles in the considered setting.

In this project(figure 1.1), any person entering the environment is considered as a
non stationary anchor by the UWB tag he/she wears. These non stationary anchors are
considered as obstacles by the deepcar. During NLoS conditions with the fixed anchors, a
person, whose position can be estimated accurately using indoor localization, is considered
as an anchor and the deepcar estimates its position.

4
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Figure 1.1: Demonstration of Use Case

5
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1.6 Final problem statement

Based on the limitations presented in the previous section, the problem statement can
be reformulated in the following way:

"How to improve localisation performance in an indoor environment using
Ultra Wide Band, in Non Line of Sight (NLoS) conditions?"

1.7 Solution overview

As described in the use case, the position of deepcar is calculated by using the
anchors in the room. The line of sight or non line of sight condition of deepcar with an
anchor is identified by employing a trained machine learning model, which takes Channel
Impulse Response(CIR) from the tag connected to deepcar. The machine learning model
is developed for the environment where deepcar is operated. An evaluation kit is used
to obtain CIR’s for various settings of LoS and NLoS conditions, which are used to train
the model. An unscented kalman filter has been designed to track deepcar in both LoS
and NLoS conditions. In LoS conditions, UKF utilizes the stationary anchors to localise
the deepcar. In NLoS conditions, UKF utlilizes the persons as non-stationary anchors to
estimate deepcar position accurately.

6



Line of sight and Non-Line
of sight 2

This chapter will deal with the identification of the two scenarios, "line of sight" (LoS)
and "non-line of sight" (NLoS) by using channel impulse response (CIR). All the provided
information is from the following source [16].

2.0.1 Line of sight

In case of line of sight two scenarios could emerge.

1. Optically LoS: Specify the arrangement of no obstruction of physical objects in-
between the transmitter and receiver antenna. This is considered in this chapter.

2. Fresnel Zone LoS: This refers to the area around optically LoS into which
electromagnetic waves spread out, this type of LoS is known as Fresnel Zone and
has its application in field such as RF.

Node 1 Node 2

d

Figure 2.1: Example of Line of sight

Communication range

First approach is to deal with the power signal in order to know the range of the
signal, then follow up by an accuracy technique, which is Time-of-Flight (ToF) in order to
estimate the distance.

The communication range is defined upon two criteria, "the level of arrived signal"
and "the sensitivity of the receiver antenna". As long as the signal level surpasses a certain
threshold, the signal will be acknowledged.

The following equation will describe the received power signal:

PR = PT +G− L− 20 log10(
4πfcd

c
) (2.1)

where
PR = Received Signal level.
PT = Transmitted power,

7



Group 935 2. Line of sight and Non-Line of sight

G = The gain from the transmitting, received antennas and other amplifiers.
L = Losses in the system like PCB, cable, connector etc.
c = Speed of light (299792458).
fc = Center frequency of the channel used (in Hertz).
d = Distance in meters between transmitter and receiver.

The received signal PR will indicate the robustness of the communications by
considering the Link Margin, which is the difference between the value of PR and the
threshold of the receiver. A large Link Margin represents a robust communication and can
be attenuated if wanted, whereas the opposite indicates a bad signal.

Distance Determination

The following objective is to determine the distance between two antennas in LoS.
In order to determine the distance, time-of-flight is a necessary tool. It is with great
importance to accurately measure the time-of-flight, as 0.1 ns provides a measurement
precision of 3 cm, whereas 1 ns gives a deviation of 30 cm.

The ideal case of LoS occurs when there is no multipath propagation, however this is
not possible in real life scenario even when no object is obstructing. The effect of these
multipath(s) could change the direct pulse in normal circumstances, however this is not a
severe problem in case of UWB since it is narrow pulses.

The most common reflector is the ground which could occur in both the outdoor and
indoor environment. This leads to an infinite number of multipaths among the antennas.

8
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Node 1 Node 2

Direct path 

Ground

Multiple ground 
reflection

Figure 2.2: Illustration of ground as a reflector

2.0.2 Non-line of sight

NLoS differs from the LoS as the peripheral field contains obstruction and eventually
this will delay, reflect or refract the signal.

When occupying NLoS, three main categories should be examined.

1. Time of flight error due to the refractive index, which depends on the hindering
object.

2. Attenuation, in the signal power, leads to a reduction in the communication range.
3. Attenuation of the direct path signal as interference, of multipath, occurs as a result

of the reflection and refraction.

Node 1 Node 2

Obstruction

Reflected 
signal

Incident  
signal

Reflected 
   signal

Refracted 
   signal

Figure 2.3: NLoS with reflection and refraction of the incident signal

Communication range

The effect of signal attenuation, by obstacle, on communication range depends on the
material, thickness and the frequency of the incident signal. So the obstructions attribute

9



Group 935 2. Line of sight and Non-Line of sight

to Friis equation likewise:

PR = PT +G− L− 20 log10(
4πfcd1 + d2

c
)− LMATERIAL (2.2)

where
PR = Received signal level.
PT = Transmitted power.
G = The gain from the transmitting, received antennas and other amplifiers. The
DWM1000 emits sufficient power so that −41.3 dBm/MHz is radiated from the
transmitting antenna.
L = Any losses in the system like PCB, cable, connector etc.
c = Speed of light (299792458 m/s).
fc = Center frequency of the channel used (in Hertz).
d1 = Distance in free space from transmitter to attenuating material.
d2 = Distance in free space from attenuating material to receiver.
LMATERIAL = Describe the loss in material.

Effect of refraction

Effect of refraction contributes to a delayed signal, which affects the calculation of the
position as mentioned before. The following equation will describe effect of NLoS:

ToF =
d− w
c

+
w ·R
c

ToF =
d+ w · (R− 1)

c
d′ = ToF · c = d+ w · (R− 1) (2.3)

where
d = Physical distance between two nodes.
d’ = Calculated distance between two nodes.
c = Speed of light.
w = Width of the object between the two nodes.
R = Refractive index.

NLOS and multipath operation

Third case describes the NLOS scenario with multipath.

10
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Node 1 Node 2

d

Direct path

Obstruction

O
bstruction

Figure 2.4: NLoS alter the signal and delays the original signal

When the scenario is in NLoS as in figure 2.4 the effect is a misinterpretation of the
distance, because the amplitude of the direct path is attenuated and has become lower
than the multipath’s amplitude, hence misinterpreting multipath signal as a direct path
signal.

This could also be illustrated as in figure 2.5

First Path 

First Reflection 

Figure 2.5: Reflection signal power interfere the direct path signal power

11



UWB Positioning 3
This chapter gives a brief description about the estimation of distance between

two Ultra Wide Band (UWB) modules using a Two way ranging(TWR) protocol. A
mathematical approach has also been discussed to estimate the coordinates of deepcar
using anchors.

3.1 Ultra Wide Band (UWB) Sensors

Information is transmitted in UWB by radio energy at specific time intervals and
occupying a large bandwidth (typically more than 500 MHz). The key difference between
radio systems and UWB is that a small duration pulse is directly propagated, without any
Radio Frequency (RF) mixer in UWB systems. Detection of UWB detection is difficult
because of the low Power Spectral Density (PSD) and pseudo random characteristic of the
signal. The advantages of having high bandwidth are as follows [17]:

• High Multipath resolution
• Resistant to Multipath propagation and jamming/interference
• Good Low Probability of Interception and Detection (LPI & LPD) properties

In the deep car, UWB sensors are used primarily for following purposes:

• Positioning of the deep car using tags
• Obstacle Detection

3.1.1 UWB Positioning Algorithm

UWB positioning is nearly accurate because of the short duration pulses. If the arrival
time of one of these pulses is measured, it is possible to determine the distance between
the receiver and the transmitter with a small uncertainty. If the distances from multiple
receivers and one transmitter are measured, then the position of the transmitter can be
determined with more precision using various position estimation techniques.

3.1.2 Distance Determination between Anchor & Deepcar

Distance of anchor from tag is obtained using time of flight(ToF) of the radio signal
between them. ToF measurements are obtained using a ranging protocol TwoWay Ranging
(TWR) technique.

12
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Two Way Ranging(TWR)

This is the simplest protocol, which uses only three messages. Tag sends out a start
message at instant t1. Tag receives two messages consisting an acknowledge request in one
message and time stamps in the other (Figure 3.1). From the timestamps received, the
ToF [18] is measured as follows:

ToF =
1

2
(t4 − t1 − (t3 − t2)) (3.1)

It is important to note that the timestamps t2 and t3 are computed by the same crystal
oscillator as t1 and t4 are computed. In real systems, it is always not ensured that there
will be no clock drifts between the tag and the anchor. In such cases, a co-efficient(k) is
defined to account for this drift. Consider the frequency of the tag as fT and the frequency

of the anchor as fA. Then k =
fT

fA
[18]. The equation (3.1) can be modified as

ToFmodified =
1

2
(t4 − t1 − k(t3 − t2)) (3.2)

This measurement is used in calculating distance(dTA) between the anchor and the tag in
Line of Sight conditions as

dTA = c · ToFmodified (3.3)

where c is defined as the speed of electromagnetic wave.

Figure 3.1: TWR Ranging

3.1.3 Mathematical Approach for determination of Deepcar Position

When a tag is connected to the deepcar, distances of each anchor from the tag are used
to determine the position of deepcar mathematically. It is assumed that the distance(di)
of tag from the anchor is interpreted as tag could lie anywhere on the sphere of radius(di)
with anchor at the centre of sphere. Hence, for 3D position estimation, at least four
anchors should be mounted. As the visualisation of spheres is difficult, 2D position
calculation(figure 3.2) is represented using three anchors [19].

13
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Assume anchors are denoted by Ai and deepcar is denoted as DC. Prior before
computation, position of anchors and distances are obtained.

Figure 3.2: 2 dimensional Position estimation of Deepcar

(xDC − xA0)2 + (yDC − yA0)2 = d2
0

(xDC − xA1)2 + (yDC − yA1)2 = d2
1

(xDC − xA2)2 + (yDC − yA2)2 = d2
2

(3.4)

Equations in (3.4) are rearranged into a set of two equations by subtraction

2(xA1 − xA0)xDC + 2(yA1 − yA0)yDC = d2
0 − d2

1 −
(
x2
A0

+ y2
A0

)
+
(
x2
A1

+ y2
A1

)
2(xA2 − xA1)xDC + 2(yA2 − yA1)yDC = d2

1 − d2
2 −

(
x2
A1

+ y2
A1

)
+
(
x2
A2

+ y2
A2

)
(3.5)

Equation (3.5) expressed in matrix form (3.6)

AXDC = B (3.6)

where

A = 2

[
xA1 − xA0 yA1 − yA0

xA2 − xA1 yA2 − yA1

]
XDC =

[
xDC
yDC

]
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B =

[
d2

0 − d2
1 − (x2

A0
+ y2

A0
) + (x2

A1
+ y2

A1
)

d2
1 − d2

2 − (x2
A1

+ y2
A1

) + (x2
A2

+ y2
A2

)

]

XDC gives the position of deepcar, whereas A and B are obtained from position of anchors
and distance measurements on the tag. Least squares technique is applied to solve matrix
equation (3.6) for position of deepcar. This approach can be expanded for n anchors and
3 dimensional position estimation.

XDC =
(
ATA

)−1
ATB (3.7)
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Machine Learning 4
This chapter deals with different machine learning models and the topics correlated,

such as classification, model selection and feature extraction. An intuitive understanding
on design of classifier and the concerned mathematical aspects have also been discussed.

4.1 Introduction

The fundamental idea of machine learning concerns design and optimization of an
algorithm that will improve the performances of the algorithm by examples or experience
(training).

There are different types of machine learning and it is mainly divided into three
categories as following [20]:

• Supervised Learning: Supervised learning uses labelled data, which means by
providing the inputs along with the outputs, the algorithm will be trained to correctly
map the input with the corresponding output. Furthermore it can be divided into
two subsections, which are Classification and Regression.

– Classification: Classification considers the discrete variable case (pattern
recognition).

– Regression: Regression appertain to real-valued output (prediction), which are
continuous variables.

• Unsupervised Learning: Unsupervised learning uses unlabelled data, which differs
from the labelled one by not having the output given in prior, and thereby only tries
to find various patterns in the data set by the following approaches:

– Density estimation.
– Clustering.
– Dimensionality reduction.

• Reinforcement learning: As this project does not concerns reinforcement learning, it
is not described.

4.1.1 Classification

Classification is the prediction of a random variable Y from the a variable X in discrete
state.

Definition 4.1.1. Consider following data set (x1,y1), ..., (xn,yn) where xi =

(xi1, ..., xid)
T ∈ X ⊂ Rd could be described as a d-dimensional vector and yi ∈ {1, ..., k}

retrieve values in some finite set Y. Classification rule is a function h : X → Y. Each of the
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discrete variable represent data or observation and has a respective label corresponding to
it. Thus, the function h(x) will predict Y based on the X [21].

4.1.2 Deep neural network (DNN)

Deep neural network consists of several segments such as input layer, hidden layers
and output layer. The first layer is the input layer. This layer takes in multiple inputs at
a time as illustrated in figure 4.1.

Input layer 

Hidden layer 

Output layer 

Data set

Val 1 Val 2 Val 3

Val 4 Val 5 Val 6

Val 7 Val 8 Val 9

Val 1

Val 2

Val 3

Val 4

Etc.

Forward propagation

Figure 4.1: Principle of DNN classifier

These inputs are assigned weights individually and forwarded into the hidden layer by
channels(indicated by lines). Inside the hidden layer, there is a bias, which is added to
the previous input and is given to a activation function (Sigmoid, Relu etc). Further, this
output is compared to a threshold, whether to propagate the weighted input or not, and
this process is repeated until this propagation reaches output layer as in figure 4.2.

Bias

Bias

Bias

Bias

Hidden layer 

Output layer 
0.1

0.2

Etc.

Input layer 

Val 1

Val 2

Val 3

Val 4

Etc. Etc

Threshold

Activation
function 

Forward propagation

Figure 4.2: DNN threshold reached
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During training phase, the predicted output, at the output layer, is compared to the
actual value, thus computing the error, which is propagated back (only if the error is
a non-zero value) during backward cycle to update the weights, assigned in the hidden
layers, so as to lower the deviation between the actual and predicted values as shown in
figure 4.3,[22].

The error formula inside of the output layer is given by:

Error =

n∑
i=1

(yn − f(xn))2 (4.1)

where
yn = actual value
f(xn) = predicted value

Bias

Bias

Bias

Bias

Hidden layer 

Output layer 
0.1

0.2

Etc.

Input layer 

Etc

Actual
Output 

Error
value 

0

0.9

0.5

Etc.

0.3

0.5

0.1

-0.3

1

0 -0.1

0.5

Val 1

Val 2

Val 3

Val 4

Etc.

Backward propagation

Figure 4.3: DNN Evaluation

4.1.3 Support Vector Machines (SVM)

The objective of support vector machine is to obtain a hyperplane(s) that segregates
classes. In order to explain the concept of SVM, an example of a two-class classification
will be considered (see figure 4.4), and a linear model is developed for this purpose [23][24].

y(x) = wTφ(x) + b (4.2)

where
φ(x) = feature space transformation.
b = bias parameter.
w = distance, which is normal to the hyperplane.
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Datapoints of different classes. =
= Segregation lines. 

Figure 4.4: SVM classifier with two classes

To achieve the most optimal hyperplane, it is important to notice that the training
data x1,...xn, also comprises a target value t1,...tn where tn ε {−1, 1}. In case of linear
distinction, the variables w and b from equation 4.2 will be optimized by satisfying the
following conditions[24]:

y(x) = wTφ(x) + b > 0 for tn = 1 (4.3)

y(x) = wTφ(x) + b < 0 for tn = -1 (4.4)

These lines are parallel to the segregation line and is displaced by a distance, called
margin. The margin (between parallel lines on support vectors) is maximised, thus aiding
us in future inferences of datapoints. This could be express as following:

arg max
w,b

{ 1

‖ w ‖
min
s

[tn(wTφ(xn) + b)]} (4.5)

The following illustration (figure 4.5) demonstrates the concept in more detail, and it
is implied that the support vectors affects the position and the distance of the segregation
line(s).
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Datapoints of different classes. =
= Segregation lines. 

= The maximised magin. 

y=
w*x 

- b
=1

y=
w*x 

- b
= -

1

y=
w*x 

- b
=0

Support vector that intersect margin. =

Figure 4.5: Detailed concepts of SVM.

The figure 4.5 exemplify the principle of a hard margin, which indicates that the data
is restricted to be exactly on the lines, however it will affect the performance of the classifier
and therefore a soft margin is often considered, as shown in figure 4.6. Soft margin allows
the datapoints to exceed the segregation lines, which pertain to the bias and variance trade
off, which will be described later in the report[25].

Datapoints of different classes. =
= Segregation lines. 

= The maximised magin. 

y=
w*x 

- b
=1

y=
w*x 

- b
= -

1

y=
w*x 

- b
=0

Support vector that intersect margin. =

Figure 4.6: Illustration of SVM in case of soft margin.

4.1.4 K-nearest neighbor (KNN)

K-nearest neighbor is a classification method that classifies data without any
assumptions regarding the distribution, it considers the label for the nearest neighbors
to the point x. To select the closest neighbor(s) the Euclidean distance is one of the
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commonly used:√√√√ d∑
r=1

(xri − xrj)2 (4.6)

The value of k (number of neighbors) is inversely proportional to the complexity of
the classification model. [26],[27].

Figure 4.7: Knn with 3 nearest neighbor.

4.1.5 Principal Component Analysis (PCA)

Conventionally, all of the dimensions of the dataset produce some variation in
datapoints. The dimensions that contain lower variance ( dimensions that will not affect
the separation boundary to a higher degree) can be disregarded, prior to training the
classification model. Hence the dimensions of the dataset are reduced. This task is
fulfilled by adopting one of the dimensionality reduction techniques termed as "Principal
Component Analysis".

Principal Component Analysis is projection of datapoints onto a lower dimensional
subspace, known as "principal subspace", such that variance of projected data is
maximized[28].

Consider a dataset x = x1, x2, x3...xN , where N is the number of datapoints. Assume
there areM dimensions in the dataset considered. The variance and mean of x is calculated
from equation (4.7) and equation (4.8).

x =
1

N

N∑
i=1

xn (4.7)

S =
1

N

N∑
i=1

(xn − x)(xn − x)T (4.8)
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Let the data be projected onto a lower dimensional vector u, chosen arbitrarily. The
variance of the projected data is given by the equation (4.9)[28]. Each vector, along which
there is a variation in x, is obtained by maximizing the variance of projected data with
respect to vector u, as shown in equation (4.10)[27].

1

N

N∑
i=1

{
uTxn − x

}2
= uTSu (4.9)

max
u

uTS u

subject to uTu = 1

S = ST ≥ 0

(4.10)

Due to the constraint of unitary vector, the optimization problem is constrained. It is
transformed into an unconstrained optimization by employing Lagrange multipliers (λ)[28].
Since, co-variance matrix is symmetric, another constraint can be removed,

max
u

uTS u+ λ(1− uTu) (4.11)

By differentiating and equating the (4.11) to zero, the vectors, along which there is
data variance, are the eigen vectors of covariance matrix (S)(shown in equation (4.12))[28].
The eigen vector, which has maximum value, is taken as the first principal component.
Thus, principal components vector (u) is a decreasing magnitude eigen vector matrix.

Su = λu (4.12)

Figure 4.8: Demonstration of PCA
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The data considered in figure 4.8 is of higher dimensions, represented in two
dimensional space. The first principal component(PC1) represents the direction of
maximum variation in data (region in red) and the second principal component (PC2)
represents the direction in which there is second maximum variation in data (region in
green). The direction of the variation in data points, colored black, might be represented
by rest of the principal components. An appropriate number of principal components are
chosen based on the amount of data variation, needed for the classifier.

4.1.6 Model selection

a
c

b

Figure 4.9: Model selection depicts 3 polynomials.

Overfitting signifies a model (a) capturing true relationship between datapoints in
the training set, resulting in low bias and high variance, as depicted in figure 4.9. This
model can’t be generalized appropriately, when new datapoints are tested using this kind
of model. The overfitting model tends to provide a poor performance, since the model is
trained to fit a specific pattern of the data. In contrast, a model that underfits consist of
high bias and low variance, this type of model is illustrated as polynomial (b) in figure 4.9.
Model b does not replicate the model well, however it has a consistent generalisation for
new datasets. The objective of machine learning is to find a model that generalizes well
even in the case of new datapoints, which is (in this case) represented as polynomial (c) as
it contains the flexibility to replicate the datapoints better than (b), but not as sensitive
as polynomial (a) [29].

In order to estimate a well defined classifier, the needs of true error and sample error
is essential. The ideal case is to obtain a low true error, which means to achieve a low
probability of misclassification, considering the following equation [30]:

L(h) = P (f(X) 6= h(X)) (4.13)

where
P = probability.
h(x) = hypothesis function.
f(x) = true/target function.

True error represent the entire population, which makes it difficult to compute, hence
a representative amount of the population is obtained and used, giving the sample error
function.

Sample error =
1

n

∑
x∈S

δ(f(X) 6= h(X)) (4.14)
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The sample error is minimized by the objective function (also known as Mean Squared
Error (MSE)) in order to acquire the generalised true error.

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 = V ar(Ŷi) +Bias2(Ŷi) (4.15)

where
Ŷ i = estimate value.
Yi = true value.

Bias(f̂) = E[Ŷi]− Yi (4.16)

V ar(f̂) = E[(Ŷi − E[Ŷi])
2] (4.17)

Since variance and bias are used to compute MSE (equation (4.15)), it is possible to
justify for the optimal complexity point for the machine learning algorithm as shown in
the figure 4.10. However to ensure that the complexity of the model selected is well
designed, a technique called cross-validation should be utilized [21].

Empirical error

Model complexity 

New data points

Tranning data points

Minimized True
error 

Overfitting

Figure 4.10: Desired true error point indicated by the red dotted line.

4.1.7 Cross validation

The main justification of cross-validation is to assure the complexity of the model
holds true. This is done by dividing the total amount of sample into two parts. These
parts are randomly split into training set and validation set. However this comes with
a disadvantage, of using decreased amount of data for training and is computationally
heavy. Usually, when validating the generalised model without cross validation, the
predictive performance will be noisy, but K-fold cross-validation compensates this problem
by repeatedly evaluating the data K times. This means that if K=4 the data set is
divided into 4 parts, approximately at same size, and evaluated 4 times, like depicted in
figure 4.11,[21],[24]

Amount used for training data =
K − 1

K
(4.18)
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Validation set 

Training set 

Figure 4.11: Illustration of the cross validation technique.
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Kalman Filter 5
This chapter is dedicated to provide an intuitive understanding on the working of

Kalman filter, instead of being mathematically focused, and is extensively derived from
the "Kalman Filtering:Theory and Practice using MATLAB"[31] by Mohinder.S.Grewal.

5.1 Introduction

Kalman filter is a statistical algorithm, also termed as Linear Quadratic Estima-
tion(LQE), to obtain a close approximate in dynamic systems when the measurement
device is erroneous. The Kalman filter algorithm uses a string of measurements detected
over a period, together with statistical white noise and other uncertainties, and also it has
a relatively simple structure and requires small computational power. This is a straight-
forward approach that is employed in almost all radar systems.

5.2 Working

Kalman filters are used to estimate states based on linear dynamical systems modelled
in state space. The process model is defined for change of the state from time instance
k–1 to time instance k as:

xk = Fxk−1 +Buk−1 + wk−1 (5.1)

where
F = state transition matrix applied to the previous state vector xk−1

B = control-input matrix applied to the control vector uk−1

wk−1 = the process noise vector that is assumed to be zero-mean Gaussian with the co-
variance Q.

The measurement model and the process model together explain the relation between
the measurement and the states at that current time instance k as:

zk = Hxk + vk (5.2)

where
zk = measurement vector
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H = measurement matrix
vk = the measurement noise vector that is assumed to be zero-mean Gaussian with the
covariance R.

The purpose of the Kalman filter is to produce estimate of xk at time k , with the
given initial estimate of x0, the system details are given by F , B , H , Q , and R, and by
utilising the string of z1, z2, z3. . . , zk which are measurements. The matrices are taken to
be invariant over time so the subscripts of these are ignored because of this assumption.
The statistical properties of the noise is reflected through the covariance matrices, but
however in many practical applications the actual statistical properties of the noises are
not known. Hence, to obtain the desired performance generally the Q and R are treated
as tuning parameters[32].

5.2.1 Algorithm

Kalman filter algorithm consists of two stages: prediction and update 1. The Kalman
filter algorithm is summarized as follows:

Figure 5.1: Steps in KF[33]

1The equations presented in the algorithm are from the "Kalman Filtering:Theory and Practice using
MATLAB" book [31]
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Figure 5.2: Flowchart of KF

Predict Step

From the input to the system model, previous error co-variance and state predictions,
the new state and error co-variance estimates are determined from the system model (5.1)
as in equation (5.3). At the first iteration, kalman filter is initialized with initial estimate
of state and error co-variance.

x̂k|k−1 = Fx̂k−1|k−1 + Buk
Pk|k−1 = FPk−1|k−1F

T + Q
(5.3)

Kalman Gain

This is computed from the new error covariance estimate from the predict step as in
equation (5.4). The Kalman gain can be intuitively understood to be a metric, which
decides the degree of weight assigned to the observed output and the estimated output.

K =

[
FPk|k−1F

T + Q
]
HT[

H
[
FPk|k−1F T + Q

]
HT + R

] (5.4)

Update Step

The difference between the output computed from the new state and co-variance
predictions and observed output is utilised to compute a state and co-variance estimate
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as in equation (5.5). The new predictions are fed as input to the predict step in the next
iteration and the loop repeats.

x̂k|k = x̂k|k−1 + K(yk − ŷk|k−1)

Pk|k = (I − KH)Pk|k−1(I − KH)T + KRKT (5.5)

5.3 Unscented Kalman Filter

The Kalman Filter is the optimal algorithm for its state estimation if

• System model is linear
• Process and Measurement noises are additive and Gaussian in nature.

When the system is non-linear, the Kalman Filter cannot be applied, and in practical
cases, most system dynamics are non-linear. Therefore, non-linear filtration algorithms
such as an Extended Kalman Filter (EKF), and an Unscented Kalman Filter (UKF) have
been developed.

In EKF, non-linear functions are not approximated globally and done locally with
the linear equations derived from Taylor expansion. In highly dynamic systems these
approximations can introduce significant errors, because only the first part of the Taylor
series expansion is utilised by the linearization. During such instances, it may be
advantageous to make do of the UKF algorithm, as a substitute to linearizing non-
linear equations. THe UKF algorithm performs non-linear transformations on a set of
deterministically selected sigma points and this transformation is called an unscented
transformation (UT) and it is more beneficial since the mean and the covariance matrix
of the transformed points are precise in the Taylor series expansion upto the second
order(5.3) after the non-linear transformations. In algorithms that utilise linearization
of the non-linear equations, this accuracy is obtained only upto the first part of the Taylor
expansion. A supplementary benefit of the UKF algorithms is the implementation can be
easily done, because the Jacobian matrix elements need not be obtained. The sigma point
transformation is performed instead of these matrix calculations. points[34][35][36].

The designed system is depicted by a non-linear observation model which shows the
relationship between the object’s position and measured distances and that is why one of
possible non-linear filters should be applied. Hence in our situation the Unscented Kalman
Filter has been opted.
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Figure 5.3: UKF prediction process[37]

Scaled Unscented Transform

Before implementation of UKF, sigma points(χi) are generated based on certain
sampling strategies and the weights (Wi) are also chosen based on these strategies.
Depending on our application, different strategies are considered. In this project, scaled
Unscented Transform (UT) is chosen for selection of weights and samples.

Three scaling parameters (α, β, κ) are selected based on application. From the mean
and covariance of the input state distribution, samples are chosen according to equation
5.6 and weights are determined from equation 5.7.2

χ0 = x̂

χi = x̂ +
√
n + λ ci

χn+i = x̂ −
√
n + λ ci

(5.6)

W
[ŷ]
0 = λ/(n + λ)

W
[Pyy ]
0 = λ/(n + λ) + 1 − α2 + β

Wi = 1/[2(n+ λ)]

Wn+i = 1/[2(n+ λ)]

(5.7)

where
x̂ = mean of the input states (x)
n = number of states
ci = ith column of a cholesky factor Cxx of covariance matrix
λ = α2κ+ (1− α2)n

W0 = weight associated with first sample
2Sampling and Weighting strategies described here are considered from the "Kalman Filtering:Theory

and Practice using MATLAB" [31]
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W
[Pyy ]
0 = weight associated with first value of output covariance matrix

Wi = weight associated with ith sample

x̂ =
∑
i

Wi χi

Pxx =
∑
i

Wi(χi − x̂)(χi − x̂)T
(5.8)

The mean and covariance from the generated sigma points are computed (equation (5.8)),
so as to utilise them in the calculation of the sigma points in the next iteration.

The generated sigma points are propagated through a non-linear function f as
in equation (5.9). Further mean and covariance of the output are calculated as in
equation (5.10).

ξi = f(χi) (5.9)

ŷ ≈
∑
i

Wi ξi

Pyy ≈
∑
i

Wi(ξi − ŷ)(ξi − ŷ)T
(5.10)

Unscented Kalman Filter Algorithm

Equations, describing how scaled Unscented transform is utilised for tracking of state,
have been presented 3.

3Equations provided here are taken from the book:"Kalman Filtering:Theory and Practice using
MATLAB"
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Figure 5.4: UKF Algorithm

Predict Step

Scaled UT is deployed for non linear state transition function (F,B) as in
equation (5.11).

U [F, x̂k−1|k−1, Pk−1|k−1] = [x̂k|k−1, Pk|k−1] (5.11)

Kalman Gain

Kalman gain is computed from comparison of the predicted output with the measured
output as in equation (5.12).

K =

[∑
iWi(χi − x̂k|k−1)(ξi − ŷk|k−1)T

][∑
iWi(ξi − ŷk|k−1)(ξi − ŷk|k−1)T + R

] (5.12)
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Update Step

From the kalman gain (K), state and covariance predictions in current iteration are
computed as in equation (5.13)

x̂k|k = x̂k|k−1 + K(yk − ŷk|k−1)

Pk|k = Pk|k−1 − K

[∑
i

Wi(ξi − ŷk|k−1)(χi − x̂k|k−1)T

]
(5.13)
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Onboard Components 6
This chapter briefly discusses the structure of UWB module and the necessary

components embedded on it. Ultra Wide Band transceiver (known as DW1000) considered
in this project is manufactured by Decawave company. This transceiver is interfaced with
STM micro-controller for power management, clock control and for integration with wide
range of micro-controller units (MCU’s).

6.1 Antennas

Antennas embedded on this module are Dielectric Chip antennas, which are usually
used for microwave frequencies. These antennas are preferred as they have lower energy
losses at microwave and millimeter wave frequencies.

When this module is connected to power source such as battery, the display on the
module shows the information regarding the configuration (tag/anchor), name, distances
of anchors on the tag (when the tag is also switched on). A module can be configured as
an anchor or tag based on certain configuration (figure 6.1)of Dual In-line Package (DIP)
switches.

6.1.1 Anchor/Tag Configuration

The state of switch 4 aids us to identify a module as an anchor or tag. The unit of
anchor is provided by binary configuration of switches (5, 6, 7). For example, if the switches
configuration are On(4), Off(5), Off(6), On(7), then the unit is anchor and it’s number is
1.

Figure 6.1: DIP switch configuration for both tag and anchor [38]
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When this module is plugged into deepcar, the distances of anchors, from the
deepcar, are obtained through a serial port. Through TDOA based localization algorithm
(section 3.1.3) in deepcar, which takes distances as input, position of deepcar is determined.

6.2 TREK1000

• TREK1000 is an evaluation kit that is used to evaluate external module called
DW1000 Ultra-Wideband transceiver IC (IEEE 802.15.4-2011 standard).

• Accuracy of TREK in the X and Y plane that is less than 20 cm and supports a data
rates of 110 kbps, 850 kbps and 6 8Mbps.

• Furthermore, DW1000 has a span of RF ranging from 3.5 GHz to 6.5 GHz .

The power consumption of TREK1000 is defined to be low (lower than Zigbee, Wi-Fi
and BLE). Usually TREK 1000 is deployed to evaluate performance of DW1000 IC in the
following use cases:

1. Tracking: Determination of tag location using stationary beacons.
2. Geo-fencing: Entrance or exit of a tag in zones around anchor.
3. Navigation: Position of tag determined by stationary anchors at every step in

navigation [38].

Figure 6.2: TREK1000 module [39]
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Figure 6.3: Components of TREK[39]

6.3 DWM 1000 Chip

DWM1000 chip is a micro-controller unit board carrying DW1000 Ultra-Wideband
transceiver IC (IEEE 802.15.4-2011 standard), that is mounted on deepcar. This chip is
relatively identical to TREK 1000 board. However, firmware flashed on this chip is solely
convenient to display and send the distances, from beacons to tag. Antenna mounted is
dielectric chip antenna, different from the antenna in TREK 1000. From the display on
this chip, the id of the anchor or tag is observed, and if it is tag, then the distances, of
different anchors, are also observed in a cyclic order [40].

Figure 6.4: DWM1000
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Figure 6.5: Components of DWM1000
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This chapter is dedicated to training and testing various machine learning classifiers

after which it is deployed for the identification of LoS and NLoS conditions when the
deepcar is navigated through the environment.

7.1 CIR Response

The CIR response obtained from TREK1000 is depicted in figure 7.1. Impulse response
consists of 1000 samples, among which 342 samples are considered based on the first
detected path.

Metrics in CIR

• Amplitude of the peak path
• Index of the peak ray in CIR
• Position of the first detected path in CIR and the amplitudes of the first, second and

third peaks around it.
• Standard noise deviation

Saturation in CIR response is given by a metric "mc", which is the ratio of the maximum
amplitude among the first, second, and third peak amplitudes, to the amplitude of the peak
path [41]. If the CIR is saturated, a LoS path between an anchor and a tag is ensured.
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Figure 7.1: CIR Response in typical LOS scenario

Figure 7.2: CIR Response in typical NLOS scenario

7.1.1 Acquisition of CIR

CIR are collected for various LOS and NLOS conditions for training a machine learning
model. TREK evaluation kit is used to obtain CIR’s (TREK setup is described in
appendix A).

Training Data collection

To develop a machine learning classifier that classifies whether a tag is in line of sight
or non line of sight with anchor, it is necessary to obtain training data in an environment
that suits the environment where deepcar is operated.
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Figure 7.3 shows the 16 probable positions of tag in a room while an anchor is
positioned at the corner of the room at a height of 60cm above the tag. These positions are
selected on the basis of navigation of deepcar. For each position, 10 impulse responses are
recorded, aggregating to a total of 160 responses. Impulse responses have been recorded
when the anchor and the tag are separated by 10m, 15m, 20m, 30m in a corridor.

Figure 7.3: Setting of the room in which CIR’s are recorded for possible Line of Sight(LoS)
scenarios.

Figure 7.4 shows the 2 probable positions of the anchor and 4 probable positions of
the corridor. Anchor can also be positioned at the other end of the corridor, but it is
not considered because of the two way communication between anchor and tag. For each
possible position, 10 impulse responses are recorded, aggregating to a total of 80 responses.
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Figure 7.4: Setting of the Corridor in which CIR’s are recorded for possible Non Line of
Sight(NLoS) scenarios.

7.2 Experimental Setup for Classifier

The software tool used for this section is MATLAB. Each classifier with its particular
parameters will be explained and various evaluation metrics are calculated for comparative
analysis.

The experiment is conducted in the ’Motion Tracking’ Lab at Aalborg University with
a volume space of 3.4m x 3m. The anchors are represented by A0, A1, A2 and are placed
in the volume as depicted in the figure 7.5 and the tag is represented by a solid green circle
on the deepcar (Deepcar is setup as described in appendix A). The deepcar (denoted as
DC) is navigated from start point ’A’ to end point ’B’ . A metallic plate with dimensions
0.8m x 0.75m x 5mm is kept parallel to the path taken by the deepcar.

Due to this metal plate, the path of the deepcar is divided into 3 regions, these 3
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Figure 7.5: Top view of setup in Motion Tracking Lab

regions are constructed based on the LoS and NLoS condition created by the metal plate
with respect to tag of DC and anchor A2. These regions are:

1. Region 1: This represents a region of LoS from point A to point L1.
2. Region 2: This represents a region of NLoS from point L1 to point L2.
3. Region 3: This represents a region of LoS from point L2 to point B.

The goal of the Machine Learning classifier is to identify the above mentioned 3 regions
when the deepcar is navigated from point A to point B in real-time. The classifier is
implemented by using CIR’s obtained by the TREK1000’s anchor placed at A2 and tag
placed at DC.

7.3 Data-set Creation

The training data has been obtained by recording CIR’s using a pair of TREK1000,
where one functions as an anchor and the other functions as a tag. The anchor is tethered
to a PC through the USB-serial port and the CIR’s are recorded using MATLAB. The
CIR obtained is a vector of size 1x342, where the values represent the magnitude of dBm
between the anchor and tag, at that instance and a total of 342 such instances are captured
and clipped within a timeframe of 1000 nanoseconds for each sample run. The number of
sample runs can be both increased and decreased in MATLAB based on the requirements
of the experiment conducted. Hence the final CIR vector output from the MATLAB can
be depicted as Nx342 where ’N’ represents the number of sample runs selected.

This is repeated for various experiments conducted which implies the dataset of CIR’s
is created for different conditions which involves varying between LoS and NLoS states as
described below:
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• Different settings, which involves varying the distance between the tag and the
anchor.

• Different environmental conditions, which involves recording in rooms or spaces with
various building materials and objects in the space.

All the experiments conducted and its parameters are explained in section 7.1.1.

The resulting CIR vector output from this approach is a data-matrix of size 1409x342
where 1409 implies the number of samples collected at all the different settings. However
after initial analysis through a ’probe and study’ method it was concluded that the entire
342 instances of the CIR were not mandatory for the identification of NLoS and LoS
conditions.

The reduction of size of the data-matrix across the column(X-axis) would result in
requiring a lower computational power which would thereby result in lesser training time.
In addition to this it decreases the complexity of the trained model and can also prevent
overfitting of the training data. Therefore it can be concluded that if reducing the size of
the data-matrix still yields in a highly accurate identification of LoS and NLoS then that
would be the most optimal and efficient way to train the model.

7.4 Training data

The data-matrix is clipped across the column after observing the ’first path index’ for
that specific sample run from the TREK1000. After obtaining the index, ’n’ data points
are opted after this index for a specific sample run so the data-matrix can be represented
as 1409 x n. The value of ’n’ is opted to be 101 since through experimentation it was
found that ’n’ greater than 140 did not yield in better accuracy. Hence for every sample
run 101 data points were selected after their respective first path indices, which resulted
in a 1409x101 training data-matrix.

In addition to clipping 101 data points after first path index, 7 supplemental
characteristic features of the CIR are selected. These features are unique to the CIR of a
specific sample run and hence will assist the model training in a constructive way. These
features are namely: first peak, second peak, third peak, rxpreamble count, maximum
growth of CIR, first path index and distance between anchor and tag which is calculated
by the TREK1000. Therefore the final data-matrix after appending the above said features
is a vector of dimensions 1409 x 108.

The classification is performed for 2 classes namely LoS and NLoS, where LoS is
represented by class ’0’ and NLoS is represented by class ’1’. The matrix 1409 x 108
can be classified into two classes 0 and 1. Among the 1409 samples, samples 1 to 416
are CIR’s pertaining to LoS conditions hence class 0, and samples 417 to 1409 are CIR’s
pertaining to NLoS conditions hence class 1. A class label column is created containing
416 0’s and 992 1’s representing LoS and NLoS is appended to the data-matrix to obtain
class labels corresponding to CIR’s during training. Hence the training data-set is created
with appropriate class labels, 108 features and 1409 data samples. The dimensions of the
labelled training set is 1409 x 109.
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7.5 Test data

The test data set is created in real-time in MATLAB from the anchor tethered to the
PC through the USB serial data port. For every iteration, a CIR vector of size 1 x 342 is
obtained and this vector has to match the feature size of the trained model which is 108.
Hence similar to the training set this vector is also clipped for 101 data features from the
first path index and appended with the same 7 supplemental features to obtain the 1 x
108 test data. This test data is fed to the trained model and it predicts the class label 0
or 1. This procedure is repeated for every iteration.

7.6 Classifier Training and Validation

The classifier is trained with the 1409 x 109 data-set with the corresponding class
label 0 and 1. The classifier is trained and is validated using 5-fold cross validation. K-fold
cross validation where ’k’ represents the number of folds is performed to prevent over-fitting
while training the model.

Prior to deployment in the environment the performance metrics such as Confusion
matrix, ROC curve are calculated. Additionally for Neural networks the performance plot,
training state plot and error histogram are obtained.

1. Confusion Matrix : This is a matrix table to evaluate the classification accuracy of the
classifier. The columns of the matrix depict the predicted class of the data and the
rows of the matrix depict the true class of the data. Therefore the diagonal elements
represent the data vectors that has been predicted accurately while the non diagonal
elements represent the data vectors that has been predicted inaccurately. Hence
the classification accuracy is calculated as the sum of the elements in the diagonal
divided by sum of all elements. Also other terminologies such as True Positive Rate
(TPR) or sensitivity, False Negative Rate (FNR) or miss-rate, Positive Predictive
Value (PPV ) or precision and False Discovery Rate (FDR) or fall-out are calculated
to assess the performance the classifier[42].

2. ROC Curve : Receiver Operating Characteristic curve is a graph depicting
performance of a classifier model at variable thresholds. The curve is plotted
between 2 parameters namely : True Positive Rate (TPR) and False Positive Rate
(FPR) where they are obtained from True Positive(TP ), True Negative(TN), False
Positive(FP ) and False Negative(FN). TPR and FPR are calculated as:

TPR =
TP

TP + FN
(7.1)

FPR =
FP

FP + TN
(7.2)

’Area Under the ROC Curve’ also called as AUC is an algorithm to calculate the
threshold points in an ROC curve. AUC determines the two-dimensional area under
the ROC and gives a compiled measure of performance with the various classification
thresholds. AUC ranges in value from 0 to 1 and hence it can be said that if AUC is
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1 if the model predictions are 100% accurate and if AUC is 0 if the model predictions
are 100% inaccurate[42].

3. Performance plot : The performance plot is charted between Cross-Entropies and
Epochs for the training, validation and test data-set. Cross-entropy is commonly
used as a loss function when optimizing classification models and it is favourable to
minimize cross-entropy so that the classifier yields a higher accuracy. One Epoch
is if the complete training data-set is cycled in forward and backward through the
neural network exactly once. The plot is drawn to select the best epoch based on
the value of cross entropy differences between the training, validation and testing.
This is necessary to choose the neural network model that is neither underfitted nor
overfitted[43].

4. Error histogram : It is a histogram of error calculated between target values and
predicted values after training a neural network. Bins in the histogram, represent
the number of vertical bars on the graph. The number of bins is 20 by default in
MATLAB. The Y-axis denotes the number of samples from the data-set which lie
in a particular bin and it is plotted for training, validation and test. The zero error
line in the histogram represents the zero error value on the X-axis which is the error
axis[44].

5. Parallel coordinate plot : This plot enables in visualising higher dimensional data and
aids in comparing the features of the observations individually. The plot consists of
vertical columns that are spaced equally and the number of parallel vertical columns
equals the number of dimensions. A point from the higher dimensional data is
represented as a line passing through all the vertical columns where the intersection
points represent the value of the observation in that specific column. In this report
the plot is drawn for 5 features which are columns 101,102,103,104 and 106 these are
first path index, first peak, second peak, third peak and distance between tag and
anchor(in mm)[45].

The classifiers implemented in the experiments are K-Nearest Neighbours, Support
Vector Machine and Neural Network. All the above mentioned metrics are obtained
individually for each classifier.

7.6.1 Support Vector Machine

A SVM model with kernel function as Linear and Box constraint level as 1 is opted.
The training data-set matrix containing 1409 observations, 108 predictors and 2 response
classes without dimensionality reduction is given to the SVM. It takes 0.58655 seconds to
train and has a prediction speed of approximately 64,000 observations per second. The
training data is validated by performing 5-fold cross-validation to avoid overfitting. The
SVM results in a classification accuracy of 100%.
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Figure 7.6: Confusion matrix of the trained SVM model where the diagonal elements
represent the true classes, and in this model the SVM classified all the data points in their
respective classes. The 416 data points in the light blue box represent LoS condition and
the 993 data points in the dark blue box represent NLoS condition

Figure 7.7: SVM - TPR & FNR Figure 7.8: SVM - PPV & FDR

In figure 7.7 confusion matrix of the SVM depicting individual class classification
accuracy on the left and on the right each class’s TPR and FNR are calculated. For this
model the LoS and NLoS class accuracies are 100% hence the TPR for LoS and NLoS is
also 100% while the FNR is absent or 0%. In figure 7.8 confusion matrix of the SVM
depicting individual class classification accuracy on the top and on the bottom each class’s
PPV and FDR are calculated. For this model the LoS and NLoS class accuracies are
100% hence the PPV for LoS and NLoS is also 100% while the FDR is absent or 0%
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Figure 7.9: SVM - ROC for class 0 Figure 7.10: SVM - ROC for class 1

The figure 7.9 represents the ROC curve for the LoS classification and the AUC under
the curve is 1 which implies a 100% accurate classification and the figure 7.10 represents
the ROC curve for the NLoS classification and the AUC under the curve is 1 which implies
a 100% accurate classification.

Figure 7.11: is a parallel coordinate plot for the SVM for the feature set 101,102,103,104
and 106 to visualise the data in LoS and NLoS conditions. The dark orange lines depict the
data during NLoS and blue lines depict the data during LoS. If the lines are in a continuous
form the classification of that data vector is accurate if the lines are in a dashed format
the classification of that data vector is inaccurate.

7.6.2 K-Nearest Neighbour

A K-NN model with distance metric as Euclidean, number of neighbours as 1 and
the distance weight as Equal is opted. The training data-set matrix containing 1409
observations, 108 predictors and 2 response classes without dimensionality reduction is
given to the K-NN. It takes 2.6856 seconds as training time and has a prediction speed
of approximately 13,000 observations per second. The training data is validated by

47



Group 935 7. NLoS Identification

performing 5-fold cross-validation to avoid overfitting. The K-NN results in a classification
accuracy of 100%.

Figure 7.12: Confusion matrix of the trained K-NN model where the diagonal elements
represent the true classes, and in this model the K-NN classified all the data points in their
respective classes. The 416 data points in the light blue box represent LoS condition and
the 993 data points in the dark blue box represent NLoS condition

Figure 7.13: K-NN : PPV & FDR Figure 7.14: K-NN : TPR & FNR

In figure 7.14 confusion matrix of the K-NN depicting individual classification accuracy
on the left and on the right each class’s TPR and FNR are calculated. For this model the
LoS and NLoS class accuracies are 100% hence the TPR for LoS and NLoS is also 100%
while the FNR is absent or 0%. In figure 7.13 confusion matrix of the K-NN depicting
individual classification accuracy on the top and on the bottom each class’s PPV and
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FDR are calculated. For this model the LoS and NLoS class accuracies are 100% hence
the PPV for LoS and NLoS is also 100% while the FDR is absent or 0%

Figure 7.15: K-NN : ROC for class 0 Figure 7.16: K-NN : ROC for class 1

The figure 7.15 represents the ROC curve for the LoS classification and the AUC
under the curve is 1 which implies a 100% accurate class classification and the figure 7.16
represents the ROC curve for the NLoS classification and the AUC under the curve is 1
which implies a 100% accurate class classification.

Figure 7.17: is a parallel coordinate plot for the K-NN for the feature set 101,102,103,104
and 106 to visualise the data in LoS and NLoS conditions. The dark orange lines depict the
data during NLoS and blue lines depict the data during LoS. If the lines are in a continuous
form the classification of that data vector is accurate if the lines are in a dashed format
the classification of that data vector is inaccurate.

7.6.3 Neural Network

A two layer feed-forward neural network where one layer is a hidden layer and the
other is a output layer is used. The hidden layer contains a hyperbolic tangent sigmoid
transfer function and the output layer contains a soft max transfer function. The soft max
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function is selected to standardize the output so that it can be understood as a probabilistic
distribution.

The training algorithm opted for the neural network is ’scaled conjugate gradient
backpropagation’ and the model is chosen to have 25 neurons in the hidden layer. The
number of inputs in the neural network correspond to the number of predictors in the
dataset, which is 108. The output of the neural network has 2 possible class labels which
are 0 and 1 corresponding to LoS and NLoS conditions respectively.

The training data-matrix is split randomly into 3 kinds of samples namely: training,
validation and testing in the following percentages: 70%, 15%, 15%. The training sample
is presented to the network during training period and, the weights and biases are adjusted
according to its error. The validation sample is used to calculate network generalization
and to stop training when generalization does not continue to improve, this is performed
when there is an increase in cross-entropy error of validation sample. The testing sample
has zero effect on training the neural network hence it provides an independent assessment
of the the network’s performance during and after training.

It takes less than 1 second to train and validate the network’s performance. The
number of iterations run to reach minimum gradient is 36. The neural network yields
in a final accuracy of 99.8% for 25 neurons in the hidden layer, also the performance of
the network was assessed for various number of neurons in the hidden layer and it was
concluded that increasing the number of neurons more than 40 yielded in results with
higher irregularity and variability in the evaluation metrics. In between 25 to 40 neurons
the accuracy did not improve, hence 25 neurons is opted since it would require lesser
computational power and hence lesser training times.
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Figure 7.18: Structure of the neural network implemented
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Figure 7.19: represents the confusion matrices of the neural network during the training,
validation, test and the overall confusion matrix. The training and validation confusion
matrices have a classification accuracy of 100%, the test confusion matrix has an overall
classification accuracy of 99% since 2 data vectors belonging to LoS is inaccurately
misclassified as NLoS. Therefore the overall classification accuracy of the neural network
is calculated to be 99.8%.
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Figure 7.20: is an error histogram with 20 bins. The Y-axis contains the observations and
the X-axis contains the errors. The zero error line lies depicted by the orange line is on
the left side of the bins.

Figure 7.21: is the performance plot of the neural network, the neural network epoch with
the best validation performance is opted as the final trained model.

7.7 Dimensionality reduction

The training data-set has 108 features/predictors, by performing dimensionality
reduction the number of features needed for training the model is reduced. A commonly
used dimensionality reduction technique is principal component analysis. The training
data is normalized before applying PCA so that the magnitude of the variables do not
affect it. The PCA is performed and is keeping enough components to cover 95% variance
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in the data. The variance per component in decreasing order are: 55.7%, 7.7%, 4.7%,
3.5%, 3.1%, 2.5%, 2.2% and so on. In this manner the first 24 principal components are
kept to achieve the set 95% variance.

7.7.1 PCA and Support Vector Machine

The SVM has the same model type as explained in the previous subsection for Support
Vector Machine. PCA is performed on the training data-set matrix containing 1409
observations, 108 predictors and 2 response classes. After reduction and selection of the
first 24 principal components the dataset is given to the SVM for training and 5-fold cross-
validation. The combined time for PCA and training SVM is 0.81137 seconds and has a
prediction speed of 19,000 observations per second. The SVM results in a classification
accuracy of 99.2%.

Figure 7.22: Confusion matrix of the trained PCA-SVMmodel where the diagonal elements
represent the true classes, and in this model the PCA-SVM classification had some
inaccuracies. The light blue box represents LoS condition and the dark blue box represent
NLoS condition. The total LoS data vectors are 416 and total NLoS data vectors are 993.
Among the 416 LoS vectors, 409 have been classified correctly as LoS and the remaining
7 have been classified as NLoS. Among the 993 NLoS vectors, 989 have been classified
correctly as NLoS and the remaining 4 have been incorrectly classified as LoS
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Figure 7.23: PCA-SVM : TPR & FNR Figure 7.24: PCA-SVM : PPV & FDR

In figure 7.23 confusion matrix of the SVM depicting individual classification accuracy
on the left and on the right each class’s TPR and FNR are calculated. TPR is a ratio
between true positives and total positives, hence for class 0 classification we obtain a TPR
of 98.3% and for class 1 classification we obtain a TPR of 99.6%. FNR can be obtained
as a value subtracted from 1 and TPR, hence for class 0 classification we obtain FNR of
1.7% and for class 1 classification we obtain FNR of 0.4%. In figure 7.24 confusion matrix
of the SVM depicting individual classification accuracy on the top and on the bottom each
class’s PPV and FDR are calculated. PPV is a ratio between true positive and sum
of true and false positives, hence for class 0 classification we obtain a PPV of 99% and
for class 1 classification we obtain a PPV of 99.3%. FDR can be obtained as a value
subtracted from 1 and PPV , hence for class 0 misclassification we obtain FDR of 1% and
for class 1 misclassification we obtain FDR of 0.7%.

Figure 7.25: PCA-SVM : ROC class 0 Figure 7.26: PCA-SVM : ROC class 1

The figure 7.25 represents the ROC curve for the LoS classification and the figure 7.26
represents the ROC curve for the NLoS classification and the AUC under the curve is 1.
The current classifier needs to be at an optimal point such that the classifier has a high
true positive rate and a low false positive rate.

55



Group 935 7. NLoS Identification

Figure 7.27: parallel coordinate plot for the PCA-SVM for the feature set 101, 102, 103,
104 and 106 to visualise the data in LoS and NLoS conditions. The dark orange lines
depict the data during NLoS and blue lines depict the data during LoS. If the lines are
in a continuous form the classification of that data vector is accurate if the lines are in a
dashed format the classification of that data vector is inaccurate. In this PCA-SVM model
there are some misclassifications of LoS and NLoS which can be seen from the dashed lines
in the plot.

7.7.2 PCA and K-Nearest Neighbour

The K-NN has the same model type as explained in the previous subsection for K-
Nearest Neighbor. PCA is performed on the training data-set matrix containing 1409
observations, 108 predictors and 2 response classes. After reduction and selection of the
first 24 principal components the dataset is given to the K-NN for training and validation.
The combined time for PCA and training K-NN is 1.3566 seconds and has a prediction
speed of 11,000 observations per second. The PCA-KNN results in a classification accuracy
of 100%.
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Figure 7.28: Confusion matrix of the trained PCA-KNNmodel where the diagonal elements
represent the true classes, and in this model the PCA-KNN classified all the data points in
their respective classes. The 416 data points in the light blue box represent LoS condition
and the 993 data points in the dark blue box represent NLoS condition

Figure 7.29: PCA-KNN : TPR & FNR Figure 7.30: PCA-KNN : PPV & FDR

The figure 7.14 Confusion matrix of the PCA-KNN depicting individual class
classification accuracy on the left and on the right each class’s TPR and FNR are
calculated. For this model the LoS and NLoS class accuracies are 100% hence the TPR
for LoS and NLoS is also 100% while the FNR is absent or 0%. The figure 7.13 Confusion
matrix of the PCA-KNN depicting individual class classification accuracy on the top and
on the bottom each class’s PPV and FDR are calculated. For this model the LoS and
NLoS class accuracies are 100% hence the PPV for LoS and NLoS is also 100% while the
FDR is absent or 0%
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Figure 7.31: PCA-KNN : ROC class 0 Figure 7.32: PCA-KNN : ROC class 1

The figure 7.15 represents the ROC curve for the LoS classification and the AUC
under the curve is 1 which implies a 100% accurate class classification and the figure 7.16
represents the ROC curve for the NLoS classification and the AUC under the curve is 1
which implies a 100% accurate class classification.

Figure 7.33: Parallel coordinate plot for the PCA-KNN for the feature set 101, 102, 103,
104 and 106 to visualise the data in LoS and NLoS conditions. The dark orange lines
depict the data during NLoS and blue lines depict the data during LoS. If the lines are
in a continuous form the classification of that data vector is accurate if the lines are in
a dashed format the classification of that data vector is inaccurate. The black line is an
example of a NLoS data vector and its values across the 5 previously mentioned features

7.8 Classifier Deployment

The 3 classifiers namely: Neural Network, Support Vector Machine and K-Nearest
Neighbours have been trained. The experiment is conducted according to the section 7.2
and the test data is collected in real-time during the experiment according to the
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section 7.5. The experiment is conducted 10 times for each classifier to ensure repeatability
of the real-time classification.

After the model is trained and validated, SVM and K-NN are exported as a MATLAB
struct variable whereas the neural network is exported as MATLAB function.

A 2 subplot figure is generated in real-time for every iteration/sample run, where the
first subplot contains the CIR response and the second subplot displays whether deepcar
is in LoS/NLoS.

Figure 7.34: Represents Region 1 from the experimental setup. The deepcar is in LoS with
the TREK1000 and the trained ML classifier deployed from MATLAB also classifies the
deepcar to be in LoS.
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Figure 7.35: Represents Region 2 from the experimental setup. The deepcar is navigated
from Region 1 to Region 2 and now the deepcar moves behind the metal plate, hence it
is in NLoS to the TREK1000. The trained ML classifier deployed from MATLAB also
classifies the deepcar to be in NLoS.

Figure 7.36: Represents Region 3 from the experimental setup, The deepcar is navigated
from Region 2 to Region 3 and now the deepcar moves away from the metal plate, hence
it transitions back in LoS to the TREK1000. The trained ML classifier deployed from
MATLAB also classifies the deepcar to be in LoS
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This chapter aims to improve localisation in NLoS conditions using UKF in the

simulated environment and the software tool used for this purpose is MATLAB. The
deepcar motion is simulated by a state space model. The measurements obtained by
UWB anchors are incorporated in the measurement model.

8.1 Modelling of Deepcar

8.1.1 State System Model

Since dynamic model for deepcar cannot be obtained from documentation, it was
decided to simulate deepcar’s motion by a state space model developed from kinematic
equations(8.2). For constraining the motion of deepcar in the room and also to emulate a
reasonable trajectory, an appropriate non linear function of velocity has been chosen. State
vector(equation (8.1)) includes position in x and y axis, and the orientation of the deepcar.
Control input for this state system model is velocity v and steering angle φ. Equations
8.2 are represented in state system model(8.3). This state model is only developed so as
to display trajectory the deepcar should ideally follow, which is unknown. Process noise
is not considered because there is a need to compare the actual trajectory followed by the
simulated deepcar with the trajectory predicted by UKF [46].

X = [x y θ]T (8.1)

where
x = position of deepcar along x-axis
y = position of deepcar along y-axis
θ = orientation of deepcar measured from x-axis.

x(n) = x(n− 1) + v cos(θ)∆t

y(n) = y(n− 1) + v sin(θ)∆t

θ(n) = θ(n− 1) + φ∆t

(8.2)

x(n)

y(n)

θ(n)

 =

1 0 0

0 1 0

0 0 1


x(n− 1)

y(n− 1)

θ(n− 1)

 +

cos(θ)∆t 0

sin(θ)∆t 0

0 ∆t

[v
φ

]

X(n) = F X(n− 1) + B(X(n− 1)) u

(8.3)
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where
F = State Transition Matrix
B = Input Matrix
u = Control Input
∆t = Time step

8.1.2 Measurement Model

In real system, the distances have been obtained from UWB beacons. This is simulated
as determination of euclidean distances between position of deepcar, obtained from the
state model, and position of the beacon. Three measurements are obtained from three
stationary beacons, whose positions are known in prior. The sensor noise is assumed as a
white gaussian noise (R) with certain co-variance.

z(i) = di(n) =
√

(xpi − x(n))2 + (ypi − y(n))2 + N(0, R) (8.4)

where
xpi = co-ordinate of ithbeacon along x-axis
ypi = co-ordinate of ithbeacon along y-axis
di = distance between ithbeacon and position
z = measurement variable

8.2 Mathematical Approach for LoS and NLoS
Classification

A rectangular obstacle is considered for creating Non-Line of sight conditions. Three
Stationary beacons are positioned at corners of the box.
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Figure 8.1: LoS and NLoS of a position with beacons in different segments

Different conditions are implemented for checking whether the position is in LoS or
NLoS with a beacon at an instant of time. The whole room is segmented into 8 parts,
based on the rectangular obstacle as shown in figure 8.1.

• Condition 1: If the position of deepcar falls in any one of the segments (3, 5, 8),
then deepcar is in LoS with anchor 1 and anchor 2.

• Condition 2: If the position of deepcar falls in any one of the segments (6, 7, 8),
then deepcar is in LoS with anchor 2.

• Condition 3: If the position of deepcar falls in any one of the segments (1, 2, 3),
then deepcar is in LoS with anchor 0 and anchor 1.

• Condition 4: If the position of deepcar falls in any one of the segments (1, 4, 6),
then deepcar is in LoS with anchor 0.
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Figure 8.2: LOS and NLOS of a position with beacon

Figure 8.2 depicts the classification of LoS and NLoS of a position based on diagonal
length of the obstacle. If the perpendicular distance from the center of the obstacle to
the line connecting anchor and deepcar is less than half of the diagonal length, then the
position of deepcar is in NLoS with the anchor, or else deepcar is in LoS with the anchor.

The trajectory generated by deploying the state system model and every position is
classified as LoS or NLoS based on the above conditions as shown in figure 8.3.

Figure 8.3: LoS and NLoS positions in the Deepcar trajectory
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8.3 Conventional Approach

In the conventional approach, the deepcar is localised by trilateration from the
measurements obtained from beacons, irrespective of deepcar is in LoS or NLoS with
the stationary beacon.

Figure 8.4: Conventional Approach

Figure 8.4 can be interpreted in real life as: Measurements obtained from UWB
stationary beacons are simulated as distances from measurement model. If there is no
Non-line of sight condition, then the predictions provided by UKF are sufficiently accurate
to ideal trajectory generated by state system model.

65



Group 935 8. NLoS Mitigation

Figure 8.5: Trajectory Prediction by UKF

In figure 8.5, the yellow and pink markers represent the trajectory predicted by UKF,
and it is compared to the ideal trajectory (cyan and dark blue markers). This figure is
generated to observe the deviation in both LoS and NLoS conditions, but also to compare
with the approaches described in section 8.5 in this report. Figure 8.6 shows the percentage
of error variation along both dimensions in both LoS and NLoS.

Figure 8.6: Error percentages
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8.4 Motion of persons

The motion of a person in a warehouse or any other indoor environment is arbitrary.
By taking this fact into consideration, two kinds of random motion have been studied [47].

8.4.1 Geometric Brownian Motion

This is a random statistical motion governed by the differential equations (8.5). Closed
form solution of these differential equations is given by equation (8.6) [47].

dV = µVtdt + σdWt

Xt = Vtdt + Xt−1
(8.5)

Vt = V0e
(σWt+(µ− 1

2
σ2)t) (8.6)

where
V = Velocity of particle
X = position of particle
dWt = Random gaussian noise (Differential of Wiener process is equivalent to gaussian
noise variable)
σ = volatility
µ = drift
dt = Time step

8.4.2 Ornstein Uhlenbeck Motion

This is a different category of random continuous statistical motion governed by the
differential equations (8.7). Closed form solution of these differential equations is given by
equation (8.8). Two dimensional ornstein uhlenbeck motion is generated(figure 8.7) so as
to visualise the random motion of persons [47].

dV = θ(µ− Vt)dt + σdWt

Xt = Vtdt + Xt−1
(8.7)

Vt = V0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s)dWs (8.8)

where
V = Velocity of particle
X = position of particle
dWt = Random gaussian noise (Differential of Wiener process is equivalent to gaussian
noise variable)
θ = tuning parameter 1
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σ = tuning parameter 2
µ = drift
dt = Time step

Figure 8.7: The red trajectory depicts the OU velocity across 2 dimensional. The green
trajectory depicts the position of the OU in 2 dimension.

However it is complex to constrain these motions within the fixed volume space, hence
the persons are kept stationary and the measurements observed from these beacons have
a higher uncertainty than the stationary anchors.

8.5 Proposed Approaches

Three approaches have been explored to mitigate the deviation observed in
conventional approach.

From the mathematical approach explained in section 8.2, a visibility array has been
generated for each position along the trajectory, which is a matrix of 0’s and 1’s, where
0 indicates LoS and 1 indicates NLoS. For each sample time, a nx1 column matrix is
generated (in this case n = 3). All of these column matrices are appended at the end of
the simulation.

In the following approaches, measurements observed from UWB beacons are simulated
as distances from measurement model. These distances are fed into UKF to get the
observed deepcar trajectory simulating the process of multilateration at each instant. An
ideal trajectory is simulated by state system model to assess the resemblance with observed
trajectory.
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8.5.1 Approach 1

In this approach, one unscented kalman filter is deployed with a measurement model,
which works on the simulated measurements captured from 3 stationary anchors and 3
persons in both LoS and NLoS scenarios, to predict the position of deepcar(figure 8.8).

Figure 8.8: Approach 1

Size of the uncertainty co-variance matrix in UKF is a factor, which should be taken
into the consideration for design process. From figure 8.9, it can be implied that more
observations in measurement model does not translate into more accurate UKF predictions.
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Figure 8.9: Trajectory Prediction by UKF

Figure 8.9 depicts the performance of the UKF when compared to ideal trajectory.
From figure 8.10, the error percentage in y-direction is interpreted as UKF prediction in
y-direction is similar to that of the conventional UKF, and the magnitude of uncertainty
in measurements have been reduced to concretely say that higher dimensional covariance
matrix yields a highly inaccurate predictions.

Figure 8.10: Error Percentages
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8.5.2 Approach 2

In this approach, two Unscented kalman filters are simultaneously deployed with
their respective measurement models to predict the position of deepcar(figure 8.11).
Measurement model, in LoS scenario, works on the simulated measurements captured
from only 3 stationary anchors. Measurement model, in NLoS, works on the simulated
measurements captured from both stationary anchors and persons. It must be noted
that the predictions are provided by only one of the UKF’s, based on the LoS and NLoS
condition of the deepcar.

Figure 8.11: Approach 2

When the deepcar moves from LoS to NLoS, there is a need to use UKF 2 instead
of UKF 1. Since, UKF 2 needs to be initialized with a state estimate, and it must be
ensured that this estimate is taken as the last prediction from UKF 1 for generation of
sigma points, so that the predictions are continuous. When the deepcar moves from NLoS
to LoS, this cycle repeats itself instead initial state estimate for UKF 1 is provided by last
prediction of UKF 2.
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Figure 8.12: Trajectory Prediction by UKF

Figure 8.12 depicts the trajectory predicted using this approach (Green and Black
markers). It can be implied that this result is better than the result from approach 1 in
NLoS conditions. From the figure 8.13, it can be interpreted that regardless of the shifting
between two UKF’s, the error percentages are low along both directions.

Figure 8.13: Error Percentages
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8.5.3 Approach 3

In this approach, when the deepcar is in LoS, the UKF predicts the position of deepcar
using measurements from 3 stationary anchors. When the deepcar is in NLoS, the UKF
predicts deepcar’s position using measurements from stationary anchors, which are in LoS
with deepcar, and the persons, who are closest to deepcar, as illustrated in figure 8.14.

Figure 8.14: Approach 3

Hypothetically, the measurement from the anchor in NLoS should be replaced by
measurement from person (non-stationary anchor) according to following decreasing order
in priority:

1. Person who is visible to all stationary anchors.
2. Person who is closer to deepcar, when compared to others.
3. Relative motion of person should be comparably low when compared to others.

Since measurements are obtained from the beacons on people, Unscented Kalman filter
should consider a different measurement model. For this purpose, visibility array has been
again used to inform the filter to change the uncertainties.
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Figure 8.15: Trajectory Prediction by UKF

From the error percentages in figure 8.16 and the observed trajectory in figure 8.15,
the result from this approach is nearly accurate to the ideal trajectory, and hence it is
concluded that this is the most suited approach to mitigate NLoS effects.

Figure 8.16: Error Percentages
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Implementation 9
This chapter presents the collection of Channel Impulse Responses (CIR) deploying

TREK1000 evaluation kit, classification models for LoS/NLoS identification, the launch of
deepcar, and its localisation using three beacons.

9.1 Real time deployment

This section renders the execution of real time deployment of deepcar localisation. It
includes the setup and the results achieved from the experiments, however the procedure
and materials list will be attached in appendix.

9.1.1 Vicon lab Experiment

This experiment is conducted in Motion Tracking lab at AAU and the purpose of this
experiment was to obtain a ground truth of the trajectory using Vicon Tracker software,
so as to compare with the trajectory obtained by deepcar localisation.

Test setup

A0 A1

A2

Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.

Obstacle

Computer T0Usb
Start position

Stop position

Distance < 1 m
A3

Distance < 3 m

D
is

ta
nc

e 
< 

3 
m

Figure 9.1: Experiment in Vicon lab (AAU’s lab)

The setup illustrated in figure 9.1 exemplify the idea of replacing an anchor with a
person carrying a tag. The red squares are the anchors and are used to localise deepcar
by trilateration algorithm. In case of A2 being in NLoS, the trilateration algorithm will
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be executed using A0, A1, and A3, thus switching from anchor A2 to the person(A3 - blue
square).

Results

The expected results of this experiment was to localise deepcar by using distances
obtained from UWB anchors with a minimal offset. When this trajectory was compared
with the ground truth generated by Vicon tracker software, the offset in the localised
position is found to be greater than 90 cm in x-axis and around 25 cm in y-axis. It was
concluded that the volume space, required to conduct this experiment was low and hence
experiments were all performed in room A4-106 (AAU’s lecture room).

9.1.2 LoS implementation

Due to higher offset in tracking from the previous experiment(9.1.1), the experiment
was moved to another room with more volume space to check whether this problem can
be solved.

Test setup

A0  
(x,y) = (1,1)

A1 
(x,y) = (8.6, 1)

A2 
(x,y) = (8.6, 7)

A3 
(x,y) = (2.6, 5)

dist. = 7.6

dist. = 6T0 ComputerUsb

Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.

Start = (x,y) = (8.4, 3.65)Stop = (x,y) = (3.53, 3.01)

Figure 9.2: Experiment in case of LoS

The test setup that is depicted represent two sets of trilateration performed
simultaneously. One consists of the anchors A0, A1 and A2 (coloured in red), the second
contains the anchors A0, A1 and A3 (coloured in blue). When deepcar is navigated as shown
in figure 9.2, two trajectories appeared by running real-time trilateration in computer.
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Results

Moving to bigger volume space reduced the offset value to an extent. As seen
in figure 9.31 the graphs emulated each other, however the trajectory, colored in red,
has noticeable peaks than the trajectory, colored in blue, but this is considered rather
insignificant in this case.

Figure 9.3: Result of LoS for the two trilaterations

9.1.3 Weak NLoS

The purpose of this experiment is to observe the effect of Non Line of Sight (NLoS)
on the trajectories (from two trilaterations) of deepcar, created by a metal sheet.

Test setup

A0  
(x,y) = (1,1)

A1 
(x,y) = (8.6, 1)

A2 
(x,y) = (8.6, 7)

A3 
(x,y) = (2.6, 5)

dist. = 7.6

dist. = 6T0 ComputerUsb

Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.

Start = (x,y) = (8.4, 3.65)Stop = (x,y) = (3.53, 3.01)

Obstacle

Figure 9.4: Illustration of test setup where A2 is in NLoS all the time

1Note: The axis on the graph is the position in x and y coordinates and the location of the Deepcar
represented in the graph is moving from right to left and the likewise is applied for all the following graphs
in this chapter.
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The test setup in this experiment is similar to the one in section 9.1.2. The only
difference is anchor A2 is in NLoS with deepcar, due to the metal sheet.

Results

This experiment was executed a number of times. The big ordeal was repeatedly
finding difficulties due to:

1. No noticeable deviation in the trajectory even though one of the anchors is in NLoS
with deepcar.

2. Multipath propagation.
3. Possible synchronization error.

The outcome was not as expected since there are more similarities in the trajectories,
except for one noticeable dip/decrease in the red trajectory (around point 740 mm in
the x and 390 mm in the y), but theoretically they should be more different because of
NLoS situation. Observing figure 9.52 the blue trajectory is designed to replicate an LOS
situation (created by A0,A1 and A3), whereas the red trajectory imitate an NLoS situation
(created by A0,A1 and A2).

Figure 9.5: Result of weak NLOS created by placing the anchor A2 behind two metal
plates.

9.1.4 Multi-lateration

The purpose of this experiment is to check whether the NLoS situation, created by
metal sheet, produces a noticeable deviation in the trajectory, generated by using four
anchors, instead of three anchors.

2Note: The axis on the graph is the position in x and y coordinates and the location of the Deepcar
represented in the graph is moving from right to left and the likewise is applied for all the following graphs
in this chapter.
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Test setup

di
st

. =
 6

A0  
(x,y) = (1,1)

A1 
(x,y) = (8.6, 1)

A2 
(x,y) = (8.6, 7)

A3 
(x,y) = (1, 7)

dist. = 7.6

dist. = 7.6
Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.Obstacle

ComputerT0 Usb

Start = (x,y) = (8.4, 3.65)
Stop = (x,y) = (3.53, 3.01)

dist. = 6

Figure 9.6: Experiment in multi-lateration

Figure 9.6 illustrate the multi-lateration with NLoS situation created by metal sheet.
The anchor, that is hindered, is anchor A2, which is seen at position (8.6,7), top right
corner.

Results

The outcome (deviation in NLoS situation) was better than expected, because just by
adding one additional beacon to the system, detection of NLOS was visible 9.83.

Figure 9.7: Result of multi-lateration in LoS

3Note: The axis on the graph is the position in x and y coordinates and the location of the Deepcar
represented in the graph is moving from right to left and the likewise is applied for all the following graphs
in this chapter.
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Figure 9.8: Result of multi-lateration in NLoS
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9.1.5 Strong NLoS

The purpose of this experiment is also to observe the effect of NLoS, created by a
L-shaped obstacle, on the red trajectory, as there is no noticeable deviation from the
experiment in section 9.1.3.

Test Setup

A0  
(x,y) = (1,1)

A1 
(x,y) = (8.6, 1)

A2 
(x,y) = (8.6, 7)

A3 
(x,y) = (2.6, 5)

dist. = 7.6

dist. = 6T0 ComputerUsb

Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.

Start = (x,y) = (8.4, 3.65)Stop = (x,y) = (3.53, 3.01)

Obstacle

Figure 9.9: Illustration of test setup experiment 2 where A2 is in NLoS all the time

The test setup in this experiment is similar to the one in section 9.1.2. The only
difference is anchor A2 is in NLoS with deepcar, due to the L-shaped obstacle.

Results

A stronger NLoS scenario has been created, because of more reflections, of the
propagated signal, caused by the L-shaped obstacle. This result, shown in figure 9.104,
can be compared to the 9.1.3 experiment, since it shows how the L-shaped obstacle affects
the trajectory.

4Note: The axis on the graph is the position in x and y coordinates and the location of the Deepcar
represented in the graph is moving from right to left and the likewise is applied for all the following graphs
in this chapter.
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Figure 9.10: Result of stronger NLOS created by covering the sensor in an L-shape.

In figure 9.10 two different trajectories (red and blue) are observed. The red one
illustrates A2 in constant NLOS, whereas the blue trajectory illustrates the trajectory in
LOS condition. It is clear to see a bigger fluctuation in the red trajectory.

9.1.6 Transition from LoS to NLoS

The final experiment was to incorporate both LoS and NLoS as this reflects real-life
incident, when the deepcar is moving from one place to another.

Test setup

A0  
(x,y) = (1,1)

A1 
(x,y) = (8.6, 1)

A2 
(x,y) = (8.6, 7)

A3 
(x,y) = (2.6, 5)

dist. = 7.6

dist. = 6T0 ComputerUsb

Dotted arrow = Trajectory. 
A0,A1,A2,A3 = Anchors.
T0 = Tag.

Start = (x,y) = (8.4, 3.65)Stop = (x,y) = (3.53, 3.01)

Obstacle

Figure 9.11: Experiment in case of LOS to NLOS

This setup is exactly same as figure 9.9. The only difference is the transition, which
is manipulated by placing the metal plates in a L-shape after a certain amount of time
passed by, illustrated in dotted line (obstacle).
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Results

When implementing the transition from LoS to NLoS, the behaviour of the trajectory
evidently shows a clear change, shown in the red vertical line around position 640 in the
x axis and 350 (to 250) at the y position. The trajectory keeps fluctuating after that
position, which fits the real life experiment, since the metal plates were not removed,
hence the deepcar was in consistent NLoS, see figure 9.125.

Figure 9.12: Result of transition created

9.2 Inferences

The following points list brief inferences from the experiments:

• From the experiments conducted in Vicon Lab as described in section 9.1.1, the offset
in the localised position of the deepcar was due to smaller volume space (< 10m2).
Hence, the experiments have been conducted in a larger volume space (45.6m2).

• Practically, there is an offset between trajectories triangulated using three different
anchors, as observed from experiment in section 9.1.2. Theoretically, they should
coincide with each other.

• NLoS created by the metal plate does not deviate the trajectory, so that the difference
is noticeable, as observed from experiment in section 9.1.3.

• Multilateration using all anchors produces a noticeable difference in trajectories,
even though NLoS created by metal plate is weak, as observed from experiment in
section 9.1.4.

• NLoS created by two metal plates shaped in the form of "L" around anchor A2

produced a noticeable difference in trajectories, as observed from experiment in
section 9.1.5. This experiment is further extended to check the trajectory deviation
from LoS to NLoS in experiment described in section 9.1.6.

5Note: The axis on the graph is the position in x and y coordinates and the location of the Deepcar
represented in the graph is moving from right to left and the likewise is applied for all the following graphs
in this chapter.
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The problems that hindered us from deploying the idea to a full extent.

1. DWM 1000 chips are not configured to capture CIR response, making it complicated
to implement classifier without deploying TREK evaluation kit.

2. The measurements read on UWB tag, should match with the input given to the
deepcar, at that instant, that leads the deepcar to a position that we observe in real
time.

3. UKF is difficult to implement on the deepcar because of its compact operating
system, hence necessitating for a centralised server for tracking of deepcar. This
server should keep track of persons, anchors in NLoS and then triangulate the position
of deepcar at each instant.

9.2.1 Ideal Physical Deployment

Figure 9.13 provides an overview of deployment. Each workstation sends the status of
LoS or NLoS, of the concerned beacon with deepcar, to main workstation for each sample
time wirelessly. Persons, acting as tags, will also send their observed distances, from
beacons, to the main workstation wirelessly. The deepcar sends the distance measurements
to the central workstation over an already established Wi-Fi connection. The UKF
in central workstation utilises all the distance measurements from people, deepcar, and
statuses, to predict the position of deepcar.

Figure 9.13: Deployment of Kalman Filter
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This chapter discusses various problems involved in this project and feasible approaches
to solve these problems. Also, this chapter briefly presents the prospects of this project.

10.1 Discussion

This section involves the description of issues (overview is provided below) faced with
hardware, software, and how they have been dealt according to the use case.

10.1.1 Overview of Technical Challenges:

• Flashing DWM 1000
• Tuning Parameters of UKF
• Offset in trilateration(A0, A1, A2) and trilateration(A0, A1, A3)
• Low deviation in NLoS
• Non-stationary anchors in Multi-lateration
• State-space Model

10.1.2 Flashing DWM1000

The necessity of flashing the DWM1000 was to capture CIR as it only reads distances.
The flashing was successfully done, however the outcome was not as expected because of
the following:

1. Unable to configure into reading CIR
2. The DWM1000 did not display whether the signal is transmitted or received.

In order to rectify the problem, the DWM1000 was once again flashed and restored with the
original firmware, however the display still remained non-functional. The DWM1000 was
interfaced with an API program called "Putty" which indicated that the sensors were able
to read and transmit data (distance), however the data structure was corrupted. Hence
TREK1000 was again used to capture CIR’s and to deploy the classifier.

10.1.3 Tuning Parameters of UKF

For the UKF in our project, the main parameters that need to be chosen carefully are
the uncertainty of the measurements provided to UKF and uncertainty in measurement
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from NLoS anchor and non-stationary anchor. To measure the performance of UKF, error
mean along both x and y axes are considered.

Measurement uncertainty covariance(Pzz) is a tuning parameter because it can be
interpreted as training UKF to deal with the deviation in observations. If we set the
Pzz high, then UKF is designed to track the state precisely, even with deviations in
measurements (whose covariance falls below Pzz).

In simulation, it should be noted that the uncertainty provided to both NLoS and non-
stationary anchor in the measurement model should match with the deviation it produces
in simulation. The uncertainty given to non-stationary anchor should be lower than the
uncertainty provided to anchor (which is in NLoS), yet higher when compared with the
uncertainty of stationary anchor. The deviation produced in measurement from anchor,
which is in NLoS, should be lower such that trajectory does not cross the room.

10.1.4 Cause of Offset in trilateration(A0, A1, A2) and
trilateration(A0, A1, A3)

Theoretically, the position of deepcar determined by trilateration from any set of
anchors should coincide. The offset in figure 9.3 is due to compounding of following errors
[48]:

• Gaussian Errors
• Multi-path Errors, typically due to environment
• Errors due to detected measurement noise by UWB transceiver

Multi-path errors are positive (always higher distances than actual distances because
of reflections) and relatively constant in an environment. Gaussian errors are due to
blocking potential paths from the first path detected, distance between two transceivers,
and also might be due to calibration differences between DWM1000 hardware [48]. From
experimental observations, it was also observed that the distance between the tag and an
anchor affects the error in distance reading.

10.1.5 Deviation in trajectory due to NLoS

From the results(figure 9.5) of experiment (figure 9.4), there is no noticeable deviation
in trajectory because of two reasons:

1. The metal sheet is creating NLoS, but not sufficient enough to cause much deviation
in trajectory.

2. From the measurements of A0 and A1, mathematically two solutions exist as shown
in figure 10.1. The measurement from A2 is utilised to determine which solution
should be considered. Due to weaker NLoS by metal sheet, least squares optimization
method will give a solution, that resembles LoS solution.
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Figure 10.1: Interpretation of no noticeable deviation in trajectory

10.1.6 Multilateration

Since the setup, in figure 9.6, was so conventional, it was further developed to use
a fifth beacon for the person. This was not a possibility as the component(DWM1000)
was not configured to read distance from a fifth beacon. An alternative has been tried
using an additional DWM1000 tag and an anchor (person), configured to send distance
reading to this extra tag. Both DWM1000 tags are connected directly to the computer,
with fifth anchor at a certain position. These tags should be read simultaneously, but
did not, because of MATLAB configuration, and using a Parallel Computing toolbox, in
MATLAB, did not solve this problem, thus discarding this idea.

10.1.7 Problems with state space model

The input provided to the state space model is considered as continuous in time for
kalman filter, but in implementation (described in detail in appendix J.1), input (velocity
given by clicks to deepcar) is in the shape of pulses as illustrated in the figure 10.2.
The measurements (distances of anchors observed on tag) are read non-uniformly in the
experiments. During the time, when there is no input, the measurement gets clustered for
that specific position. During the time, when the input is continuous, fewer measurements
are read, when compared to the previous. Hence, it becomes difficult to provide the
measurement observed at that specific input to the unscented kalman filter.
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Figure 10.2: Input in simulation and Input in implementation
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10.2 Future Work

Software, in which deepcar position is triangulated by UWB, can be upgraded so that
either a plan or a scan of an indoor setting can be uploaded, thus aiding us in identification
of deepcar location. A Real time robust classifier can be developed so that classification
is accurate in various indoor settings.

In the development of state space model, the mean and co-variance of the errors of
gaussian nature can be estimated by using Maximum Likelihood(ML) estimation for the
DWM1000 hardware [48].

As described in section 9.2.1, future work encompasses the setting up of central server,
recording the positions of each moving entity (deepcar and persons) in the warehouse.
After obtaining improved localisation of deepcar using people as non stationary anchors
during NLoS, a swarm based approach for localisation can be proposed wherein people who
are in NLoS with respect to stationary anchors are also localised accurately during NLoS
condition by the use of other LoS non stationary anchors, which include people and the
autonomous robots. Therefore every object or person with a UWB is interconnected since
they may assist one another during NLoS conditions. Design of the state model for the
deepcar, that appropriately fits for this use case. An optimal path prediction algorithms
could be implemented than PID controller for deepcar.

Based on the Received Signal Strength Index(RSSI) values received by the DWM1000
chips, which are configured as anchors, there might be a possibility to determine whether
the respective anchor is either in LoS or in NLoS. If this result, combined with distance,
communicated with tag, then workstations at four anchors can be removed, thus reducing
monetary costs. Yet, there is a need for centralised server for tracking of persons and
utilising them for localisation of deepcar in case of NLoS.
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Appendix A
A.1 Deepcar Setup

When deepcar is switched on, an "Xshell" named ssh(secure socket shell) terminal is
launched, where commands are provided to the deepcar through a wifi, to which a computer
is connected. There are various commands for the execution of different functions (object
detection, driving, indoor localization). Indoor localization function is considered for the
navigation of deepcar using UWB sensors. Indoor localization is defined as the process
for estimating the position of deepcar at any instant by using the anchors. This function
is executed in Xshell and an application "main" is launched, where a 2 dimensional map
shows the position of anchors and tag. If we select a position on the map, the deepcar
moves to this position in the map.

Deepcar is programmed in Robot Operating System (ROS). Different functionalities
have been implemented by calling ROS nodes. Each ROS node corresponds to a specific
functionality.

1. Connect to the Wifi named "Deepcar" when the deepcar is turned on.
2. Launch "Xshell.exe", which is an SSH terminal.
3. Enter the host address as "192.168.1.102" and enter the username as "Deepcar" and

password as "1234"
4. Launch the deepcar by providing command "cd /deepcar_launch"
5. Indoor localization is implemented by calling ROS node by "roslaunch start_uwb.launch"
6. The application "main.exe" should be opened, where the anchor co-ordinates are

provided and it is sent to deepcar by clicking "send UWB configuration".

Positions of deepcar can be observed on Xshell terminal and also it can be observed
in two different maps in the "main" application.

1. A two dimensional picture (figure A.1) with respect to anchor positions given.
2. A configured map (figure A.2) where only deepcar position is observed by a red dot

and the destination is represented by a blue square.
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Figure A.1: Position of deepcar with respect to four anchors

Figure A.2: Position of deepcar in the environment configured
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A.2 TREK Setup

1. Connect the TREK module configured as anchor to a computer. Ports in device
manager should show the name of port to which TREK is connected.

2. Connect the TREK module configured as Tag to a power source.
3. Ensure proper communication between the anchor and the tag. Check the frequency

of blinking in both the anchor and the tag. LED on the tag blinks with higher
frequency than the LED’s on the anchor.

4. If not proper communication, reset the tag.
5. Run the ’ChannelImpulseSerial.m’ to obtain CIR responses.
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Appendix B
B.1 Mounting Board for TREK1000

Purpose

The purpose of this experiment is to 3D print two plastic boards to hold TREK
modules on a tripod.

Design

Figure B.1: 3D Design of mounting board

The board is designed in Fusion 360 software. The height of two extrusions (from the
base) on the board, and the gap between them, is determined by the dimensions of the
TREK board (figure 6.2). The diameter and threading of the hole in the mounting board
is determined from the parameters of the fastener on the tripod.

Result

After designing, the stl file is exported to the 3D printing machine to print the
mounting boards.
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Appendix C
C.1 DWM1000 flashing

Purpose

The intention of this flashing the firmware of DWM1000 was to enable the caption
of Channel impulse responses since the DWM1000 was only able to receive distances.
This will lessen the complexity of getting acquaintances with an other equipment namely
TREK1000 and this component also has some disadvantages such as:

1. Unstable usb port connection.
2. Needs to ensure establishment before operating, which could take a decent amount

of time.
3. Sometimes cutting of the connection because of the saturation in the received signal

power.

Materials

• 1 UWB Tag
• 4 UWB Anchors
• 1 ST-Link V2 USB Programmer and Debugger
• 1 Computer

Procedure

1. Download and install all necessary software, STM32CubeIDE, STM32 ST-LINK
Utility and ST-link driver.

2. After installation open STM32CubeIDE and find "STM32 Project From Existing
STM32CubeMX Configuration File (.ioc)".

3. Input a path to the unzipped firmware directory, where the .ioc file is. (In case of
the program asking for downloads of additional files, do that)

4. After finish installing the additional files press "Project" in the top bar and select
"build project".

5. If everything went right a pop up menu will be shown with zero error and the flashing
can be started.

6. Plug the ST-link into the computer.
7. Now open STM32 ST-LINK Utility and setup the connection.
8. Press "file" open the binary files that needs to be loaded onto the DWM1000, then

a pop up will appear.
9. click "ok" and the flashing it done.
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Test setup

ST-Link connection
pins

UWB

Screen
Usb

DIO GND
GND

CLK
5V 5V

TX

RX

ST-Link connector

RST SWCLK

SWIM SWDIO

GND GND

3.3V

5V

3.3V

5V

DIO SWDIO

GND GND

5V 5V

CLK SWCLK

COMPUTER'S USB
PORT

Figure C.1: The setup to enable flashing

Results

After flashing the software the unwanted happen, the new program neither work nor
would the display that initially worked show anything. The incident made the project-
group unable to do continue work, before gathering a new set of DWM1000, which was
provided by the university later on.
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Appendix D
D.1 Vicon lab Experiment

Materials

• Deepcar
• 1 UWB Tag
• 4 UWB Anchors
• 4 Powerbanks
• 1 USB cable
• 1 Laptop
• 4 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3 mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The trilateration program should be configured as to calculated the position of the
Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. The tag is placed on the Deepcar and is connected with a USB cable, this cable is
extented with an active USB cable and attached to the computer.

4. Place the Deepcar at a starting position before operating.
5. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
6. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
7. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
8. When reaching the final position, stop the trilateration program.
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Appendix E
E.1 LOS Experiment

Materials

• Deepcar
• 1 UWB Tag
• 4 UWB Anchors
• 4 Powerbanks
• 1 USB cable
• 1 Laptop
• 1 Active USB extension cable
• 4 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The trilateration program should be configured as to calculated the position of the
Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. The tag is placed on the Deepcar and is connected with a USB cable, this cable is
extented with an active USB cable and attached to the computer.

4. Place the Deepcar at a starting position before operating.
5. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
6. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
7. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
8. When reaching the final position, stop the trilateration program.
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Appendix F
F.1 Weak NLOS Experiment 1

Materials

• Deepcar
• 1 UWB Tag
• 4 UWB Anchors
• 4 Powerbanks
• 1 USB cable
• 1 Laptop
• 1 Active USB extension cable
• 4 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The trilateration program should be configured as to calculated the position of the
Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. Place the metal plates in front of anchor A2.
4. The tag is placed on the Deepcar and is connected with a USB cable, this cable is

extented with an active USB cable and attached to the computer.
5. Place the Deepcar at a starting position before operating.
6. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
7. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
8. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
9. When reaching the final position, stop the trilateration program.
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Appendix G
G.1 Multi-lateration Experiment

Materials

• Deepcar
• 2 UWB Tag
• 5 UWB Anchors
• 5 Powerbanks
• 2 USB cable
• 1 Laptop
• 2 Active USB extension cable
• 5 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The multi-trilateration program should be configured as to calculated the position
of the Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. Place the metal plates in front of anchor A2.
4. The tags are placed on the Deepcar and connected with USB cables, these cables are

extented with an active USB cable and attached to the computer.
5. Place the Deepcar at a starting position before operating.
6. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
7. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
8. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
9. When reaching the final position, stop the multi-trilateration program.
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Appendix H
H.1 Strong NLOS Experiment 2

Materials

• Deepcar
• 1 UWB Tag
• 4 UWB Anchors
• 4 Powerbanks
• 1 USB cable
• 1 Laptop
• 1 Active USB extension cable
• 4 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The trilateration program should be configured as to calculated the position of the
Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. Place the metal plates in an L shape to cover most possible angles of the sensor A2.
4. The tag is placed on the Deepcar and is connected with a USB cable, this cable is

extented with an active USB cable and attached to the computer.
5. Place the Deepcar at a starting position before operating.
6. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
7. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
8. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
9. When reaching the final position, stop the trilateration program.
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Appendix I
I.1 Transition from LoS to NLoS Experiment

Materials

• Deepcar
• 1 UWB Tag
• 4 UWB Anchors
• 4 Powerbanks
• 1 USB cable
• 1 Laptop
• 1 Active USB extension cable
• 4 sponges (elevation purpose)
• 1 metal plate of size 80.5 cm (L) x 63 cm (W) x 3mm (T).
• 1 metal plate of size 77 cm (L) x 74 cm (W) x 2 mm (T).

Procedure

1. The trilateration program should be configured as to calculated the position of the
Deepcar.

2. All anchors are connected to powerbanks and placed corresponding to a respective
position.

3. The tag is placed on the Deepcar and is connected with a USB cable, this cable is
extented with an active USB cable and attached to the computer.

4. Place the Deepcar at a starting position before operating.
5. The Deepcar should be turn on and the wifi-connection to the Deepcar should be

established.
6. Configure Deepcar with an application called "Xshell", then setup the link between

"Xshell" and "main.exe".
7. Open "main.exe". In "main.exe" maneuver the car in a straight line and gather the

data.
8. When reaching a specified distance cover one anchor simulating the scenario of NLOS,

this transition should be done continuously.
9. When reaching the final position, stop the trilateration program.
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Appendix J
J.1 State space model

Purpose

As the project concerns the localization of the Deepcar, there is utilize an Unscented
kalman filter for prediction of the location, and for this purpose the state space model is
derived from the following experiment.

Materials

• 1 Deepcar.
• 1 Ruler.
• 1 Markers.
• 1 Stopwatch.
• 1 Computer.

Procedure

1. Mark a start position and place the Deepcar.
2. Turn on the Deepcar and connect to the respective Wifi.
3. Open the application "Xshell" and configure it to the program "main.exe".
4. Open "main.exe" and control the trajectory, here a straight path is choosen.
5. As Deepcar takes clicks as input from "main.exe", the clicks is choosen to have an

interval of 5 seconds between every click, and having in total 20 iteration.
6. When reaching the last iteration corresponding to the final/stop position the car is

turn off and the stopwatch is also stop.
7. Mark the final destination.

Test setup

ComputerT0 Wifi

Start = (x,y) = (8.4, 3.65)Stop = (x,y) = (3.53, 3.01)

Figure J.1: Experiment in order to obtain the state space model
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Results

The result obtain for the state space is use to calculate like following as this could be use
in the case of UKF.

Distance calculation:
∆x = 8.41m− 3.53m = 4.88m

∆y = 3.65m− 3.01m = 0.64m

where
Initial position in x = 8.41 m.
Initial position in y = 3.65 m.
Final position in x = 3.53 m.
Final position in y = 3.01 m.

Velocity calculation:
V x = 4.88m

105sec = 4.88m/s

V y = 0.64m
105sec = 4.88m/s

where
Total travel time = 105 seconds.
Iterations (clicks) = 20.

Heading angle:
θ = tan−1(∆y

∆x) = tan−1(−0.64m
−4.88m) = 7.4715°
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