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MPC is also shown to be more energy ef-
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Preface

Since no prototype of the system was available within the given time frame for writ-
ing this thesis, no experimental work could be included. Therefore, the project focuses
solely on simulative controller evaluation with the purpose of delivering two controller
algorithm suggestions that can be implemented and tested on the prototype by the re-
searchers of Linz University when the prototype is ready for testing.

Aalborg University, May 27, 2022

Instructions for reading

The report is written in LATEX, and each chapter is marked with a certain number, and
is divided into sections. All the references used throughout the report are indicated by
the method referred to as the Institute of Electrical and Electronics Engineers (IEEE). The
bibliography is made in Mendeley and BibTeX, and the citations used throughout the
sections are noted in the text either at the beginning of a section, or as each individual
statement is made. Citations of figures and tables are mentioned in the caption.

Emil Plovmand Munk
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Summary

In the context of exoskeletons, hydraulics is a method of actuation that has not been
subject to a lot of research. The high power density of hydraulic actuators means that
low peripheral mass can be achieved when used for exoskeleton actuation. Researchers
at Linz University and Linz Center of Mechatronics have designed a novel concept for a
hydraulically actuated knee exoskeleton, for which this Master’s thesis seeks to develop
energy efficient controller algorithms that are fit for real-time implementation.

The exoskeleton system is actuated by two conventional dual-chamber hydraulic cylin-
ders, configured mechanically in a way that makes the actuation system equivalent to
a multi-chamber cylinder. The four cylinder chambers are connected to a high and low
pressure rail, which gives 16 discrete actuator force levels, serving as input to the system.
In the project, a model of the system is presented, consisting of the hydraulic actuator
model, and a mechanical model of the human leg. Furthermore, a model for the ground
reaction force is derived, in order to simulate the controlled response during a gait cycle,
with the goal of tracking the knee angle while delivering the required knee torque.

Two controller approaches are developed: a reactive controller and a model predictive
controller. The project goal is to evaluate the controllers through benchmarking. The re-
active controller is implemented as a PD-controller with torque compensation and torque
feed-forward. For converting the continuous controller output signal to an appropriate
actuator force level index, a force switching algorithm (FSA) is chosen through a compar-
ative analysis of two designs. The model predictive controller (MPC) uses a linearized
prediction model in combination with an optimization algorithm to find the optimal
inputs on a prediction horizon who minimize the value of a cost function designed to
penalize tracking error and energy consumption. Both controller approaches assume a
modification of the knee exoskeleton system, which allows for measuring the knee torque
in order to implement torque compensation when the disturbance of the ground reaction
force is acting.

For the simulative controller evaluation, noise is implemented on the controller signals.
The MPC achieves approximately twice as good tracking precision as the reactive con-
troller, with position and speed rms errors of 0.63° and 0.19 rad/s over the whole gait
cycle. Less energy is also consumed by the MPC, which also utilizes significantly fewer
force level switches during the gait cycle. Furthermore, analysis indicates that the MPC
is less noise sensitive. Thereby, it is concluded that the MPC hast the best performance of
the two controller structures, with the only draw-back of a higher processing time than
for the reactive controller structure. The processing time of the MPC is recorded to be
0.3 ms, but whether this is fast enough for real-time implementation is left for testing on
the microprocessor chosen for controlling the prototype. Finally, an analysis shows that
neglecting the torque compensation has a severely negative impact on both controller
performances, why it is concluded that large benefit is to be drawn from having access to
measurements of the knee torque.
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Nomenclature

Latin Symbols

J1 Inertia of foot [kg m2]

J2 Inertia of shank [kg m2]

l1 Length of foot [m]

l2 Length of shank [m]

m1 Mass of foot [kg]

m2 Mass of shank [kg]

dz1
dψ Transmission ratio of AB-cylinder [m/rad]

dz2
dψ Transmission ratio of CD-cylinder [m/rad]

ẋCM1 Velocity vector for CM1 in global reference frame [m]

ẋCM2 Velocity vector for CM2 in global reference frame [m]

F Sorted vector of discrete actuator force levels [N]

J Inertia matrix [kg m2]

A State space system matrix [-]

C State space output matrix [-]

p
comb

Sorted matrix of chamber pressures corresponding to discrete actuator force lev-

els [Pa]

R Rotation matrix [-]

u Sorted matrix of binary chamber pressure values corresponding to discrete ac-
tuator force levels [-]

BF Ground reaction force matrix [m]

BM Joint torque sign matrix [-]

FGRF Ground reaction force vector [N]

MG Joint torque vector [Nm]

rCM1 Position vector for CM1 in local reference frame [m]

rCM2 Position vector for CM2 in local reference frame [m]
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xk Position vector for knee in global reference frame [m]

xG1 Position vector for G1 in global reference frame [m]

xG2 Position vector for G2 in global reference frame [m]

xG3 Position vector for G3 in global reference frame [m]

S Cost function value [-]

B State space input vector [-]

V f0 Zero vector field [Nm]

u Row input vector of u [-]

A Area [m2]

CM1 Foot’s center of mass [-]

CM2 Shank’s center of mass [-]

CR Cross-over coefficient for the DE-algorithm [-]

Ein Supply energy [J]

Ekin Kinetic energy [J]

Epot Potential energy [J]

eϕ̇2,rms Rms speed error over one gait cycle [rad/s]

eϕ̇2 Speed error [rad/s]

eϕ2,rms Rms position error over one gait cycle [rad]

eϕ2 Position error [rad]

Esh Energy loss at valve switch [J]

eMGRF,rms Rms ground reaction torque error over one gait cycle [Nm]

F Mutation coefficient for the DE-algorithm [-]

FAB Hydraulic actuator force of AB-cylinder [N]

FCD Hydraulic actuator force of CD-cylinder [N]

Fhyd Hydraulic actuator force [N]

FxG x-component of ground reaction force [N]

FyG y-component of ground reaction force [N]

Fb FSA2 force range constant [N]
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g Gravitational acceleration [m/s2]

GF(s) Force transfer function [-]

GM(s) Torque transfer function [-]

GPD(s) PD-controller transfer function [-]

Gs(s) System transfer function [-]

Gϕ2(s) Position transfer function [-]

G1 Foot joint [-]

G2 Shank joint [-]

G3 Knee joint [-]

KD PD-controller derivative gain [-]

Kext Actuator torque linearization constant [1/(kg m2)]

Khyd Actuator torque linearization constant [1/(kg m2)]

kidx,prev Row index of u at previous time step [-]

kidx Row index of u [-]

KP PD-controller proportional gain [-]

Mext External knee torque [Nm]

MG1 Foot torque [Nm]

MG2 Shank torque [Nm]

MG3 Knee torque [Nm]

MGRF Ground reaction knee torque [Nm]

Mhyd Hydraulic actuator knee torque [Nm]

nF,sw Number of force level switches [J]

NH Number of time steps on the prediction horizon [-]

NP Population number for the DE-algorithm [-]

p Pressure [Pa]

pnom Nominal valve pressure drop [m3/s]

Q Flow [m3/s]

Qnom Nominal valve flow [m3/s]

VII



t Time [s]

Ts Sample period [s]

vx,CM1 x-direction speed of CM1 in global reference frame [m]

vx,CM2 x-direction speed of CM2 in global reference frame [m]

vy,CM1 y-direction speed of CM1 in global reference frame [m]

vy,CM2 y-direction speed of CM2 in global reference frame [m]

W FSA1 force shift penalty constant [N]

W1 Position error weighing factor in S [-]

W2 Speed error weighing factor in S [-]

W3 Force level switching energy consumption weighing factor in S [-]

WG1,angular Angular work on G1 [J]

WG1,linear Linear work on G1 [J]

WG2+G3 Work on G2 and G3 [J]

xK x-position of knee [m]

xCM1 x-position of CM1 in global reference frame [m]

xCM2 x-position of CM2 in global reference frame [m]

yK y-position of knee [m]

yCM1 y-position of CM1 in global reference frame [m]

yCM2 y-position of CM2 in global reference frame [m]

z1 Piston position of AB-cylinder [m]

z2 Piston position of CD-cylinder [m]

z1,max Maximum piston position of AB-cylinder [m]

z2,max Maximum piston position of CD-cylinder [m]

Greek Symbols

αoil Air content in oil [%]

β Bulk modulus [Pa]

β0 Constant bulk modulus [Pa]

βeq Total viscous friction constant [Nms]
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˙̇
ϕ1 Foot angular acceleration [rad/s2]

˙̇
ϕ2 Foot angular acceleration [rad/s2]

ϕ̇1 Foot angular velocity [rad/s]

ϕ̇2 Shank angular velocity [rad/s]

ηCM1 y-location of CM1 in local reference frame [m]

ηCM2 y-location of CM2 in local reference frame [m]

κ Polytropic constant of air [-]

ϕ1 Foot angle [degree]

ϕ2 Shank angle [degree]

ψ Knee angle [degree]

τlp PD-controller low pass filter time constant [-]

ζCM1 x-location of CM1 in local reference frame [m]

ζCM2 x-location of CM2 in local reference frame [m]

sβ Pressure related slope of bulk modulus [-]

Superscripts

∗ Reference

Subscripts

k Discrete time step k

A Ankle

H Hip

K Knee

T Toe

Most common acronyms

DE Differential Evolution

FSA Force Switching Algorithm

GRF Ground Reaction Force

GRFM Ground Reaction Force Model

MPC Model Predictive Control
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1 Introduction

1.1 Motivation
As a result of the aging society, the need for wearable robotics is increasing. The most
important requirement for these devices, also called exoskeletons, is wearing comfort
which is achieved through the design of the mechanical structure which should be light
weight, compact and emulate human motion closely [1]. In order to enable this, an effi-
cient drive system is an important factor. This project concerns itself with the control of
a digital hydraulic actuated knee exoskeleton designed by a research group at Johannes
Kepler University Linz and Linz Center of Mechatronics. The scope of the project is to
implement and evaluate computationally- and energy efficient control algorithms, who
can mimic the gait cycle of a human knee.

1.2 Exoskeletons
It is expected that there is a significant market for exoskeletons but right now there are
not any widely available commercial solutions, although there are many examples of
exoskeletons for both rehabilitation, military and everyday use [1]. An example of a knee
exoskeleton device is the BoostX developed by SuitX, which can be seen in Figure 1.1 [2].

Figure 1.1: BoostX for support of the knee during motion (Source: [2]).

The BoostX is electromechanically actuated, but there lies an alternative in hydraulic ac-
tuation. Historically, hydraulically actuated exoskeletons have not been commercially
successful. An example of this is the HULC exoskeleton from Lockheed Martin, which

1



1. Introduction

was a commercial failure due to the inability of the control system to closely mimic the
human gait - studies even showed that the exoskeleton tired the user more than when
walking without it [1]. Lockheed Martin has since then focused on electromechanical ac-
tuation resulting in their newest exoskeleton, the ONYX [3], which is based on a concept
similar to the one seen in [4]. The advantages of hydraulics in the context of exoskeletons
is the high force density of hydraulic actuators, and low peripheral mass allowing for
more easily achieving the needed dynamic properties of the system [1].

The general requirements for a the actuation system of an exoskeleton are [1]:

• Wearing comfort.
• System efficiency. Relates to wearing comfort, since this will result in lesser weight

and size.
• Back-drivability.

It is important to have a light weight and energy dense power source which can be con-
verted to hydraulic power. Currently there is a lack of technology which can live up to
these requirements. Therefore, the best solution is currently to use batteries rather than
fuel supplied combustion engines [1]. In this regard, the multi-chamber cylinder is an
approach to actuation that can prove beneficial if it is controlled as a digital fluid power
system [5]. Some benefits of digital fluid power are: energy efficiency, simple and reliable
components, high degree of flexibility in programming of control algorithms and unifica-
tion of hydraulic components potentially allowing for cheap components of high quality
[6]. Some key challenges regarding the technology are: noise, pressure spikes, price and
the need for complicated/non-conventional control [6].

Supplying the four chambers of the multi-chamber cylinder with discrete pressure lev-
els supplied through several digital flow control units (DFCUs) comprised of ON/OFF
valves, the actuator force can be changed by varying the combination of which valves
are turned on and off. For a digitally controlled multi-chamber cylinder, there will be a
number of force levels, NF, according to: NF = NNC

P , where NP is the number of pressure
levels and NC is the number of cylinder chambers [6]. For a four chamber cylinder sup-
plied with two pressure levels, this gives 16 different valve combinations, which results
in 16 different force levels. This allows for force control (also called secondary control)
as an alternative to primary control which is the conventional control approach used
most commonly in industry. When using primary control, throttling losses are significant
when compared to secondary control since no throttling is needed to achieve the control
in the case of secondary control [5], [7], [8]. In this report, the secondary control approach
is what is going to be utilised for controlling the exoskeleton system.

1.3 Control of Exoskeletons: State of the Art
There are generally two approaches to the digital control of multi-chamber cylinders, that
being direct force control (DFC) or model predictive control (MPC). The article [7] from
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1. Introduction

2009 was the first time a study concerning discrete control of ON/OFF valves connected
to the four chambers of a multi-chamber cylinder was published. Here DFC was imple-
mented utilising a cost term which chooses the force level closest to the force reference. A
penalty term is added to this cost function to solve the problem of high frequency valve
switching. This algorithm is the basis of all digital control of multi-chamber cylinders. In
[9], a modified version of this algorithm is used where the penalty term in the cost func-
tion is replaced by a sleep period which ensures that no switching occurs in a small time
interval after each switching. This paper also explores an energy efficient DFC which
chooses between three possible force levels within a defined band around the force ref-
erence according to the least energy consumption and then chooses the one closest to the
force reference.

Alternatively, model predictive control can be used to take into account that it at some
time steps is more reasonable to create a larger force error to get better control in the
following time steps [5]. This controller approach has been studied in [5], [10]–[15]. Al-
though better control performance can be observed with MPC rather than with DFC [5] it
is a challenge that the MPC-algorithm is more computationally demanding than the DFC
[14].

Naturally, it is also desirable to implement user intention detection in the control algo-
rithm in order to enable the control to be in alignment with what the user desires. [4]
proposes a method for this using a torque transducer measuring the knee torque as well
as three pressure sensors placed under the sole of the user’s foot, measuring the force
on the heel and toe. But in general, it can be said that designing a knee exoskeleton that
works in symbiosis with how the human brain plans and follows a gait trajectory, is a
challenging control task that has not seen a lot of research.

1.4 Human Gait Cycle
In order to control the exoskeleton it is important to understand the human gait cycle.
An introduction to the human gait cycle will therefore be presented in this section. This
report is based on human gait data from the HuMoD database [16], which is a collection
of position and force data recorded from a healthy male of 32 years of age, 82 kg mass
and 179 cm height. The data used for the examination of the exoskeleton in this report is
in the case of straight slow walking at a velocity of 1 m/s. At this velocity, the gait cycle
takes ≈1.1s. The movement of the leg during a gait cycle is plotted at a frequency of 50
Hz and shown in Figure 1.2.

Figure 1.3 shows the positioning of the foot, shank and thigh during one gait cycle at
seven different time stamps. It can be noted that the figures from t(1)=0 ms → t(4) = 600
ms show the stance phase, and the ones from t(5) = 800 ms → t(7) = 1100 ms depict the
swing phase. The stance phase is defined as the movement from when the ankle first
touches the ground to when the toe releases the ground. The swing phase is defined as

3



1. Introduction

Figure 1.2: Leg movement during a gait cycle. Colors indicate: the foot (red line), the shank (blue line) and
the thigh (green line).

the movement in which the leg travels through the air without ground contact, until the
ankle again touches the ground. The stance phase constitutes 62% of the gait cycle [17].

x [m]

y
 [

m
]

Figure 1.3: Positioning of the leg during one gait cycle depicted in seven instances. Colors indicate: the foot
(red line), the shank (blue line) and the thigh (green line).

The knee torque during a gait cycle can be found using a mechanical model of the human
leg (see Section 3.2) along with the HuMoD data. In Figure 1.4 the knee torque, MG3, is for
one gait cycle plotted against the angular position of the knee, ψ. On the figure, the color
mapping indicates the time during the gait cycle which is t ∈ {0...1.1s}. It is worth noting
that the maximum knee torque is required in the span where the knee is almost fully
stretched: ψ ∈ {155°...180s}. This can be used for manipulating the transmission ratios of
the actuators1 to achieve maximum torque in this range [18]. This will be elaborated on
in the next section.

Figure 1.5 shows an alternative plot of the data in Figure 1.4, where the knee torque and
knee angle are plotted simultaneously on the y-axis against time on the x-axis. Here it
can be noted that the red area from 0 ms to 682 ms constitutes the stance phase, and the

1Defined as the ratio between linear displacement of the actuators and the angular displacement of the

knee:
dz
dψ
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1. Introduction
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Figure 1.4: Knee torque, MG3, on the y-axis versus knee angle, ψ, on the x-axis. The color bar indicates the
time during the gait cycle which runs through t ∈ {0...1.1s}

blue area from 682 ms to 1100 ms is the swing phase. The dark area from 150 ms to 250
ms marks the peak knee torque. In general it can be noted that the maximum knee torque
is required during the stance phase.

Figure 1.5: On the y-axis: Knee torque, MG3 and knee angle, ψ. On the x-axis: time.

1.5 System Description
The system examined in this project is the exoskeleton depicted in Figure 1.6. It consists
of a mounting brace on which two identical hydraulic actuators are fixated. As seen to
the left in the figure, this brace is attached to the human leg and thereby assists the user
during motion.

5



1. Introduction

AB-Actuator

CD-Actuator

Figure 1.6: Diagram of the system (Source: [18]).

The actuation is done by two conventional hydraulic cylinders fixated in a way that lets
them operate oppositely. This is seen in the AB-actuator and CD-actuator depicted in Fig-
ure 1.6. Thereby, this configuration is equivalent to a multi chamber cylinder. This config-
uration is desirable because it is cheaper than if a multi-chamber cylinder was used. The
downside of choosing this configuration is larger size. Two carefully designed guiding
grooves for the tool points of these actuators can also be seen in the bottom of the figure.
These modify the transmission ratios of the actuators. The design constraint for these
guiding grooves is: The transmission ratio of the AB-actuator is twice that of the CD-
actuator. It is of utmost importance that the actuators are able to provide the necessary
force needed by the knee during a gait cycle. Since the weight of the system is a concern,
the size of the hydraulic components can be reduced by manipulating the transmission
ratios. This is done by utilising the fact that the maximum torque is needed only when
ψ ∈ {155°...180°}. [18] proposes an exoskeleton design that utilises two guide grooves,
guiding the tool points of the actuators in a way that effectively ensures fulfillment of the
second design criteria (the AB-actuator’s transmission ratio should be twice the value for
the CD actuator). Doing this, the torque procured by the actuators is thus manipulated as
the knee angle changes. This can be seen in Figure 1.7. Thereby, when the transmission
ratios are increased in the range ψ ∈ {155°...180°}, it means that the hydraulic forces will
be reduced if the torque is kept constant [14]. This allows for a reduction in the size of the
hydraulic components.

A technical drawing of the exoskeleton system can be seen in Figure 1.8. Each of the four
chambers of the two cylinders are connected to two pressure lines using ON/OFF valves.
One of the pressure lines constitutes the high pressure level, PHP, and the other the low
pressure level PLP. For this project these two pressure levels attain the values: PHP = 200

6



1. Introduction

Figure 1.7: The relation between the transmission ratios plotted against the knee angle. Blue curve: for the

AB-actuator,
dz1

dψ
Red curve: for the CD actuator,

dz2

dψ

bar and PLP = 1.01325 bar

ψ 

PHP

PLP

Figure 1.8: Hydraulic diagram of the exoskeleton system.

There are 16 unique configurations of high and low pressure in the four different cylinder
chambers, allowing 16 different force levels. The force spectrum, along with the corre-
sponding chamber pressures can be seen in Figure 1.9. The uniform torque steps occur
due to these two criterias:

7



1. Introduction

• A 4:1 ratio between bore and rod side of the actuators: AA = AD = 4AB = 4AC

• The transmission ratio of the AB-actuator is twice that of the CD-actuator.

The direct relationship between chamber pressures and force makes it possible to directly
implement secondary control.

Figure 1.9: Force spectrum and corresponding pressure levels in the A, B, C and D chambers

This design makes it possible to achieve the desired torque during the gait cycle. The
task is to implement a control algorithm that switches between the different force levels
depicted in Figure 1.9 according to a reference force trajectory, while keeping the correct
angle of the knee during the gait cycle.

8



2 Scope of Project

2.1 Study Objective
Design and benchmark a reactive- and model predictive control
strategy with the purpose of implementation on a hydraulically ac-
tuated knee exoskeleton.

2.1.1 Project Goals
• Implement a model of the exoskeleton system and human leg.
• Develop a reactive controller and a model predictive controller.
• Evaluate the controllers’ performances through simulative analysis.
• Benchmark the two controllers.

2.1.2 Design Specifications
• The case for which the control is implemented is slow walking (1 m/s) for a healthy

male (82 kg and 182 cm), based on the HuMoD database.
• The control goal is, for one gait cycle, to track the knee angle with a maximum

position error of ±3°, while supplying the required knee torque.
• The controllers should be computationally efficient in order to make them real-time

implementable.
• The controllers are desired to be energy efficient, since this will allow the user of

the exoskeleton to either go further or carry less weight.

2.1.3 Assumptions
• It is assumed that the human leg is an ideal 3-DOF planar mechanical mechanism

with the ankle and knee constituting ideal revolute joints. This is in reality not true,
since the movement the leg is more complex, which means that the exoskeleton
might exert unwanted force on the knee joint [19], [20].

• Friction is modelled in the knee joint as being purely viscous with an equivalent
friction coefficient accounting for both the friction from the hydraulic cylinders, the
internal workings of the human leg and exoskeleton.

• It is assumed that measurements of the knee torque is available.
• The supply side of the system is not in the scope of the project, which means that

the supply pressure is assumed to be a constant 200 bar, and the tank pressure is
assumed to be a constant 1 bar.

2.1.4 Limitations
The data for the human gait cycle is taken from the HuMoD database. This data is es-
sential for doing simulations using the mechanical model. The following database pa-
rameters are used when doing simulations: foot angle, foot speed, foot acceleration, knee

9



2. Scope of Project

position, thigh angle and hip position.

This means that when control is implemented on the system, the knee angle might de-
viate from the HuMoD measurement value, which means that there will be another foot
position, thus resulting in a different ground reaction force than what is given by Hu-
MoD. Therefore, it is needed to implement a ground reaction force model in order to
increase the fidelity of the controlled model.

The researchers at Linz University and Linz Center of Mechatronics are currently work-
ing on building a prototype of the exoskeleton, on which experimental validation of the
model as well as the designed controllers, can be performed. But due to the prototype
being unavailable, it was impossible to conduct any experimental evaluation within the
time range given for writing this thesis. Therefore, the work in this project focuses solely
on theory and simulations. All specification data for the system is based on information
given by the staff in Linz.

10



3 Modelling

Chapter Summary

This chapter firstly presents the hydraulic model describing the pressure and valve dynamics.
Secondly, the mechanical model of the human leg is presented, which gives the exoskeleton model.
And in the final part of the chapter, the system model is linearized in order to be used for controller
design.

3.1 Hydraulic Model of Actuators
The exoskeleton is actuated by two cylinders in a configuration that allows them to work
equivalently to a multi chamber cylinder. This is shown in Figure 3.1, with notations for
the piston positions of the two actuators, z1 and z2, and the knee torque, MG3. Specifica-
tions for the hydraulic actuators are given in Table 3.1.

ψ 

PHP

PLP

Mhyd

z1z2

A1

A0

B1

B0

D1

D0

C1

C0

Figure 3.1: Diagram of exoskeleton.
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3. Modelling

Constant Description Value Unit

z1,max Maximum stroke length of AB-cylinder 0.0896 [m]

z2,max Maximum stroke length of CD-cylinder 0.0448 [m]

AA = AD Bore side area 5.03 · 10−5 [m2]

AB = AC Rod side area 2.20 · 10−5 [m2]

Table 3.1: Hydraulic actuator parameters.

The pressure dynamics for the four chambers are modelled by the flow continuity equa-
tion:

ṗi =
βi

Vi
(Qi −Aiżj) (3.1)

Here, ṗ is the pressure gradient, β is the bulk modulus of the fluid, V is the volume, Q is
the chamber flow, A is the piston area and żj is the speed of the piston where j denotes the
AB- or CD-cylinder piston head. The index i denotes the i’th chamber {A,B,C,D}. Note
that the speed of the i’th chamber’s piston, żj, is the piston velocity corresponding to the
AB and CD actuator, where the sign depends on the piston movement direction (positive
sign for expanding chamber, negative sign for contracting chamber).

The chamber flows are modelled with the summation of the flows over both valves con-
necting each chamber, which is modelled by the orifice equation:

Qi = Qi1 +Qi0 =
1∑
j=0

yi,jQnom

√√√√∣∣∣pj − pi

∣∣∣
pnom

sign
(

pj − pi

)
(3.2)

Here, yi,j is the normalized valve opening, Qnom is the nominal valve flow, pnom is the
nominal valve pressure drop and pj is the pressure depending on which line is connected
(pHP for j = 1 and pLP for j = 0 and). The constants used in the valve flow model are given
in Table 3.2.

Constant Description Value Unit

Qnom Nominal valve flow 1.5 [L/min]

pnom Nominal pressure drop 35 [bar]

pHP Low pressure side of pressure rail 200 [bar]

pLP Low pressure side of pressure rail 1 [atm]

Table 3.2: Valve flow model parameters.

Based on information given by the staff at Linz University, the valve dynamics are con-
stituted by a 2 ms dead time and a 1 ms ramp period from when a valve command ui

is given. As an example of this, Figure Figure 3.2 shows how the valve command signal
translates to valve openings. In the figure, uA, is set to 1 at t = 0.5 ms. This means that

12



3. Modelling

the high pressure line is to be connected to chamber A. Then, after a 2 ms dead time, yA,1

begins ramping up and yA,0 begins ramping down. The ramp period lasts for 1 ms after
which the A chamber is connected solely to the high pressure line.

Figure 3.2: Valve dynamics. Top: A-chamber valve command value. Bottom: A-chamber valve openings.

The effective bulk modulus is modelled by [21]:

βi =
(1− αoil)(1 + sβ

pi−p0
β0

)
− 1

sβ + αoil(
p0
pi
)
1
κ

1
β0
(1− αoil)(1 + sβ

pi−p0
β0

)
−

sβ+1
sβ + αoil

κp0
(

p0
pi
)
κ+1
κ

(3.3)

Here, the constant αoil describes the volumetric content of air in the fluid at atmospheric
pressure, κ denotes the polytropic constant of air, sβ is the constant related to the slope
of the oil’s bulk modulus relating to the pressure, β0 is the oil compression modulus at
the initial reference pressure p0 and pi is the pressure in chamber i. The constants for the
bulk modulus model are given in Table 3.3.

Constant Description Value Unit

αoil Air content in oil 0.2 [%]

κ Polytropic constant of air 1.4 [-]

sβ Pressure related slope of bulk modulus 11.4 [-]

β0 Constant bulk modulus 14000 [bar]

p0 Initial reference pressure 1 [bar]

Table 3.3: Bulk modulus model parameters.

The input energy from the supply is modelled by the integration of the flow from the
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3. Modelling

high pressure rail multiplied by the high pressure level:

Ein =
4∑
i=1

∫
pHP ·Qi1 (3.4)

Using the concept of virtual work [22], the transmission ratios for the two actuators can
be derived [14]:

Mhyddψ = FABdz1 + FCDdz2 (3.5)

=⇒ Mhyd = FAB
dz1
dψ

+ FCD
dz2
dψ

Recalling from Section 1.5 that in order to achieve uniform steps in the force resolution,
the transmission ratio of the AB-actuator is twice that of the CD-actuator [14]:

dz1
dψ

= 2
dz2
dψ

(3.6)

Then, using Equations (3.5) and (3.6), the hydraulic knee torque, Mhyd, and the cylinder
force, Fhyd, are derived:

Mhyd = (FAB + 0.5FCD)
dz1
dψ

(3.7)

Fhyd = FAB + 0.5FCD = pAAA − pBAB + 0.5pCAC − 0.5pDAD (3.8)

There are 16 force levels for the system. These can be organised as seen in the follow-
ing equation, where F is the force vector, p

comb
is a matrix with the 16 unique pressure

combinations possible for the system and A is a vector containing the cylinder chamber’s
equivalent piston areas when taking the transmission ratios into account:

F =


Fmin

...

Fmax

 = p
comb

A =


pLP pHP pLP pHP

...
...

...
...

pHP pLP pHP pLP




AA

−AB

0.5AC

−0.5AD

 (3.9)

F and p
comb

are sorted for the pressure combinations resulting in the lowest force level

beginning from the top and rising downwards. Then, p
comb

is converted to the control

input matrix, u, which is a matrix of binary values where pHP = 1 and pLP = 0:

p
comb

=


pLP pHP pLP pHP

...
...

...
...

pHP pLP pHP pLP

 =⇒ u =


0 1 0 1
...

...
...

...

1 0 1 0

 (3.10)
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3. Modelling

This matrix contains 16 rows of control input vectors, who are accessed by the matrix row
index, kidx:

u(kidx, :) = u =
[
uA uB uC uD

]
(3.11)

Here, the vector u is the input vector which the controllers to be developed will use for
commanding the valve block in order to control the system’s position and torque.

3.2 Mechanical Model of Human Leg1

A diagram of the human leg is shown in Figure 3.3. This serves as the foundation for the
mechanical model derivation.

To the left, the leg is shown with the following notations:

• Foot angle ϕ1, shank angle ϕ2, hip angle ϕ3 and knee angle ψ
• Foot joint G1, ankle joint G2 and knee joint G3

• Torque around the three joints: MG1, MG2 and MG3

• Center of mass for the foot CM1 and center of mass for the shank CM2
• Ground reaction force components FxG and FyG

ψ 

φ1 

φ2 

φ3 G3 

G2 

G1 

CM2 

FyG

FxG 

MG3

MG2MG1

x

y

x

y

x

y

(xk , yk)

Figure 3.3: Diagram of human leg with notations used for the model derivation.

1The model derivation in this section is based on [14].
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To the right on Figure 3.3, the leg is illustrated with the knee coordinates being (xK,yK)
and the three reference frames:

• The global reference frame (x,y)
• The foot’s limb fixed local reference frame (ζ1,η1)
• The shank’s limb fixed local reference frame (ζ2,η2)

The knee angle is given by:
ψ = π + ϕ3 − ϕ2 (3.12)

The mechanical model constants are given in Table 3.4:

Constant Description Value Unit

m1 Mass of foot 1.0058 [kg]

m2 Mass of shank 4.0370 [kg]

l1 Length of foot 0.1607 [m]

l2 Length of shank 0.4344 [m]

J1 Foot’s moment of inertia 0.006 [kg· m2]

J2 Shank’s moment of inertia 0.0582 [kg· m2]

ζCM1 x-location of CM1 in local reference frame 0.0607 [m]

ζCM2 x-location of CM2 in local reference frame 0.253 [m]

ηCM1 y-location of CM1 in local reference frame -0.032 [m]

ηCM2 y-location of CM2 in local reference frame -0.0206 [m]

Table 3.4: Mechanical model constants.

Kinetic and Potential Energy

The kinetic energy of the system is described with the following equation:

Ekin =
1

2
m1(v

2
x,CM1 + v2y,CM1) +

1

2
m2(v

2
x,CM2 + v2y,CM2) +

1

2
ϕ̇21 J1 +

1

2
ϕ̇22 J2 (3.13)

Here, m1 and m2 are the masses of the foot and shank respectively. J1 and J2 are the
foot and shank’s moment of inertia around the z-axis in each of their own limb fixed
coordinate systems. vx,CM1 and vy,CM1 is the x- and y-component of the speed for the
foot’s center of mass (CM1). The same is the case for the shank’s center of mass (CM2);
denoted by vx,CM2 and vy,CM2. Lastly, ϕ̇1 and ϕ̇2 denote the angular velocity of the foot
and shank.

The potential energy is described by:

Epot = m1 g yCM1 + m2 g yCM2 (3.14)

Where g is the gravitational acceleration and yCM1 and yCM2 are the y-coordinates of the
two centres of mass in the global reference frame.
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Kinematic Model

The knee joint is described in the global reference frame by:

xK =

[
xK

yK

]
(3.15)

The three joints are described with respect to the the toe joint:

xG1 =

 xG1

yG1

 (3.16)

xG2 =

 xG1 + l1 cos (ϕ1)

yG1 + l1 sin (ϕ1)

 (3.17)

xG3 =

 xG1 + l1 cos (ϕ1) + l2 cos (ϕ2)

yG1 + l1 sin (ϕ1) + l2 sin (ϕ2)

 (3.18)

The knee coordinates of Equation (3.15) are then related to the toe coordinates by:

xK = xG3 =⇒

[
xG1

yG1

]
=

[
−l1 cos (ϕ1)− l2 cos (ϕ2) + xK

−l1 sin (ϕ1)− l2 sin (ϕ2) + yK

]
(3.19)

Using this, the joint positions of Equations (3.16) to (3.18) are reformulated to:

xG1 =

 −l1 cos (ϕ1)− l2 cos (ϕ2) + xK

−l1 sin (ϕ1)− l2 sin (ϕ2) + yK

 (3.20)

xG2 =

 −l2 cos (ϕ2) + xK

−l2 sin (ϕ2) + yK

 (3.21)

xG3 =

 xK

yK

 (3.22)

The two centres of mass are in the foot’s and shank’s limb fixed coordinate systems de-
fined to be:

rCM1 =

 ζCM1

ηCM1

 (3.23)

rCM2 =

 ζCM2

ηCM2

 (3.24)

The rotation matrix is:

R =

 cos (ϕ) − sin (ϕ)

sin (ϕ) cos (ϕ)

 (3.25)
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Using the joint positions of Equations (3.20) to (3.22) along with the center of mass posi-
tions of Equations (3.23) and (3.24) as well as the rotation matrix of Equation (3.25), the
centres of mass are found in the global reference frame:

xCM1 = xG1 +RrCM1 =

[
xCM1

yCM1

]

[
xCM1

yCM1

]
=

 −l1 cos (ϕ1)− l2 cos (ϕ2) + xK + cos (ϕ1) ζCM1 − sin (ϕ1) ηCM1

−l1 sin (ϕ1)− l2 sin (ϕ2) + yK + sin (ϕ1) ζCM1 + cos (ϕ1) ηCM1

 (3.26)

xCM2 = xG2 +RrCM2 =

[
xCM2

yCM2

]

[
xCM2

yCM2

]
=

 −l2 cos (ϕ2) + xK + cos (ϕ2) ζCM2 − sin (ϕ2) ηCM2

−l2 sin (ϕ2) + yK + sin (ϕ2) ζCM2 + cos (ϕ2) ηCM2

 (3.27)

Using the y-components of Equations (3.26) and (3.27), the potential energy of the system
can be found according to Equation (3.14).

Taking the time derivative of the position vector for the first center of mass, given by
Equation (3.26), results in the velocity:

ẋCM1 = vCM1 =

 vx,CM1

vy,CM1

 =⇒

vx,CM1 = l1ϕ̇1 sin (ϕ1 (t)) + l2ϕ̇2 sin (ϕ2) + ẋK − ϕ̇1 sin (ϕ1) ζCM1 − ϕ̇1 cos (ϕ1) ηCM1 (3.28)

vy,CM1 = −l1ϕ̇1 cos (ϕ1)− l2ϕ̇2 cos (ϕ2) + ẏK + ϕ̇1 cos (ϕ1) ζCM1 − ϕ̇1 sin (ϕ1) ηCM1 (3.29)

And likewise, the velocity of the second center of mass is obtained by taking the time
derivative of Equation (3.27):

ẋCM2 = vCM2 =

 vx,CM2

vy,CM2

 =⇒

vx,CM2 = l2ϕ̇2 sin (ϕ2 (t)) + ẋK − ϕ̇2 sin (ϕ2) ζCM2 − ϕ̇2 cos (ϕ2) ηCM2 (3.30)

vy,CM2 = −l2ϕ̇2 cos (ϕ2) + ẏK + ϕ̇2 cos (ϕ2) ζCM2 − ϕ̇2 sin (ϕ2) ηCM2 (3.31)

Using Equations (3.28) to (3.31), the kinetic energy equation can be calculated using Equa-
tion (3.13).
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3.2.1 Virtual Work
Now, the concept of virtual work is used to derive the interaction of the forces and cou-
ples on the leg.

Virtual Work on Ankle and Knee Joints

Figure 3.4 shows an illustration of the rotational virtual displacements for the knee and
ankle joints. To the left, the shank angle, ϕ2 and the hip angle, ϕ3, are changed by the
virtual angular displacements δϕ2 and δϕ3. This is seen by the green lines, denoting how
the limbs change to a new position. Here the difference, δϕ3 − δϕ2 denotes the resulting
angular displacement of the knee.

φ3 

φ2 

δφ2 > 0

δφ3 > 0

φ1 

δφ2 < 0

δφ1 > 0

φ2 

G3 

G2 

Figure 3.4: Illustration of angular virtual displacements for the knee (left) and the foot (right).

To the right of Figure 3.4, it is shown how the virtual displacements of the foot angle, δϕ1
and shank angle, δϕ2, influences the angular displacement of the G2 angle: δϕ2 − δϕ1.
This means that the virtual work due to the couples on joint 2 and joint 3, are:

δWG2+G3 =MG2(δϕ2 − δϕ1) +MG3(δϕ3 − δϕ2) (3.32)

The data for the thigh movement is predetermined based on the HuMoD database, which
means that the knee torque, MG3, will only affect the shank angle, δϕ2. Therefore, Equa-
tion (3.32) simplifies to:

δWG2+G3 =MG2(δϕ2 − δϕ1)−MG3δϕ2 (3.33)
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Virtual Work on Toe Joint

Now, the virtual work on the toe joint is found. Here, there will be both linear and angular
virtual displacements due to the ground reaction force (GRF). Firstly, the linear virtual
displacements of the toe joint are found using the position vector of Equation (3.20):

δxG1 =

[
δxG1

δyG1

]
=

[
l1 sin(ϕ1) δϕ1+ l2 sin(ϕ2) δϕ2

−l1 cos(ϕ1) δϕ1− l2 cos(ϕ2) δϕ2

]
(3.34)

The virtual work due to the virtual linear displacement of the toe joint is then given by
the scalar product of the GRF vector, FGRF, and the virtual linear displacement vector of
Equation (3.34):

δWG1,linear = FGRF δxG1 ; FGRF =
[
FxG FyG

]
(3.35)

The angular virtual displacement of the toe joint is simply δϕ1, since this is only de-
pendent on the foot link orientation. Figure 3.5 shows an illustration of the foot in two
positions. To the left, the ankle has contact to the ground in the point (xC , yC), and to the
right the ground contact point is at the toe.

FyG

FxG 

xC - xG1

yC - yG1

xC – xG1 = 0

yC - yG1

FyG

FxG 

G1 

G1 (xC , yC)
(xC , yC)

(xG1 , yG1)

(xG1 , yG1)

FyG

FxG 

xC - xG1

yC - yG1

xC – xG1 = 0

yC - yG1

FyG

FxG 

G1 

G1 (xC , yC)
(xC , yC)

(xG1 , yG1)

(xG1 , yG1)

Figure 3.5: Illustration of how the GRF generates a torque around the toe joint G1.

Two lever arms are denoted, rx and ry, on which the GRF components, FxG and FyG,
work and thereby create a torque around the toe joint. The lever arms are defined to be
the horizontal and vertical distances between the contact point for the GRF (xC , yC) and
the toe joint position (xG1,yG1). This is also shown in Figure 3.5. The lever arms, rx and
ry, are then found using Equations (3.20) and (3.21):

rGRF =

[
ry

rx

]
=

[
yC − yG1

xC − xG1

]
=

[
yC + l1 sin(ϕ1) + l2 sin(ϕ2)− yK

xC + l1 cos(ϕ1) + l2 cos(ϕ2)− xK

]
(3.36)
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Here, FxG works on ry, and FyG works on rx, resulting in the following torque contribu-
tions:

MG1 = FGRF

[
−1 0

0 1

]
rGRF = −FxGry + FyGrx (3.37)

In this equation, the diagonal matrix switches the sign of the lever arm, ry, in order to
keep the torque contributions consistent with the definition of the positive direction being
counter-clockwise. As an example, looking at the right part of Figure 3.5, it can be seen
that there is no difference between xC and xG1, meaning that FyG will not give any torque
contribution around the toe joint in this specific case.

Then, the virtual work resulting from the torque components on the toe joint, G1, be-
comes:

δWG1,angular = δϕ1MG1 (3.38)

The work on the toe joint is then given as:

δWG1 = δWG1,linear + δWG1,angular (3.39)

Total Virtual Work

The total virtual work is found by summing the virtual work on all three joints as derived
in Equations (3.33) and (3.39):

δW = δWG1 + δWG2+G3 = ((−l2 sin(ϕ2) + yK− yC) δϕ1 + l2 sin(ϕ2) δϕ2)FxG (3.40)

+ ((l2 cos(ϕ2)− xK+ xC) δϕ1 − l2 cos(ϕ2) δϕ2)FyG +MG2 (δϕ2 − δϕ1)−MG3δϕ2

3.2.2 Lagrangian Mechanics
The Lagrangian is the difference between the kinetic of Equation (3.13) and the potential
energy of Equation (3.14):

L = Ekin − Epot (3.41)

The Lagrangian equation is formulated using Equations (3.40) and (3.41):

d
dt
∂L
∂q̇

− ∂L
∂q

=
∂δW

∂δq
(3.42)

d
dt
∂L
∂q̇

=

[
κ1

κ2

]
;

∂L
∂q

=

[
ϵ1

ϵ2

]
;

∂δW

∂δq
=

[
ω1

ω2

]
Here, the equation for virtual work constitutes a constraint equation describing the influ-
ence of the external effects done at the joints. The vectors q, q̇ and δq denote the variables
for position, velocity and virtual displacement corresponding to the system’s degrees
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of freedom. Since data concerning the dynamics of the thigh is taken from the HuMoD
database, the system has two degrees of freedom resulting in:

q =

[
ϕ1

ϕ2

]
; q̇ =

[
ϕ̇1

ϕ̇2

]
; δq =

[
δϕ1

δϕ2

]
The three terms of Equation (3.42) are given in the following equations.

κ1 = m1

[
((l1 − ζCM1) cos(ϕ2)− ηCM1 sin(ϕ2)) cos(ϕ1)

+ (ηCM1 cos(ϕ2) + sin(ϕ2) (l1 − ζCM1)) sin(ϕ1)

]
l2ϕ̈2

+
((
ηCM1

2 + l21 − 2l1ζCM1 + ζCM1
2
)

m1 + J1
)
ϕ̈1

− m1

[
(cos(ϕ1) ηCM1 − sin(ϕ1) (l1 − ζCM1)) ẍK (3.43)

+ ((l1 − ζCM1) cos(ϕ1) + sin(ϕ1) ηCM1) ÿK

+
(
(ηCM1 cos(ϕ2) + sin(ϕ2) (l1 − ζCM1)) cos(ϕ1)

− sin(ϕ1) ((l1 − ζCM1) cos(ϕ2)− ηCM1 sin(ϕ2))
)
ϕ̇22l2

]

κ2 = m1

[
((l1 − ζCM1) cos(ϕ1) + sin(ϕ1) ηCM1) cos(ϕ2)

− sin(ϕ2) (cos(ϕ1) ηCM1 − sin(ϕ1) (l1 − ζCM1))

]
l2ϕ̈1

+
(
(m1 + m2) l

2
2 − 2ζCM2l2m2 +

(
ηCM2

2 + ζCM2
2
)

m2 + J2
)
ϕ̈2

+ (−ηCM2 cos(ϕ2)m2 + ((m1 + m2) l2 − ζCM2m2) sin(ϕ2)) ẍK (3.44)

+ (((−m1 − m2) l2 + ζCM2m2) cos(ϕ2)− ηCM2 sin(ϕ2)m2) ÿK

+ m1

[
(cos(ϕ1) ηCM1 − sin(ϕ1) (l1 − ζCM1)) cos(ϕ2)

+ ((l1 − ζCM1) cos(ϕ1) + sin(ϕ1) ηCM1) sin(ϕ2)

]
ϕ̇21l2

ϵ1 = m1g (−l1 cos(ϕ1) + cos(ϕ1) ζCM1 − sin(ϕ1) ηCM1) (3.45)

ϵ2 = −m1gl2 cos(ϕ2) + m2g (−l2 cos(ϕ2) + cos(ϕ2) ζCM2 − sin(ϕ2) ηCM2) (3.46)

ω1 = cos(ϕ2)FyGl2 − sin(ϕ2)FxGl2 − xKFyG + yKFxG − FxGyC + FyGxC −MG2 (3.47)

ω2 = − cos(ϕ2)FyGl2 + sin(ϕ2)FxGl2 +MG2 −MG3 (3.48)
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The system of equations given by the Lagrange equation is now organized into the fol-
lowing form:

J ϕ̈ = BM MG +BF FGRF + V f0 (3.49)

An elaboration on each of the terms in Equation (3.49) follows here:

Firstly, J is the inertia matrix which relates to the acceleration vector ϕ̈. These are given
by:

J =

[
J11 J12

J21 J22

]
; ϕ̈ =

[
ϕ̈1

ϕ̈2

]

The terms in the inertia matrix are found extracting the coefficients for the acceleration
variables in Equations (3.43) and (3.44):

J11 =
(
ηCM1

2 + l21 − 2l1ζCM1 + ζCM1
2
)

m1 + J1 (3.50)

J12 = l2m1 (l1 cos(−ϕ2+ ϕ1)− ζCM1 cos(−ϕ2+ ϕ1) + ηCM1 sin(−ϕ2+ ϕ1)) (3.51)

J21 = J12 (3.52)

J22 =
(
ηCM2

2 + l22 − 2l2ζCM2 + ζCM2
2
)

m2 + l22m1 + J2 (3.53)

BM is derived from Equations (3.47) and (3.48) and denotes the influence of the joint
torques vector, MG, on the foot and shank angular accelerations:

BM =

[
−1 0

1 −1

]
; MG =

[
MG2

MG3

]
(3.54)

BF is derived from Equations (3.47) and (3.48) and denotes the terms relating to the
ground reaction forces, FxG and FyG:

BF =

[
BF,11 BF,12

BF,21 BF,22

]
=

[
−l2 sin(ϕ2) + yK− yC l2 cos(ϕ2)− xK+ xC

l2 sin(ϕ2) −l2 cos(ϕ2)

]
(3.55)

Lastly, V f0 is all the remaining terms of Equations (3.43) to (3.48) who have no relation to
the accelerations, torques or ground reaction forces. This vector is given as:

V f0 =

[
Vf0,1

Vf0,2

]
=⇒
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Vf0,1 =

[
− ϕ̇22l2 (l1 − ζCM1) sin(−ϕ2+ ϕ1) + ϕ̇22 cos(−ϕ2+ ϕ1) ηCM1l2 (3.56)

+ (cos(ϕ1) ηCM1 − sin(ϕ1) (l1 − ζCM1)) ẍK + (g + ÿK) ((l1 − ζCM1) cos(ϕ1) + sin(ϕ1) ηCM1)

]
m1

Vf0,2 = ϕ̇21l2m1 (l1 − ζCM1) sin(−ϕ2+ ϕ1)− cos(−ϕ2+ ϕ1) ϕ̇
2
1ηCM1l2m1 (3.57)

+

(
ηCM2 cos(ϕ2)m2 − ((m1 + m2) l2 − ζCM2m2) sin(ϕ2)

)
ẍK

+ (g + ÿK) (((m1 + m2) l2 − ζCM2m2) cos(ϕ2) + ηCM2 sin(ϕ2)m2)

3.2.3 Simplifying the Model
Taking a closer look at the torque term of Equation (3.54), it can be seen that it is possible
to completely remove the influence of the ankle torque on the shank angle dynamics, by
multiplying the system of equations with the vector k =

[
1 1

]
:

k BM MG =
[
1 1

] [
−1 0

1 −1

] [
MG2

MG3

]
=

[
0 −1

] [
MG2

MG3

]
= −MG3 (3.58)

This vector is multiplied onto the whole system of equations given by Equation (3.49) in
order to obtain the simplified Equation (3.59) for the knee torque:

kJ ϕ̈ = k BM MG + k BF FGRF + k V f0 =⇒

MG3 = −kJ ϕ̈+ k BF FGRF + k V f0 (3.59)

Here, the terms are:

kJ ϕ̈ =
[
1 1

] [J11 J12

J21 J22

] [
ϕ̈1

ϕ̈2

]
= (J11 + J21)ϕ̈1 + (J12 + J22)ϕ̈2 (3.60)

k BF FGRF =
[
1 1

] [BF,11 BF,12

BF,21 BF,22

] [
FxG

FyG

]
= (BF,11 +BF,21)FxG + (BF,12 +BF,22)FyG

(3.61)

k V f0 =
[
1 1

] [
Vf0,1

Vf0,2

]
= Vf0,1 + Vf0,2 (3.62)

Equation (3.59) is used to calculate the knee torque during the gait cycle. This is done
using the HuMoD data for ϕ1, ϕ̇1, ϕ̈1, xK, ẍK, yK, ÿK, FxG and FyG. The torque is plotted
during a gait cycle in Figure 3.6, and this is what serves as the torque reference trajectory.
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Figure 3.6: Knee torque, MG3, plotted for one gait cycle using Equation (3.59).

The knee torque plotted in Figure 3.6 is the same as was shown in Figure 1.5 from Sec-
tion 1.5, which is corresponding with the results obtained in [14], [18]. This verifies the
implementation of the simulation model.

In order to obtain the dynamic model for the exoskeleton, Equation (3.59) is rewritten
whilst equating MG3 =Mhyd from Equation (3.7):

ϕ̈2 =
−Mhyd +Mfric − (J11 + J21)ϕ̈1 + (BF,11 +BF,21)FxG + (BF,12 +BF,22)FyG + Vf0,1 + Vf0,2

(J12 + J22)
(3.63)

In Equation (3.63), the friction is added by regarding the friction as consisting solely of a
viscous term according to:

Mfric = βeqψ̇ = βeq(ϕ̇3 − ϕ̇2) (3.64)

The viscous friction coefficient βeq is an equivalent term that collects the friction in the
hydraulic actuators, the exoskeleton and the human knee joint. Since no prototype is
available at the time of writing, a value has to be assumed for βeq. Analysing the angular
velocity of the knee joint during the HuMoD gait cycle, it is noted that the maximum
absolute speed is ≈ 7 rad/s. Setting βeq = 1 Nms means that the maximum friction
torque the system will be ≈ 7 % of the peak knee torque during the stance phase of
the gait cycle. This is assumed to be a valid order of magnitude for the constant, but as
mentioned before, it must be stressed that an experimental parameter determination is
necessary in order to achieve a validated friction model that is true to the physical system.

A simplified form of the system dynamics of Equation (3.63) are given in Equation (3.65):

ϕ̈2 =
−Mhyd +Mext

(J12 + J22)
(3.65)
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In this notation, the term Mext describes the external torque contributions on the knee
torque who come from the friction, the centripetal force for the foot and shank, the
ground reaction force and the gravity. Equation (3.65) gives the shank angle dynamics
as a function of the hydraulic actuator torque exerted on the knee. Thereby, a model for
the knee movement of the exoskeleton has been derived, since the shank angle directly
relates to the knee angle of Equation (3.12) because the thigh angle, ϕ3, is predetermined
from the HuMoD data.

A sanity check of the dynamic equation for shank movement is conducted as shown in
Figure 3.7. Here, Equation (3.65) is initialized where the shank is placed in the upright
position of ϕ2 = −90°. Throughout the test, the foot angle is kept constant at ϕ1 = 0°. The
simulation is run where there is no knee movement, ground reaction force and actuator
torque meaning that ẍK = ÿK = Mhyd = FxG = FyG = 0. Furthermore, the movement of
the foot is also set to zero: ϕ̇1 = ϕ̈1 = 0. As seen in Figure 3.7b, the angle of the shank
begins rising until it settles at a value of ϕ2 = −91°. This is also illustrated in Figure 3.7a,
where the initial and final position of the leg during the sanity check is shown. This
behaviour is in accordance with expectations, and thus indicates that the model is correct.
Furthermore, the response also gives an impression of how the chosen friction coefficient,
βeq, affects the system; which is by inducing a response that is neither very underdamped
nor overdamped.

φ2 = -90o

G3 

G3 

G2 

φ1 = 0o

G2 

φ2 = 91o

(a) Initial and final position of the leg.
(b) Shank angle, ϕ2, during the test.

Figure 3.7: Sanity check of Equation (3.65).

3.2.4 Ground Reaction Force Model
When simulating the system, it is possible to implement the measured ground reaction
force from the HuMoD database. But this is not desired when the control algorithm is to
be implemented on the system, since deviations from the measured gait cycle can occur,
and if this happens, then the GRF will no longer be representative for the simulated case.
Therefore, a model is derived for the GRF, which enables the GRF to be influenced by the
deviations between the shank angle, ϕ2 and the HuMoD data, thus allowing for controller
evaluation through simulations. The GRF components due to the elastic compression as
well as damping at the toe and ankle joints can be modelled as [14]:

Fy,Gi = ky,Gi(yGi,thres − yGi)− cy,Gi · min(0, vy,Gi) (3.66)
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Fx,Gi = kx,Gi(xC,Gi − xGi)− cx,Gi vx,Gi (3.67)

Here, the x- and y-direction speed of the respective joints are given by vx,Gi and vy,Gi, and
the x- and y-position of the joints are xGi and yGi. Gi denotes either the toe joint, G1, or
the ankle joint, G2. In Equation (3.66), ky,Gi is the foot’s spring constant for the vertical
compression of the foot and cy,Gi is the damping constant relating to the vertical speed
of the foot. This only occurs when the foot moves downwards, and is accounted for by
the minimum function, min(0, vy,Gi), defining the speed to only be included when it is
negative. In Equation (3.67), kx,Gi is the spring constant for the foot’s horizontal compres-
sion, depending on the difference between the calculated displaced ground contact point
of xC,Gi (see Equation (3.70)) and the measured joint x-position, xGi, from the HuMoD
data. Under the assumption of static friction, there will be damping of the foot in the
x-direction as well, where cx,Gi is the damping constant working in both the positive and
negative direction.

Furthermore, the following conditions are implemented in the code for both the toe and
ankle joint:

Fy,G1 = Fx,G1 = 0 if yG1,thres < yG1 (3.68)

Fy,G2 = Fx,G2 = 0 if yG2,thres < yG2 (3.69)

The conditions of Equations (3.68) and (3.69) define when the foot comes into contact
with the ground. The threshold values yG1,thres and yG2,thres are determined based on the
HuMoD data. The upper part of Figure 3.8 shows the ground reaction torque, MGRF,
which is calculated from Equation (3.61) using HuMoD data. The lower part of Figure 3.8
shows the y-positions of the toe and the ankle joints.

Figure 3.8: Upper figure: the ground reaction torque calculated from HuMoD data. Lower figure: the
y-position of the toe and ankle joints. The red and blue dashed lines represent the points at which the

threshold values are chosen.

27



3. Modelling

Since the ankle is the first joint to come into contact with the ground during the gait cycle,
the threshold value yG2,thres is given by yG2 at the time whenMGRF first becomes non-zero.
This is shown with the red dashed lines in Figure 3.8. Likewise, the toe is the last joint
to leave the ground during the gait cycle, which means that yG1,thres is determined as the
value for yG1 at the time MGRF becomes zero again. This is shown with the blue dashed
lines in Figure 3.8.

Equations (3.66) to (3.69) are the basis of the GRF and implemented in the code as illus-
trated in the flowchart of Figure 3.9.

Define zero GRF:

Fx,Gi = Fy,Gi = 0

Define the current time to be the 

time of first contact (tC0,Gi), and the 

current x-position to be the position 

at the time of first contact (xC0,Gi) 

No force in the x-direction:

Fx,Gi = 0

Calculate the normal ground reaction force:

Fy,Gi = ky,Gi(yGi,thres-yGi) – cy,Gi· min(0,vy,Gi)

Yes

Yes

No

Calculate the current contact position:

xC,Gi = xC0,Gi + (t-tC0,Gi)vTreadmill

No

Calculate the x-component of the GRF:

Fx,Gi = kx,Gi(xC,Gi-xGi) – cx,Givx,Gi

Is yGi < yGi,thres (ie. is the 

foot touching the ground)?

Is this the first contact 

of this gait cycle?

Define this time step to be the 

end of the current gait cycle.

End

Start

Figure 3.9: General flowchart for the code implementation of the GRF on the joint, Gi.

This figure shows the flow diagram for the ground reaction forces on the toe joint, G1, and
the ankle joint, G2 (described by the general indicator, Gi). The implementation is based
on several if-else statements. Firstly, it is checked whether or not the joint is actually
touching the ground by comparing the y-value of the joint position, yGi, to the threshold
value, yGi,thres, defining the hard boundary between no ground contact and full ground
contact. If there is ground contact, then the normal force, Fy,Gi, is calculated. Afterwards,
it is checked whether or not it is the first time during the gait cycle that the joint touches
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the ground. If yes, then the current time is set to be the time of first contact, tC0,Gi, and
the x-position at this time is defined to be the x-position at the time of first contact, tC0,Gi.
Furthermore, the tangential force, Fx,Gi, is set to zero, since this force is based on the
movement of the foot after the first contact. The two parameters, tC0,Gi and xC0,Gi, are
used for the next calculations when the joint still has ground contact after the time of first
contact. The displaced ground contact point, xC,Gi, is given by:

xC,Gi = xC0,Gi + (t− tC0,Gi)vTreadmill (3.70)

Here, vTreadmill is the speed of the treadmill used for collecting the HuMoD data , and t is
the current time. Then, xC,Gi is used to calculate the tangential force, Fx,Gi.

Going back to the start of the flow diagram, if a situation happens where there is no
ground contact of the joint, then both ground reaction forces are set to zero for this joint.
Furthermore, the current gait cycle is defined to be finished, thus allowing for new first
contact values to be defined when the joint once again comes into contact with the ground
in the next gait cycle.

Finally, it is desired to find a function describing how the contact point alternates between
the ankle and toe during a gait cycle. Looking at the HuMoD data plotted in Figure 3.10, it
can for one gait cycle be seen that the x-position of the ground contact point, xC, switches
between the x-positions of the ankle, xG2 and toe, xC when these three parameters are
plotted on the y-axis against the difference between the x-positions of the ankle and hip,
xG2 − xH.

Figure 3.10: Plot showing the contact point, xC, switching between the ankle position, xG2, and the toe
position, xG1, when plotted against the difference between the ankle and hip, xG2 − xH during one gait cycle.

A function describing how the contact point alternates between the ankle and toe during
a gait cycle is:

α = 0.5 + 0.5 tanh
(
a1(xG2 − xH + a2)

)
(3.71)

Here, a1 affects how rapid the curve changes from 0 to 1, and a2 affects the horizontal
displacement of the curve. These parameters are chosen to be: a1 = 10 and a2 = 0.1.
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Using Equation (3.71), the x-location of the GRF can be found:

xGRF = xG2(1− α) + xG1α (3.72)

This expression states that when α = 0, the GRF works solely on the ankle, and when
α = 1, the GRF works solely on the toe. Likewise, the GRF will work equally on the toe
and ankle when α = 0.5. The total GRF in the x- and y-direction are then found using
Equations (3.66), (3.67) and (3.71) and the same principle as in Equation (3.72):

Fx = Fx,G2(1− α) + Fx,G1α (3.73)

Fy = Fy,G2(1− α) + Fy,G1α (3.74)

The torque components induced by the GRF around the knee joint, xG3, are then:

Mx = Fx(xGRF − xG3) (3.75)

My = Fy(xGRF − xG3) (3.76)

And the total ground reaction torque:

MGRF =Mx +My (3.77)

Equation (3.77) replaces the ground reaction torque of Equation (3.61) which is based on
HuMoD data. In order to verify the fidelity of the ground reaction force model, the ideal
ground reaction torque presented in the upper part of Figure 3.8 is compared to the result
obtained with the model in Figure 3.11. The GRF model constants are shown in Table 3.5.

Figure 3.11: Plot of MGRF calculated using HuMoD data (red curve), and calculated using the GRF model
presented in this section (blue curve).

In Figure 3.11, the deviation between the model curve (blue curve) and the data curve
(red curve) is most significant at the peak torque, where it the model undershoots the data
initially, and then sees a slower decrease than the data. Furthermore, there is a deviation
between the curves in the negative spike for the model torque that occurs just as the toe
leaves the ground in the final part of the gait cycle. But generally, the data curve is closely
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Constant Description Value Unit

yG1,thres Toe threshold value 0.03 [m]

yG2,thres Ankle threshold value 0.099 [m]

kx,G1 Toe x-axis spring constant 694.9 [N/m]

ky,G1 Toe y-axis spring constant 13782 [N/m]

cx,G1 Toe x-axis damping constant 1.021 · 10−4 [N·s/m]

cy,G1 Toe y-axis damping constant 997.1 [N· s/m]

kx,G2 Ankle x-axis spring constant 8634 [N/m]

ky,G2 Ankle y-axis spring constant 64851 [N/m]

cx,G2 Ankle x-axis damping constant 53.30 [N· s/m]

cy,G2 Ankle y-axis damping constant 1.044 · 10−4 [N·s/m]

Table 3.5: Constant values used in the GRF model.

represented by the model curve, and therefore it is assumed to be of high enough fidelity
to be used for controller evaluation through simulations which is done by substituting
Equation (3.77) with Equation (3.61). It is found that setting the length of the shank and
foot as constants in the simulation gives bad correspondence between the model and
the HuMoD data. This can be explained by the method used for collecting the HuMoD
data, where reflective markers were placed on the body of the test subjects. Since the
human skin moves slightly during motion, this movement will also be present in the
recorded data. When using the GRFM, these small deviations actually prove immensely
significant, since the model is based on the compression of the foot tissue using spring
coefficients. As seen in Table 3.5, these coefficients are of vary large values, meaning that
even small displacements result in large force reactions. This is discussed in further detail
in Chapter 6. Through simulative evaluation it was found that the GRFM most closely
resembling the HuMoD data was achieved with the length of the foot and shank being
calculated based on the predetermined HuMoD data. This in turn means that the GRFM
does not achieve full state dependency. Despite this flaw, the model is still used in the
future parts of the report for simulative evaluation.

3.3 Model Linearization
The shank acceleration of Equation (3.78) which relates the knee torque to the change
in knee acceleration is used in order to implement a prediction model that can be used
for model predictive control (MPC). If this approach is to be implemented in real time,
it is necessary to linearize the differential equation, since it would take too long time to
process an optimization algorithm when the equation is in its non-linear form. The goal is
to obtain a model that can be used for predicting the future states of the system according
to the chosen inputs. The shank acceleration is a function dependent on two variables.

ϕ̈2 = f(Mhyd,Mext) (3.78)
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When linearizing the system, the term Mext causes a challenge, since this term is highly
non-linear as well as discontinuous as seen in Section 3.2.4 where the GRFM is presented.
Therefore, this term is accounted for by assuming access to measurements of the total
knee torque,Mtotal, with a torque transducer or strain gauge. Thereby, the external torque
can be found using Equation (3.65):

Mtotal = ϕ̈2(J12 + J22) = −Mhyd +Mext =⇒ Mext =Mtotal +Mhyd (3.79)

The non-linear terms can be taken into account in the prediction model by using the
measured external torque, Mext. Thereby the model’s prediction power can be increased.
Equation (3.78) is linearized by using the first order Taylor series:

∆ϕ̈2 =
∂ϕ̈2
∂Mhyd

∣∣∣∣
x0
∆Mhyd +

∂ϕ̈2
∂Mext

∣∣∣∣
x0
∆Mext = Khyd∆Mhyd + Kext∆Mext (3.80)

= Khyd
dz1
dψ 0

∆Fhyd + Kext∆Mext

Where the linearization point is:

x0 =
[
ϕ1,0 ϕ2,0

dz1
dψ 0

]
(3.81)

And the linearization constants are:

K−1
hyd = −

(
l2m1(l1 − ζCM1) cos(−ϕ2,0 + ϕ1,0) + sin(−ϕ2,0 + ϕ1,0)ηCM1l2m1 (3.82)

+ (m1 + m2)l22 − 2 l2m2ζCM2 + (ηCM2
2 + ζCM2

2)m2 + J2

)

Kext = −Khyd (3.83)

This concludes the system modelling which serves as the foundation for the controller
development presented in the next chapter.
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Chapter Summary

This chapter presents the controllers developed for tracking the position of the knee angle during
a gait cycle. Firstly, a reactive approach is presented, consisting of a conventional PD-controller
with torque compensation and torque feed-forward. This is followed by a presentation of two force
switching algorithms, used for converting the continuous controller input to the discrete input
values for the system’s valve commands. Lastly, the model predictive controller is presented along
with the optimization algorithm used for its implementation.

4.1 Reactive Control
As a benchmark for evaluating the controller performance of the MPC, conventional re-
active control is implemented. A block diagram of the controller structure is shown in
Figure 4.1. Here, feedforward from the shank acceleration is added using the linearized
system model of Equation (3.80) neglecting the external disturbance. Furthermore, torque
compensation is added to the controller output under the assumption of having access
to measurements of the external torque of Mext. Adding the compensation and feed-
forward terms to the controller output serves as a baseline for the hydraulic actuators,
which means that the controller in turn has to do less work.

eφ2 φ2
PD

Mhyd u
+_

φ2 

Fhyd
GM(s) Gφ2 (s)

Mhyd φ2 

Linear plant Gs(s) 

+
+

Mext

+

1/Khyd

φ2 
..

(    )
-1 FSA

**

*

* Mhyd,PD

Mhyd,FF

Figure 4.1: Block diagram of reactive controller structure.

The transfer function for the motion dynamics, Gϕ2(s), is found by Laplace transforming
Equation (3.80). For the linear system analysis, the external torque term, Mext, is assumed
to consist only of the viscous friction term. Furthermore, the angular velocity of the thigh
is assumed to be zero, yielding Mext = Mfric = βeq(ϕ̇3 − ϕ̇2) = −βeqϕ̇2. The transfer
function is then derived:

ϕ2s
2 = KhydMhyd − βeqKextϕ2s (4.1)

=⇒ Gϕ2(s) =
ϕ2
Mhyd

=
Khyd

s2 + Kextβeqs
(4.2)

The actuator torque is dependent on the actuator force, which in turn is dependent on
the chamber pressures. But there is a delay in between a set of valve commands are given
until the desired chamber pressure levels are achieved. Keeping in mind that the chamber
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pressures are directly related to the actuator force, the transfer from valve commands
to actuator force, is modelled as the response of a first order transfer function, which
resembles the pressure build up in a constant volume through a fixed orifice:

GF(s) =
Fhyd

M∗
hyd

=
1

τFs+ 1
(4.3)

Please note that the FSA’s conversion from reference value to force level index is assumed
to be a unit gain. Equation (4.3) is converted to actuator torque with the transmission ratio
to get the delay transfer function GM(s):

=⇒ GM(s) =
Mhyd

M∗
hyd

=
Fhyd

dz1
dψ 0

M∗
hyd

= GF(s)
dz1
dψ 0

=

dz1
dψ 0

τFs+ 1
(4.4)

From the analysis presented in Appendix A, it is found that an approximation of the
slowest delay time between a valve command is given and the pressure level has settled,
is 6.6 ms. Using this, and defining the settling time to be four times the time constant,
then the first order time constant is τF = 1.65 ms.

The linearization point for the linear model is chosen to be based on the HuMoD data
during the gait cycle when the time is t=0.23 s. This point is during the stance phase
when the most torque is required during the gait cycle, and therefore it is deemed a
suitable working point for the controller design:

x0(t = 0.23s) =
[
ϕ1,0 ϕ2,0

dz1
dψ 0

]
=

[
27° 89° 0.09 m

rad

]
(4.5)

Using this linearization point, the linearization constants of Equations (3.82) and (3.83)
become: Khyd = −2.4 and Kext = 2.4. The system’s open loop transfer function given
from Equations (4.1) and (4.4) is:

Gs(s) =
ϕ2
M∗

hyd
= Gϕ2(s) ·GM(s) =

Khyd
dz1
dψ 0

s(s+ Kextβeq)(τFs+ 1)
(4.6)
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Figure 4.2: Root locus plots. Left: the open loop system transfer function given by Equation (4.6). Right:
zoomed plot of the open loop system transfer function.
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Looking at Figure 4.2, it can be seen that one closed loop pole always will be located
in the right half plane. Therefore it is desired to stabilize the system in the closed loop
and achieve as high a bandwidth as possible without having the controller amplify the
measurement noise that might be present in the physical system. This is done by imple-
menting a PD-controller structure given by Equation (4.7), since both the proportional
and derivative gain increases the bandwidth of the controller.

GPD(s) =
Mhyd,PD

eϕ2
= −(KP + KDs)

1

τlps+ 1
(4.7)

In order to make the transfer function proper, a low pass filter is added to the controller
structure in order to filter the error input.
The controller’s gain parameters are chosen to be:

KP = 106.2 KD = 29.5 τlp = 0.0458

Table 4.1: Overview of PD-controller parameters.

These parameters are found from an initial tuning based on Equation (4.6) using the
Matlab extension ’Control System Designer’, followed by an iterative tuning through
simulations. The controller transfer function implements a pole in − 1

τlp
= −21.82 rad/s

and a zero in −KP
KD

= −3.65 rad/s. Placing the pole and zero here stabilizes the system
as can be seen in Figure 4.3, which shows the the root locus plot for the PD-controller
applied to the open loop transfer function. Please note that the figure is zoomed in, so
that the fast pole of Equation (4.4) at s=-606 rad/s can not be seen.
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Figure 4.3: Root locus for controller applied to system: Gs(s)GPD(s).
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Applying the PD-controller to the system transfer function and closing the loop gives the
bode plot and step response seen in Figure 4.4.
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Figure 4.4: Left: closed loop bode plot. Right: closed loop step response.

Settling time 0.87 s

Rise time 0.2 s

Overshoot 8.2%

Table 4.2: Step response data.

Data for the step response is shown in Table 4.2. The response is slow, which the closed
loop bandwidth of 10 rad/s (seen from Figure 4.4) also tells. Through iterative tuning on
the gain parameters for KP and KD it was attempted to further increase the bandwidth,
but it was found that this causes poor controlled response with large position oscillations
in simulations when the controller was applied to the non-linear system. In the simulative
controller evaluations (shown in Chapter 5), noise is added on the measured position
signal used in the controller in order to test the controller under conditions resembling
that on a real test setup. This is important because the derivative term of the controller is
sensitive towards noise disturbances.

4.1.1 Force Switching Algorithm1

In order to be able to use the reactive controller on the system, it is necessary to implement
a force switching algorithm (FSA) which converts the continuous force reference given by
the PD-controller to a discrete row index of the control input matrix u of Equation (3.10).

1The FSA2 derived in this section is based on the work outlined in [9].
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FSA1

The most simple choice of FSA-structure would be to pick the input vector corresponding
to the force level, F (Equation (3.9)), which is closest to the force reference F ∗ [7]. This
structure is denoted FSA1:

Fhyd = F[kidx] ; kidx = arg min(|F ∗ − F[kidx]|+ W · kidx,change) (4.8)

Here, the term W is a weighting term that penalizes changing the force index. The coef-
ficient kidx,change is a binary variable, which is defined to be 1 when the new force level
index considered is different from the value currently applied to the system:

uchange =

{
1 if kidx ̸= kidx,prev

0 if kidx = kidx,prev
(4.9)

In order to avoid high frequency switching of the valves, the FSA is sampled in 10 ms
intervals. This prohibits premature switching before the chamber pressures have been
allowed due time to rise to the desired levels (see Appendix A for an analysis of the
system’s slowest pressure transient time).

FSA2

A second structure for the FSA is also implemented. This is denoted FSA2. This approach
takes into account the energy losses associated with changing between pressure levels.
This is because each time a shift in a chamber’s pressure level occurs, energy will be lost.
Figure 4.5 shows an example of the A-chamber pressure, pA, and flow, QA, during a shift
from being connected to the low pressure rail to the high pressure rail. This data is from
the simulations of the system controlled for a gait cycle, and as it can be seen, there is
a non-zero flow when the pressure is in steady state which is because of the chamber
volume changing.

Figure 4.5: Pressure and flow for the A-chamber during a shift from low to high pressure.
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Hydraulic energy is given by:

Esh =

∫ t1

t0

pAQAdt (4.10)

Where t0 and t1 denote the start and end of the switching event respectively. Assuming
a constant bulk modulus, β, and a constant chamber volume, V, the energy loss for when
a volume is connected to a pressure rail with constant pressure can be derived. Firstly,
the flow, QC, required for a pressure change in the chamber pressure, pC, from p0 to p1, is
described by [9]:

ṗC =
β

V
QC =⇒ pC =

β

V

∫
QCdt+ p0 (4.11)

As time goes towards infinity, the pressure in the chamber will go towards that of the
high pressure rail: lim

t→∞
pC = p1. This means that the fluid volume needed for the pressure

change will be given by [9]:

VC =

∫ ∞

0
QCdt =

V

β
(p1 − p0) (4.12)

The energy loss can then be defined as the difference between the energy supplied by the
source, ES, and the energy stored in the chamber, EC [9]:

Esh = ES − EC =

∫ ∞

0
p1QCdt−

∫ ∞

0
pCQCdt (4.13)

Equation (4.11) is rewritten to:

pC =
β

V

∫
QCdt+ p0 =

β

V
VQ + p0 (4.14)

VQ =

∫
QCdt =⇒ V̇Q = QC (4.15)

Where VQ is the chamber flow volume for an indefinite time range. Then, Equation (4.13)
is manipulated using Equations (4.12), (4.14) and (4.15):

Esh =

∫ ∞

0
p1QCdt−

∫ ∞

0
pCQCdt = p1VC −

∫ ∞

0

(
β

V
VQ + p0

)
QCdt

= p1VC − p0

∫ ∞

0
QCdt− β

V

∫ ∞

0
VQV̇Qdt = (p1 − p0)VC − 1

2

β

V
[
V 2

Q
]∞
0

(4.16)

= (p1 − p0)VC − 1

2

β

V
V 2

C =
V

β
(p1 − p0)

2 − 1

2

V

β
(p1 − p0)

2 =
1

2

V

β
(p1 − p0)

2

Equation (4.16) describes the losses associated with switching the pressure from one level
to another. This pressure loss is independent of valve area and dynamics, and therefore,
this is an inevitable loss that will occur when compressing fluid [9]. The total energy
loss for all four cylinder chambers when switching the force level, is then given by the
summation of the energy losses for all four chambers:

Esh(x, y) =

4∑
i=1

1

2

Vi
β
(p[uy(i)]− p[ux(i)])

2 (4.17)
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In this equation, i denotes the i’th cylinder chamber. Equation (4.17) is used to design a
more energy efficient force switching algorithm than the one shown in Equation (4.8):

Fhyd = F[kidx] ; kidx = arg min
kidx∈{kidx- , kidx,prev , kidx+}

(F ∗ − F[kidx]) (4.18)

Here, the row index of the sorted force output matrix, kidx, is chosen among three dif-
ferent candidates kidx-, kidx,prev, kidx+. These are chosen based on the energy loss equation
according to the following conditions:

kidx- = arg min
kidx∈S_

Esh(kidx,prev, kidx) ; S_ = {F ∗ − Fb < F[kidx] < F ∗}

kidx+ = arg min
kidx∈S+

Esh(kidx,prev, kidx) ; S+ = {F ∗ < F[kidx] < F ∗ + Fb}

(4.19)

Here, Fb denotes the force band value defining a region around the force reference, F ∗ ±
Fb. Within this region, the row indices are found for which the least amount of energy is
used whilst still keeping the force output within the defined reference band. kidx,prev is
the same index as at the previous time step. kidx- is the index for which the actuator force
lies within the band below the reference, and kidx+ is the index for which the actuator
force lies within the band above the reference.

The code implementation for the force switching algorithm of Equations (4.18) and (4.19)
is outlined in the flowchart of Figure 4.6 on Page 40. The FSA2 is also sampled in 10 ms
intervals, as is the case for FSA1. In the initial case where there is no previous time step,
the index is defined to be kidx = 7 which corresponds to Fhyd ≈ 0N. First, all possible
force level candidates within the band around the force reference are found and stored in
the vectors kidx-,c and kidx+,c. Then the code implements checks to see if there are a non-
zero number of possibilities. If this is the case, then the switching energy losses, Esh, are
found for each of these candidates and stored in the vectors Esh- and Esh+. If there are no
candidates, then the relevant index is defined to be that of the previous time step. Then,
another check is conducted to see if the energy loss vectors are empty. This is necessary in
the code implementation in the case when there are no candidates in the reference band,
since this will also mean that there will be no calculated values forEsh- andEsh+. If this is
the case, the indices are defined to be the previously chosen index. If Esh- or Esh+ are not
empty, then the indices corresponding to the minimum energy losses are found. Finally,
force levels resulting from these indices, along with that of the previously chosen index,
are then compared to the force reference, and then the choice giving the minimum force
error is chosen. This index is defined to be kidx,prev, preparing the algorithm for the next
iteration. The algorithm is configured to also include the force level index corresponding
to the nearest force reference, and storing it in the vector kidx-,c. This is done in order to
always take this value into account even though no candidates are within the reference
band. This means that in the case where Fb = 0, the FSA2 is equivalent to FSA1.
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Figure 4.6: Flowchart of the code implementation for FSA2.

Comparative Analysis of FSA1 and FSA2

The two FSA structures are compared against each other in order to examine their track-
ing precision and energy consumption at different values for their respective tuning con-
stants. The simulations are run with the reactive controller structure presented in Sec-
tion 4.1, and no ground reaction force is included which is in order to neglect its influ-
ence on the response. This makes the results more easily comparable. Furthermore, noise
is implemented on the measured position signal used in the controller. Further elabora-
tion on this noise is presented in the beginning of the simulation result chapter on Page
55.

Figure 4.7 shows the energy consumption when simulating the system with the FSA1
and Figure 4.8 shows results found with the FSA2. For both figures, it can on the leftmost
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plot be seen that the final energy consumption is reduced as the tuning constants are in-
creased. This is a result of the number of pressure switches occurring, which is seen in the
plots in the middle, where fewer switches means less energy consumed. On the rightmost
plots, the number of switches for each individual chamber is shown. The chambers with
the largest volumes are the A and D chambers, meaning that pressurizing these will cost
the most energy. Looking at the FSA2 specifically, it can be seen that the approach indeed
penalizes changing the pressure levels in these chambers, since the number of switches
for these chambers are lowest as the force range constant, Fb, is increased. The lowest en-
ergy consumption is achieved by the FSA2 at the highest value for Fb. Interestingly, the
FSA2 achieves a lower energy consumption with a higher number of force level switches,
which indicates that the algorithm works as intended, with the ability to choose the least
energy consuming possibility within the defined reference band.

Figure 4.7: Energy and switching with FSA1 at varying weighting constants. Left: energy consumption.
Middle: total number of force level switches. Right: individual number of cylinder chamber valve switches.

Figure 4.8: Energy and switching with FSA2 at varying weighting constants. Left: energy consumption.
Middle: total number of force level switches. Right: individual number of cylinder chamber valve switches.

The tracking precision is also analyzed by looking at the rms position and speed error
over the whole gait cycle. Figure 4.9 shows the results for FSA1 and Figure 4.10 shows
results for FSA2. It can be noted that the results obtained are the same when Fb =W = 0

N, which is expected since they should be equivalent in this case. For the FSA1 it can be
said in general, that when the weighting constant is high, the rms tracking errors increase,
while the energy consumption decreases. For the FSA2, no clear relationship can be seen
for the position rms error, since the error both increases and decreases as the weighting
constant is increased. But looking at the speed rms error, it seems like there is an increase
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in error as the weighting constant increases. Comparing the results from Figure 4.9 with
the results from Figure 4.10, the FSA2 gives the best tracking precision. Based on the
results, it can be concluded that the FSA2 performs better than the FSA1, since the energy
consumption is lower while the tracking performance is better. Therefore, the FSA2 is
chosen for future simulative analysis.

Figure 4.9: Tracking with FSA1 at varying weighting constants. Left: position rms error. Right: speed rms
error.

Figure 4.10: Tracking with FSA2 at varying weighting constants. Left: position rms error. Right: speed rms
error.

In order to choose Fb, a tradeoff has to be made, since lowering the energy consumption
is at the cost of decreasing the tracking precision. The constant is chosen to be Fb = 250

N, since both the energy consumption is low and good tracking performance is achieved.

4.2 Model Predictive Control
The model predictive controller predicts the future inputs at a series of time steps in or-
der to achieve the response minimizing a customizable cost function. This cost function
is defined to consist of terms that penalize tracking error as well as a term that penalizes
energy consumption. Figure 4.11 shows a block diagram of the MPC-structure. The ap-
proach uses measurements of the position, speed, transmission ratio and external torque,
as well as a known motion trajectory in order to find the valve command vector u. Please
note that stability of the MPC will not be proven in this report.
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Figure 4.11: Block diagram of MPC structure.

The MPC-algorithm works in three steps [23]:

1. Measure the position, ϕ2, speed, ϕ̇2, transmission ratio, dz1
dψ and external torque,

Mext, at the current time step, t(k).
2. Find the optimal inputs at each time step on the prediction horizon using the mea-

sured values from step 1 along with the optimization algorithm (presented in Sec-
tion 4.2.3) with the prediction model (presented in Equations (4.23) to (4.25)). The
optimization algorithm minimizes the cost function defined in Equation (4.27) in
order to do this.

3. Apply the input at the current time step, t(k), to the system and repeat from step 1
at the next sample instant.

Figure 4.12 gives an example of the optimized input values found with MPC-principle.
The figure shows the force index input values found with the MPC-algorithm for a pre-
diction horizon of NH=5 at t= 0.9 s and t= 0.91 s with a sample time of Ts = 10 ms.
The blue line shows the system input values found through optimisation at time step
t=k, and the red line shows how the algorithm gives a new set of input values for the
optimization performed at time step t=k+1. Since only the input at the first time step is
applied to the system, the MPC will correct the errors that occur due to deviations in the
prediction, because the feedback from the measured states are taken into account for the
new optimization at the next time step.
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Figure 4.12: Example of the optimized force level indices, kidx, found using the DE-algorithm at t = k = 0.9 s
and t = k+1 = 0.91 s, when NH=5 and Ts = 10 ms.

4.2.1 Prediction Model
In order to obtain a prediction model, the state space formulation is used:

d

dt
x = A x+ B u

y = C x

Which can be written in its discrete form as:

x(k + 1) = A x(k) + B u(k)

y(k) = C x(k)

In order to use the discrete time state space formulation, the position and speed at the
next time step (k+1) are needed to be found. First, the next time step position is found by
using the definition of speed, which is change in position over time:

ϕ̇2(k) =
ϕ2(k + 1)− ϕ2(k)

Ts
=⇒ ϕ2(k + 1) = ϕ̇2(k)Ts + ϕ2(k) (4.20)

The speed at the next time step is found by using the definition of acceleration, which is
change in speed over time:

ϕ̈2(k) =
ϕ̇2(k + 1)− ϕ̇2(k)

Ts
=⇒ ϕ̇2(k + 1) = ϕ̈2(k)Ts + ϕ̇2(k) (4.21)

Here, the acceleration at the current time step, ϕ̈2(k), is found from the linearized shank
acceleration of Equation (3.80) and the equation relating the actuator forces to the knee
torque given by Equation (3.7):

ϕ̈2(k) = Khyd
dz1
dψ 0

Fhyd(k) + KextMext(k) (4.22)
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With the actuator torque given by Mhyd = dz1
dψ 0

Fhyd(k). Instead of using the transmission

ratio linearization constant, dz1
dψ 0

, this parameter is instead chosen to be updated at each
time step based on the measurement of the knee angle. This is assessed to be vital since
the transmission ratio is very important as to which actuator force will realize the desired
knee torque. The draw-back of this approach is that the controller will demand a larger
processing time, since the prediction model will need to be re-configured at each time
step.

Using Equations (4.20) to (4.22), the system can then be represented in its discrete state
space form as [5]:[

ϕ2(k + 1)

ϕ̇2(k + 1)

]
=

[
1 Ts

0 1

][
ϕ2(k)

ϕ̇2(k)

]
+

[
0

Khyd
dz1
dψ Ts

]
Fhyd(k) + I

[
0

KextTs

]
Mext(k)

This formulation assumes that the pressure dynamics in relation to the sampling time
are fast enough that when a valve command is given, the pressure at the next time step
will be that of the pressure reservoir. This puts an upper limit on the controller update
frequency of 100 Hz (see Appendix A for elaboration on how this value is determined).

Recursive evaluation of the discrete state space formulation yields future states on a pre-
diction horizon defined by NH [5], [23]:

x(k + 1)

x(k + 2)
...

x(k + NH)

 =


A

A2

...

ANH

x(k)+


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

ANH−1B ANH−2B · · · B




Fhyd(k)

Fhyd(k + 1)
...

Fhyd(k + NH − 1)


(4.23)

+


I 0 · · · 0

A I · · · 0
...

...
. . .

...

ANH−1 ANH−2 · · · I




Mext(k)

Mext(k + 1)
...

Mext(k + NH − 1)


The future position and speed outputs are given by:

y
ϕ2,k

=


y(k + 1)

y(k + 2)
...

y(k + NH)

 =


Cϕ2 0 · · · 0

0 Cϕ2 · · · 0
...

...
. . .

...

0 0 · · · Cϕ2




x(k + 1)

x(k + 2)
...

x(k + NH)

 (4.24)

y
ϕ̇2,k

=


y(k + 1)

y(k + 2)
...

y(k + NH)

 =


C ϕ̇2 0 · · · 0

0 C ϕ̇2 · · · 0
...

...
. . .

...

0 0 · · · C ϕ̇2




x(k + 1)

x(k + 2)
...

x(k + NH)

 (4.25)

45



4. Controller Designs

Where:
Cϕ2 =

[
1 0

]
, C ϕ̇2 =

[
0 1

]
(4.26)

The prediction model shown in Equations (4.23) to (4.25), is used to get the future states
through optimization on the input torque resulting from the actuator force, Fhyd, from
which the force level index kidx can be directly derived and used as input to control the
system.

4.2.2 Cost Function
The cost function is defined to be:

S =
NH∑
n=1

(
W1(y

∗
ϕ2,k

− y
ϕ2,k

)2 + W2(y
∗
ϕ̇2,k

− y
ϕ̇2,k

)2
)
+ W3Esh(kidx, kidx,prev) (4.27)

Here, y∗
ϕ2,k

and y∗
ϕ̇2,k

are vectors that contain the reference values for the shank position
and speed at the future NH time steps. W1 and W2 are weighting constants that penalize
the tracking error for position and speed respectively at all time steps on the prediction
horizon. The errors at each time step on the prediction horizon are summed. In the last
term, W3 penalizes the energy losses associated with switching between pressure levels
in the four chambers at time step t = k, which corresponds to the time step the controller
output is applied to the valve block. The energy losses associated with pressurizing or
de-pressurizing a cylinder chamber are calculated with Equation (4.17). In the equation,
kidx denotes the new force index candidate and kidx,prev denotes the force index applied
by the controller at the previous time step.

4.2.3 Differential Evolution Algorithm
As the prediction horizon increases, the number of possible valve configurations in-
creases exponentially. Therefore an optimization algorithm is needed in order to find the
best input configuration within a time that is realizable in real time on an experimental
test setup. For this purpose, the differential evolution algorithm presented in [24] is used.
It should be noted that this genetic algorithm does not guarantee finding a global mini-
mum, but has the benefit of being able to work with discrete inputs. Therefore no FSA is
needed, since the output given by the algorithm will be the directly implementable valve
commands. A flowchart of the DE-algorithm implemented for MPC is illustrated by Fig-
ure 4.13 on Page 49. When the optimization loop is run the first time, the vector kidx,prev

(of length equal to NH) is defined to be kidx,prev = [8 · · · 8], but at all other time steps this
vector will contain the optimal input values from the previous time steps. This vector is
used to construct the population matrix, kidx,target of Equation (4.28).

Secondly, the prediction model is constructed. This makes the algorithm more computa-
tionally demanding, but the approach was chosen in order to be able to implement the
varying transmission ratio instead of a linearized value, since this value is vital for the
resulting controller output.
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The population matrix kidx,target is then defined. This is constituted of NP vectors called
the target vectors, kidx,target. The population size is chosen to be NP=4, which gives the
target matrix four rows. The four target vectors are chosen to span the range of the 16
possible force indices meaning that when the optimization algorithm is initialized, the
vectors will be:

kidx,target =


16 · · · 16

12 · · · 12

kidx,prev

4 · · · 4

 (4.28)

kidx,prev is updated at each optimization based on the assumption that the optimal input
parameters will be in the vicinity of the previous value, and thereby, the algorithm should
converge in fewer iterations. Then, a calculation is performed in order to find the popu-
lation matrix row index, kidx,min, which achieves the minimum value of the cost function.
Afterwards, the while loop is run, where the population is looped through at each itera-
tion. This is done a fixed number of times. Alternatively, it would have been a possibility
to implement some convergence condition and use that as a stopping criterion. But for
this project, due to the simplicity, a constant for how many iterations the optimization
loop is run is defined to be run_throughs = 1000. For each iteration of the population loop,
the cost function is evaluated with the corresponding target vector at the current itera-
tion in order to get the first cost function value of S1. This is followed by the calculation
of the mutation vector, kidx,mutate, which is found according to the following mutation
algorithm [5]:

kidx,mutate = kidx,target,1 + F(kidx,target,min − kidx,target,1) + F(kidx,target,2 − kidx,target,3) (4.29)

This mutation is based on randomly picking three of the target vectors other than the
one for the current population loop. These random three vectors are denoted, kidx,target,1,
kidx,target,2 and kidx,target,3. The vector kidx,target,min is the target vector for which the min-
imum cost function value is achieved, which is: kidx,target,min = kidx,target(kidx,min, :). The
mutation constant, F, is chosen to be F = 0.7, which is the same value used in [5] and [23].
The first part of the mutation equation, kidx,target,1+F(kidx,target,min−kidx,target,1), moves the
solution towards the optimal value from the previous solution, whereas the final term,
F(kidx,target,2 − kidx,target,3), prevents premature convergence [5].

Because of the discrete number of input values, the mutated vector is imposed a con-
straint, which dictates that the force indices are integer values ranging from 1 to 16. This
is done with the following Matlab-code, where the index value is truncated by rounding
off:

1 for i = 1:NH

2 k_idx_mutate(i) = round(k_idx_mutate(i));

3 if k_idx_mutate(i) < 1

4 k_idx_mutate(i) = 1;

5 end
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6 if k_idx_mutate(i)> 16

7 k_idx_mutate(i) = 16;

8 end

9 end

Here, the mutated vector is looped through, rounded off, and then subjected to the upper
and lower bound. After this, crossover from the mutation vector, kidx,mutate, to the trial
vector, kidx,trial, is performed. This is done with the following Matlab-code:

1 rand_i = randi(NH,1,1);

2 for j = 1:NH

3 rand_j = rand;

4 if rand_j ≤ CR || j == rand_i

5 k_idx_trial(i,j) = k_idx_mutate(j);

6 elseif rand_j > CR && j ̸= rand_i

7 k_idx_trial(i,j) = k_idx_target(i,j);

8 end

9 end

This code states that if the random value rand_j ∈ [0 ... 1] is below or equal to the crossover
probability constant, CR, then the trial vector entry at the current crossover loop iteration
will become the entry of the mutation vector. This will also be true if the current crossover
loop iteration counter j is equal to rand_i ∈ [1,2,...,NH]. This is to ensure that at least one
value from the mutation vector passes on to the trial vector. If rand_j > CR, the entry from
the mutation vector "dies", and the target vector entry passes on to the trial vector. The
crossover probability constant is defined to be CR = 0.9, also the same value used in [5]
and [23].

The cost function is evaluated with the trial vector, kidx,trial, in order to get the second
cost function value, S2. When the population loop is completed, the four rows of S2 are
compared to the four rows of S1 in order to see if any of the trial vectors result in a lower
value of the cost function. If S2 < S1 the trial vector is passed on to the the target vector to
be used for next population loop. Then, the row index, kidx,min, corresponding to target
vector giving the minimum value of the cost function is found, and the iteration_count is
incremented by one. This is repeated until the while loop meets its stopping criterion of
iteration_count = run_throughs.

The optimization is finalized by defining kidx,prev to be the target vector giving the min-
imum cost function value and storing this for the next time step. And finally, the valve
command vector is found from the input matrix of Equation (3.10) and the first entry of
the minimum cost target vector: u = u(kidx,target,min(1), :). This is the controller output,
which is commanded to the system’s valve block.
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Define kidx,target 

Only the first time for a simulation: 
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Figure 4.13: Flow chart of MPC implementation using the DE-algorithm.

As an example of how the DE-algorithm works, Figure 4.14 shows an optimization run
under the conditions during the gait cycle at t=0.9 s with a sample time of Ts = 10 ms and
NH=5. The left figure shows how the value of the cost function decreases as the iteration
count increases. This plot has been zoomed in on the x-axis, since the largest decrease in
cost function value happens in the first 10 iterations, but in reality 1000 iterations are run.
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The middle and the right figures show blue crosses for the predicted outputs for shank
position and shank speed found through the optimization. These are compared to the
red curves for the HuMoD reference data, and as it can be seen, there is close relation
even though the predicted values are not spot on the curves. This is due to the integrality
constraint on the input values.

Figure 4.14: Example of DE-algorithm optimizing at t=0.9 s (@ Ts = 10 ms, W1=10, W2=1, W3=0 and
NH=5). Left: the cost function value as the iteration count increases. Middle: the predicted and actual

shank position. Right: the predicted and actual shank speed.

4.2.4 MPC Tuning
For tuning the MPC, the ground reaction force is omitted in order to neglect its influence
to make the results more easily comparable.

Initially, the cost function (of Equation (4.27)) is used with W3 = 0 meaning that only the
tracking terms are included. Thereby, this cost function solely penalizes the tracking er-
rors. Figure 4.15 shows the rms errors for the shank’s position and speed during a gait
cycle at different prediction horizons. When NH > 1, the measured external torque Mext

is only included in the prediction model of Equation (4.23) for the first time step, since
the external torque at the future time steps cannot be known with the linearized model.
It can be seen from the results that increasing the prediction horizon does not cause im-
provement of the position and speed tracking. Even though the prediction horizon of
NH=3 gives the smallest position rms error, the prediction horizon of NH=2 is chosen,
since it allows for brute forcing the optimization algorithm. Brute forcing the algorithm
means that the cost function is evaluated for every possible input configuration, and
thereby the global minimum is found. An analysis comparing the processing time with
the DE-algorithm and the brute force algorithm will be presented in Section 4.2.5. From
Figure 4.15, it can also be seen that the speed rms error is almost the same for NH=2
and NH=3, suggesting that the position error occurs due to a constant offset. Using a
brute force optimization algorithm would also be possible for NH=1, but this case has the
draw-back of not being able to control the position directly, since the discrete nature of
the prediction model (Equation (4.23)) means that the predicted position can not change
before the second time step. This means that when NH=1, the MPC only tracks the speed,
which in turn can cause drifting of the position error when the system is subjected to the
influence of external disturbances.
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Figure 4.15: Tracking precision at varying prediction horizons (@: Ts = 10 ms, W1 = W2 = 1, W3 = 0). Left:
position rms error. Right: speed rms error.

Using the prediction horizon defined to be NH=2, Figure 4.16 shows an examination of
the influence of changing the valve update time along with the prediction model’s pre-
diction time. Again, no ground reaction force is implemented in these simulations. The
figure shows that increasing the sample time decreases the tracking precision severely.
It can also be seen that the energy consumption decreases as the sample time increases,
which corresponds with the fact that fewer switches of the valves occur. The sample time
of Ts = 5 ms is also tested, but in order to choose a conservative value ensuring that the
pressure levels can settle in the given time period (according to Appendix A), the sample
time of Ts = 10 ms is chosen for future analysis.

Figure 4.16: Tracking precision and energy consumption at varying the sample times (@: NH = 2, W1 = W2
= 1, W3 = 0). Left: position rms error. Middle: speed rms error. Right: energy consumption.

In Figure 4.17 the tracking precision and energy consumption is plotted as the ratio be-
tween the two weighting factors W1 and W2 is varied. The results show no major impact
on the tracking precision or energy consumption when the ratio is changed when looking
at the absolute values. It is although worth pointing out that as the weighting ratio is low,
the smallest error is achieved for the speed tracking, and oppositely, when the weighting
ratio is high, the position error is lowered. This corresponds with the definition of the
cost function in Equation (4.27), where a low ratio should penalize the speed error the
most, and a high ratio should penalize the position error the most. In conclusion, even
though no major difference can be noted on the influence of the weighting ratios, a higher
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ratio gives better position tracking along with lower energy consumption. Therefore, the
weighting parameters are chosen to be W1 = 10 and W2 = 1.

Figure 4.17: Tracking precision and energy consumption for varying weighting ratios (@: NH = 2, Ts = 10

ms, W3 = 0). Left: position rms error. Middle: speed rms error. Right: energy consumption.

Finally, the energy weighting constant, W3, is examined in order to find a value for the
final tuning parameter W3, which is the weighting constant that determines the influence
of the energy losses associated with switching the valves.

Figure 4.18: Tracking precision and energy consumption for varying weighting constants W3 (@: NH = 2,
Ts = 10 ms, W1 = 10, W2 = 1). Left: position rms error. Right: speed rms error.

Figure 4.19: Energy consumption for varying weighting constants W3 (@: NH = 2, Ts = 10 ms, W1 = 10, W2
= 1). Left: energy consumption. Middle: number of force level switches. Right: number of valve switches

for each chamber.

For varying values of W3, Figure 4.18 shows the tracking precision and Figure 4.19 shows
the energy consumption. It can be seen that the increase of W3 decreases the tracking
precision while lowering the energy consumption substantially. The value of W3 = 0.75
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is chosen, since the lowest amount of force level switches occur at this value, while still
keeping a relatively low tracking error.

4.2.5 Brute Force Optimization
As mentioned previously, the DE-algorithm is necessary if the control is to be imple-
mentable in real time when the prediction horizon is large. But since a prediction horizon
of NH = 2 is chosen, there are only 162 = 256 input combinations to the optimization
problem, meaning that using a brute-force algorithm, where every possibility is eval-
uated, might be a viable alternative. Unlike the DE-algorithm, this approach will also
guarantee finding a global minimum. In order to find if the brute force method is viable,
a comparison of the processing time between the two optimization approaches is con-
ducted with simulations where no ground reaction force is included. Firstly, the influence
of changing the run-through number of the DE-algorithm is shown in Figure 4.20, where
the rms position error is shown to the left, and the processing time of the MPC-algorithm
is shown to the right. As the number of run-throughs is increased, the tracking precision
is improved, and the processing time increases. The lowest procsssing time achieved is ≈
1 ms.

Figure 4.20: Tracking precision and processing time as the number of run-throughs for the DE-algorithm is
increased (@: NH = 2, Ts = 10 ms, W1 = 10, W2 = 1, W3 = 0.75). Left: position rms error. Right:

MPC-algorithm processing time.

Figure 4.21 shows the results for the brute force method, where the same simulation is
run eight times. To the left, it can be seen that the rms error remains the same between
simulations, as it should. To the right it can be seen that the calculated processing time
differs from run to run, suggesting some variability in the way the processing time is
calculated in Simulink. But from run 2-8, the calculated value settles at ≈ 0.35 ms. Com-
paring the results to the DE-algorithm results of Figure 4.20, the processing time with the
brute force method is in every case equal to or better than the best case scenario for the
DE-algorithm, meaning that relatively speaking, this approach is computationally viable
in the case that the DE-algorithm is. And furthermore, the brute force method also adds
the benefit of guaranteeing finding the global minimum, which is assumed to be the rea-
son that the brute force algorithm achieves a lower position rms error than the best case
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gotten with the DE-algorithm.

Figure 4.21: Multiple runs with the brute force method (@: NH = 2, Ts = 10 ms, W1 = 10, W2 = 1, W3 =
0.75).

The chosen tuning parameters for the MPC are given in Table 4.3. This concludes the
controller development, for which simulation results will be shown in the next chapter.

MPC sample time Cost function weighting values DE-parameters

Ts = 10 ms W1 = 10 W2 = 1 W3 = 0.75 NP = 4 NH = 2 F = 0.7 CR = 0.9

Table 4.3: Overview of chosen MPC parameters.
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5 Simulation Results

Chapter Summary

This chapter presents simulation results obtained with the reactive controller and the MPC pre-
sented in Chapter 4. Firstly, the results for the reactive controller structure are shown. Secondly,
the results for the MPC are shown. And finally, a comparison between the two controllers is
conducted.

For all the simulative evaluations, noise is implemented on the position and speed signals
measured and used in the controllers. The noise is not based on any empirical data, but is
assumed. The noise is chosen to have a frequency of 10 kHz and a variance of 0.0001. The
same noise configurations are used for implementation on both the position and speed
signal. An example of the noise is shown in Figure 5.1. Implementing this on the position
signal results in peak values for the variation in the measured signal of ≈ ±1.2° and
≈ ±0.02 rad/s.

Figure 5.1: Noise implemented on position and speed measurements in the simulations.

5.1 Reactive Controller Results
The system is simulated with the the reactive controller design presented in Section 4.1.
This constitutes a PD-controller with torque compensation and torque feed-forward along
with the FSA2.

In Figure 5.2, the tracking results are shown. In the top of the figure is the position (left)
and position error (right) plotted. In the bottom is the speed (left) and speed error (right)
plotted. Decent speed and position tracking is achieved, with a maximum absolute posi-
tion error of 2.6 °. Noise is only plotted on the error signals, where it is very prevalent in
the position error.
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Figure 5.2: Top: position and position error. Bottom: speed and speed error.

The input energy, Ein , is plotted to the left in Figure 5.3 and as it can be seen, the max-
imum energy consumed is when the peak knee torque is delivered during the stance
phase, which is 25 J. Energy recuperation can also be noted, as flow goes back to the
pressure source, and the energy is lowered. Negative supply energy can even be noticed
from t = 0.81 s to t = 1.1 s. In the middle of Figure 5.3, the number of force level switches,
nF,sw, is seen, and to the right of the figure, the switches in pressure level of the respective
chambers are seen. It can be seen that at all times, the two rod side chambers (B-chamber
and C-chamber) see the most switches during a gait cycle.

Figure 5.3: Left: input energy. Middle: number of force level switches. Right: individual number of
chamber pressure switches.

Corresponding to the individual chamber pressure switches seen to the right in Fig-
ure 5.3, the chamber pressures are plotted in Figure 5.4.
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Figure 5.4: Chamber pressures.

In the top of Figure 5.5, the actuator torque reference,M∗
hyd, is shown with the red dashed

line. It is clear that this signal is distorted by the signal measurement noise, which is am-
plified by the proportional and derivative gain of the PD-controller. The noisy reference
signal does not translate directly to a noisy actuator torque, since the FSA provides filter-
ing. This is seen by the blue line, which shows the actuator torque,Mhyd. It can be noticed
that a downward ramping of Mhyd happens from t = 0.78 s to 0.82 s, which corresponds
to the decrease of the transmission ratio that happens here, as it goes to its lowest value.
Spikes in Mhyd can be noticed at different times, for instance at t = 0.26 s. This is due
to the pressure dynamics, where the pressure takes longer time to settle in one chamber
than the others. Furthermore, the green dashed line shows the actuator torque needed
for an ideal gait cycle based on the HuMoD data. In the bottom of Figure 5.5, the force
level index, kidx, is shown, and this translates directly to the actuator torque.
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Figure 5.5: Top: actuator torque (blue), actuator torque reference (red) and ideal actuator torque based on
HuMoD data (green). Bottom: force level index.

Figure 5.6 shows the three signals constituting the actuator torque reference. Here it can
be seen that the torque compensation term, Mhyd,Mext, and the torque feed-forward term,
Mhyd,FF does most of the work, and the PD-controller reacts on the remaining position
error with the smallest signal. The PD-controller’s output, Mhyd,PD, is the signal which
is sensitive to noise, and there is indeed an amplification as can be seen in the top of
the figure. A moving average of this signal is plotted to make it more easily to see the
PD-controller’s contribution.
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Figure 5.6: Top: PD-controller output. Middle: External torque compensation. Bottom: Torque
feed-forward.

The ground reaction torque, MGRF, is plotted in Figure 5.7. It can be seen that the corre-
spondence between MGRF of the simulation and MGRF,HuMoD of the ideal gait cycle is not
very good. This is an indication that the knee angle is tracked poorly, since close track-
ing of the knee angle is needed in order to obtain a close relationship between MGRF and
MGRF,HuMoD. The general tendencies of the ideal gait cycle are present, but especially at
the final part of the stance phase from t=0.7s to t=0.85s, a large spike in MGRF can be
noted. This time range is where the system sees the largest position error as seen in Fig-
ure 5.2. Lastly, it can be seen that there is a close resemblance between MGRF in Figure 5.7
and Mhyd in the top part of Figure 5.5, which shows that the ground reaction torque is
the primary external influence that the actuator has to overcome.
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Figure 5.7: Ideal and simulated ground reaction torque, MGRF.

5.2 MPC Results
The MPC used to get the simulation results in this section, is presented in Section 4.2.
The tracking results of Figure 5.8 show that good tracking is achieved, with a maximum
absolute position error of 1.4 °, which is smaller than for the reactive controller.

Figure 5.8: Top: position and position error. Bottom: speed and speed error.

Figure 5.9 and Figure 5.10 shows the input energy, number of force level and pressure
level switches and chamber pressures. Clearly, there are fewer switches of the pressure in
the A-chamber than was the case for the reactive controller, but the energy consumption
seems to be very similar to the reactive controller, with a peak energy consumption of
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25 J. Although no negative supply energy is seen during the gait cycle, the final energy
consumption is still a bit lower than for the reactive controller. Interestingly, very few
switches of the A and D chamber pressures occur, which suggests that the MPC penalizes
changing these pressures in the high-volume chambers more than the reactive controller
does.

Figure 5.9: Left: input energy. Middle: number of force level switches. Right: individual number of
chamber pressure switches.

Figure 5.10: Chamber pressures.

Figure 5.11 shows the actuator torque reference, the simulated torque and the ideal Hu-
MoD torque. The noise is not at all present on the reference signal, which suggests that the
MPC is less susceptible to influence from noise than the PD-controller is. This is backed
by an analysis presented in Chapter 6 showing that the MPC is able to track the reference
trajectory better than the reactive controller when a larger noise is added on the measured
position and speed signals. A sloped actuator torque, Mhyd, can be noticed from t = 0.8
s to t = 0.84 s, which is because the torque transmission ratio changes here at this exact
instance to its lowest value.
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Figure 5.11: Top: actuator torque (blue), actuator torque reference (red) and ideal actuator torque based on
HuMoD data (green). Bottom: force level index.

Finally, the ground reaction torque is plotted in Figure 5.12 where it is clear that the
MGRF more closely resembles the ideal HuMoD curve than was the case for the reactive
controller. This is an indication that better tracking is achieved with the MPC.

Figure 5.12: Ideal and simulated ground reaction torque, MGRF.

5.3 Comparison of Controller Performances
In Table 5.1, a comparison of the controller performance of the reactive structure with
the PD-controller and the MPC is made. The position rms error, eϕ2,rms, shows that the
smallest value is achieved by the MPC. Looking at the speed rms error, eϕ2,rms, it can be
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seen that the smallest value is also achieved by the MPC. The benchmarking parameter
eMGRF,rms is introduced, and this denotes the rms error between the HuMoD ground
reaction torque, MGRF,HuMoD, and the simulated ground reaction torque, MGRF. Based
on the notion that a low value for eMGRF,rms means that good tracking is achieved, the
MPC performs better tracking than the PD-controller. Furthermore, as can be seen in
Figure 3.11, the model for the ground reaction torque, MGRF, is under ideal conditions
shown to not correspond exactly to the ground reaction torque obtained based on the
HuMoD data. The rms error over the gait cycle in the ideal case is eMGRF,rms = 9.99 N.
This value can serve as a benchmark of how good the tracking is. Comparing this to
the values obtained in Table 5.1, the MPC achieves the value closest, suggesting that the
MPC approach provides tracking that more closely mimicks the human gait cycle than
the PD-controller. The energy consumption at the final time of the gait cycle, Ein(end),
shows that the least amount of energy is consumed when the MPC is employed. The
energy consumption of the PD-controller is slightly larger than for the MPC. Lastly, it can
also be seen that almost half as many force level switches occur for the MPC than for the
PD-controller. On all parameters, the best performance is achieved by the MPC.

Parameter Unit PD MPC

eϕ2,rms [°] 1.32 0.63

eϕ̇2,rms [rad/s] 0.46 0.19

eMGRF,rms [N] 18.89 11.76

Ein(end) [J] 14.46 11.97

nF,sw(end) [-] 52 33

Table 5.1: Comparison of the controller performance with PD-control and MPC.

This concludes the simulation results. As mentioned in the scope of the project of Chap-
ter 2, the prototype of the system is at the time of writing still being built by the staff
at Linz University and Linz Center of Mechatronics and will unfortunately not be ready
in time for conducting an experimental controller evaluation of the controllers designed
in this project. Therefore this concludes the presentation of the theoretical and simula-
tive work done in this project, and the remaining chapters will focus on discussing the
methods and results as well as drawing conclusions based on the results.
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6 Discussion

6.1 Modelling Assumptions
The friction of the model is assumed to be purely viscous, and a value for the friction coef-
ficient is assumed based on the knee torque and knee angular velocity during the gait cy-
cle. This assumption most likely means that the numerical results obtained in the project
are incoherent with the physical reality. Another modelling assumption lies within the
model for the ground reaction torque, MGRF. This is not fully state dependent, since the
length of the foot and shank are not defined to be constant. In the top of Figure 6.1 it can
by the blue curve be seen howMGRF looks when using the constant length of the foot and
shank in the GRFM. It is clear that not implementing the lengths of foot and shank to be
variable according to the HuMoD data renders the model worthless. The reason for this
is, as discussed in Section 3.2.4 on Page 31, that there will be small displacements of the
reflective markers used for capturing the HuMoD data. This is seen clearly in the mid-
dle and bottom of Figure 6.1, where the length of the foot and shank are plotted based
on calculations using the measured location of the knee, ankle and toe from the HuMoD
database. Therefore, implementing the variable lengths when simulating the system is
necessary to get a working GRFM, but this also means that MGRF is not fully state depen-
dent. But under the assumption that the position reference is closely tracked, the model
should still be representative of the physical system.

Figure 6.1: Top: Ground reaction torque calculated with constant l1 and l2. Middle: Dashed line is the
constant foot length and the curve is the variable foot length. Bottom: Dashed line is the constant shank

length and the curve is the variable shank length

Even though these model assumptions are made, it is expected that the general dynamics

64



6. Discussion

of the simulated system will correspond to the physical system, but only through exper-
imental validation of the model and controllers can this be known for sure. When the
model has been validated, the controllers will most likely have to be re-tuned, since the
dynamics are expected to change significantly as a result of the friction and other possible
unmodelled dynamics. But even if this is the case, the results obtained in this project are
still valid for conducting a comparative study, since the two controllers are subjected to
the same conditions.

6.2 Implementation of Torque Compensation
For the simulations shown in Chapter 5, access to measurements of the knee torque
is assumed, even though this is not available in physical exoskeleton system currently.
The importance of the torque compensation is therefore analysed, by running new sim-
ulations, where the torque compensation is neglected. This is shown by the results in
Table 6.1, where the benchmarking results for the two controllers are shown with and
without torque compensation included. The left side table is the results from Table 5.1,
repeated here for ease of perusal. The table to the right is the results for the simulations
where no torque compensation is included.

Parameter Unit PD MPC

eϕ2,rms [°] 1.32 0.63

eϕ̇2,rms [rad/s] 0.46 0.19

eMGRF,rms [N] 18.89 11.76

Ein(end) [J] 14.46 11.97

nF,sw(end) [-] 52 33

Parameter Unit PD MPC

eϕ2,rms [°] 3.25 3.21

eϕ̇2,rms [rad/s] 0.75 0.34

eMGRF,rms [N] 34.95 35.25

Ein(end) [J] 45.34 21.94

nF,sw(end) [-] 57 39

Table 6.1: Left: results with torque compensation. Right: results without torque compensation.

Comparing the two tables, it can be seen that both the rms tracking error for position
and speed are increased. The increase in the values for eMGRF,rms is a clear indication
that the worse tracking means that the ground reaction torque does not resemble that
from the ideal gait cycle. In general, the PD-controller performs worse when looking at
the parameters in all cases, except for eMGRF,rms where it is slightly better. It can be con-
cluded, that the torque compensation is very important in order to achieve good tracking
of the motion trajectory, and the possibilities for implementing the needed measurement
equipment on the exoskeleton should be examined.

6.3 Noise Sensitivity
It is suspected that the MPC approach draws the benefit of being less sensitive towards
noise disturbances than the PD-controller. To analyse if this is the case, more noise is
implemented on the signal and new simulations are run. This is done by changing the
variance to 0.001 on the position signal noise, corresponding to peak values for the varia-
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tion in the measured signal of ≈ ±4°. Extra noise is added on the speed signal (used only
by the MPC), with a variance of 0.1 resulting in peak variations in the measured signal
of ≈ ±0.7 rad/s. Table 6.2 shows the benchmarking results with the smaller signal noise
to the left (repeated for easy comparison) and to the right is shown the results with the
larger noise implemented. It can immediately be seen that the performance of both the
PD-controller and the MPC is degraded when extra noise is added.

Parameter Unit PD MPC

eϕ2,rms [°] 1.32 0.63

eϕ̇2,rms [rad/s] 0.46 0.19

eMGRF,rms [N] 18.89 11.76

Ein(end) [J] 14.46 11.97

nF,sw(end) [-] 52 33

Parameter Unit PD MPC

eϕ2,rms [°] 2.01 1.57

eϕ̇2,rms [rad/s] 0.83 0.32

eMGRF,rms [N] 39.14 29.94

Ein(end) [J] 44.22 37.92

nF,sw(end) [-] 81 64

Table 6.2: Left: results with small noise (position: ≈ ±1.2°, speed: ≈ ±0.02 rad/s). Right: results with large
noise (position: ≈ ±4°, speed: ≈ ±0.7 rad/s).

When comparing the two results of Table 6.2, the most important indication of the quality
of the tracking is eMGRF,rms. This is increased the most for the PD-controller. The position
rms error increases a lot for both approaches, but interestingly, the rms speed error does
not change very much for the MPC. This suggests that there is a constant offset in the
position error, whilst the speed reference is tracked closely. These results indicate that the
extra noise degrades the performance of the PD-controller more than for the MPC, which
suggests that the MPC is less sensitive towards noise. It must be noted that these noise
levels are not based on any empirical data, which means that depending on the level of
noise in the laboratory test setup, the PD-controller will most likely have to be re-tuned,
more or less aggressively.

6.4 Processing Time of the MPC-algorithm
The MPC-approach implemented in [14] had a processing time of ≈ 1-2 seconds at each
time step, which was conducted with a genetic algorithm on the non-linear system of
equations. This processing time is not realizable in real-time, since the gait cycle itself
takes only 1.1 seconds. This serves as an indication of the ≈ 0.3 ms average processing
time of the MPC with the brute force algorithm presented in Figure 4.21 on Page 54 being
vastly better. It must be noted that these two processing times are based on calculations
performed by two different computers, which makes the results not directly comparable.
But still, with the processing time of the new controller being ≈ 3000 times faster, the
difference is so large that the conclusion can be drawn that the MPC designed in this
project is significantly faster. The question is now whether or not the algorithm is fast
enough for real time implementation, which depends on the type of microprocessor used
for controlling the prototype. Examination of this will be left for future work when the
protoype has been built.
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7 Conclusion

In order to fulfill the study objective of designing and benchmarking a reactive and model
predictive control strategy against each other, a model of the system was firstly imple-
mented. This consists of the hydraulic and mechanical model of the knee exoskeleton
and a mechanical model of the human human leg, which uses motion capture data from
the HuMoD database. Based on the model of the human leg supplied with the ideal Hu-
MoD data, the knee motion reference is found. This serves as the data for which the con-
trollers’ tracking performances are evaluated. A model for the knee torque induced by
the ground reaction force, is derived, and comparing this to the ground reaction torque
calculated from the HuMoD data, it is found that the model deviates with a rms error of
10 N during a gait cycle, which means that the general dynamics of the ground reaction
force are described by the model, but not to perfection.

For the reactive control scheme, a PD-controller is implemented for controlling the knee
torque/force of the hydraulic actuators based on a position error signal. This is imple-
mented along with torque compensation and torque feed-forward. Since the hydraulic
actuators are controlled by discrete ON/OFF valves, there are 16 discrete force levels
available when controlling the actuator force. In order to select the force level, two force
switching algorithms (FSA) are implemented. The FSA1 utilizes chooses the force level
closest to the force reference and a weighting term penalizing switching the force level.
This penalty term is introduced because switching the force level causes energy losses.
The FSA2 is designed to analyze the least energy consuming force level within a force
range around the reference. A numerical simulative analysis shows that the least energy
consumption and best tracking precision is achieved for the FSA2, which is why this is
chosen for the comparative study with the MPC.

The MPC scheme uses a prediction model based on a linearized model of the system to
find the optimal input values at a number of time steps on a prediction horizon in order to
minimize a cost function. The optimization algorithm chosen for implementing the MPC
is the differential evolution (DE) algorithm. Numerical analysis shows that increasing the
prediction horizon does not yield better tracking performance. Therefore, a prediction
horizon of two is chosen, since this allows using a brute force algorithm to optimize
the problem; thereby guaranteeing finding the global minimum. A test is conducted to
compare the processing times of the DE-algorithm with the brute force algorithm, and
it is found that the brute force algorithm is three times faster (at 0.3 ms), meaning that
this is a viable approach. The cost function is designed to penalize the position error,
speed error and energy consumption. This is done with three weighting constant, who
are chosen through at numerical tuning process.

The sampling time of both controllers is chosen to be 10 ms, which is done to allow time
for the valve switching, the settling of the pressure levels as well as computation time.
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Testing the reactive controller and the MPC shows that in both cases, successful tracking
of the position during the gait cycle is achieved, along with supplying of the desired knee
torque. Comparing the rms error of the position and speed over the whole gait cycle, the
MPC is seen to outperform the reactive controller by having ≈ 50 % the error. The MPC
also achieves very good resemblance with the ideal ground reaction torque; significantly
better than for the reactive controller. And lastly, the MPC consumes less energy than the
reactive controller and also utilizes significantly fewer force level switches. Furthermore,
analysis with different noise levels suggest that the MPC is less sensitive towards noise on
the measurement signals. These results are all based on the assumption of having access
to the measurement of the knee torque, which allows for torque compensation. Removing
the torque compensation has the result of degrading the performance substantially for
both the reactive controller and MPC-controller, which suggests that there is significant
benefit to be drawn from being able to compensate for the highly influential external
disturbance of the ground reaction torque.

68



8 Future Work

8.1 Experimental Implementation on Prototype
The next step for this project is to validate the designed controllers. This work includes:

• Model validation.
• Validation of friction model and parameter determination.
• Implementation of the reactive controller and MPC-algorithm on the test bench’s

microprocessor.
• Experimental controller evaluation and validation.
• Benchmarking of the experimental controller results.

Please note, that the results in this report show degraded controller performance without
the torque compensation, so if no torque transducer can be implemented on the setup,
then the control schemes are expected to perform poorly during an experimental test
with ground contact.

8.2 Further Developing the Controller Algorithm
Further development of the control algorithm can include:

• Alternatives to using the knee torque measurements if no measurement equipment
can be installed.

• User intention with the purpose of trajectory planning.
• Controller performance at increased walking paces.
• Controller performance under loaded conditions. This could be walking up stairs,

or picking up a load.
• Implementation of more pressure levels. If a third pressure level is implemented on

the pressure rail and connected to each cylinder chamber, then the force resolution
could be improved from 16 discrete levels to 81, which could possibly improve
performance.

To summarize, a lot of work is still needed to be done in order to implement the knee
exoskeleton successfully in conjunction with the experience of the human wearer.
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A Limit on controller update frequency

Because of the delay time induced by the valve dynamics as well as the pressure transient
time, there will be a limit on how fast switching of the valve commands can be done if
it is desired to let the pressure levels settle at the desired levels before switching. For the
valve dynamics the delay consists of a 2 ms dead time followed by a 1 ms ramp period.
The slowest pressure transient time is approximated in the following derivation. Firstly,
using the flow continuity equation:

ṗ0 =
β0

V0
(Q0 + AAż0) (A.1)

Where the constants in the linearization point are chosen to be:

β0(126bar) = 15340 bar (A.2)

V0(z1,max) = 4.5 · 10−6 m3 (A.3)

ż0 = 0.62
m
s

(A.4)

Q0 = Qnom

√∣∣0.63pHP − pLP

∣∣
pnom

= 4.72 · 10−5 m3

s
(A.5)

Here, the high pressure is decreased to 63% of the maximum value of 200 bar, which is to
compute a case where the gradient is not maximized due to having the largest pressure
difference over the valve. The bulk modulus is linearized at a pressure level of 126 which
is 63% of the maximum pressure of 200 bar. This is plotted in Figure A.1. The volume is
chosen to be the largest possible value, when the piston is at full stroke length. Further-
more, the linearization value for the piston speed is chosen to be the maximum speed
according to the HuMoD data during a gait cycle. Lastly, the linearized flow is chosen to
be when the pressure difference over the valve is maximal.
Using Equation (A.1), the slowest pressure gradient is then:

ṗ0 = 54773
bar

s
(A.6)

Which gives a maximum settling time of:

tmax =
pHP − pLP

ṗ0
= 3.6ms (A.7)

Adding this value to the valve delay time gives 6.6 ms. Then a buffer is added as a safety
margin for a total of 10 ms. This value will be used as the sample time for commanding
the valve block, and ensures that the pressure levels will have settled at the desired levels
within this time. This corresponds to a maximum valve update frequency of:

fmax =
1

10ms
= 100Hz (A.8)
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A. Limit on controller update frequency

Figure A.1: Bulk modulus and the chosen linearization point.
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