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Preface

The following programs was used in the writing of this report

• Overleaf - Writing.
• R - Statistical calculations and data analysis.

Noticable R packages used in this project include: tidyverse, MSGARCH, splm and plm. Other
packages has been used in lesser extent.

The bibliography on page 75 presents the literature used in the project. The sources in the
bibliography are given in the following format:

[Author][Year][Title](Institution)(URL)

Where fields in [square brackets] are mandatory, while regular parenthesis only are relevant
for certain formats (e.g. books or web pages). The bibliography entries are sorted after the
appearance in the text.

Appendices can be found following the bibliography.

Reader’s Guide:

On page vi, a table of contents is given. When viewing this report as a PDF, hyperlinks in
the table of content will allow fast navigation to the desired section.

Due to the nature of this study the project can be read in to ways, from start to finish or
topic-wise. Section 2.1, 3 and 5.1 focuses on panel data while section 2.2, 4 and 5.2 focuses
on regime switching time series modeling.
So the project can be read either from start to the end or by topic, this is illustrated by the
flowchart seen in figure 1 on the next page.
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Chapter 1

Introduction

Since the start of the Covid-19 pandemic, governments across the globe have been deploying
countermeasures to prevent exacerbation of public health and their national economies. The
disruptive nature of the pandemic has caused specialists with different areas of expertise and
nations to collaborate in spectacular ways; nations continuously broadcasting Covid-19 related
statistics worldwide, scientists developing proactive and reactive therapies to limit the spread
of the virus and severity of the illness in record time and epidemiologists developing models
to improve the understanding of the virus’s characteristics.

The World Health Organization (WHO) has throughout the pandemic encouraged nations
to take action against the spread of the virus through stringency policies; fitting degrees of
lockdown, banning social events, setting up sanitary facilities in public places, etc. In addition
to exercising these measures, nations have employed economically stimulating measures like
salary compensation, subsidizing cost of canceled events, etc. to prevent their economies from
exacerbating. KPMG [2020] and Li and Kapri [2021] investigates two key figures of Covid-19,
the spread and death rate of the virus, by analyzing the effects of these political interventions
and other relevant socioeconomic indicators in 183 different nations.
Oxford University has created the Oxford Covid-19 Government Response Tracker (OxCGRT)
database that contains 18 standardized variables that measure degrees of policy interventions,
additionally, using the 18 variables they have created various indices that each capture specific
characteristic of the policy responses, e.g. their stringency index is made by aggregating
various policies that aims to reduce spread of the virus, the economic support index is made
by aggregating policies that stimulate the economy [Oxford, 2022].

The status quo after 2 years with the pandemic is looking bright as nations are recovering
from the stagnant fiscal year of 2020. However, the pandemic has also brought daunting
socioeconomic issues; decrease in public mental health, health systems under critical pressure
or failing altogether, social and political polarization, etc. So by achieving a deeper
understanding of the relation of socioeconomic indicators and political interventions on the
Covid-19 key figures, it becomes easier to understand and prevent some of these issues.

Even for a small country, such as Denmark, within country specific variables such as
population density causes different rates of spread, figure 1.1 and 1.2 below emphasizes this,
they show the amount of people and the amount of people per million citizens admitted to
the hospital due to Covid-19 related health problems in each region of Denmark.
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Figure 1.1. Hospitalized per region.

Figure 1.2. Hospitalized per capita per region.

Comparing the two figures it is clearly seen that even when accounting for the different
population size for each region, as seen in figure 1.2, there is a clear difference between the
regions. These findings emphasizes that while the entirety of Denmark has been affected by
the Covid-19 pandemic, not all regions have been equally affected.

Denmark has several levels of divisions including the regional- and municipality-vise levels,
where each region is a collection of municipalities. Figure 1.3 below shows divisions of
Denmark.

2
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Figure 1.3. Divisions of Denmark. The black lines separate the municipalities and the colors indicate
regional divisions.The red region is Nordjylland, blue is Midtjylland, green is Sønderjylland, orange
is Sjælland and purple is Hovedstaden.

The regions’ primary function is to operate the health system in Denmark, and they also
maintain certain regional welfare tasks.
The municipalities maintain most welfare related tasks like kindergarten and primary schools,
and each municipality has their own authority and politics which is maintained by the citizens.
Every four years the municipalities have an election to either conserve or make structural
changes to the municipality, be it the welfare system or infrastructure. So each municipality
has their own set of structural qualities that might affect the spread rate of Covid-19 as well.
Figure 1.4 below shows how the pandemic has had a differing impact on each municipality.
Note that the relative growth rate is equivalent to growth per citizen, normalized with respect
to the population in each municipality.

Figure 1.4. Covid-19 mean relative growth rate across municipalities. Blue indicates a low mean
value and red indicates a high mean value.
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Figure 1.4 shows the mean relative growth rate throughout the pandemic in each municipality.
The calculation of the growth rates is explicitly presented in equation (2.1) in section 2.1. It
is clear that even when normalized with respect to population sizes, the municipalities have
differing spread rates of the virus.

As the Danish government executes strict policies to prevent the spread of the virus it
also tries to alleviate the uncertainty of the economical health by applying economically
stimulating policies. With all the uncertainty following the pandemic and with these political
interventions, some level of imposed uncertainty on the financial markets is expected.

A casual inspection of the log return of the OMX C25 index, or simply OMXC25, below shows
that the financial market sees an increase in volatility during the pandemic.

Figure 1.5. First plot: Logarithmic return of OMX C25, the red dashed line illustrates the first case
of Covid-19 in Denmark at the 27th February of 2020. The log return standard deviation is 0.008
before and 0.013 after the first case.
Second plot: Root mean relative growth rate of Covid-19 across Danish Municipalities.

1.1 Literature Review

As mentioned, Li and Kapri [2021] investigated the spread and death rate by analyzing the
effects of political intervention and relevant socioeconomic indicators on these key figures.
They use a generalized regression modeling framework on weekly observations, they use
these weekly observations to smooth out any errors that might be present in daily data.
Additionally, they hypothesize that countries with a big service industry and those with
energetic international trade have worse Covid-19 key figures than countries that do not
exhibit these features.

Oshinubi et al. [2022] also worked on modeling socioeconomic and epidemiological data,
using machine learning and deep learning. The paper put a great deal of thought into
establishing a mathematical relationship between the Theil and Gini indices and how they
effect theses key figures. Their methodology included use of neural network, regression
analysis, multivariate analysis, prediction and clustering. The methods were used on a
number of different socioeconomic and epidemiological variables, comparing the relationship
between these variables for developing and developed countries. Their results showed no clear
significance for the indices during the first wave of Covid-19 outbreaks, however, developed
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1.1. Literature Review Aalborg University

countries reacted much better on the second Covid-19 outbreak than developing countries,
mainly due to fast deployment of isolation and vaccination.

Bennedsen et al. [2020] comments on a number of challenges the Danish labor force have been
facing during the Covid-19 pandemic. The paper analyzes the effects, implemented by the
Danish government, to minimize unemployment by looking at the effect of some economically
stimulating policies, like expense aid and tax aid. The paper found that while expense aid
and tax aid have very little effect on preventing an increase in unemployment, work aid on
the other hand, which is a government subsidy designated for companies paying salaries, was
a strong incentive for companies to keep their employees on the payroll. This naturally is
a win-win for the companies and the employees as it relieves the economical stress on the
company and it promotes well-being of the employees as it financially covers them.

McCracken et al. [2020] researches the impacts of Covid-19 on mental and physical health
during the corona pandemic in Sweden. With an online national cross-sectional survey
(n = 1212; mean age at 36.1 years and 73% are females), the results showed that Sweden
had significant depression, anxiety and insomnia levels at 30%, 24.2% and 38%, respectively.
They compared the impacts of Covid-19 on mental health in Sweden with China and Italy,
and it seems to at the same level as these two countries. The pandemic appears to be affecting
the mental health of those who are already affected by mental health issues. The results of
this may provide more support for these people in vulnerable groups, and it may also help
in developing new psychological therapies that are suitable for the ongoing corona pandemic
and probably for similar pandemics in the future.

Brink [2021] investigates the mental health of the youth in Denmark. They hypothesized
that the lockdown has had a significant effect on the youth’s mental well-being, they sent
out a questionnaire which was answered by 400 students at Niels Brocks Youth Education,
among the students 6% responded that they have suffered mentally to the point that they feel
that “life is not worth living”, additionally, 28% responded that they are not mentally well.
They conject that this generation of youths will have a scarred mental health going into the
future, they note that they have effectively been in solitary confinement and they are unable
to emotionally manage this crisis due to not being fully developed.

Occhipinti et al. [2021] suggests different political approaches as a response to the exacerbation
of public mental health during the Covid-19 pandemic. They note that an all-encompassing
and long-term solution is infeasible and too expensive in most contexts, they note that
previously reactive and proactive policy responses to public mental health issues has had
next to no effects. They use Australia’s decades-long struggle with public mental health
issues and America’s ongoing opioid crisis as examples of failed policy responses.
They criticize the fact that the predominant approach to research on mental health issues
has been using retrospective data to investigate independent risk factors such as drug abuse,
childhood abuse, etc. They note that these studies fail to account for the interactive effects
of the risk factors, so projections on mental health using these models are generally incorrect.
Additionally, they comment that contemporary and future studies need to recognize feedback
loops, threshold effects, non-independence and non-linearity between relevant risk factors in
mental health research.
Also, the Brain and Mind Center at the University of Sydney leveraged years of research
to develop models to inform policy and planning for a proper response to the effects of the

5
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Covid-19 pandemic on public mental health. Their models project prevalence of psychological
distress, rates of help-seeking, wait times, self-harm hospitalizations and suicide deaths, due
to the pandemic. To improve on some of these figures in the short term (2021-2025) their
models suggest investments in childcare, employment programs and job creations, active
follow-up after suicide attempts and improvement of digitally coordinated specialist mental-
health services.

Petersen et al. [2021] described the impact of Covid-19 on the physical and mental health of
the Danish population during the spring of 2020, that is the first wave of the pandemic and
lockdown. This article compares the Wilcoxon Signed Rank test with self-reported illness
worry (Whiteley-6-R), emotional distress (SCL-90), and physical symptom burden (SLC-90)
measures based on a sample of the Danish adult population (n = 2190). However, the
study found that concerns about illness, emotional distress and burden of physical symptoms
increased only marginally during Covid-19 pandemic compared to pre-pandemic times. The
population of Denmark trust the Danish government and feel that the government managed
the pandemic well.
The paper concludes that the first wave of the Covid-19 pandemic did not seriously affect
the physical and mental health of the adult population in Denmark. Future research should
focus on the impact of a second wave of the pandemic and related restrictions that the Danish
government can take.

Josephson et al. [2021] documents the socioeconomic impact of the pandemic on families,
adults, and children in low-income countries. Research is based on longitudinal household
survey data from Ethiopia, Malawi, Nigeria, and Uganda from face-to-face household
interviews prior to Covid-19 and telephone interviews conducted during the pandemic. It
shows that around 256 million people, which means 77% of the population live in households
that have lost their job during the pandemic. Access to food supplies, medicines and other
basic necessities has exacerbated the Covid-19 pandemic. They also found that the student-
teacher contact has dropped from 96% before Covid-19 to just 17%. These findings can help
governments and global organizations to study and to alleviate the impacts of the Covid-19
pandemic in low-income countries.

Addison et al. [2020] discusses macroeconomic dimensions with a focus on developing
countries, starting from China and then expanding to the whole world, summarizing
knowledge of the global economic consequences of the Covid-19 pandemic and the difference
between the financial crisis of 2007-2009 and the Covid-19 crisis. It then discusses the world’s
commodity markets, including oil, metals and food trade as well as a study in health care
and the role of economic and social support in determining the macroeconomic outcomes
of the pandemic. They also investigated how the low-income countries and middle-income
countries are handling the crisis, and concluded that it depends on how much fiscal space for
maneuvering is available.

Chen et al. [2020] uses cross country panel data to discuss the impact of various non-
pharmacological interventions, which were used by the government to inhibit(reduce) the
spread of the Covid-19 pandemic. It states that the lockdown leads to a reduced spread
rate, and bans on gatherings appear to be more efficient than closing companies and
schools down, but both types of lockdowns have caused large declines in the gross domestic
product. Moreover, it is shown that stay-at-home orders are inefficient in countries with
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larger households and in developing countries. Motivation from the governments played an
important role, as it can make their populations more confident. The main objective of the
article was to study the relationship between COVID-19 control measures and disease spread,
and in addition to this, it also examines the pandemic and economic activity during it.

1.2 Research Summary

It is clear that the pandemic has had severe effects on several aspects of society, Occhipinti
et al. [2021] clearly highlights the scope of the mental health issues nations need to address.
Notably, it is going to be expensive to recuperate public mental health to a pre-pandemic
level. Chen et al. [2020] notes that even though certain stringency policies reduce the spread
rate, it also reduces the gross domestic product.

We are primarily inspired by Chen et al. [2020] as they develop models to understand how
socioeconomic conditions and policy interventions influence the spread rate of the virus while
monitoring the health of the economy. With that we present our questions of interest.

1.2.1 Research Questions

• Which conditions influence the Covid-19 spread rate across Denmark?

– Which effects do socioeconomic conditions have?
– Which effects do political responses have?

• Is there an increase in volatility in the Danish economy?

– If so, is such an increase similar across Danish regions?

Chapter 2 will include a section that presents some of our thoughts on how to model the
spread rate across municipalities, additionally, it will include a section on how the financial
markets have been affected by the pandemic.

Chapter 3 presents panel data modeling which then serves as the groundwork for analyzing
the socioeconomic factors’ effect on the spread rate, this methodology was inspired by Li and
Kapri [2021].

As for assessing the pandemic’s influence on the Danish economy, we will use OMX C25 and
regional stock indices as indicators for the Danish economy, we will then analyze them using a
regime switching time series framework to model the volatility dynamics. Chapter 4 presents
the regime switching modeling framework we will use to investigate the volatilities.

Following chapters 3 and 4, we implement and present our results in chapter 5. Finally, we
conclude on these results in chapter 6.

7



Chapter 2

Preliminary Study

2.1 Municipality Data

This section will present the groundwork for a study of the dynamics of the Covid-19 spread
rate, that is commenting on our strategy and the collected data.

2.1.1 Strategy

Our focus will be to determine the effects certain government responses and socioeconomic
conditions have on the spread rate of the virus. The modeling framework will be discussed
later in subsection 2.1.3.
Studying these effects across seemingly socioeconomically homogeneous municipalities will
give insight into how their differences affect the spread of the virus.

The Covid-19 virus is an airborne transmitted disease; having frequent physical contact with
or simply being in the vicinity of others increases the chance of contracting the virus. So it is
natural to consider the population density as a relevant variable. [Høiby, 2020]
It is common for children to have physical and social interactions through school, kindergarten
and free time activities thus an indicator capturing any of these effects might have an impact
on the spread of the virus [Øvlisen, Rysgård, Bregendahl and Pedersen, 2021].

Vaccinations were not available until late 2020 and it was mostly only given to elderly and
particularly exposed individuals at that time. The vaccines reduce symptoms and lessen
the risk of getting infected by the virus. Having a large unvaccinated population will likely
increase the spread rate [Kristensen, 2021]. Choosing a suitable indicator that captures the
effects of the vaccine will improve modeling of the virus’ spread rate.

The government’s stringency policies might have effects on the spread rate of the virus, but
the policies themselves will not directly affect the spread rate, however, in case the government
decides to send children home from institutions1 then the spread rate will decrease more in
municipalities that have a large percentage of children in institutions. So it is important to
correctly specify an indicator that captures this interaction [Li and Kapri, 2021].

Another important effect to consider is that some municipalities are neighboring one another,
so in some cases, an individual living in one municipality might work in another, thus there
are spatial effects to consider. So incorporating this spatial correlation into the modeling
scheme can potentially improve the results.

1Daycare, kindergarten and primary school.

8



2.1. Municipality Data Aalborg University

2.1.2 The Data

The data collection has been done by using several databases; Johns Hopkins Coronavirus
Resource Center, Our World in Data, European Centre for Disease Prevention and Control,
OxCGRT, and Danmarks Statistik.

Below is a list of all the collected data that we deem relevant to the study of the research
questions.

• New cases
• Cumulative cases
• Stringency Index
• Gini index
• Percentage of vaccinated citizens (Fully vaccinated)
• Amount of jobs
• Percentage of jobs being service oriented
• Percentage of population that are children (age 2 to 15)
• Square meters per citizen in urbanized areas
• Indicator of spatial association between municipalities
• Populations

Some of the variables in the list can be defended due the discussion in the beginning of this
section, however, some of the collected data needs some explanation.

The inclusion of percentage of jobs being service oriented is due to service jobs often being
associated with human contact and social interactions which are prerequisite for spreading
the virus. Additionally, we suspect that there is an interaction between stringency index and
the percentage of jobs being service oriented as lockdowns of areas with high percentage of
service jobs will likely have a bigger decrease in the prerequisites for virus spread.

Indicators of spatial association was collected for municipalities it was done by noting which
municipalities that are neighboring one another and collecting it in a matrix.

The Gini index is included as a control variable due to Oshinubi et al. [2022], they found that
the the Gini index captured some of the effects imposed by certain socioeconomic factors.
However, it did not show any significance in the first wave, and it was used in a study
between high and low income countries, it is included nonetheless.

We choose to model the relative change of Covid-19 in each municipality, i.e. modeling the
spread rate as

Relative Growth Ratei,t = Case Per Capitai,t =
Casei,t − Casei,t−1

Populationi

, (2.1)

where Populationi is the population of the ith municipality, Casei,t are cumulative cases of
registered infections by Covid-19 in the ith municipality at time t. For brevity, the index, i,
will now be referred to as the ith individual.

The relative growth rate allows us to model the intensity of the spread rate at a given time
during the pandemic, the relativity is with respect to population, i.e. we do not need to
include the population as an explanatory value to account for the size of populations for each
individual which is one less parameter to estimate.

9
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Summarizing statistics can be seen in table 2.1 below.

N Mean St.Dev. Min Max

Service.concentration.pct 67326 0.765 0.083 0.586 0.955
Stringency.index 67326 51.146 13.698 24.070 72.220
New.cases 67326 20.756 103.730 0.000 4777.000
Cumulative.cases 67326 2228.956 6527.096 0.000 224311.000
Fully.vaccinated 67326 14051.938 33721.336 0.000 493874.000
Gini.index 67326 27.011 3.612 22.680 46.160
Population 67326 59408.112 73631.018 1775.000 633724.000
SqrMeter.per.citizen.urban.areas 67326 684.514 371.056 48.100 2159.300
Children.institutionalized.pct 67326 0.164 0.020 0.108 0.216
Vaccinated.pct 67326 0.242 0.320 0.000 0.876
Relative.growth.rate 67326 0.000 0.001 0.000 0.011
Stringency.index.I.Service.concentration.pct 67326 0.000 1.206 -4.600 4.888
Stringency.index.I.Children.institutionalized.pct 67326 0.000 0.296 -1.442 1.343
Jobs 67326 32451.459 50916.172 854.000 450890.000

Table 2.1. Summarizing statistics for Danish municipality data.

The dates range from the 8th of March 2020 to the 23rd of January 2022, this means that
there are 687 days of observations for each of the 98 Danish municipalities.

2.1.3 Panel Data Modeling

Panel data modeling is a natural way to model the data we have presented so far, we will
introduce the theory in formal detail in chapter 3, however, it is fitting to discuss the modeling
scheme’s potential and limitations at this time.

For casual practitioners, it might be tempting to pool all empirically relevant variables and
simply run ordinary least squares (OLS), however, the omission of other relevant variables
will cause biased estimation which, if the bias is large enough, will wrongly infer causalities
hence the model is invalidated.
One might be able to rely on the consistency of estimators, i.e. the bias gets smaller the more
data is used in the estimation. However, it is in most practical cases impossible to say how
much less the bias becomes when increasing the number of observations, so this method is
not always reliable.
Instead, a practitioner could include more variables that they might have omitted, however,
increasing the number of variables also requires more observation to allow for more degrees
of freedom to reduce parameter inflation. In practice, it might be infeasible to include more
variables as they might not be observable or can be expensive to collect.

So the pooling modeling scheme might not be the correct way to model these dynamics, so
extensions to the pooling scheme can be made to include individual and time effects.
The individual effects try to capture the effects that are constant over time for a specific
individual, so any omitted constant at the individual level is included in the individual effects.
An example of these effects could be geographical area.
The time effects capture dynamics that are constant over individuals but change over time,
examples of these effects could be date effects like Christmas or seasonal effects that are
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2.1. Municipality Data Aalborg University

relatively homogeneous across individuals.

So to summarize, the different models for panel data allow for a flexible modeling scheme,
especially the omission of certain types of variables can be defended. There are certain
variables that cannot be captured by these time or individual effects and omission of these
causes omission bias, however, the inclusion of more variables as already mentioned will cause
inflation of parameter variance, this is the infamous bias-variance trade-off.

Multicollinearity

Parameter variance inflation can be caused by removing degrees of freedom by including
additional variables but it can also be caused by a high correlation between variables, often
referred to as multicollinearity.

As we have a large data set, multicollinearity is not our biggest concern. However, an ex-ante
way to check for multicollinearity is to check for high correlation between variables, an ex-post
way is to check the variance inflation factor, VIF, after model estimation . In figure 2.1 below
are the correlations between the discussed variables.

Figure 2.1. Correlation between variables.

The figure shows that the percentage of fully vaccinated and stringency index are highly
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negatively correlated, empirically this might be due to the lowering of the stringency policies
when people are vaccinated.
Another thing to notice is that the percentage of vaccinated is positively correlated with the
relative growth rate, which might be due to the same phenomena, namely that as more people
are vaccinated, the vaccination percentage predictor spuriously captures the effect of relieving
stringency policies from the higher vaccination percentage which in turn increases the relative
growth rate.

As already discussed, the policies themselves will not have a direct impact on the spread of
the virus, it is through the interaction with other variables we expect it to affect the spread
rate. With that said, the stringency index is composed of a number of different metrics that
governments are able to adjust and tweak. Given the number of metrics, a change in the
stringency index does not mean a change to all metrics, nevertheless, some overlaps can oc-
cur through the stringency index when the government implements changes. For example,
included in service jobs are pedagogues and teachers so in case the government decides to
close down schools the pedagogues and teachers will isolate, so the two interaction terms will
might be correlated conditioned on school closings.

12
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2.2 Assessment of the Danish Economy

Several Danish indices are available, such as the OMX C25, Copenhagen large cap, mid cap
and small cap price index, they are all noted on the NASDAQ OMX COPENHAGEN stock
exchange.

The OMX C25 index, previously known as the OMX C20 index, consists of the 25, previously
20, most traded Danish shares on the Copenhagen Stock Exchange. The OMX C25 index
can be used as an indicator of the financial health of the Danish economy, hence it might
provide insightful information about the financial effects the Covid-19 pandemic has had on
the Danish economy.
Comincioli [1996] investigates the causal relationship between the economy and the stock
market, although, they use the US economy and the S&P500 index in their study. They
use a Granger causality test, which is an F-test determining whether a time series is useful
in forecasting another, their findings suggest that the S&P500 is useful in forecasting the
economy but not the other way around.

The OMX C25 index is a capitalization-weighted index created using the daily time series for
each stock and their market value for said specific index. This means that the price of the
OMX C25 index is calculated by

C25t =

25∑
i=1

svi,t
mvi,t∑25
i=1mvi,t

. (2.2)

Here svi,t denotes the stock i’s value at time t and mvi,t denotes the i’th company’s market
value at time t, which is given by

mvi,t = Number of Stocks · svi,t

As an addition to the OMX C25 index, we have made regional indices, this is to assess the
health of the regional economies.
First, the regional placement of the headquarters of each exchange listed company was located
and then a regional index was calculated using the same procedure as shown in equation (2.2).

Table 2.2 below shows the number of companies in each of the regional indices.

Nordjylland Midtjylland Syddanmark Hovedstaden Sjælland
8 18 15 84 5

Table 2.2. Number of companies for each regional index.

From table 2.2 it is seen that a vast number of the companies are placed in the Hovedstaden
region while the remaining regions have significantly fewer companies. Having a low amount of
companies in an index can potentially mean that the index is a bad indicator of the economy,
however, due to the lack of a better indicator we continue the research.

Summarizing statistics for these indices are seen in table 2.3 below. For notational brevity we
now abbreviate Nordjylland, Midtjylland, Syddanmark, Hovedstaden and Sjælland, by NJ,
MJ, SD, HS and RS, respectively.
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Obs Price in DKK

Symbol Observations First.obs Last.obs Mean Std.dev Min Max

OMXC25 1323 2016-12-20 2022-04-06 1337.5 303.3 980.8 2020.7
NJ 1573 2016-01-04 2022-04-13 139.0 10.4 108.4 173.2
MJ 1573 2016-01-04 2022-04-13 135.5 49.1 79.9 270.1
SD 1573 2016-01-04 2022-04-13 31.5 11.3 15.2 59.6
HS 1573 2016-01-04 2022-04-13 582.6 139.4 363.5 962.4
RS 1573 2016-01-04 2022-04-13 451.3 77.3 348.0 692.5

Table 2.3. Summarizing statistics for the regional indices.

Table 2.3 shows the summary statistics of each of our regional indices and the OMX C25
index. Given that the OMX C25 index consists of the 25 most traded stocks on the Danish
market, it is not surprising that the mean, minimum and maximum values are noticeably
larger when compared to the regional indices.

For a complete table of the summarizing statistics for each index and each individual stock
see table A.9 in appendix A. The resulting regional indices will act as indicators of how the
financial markets are affected by the pandemic regionally.

2.2.1 Conditional Mean Model

The casual inspection of the log returns of OMX C25 seen in figure 1.5, suggested that
there is some evidence for an increase in volatility during the pandemic. For a more formal
investigation of the indices, modeling the distribution of the log returns is required.

The strategy is to model the conditional distribution of

yt | It−1,

where It−1 is the σ-algebra generated by the process y0, . . . , yt−1 and yt is the log returns.
It is common to model the conditional mean and conditional variance separately to reduce
computation time, we will be using an ARIMA framework for the conditional mean and a
regime switching GARCH framework for the conditional variance.

The rest of this chapter will focus on modeling the conditional mean and checking the
residuals for signs of heteroscedasticity. We now assume the reader is familiar with Box-
Jenkins methodology including estimating ARIMA models, detecting (weak) stationarity and
its conditions, detecting seasonality and diagnostic checks for the residuals [NCSS, 2022].

The time series in the ARMA model is required to be stationary, testing for this we use the
ADF-test, which tests for non-stationarity through a unit root test, that is the ADF-test fits
the auxiliary model

∆yt = α+ βt+ γyt−1 +

ρ∑
L=1

θL∆yt−L + εt,

where yt are the log returns, and then tests whether γ is different from 1, i.e. there is no
unit root hence stationarity. The ρ denotes the number of lags, α denotes a constant drift
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component and β denotes a time trend. The test is conducted for the presence of no drift and
no trend, drift and no trend and finally for drift and trend. The result for the ADF test on
the OMX C25 index is seen in table 2.4 below.

Table 2.4. Augmented Dickey-Füller Test OMX C25.

No drift & no trend Drift & no trend Drift & trend

lag value p-value value p-value value p-value

0 -36.14297 0.01 -36.18949 0.01 -36.17678 0.01
1 -24.15318 0.01 -24.20153 0.01 -24.19349 0.01
2 -20.90442 0.01 -20.96269 0.01 -20.95616 0.01
3 -18.08967 0.01 -18.15341 0.01 -18.14836 0.01
4 -15.95231 0.01 -16.02040 0.01 -16.01631 0.01
5 -15.29359 0.01 -15.37072 0.01 -15.36738 0.01
6 -13.43026 0.01 -13.50845 0.01 -13.50581 0.01
7 -12.90548 0.01 -12.98514 0.01 -12.98442 0.01
8 -11.84636 0.01 -11.92906 0.01 -11.92859 0.01
9 -10.98900 0.01 -11.07528 0.01 -11.07466 0.01

10 -10.32572 0.01 -10.41021 0.01 -10.41099 0.01
11 -9.95050 0.01 -10.03764 0.01 -10.03912 0.01
12 -9.86402 0.01 -9.96075 0.01 -9.96169 0.01
13 -9.48218 0.01 -9.58364 0.01 -9.58431 0.01
14 -8.78711 0.01 -8.88401 0.01 -8.88598 0.01
15 -9.07921 0.01 -9.18977 0.01 -9.19030 0.01
16 -8.93159 0.01 -9.04145 0.01 -9.04405 0.01
17 -8.66337 0.01 -8.77712 0.01 -8.77975 0.01
18 -8.24805 0.01 -8.36545 0.01 -8.36746 0.01
19 -7.99499 0.01 -8.11587 0.01 -8.11774 0.01
20 -8.12799 0.01 -8.25523 0.01 -8.25756 0.01
21 -8.34578 0.01 -8.48420 0.01 -8.48620 0.01
22 -8.35520 0.01 -8.50501 0.01 -8.50600 0.01
23 -8.44367 0.01 -8.60399 0.01 -8.60497 0.01
24 -8.14122 0.01 -8.29644 0.01 -8.29978 0.01
25 -8.04207 0.01 -8.20153 0.01 -8.20581 0.01
26 -7.53193 0.01 -7.68354 0.01 -7.68915 0.01
27 -7.47807 0.01 -7.63777 0.01 -7.64299 0.01
28 -7.55473 0.01 -7.72277 0.01 -7.72806 0.01
29 -7.34774 0.01 -7.51172 0.01 -7.51926 0.01
30 -7.26497 0.01 -7.43727 0.01 -7.44408 0.01
31 -7.06136 0.01 -7.23393 0.01 -7.24156 0.01

The table shows that the OMX C25 log return series are stationary testing for up to 31 lags.
The same ADF tests are conducted for the remaining indices, however, given the size of table
2.4, we summarize the results in table 2.5 below.
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Symbol ndnt dnt dt

OMXC25 0 0 0
NJ 0 0 0
MJ 0 0 0
SD 0 0 0
HS 0 0 0
RS 0 0 0

Table 2.5. The three ADF versions are abbreviated by ndnt, dnt and dt, that is they abbreviate
no drift and no trend, drift and no trend and drift and trend, respectively. These variables count the
number of p-values exceeding the significance level of 0.05, hence counting which indices where the
test results fail to reject the null hypothesis of the presence of a unit root.

The next step is fitting a conditional mean model, and since the ADF tests showed that we
had no unit roots in any of the indices hence they are not integrated processes, the ARMA
model is adequate. An ARMA model is given on the following form

Yt = c+ εt +

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i.

Here c denotes a constant while p and q are called the autoregressive and the moving average
orders, respectively. Furthermore, φi and θi denotes parameters where φp ̸= 0 and θq ̸= 0,
lastly εt is the error term of the ARMA model which we assume is normally distributed
hence allowing us to use maximum likelihood estimation [H.Shumway and S.Stoffer, 2017].
The orders of the ARMA models have been chosen using Akaike’s information criterion, AIC.
Table 2.6 below shows the chosen ARMA order for the different indices.

Symbol p q

5 OMXC25 0 0
6 NJ 3 0
7 MJ 2 2
8 SD 0 0
9 HS 0 0
10 RS 0 3

Table 2.6. Orders of ARMA models for the different indices.

Filtering the time series with the ARMA-filters we expect the errors to be uncorrelated across
time, we examine this by observing the ACF/PACF plot. Additionally, the ACF plot can
be used to check if there is autocorrelation in the squared residuals, which is a sign of
heteroscedasticity hence justifying the modeling of the conditional variance. Figure 2.2 below
shows the ACF of the residuals and the squared residuals of the mean filtered log return series
of the OMX C25 index.
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Figure 2.2. ACF and PACF plots of the residuals and squared residuals of the ARMA filtered
OMXC25 log returns.

Looking at the ACF and PACF plots in figure 2.2, it is clear that there is no autocorrelation
for the residuals. However, looking at the ACF and PACF for the squared residuals, it is clear
that there are signs of autocorrelation, which advocates further examination of conditional
variance. Chapter 4 presents the theory of regime switching GARCH models, and section 5.2
continues the study of the conditional distributions of the log returns.
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Chapter 3

Panel Data Modeling

This chapter includes an introduction to panel data models; the one-way error component
regression model the two-way error component regression model and the spatial error
component regression model.

3.1 One-Way Error Component Regression Model

Equation (3.1) below illustrates a linear regression model using panel data.

yi,t = α+X
′
i,tβ + ui,t i = 1, . . . , N ; t = 1, . . . , T (3.1)

here yi,t denotes the dependent variable, the relative growth rate in our case, for indices i

denoting individual and t denoting time. α is a constant, β is a K × 1 parameter vector, and
X

′
i,t is the i, t-th observation of K explanatory variables.

Remark 1. For OLS applied on equation (3.1) to be the best linear unbiased estimator, BLUE,
we need to make assumptions such that the Gauss-Markov theorem applies [Pollock, 2000].
To be explicit, for it to be BLUE we assume that the regression is linear in parameters, the
model is correctly specified, the errors are randomly sampled, we need exogeneity or at least
predeterminedness of the errors with respect to the regressors, no multicollinearity between
regressors and spherical errors, i.e. homoscedasticity and no autocorrelation.

Assumption 1. In general, we assume that the models we present are correctly specified, the
errors are randomly sampled, there is no multicollinearity and the regressions are linear in
parameters.

Assumption 1 will always be in effect throughout this chapter, the remaining assumptions
to obtain BLUE estimators will be discussed in more detail for each model as some of these
models impose specific non-spherical error components.

Remark 2. The regression in (3.1) is often referred to as a pooled regression and the error
term ui,t is typically assumed i.i.d. distributed across i and t, for the reasons outlined in the
previous remark.

Now by assuming that the error can be written as

ui,t = µi + νi,t (3.2)

where µi is an unobserved individual effect and νi,t is the idiosyncratic error, the error, ui,t,
may exhibit heteroscedasticity but it must have a zero conditional mean, i.e. E[ui,t | Xi,t] = 0

which is also often referred to as a predeterminedness assumption.
Additionally, µi and νi,t are assumed independent for all values of i and t. Equation (3.2) is
referred to as the one-way error component and together with (3.1), they are referred to as
the one-way error component regression model.

Assumption 2. (i) µi is independent across i and (ii) orthogonal to Xi,t [Davidson and
MacKinnon, 2003].
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This is an assumption of µi being independent ∀i as well as an assumption of
predeterminedness between µi and the explanatory variables, X

′
i,t, i.e. E[µi | Xi,t] = 0 in

this case.

Assumption 3. (i) νi,t is independent across i (ii) and t, (iii) it is identically distributed and
is (iv) orthogonal to Xi,t.

This assumption is a predeterminedness assumption between the disturbance term νi,t and
Xi,t as well as an assumption of homoscedasticity and no autocorrelation across time and
cross-sections, note that it implies that E[ν2i,t | Xi,t] = E[ν2i,t] =: σ2

ν , ∀i, t.

Equation (3.1) and (3.2) can be written in vector form by

y = αιNT +Xβ + u = Zδ + u (3.3)

u = Zµµ+ ν (3.4)

where y is NT × 1, X is NT × K, Z = [ιNT , X], δ = (α
′
, β

′
)
′ and ιNT is a vector of ones

of dimension NT . The error component equation has the term Zµ := IN ⊗ ιT where IN is
an identity matrix of dimension N ×N and again ιT is a vector of ones of dimension T and
µ = (µ1, . . . , µN )

′ .

3.1.1 Fixed Effects Model

Assumption 4. Under the assumption E[µi | Xi,t] ̸= 0, model (3.3) is a individual fixed-effects
model and µi can be interpreted as a within-group mean, i.e. a deterministic term or fixed
effect that is inherent to individual i.

Note that the independence and orthogonality part of assumption 2 is implied by assumption
4 since the individual effect is now treated as a constant.

Remark 3. There is also the possibility of a different type of error component, that is
ui,t = λt + νi,t. Under the assumption of E[λt | Xi,t] ̸= 0 we have time fixed effects, i.e.
λt can be interpreted as a mean that is the same across all individuals but different across
time.
In fact, it is important to realize that even though we are focusing our attention on the
individual effects, all the results that are based on the individual effects can be translated to
a time effects perspective by carefully swapping the indices and relevant variables.

It is also possible to combine the two to get a two-way error component regression model, we
explore this further in section 3.2.

Under assumption 4 it makes sense to rewrite (3.3) and (3.4) such that

y = αιNT +Xβ + Zµµ+ ν = Zδ + Zµµ+ ν. (3.5)

Remark 4. It is possible to impose the restriction of
∑N

i=1 µi = 0 to avoid perfect
multicollinearity, also known as the dummy variable trap. In practice, the imposition allows
estimation of µi and α separately and not simply (µi + α).

19



Group 1.204c 3. Panel Data Modeling

To obtain OLS estimates of this regression start by defining the partitioning matrix Z∗ :=

[Z,Zµ] and γ := (δ
′
, µ

′
)
′ , such that the OLS estimate is given by

γ̂OLS = (Z∗′Z∗)−1Z∗′y.

OLS is perfectly fine in this case, it will yield unbiased and consistent estimates under the
orthogonality assumption in assumption 3, however, the inversion of Z∗′Z∗ with dimension
(N +K + 1)× (N +K + 1) can be practically infeasible.
To circumvent this issue, we need to define projection matrices and present a useful statistical
theorem.

Definition 1: Projection Matrix

A projection matrix, PX , for X is defined as

PX = X(X
′
X)−1X

′

It is the orthogonal projection onto the column space of X, S(X). Additionally, the
projection onto the orthogonal complement of S(X) is given by

QX = I − PX

QX is often called the residual maker.

Some trivial properties of the projection matrix include that they are symmetric, P ′
X = PX ,

and idempotent, PX = P 2
X . Now to an important result [Robinson, 2020].

Theorem 1: Frisch-Waugh-Lowel theorem (FWL)

Let a partitioned linear regression be given by

y = X1β1 +X2β2 + u,

under regulatory assumptions 1 the OLS estimate β̂1 and residuals û obtained by applying
OLS on

y = Xβ + u,

where X = [X1, X2] and β = (β
′
1, β

′
2)

′, is the same as OLS estimates and residuals obtained
by applying OLS on

QX2y = QX2X1 + u,

where QX2X2 = 0 and QX2u = u.

For the proof of theorem 1, we refer the reader to Robinson [2020].

By premultiplying (3.5) with QZµ , also known as performing within transformation, and using
the FWL-theorem we find estimates for the fixed effects by applying OLS to

QZµy = QZµXβ + ν (3.6)

which yields the fixed effects estimator, also known as the least square dummy variable
estimator (LSDV),

β̂ = (X
′
QZµX)−1X

′
QZµy (3.7)
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where the (finite sample) covariance of the estimator, under assumption 3, is given by

Var(β̂) = E[(β̂ − E[β])(β̂ − E[β])
′
] (3.8)

= σ2
ν(X

′
QZµX)−1. (3.9)

Remark 5. Reducing the amount of explanatory variables by accounting for the fixed effects
through the FWL-theorem is effectively removing degrees of freedom.

If we relax the homoscedasticity and no autocorrelation part of assumption 3, we will get
a sandwich form of the covariance of the estimate, which is an indication of non-efficiency.
Relaxing those parts, defining E[νν ′] = Ω and assuming that β0 is the true parameter to (3.6),
we get the following sandwich covariance of the OLS estimates (3.8)

Var(β̂) = Var(β̂ − β0)

= (X
′
QZµX)−1X

′
QZµ E[νν

′]QZµX(X
′
QZµX)−1

= (X
′
QZµX)−1X

′
QZµΩQZµX(X

′
QZµX)−1 (3.10)

where we used that β̃ − β0 = (X
′
QZµX)−1X

′
QZµν.

A way to regain efficiency is to use GLS instead of OLS, the general idea is to correct for the
heteroscedasticity and autocorrelation by premultiplying by the square root of the precision
matrix of the errors. Square rooting a matrix can be ambiguous, so to be explicit, we define
the precision matrix by the decomposition Ω−1 = ΨΨ

′ . That is premultiplying by Ψ
′ yields

Ψ
′
QZµy = Ψ

′
QZµXβ +Ψ

′
ν, (3.11)

note that E[Ψ
′
νν

′
Ψ] = I, such that the errors, Ψ′

ν, are now a white noise.

Remark 6. One might argue that regressions (3.6) and (3.11) are not the same, in fact, they
are the same since linear regressions are invariant under non-singular linear transformations.
Given that covariance matrices are positive definite it implies that the precision matrix is
positive definite thus Ψ is non-singular.

Now applying OLS on (3.11) yields the GLS estimator given by

β̂GLS = (X
′
QZµΩ

−1QZµX)−1X
′
QZµΩ

−1QZµy (3.12)

with variance

Var(β̂GLS) = Var(β̂GLS − β0)

= (X
′
QZµΩ

−1QZµX)−1X
′
QZµΩ

−1QZµ E[νν
′
]QZµΩ

−1QZµX(X
′
QZµΩ

−1QZµX)−1

= (X
′
QZµΩ

−1QZµX)−1X
′
QZµΩ

−1ΩΩ−1QZµX(X
′
QZµΩ

−1QZµX)−1

= (X
′
QZµΩ

−1QZµX)−1. (3.13)

Now, the GLS estimator is more efficient than the LSDV estimator, this can be seen by looking
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at the difference in their precision matrices, i.e.

Var(β̂GLS)
−1 −Var(β̂)−1 = X

′
QZµΩ

−1QZµX −X
′
QZµX(X

′
QZµΩQZµX)−1X

′
QZµX

= X
′
QZµ(Ω

−1 −QZµX(X
′
QZµΩQZµX)−1X

′
QZµ)QZµX

= X
′
QZµ(ΨΨ

′ −QZµX(X
′
QZµ(ΨΨ

′
)−1QZµX)−1X

′
QZµ)QZµX

= X
′
QZµΨ(I−

Ψ−1QZµX(X
′
QZµ(ΨΨ

′
)−1QZµX)−1X

′
QZµ(Ψ

′
)−1)Ψ

′
QZµX

= X
′
QZµΨ(I−

Ψ−1QZµX(X
′
QZµ(Ψ

−1)
′
Ψ−1QZµX)−1X

′
QZµ(Ψ

−1)
′
)Ψ

′
QZµX

= X
′
QZµΨ(I − PΨ−1QZµX

)Ψ
′
QZµX

= X
′
QZµΨQΨ−1QZµX

Ψ
′
QZµX

where we have used the idempotency property of projection matrices in the second equality.
Now since projection matrices are positive semi-definite and are in a quadratic form, the result
is positive semi-definite so the GLS estimator is efficient.

FGLS for Fixed Effects

As GLS is practically impossible due to the covariance matrix of the idiosyncratic errors
being unknown, we instead obtain feasible GLS, FGLS, by estimating the covariance matrix.
Wooldridge [2010] suggests relaxing part (ii) and (iii) of assumption 3, that is, letting the
idiosyncratic errors be heteroscedastic and autocorrelated across time but not across sections.
Due to the relaxation of this assumption the covariance structure of the idiosyncratic error
can now be written as Ω = IN ⊗Σ. So an efficient estimator of Ω can be obtained as follows.

1. Run a fixed effects regression y = Zδ + Zµµ+ ν using the LSDV estimator (3.7).
2. Use the residuals, ν̂i,t, from the first step to estimate Σ̂ = N−1

∑N
i=1 ν̂iν̂

′
i .

3. Now the estimator is given by Ω̂ = IN ⊗ Σ̂.

Note that νi = (νi,1, . . . , νi,t)
′ . Now substitute the estimator into (3.12) and (3.13) to get

FGLS estimators of the parameters and their covariances.

Robust Covariance Estimation

As an alternative to FGLS we can use robust matrices, that is, finding heteroscedasticity- and
autocorrelation-robust covariance matrix (HAC-matrix) estimators that correct the standard
errors of the OLS estimates. Consider the following joint representation of the one-way error
component regression model

yi = Ziδ + µiιT + vi, ∀i

where yi is the T observations for the ith individual stacked in a T × 1 vector, it then follows
that Zi = [ιT , Xi] , Xi is T × K, µi is a scalar, δ = (α, β′)′ , ιT is a vector of ones and νi is
T × 1. Applying the within transformation yields

Qiyi = QiXiβi + vi
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where we have omitted the subscript on Qi that shows the matrix whose column space
we project off. Define SA := S(A) := plim

(
N−1A

) 1, now by applying the restriction
β = β1 = · · · = βN , note that β is the same as in (3.6), we can find the asymptotic variance
by

Var
(
plim

(
N1/2

(
β̂ − β0

)))
= E

[
plim

(
N
(
β̂ − β0

)(
β̂ − β0

)′)]
= E

[
plim

(
N
(
X ′QX

)−1
X ′Qνν ′QX

(
X ′QX

)−1
)]

= E
[
plim

(
N
(
N−1X ′QX

)−1
N−1X ′Qνν ′QXN−1

(
N−1X ′QX

)−1
)]

=
(
SX′QX

)−1
V
(
SX′QX

)−1
,

where V := SX′QΩQX . Now the central limit theorem, CLT, yields

lim
(√

N(β̂ − β0)
)
∼ N

(
0,
(
SX′QX

)−1
V
(
SX′QX

)−1
)

An estimator of V is then given by

V̂ =

N∑
i=1

N−1X
′
iQν̂iν̂

′
iQX,

where ν̂i = Qiyi −QiXiβ̂.
Hansen [2007] shows that this estimator is in fact consistent for N → ∞ regardless of the
relative size of N and T.

Remark 7. The reason to use this estimator is whenever (ii) and (iii) of assumption 3 are
not met, namely, whenever there is heteroscedasticity and autocorrelation in the idiosyncratic
error ν.

In case there is no autocorrelation we can use

V̂CS =
N∑
i=1

T∑
t=1

(QX)i,t(X
′
Q)i,tû

2
i,t/(NT −N −K).

However, Stock and Watson [2008] investigates this estimator through a Monte Carlo study
and shows that it is inconsistent for T > 2, as an alternative, they suggest the following
correction

V̂FE =
(T − 1)

(T − 2)

[
VCS − 1

N(T − 1)

N∑
i=1

(
1

T

T∑
t=1

(QX)it(QX)
′
it

)(
1

(T − 1)

T∑
s=1

û2is

)]
.

(3.14)

This estimator is consistent for N → ∞, regardless of the relative size of N and T [Baltagi,
2021].

There are several other robust covariance estimators, including the Newey-West estimator,
the Beck and Katz estimator, etc. Millo [2017], one of the authors behind the comprehensive
plm-package for panel data modeling in R, discusses several of these estimators and how they
handle these estimators computationally.

Remark 8. It is common practice to present the parameter estimates with their robust

1Note that plim = plimN→∞, we will write it out explicitly in cases where it otherwise would be ambiguous.
This also holds for lim = limN→∞.
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standard errors for a comparison. We will make a similar approach without documenting
all the robust estimators, we again refer to the work by Millo [2017] for a presentation of each
of the robust estimators.

3.1.2 Random Effects

Assumption 5. Under the assumption E[µi|Xi,t] = 0, the model given by equation (3.3) is a
random effects model and µi can be interpreted as an error inherent to the ith municipality.

Remark 9. In the special case where E[ui,tuj,s] = 0,∀i, j, t, s, i ̸= j, t ̸= s and E[u2i,t] = σ2, ∀i, t,
(3.3) reduces to a pooled regression and OLS is the best linear unbiased estimator, BLUE.

Additionally, µi is assumed independent of νi,t as it was with the pooled regression. Define
now σ2

µ := Var(µi) and σ2
ν := Var(νi,t) for all i and t, such that

Cov (ui,t, uj,s) = E [ui,tuj,s]

= E [(µi + νi,t) (µj + νj,s)]

= E [µiµj ] + E [νi,tνj,s] .

That is,

Cov (ui,t, uj,s) =


σ2
µ + σ2

ν (i = j, t = s)

σ2
µ (i = j, t ̸= s)

0 (i ̸= j)

 . (3.15)

This means that

E[uu
′
] : = Ω = IN ⊗ Σ,

Σ = σ2
νIT + σ2

µJT (3.16)

where JT = ιT ι
′
T . Equation 3.16 can be written more explicitly by:

Ω =



Σ O · · · · · · O

O Σ · · · · · · O
...

...
. . .

...
...

...
. . .

...
O · · · · · · · · · Σ


, Σ =



σ2
µ + σ2

ν σ2
µ · · · · · · σ2

µ

σ2
µ σ2

µ + σ2
ν · · · · · ·

...
...

...
. . .

...
...

...
. . .

...
σ2
µ · · · · · · · · · σ2

µ + σ2
ν


,

where O is a zero matrix of the same dimensions as Σ. β can be calculated by using GLS if
σ2
µ and σ2

ν are known, the GLS formulas are derived similarly as for (3.11)

β̂GLS = (X
′
(IN ⊗ Σ)−1X)−1X

′
(IN ⊗ Σ)−1y (3.17)

Var(β̂GLS) = (X
′
(IN ⊗ Σ)−1X)−1 (3.18)

or by using FGLS, if we have estimators for σ2
µ and σ2

ν .
Alternatively, we can assume that the covariance matrix is determined through some scedastic
function dependent on some parameters γ, i.e. Ω(γ) ≈ Ω.
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FGLS for Random Effects

We can use fixed effect and pooled regression to find estimators for σ2
µ and σ2

ν .

1. Run a fixed effects regression y = Zδ + Zµµ+ ν using the LSDV estimator (3.7).

2. Use the residuals, ν̂i,t, from the first step to estimate σ̂2
ν =

∑N,T
i,t=1

ν̂2i,t
NT−N−K .

3. Run pooled regression y = Zδ + u using OLS.
4. Use the residuals, ûi,t, to estimate s2PR =

∑N,T
i,t=1

û2
i,t

NT−N−K

5. Finally, we have s2PR ≈ σ̂2
µ + σ̂2

ν which leads to σ̂2
µ ≈ s2PR − σ̂2

ν

Now use the estimates σ̂2
ν and σ̂2

µ in (3.16) to obtain the FGLS estimator

β̂FGLS = (X
′
(IN ⊗ Σ̂)−1X)−1X

′
(IN ⊗ Σ̂)−1y (3.19)

Var(β̂FGLS) = (X
′
(IN ⊗ Σ̂)−1X)−1 (3.20)

The five steps above are presented by Baltagi [2021] a bit differently, however, the above
method is equivalent to their presentation. Baltagi [2021] and several other works of literature
calls this method the SWAR method due to it being developed and investigated by Swamy
and Arora [1972]. The method also holds for the more general two-way error component case,
we will present this method in more detail in section 3.2.

3.1.3 Testing

Testing for fixed effects vs. pooled regression

To test whether the model should include fixed effects or not an F-test is used. It tests
the joint significance of the individual effects using the following null hypothesis given by
H0 : µ1 = µ2 = · · · = µN−1 = 0. By Baltagi [2021], a Chow test using the restricted residual
sum of squares (RRSS) and unrestricted residual sum of squares (URSS) allows for a regression
comparison, with (RRSS) using the residuals from the pooled model seen in equation (3.3)
and (URSS) using the LSDV residuals seen in equation (3.6). With this, we get the following
F-test.

F0 =
(RRSS − URSS)/(N − 1)

URSS/(NT −N −K)

H0∼ FN−1,N(T−1)−K (3.21)

Testing Random effect vs. pooled regression

Following Baltagi [2021] the Breusch-Pagan test is used to inspect whether or not the model
should include random effects. Defining the null hypothesis as H0 : σ2

µ = 0, i.e. there is no
reason to use random effects. The test statistic is given by

LM =
NT

2(T − 1)

[
1− û

′
(IN ⊗ JT )û

û′ û

]2
∼ χ2(1), (3.22)
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where û are the pooled regression vector of residuals. Additionally, if we were testing a time
random effect, H0 : σ

2
λ = 0, we would use

LM =
NT

2(N − 1)

[
1− û

′
(JN ⊗ IT )û

û′ û

]2
∼ χ2(1).

Testing Random effect vs. Fixed effect

In case both the fixed effects and random effects model are viable options, we use a
Hausman test to help find the preferred model. The null hypothesis for the Hausman test is
H0 : β̂FE = β̂RE , the Hausman test statistic is given by the following

H = (β̂FE − β̂RE)
′
(Var(β̂FE)−Var(β̂RE))

−1(β̂FE − β̂RE) ∼ χ2(dim(β̂)), (3.23)

where dim(β̂) denotes the number of parameters, β̂FE and β̂RE denotes the estimated
parameters under fixed effects and random effects, respectively.
In case we reject the null hypothesis, that is, there is a significant difference between the two
estimates, we acknowledge there is individual level omission bias, that is the random effects
model is misspecified. In this case, the fixed effects model is the preferred model as it accounts
for all the (constant) individual level predictors.

Remark 10. It is important to realize in practice that for dependent variables, that have
intricate underlying dynamics, it might be practically infeasible to include enough individual
level predictors to make the Hausman test insignificant.

The next section will discuss an augmentation that adds a time effect to the error component,
it captures effects that are the same through all cross-sections but are changing over time.
An empirical argument for the inclusion of these effects could be that there is a new strain
of Covid-19 on the rise in a country that has a different rate of spread. Another argument is
that due to Denmark being so interconnected, the spread of the virus is more homogeneous
across the country, the time effects will in this case capture this interconnectivity.
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3.2 Two-Way Error Component Regression Model

The one-way regression model was given in equations (3.1) and (3.2) in section 3.1, we
now expand the error component to allow for individual and time effects, the two-way error
component regression model is given by:

yi,t = α+X
′
i,tβ + ui,t i = 1, . . . , N ; t = 1, . . . , T

ui,t = µi + λt + νi,t i = 1, . . . , N t = 1, . . . , T.
(3.24)

Here yi,t is identical to the previous notation used in (3.1). Additionally, µi denotes the
unobservable individual effects, whereas λt denotes unobservable time effects and νi,t denotes
the idiosyncratic error. In vector form, the system can be written as

y = Zδ + u

u = Zµµ+ Zλλ+ ν,
(3.25)

where Zλ = ιN ⊗ IT is a NT × T matrix of time dummies and λ = (λ1, . . . , λT )
′ , and as

before, Zµ = IN ⊗ ιT is a NT ×N matrix and µ = (µ1, . . . , µN )
′ .

3.2.1 The Two-Way Fixed Effects model

Analogously to assumption 4, let µi and λt be fixed parameters and νi,t ∼ (0, σ2
ν) stochastic,

then (3.24) is a two-way fixed effects model. The model now becomes

y = Zδ + Zµµ+ Zλλ+ ν. (3.26)

While it is possible to use OLS it is ill-advised to do so, given that, like in section 3.1.1, the
inversion of Z∗′Z∗ where Z∗ := [Z,Zµ, Zλ] can be practically infeasible. As an alternative,
Baltagi [2021] suggests using a within transformation on the basis of the FWL-theorem
presented in theorem 1. To get the within transformation matrix consider

QZµ = INT − Zµ(Z
′
µZµ)

−1Z ′
µ

QZλ
= INT − Zλ(Z

′
λZλ)

−1Z ′
λ,

now, by multiplying these two projection matrices together we get a new projection matrix
which projects onto the orthogonal complement of the span of Zµ and Zλ, their product yields

Qµλ := QZµQZλ

=
(
INT − Zµ(Z

′
µZµ)

−1Z ′
µ

) (
INT − Zλ(Z

′
λZλ)

−1Z ′
λ

)
= INT − Zµ(Z

′
µZµ)

−1Z
′
µ − Zλ(Z

′
λZλ)

−1Z ′
λ

+ Zλ(Z
′
λZλ)

−1Z ′
λZµ(Z

′
µZµ)

−1Z ′
µ

= IN ⊗ IT − IN ⊗ J̄T − J̄N ⊗ IT + (J̄N ⊗ IT )(IN ⊗ J̄T )

= IN ⊗ IT − IN ⊗ J̄T − J̄N ⊗ IT + J̄N ⊗ J̄T

= EN ⊗ ET , (3.27)

where EN = IN − J̄N and ET = IT − J̄T and J̄N = JN/N and J̄T = JT /T . The within
transformation Qµλ removes the time and individual dependent variables from (3.26). The
OLS estimation of equation (3.2) using the within transformation (3.27) yields the following
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expression

β̃ = (X
′
QµλX)−1X

′
Qµλy. (3.28)

Remark 11. Just as with the one-way error component model, if we relax the assumption of
no heteroscedasticity and/or no autocorrelation of the errors νi,t the variance of the parameter
estimates has a sandwich form and OLS will be inefficient. To regain efficiency we again need
to use GLS or FGLS, and as an alternative, we can use the robust estimators discussed for
the one-way fixed effects model.

3.2.2 The Two-Way Random Effects Model

Analogously to assumption 5, if we assume that E[µi | Xi,t] = E[λt | Xi,t] = 0 and assume
that µu and λt are independent of νi,t then (3.25) is a random effects model. As with the
one-way random effects model, define now Var(µi) = σ2

µ, Var(λt) = σ2
λ and Var(νi,t) = σ2

ν for
all i and t such that

Cov(ui,t, uj,s) = E[ui,t, uj,s]

= E[(µi + λt + νi,t)(µj + λs + νj,s)]

= E[µiµj ] + E[λtλs] + E[νi,tνj,s],

that is

Cov(ui,t, uj,s) =


σ2
µ + σ2

λ + σ2
ν i = j, t = s

σ2
µ i = j, t ̸= s

σ2
λ i ̸= j, t = s

0 i ̸= j, t ̸= s


Now writing it more compactly using matrix notation yields

Ω = E[uu
′
]

= Zµ E[µµ
′
]Z

′
µ + Zλ E[λλ

′
]Z

′
λ + σ2

νINT

= σ2
µ(IN ⊗ JT ) + σ2

λ(JN ⊗ IT ) + σ2
ν(IN ⊗ IT )

= IN ⊗ (σ2
µJT + σ2

νIT ) + (JN ⊗ σ2
λIT )

= IN ⊗ (σ2
µJT + σ2

νIT + σ2
λIT ) + (JN − IN )⊗ σ2

λIT

= IN ⊗ Σ+ (JN − IN )⊗ Λ,
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where Λ := σ2
λIT and Σ := σ2

µJT + σ2
νIT + Λ. Writing it out explicitly yields

Ω =



Σ Λ · · · · · · Λ

Λ Σ · · · · · ·
...

...
...

. . .
...

...
...

. . .
...

Λ · · · · · · · · · Σ


, Σ =



σ2
µ + σ2

λ + σ2
ν σ2

µ · · · · · · σ2
µ

σ2
µ σ2

µ + σ2
λ + σ2

ν · · · · · ·
...

...
...

. . .
...

...
...

. . .
...

σ2
µ · · · · · · · · · σ2

µ + σ2
λ + σ2

ν


,

Λ =



σ2
λ 0 · · · · · · 0

0 σ2
λ · · · · · ·

...
...

...
. . .

...
...

...
. . .

...
0 · · · · · · · · · σ2

λ


.

Here the Σ and Λ are both matrices of dimension T × T and IN and JN are both matrices of
dimension N ×N , making the covariance matrix, Ω, an NT ×NT matrix.

GLS and FGLS for Two-Way Random Effects

The following computations in this subsection rely heavily on linear algebra results.

As with the one-way case we need to account for the inefficiency of OLS whenever we have
random effects, so similar to what we did in (3.11) a GLS estimator of the parameters can be
obtained by premultiplying (3.25) with Ψ

′ where Ω−1 = ΨΨ
′ , i.e.

σνΨ
′
y = σνΨ

′
Zδ + σνΨ

′
u. (3.29)

Note that in this case E[σνΨ
′
νν

′
Ψ

′
σν ] = σ2

νI, in the one-way case the error component had
unit variance which differs from this case, this is due to the multiplication of the standard
deviation, σν . Additionally, remark 6 still holds for this case as it is a non-singular linear
transformation.
Then applying OLS to (3.29) yields

δ̂GLS = (Z
′
Ω−1Z)−1Z

′
Ω−1y

Var(δGLS) = (Z
′
Ω−1Z)−1

(3.30)

The covariance matrix is almost never known in practice so we need to discuss ways to estimate
it. So start by rewriting the covariance matrix

Ω = σ2
µ(IN ⊗ JT ) + σ2

λ(JN ⊗ IT ) + σ2
ν(IN ⊗ IT )

= Tσ2
µ(IN ⊗ J̄T ) +Nσ2

λ(J̄N ⊗ IT ) + σ2
ν(IN ⊗ IT )

= Tσ2
µ

(
(EN + J̄N )⊗ J̄T

)
+Nσ2

λ

(
J̄N ⊗ (ET + J̄T )

)
+ σ2

ν((EN + J̄N )⊗ (ET + J̄T ))

= σ2
ν(EN ⊗ ET ) + (Tσ2

µ + σ2
ν)(EN ⊗ J̄T )

+ (Nσ2
λ + σ2

ν)(J̄N ⊗ ET ) + (Tσ2
µ +Nσ2

λ + σ2
ν)(J̄N ⊗ J̄T ).

These four terms on the RHS are in fact a spectral decomposition of the covariance matrix.
The first thing to notice is that each of the Kronecker products are projections, hence we
define Q1 := EN ⊗ ET , Q2 := EN ⊗ J̄T , Q3 := J̄N ⊗ ET and Q4 := J̄N ⊗ J̄T , to show that
they are projections simply verify their idempotency and symmetry.
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Projection matrices can only have eigenvalues 1 and 0, to show this consider x to be an
eigenvector of a projection P with eigenvalue λ then Px = λx, now using the idempotency
property of P yields

PPx = λPx = λ2x,

now since x ̸= 0 then λ2 = λ which has solutions 1 and 0.
Now, since the projections only has these two eigenvalues the scalars λ1 := σ2

ν , λ2 := Tσ2
µ+σν ,

λ3 := Nσλ + σ2
ν and λ4 = Tσ2

µ +Nσ2
λ + σ2

ν must be the eigenvalues of the covariance matrix.
To realize this, consider the eigendecomposition of the projections Qi = UiΛ

∗
iU

−1
i where the

Ui matrix is a square matrix with eigenvectors as columns, and the Λ∗
i is a diagonal matrix

with the eigenvalues as diagonal elements, now since the eigenvalues of the projections are
either 0 or 1 multiplying by λi yields

λiQi = UiλiΛ
∗
iU

−1
i

= UiΛiU
−1
i ,

where Λi = λiΛ
∗
i . The spectral decomposition of Ω can now be written as

Ω =

4∑
i=1

λiQi.

The multiplicity of each of the eigenvalues of the covariance matrix is the trace of the
corresponding projection matrix, to see this consider

tr(Qi) = tr
(
UiΛ

∗
iU

−1
i

)
= tr

(
Λ∗
iUiU

−1
i

)
= tr(Λ∗

i )

where the property tr(AB) = tr(BA) for square matrices A and B was used in the second
equality.
Finally, the specific values of the multiplicities can now be derived, consider now

tr(Q1) = tr(EN ⊗ ET )

= tr(EN ) tr(ET )

= tr
(
IN − J̄N

)
tr
(
IT − J̄T

)
=
[
tr(IN )− tr

(
J̄N
)] [

tr(IT )− tr
(
J̄T
)]

= (N − 1)(T − 1),

where the property tr(A⊗B) = tr(A) tr(B) for square matrix A and B has been used in the
second equality, and tr(A+B) = tr(A) + tr(B) was used in the fourth equality.
Similar results can be obtained for the remaining projection matrices, the results are given by

tr(Q1) = (N − 1)(T − 1)

tr(Q2) = N − 1

tr(Q3) = T − 1

tr(Q4) = 1.

The spectral decomposition is useful to us as it follows that

Ωr =

4∑
i=1

λr
iQi,
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where r is an arbitrary scalar.
Notice now that Qiu ∼ (0, λiQi) such that

λ̂i = u′Qiu/ tr(Qi), (3.31)

are estimators of λi for i = 1, 2, 3. Given the definitions of λi for i = 1, 2, 3 and using (3.31)
estimators of the parameters, σ2

ν , σ2
µ and σ2

λ, are given by

σ̃2
ν = u

′
Q1u/[(N − 1)(T − 1)]

σ̃2
µ =

u
′
Q2u/[N − 1]− u

′
Q1u/[(N − 1)(T − 1)]

T

σ̃2
λ =

u
′
Q3u/[T − 1]− u

′
Q1u/[(N − 1)(T − 1)]

N
.

(3.32)

As the true disturbances, u, are unknown, replacing them by the residuals, û, obtained by
applying the two-way within transformation given by (3.27) will yield feasible estimators of
λi for i = 1, 2, 3.

σ̂2
ν = û

′
Q1û/[(N − 1)(T − 1)]

σ̂2
µ =

û
′
Q2û/[N − 1]− û

′
Q1û/[(N − 1)(T − 1)]

T

σ̂2
λ =

û
′
Q3û/[T − 1]− û

′
Q1û/[(N − 1)(T − 1)]

N

(3.33)

Amemiya [1971] investigates the asymptotic properties of these estimators and notes that they
share the same asymptotic distribution, that is, the asymptotic distribution of the estimators
in (3.32) are the same as the ones in (3.33). Finally, we have an estimator for the covariance
matrix given by

Ω̂ = IN ⊗ (σ̂2
µJT + σ̂2

νIT + σ̂2
λIT ) + (JN − IN )⊗ σ̂2

λIT ,

which substituted into (3.30) yields the FGLS estimators of the parameters and their variances.

Baltagi [2021] notes that in practice it is always good advice to compare different estimators
which motivates the next set of estimators.
Swamy and Arora [1972] develops the next set of estimators for the eigenvalues of the
covariance matrix through a 3-step method.
They start by applying the two-way within transformation to (3.25) which yields

Q1y = Q1Xβ + ν

= PQ1XQ1y +QQ1XQ1y,

note that the FWL-theorem was used in the first equation and the identity I = PQ1X +QQ1X

was used in the second one. The second term on the right hand side, RHS, reduces to ν such
that

ν
′
ν = (Q1y − PQ1XQ1y)

′
(Q1y − PQ1XQ1y)

= y
′
Q1y − y

′
Q1PQ1XQ1y.

An estimator of λ1 is then given bŷ̂
λ1 =

[
y
′
Q1y − y

′
Q1PQ1XQ1y

]
/ [(N − 1)(T − 1)−K] . (3.34)

They do similar transformations with Q2 and Q3 to get estimators of λ2 and λ3 which are
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given bŷ̂
λ2 =

[
y
′
Q2y − y

′
Q2PQ2XQ2y

]
/[(N − 1)−K]

and ̂̂
λ3 =

[
y
′
Q3y − y

′
Q3PQ3XQ3y

]
/[(T − 1)−K].

Now they use these estimates to obtain estimators ˆ̂σ2
ν , ˆ̂σ2

µ and ˆ̂σ2
λ similar to how we did for

(3.33). Next is to use these estimators to obtain

ˆ̂
Ω = IN ⊗ (ˆ̂σ2

µJT + ˆ̂σ2
νIT + ˆ̂σ2

λIT ) + (JN − IN )⊗ ˆ̂σ2
λIT ,

and finally, use this estimator in (3.30) to get another estimator of the parameters and their
variances.
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3.3 Spatial Error Component Regression Model

Given the nature of the data used in this project, specifically that the municipalities in
our data lie up against one another, it follows that some events or effects specific to one
municipality could potentially have some effects on neighboring municipalities, these effects
are called spatial or spatial spillover effects. Anselin et al. [2008] proposes a linear regression
model formulated by

y = α+Xβ + u (3.35)

with two-way error components

u = (ιT ⊗ IN )µ+ (IT ⊗ ιN )λ+ ε (3.36)

ε = ρ (IT ⊗WN ) ε+ ν, (3.37)

where WN is a N × N matrix of spatial weights with zero diagonal elements. Assume
µ ∼ i.i.d.(0, σ2

µIN ) and λ ∼ i.i.d.(0, σ2
λIT ), these vectors denote the individual and time effects

respectively, furthermore, ε is a vector of spatially autocorrelated innovations following the
process given in (3.37). The vector ν is assumed i.i.d.(0, σ2

νINT ) and independent of µi and
λt. The model given by equations (3.35), (3.36) and (3.37) is called the spatial two-way
error component regression model or simply the Anselin model, as it was first derived by
Luc Anselin in 1988. In fact, there are more general spatial models than the one presented
above, however, we find this model to be adequate and we refer to Anselin et al. [2008] for a
repository of spatial panel data models.
It is important to notice that the stacking of observations is done by first arranging by time
and then individual, i.e. the first N elements of y are the first observations for each individual,
the next N observations are the second observation for each individual, etc.

Now, define B := IN − ρWN such that we can rewrite (3.37) as

ε− ρ (IT ⊗WN ) ε = ν

(IT ⊗ IN )ε− (IT ⊗ ρWN ) ε = ν

(IT ⊗ (IN − ρWN )) ε = ν

ε = (IT ⊗ (IN − ρWN ))−1 ν

ε =
(
IT ⊗B−1

)
ν.

We can now write our error component as

u = (ιT ⊗ IN )µ+ (IT ⊗ ιN )λ+
(
IT ⊗B−1

)
ν (3.38)

with the variance given by

Ω := E[uu
′
] = σ2

µ(JT ⊗ IN ) + σ2
λ(IT ⊗ JN ) + σ2

ν(IT ⊗ (B′B)−1)

= σ2
ν

[
JT ⊗

(
σ2
µ

σ2
ν

IN

)
+ IT ⊗

(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)]
= σ2

νΣ.
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3.3.1 Maximum Likelihood Estimation

Now under the assumption of normality, the log-likelihood function, ignoring the constant, is
given by

ℓ = −1

2
ln |Ω| − 1

2
u

′
Ω−1u

= −NT

2
lnσ2

ν −
1

2
ln |Σ| − 1

2σ2
ν

u
′
Σ−1u. (3.39)

To simplify further we need the following corollary [Magnus, 1982].

Corollary 1

Let Λ be a diagonal q × q matrix, q ≥ 2, with positive diagonal elements, A and B square
matrices of order p, and sq a q × 1 vector of ones, then the pq × pq matrix G is given by,

G = Λιqι
′
qΛ⊗A+ Λ⊗B,

has determinant

|G| = |Λ|p|C||B|q−1,

where

C = B + αA and α = tr(Λ),

furthermore, if G is non-singular, its inverse is

G−1 =
1

α
ιqι

′
q ⊗ (C−1 −B−1) + Λ−1 ⊗B−1.

Now using corollary 1 yields

|Σ| =

∣∣∣∣∣JT ⊗

(
σ2
µ

σ2
ν

IN

)
+ IT ⊗

(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)∣∣∣∣∣
= |IT |N

∣∣∣∣∣σ2
λ

σ2
ν

JN + (B
′
B)−1 +

Tσ2
µ

σ2
ν

IN

∣∣∣∣∣
∣∣∣∣σ2

λ

σ2
ν

JN + (B
′
B)−1

∣∣∣∣T−1

=

∣∣∣∣∣σ2
λ

σ2
ν

JN + (B
′
B)−1 +

Tσ2
µ

σ2
ν

IN

∣∣∣∣∣
∣∣∣∣σ2

λ

σ2
ν

JN + (B
′
B)−1

∣∣∣∣T−1

and

Σ−1 = J̄T ⊗

(σ2
λ

σ2
ν

JN + (B
′
B)−1 +

Tσ2
µ

σ2
ν

IN

)−1

−
(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)−1


+ IT ⊗
(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)−1

.

34



3.3. Spatial Error Component Regression Model Aalborg University

Substituting these back into the (3.39) and simplifying yields

ℓ = −NT

2
lnσ2

ν −
1

2
ln |Σ| − 1

2σ2
ν

u
′
Σ−1u

= −NT

2
lnσ2

ν −
1

2

∣∣∣∣∣σ2
λ

σ2
ν

JN + (B
′
B)−1 +

Tσ2
µ

σ2
ν

IN

∣∣∣∣∣− T − 1

2

∣∣∣∣σ2
λ

σ2
ν

JN + (B
′
B)−1

∣∣∣∣T−1

− 1

2σ2
ν

u
′

{
J̄T ⊗

(σ2
λ

σ2
ν

JN + (B
′
B)−1 +

Tσ2
µ

σ2
ν

IN

)−1

−
(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)−1


+ IT ⊗
(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)−1
}
u.

It is clear that the computationally difficult terms, determinants and inverses, in the log-
likelihood get bigger as N grows.
Now maximizing the log-likelihood function yields the desired parameter estimates.

Special Cases

If we assume that we have no individual effects or no time effects, the likelihood expression
simplifies a great deal. Start by assuming that we have no time effects such that (3.38)
becomes

u = (ιT ⊗ IN )µ+
(
IT ⊗B−1

)
ν,

hence

E[uu
′
] = σ2

µ(JT ⊗ IN ) + σ2
ν(IT ⊗ (B′B)−1)

= σ2
ν

[
JT ⊗

(
σ2
µ

σ2
ν

IN

)
+ IT ⊗

(
B

′
B
)−1

]
= σ2

νΣµ.

Using corollary 1 yields

|Σµ| =

∣∣∣∣∣(B′
B)−1 + T

σ2
µ

σ2
ν

IN

∣∣∣∣∣ ∣∣∣(B′
B)−1

∣∣∣T−1
,

and

Σ−1
µ = J̄T ⊗

((B′
B)−1 + T

σ2
µ

σ2
ν

IN

)−1

−B
′
B

+ IT ⊗B
′
B.

Now analogously we assume there are no individual effects such that

u = (IT ⊗ ιN )λ+
(
IT ⊗B−1

)
ν

hence

E[uu
′
] = σ2

λ(IT ⊗ JN ) + σ2
ν(IT ⊗ (B′B)−1)

= σ2
ν

[
IT ⊗

(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)]
= σ2

νΣλ.
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Now the determinant of Σλ is given by

|Σλ| =
∣∣∣∣IT ⊗

(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)∣∣∣∣T
with inverse

Σ−1
λ = IT ⊗

(
σ2
λ

σ2
ν

JN + (B
′
B)−1

)−1

.

To avoid cluttering we avoid writing out the log-likelihood functions with their covariance
matrices, however, it is trivial to simply substitute these into (3.39) to get the log-likelihood.
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Chapter 4

Regime-Switching Models

Under tranquil market conditions, many types of financial time series show low volatility
persistence, and in other periods during financial crises or major international events they
shift in their behavior.
A way of modeling this behavior is to augment the GARCH modeling framework by
introducing regime switching, i.e. the RS-GARCH model.

4.1 Regime Switching GARCH Model

The standard GARCH(1,1) model is given by

yt = µt + ϵt = µt +
√

htut ut ∼ i.i.d.D(0, 1, ξ)

ht = α0 + α1ϵ
2
t−1 + βh2t−1,

where µt is the conditional mean, ϵt is the the error process, D is some specified distribution
and ξ is a vector representing distribution specific parameters like skewness, etc. To ensure
positivity of the conditional variance we assume that α0 > 0, α1 > 0 and β ≥ 0, and to
ensure stationarity we assume that α1 + β1 < 1. Under these conditions the process yt has
an unconditional variance given by σ2 := E[(yt − µt)

2] = α0
1−α1−β .

Assumption 6. For simplicity, the conditional mean is assumed to be zero, that is µt = 0.

Remark 12. Regime switching is an augmentation that allows for switching structural
dynamics of the process yt, depending on the application the structural changes can be applied
to the conditional mean, the conditional variance, the underlying standardized innovation
process, or any combination of those. However, for our applications the conditional mean has
been filtered away as described in 2.1, hence our primary focus will be on regime switching in
the conditional variance.

The RS-GARCH model is an expansion of the standard GARCH model which allows for
regime specific structural dynamics of the conditional variance of yt, hence the specification
of ht is dependent on which regime we are in at time t.
We will need to assume that yt is not autocorrelated, i.e. E[yt, yt−1] = 0, in fact under
assumption 6 this is the case [Bauwens et al., 2006].

The regime switching are introduced through a homogeneous1 Markov chain state variable
st ∈ {1, 2, . . . , n} which is realised by

Pr (st = j | st−1 = i, st−2 = k, . . . , It−1) = Pr(st = j | st−1 = i) =: pi,j (4.1)

which denotes the probability of transitioning from state st−1 = i to state st = j. Now define

1A Markov chain being homogeneous means that the transition probabilities are independent from time.

37



Group 1.204c 4. Regime-Switching Models

the (probability) transition matrix by

P :=

p1,1 . . . p1,n
...

. . .
...

pn,1 . . . pn,n

 .

The following constraints hold 0 < pi,j < 1,∀i, j ∈ {1, 2, . . . , n} and
∑n

j=1 pi,j = 1,∀i ∈
{1, 2, . . . , n}, where the second constraint means that every row from the transition matrix
sums to unity.

Now, an RS-GARCH(1,1) model under assumption 6 can be written as

yt =
√

hst,tust,t, ust,t ∼ i.i.d.Dst(0, 1)

hst,t = α0,st + α1,sty
2
t−1 + βsthst−1,t−1 (4.2)

pi,j = Pr (st = j | st−1) , j = 1, 2, . . . , n,

where the unconditional variance in each regime is given by

σ2
st = E[y2t |st] =

α0,st

1− α1,st − βst
. (4.3)

Note that unconditional variance is slightly misleading as it is clearly dependent on the state.
The conditional variance can be interpreted as

hst,t ≡ h(hst−1,t−1, yt−1, θst) (4.4)

where θst := (α0,st , α1,st , βst) is a vector of model specific parameters, i.e. the conditional
variance is a function of past values of y, h and its regime dependent model parameters. It is
easily generalized to higher order GARCH models by including the appropriate parameters
in the model specific parameter vector and the additional past values of h and y.

Remark 13. Note that the distribution, Dst , of the standardised innovations can be dependent
on the state, st, e.g. it can be a skewed normal distribution in one state and a skewed Student’s
t-distribution in another. We will only consider the case where the distribution is the same,
e.g. normal, across states but distribution specific parameters can change, like shape and
skewness.

The final element of the formulation of the RS-GARCH model is the specification of the
conditional distribution of the standardised innovations, note that ust,t = yt/hst,t. The
conditional distribution of the yt model can now be written as

yt | (st, It−1) ∼ D(0, hst,t, ξst),

where D(0, hst,t, ξst) denotes the specified conditional distribution with zero mean, conditional
variance hst,t and a vector ξst containing distribution specific parameters. Note, the
standardised innovations have distribution ust,t ∼ i.i.d.D(0, 1, ξst).
We can now write the conditional PDF of yt compactly as

fD(yt | st, It−1; Ψ),

where Ψ ≡ (θ1, ξ1, . . . , θn, ξn, P ).

For estimation through maximum likelihood, it is required to choose which type of conditional
distribution the standardized innovations have, common choices for financial time series are
normal, student-t and generalized error distribution (GED).
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The PDF of the standard normal distribution is given by

fN (ust,t) =
1√
2π

e−
1
2
u2
st,t .

It follows that ust,t ∼ i.i.d.N(0, 1) thus yt | (st, It−1) ∼ N(0, hst,t). The normal distribution
does not account for the fat tails often seen in financial data, to overcome this, the standardized
Student-t distribution is often used, that is

fS(ust,t | νst) =
Γ(

νst+1
2 )√

(νst − 2)πΓ(
νst
2 )

(
1 +

u2st,t
(νst − 2)

)− νst+1

2

, ust,t ∈ R,

where Γ(·) is the gamma function and νst is the number of degrees of freedom. With this it
then follows that ust,t ∼ i.i.d.t(0, 1, νst) and yt | (st, It−1) ∼ t(0, hst,t, νst) [Petersen, 2015].

Another distribution of interest is the standardized generalized error distribution, abbreviated
as GED. The GED is given by

fGED(ust,t | τst) =
τe

− 1
2

∣∣∣ust,tλ

∣∣∣τst
λ2

(1+ 1
τst

)
Γ( 1

τst
)
, λ =

 Γ( 1
τst

)

4
1

τst Γ( 3
τst

)


1
2

, ust,t ∈ R,

where τst > 0 is the shape parameter. Special cases of the distribution are obtained for
different values of τst , for τst = 1 the GED reduces to the standard Laplace distribution,
τst = 2 gives the standard normal distribution and τst → ∞ gives a uniform distribution
on the interval [−1, 1]. For the GED it follows that ust,t ∼ i.i.d.GED(0, 1, τst) and
yt | (st, It−1) ∼ GED(0, hst,t, τst).

As an extension to the distributions shown above, Trottier and Ardia [2016] developed a
simple way of introducing skewness to any unimodal2 standardized distribution by introducing
an additional parameter ζ > 0, which denotes the asymmetry. Let a symmetric unimodal
standardized PDF be given by f1(z), and let the skewed unimodal PDF be given by fζ(z),
with mean and variance given by

µζ = M1(ζ − ζ
−1)

σ2
ζ = (1−M2

1 )(ζ
2 + ζ

−2) + 2M2
1 − 1,

where M1 = 2
∫∞
0 uf1(u)du. Then PDF of the skewed distribution is given by

fζ(z) ≡
2σζ

ζ + ζ−1
f1(zζ), zζ ≡

{
ζ−1(σζz + µζ) if z ≥ −µζ/σζ
ζ(σζz + µζ) if z < −µζ/σζ

(4.5)

The equation above shows how skewness can be introduced to a PDF already defined
previously using only the PDF and a parameter ζ describing the asymmetry. Note that
if ζ = 1 then fζ(z) = f1(z).

2A unimodal distribution is a distribution with one clear peak
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We get the CDF by integrating the PDF such that

Fζ(x) ≡
∫ x

−∞
fζ(z) d z

=



2σζ

ζ+ζ−1

∫ x
−µζ/σζ

f1
(
ζ−1[σζz + µζ ]

)
d z +

2σζ

ζ+ζ−1

∫ −µζ/σζ

−∞ f1(ζ[σζz + µζ ]) d z,

for x ≥ −µζ

σζ

2σζ

ζ+ζ−1

∫ x
−∞ f1(ζ[σζz + µζ ]) d z,

for x < −µζ

σζ

Now using integration by substitution for the first expression yields

Fζ(x) =
2

ζ + ζ−1
ζ

∫ ζ−1[σζx+µζ ]

0
f1(u) du+

2

ζ + ζ−1
ζ−1

∫ 0

−∞
f1(u) du, x ≥ −

µζ

σζ

=
2

ζ + ζ−1

[
ζ ·
(
F1

(
ζ−1[σx+ µ]

)
− F1(0)

)
+ ζ−1F1(0)

]
, x ≥ −

µζ

σζ

where F1 is the standard normal CDF, doing similarly to the second expression yields

Fζ(x) =
2

ζ + ζ−1
ζ−1

∫ ζ[σζx+µζ ]

−∞
f1(u) du, x < −

µζ

σζ

=
2

ζ + ζ−1
ζ−1F1(ζ[σζx+ µζ ]), x < −

µζ

σζ
.

Example 1

This example acts as an illustration of how skewness is introduced to a standardized
unimodal PDF. Now assume that u ∼ N(0, 1), then the PDF of u is given by

fN (u) =
1√
2π

e−
1
2
u2
.

Now applying (4.5) yields

fζ(u) =
2σζ

ζ + ζ−1

1√
2π

e−
1
2
u2
ζ , uζ ≡

{
ζ−1(σζu+ µζ) if u ≥ −µζ/σζ

ζ(σζu+ µζ) if u < −µζ/σζ

Figure 4.1 below shows these PDFs plotted over the interval [−5, 5].
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Figure 4.1. Skewness transform of a standard normal distribution with asymmetry parameter
ζ = 1.7.

We now present some extensions to the basic GARCH model, each of these extensions redefines
the conditional variance specification of hst,t [Ardia et al., 2019]. To avoid notational cluttering
in the following specifications, we omit the index that represents the specific state, st.

The first extension is the Exponential GARCH model, eGARCH, this extension tries to model
the leverage effect3, the specification is given by

ln(ht) ≡ α0 + α1(|ut−1| − E [|ut−1|]) + α2ut−1 + β ln(ht−1). (4.6)

The leverage effect predicts that α2 < 0 in the eGARCH specification. For the eGARCH
model the vector of model specific parameters are given by θ = (α0, α1,, α2, β)

′ . Positivity of
ht through the model specification and stationarity requires β < 1. Under these conditions
the unconditional variance is given by

σ2 = E[| Zt |2]eα0(1−β)−1
∞∏
i=1

E[eβ
i−1g(Zt)] (4.7)

where g(zt) = α1(|ut−1| − E [|ut−1|]) + α2ut−1 as shown by He et al. [2002]. The second
extension is the gjrGARCH model, which also tries to capture the leverage effect, here the
conditional variance is given by

ht ≡ α0 + (α1 + α2I {yt−1 < 0})y2t−1 + βht−1. (4.8)

Here I is an indicator function which takes the value 1 if the condition yt−1 < 0 is met
and 0 otherwise, here the leverage effect predicts that α2 > 0. Like with the eGARCH
the vector of additional variables are given by θ = (α0, α1, α2, β)

′ . Positivity requires
α0 > 0, α1 > 0, α2 ≥ 0, β ≥ 0 and stationarity requires α1 + α2 E[u

2
t I {ut < 0}] + β < 1.

Under these conditions the unconditional variance is given by

σ2 =
α0

1− α1 − α2 E[u2t I {ut < 0}]− β
. (4.9)

3The leverage effect is that negative stock returns increase the volatility more than positive returns.
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4.1.1 Model estimation & the Hamilton filter

Following Ardia et al. [2019], the estimation of the RS-GARCH model can be done using a
maximum likelihood approach if the problem of path-dependency is accounted for. The path-
dependency problem occurs when for a sample of size T and with n regimes the evaluation of
nT volatility paths becomes incomprehensible due to large sample sizes, note that even with
small sample sizes the evaluation of each path is incomprehensible. But the problem can be
avoided by following the procedure suggested by Ardia et al. [2018]. They suggested assuming
that the conditional variance hst,t follows n separate GARCH-type processes which evolve in
parallel.

The estimation scheme is then done iteratively by applying the Hamilton filter presented by
Hamilton [2010] which we reiterate below.
Now since the transition probabilities follow an unobserved Markov chain seen in (4.1) we need
to instead make inference on the states given the observations on yt, that is the inference will
be on the form

zt|t := (z1,t|t, . . . , zn,t|t)
′

zj,t|t := Pr(st = j | It; Ψ) = Pr(st = j | Yt = yt, It−1; Ψ), st ∈ {1, . . . , n}

Notice that by applying the law of total probability on zi,t|t−1 yields

zi,t|t−1 = Pr(st = i | It−1; Ψ)

=
n∑

k=1

Pr(st = i | st−1 = k, It−1; Ψ)Pr(st−1 = k | It−1; Ψ)

=
n∑

k=1

pk,i · zk,t−1|t−1.

Now using Bayes formula on zj,t|t yields

zj,t|t = Pr(st = j | Yt = yt, It−1; Ψ)

=
Pr(Yt = yt | st = j, It−1; Ψ)Pr(st = j | It−1; Ψ)

Pr(Yt = yt | It−1; Ψ)
,

=
fD(yt | j, It−1; Ψ) · zj,t|t−1

Pr(Yt = yt | It−1; Ψ)
,

now using the law of total probability, we can rewrite the denominator as follows

Pr(Yt = yt | It−1; Ψ) =

n∑
i=1

Pr(Yt = yt | st = i, It−1; Ψ)Pr(st = i | It−1; Ψ) (4.10)

=

n∑
i=1

fD(yt | i, It−1; Ψ) · zi,t|t−1, (4.11)

which finally yields

zj,t|t =
fD(yt | j, It−1; Ψ) · zj,t|t−1∑n
i=1 fD(yt | i, It−1; Ψ) · zi,t|t−1

zj,t|t−1 =
n∑

k=1

pk,i · zk,t−1|t−1.

(4.12)

The iterative calculation of zj,t|t−1 and zj,t|t is called the Hamilton filter. We will refer to
zj,t|t−1 as the predicted probability, since it is the predicted probability of being in state j
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given information up to t − 1, and we will refer to zj,t|t as the filtered probability, it can be
considered as an updated belief about the current state from zj,t|t−1.
Now the Hamilton filter can be more compactly written using matrix-vector notation, first
define

ηt := (η1,t, . . . , ηn,t)
′
,

ηi,t := fD(yt | i, It−1; Ψ),

the Hamilton filter can then be written compactly as

zt|t =
1

z
′
t|t−1ηt

zt|t−1 ⊙ ηt

zt|t−1 = P
′
zt|t

(4.13)

where ⊙ denotes the Hadamard product, i.e. element-wise product of the entries.

Remark 14. Note that the Hamilton filter needs initial values z1|0 to start the filtering,
Hamilton [1994] suggests z1|0 = n−11 or optimizing them through the MLE method described
below. Note that 1 is a vector of ones with dimension n.

As a final note on the Hamilton filter, we can also obtain smoothed probabilities due to an
algorithm developed by Kim [1994], the smoothed probabilities are given on vector form by

zt|T = zt|t ⊙
[
P
[
zt+1|T ⊘ zt+1|t

]]
(4.14)

where ⊘ denotes the Hadamard division, which is the element-wise division of the entries.

The next step is maximizing the likelihood, the likelihood function is given by

L(Ψ|IT ) ≡
T∏
t=1

fD(yt|Ψ, It−1), (4.15)

The conditional density of yt can be written more explicitly by using (4.10) and the expression
for zt|t−1 in (4.12), that is

fD(yt|Ψ, It−1) ≡
K∑
i=1

K∑
j=1

pi,jzi,t−1|t−1fD(yt|st = j,Ψ, It−1).

Then by applying a numerical optimization algorithm, like the Broyden–Fletcher–Goldfarb–Shanno,
BFGS, algorithm with appropriate restrictions and initial values of Ψ, we minimize the neg-
ative log-likelihood − lnL(Ψ|IT ) to get the MLE estimates Ψ̂.

The speed of the maximization procedure of the log-likelihood function can be improved upon
by choosing strategic initial values, see Ardia et al. [2019] for a procedure to choose initial
parameter values.

4.1.2 Summarizing the estimation procedure

The estimation procedure is done by applying the following steps.

1. Choose distribution of the innovation process and choose initial model parameters, Ψ,
either arbitrarily or using an algorithmic approach like the one presented in Ardia et al.
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[2019].4 Additionally, choose the initial z1|0 either arbitrarily between 0 and 1 or use
remark 14.

2. Apply the Hamilton filter by iterating (4.13) for all t.
3. Minimize the negative log-likelihood in (4.15) using the BFGS-algorithm, or some other

optimization algorithm, under the constraints imposed by the chosen GARCH model.
4. Repeat step 2. an 3. until convergence.

The estimation procedure summarised in the steps above is sometimes referred to as an
expectation-maximisation algorithm, EM-algorithm.

Application of the results in this chapter will be presented in section 5.2.

4Note that the initial parameters need to conform to specific model constraints.
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Chapter 5

Implementation & Results

This chapter will present the results of our study, the first part of this chapter is dedicated to
our panel study of the Covid-19 spread rate and the second part is for the study of regional
stock indices.

5.1 Panel Data Modeling

This section can be considered an extension of the preliminary study in section 2.1.
First off, we have included an additional variable to the regression which is a double lagged
dependent variable. An issue with this is that including lagged variables transforms the
modeling procedure into a dynamic panel data modeling scheme. Many of the statistical
properties of the estimators discussed in the theory section break down by including lagged
variables, specifically, including lagged variables introduces correlation between regressors and
the error component. That is, the error component is no longer orthogonal to the regressors
and the statistical properties of the estimators are dependent on this assumption, in fact, the
estimators are biased in this scenario, so to see why this problem arises consider the model

yi,t = yi,t−1δ +Xi,tβ + ui,t, i = 1, . . . , N ; t = 1, . . . , T

where ui,t = µi + νi,t is the usual one-way error component. Now

∆yi,t = ∆yi,t−1δ +∆Xi,tβ +∆ui,t, (5.1)

where ∆ is the first difference operator with respect to time, now consider

E[∆yi,t−1∆ui,t] = E[yi,t−1∆ui,t]− E[yi,t−2∆ui,t]

= E[yi,t−1∆ui,t]

= E[yi,t−1ui,t]− E[yi,t−1ui,t−1]

= −σ2
ν .

This shows that the regressor ∆yi,t−1 is not orthogonal to the error ∆ui,t. There are ways
to circumvent this problem, one way is to develop new estimators through the generalized
method of moments or use an instrumental variable that is not dependent on the error [Baltagi,
2021]. A possible instrument is the second-order autoregressive dependent variable, it is not
dependent on the error which is seen by

E[∆yi,t−2∆ui,t] = E[yi,t−2∆ui,t]− E[yi,t−3∆ui,t]

= E[yi,t−2∆ui,t]

= E[yi,t−2ui,t]− E[yi,t−2ui,t−1]

= 0.

This shows that ∆yi,t−2 can be used as an instrument, and it also shows that yi,t−2 is in fact
a candidate as an instrument, we opt to use ∆yi,t−2.

Now, the following table contains an overview of the panel data models, presented in chapter
3, planned for estimation.
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Pooled regression
One-way Individual FE Time FE Individual RE Time RE
Two-way FE RE

Table 5.1. Model overview, showing different one- and two-way error component regression models.

By table 5.1, there are a total of seven panel models, one being pooled regression, four of
them being one-way models and the remaining two being two-way models.

As a starting point, the pooled regression model, as seen in equation (3.1), is estimated using
the data described in table 2.1. For the estimation of the pooled regression model we use
OLS, the resulting parameter estimates, standard error, t-statistic and p-value are seen in the
following table.

Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

(Intercept) − 0.25857 0.00888 − 29.11866 0
SqrMeter.per.citizen.urban.areas − 0.000002 0.000001 − 3.45931 0.00054
lag.lag.log.Relative.growth.rate 0.94550 0.00181 523.49200 0
Vaccinated.pct 0.01498 0.00057 26.04824 0
Service.concentration.pct 0.00124 0.00192 0.64747 0.51733
Children.institutionalized.pct 0.01862 0.00760 2.44923 0.01432
Gini.index − 0.00001 0.00003 − 0.37434 0.70816
Stringency.index 0.00009 0.00001 6.85295 0
Stringency.index.I.Service.concentration.pct − 0.00027 0.00010 − 2.73637 0.00621
Stringency.index.I.Children.institutionalized.pct − 0.00159 0.00040 − 4.02879 0.00006

Observations: 67,326
R2: 0.848
Adjusted R2: 0.848

Table 5.2. Pooled regression, the columns show the name of the variables, the parameter estimates,
their (non-robust) standard errors, the t-statistic and the last column shows the p-value.
The number of observations and the R2 value are shown at the bottom of the table. Note that 0
means less than machine epsilon εM = 2.220 · 10−16.

While the R2 value indicates that the pooled regression model is performing well, the model
is not likely to be correctly specified from a socioeconomic standpoint. This is due to the
omission of multiple interactions and variables that actually drive the spread of the pandemic.
For example in the pooled regression, the percentage of vaccinated regressor has a positive
sign coefficient which is at least not the interaction we expected it to have. We suspect that
it spuriously captured the effect of some omitted variable. So to circumvent this, as we have
already discussed in section 2.1, we use available data and special model specifications, namely
the one- and two-way error component regression models.
Using these modeling schemes might bring us closer to a non-spurious regression, however, it
is unlikely that we can completely eliminate omission bias.

Recall the assumptions outlined in assumption 1 and remark 2 for the pooled regression to
be BLUE. Naturally, all of these assumptions are difficult to defend, which is why we try to
generalize with more general models.
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Each of the models in table 5.1 have been fitted to the data, and tables similar to table 5.2
can be found in appendix A for each of the models.
Specifically, table A.1 to A.6 shows the estimations for the four one-way models and table
A.7 and A.8 shows the estimations for the two two-way models. In the following section, we
will discuss the error component regressions.

5.1.1 Error Component Regressions

First off, the tables of the fixed effects regression models are done with OLS with robust error
correction and FGLS, this is due to the presence of autocorrelation in the residuals of the
OLS estimations.
To support this statement, we present the autocorrelation and partial autocorrelation
functions evaluated at increasing lags for our residuals of individual and time fixed effects
models in figure 5.1 below.

Figure 5.1. The ACF and PACF of the residuals of the individual and time fixed effects models.

The autocorrelations have been found by normalizing the residuals across the municipalities,
i.e. the residuals have been demeaned and re-scaled to have a variance of 1 within each
municipality, after re-scaling the correlation between the residual vector and its lagged values
the autocorrelations are calculated and they are seen in the plots above.
For calculations of the partial autocorrelations, we solved the Yule-Walker equations as
described by Borchers [2001].
It is clear that there is autocorrelation present in the residuals of both models, similar results
are found for the random effects models and the ACF and PACF can be seen in figure A.1 in
appendix A and they show similar patterns.
These patterns are the reason why we account for the inefficiency, imposed by the
autocorrelation, through robust standard errors in our OLS regressions and why we have
used FGLS.
It is important to keep in mind that the FGLS method for the individual effects is inefficient
due to the time dimension being larger than the individual dimension because FGLS estimates
T (T + 1)/2 unique covariance parameters, i.e. we do not have enough degrees of freedom.
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Using FGLS, the residuals are rid of autocorrelation in the time effects case as can be seen in
figure A.2 in appendix A, the individual case does not respond well to this, which might be
due to the lack of efficiency as T is much larger than N .

Following the estimation of the models we need to choose the appropriate model by using the
testing methods described in section 3.1.3 to evaluate if we should use pooling vs. random
effects vs. fixed effects.
Table 5.3 below shows the test results of pooling vs. random effects for both time and
individual effects.

Random effects VS. pooled regression
Individually Time

"Failed to reject the null hypothesis" "Failed to reject the null hypothesis"

Table 5.3. Results from random effects VS. pooled regression.

Table 5.3 shows that the test fails to reject the null hypothesis, H0 : σµ = 0 and H0 : σλ = 0,
in both cases, i.e. a pooled regression model is preferred over a random effects model.

Next in line is the test of fixed effects vs. pooled regression the results are shown in table 5.4
below

Fixed effects VS. pooled regression
Individually Time

"Fails to reject the null hypothesis" "Rejects the Null Hypothesis"

Table 5.4. Result from fixed effects VS. pooled regression.

Table 5.4 shows that the null hypothesis, H0 : µ1 = µ2 = · · · = µN−1 = 0 and
H0 : λ1 = λ2 = · · · = λT−1 = 0, is rejected only for time fixed effects models. Hence
the test suggests a fixed effect model over a pooled regression model for time effects.
The tests so far suggest that fixed effects models are preferred over the random models, but
for completion’s sake we also apply the Hausman test for fixed vs. random effects, the results
are shown in table 5.5 below

Random effects VS. fixed effects
Individually Time

"Failed to Reject the Null Hypothesis" "Rejects the Null Hypothesis"

Table 5.5. Result from random effects VS. fixed effects.

Table 5.5 shows that for the individual effects the test fails to reject the null hypothesis and
suggests a random effects model, and for the time effects model, the fixed version is preferred.

Considering these three tests, there is a bit of ambiguity for the Hausman test, so let us
consider what the LM test in 3.22 and the Hausman test in 3.23 actually test for.
If the LM-test fails to reject the null hypothesis we can assume that the variance of the
individual effects is zero or very close, which in this case means that Var(β̂RE) ≈ Var(β̂PR)

which actually leads the Hausman test to test fixed effects vs. pooling.
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Considering this, the Hausman test agrees with the F-test for FE vs. pooled as seen by
comparing the results in table 5.4 and 5.5.

As a supplant to the tests above, we can compare the different estimates from the regression
to help us decide on a proper model. E.g. consider that we apply a pooled regression, a
random effects regression and a fixed effects regression, if the estimates in the fixed effects
model are vastly different from the pooled regression and the random effects regression it is
a sign of omission bias in the random effects and pooled regression. In this case, the fixed
effects model is the proper model, however, if there is not much difference in the estimates we
will have to rely on the LM-test to sort out whether it should be a RE or pooled model.

Comparing the estimates from pooled regression in table 5.2 and the fixed effects estimates
in table A.2, we see that the estimates are in fact very close to each other suggesting that we
should not use individual fixed effects, as the tests also suggest.
Doing these comparisons with the rest of the tables in appendix A and using the results from
the tests above, suggest that we should use time fixed effects. Especially note that the sign
changes on some of the estimates when using time fixed effects.
So there is no evidence for individual effects at all which is why a two-way error component
model might be over-parameterized, however, for completion’s sake, we have also tested
random vs. fixed effects, using the Hausman test, for the two-way case which is seen in
table 5.6 below.

Fixed effects VS. pooled regression
"Rejects the null hypothesis"

Table 5.6. Two-way random effects VS fixed effects.

The test suggests that we should use fixed effects in the two-way random case, however,
comparing the two-way fixed effects estimates with the one-way time fixed effects model
seen in table A.7 and A.4, respectively, we see that the two-way case does not change the
estimates considerably. This suggests that the one-way time fixed effects model is adequate
and we present the FGLS estimates again in table 5.7. For the robust OLS estimates see table
A.3 in appendix A.

Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

SqrMeter.per.citizen.urban.areas − 0.000003 0.0000003 − 12.03464 0
lag.lag.log.Relative.growth.rate 0.49475 0.00346 143.02200 0
Vaccinated.pct − 0.03366 0.00199 − 16.93296 0
Service.concentration.pct 0.00895 0.00075 11.91704 0
Children.institutionalized.pct 0.02300 0.00303 7.58774 0
Gini.index 0.00002 0.00001 1.29680 0.19470
Stringency.index.I.Service.concentration.pct − 0.00038 0.00005 − 7.62481 0
Stringency.index.I.Children.institutionalized.pct − 0.00113 0.00021 − 5.40497 0.0000001

Observations: 67,326
R2: 0.935
Adjusted R2: 0.935

Table 5.7. FGLS estimation of time fixed effects.
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Recall that we mentioned the VIF in section 2.1 to check for multicollinearity, considering
that the standard errors and p-values are so low as they are; we do not consider the VIF.

5.1.2 Spatial Error Component Regression Model

A final extension to our error component regression models is spatial autocorrelation. As
explained in section 3.3, the introduction of a spatial error component regression model is to
account for spillover effects between municipalities.
Unfortunately, the software we use does not support a spatial weight matrix WN that has zero
columns, which is whenever we have municipalities that do not border other municipalities,
e.g. island municipalities.

Given our previous findings, we limit our examination to the one-way time fixed effects model.
Now let the model be given as seen in equation (3.35) and with error components as in
equations (3.36) and (3.37).

The estimation of our model uses the maximum likelihood estimation described in section 3.3
with the parameters from table 5.7 as initial values. Following this, the result is seen in the
table below.

Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

rho − 0.00899 0.00110 − 8.18607 0
lag.lag.log.Relative.growth.rate 0.60236 0.00338 178.26090 0
SqrMeter.per.citizen.urban.areas − 0.00001 0.0000004 − 13.58425 0
Vaccinated.pct − 0.06291 0.00355 − 17.72975 0
Service.concentration.pct 0.01371 0.00135 10.12963 0
Gini.index 0.00002 0.00002 0.91546 0.35995
Children.institutionalized.pct 0.03617 0.00505 7.15466 0
Stringency.index.I.Service.concentration.pct − 0.00088 0.00007 − 13.35159 0
Stringency.index.I.Children.institutionalized.pct − 0.00285 0.00027 − 10.40108 0

Observations: 67,326
R2: 0.938
Adjusted R2: 0.938

Table 5.8. Spatial one-way time fixed effects model estimations.

Table 5.8 shows the spatial time fixed effects model and the main difference going from the
one-way time fixed effects is that we have a spatial correlation parameter, ρ. ρ’s estimate is
a bit small but it is significant.
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5.2 Regime Switching Results

Note that from this point forward all the time series will be restricted to an in-sample time
period 2018-01-02 to 2021-11-16, this is to ensure that the time series are the same length,
and the total amount of data points are then 966. Secondly, we wish to balance the amount
of observations from before and during the Covid-19 pandemic starting at the beginning of
2020. Thirdly, we wish to apply an out-of-sample test to determine the best model later in
this section.
The out-of-sample data is a bit unorthodox, we have chosen to make the out-of-sample data
as a combination of a volatile period and a tranquil period in order to test our models under
a transition back to tranquil market conditions.
So to elaborate further, the first half of the out-of-sample data ranges from 2021-11-17 to
2022-04-07, which is the 99 days following from where the in-sample period ends. The second
half ranges from 2017-08-09 to 2017-12-29, which is the 101 days before the in-sample period
begins. So with this out-of-sample period, we try to capture the ongoing increase in volatility
imposed by the pandemic in the first half and simulate a return to tranquil market conditions
as before the pandemic in the second half.

The goal now is to use the regime switching GARCH framework presented in chapter 4, to
further examine the conditional distribution of

yt | It−1.

Recall that for the estimation of the GARCH models we need the processes in question to
exhibit no autocorrelation and that this was the case under assumption 6, this is the case for
the log returns that have been filtered through the conditional mean models we presented in
section 2.2.
For notational brevity we now denote these filtered log returns with the index abbreviations,
that is, we now wish to model

yt | (st, It−1) ∼ D(0, hst,t, ξst), ∀t

where yt is either OMXC25t, NJt, MJt, SDt, RSt or HSt.

Now using the model specifications and distributions presented in section 4.1, we estimate the
possible combinations of GARCH specifications and distributions.
In other words, let the set of different distributions, including the normal, Student’s t and GED
distributions, and their skewed variations, be denoted by D and let the set of different GARCH
specifications, including the standard GARCH (sGARCH), eGARCH and gjrGARCH, be
denoted by S. Then we fit a model for each element in the Cartesian product of these two
sets, that is

D × S ≡ {(d, s) | d ∈ D and s ∈ S},

for each of the indices.
Summarising, table 5.9 below shows the different combinations and how they are abbreviated.
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Model Specification Distribution Abbreviation

sGARCH Normal s.no
sGARCH Student’s t s.st
sGARCH GED s.ge
sGARCH Skewed Normal s.sn
sGARCH Skewed Student’s t s.ss
sGARCH Skewed GED s.sg
eGARCH Normal e.no
eGARCH Student’s t e.st
eGARCH GED e.ge
eGARCH Skewed Normal e.sn
eGARCH Skewed Student’s t e.ss
eGARCH Skewed GED e.sg
gjrGARCH Normal g.no
gjrGARCH Student’s t g.st
gjrGARCH GED g.ge
gjrGARCH Skewed Normal g.sn
gjrGARCH Skewed Student’s t g.ss
gjrGARCH Skewed GED g.sg

Table 5.9. Combinations of model specification, distribution, and the combination’s abbreviation.

Initially, we only considered 2 regimes for the modeling procedure, however, as the following
results will show, there is evidence for using 3 regimes.
Note, the model selection procedure is discussed in the next section, the rest of the current
section presents an example of predicted conditional volatility and discusses the number of
regimes. Figure 5.2 below shows the OMXC25t process with smoothed probabilities calculated
using (4.14) in the first plot, and the second plot shows the estimated conditional volatility.

Figure 5.2. Regime Switching gjrGARCH model with normal distributed innovations.
The blue curve is the smoothed probabilities and the orange dashed curve is the filtered probabilities.
The black dots are residuals of the fitted ARMA model scaled into an interval from zero to one. The
blue dashed lines indicates the first Covid-19 incident in Denmark. In the second plot, the black curve
denotes the conditional volatility predicted with the coloured sections representing a state with higher
unconditional volatility according to the smoothed probabilities.
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Note that the model specification and distribution have been chosen for illustrative purposes
in figure 5.2.
By casual inspection of figure 5.2, it seems like just before 2019 we have an increase in volatility
that is similar to the conditional volatility during the pandemic, additionally, there is a major
spike in volatility right around the first incidence of Covid-19 in Denmark, this indicates that
there might be a third regime during the beginning of the pandemic.

This motivates allowing modeling for both 2 and 3 regimes. Figure 5.3 below shows the
3 regime predictions of the conditional volatilities. Again, the model distribution and
specification haven been chosen for illustrative purposes.

Figure 5.3. Regime Switching standard sGARCH model with normal distributed innovations.
The green, orange and red curves are the smoothed probabilities being in either of the 3 regimes. The
colors are chosen to represent the unconditional volatility imposed by the estimated models in each
regime, where the green regime has least unconditional volatility, red has the most and orange is in
between. The black dots are residuals of the fitted ARMA model scaled into an interval from zero to
one. The blue dashed lines indicate the first Covid-19 incident in Denmark. In the second plot, the
black curve denotes conditional volatility.

For the case of 3 regimes as seen in figure 5.3 an increase in the number of regimes seemingly
improves the outcome as it captures the initial shock of the crisis, however, the casual
inspections of these plots are not a formal way to select a model, the next section presents a
way to select a proper model.

5.2.1 Conditional Coverage Test

In order to find the most suitable combination of model and distribution, a deeper evaluation
is required. For such an evaluation we will use a test that evaluates the models’ accuracy in
predicting out of sample value at risk (VaR), that is, which model is the most accurate in
terms of correctly predicting the α−quantile loss. The expected α−quantile loss refers to the
expected proportion α of exceedance, that is the number of expected exceedance points for
the confidence level 1− α [Ardia et al., 2019].

53



Group 1.204c 5. Implementation & Results

VaR is a financial metric that estimates the risk of an investment. More specifically VaR is
an index that quantifies the risk of potential losses for a company or an investment over a
specified period of time.

Let Y be a random variable that represents the outcome of an investment and 0 < α < 1 the
unspecified level of risk. The value at risk of Y is then given by

VaR1−α(Y ) := inf{y ∈ R : P(Y < −y) ≤ α},

where VaR1−α(Y ) represents the extra amount of capital it needs to reduce the probability
of bankruptcy to α.
The notion of VaR usually only considers the lower quantile risk, however, it is not uncommon
to take short positions in an asset, in that case, the VaR operates on the upper quantile, so
to incorporate both ends we redefine VaR for our purposes to

VaRl
1−α(Y ) := inf{y ∈ R : P(Y ≤ −y) ≤ α

2
}

VaRu
1−α(Y ) := inf{y ∈ R : P(−Y ≤ −y) ≤ α

2
}

and now

V aR1−α(Y ) := {V aRl
1−α(Y ), V aRu

1−α(Y )}. (5.2)

Figure 5.4 below shows an example of an out of sample VaR forecast for an arbitrary
combination of model specification and distribution for OMXC25.

Figure 5.4. Out of sample VaR prediction, the green line is the VaR90, the red line is VaR95 and the
blue line is VaR99. Exceedance points are represented with squared dots with colours representing the
level of exceedance. The data after the purple dashed line is the out-of-sample and the black dashed
line at 2022-04-06 represents the tranquil market period.

Figure 5.4 above is made by using a one-step ahead forecast of the VaR using (5.2), that is

VaR1−α(Yt+1|(st+1, It)),

for all t in the out-of-sample period and for each α ∈ {0.01, 0.5, 0.1}, additionally,
Yt+1|(st+1, It) is the conditional CDF of OMXC25t. The states are chosen using the predicted
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probabilities from the Hamilton filter as described in chapter 4.

As a measure of model performance, we introduce a backtesting hypothesis test, the
conditional coverage, cc, test. This test is designed to determine if the proportion of
exceedance is accurate in relation to the VaR confidence level 1 − α. The cc test aims to
simultaneously test, for a given confidence level 1− α, that for our estimated model we have
the correct failure rate and independence of the exceedance points. The correct failure rate
refers to; the number of exceedance points must be consistent with the VaR confidence level.
While the independence of exceedance points refers to that any exceedance points must be
independent of previous exceedance points.

The cc test is a likelihood ratio test following a two-part setup, given that the test itself
simultaneously tests for correct failure rate and independency. The null hypothesis and the
likelihood ratio test equations are shown and briefly explained below, however, for further
details and derivation of the test see Dumitrescu et al. [2012] and Roccioletti [2015].

The first part of the cc test tests the null hypothesis

H0 : p = p̂ ≡ x

T
.

Here p denotes the theoretical failure rate, p̂ the observed failure rate, x the number of
exceedance points and T the total number of observations. Continuing from this, the likelihood
ratio test is then given by

LRuc = −2ln

(
(1− p)T−xpx[

1−
(
x
T

)]T−x ( x
T

)x
)
.

The subscript uc denotes the unconditional coverage test. The likelihood ratio test is
derived by considering the violation process, the process that makes a point exceed a level of
confidence, and is binomial distributed. Under the null hypothesis, the likelihood ratio test
asymptotically follows a chi-square distribution with one degree of freedom χ2

1.

The independency part of the cc test has null hypothesis

H0 : π̂01 = π̂11.

Here π̂01 denotes the estimated probability of having violations tomorrow given today had
no violations and π̂11 denotes the estimated probability of having violations tomorrow given
violations today. Let the T00 denote the amount of observations where we have no violation
today and no violation tomorrow, T01 the amount of observations with no violation today and
violations tomorrow, T10 the amount of observations with violation today and no violation
tomorrow and lastly T11 the amount of observations with violation today and tomorrow.
Now the estimates of the probabilities are given by

π̂01 =
T01

T00 + T01
, π̂11 =

T11

T10 + T11
.

The likelihood ratio test is now given by

LRind = −2ln

(
(1− π)T00+T10πT01+T11

(1− π01)T00πT01
01 (1− π11)T10πT11

11

)
,

where π = T01+T11
T00+T01+T10+T11

. From this, the likelihood ratio test asymptotically follows a
chi-squared distribution with one degree of freedom χ2

1.
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Now combining these likelihood ratio tests, we present the cc test which is given on the
following form

LRcc = LRuc + LRind. (5.3)

As the test is a combination of two other likelihood ratio tests that each follows a chi-
squared distribution with one degree of freedom we then have that LRcc follows a chi-squared
distribution with two degrees of freedom χ2

2.

The test is conducted for both lower and upper VaR and for 90%, 95% and 99% confidence
levels, not one but six likelihood ratio tests are calculated for each combination of model
and distribution. As an example consider the test for the OMX C25 index using a 2-regime
eGARCH model with GED-distributed innovations, the cc test results for this combination
are shown in table 5.10 below.

Exceedance Test

VaR expected.exceed actual.exceed LRstat p-value Decision

VaR90l 10 14 4.881 0.087 Fail to Reject H0
VaR90u 10 6 3.881 0.144 Fail to Reject H0
VaR95l 5 9 11.277 0.004 Reject H0
VaR95u 5 4 0.366 0.833 Fail to Reject H0
VaR99l 1 5 10.977 0.004 Reject H0
VaR99u 1 1 0.01 0.995 Fail to Reject H0

Table 5.10. Conditional coverage test OMXC25, sGARCH, sstd.

Table 5.10 shows the results for the cc test on the eGARCH GED model for three confidence
levels divided into upper and lower levels, so a total of six tests have been conducted for a
single model.

The desired result is that we fail to reject the null hypothesis in most cases, so the results
like the ones shown in the rightmost column can be used as a model selection criteria. Then
limiting the selection to models and distribution combinations in which the test result fails to
reject the null hypothesis for as many VaR confidence levels as possible, would narrow down
the choices.
However, simply counting the amount of failed rejections sometimes leave us with multiple
models, so to choose between the remaining models, we need to find a different measure to
select between them. In order to do so, we use the cc test framework to develop another
test, we know from the tests above that the cc test follows a chi-squared distribution with two
degrees of freedom which means that a sum of the six LR-statistics from testing the upper and
lower VaR at the 3 confidence levels must follow a chi-squared distribution with 12 degrees of
freedom under all the respective null hypotheses. So to summarize, we get the following test
statistic.

LRscc = LR90l + LR90u + LR95l + LR95u + LR99l + LR99u. (5.4)

So (5.4) is a likelihood ratio test which follows a chi-squared distribution with 12 degrees
of freedom, χ2

12, under the combined null hypotheses of each of the test statistics. Here scc

stands for summarized conditional coverage test. This test allows us to compare the remaining
models by then choosing the model producing the highest p-value.
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The scc test results for the 2 regime models are shown in the table 5.11 below.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.no 32 37 34.393 0.0005847 4
e.ss 32 35 25.101 0.0143515 4
g.sn 32 35 27.362 0.0068510 4
s.ge 32 39 31.392 0.0017162 4
s.no 32 40 31.363 0.0017338 4
s.sg 32 36 23.420 0.0243647 4
s.sn 32 37 29.381 0.0034576 4
s.ss 32 38 22.922 0.0283955 4
s.st 32 39 31.392 0.0017162 4

Table 5.11. Summarized conditional coverage test OMXC25, 2 Regimes.

From table 5.11 we see the first column containing an overview of the models conforming with
the abbreviations presented in table 5.9.
The test results for the 3 regime models are seen in table 5.12 below.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

g.sn 32 36 23.163 0.0263736 5

Table 5.12. Summarized conditional coverage test OMXC25, 3 regimes.

The results shown in tables 5.11 and 5.12 imply, by the number of accepted null hypotheses,
that the most suitable model and distribution combination for the OMX C25 index is a 3
regime gjrGARCH model with a skewed normal distribution.

Figure 5.5 below shows the smoothed probabilities for this model.

Figure 5.5. Regime Switching gjrGARCH Model with skewed normal distribution for OMXC25.
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It is seen here that there are clear signs of regime switching just prior to 2019 and at the start
of the Covid-19 pandemic.

Regional Results

Doing the same procedures for the regional indices as for the OMXC25 index yields the models
presented in table 5.13 below.

Index Models LRstat pvalue # Accepted H0 Regimes

OMXC25 g.sn 23.163 0.03 5 3
NJ e.sn 5.790 0.93 6 2
MJ s.no 9.000 0.70 6 3
SD g.no 8.570 0.74 6 3
HS s.sn 7.430 0.68 5 3
RS s.sn 9.749 0.64 6 3

Table 5.13. The best model for each region.

Tables A.10 to A.19 in appendix A show the test results for each regional index.

The smoothed probabilities and conditional volatilities of the best models for the regional
indices can be seen in figures 5.6 to 5.9 below.

Figure 5.6. Regime switching eGARCH model with skewed normal distribution for NJ.
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Figure 5.7. Regime switching sGARCH model with normal distribution for MJ.

Figure 5.8. Regime switching gjrGARCH model with normal distribution for SD.

Figure 5.9. Regime switching sGARCH model with skewed normal distribution for HS.
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Figure 5.10. Regime switching sGARCH model with skewed normal distribution for RS.

5.2.2 Estimates and Interpretation

By causal inspection of the plots seen in figure 5.6 to 5.10 it is seen that there is an increase
in conditional volatility, in each index, after the first case of Covid-19 in Denmark, however,
some of the plots are a bit difficult to interpret due to the rather frantic movement of the
filtered and smoothed probabilities.
So to get a better interpretation we present the estimates of each model. The model estimates
for the OMXC25 process are seen in table 5.14 below

Table 5.14. 3-regime gjrGARCH model estimates with skewed normal distributed innovations,
OMXC25.

Estimate Std. Error t value Pr(>|t|)

α0,1 0.00131 0.00047 2.784940e+00 0.00268
α1,1 0.00316 0.00109 2.891670e+00 0.00192
α2,1 0.00061 0.00014 4.476200e+00 0.00000
β1 0.99163 0.00160 6.210291e+02 0.00000
ζ1 1.00252 0.14964 6.699740e+00 0.00000
α0,2 0.07019 0.00930 7.547540e+00 0.00000
α1,2 0.00009 0.00002 5.050590e+00 0.00000
α2,2 0.15105 0.02447 6.172750e+00 0.00000
β2 0.82357 0.01300 6.335847e+01 0.00000
ζ2 0.86140 0.08508 1.012519e+01 0.00000
α0,3 0.16053 0.02033 7.895810e+00 0.00000
α1,3 0.00004 0.00001 5.386870e+00 0.00000
α2,3 0.15267 0.02135 7.150380e+00 0.00000
β3 0.83058 0.01067 7.781798e+01 0.00000
ζ3 0.74209 0.05291 1.402492e+01 0.00000
p1,1 0.99244 0.00921 1.077873e+02 0.00000
p1,2 0.00000 0.00000 2.347650e+00 0.00945
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Table 5.14. 3-regime gjrGARCH model estimates with skewed normal distributed innovations,
OMXC25. (continued)

Estimate Std. Error t value Pr(>|t|)

p2,1 0.04397 0.00000 1.172220e+06 0.00000
p2,2 0.95603 0.00066 1.451625e+03 0.00000
p3,1 0.00000 0.00158 2.400000e-04 0.49990
p3,2 0.00426 0.00000 6.031533e+08 0.00000

Each of the parameter estimates in the table conforms with the notation presented in (4.8)
for the gjrGARCH model, where the second subscript represents the regime.

To check the stationarity condition, α1+α2 E[u
2
t I {ut < 0}]+β < 1, for the gjrGARCH model

we need to address the expectation E[u2t I {ut < 0}]. By Trottier and Ardia [2016] it is given
as

E[u2t I{ut < 0}] = 2

(ζ + ζ−1)σ2
ζ

(
1 +M2

1 (ζ
4 − 1)

2ζ3
+ Iζ

)
where f1 is a standard normal PDF in our case, additionally, Iζ is given by

Iζ ≡

{
ζ3
∫ µζζ

−1

0 (u− µζζ
−1)2f1(u)du if ζ ≥ 1

−1
ζ3

∫ 0
µζζ

(u− µζζ)
2f1(u)du if ζ < 1

By applying these formulas we get the values 0.9950931, 0.9026705 and 0.9156124 for each
regime, respectively. This indicates that the process is stationary under all regimes, however,
the model under the first regime does come close to non-stationarity.
These values are also often referred to as persistence parameters, the higher the value the
higher the volatility persistence is. For this model, all the values of persistence are high.

Recall that the leverage effect predicts α2 > 0 in the gjrGARCH model, it is clear that the
model under the first regime does not exhibit a considerably large leverage effect, however,
under the second and third regimes, it is larger and significant.
Now consider the ambient volatility, α0,k, for each state, it is clearly higher in regimes 2 and
3 than in 1.

The points below summarise the results for the OMXC25 regimes

• Regime 1 has 1) low ambient volatility, 2) high volatility persistence and 3) no leverage
effect.

• Regime 2 has 1) medium ambient volatility, 2) high volatility persistence and 3)

significant leverage effect.
• Regime 3 has 1) high ambient volatility, 2) high volatility persistence and 3) significant

leverage effect.

Next up is the results for the NJ index, the estimates are shown in table 5.15 below.
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Table 5.15. 2-regime eGARCH with skewed distributed innovations for NJ.

Estimate Std. Error t value Pr(>|t|)

α0,1 -0.01639 0.00724 -2.26354 0.01180
α1,1 0.03762 0.01574 2.38949 0.00844
α2,1 -0.04521 0.01600 -2.82477 0.00237
β1 0.99077 0.00394 251.57417 0.00000
ζ1 0.89618 0.07586 11.81392 0.00000
α0,2 0.08584 0.02972 2.88878 0.00193
α1,2 0.21868 0.06911 3.16443 0.00078
α2,2 -0.03194 0.04994 -0.63960 0.26122
β2 0.97532 0.01210 80.57744 0.00000
ζ2 1.01201 0.10473 9.66305 0.00000
p1,1 0.81771 0.13412 6.09702 0.00000
p2,1 0.42266 0.08149 5.18659 0.00000

Applying similar arguments as for the OMXC25 3-regimes gjrGARCH estimates we summarize
the regime characteristics below. First, for this model, we get the following persistence
parameter for the first and second regimes 0.9907677 and 0.9753219. Following these results
and the results in table 5.15 we get the following characteristics.

• Regime 1 has 1) low ambient volatility, 2) high volatility persistence and 3) low leverage
effect

• Regime 2 has 1) low ambient volatility, 2) high volatility persistence and 3) low leverage
effect

Next up is the results for the MJ index, the estimates are shown in table 5.16 below.

Table 5.16. 3-regime sGARCH with normal distributed innovations for MJ.

Estimate Std. Error t value Pr(>|t|)

α0,1 0.00891 0 3.607293e+21 0
α1,1 0.07180 0 6.835630e+20 0
β1 0.92209 0 2.791559e+23 0
α0,2 0.30298 0 2.433824e+19 0
α1,2 0.00011 0 3.472469e+19 0
β2 0.83770 0 1.779429e+20 0
α0,3 17.49965 0 7.544683e+18 0
α1,3 0.00000 0 5.000504e+07 0
β3 0.34742 0 3.328176e+19 0
p1,1 0.03349 0 2.563249e+19 0
p1,2 0.96651 0 4.996321e+22 0
p2,1 0.04121 0 6.683045e+19 0
p2,2 0.88225 0 5.957779e+19 0
p3,1 0.00103 0 6.808969e+29 0
p3,2 0.21004 0 8.776683e+19 0
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For MJ we get the following persistence parameter for the first, second and third regime
0.9938951, 0.8378054 and 0.3474239, respectively. And as before, a summary of the regime
characteristics, using table 5.16 and the persistence parameters, is seen in the following points.

• Regime 1 has 1) low ambient volatility, 2) high volatility persistence and 3) no leverage
effect

• Regime 2 has 1) low ambient volatility, 2) high volatility persistence and 3) low leverage
effect

• Regime 3 has 1) high ambient volatility, 2) medium high volatility persistence and 3)

no leverage effect

Now for the results for the SD index, the estimates are shown in table 5.17 below.

Table 5.17. 3-regimes gjrGARCH with normal distributed innovations for SD.

Estimate Std. Error t value Pr(>|t|)

α0,1 0.04999 0 2.390489e+19 0
α1,1 0.04709 0 4.996165e+11 0
α2,1 0.00010 0 5.000267e+07 0
β1 0.89303 0 4.132981e+20 0
α0,2 0.11185 0 7.094146e+19 0
α1,2 0.02367 0 8.889523e+19 0
α2,2 0.00014 0 1.627314e+20 0
β2 0.94483 0 2.448118e+21 0
α0,3 0.40559 0 5.170880e+20 0
α1,3 0.10258 0 5.481881e+20 0
α2,3 0.02618 0 7.752122e+20 0
β3 0.87122 0 6.589810e+22 0
p1,1 0.94509 0 2.262618e+23 0
p1,2 0.00000 0 5.572861e+10 0
p2,1 0.00339 0 9.991112e+27 0
p2,2 0.99661 0 6.466951e+22 0
p3,1 0.33036 0 3.395878e+22 0
p3,2 0.00609 0 9.899587e+28 0

For SD we get the following persistence parameter for the first, second and third regimes
0.9401759, 0.9026705 and 0.9156124. Using these and table 5.17 a summary of the regime
characteristics is seen in the following points.

• Regime 1 has 1) low ambient volatility, 2) high volatility persistence and 3) low leverage
effect

• Regime 2 has 1) low ambient volatility, 2) high volatility persistence and 3) low leverage
effect

• Regime 3 has 1) medium ambient volatility 2) high volatility persistence and 3) low
leverage effect

The estimates for the HS index are shown in table 5.18 below.
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Table 5.18. 3-regimes sGARCH with skewed normal distribution for HS.

Estimate Std. Error t value Pr(>|t|)

α0,1 0.02019 0.01904 1.060150e+00 0.14454
α1,1 0.01103 0.01838 6.004200e-01 0.27411
β1 0.94379 0.03571 2.642837e+01 0.00000
ζ1 1.11650 0.15874 7.033600e+00 0.00000
α0,2 3.57593 2.07085 1.726790e+00 0.04210
α1,2 0.16889 0.40181 4.203300e-01 0.33712
β2 0.01083 0.46678 2.320000e-02 0.49075
ζ2 0.98650 0.12563 7.852480e+00 0.00000
α0,3 0.03753 0.03227 1.163110e+00 0.12239
α1,3 0.10516 0.25455 4.131200e-01 0.33976
β3 0.88654 0.02188 4.052506e+01 0.00000
ζ3 0.60184 0.09504 6.332790e+00 0.00000
p1,1 0.65669 0.17327 3.790010e+00 0.00008
p1,2 0.34331 0.00000 1.694163e+07 0.00000
p2,1 0.65323 28.16485 2.319000e-02 0.49075
p2,2 0.31884 0.01862 1.712633e+01 0.00000
p3,1 0.00000 0.00014 0.000000e+00 0.50000
p3,2 0.01942 0.01163 1.670270e+00 0.04743

For HS we get the following persistence parameter for the first, second and third regimes
0.9548287, 0.1797218 and 0.9917053. With these and table 5.18 a summary of the regime
characteristics is seen in the following points.

• Regime 1 has 1) low ambient volatility, 2) high volatility persistence and 3) no leverage
effect

• Regime 2 has 1) high ambient volatility, 2)low volatility persistence and 3) no leverage
effect

• Regime 3 has 1) low ambient volatility, 2) high volatility persistence and 3) no leverage
effect

Finally, the estimates for the RS index are shown in table 5.19 below.

Table 5.19. 3-regimes sGARCH with skewed normal distributed innovations for RS.

Estimate Std. Error t value Pr(>|t|)

α0,1 0.01154 0 2.487513e+19 0
α1,1 0.23782 0 9.033776e+19 0
β1 0.18988 0 3.504945e+19 0
ζ1 1.00251 0 4.340145e+19 0
α0,2 0.01155 0 9.999999e+07 0
α1,2 0.23796 0 5.262798e+08 0
β2 0.18999 0 1.332191e+08 0
ζ2 1.00527 0 5.101011e+07 0
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Table 5.19. 3-regimes sGARCH with skewed normal distributed innovations for RS. (continued)

Estimate Std. Error t value Pr(>|t|)

α0,3 0.66558 0 6.746594e+18 0
α1,3 0.10014 0 8.000525e+18 0
β3 0.87248 0 6.925838e+20 0
ζ3 1.30108 0 6.496285e+18 0
p1,1 0.21740 0 1.178309e+20 0
p1,2 0.09966 0 1.207471e+19 0
p2,1 0.09960 0 8.654950e+20 0
p2,2 0.21722 0 2.647527e+19 0
p3,1 0.31443 0 8.400883e+19 0
p3,2 0.31420 0 1.266224e+20 0

For RS we get the following persistence parameter for the first, second and third regime
0.4276935, 0.4279578 and 0.9726199. Using these parameters and table 5.19 a summary of
the regime characteristics is seen in the following points.

• Regime 1 has 1) low ambient volatility, 2) medium high volatility persistence and 3) no
leverage effect

• Regime 2 has 1) low ambient volatility, 2) medium high volatility persistence and 3) no
leverage effect

• Regime 3 has 1) high ambient volatility, 2) high volatility persistence and 3) no leverage
effect

5.2.3 Evaluation of Market Conditions before and During the Pandemic

An evaluation of the market conditions before and during the pandemic is done by considering
the volatility imposed by the estimated models.

The unconditional volatility can be used as a tool for evaluation by comparing the
unconditional volatility before and during the pandemic.
Using the formulas for unconditional variance, presented in (4.3), (4.7) and (4.9) for the
sGARCH, eGARCH and gjrGARCH, respectively, we find the unconditional volatility under
each regime by finding the square root of the unconditional variances. That is, we find

σ2 | k = E[y2t | k],

hence

σ | k =
√

E[y2t | k],

where k represents the specific regime. The unconditional variances are shown in table 5.20
below.
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Unconditional Volatility

Index σ|k = 1 σ|k = 2 σ|k = 3

OMXC25 0.5166 0.8344 1.3135
NJ 0.6535 2.5043 NA
MJ 1.2082 1.3667 5.1784
SD 0.9141 1.8865 5.5622
HS 0.6686 2.0879 2.1271
RS 0.1420 0.1421 4.9304

Table 5.20. Unconditional volatility under each regime for each index.

Now since the regimes are changing before and during the pandemic, the (partly)1

unconditional volatilities during these periods are difficult to calculate, what we wish to
evaluate is

σ | s1, . . . , sT =
√

E[y2t | s1, . . . , sT ] (5.5)

where the states are given by the smoothed probabilities. The expression can be estimated
by applying a Monte Carlo method, however, we opt to do something different.

Start by applying the law of total variation to the expectation of σ2 | s1, . . . , sT such that

E[σ2 | s1, . . . , sT ] = E[y2t ]−Var(E[yt | s0, . . . , sT ])
= E[y2t ],

now apply a special case of the law of total expectation such that

E[σ2 | s1, . . . , sT ] = E[y2t ]

=
n∑

i=1

E[y2t | st = i]P (st = i).

We know the values of E[y2t | st = i] as they are the unconditional variances under each
regime, however, the actual value of P (st = i) would require that we know the true values
of P (s0 = i) for all i ∈ {1, . . . , n} which are unknown. Instead we estimate the values of
P (st = i) by

E[P (st = i)] =
1

T

T∑
j=1

I{sj = i}

where the values of sj are the smoothed probabilities calculated with the Hamilton filter. This
means that we have an estimator of the unconditional variance given by

σ̂2 | s1, . . . , sT =

n∑
i=1

E[y2t | st = i] E[P (st = i)]. (5.6)

Now an estimator of the unconditional volatility is given by finding the square root of (5.6).
The results from applying this estimator before and during the pandemic are seen in table 5.21.
Additionally, the table includes the mean conditional volatilities during the same periods.

1It is not entirely unconditional as the states are given.
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σ̂ | s1, . . . , sT Mean Conditional Volatility

Index Before During % Increase Before During % Increase

OMXC25 0.7812 1.0259 31.3268 0.9124 1.2113 32.7542
NJ 0.9012 0.9893 9.7730 0.9694 1.2970 33.7952
MJ 1.4164 2.2709 60.3266 2.2144 2.8003 26.4612
SD 1.0786 1.7296 60.3547 1.1602 1.7087 47.2706
HS 1.1739 1.5907 35.4984 1.3203 1.5533 17.6459
RS 2.5585 3.0373 18.7143 2.1400 2.2786 6.4745

Table 5.21. Unconditional and mean conditional variance before and during the pandemic.

This concludes this chapter, the following chapter will discuss and conclude on the findings
presented in the project.
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Chapter 6

Conclusion

6.1 Discussion

6.1.1 Municipality Study

Starting with the panel study, one of the major concerns with the results in general is
the possibility of measurement errors, errors in the independent variables cause bias in the
estimates. However, to defend the results, we have estimated a spatial time fixed effects
model using weekly data, the results are shown in table A.20 in appendix A. Naturally, the
estimates show different results, however, the important takeaway is that the sign of the
estimates remains the same except for the insignificant variable, the Gini index.

Another concern is that the modeling scheme might have been better to do in a dynamic
setting, e.g. including additional lagged values of the dependent variable. If the data
generating process includes additional lagged variables, we either need to find suitable
instruments for these variables or use a method that can model these dynamic terms directly
without causing bias.

Results and Interpretation

The square meter per citizen estimate, although small, has unsurprisingly a negative sign
which indicates that more space between citizens has a negative impact on the spread rate.

The vaccinated percentage estimate also shows a negative sign, which again is unsurprising
as vaccination reduces the chance of contracting the virus hence reducing the spread rate.

The positive sign of service concentration percentage indicates that municipalities with a high
percentage of service jobs lead to an increase in the spread rate.
Even more so in the case of children institutionalized percentage, it seems like having a high
concentration of children in a municipality increases conditions for spreading the virus.

As expected, the Gini index does not seem to provide any meaningful information about the
conditions for spreading the virus, this is possibly due to the other variables capturing the
primary heterogeneity across municipalities.

As for the final two independent variables, the interaction terms, they indicate that policy
interventions in municipalities with a high concentration of children and/or service jobs are
more effective in reducing the spread rate.

Comparison of the Danish Regions

Based on the panel study, we know how certain socioeconomic conditions and political
interventions affect the spread rate. Table 6.1 below shows some regional statistics about
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the socioeconomic conditions in each region.

Region Mean Relative Growth Rate Children % Service % Square Meter Per Citizen

NJ 0.000246 15.3977 74.6865 787.30
MJ 0.000263 17.0098 77.1579 633.40
SD 0.000251 15.9708 75.5132 674.50
HS 0.000450 16.1926 87.9467 245.30
RS 0.000326 15.8622 78.9110 677.10
Mean 0.000307 16.0866 78.8431 603.52

Table 6.1. Regional Statistics, the first column is the region, second is the mean relative growth
rate, third is percentage of the population that are children, fourth is percentage of jobs being service
oriented and the fifth is square meter per citizen in urbanised areas.

Now evaluating the statistics seen in table 6.1 with the estimates seen in 5.8, we see that the
NJ region has the lowest mean relative growth rate which is unsurprising due to having the
lowest percentage of children, lowest percentage of service jobs and the largest square meters
per citizen.
In the other extreme case we see the highest mean relative growth rate being in the HS region
which again is not surprising as they have the highest percent of service jobs and lowest square
meters per citizen and above average percentage of children.

6.1.2 Index Study

A major concern of the study of the indices is that the model selection procedure has been
relatively restrictive. E.g. we restricted the conditional variance specifications to have only
one kind of distribution across all regimes, although, their shape and skewness parameters
could differ across regimes.

Another concern is that even though the OMX C25 index can be used as an indicator for
the Danish economy, the regional indices are not necessarily good indicators for regional
economies. A reason for this is that some of the indices are rather small, and some of the
firms in their respective indices can be very small as well, hence the indicators will explain
the regional economy weakly.
Another reason could be that some region’s economy are primarily dependent on public jobs
which might not be dependent on the private firms the indices are build from.

Results and Interpretation

Simply by casual inspection of the conditional volatility plots for each region, indicates that
the pandemic has caused increases in volatility across all indices, this statement is further
solidified by the values seen in table 5.21.
It is not surprising to see an increase in volatility during the pandemic in each region as the
regional economies are crippled by worsened job security and supply chains.
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Some regions are more affected than others according to table 5.21, consider the increase
in mean conditional volatilities we see that the NJ and SD indices have a bigger increase
in volatility than the general indicator OMXC25, this suggests that these regions are less
economically resilient to the pandemic. The rest of the regional indices have a smaller
percentage increase in volatility than the OMXC25.
Although, considering the estimates for the unconditional probabilities, it seems as if the
results contradict the results for the conditional volatility increase. For example, the NJ
index has the smallest increase in unconditional volatility, and looking at figure 5.6 it is not
surprising. Looking at the conditional volatility plot we see that the predicted regimes do
not conform with the high conditional volatilities. The change of regimes seemingly captures
spikes and not a general increase in volatility. This could indicate that a 3 regimes model
would be better, however, according to the summarized conditional coverage tests, that we
conducted, the 2 regimes model was better.
Besides the NJ index, the unconditional volatilities for the MJ and HS index also disagree
with the mean conditional volatilities.

6.2 Conclusion

We present the research questions again below.

• Which conditions influence the Covid-19 spread rate across Denmark?

– Which effects do socioeconomic conditions have?
– Which effects do political responses have?

It seems there are several socioeconomic conditions that influence the spread rate across
Denmark including the percentage of children, percentage of service jobs and square meters
per citizen. Additionally, the stringency policy interventions seams to have better effect in
reducing the spread rate in areas with higher percentage of service jobs and children.

• Is there an increase in volatility in the Danish economy?

– If so, is such an increase similar across Danish regions?

There is an increase in volatility in the Danish economy which is emphasized by the results
for OMXC25 in table 5.21. Additionally, the volatility increase is not homogeneous as we see
the volatility increase is different across regional indices seen in the same table.

6.3 Future Research

As for future research there are several points to improve and build upon.
The modeling setup for the panel study could be applied to more macroeconomic level,
possibly looking at the socioeconomic conditions across countries in Europe. This would
be a more nuanced study as there will be more variability across countries and their specific
socioeconomic conditions.
As mentioned, the panel study might have been improved by using more dynamic oriented
panel models.
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The Danish economy has also drastically changed since the start of conducting this study due
to the recent war in south eastern Europe, so the increase in volatility due to these events
could also be interesting to model with the same framework.
As for the GARCH modeling scheme, it would be interesting to include exogenous variables
like the stringency index to see if the volatility is dependent on the stringency policies imposed
by the government. Another possibility is modeling the prices directly through an ARIMA
framework and maybe using exogenous variables to explain changes in the conditional mean
dynamics.

Another topic of interest was investigating the general mental health in Denmark before and
after the pandemic, however, at the time of writing there were not data available to investigate
this topic.
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Appendix A

Extra Figures and Tables

A.1 Panel Figures and Tables

DV: log.gr.rt gr.rt Vac.pct Stringency St.I.Se St.I.Ch

Coefficient 0.94499 0.01509∗∗∗ 0.00009∗∗∗ − 0.00027∗∗∗ − 0.00160∗∗∗

s.e. OLS 0.00181∗∗∗ 0.00058∗∗∗ 0.00001∗∗∗ 0.00010∗∗∗ 0.00040∗∗∗

s.e. Vw 0.00591∗∗∗ 0.00059∗∗∗ 0.00001∗∗∗ 0.00010∗∗∗ 0.00042∗∗∗

s.e. Vcx 0.00811∗∗∗ 0.00082∗∗∗ 0.00001∗∗∗ 0.00004∗∗∗ 0.00027∗∗∗

s.e. Vct 0.03423∗∗∗ 0.00334∗∗∗ 0.00003∗∗∗ 0.00011∗∗∗ 0.00057∗∗∗

s.e. VBKx 0.00606∗∗∗ 0.00072∗∗∗ 0.00001∗∗∗ 0.00004∗∗∗ 0.00018∗∗∗

s.e. VBKt 0.01271∗∗∗ 0.00404∗∗∗ 0.00009∗∗∗ 0.00012∗∗∗ 0.00053∗∗∗

s.e. Vcxt 0.03467∗∗∗ 0.00339∗∗∗ 0.00003∗∗∗ 0.00006∗∗∗ 0.00047∗∗∗

s.e. Vct.L 0.04347∗∗∗ 0.00611∗∗∗ 0.00006∗∗∗ 0.00013∗∗∗ 0.00060∗∗∗

s.e. Vnw.L 0.00647∗∗∗ 0.00074∗∗∗ 0.00001∗∗∗ 0.00008∗∗∗ 0.00034∗∗∗

s.e. Vscc.L 0.04259∗∗∗ 0.00523∗∗∗ 0.00005∗∗∗ 0.00012∗∗∗ 0.00059∗∗∗

s.e. Vcxt.L 0.04372∗∗∗ 0.00611∗∗∗ 0.00006∗∗∗ 0.00013∗∗∗ 0.00064∗∗∗

Observations: 67,326
R2: 0.846
Adjusted R2: 0.845

Note: ∗p<0.1;
∗∗p<0.05;
∗∗∗p<0.01

Table A.1. Individual fixed effects, OLS and Robust.

Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

lag.lag.log.Relative.growth.rate 0.94493 0.00014 6, 950.98300 0
Vaccinated.pct 0.01486 0.00015 99.05120 0
Stringency.index 0.00008 0.000002 49.03038 0
Stringency.index.I.Service.concentration.pct − 0.00027 0.000003 − 77.27983 0
Stringency.index.I.Children.institutionalized.pct − 0.00161 0.00001 − 113.27490 0

Observations: 67,326
R2: 0.848
Adjusted R2: 0.848

Table A.2. FGLS estimation of individual fixed effects.
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Table A.3. Time fixed effects, OLS and Robust.
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Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

SqrMeter.per.citizen.urban.areas − 0.000003 0.0000003 − 12.03464 0
lag.lag.log.Relative.growth.rate 0.49475 0.00346 143.02200 0
Vaccinated.pct − 0.03366 0.00199 − 16.93296 0
Service.concentration.pct 0.00895 0.00075 11.91704 0
Children.institutionalized.pct 0.02300 0.00303 7.58774 0
Gini.index 0.00002 0.00001 1.29680 0.19470
Stringency.index.I.Service.concentration.pct − 0.00038 0.00005 − 7.62481 0
Stringency.index.I.Children.institutionalized.pct − 0.00113 0.00021 − 5.40497 0.0000001

Observations: 67,326
R2: 0.935
Adjusted R2: 0.935

Table A.4. FGLS estimation of time fixed effects

Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

(Intercept) − 0.25857 0.00888 − 29.11866 0
SqrMeter.per.citizen.urban.areas − 0.000002 0.000001 − 3.45931 0.00054
lag.lag.log.Relative.growth.rate 0.94550 0.00181 523.49200 0
Vaccinated.pct 0.01498 0.00057 26.04824 0
Service.concentration.pct 0.00124 0.00192 0.64747 0.51733
Children.institutionalized.pct 0.01862 0.00760 2.44923 0.01432
Gini.index − 0.00001 0.00003 − 0.37434 0.70815
Stringency.index 0.00009 0.00001 6.85295 0
Stringency.index.I.Service.concentration.pct − 0.00027 0.00010 − 2.73637 0.00621
Stringency.index.I.Children.institutionalized.pct − 0.00159 0.00040 − 4.02879 0.00006

Observations: 67,326
R2: 0.848
Adjusted R2: 0.848

Table A.5. Individual random effects.
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Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

(Intercept) − 1.57717 0.01480 − 106.55910 0
SqrMeter.per.citizen.urban.areas − 0.00001 0.0000003 − 17.39257 0
lag.lag.log.Relative.growth.rate 0.65155 0.00313 208.24440 0
Vaccinated.pct 0.00176 0.00241 0.73068 0.46497
Service.concentration.pct 0.01021 0.00125 8.14068 0
Children.institutionalized.pct 0.04671 0.00497 9.40196 0
Gini.index − 0.00003 0.00002 − 1.15382 0.24857
Stringency.index − 0.00054 0.00007 − 7.80767 0
Stringency.index.I.Service.concentration.pct − 0.00088 0.00006 − 13.78489 0
Stringency.index.I.Children.institutionalized.pct − 0.00395 0.00026 − 15.14999 0

Observations: 67,326
R2: 0.463
Adjusted R2: 0.463

Table A.6. Time random effects.

Figure A.1. One-way random effects ACF and PACF.
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Figure A.2. One-way fixed effects ACF and PACF.

Dependent variable: log.gr.rt growth.rate Vaccinated St.I.Se St.I.Ch

Coefficient 0.60377 − 0.03936∗∗∗ − 0.00092∗∗∗ − 0.00375∗∗∗

s.e. OLS 0.00329∗∗∗ 0.00355∗∗∗ 0.00006∗∗∗ 0.00026∗∗∗

s.e. Vw 0.01412∗∗∗ 0.00431∗∗∗ 0.00006∗∗∗ 0.00029∗∗∗

s.e. Vcx 0.03119∗∗∗ 0.01506∗∗∗ 0.00012∗∗∗ 0.00068∗∗∗

s.e. Vct 0.02531∗∗∗ 0.00730∗∗∗ 0.00012∗∗∗ 0.00063∗∗∗

s.e. VBKx 0.01886∗∗∗ 0.00814∗∗∗ 0.00012∗∗∗ 0.00049∗∗∗

s.e. VBKt 0.01040∗∗∗ 0.00745∗∗∗ 0.00013∗∗∗ 0.00068∗∗∗

s.e. Vcxt 0.03760∗∗∗ 0.01616∗∗∗ 0.00016∗∗∗ 0.00088∗∗∗

s.e. Vct.L 0.04904∗∗∗ 0.01454∗∗∗ 0.00029∗∗∗ 0.00158∗∗∗

s.e. Vnw.L 0.01877∗∗∗ 0.00613∗∗∗ 0.00008∗∗∗ 0.00037∗∗∗

s.e. Vscc.L 0.04093∗∗∗ 0.01153∗∗∗ 0.00023∗∗∗ 0.00121∗∗∗

s.e. Vcxt.L 0.05368∗∗∗ 0.01951∗∗∗ 0.00030∗∗∗ 0.00167∗∗∗

Observations: 67,326
R2: 0.36
Adjusted R2: 0.359

Note: ∗p<0.1;
∗∗p<0.05;
∗∗∗p<0.01

Table A.7. Two-way fixed effects OLS and Robust.
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Dependent variable: log.Relative.growth.rate Estimate Std.Error t.value p.value

(Intercept) − 1.57708 0.01480 − 106.55670 0
SqrMeter.per.citizen.urban.areas − 0.00001 0.0000003 − 17.39323 0
lag.lag.log.Relative.growth.rate 0.65158 0.00313 208.25740 0
Vaccinated.pct 0.00178 0.00240 0.74073 0.45886
Service.concentration.pct 0.01021 0.00125 8.13917 0
Children.institutionalized.pct 0.04671 0.00497 9.40210 0
Gini.index − 0.00003 0.00002 − 1.15432 0.24837
Stringency.index − 0.00054 0.00007 − 7.80419 0
Stringency.index.I.Service.concentration.pct − 0.00088 0.00006 − 13.78445 0
Stringency.index.I.Children.institutionalized.pct − 0.00396 0.00026 − 15.15038 0

Observations: 67,326
R2: 0.464
Adjusted R2: 0.463

Table A.8. Two-way random effects.

A.2 Regime Figures and Tables

Table A.9. Summarizing Statistics.

Price in DKK

Symbol Observations First.obs Last.obs Mean Std.dev Min Max

OMXsmall 1571 2016-01-05 2022-04-13 290.1 103.0 175.8 550.7
OMXmid 1567 2016-01-05 2022-04-07 548.8 138.0 369.9 912.1
OMXlarge 1567 2016-01-05 2022-04-07 287.1 68.8 198.7 455.1
OMXC20 6377 1996-10-10 2022-04-06 554.7 372.3 125.3 1771.0
OMXC25 1323 2016-12-20 2022-04-06 1337.5 303.3 980.8 2020.7
NJ 1573 2016-01-04 2022-04-13 139.0 10.4 108.4 173.2
MJ 1573 2016-01-04 2022-04-13 135.5 49.1 79.9 270.1
SD 1573 2016-01-04 2022-04-13 31.5 11.3 15.2 59.6
HS 1573 2016-01-04 2022-04-13 582.6 139.4 363.5 962.4
RS 1573 2016-01-04 2022-04-13 451.3 77.3 348.0 692.5
AAB 1573 2016-01-04 2022-04-13 98.1 52.3 38.4 197.7
AGAT 1573 2016-01-04 2022-04-13 5.3 3.0 1.8 12.4
AGF_B 1573 2016-01-04 2022-04-13 0.4 0.2 0.2 0.8
ALK_B 1569 2016-01-04 2022-04-07 1550.3 738.7 681.0 3440.0
ALMB 1569 2016-01-04 2022-04-07 14.2 2.2 10.8 20.1
AMBU_B 1569 2016-01-04 2022-04-07 142.5 69.6 37.7 349.5
AOJ_B 1569 2016-01-04 2022-04-07 482.0 285.9 168.0 1345.0
AQP 202 2021-06-28 2022-04-07 128.4 20.2 100.2 172.8
ATLA_DKK 1573 2016-01-04 2022-04-13 7.6 2.4 3.7 15.0
BAVA 1569 2016-01-04 2022-04-07 197.7 59.8 105.9 366.8
BIF 1573 2016-01-04 2022-04-13 0.6 0.2 0.3 1.3
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Table A.9. Summarizing Statistics. (continued)

Price in DKK

Symbol Observations First.obs Last.obs Mean Std.dev Min Max

BIOPOR 1573 2016-01-04 2022-04-13 2.8 0.8 1.4 5.7
BLVIS_A 1573 2016-01-04 2022-04-13 0.9 0.8 0.2 3.6
BNORDIK_CSE 1569 2016-01-04 2022-04-07 123.9 20.0 93.8 177.5
BO 1569 2016-01-04 2022-04-07 36.6 18.2 9.1 84.0
BOOZT_DKK 344 2020-11-25 2022-04-07 126.7 12.0 102.3 162.1
CARL_A 1569 2016-01-04 2022-04-07 854.3 223.0 533.0 1495.0
CARL_B 1569 2016-01-04 2022-04-07 825.7 164.0 575.0 1183.5
CBRAIN 1569 2016-01-04 2022-04-07 94.8 91.6 19.8 386.5
CEMAT 1573 2016-01-04 2022-04-13 0.4 0.2 0.2 1.1
CHEMM 1569 2016-01-04 2022-04-07 258.9 294.0 25.8 1128.0
CHR 1569 2016-01-04 2022-04-07 555.5 85.3 405.6 754.4
COLO_B 1569 2016-01-04 2022-04-07 740.2 221.4 434.3 1182.5
COLUM 1569 2016-01-04 2022-04-07 11.6 2.7 7.2 18.5
CPHCAP_PREF 1198 2017-07-03 2022-04-13 1.8 0.1 1.7 2.2
CPHCAP_ST 1573 2016-01-04 2022-04-13 3.1 1.5 1.3 7.8
DAB 1569 2016-01-04 2022-04-07 6.4 2.5 2.5 11.9
DANSKE 1569 2016-01-04 2022-04-07 155.5 57.5 69.7 257.5
DANT 1573 2016-01-04 2022-04-13 253.6 78.1 126.0 535.0
DEMANT 1569 2016-01-04 2022-04-07 208.4 64.7 111.5 389.8
DFDS 1569 2016-01-04 2022-04-07 315.1 48.7 219.8 424.0
DJUR 1573 2016-01-04 2022-04-13 262.3 44.6 198.5 382.0
DNORD 1569 2016-01-04 2022-04-07 115.0 26.1 70.7 199.5
DRLCO 752 2019-04-04 2022-04-07 277.7 110.4 120.0 555.0
DSV 1569 2016-01-04 2022-04-07 707.2 391.1 230.7 1679.0
EAC 1573 2016-01-04 2022-04-13 26824.3 23691.6 1190.0 71000.0
ESG 1573 2016-01-04 2022-04-13 38.1 29.7 7.0 80.0
FED 1573 2016-01-04 2022-04-13 105.2 18.6 74.0 148.0
FFARMS 1573 2016-01-04 2022-04-13 57.6 9.1 42.7 86.4
FLS 1569 2016-01-04 2022-04-07 290.1 72.4 173.2 441.8
FLUG_B 1569 2016-01-04 2022-04-07 411.5 152.0 250.0 790.0
FYNBK 1573 2016-01-04 2022-04-13 85.4 16.9 60.0 132.0
GABR 1569 2016-01-04 2022-04-07 626.3 97.4 400.0 988.0
GERHSP 1573 2016-01-04 2022-04-13 129.0 10.6 103.0 150.0
GJ 1573 2016-01-04 2022-04-13 57.7 11.8 39.6 90.0
GMAB 1569 2016-01-04 2022-04-07 1586.0 606.0 674.0 3100.0
GN 1569 2016-01-04 2022-04-07 296.7 125.2 109.5 586.2
GREENH 209 2021-06-17 2022-04-07 35.8 5.5 27.6 47.8
GREENM 1208 2017-06-16 2022-04-13 121.9 31.4 67.5 220.0
GRLA 1573 2016-01-04 2022-04-13 600.4 30.9 534.0 660.0
GYLD_A 1569 2016-01-04 2022-04-07 1862.2 1404.4 633.0 5500.0
GYLD_B 1569 2016-01-04 2022-04-07 474.2 42.9 402.0 585.0
HARB_B 1573 2016-01-04 2022-04-13 93.5 26.1 52.8 149.5
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Table A.9. Summarizing Statistics. (continued)

Price in DKK

Symbol Observations First.obs Last.obs Mean Std.dev Min Max

HART 1569 2016-01-04 2022-04-07 356.1 81.8 247.0 608.0
HH 1569 2016-01-04 2022-04-07 115.8 46.8 54.4 257.5
HUSCO 349 2020-11-18 2022-04-07 122.0 6.0 112.0 138.6
HVID 1573 2016-01-04 2022-04-13 65.5 20.4 35.0 119.0
IMAIL 1573 2016-01-04 2022-04-13 13.5 5.5 6.2 29.0
ISS 1569 2016-01-04 2022-04-07 196.4 56.1 100.2 286.3
JDAN 1569 2016-01-04 2022-04-07 199.7 48.9 132.0 298.0
JYSK 1569 2016-01-04 2022-04-07 301.8 53.0 200.2 416.9
KBHL 1569 2016-01-04 2022-04-07 5693.2 654.9 4250.0 7600.0
KLEE_B 1573 2016-01-04 2022-04-13 2729.5 316.4 2240.0 4080.0
KRE 1573 2016-01-04 2022-04-13 2907.6 636.9 2131.0 4380.0
LASP 1569 2016-01-04 2022-04-07 488.0 62.1 383.1 665.0
LOLB 1573 2016-01-04 2022-04-13 374.8 90.2 206.0 620.0
LUN 1569 2016-01-04 2022-04-07 271.2 70.5 160.6 475.9
LUXOR_B 1573 2016-01-04 2022-04-13 433.2 78.9 312.0 700.0
MAERSK_A 1569 2016-01-04 2022-04-07 10670.7 3800.3 4988.0 22240.0
MAERSK_B 1569 2016-01-04 2022-04-07 11220.7 3950.5 5394.0 23450.0
MATAS 1569 2016-01-04 2022-04-07 87.5 25.0 47.8 134.5
MNBA 1573 2016-01-04 2022-04-13 147.9 38.6 100.2 260.0
MTHH 1573 2016-01-04 2022-04-13 175.9 85.2 48.6 405.0
NDA_DK 1569 2016-01-04 2022-04-07 65.5 11.7 45.2 88.7
NETC 962 2018-06-07 2022-04-07 427.7 192.5 194.5 855.5
NEWCAP 1573 2016-01-04 2022-04-13 1.2 0.7 0.4 2.5
NKT 1569 2016-01-04 2022-04-07 244.8 121.5 65.9 494.8
NLFSK 1121 2017-10-12 2022-04-07 218.5 71.8 91.1 363.0
NNIT 1569 2016-01-04 2022-04-07 157.0 41.2 87.8 284.0
NORDIC 1573 2016-01-04 2022-04-13 0.6 0.2 0.2 1.2
NORTHM 1569 2016-01-04 2022-04-07 48.7 33.0 12.2 136.4
NOVO_B 1569 2016-01-04 2022-04-07 385.3 123.0 220.7 762.1
NRDF 1573 2016-01-04 2022-04-13 170.5 51.7 96.0 302.0
NTG 1569 2016-01-04 2022-04-07 147.9 137.8 45.2 563.0
NTR_B 1573 2016-01-04 2022-04-13 39.0 6.3 29.5 58.0
NZYM_B 1569 2016-01-04 2022-04-07 345.7 64.2 244.8 537.2
ORPHA 1096 2017-11-16 2022-04-07 66.1 20.8 24.7 135.0
ORSTED 1463 2016-06-09 2022-04-07 584.9 271.5 230.5 1355.0
OSSR 1569 2016-01-04 2022-04-07 36.2 9.0 22.5 56.4
PAAL_B 1569 2016-01-04 2022-04-07 221.3 44.3 151.0 322.0
PARKEN 1573 2016-01-04 2022-04-13 82.7 12.8 61.0 120.0
PARKST_A 1573 2016-01-04 2022-04-13 7.4 3.6 1.6 17.9
PENNEO 473 2020-06-02 2022-04-13 39.4 15.0 14.9 82.8
PNDORA 1569 2016-01-04 2022-04-07 610.3 213.8 253.4 999.5
PRIMOF 1573 2016-01-04 2022-04-13 171.9 59.6 79.0 326.0
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Table A.9. Summarizing Statistics. (continued)

Price in DKK

Symbol Observations First.obs Last.obs Mean Std.dev Min Max

RBLN_B 1573 2016-01-04 2022-04-13 226.1 64.6 136.0 414.0
RBREW 1569 2016-01-04 2022-04-07 499.2 170.4 248.1 852.2
RIAS_B 1573 2016-01-04 2022-04-13 463.1 78.8 360.0 710.0
RILBA 1569 2016-01-04 2022-04-07 442.6 168.6 249.4 950.0
ROCK_A 1569 2016-01-04 2022-04-07 1713.5 519.8 932.0 3000.0
ROCK_B 1569 2016-01-04 2022-04-07 1881.9 635.0 925.0 3429.0
ROV 1573 2016-01-04 2022-04-13 107.5 49.1 33.0 267.0
RTX 1569 2016-01-04 2022-04-07 173.8 29.7 111.0 279.0
SANI 1573 2016-01-04 2022-04-13 73.0 11.1 54.5 103.0
SAS_DKK 1569 2016-01-04 2022-04-07 10.5 5.9 0.9 24.4
SBS 1573 2016-01-04 2022-04-13 21.4 5.5 12.0 38.0
SCHO 1569 2016-01-04 2022-04-07 571.1 74.8 416.0 750.0
SIF 1573 2016-01-04 2022-04-13 13.9 1.6 8.5 18.3
SIG 1573 2016-01-04 2022-04-13 1.7 0.5 0.7 3.3
SIM 1569 2016-01-04 2022-04-07 558.9 177.8 290.0 932.0
SKAKO 1573 2016-01-04 2022-04-13 63.0 18.5 35.3 116.0
SKJE 1573 2016-01-04 2022-04-13 70.1 16.6 36.5 124.5
SOLAR_B 1569 2016-01-04 2022-04-07 396.8 131.4 197.4 793.0
SPG 1569 2016-01-04 2022-04-07 242.0 78.2 99.3 441.0
SPKSJF 1569 2016-01-04 2022-04-07 104.7 21.7 74.8 190.0
SPNO 1569 2016-01-04 2022-04-07 67.0 11.3 48.5 101.4
STG 1542 2016-02-10 2022-04-07 108.0 16.8 77.9 152.8
STRINV 1573 2016-01-04 2022-04-13 1.1 0.1 0.8 1.4
SYDB 1569 2016-01-04 2022-04-07 190.2 44.2 111.0 264.9
TCM 1090 2017-11-24 2022-04-07 123.3 22.3 89.5 173.5
TIV 1569 2016-01-04 2022-04-07 674.6 102.7 455.0 924.0
TOP 1569 2016-01-04 2022-04-07 286.3 56.0 177.2 415.2
TOTA 1573 2016-01-04 2022-04-13 78.8 26.5 39.1 140.0
TRIFOR 224 2021-05-27 2022-04-07 220.4 35.7 175.0 303.5
TRMD_A 1496 2016-04-19 2022-04-07 54.8 8.4 41.0 82.0
TRYG 1569 2016-01-04 2022-04-07 136.4 22.5 100.1 181.4
UIE 1569 2016-01-04 2022-04-07 1400.1 185.6 1075.0 2020.0
VJBA 1569 2016-01-04 2022-04-07 2.9 0.6 1.9 4.8
VWS 1569 2016-01-04 2022-04-07 137.7 59.2 72.2 312.0
ZEAL 1569 2016-01-04 2022-04-07 148.1 53.3 78.5 294.0
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Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.ge 32 50 20.379 0.0602477 6
e.no 32 40 5.947 0.9187301 6
e.sg 32 40 7.850 0.7967398 6
e.sn 32 38 5.786 0.9264829 6
e.st 32 50 18.050 0.1141808 6
g.ge 32 51 21.141 0.0483535 6
g.no 32 46 15.746 0.2031487 6
g.sg 32 48 15.122 0.2348323 6
g.sn 32 52 22.092 0.0365016 6
g.ss 32 50 17.663 0.1263127 6
g.st 32 50 17.663 0.1263127 6
s.ge 32 48 17.440 0.1337820 6
s.no 32 46 15.975 0.1923838 6
s.sg 32 49 16.943 0.1517541 6
s.sn 32 45 15.024 0.2401266 6
s.ss 32 52 19.233 0.0830585 6
s.st 32 53 20.501 0.0581827 6

Table A.10. Summarized conditional coverage test NJ, 2 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.ge 32 39 8.195 0.7697121 6
e.no 32 46 11.799 0.4619544 6
e.sg 32 43 8.655 0.7320812 6
e.sn 32 49 19.134 0.0853455 6
e.ss 32 52 18.277 0.1075351 6
e.st 32 51 20.190 0.0635761 6
g.ge 32 34 5.957 0.9182341 6
g.no 32 46 16.303 0.1777489 6
g.sg 32 38 7.334 0.8347754 6
g.sn 32 45 13.579 0.3283960 6
g.ss 32 37 7.225 0.8423934 6
g.st 32 42 8.481 0.7465035 6
s.ge 32 41 9.232 0.6829972 6
s.no 32 45 15.024 0.2401266 6
s.sg 32 41 9.232 0.6829972 6
s.sn 32 44 13.316 0.3464970 6
s.ss 32 47 16.294 0.1781383 6
s.st 32 48 17.573 0.1292842 6

Table A.11. Summarized conditional coverage test NJ, 3 regimes.
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Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

s.st 32 45 14.791 0.2530656 6

Table A.12. Summarized conditional coverage test MJ, 2 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

s.ge 32 47 17.109 0.1455429 6
s.no 32 39 9.008 0.7022470 6
s.sg 32 48 16.375 0.1746577 6
s.st 32 50 21.077 0.0492642 6

Table A.13. Summarized conditional coverage test MJ, 3 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.ge 32 42 13.981 0.3019232 6
e.no 32 49 15.987 0.1918322 6
e.sg 32 40 13.104 0.3615271 6
e.sn 32 48 13.360 0.3434263 6
e.ss 32 43 17.841 0.1206043 6
e.st 32 43 17.307 0.1384094 6
g.ge 32 34 9.066 0.6972831 6
g.no 32 44 14.939 0.2447893 6
g.sg 32 35 11.673 0.4722858 6
g.sn 32 46 13.272 0.3495845 6
g.ss 32 42 9.878 0.6266628 6
g.st 32 36 12.492 0.4070180 6
s.ge 32 36 11.467 0.4893763 6
s.no 32 45 13.612 0.3261681 6
s.sg 32 40 9.382 0.6700025 6
s.sn 32 46 15.984 0.1919700 6
s.ss 32 40 10.957 0.5326074 6
s.st 32 35 11.583 0.4797231 6

Table A.14. Summarized conditional coverage test SD, 2 regimes.
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Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.ge 32 46 16.483 0.1701014 6
e.no 32 44 17.051 0.1476889 6
e.sn 32 46 16.286 0.1784851 6
e.st 32 49 20.707 0.0548392 6
g.ge 32 48 17.977 0.1163907 6
g.no 32 40 8.566 0.7394844 6
g.sn 32 51 20.146 0.0643740 6
g.ss 32 47 14.237 0.2858307 6
g.st 32 44 13.052 0.3652725 6
s.ge 32 45 13.612 0.3261681 6
s.no 32 46 15.984 0.1919700 6
s.sg 32 40 11.114 0.5191750 6
s.ss 32 46 12.213 0.4287286 6
s.st 32 44 13.052 0.3652725 6

Table A.15. Summarized conditional coverage test SD, 3 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.no 31 36 12.718 0.2398689 5
e.sg 31 32 10.654 0.3851020 5
e.sn 31 34 10.768 0.3758764 5
e.ss 31 34 12.803 0.2348959 5
e.st 31 36 12.549 0.2499916 5
g.ge 31 40 13.024 0.2223330 5
g.no 31 36 14.326 0.1586343 5
g.sg 31 30 14.594 0.1475798 5
g.sn 31 34 14.818 0.1388395 5
g.ss 31 35 11.924 0.2901751 5
g.st 31 33 15.392 0.1184104 5
s.ge 31 36 13.819 0.1814088 5
s.no 31 35 15.496 0.1149977 5
s.sg 31 32 8.676 0.5631034 5
s.sn 31 30 12.516 0.2520049 5
s.ss 31 29 11.457 0.3230384 5
s.st 31 31 13.151 0.2153514 5

Table A.16. Summarized conditional coverage test HS, 2 regimes.
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Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.ge 31 30 15.077 0.1292797 5
e.sg 31 41 14.107 0.1681667 5
e.sn 31 32 12.946 0.2267067 5
e.ss 31 31 13.305 0.2071153 5
g.ge 31 28 11.256 0.3379242 5
g.sg 31 33 12.549 0.2499916 5
g.ss 31 27 10.494 0.3982722 5
g.st 31 31 16.151 0.0953907 5
s.no 31 37 13.593 0.1923784 5
s.sg 31 36 13.323 0.2061690 5
s.sn 31 28 7.435 0.6838384 5
s.ss 31 31 7.989 0.6299115 5
s.st 31 31 13.151 0.2153514 5

Table A.17. Summarized conditional coverage test HS, 3 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.sg 32 39 10.018 0.6143815 6
e.st 32 41 14.568 0.2659152 6
g.sg 32 46 12.586 0.3998356 6
g.ss 32 46 14.611 0.2634019 6
g.st 32 45 14.200 0.2881194 6
s.sg 32 45 12.591 0.3994555 6
s.ss 32 45 11.416 0.4936434 6
s.st 32 45 14.200 0.2881194 6

Table A.18. Summarized conditional coverage test RS, 2 regimes.

Exceedance Test

mod expected.exceed actual.exceed LRstat pvalue Accepted.null.hypotheses

e.sg 32 44 14.504 0.2696873 6
g.ge 32 43 13.309 0.3469870 6
g.sg 32 37 10.945 0.5336380 6
g.sn 32 44 13.734 0.3180162 6
g.st 32 46 14.859 0.2492381 6
s.ge 32 46 12.178 0.4314923 6
s.sg 32 46 12.178 0.4314923 6
s.sn 32 37 9.749 0.6379701 6
s.ss 32 47 14.842 0.2501910 6
s.st 32 46 14.859 0.2492381 6

Table A.19. Summarized conditional coverage test RS, 3 regimes.
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Table A.10 to A.19 shows the exceedance test results for region NJ, MJ, SD, HS and RS
for two and three regimes, respectively. Each table shows the scc test results with different
GARCH specifications combined with different distributions.
It is seen in table A.10, that an eGARCH model with skewed normal distribution provides the
best results with highest p-value around 0.93 and the lowest Likelihood ratio statistic around
5.79. Table A.11 shows that, the gjrGARCH model has the highest p-value around 0.92 and
with the lowest likelihood ratio statistic around 5.96.
Looking at table A.12, the standard GARCH model with Student’s t-distribution is the only
model that fail to reject the H0 hypothesis hence it is the best result, and in the case with
3 regimes, table A.13 shows that the standard GARCH with normal distribution provide the
highest p-value of 0.7.
From table A.14, the gjrGARCH with generalized error distribution provides the best results
with a p-value around 0.7 and with only two observations more in the actual exceed when
compared to the expected. In table A.15, the gjrGARCH with normal distributed errors
seems to be the best model for 3 regimes with p-value around 0.74

While looking at table A.16, it shows that there are only 31 observations that are expected to
exceed the confidence level, which is because there is no observations that exceed the upper
confidence level at 99%. The standard GARCH model with generalized error distribution
produces the best result for the HS index with a p-value about 0.56, and with only one
observation more then the expected exceed. As shown in table A.17, the best model with the
highest p-value around 0.68 is the standard GARCH model with skewed normal distribution,
and with seven exceeding points more then the expected exceedance.
In table A.18, the eGARCH with skewed generalized error distribution is the best model with a
p-value of 0.61 and with Likelihood ration statistic at almost 10, there are seven observations
more in the actual exceedance then the expected. In table A.19, standard GARCH with
skewed normal distribution is the best model and give the highest p-value around 0.64 and
lowest likelihood ratio statics around 9.75.

Estimate Std..Error t_value p.value

rho − 0.00958 0.00292 − 3.27653 0.00105
SqrMeter.per.citizen.urban.areas − 0.000003 0.000001 − 5.37433 0.0000001
lag.lag.log.Relative.growth.rate 0.78675 0.01069 73.58841 0
Vaccinated.pct − 0.03501 0.00553 − 6.33271 0
Service.concentration.pct 0.00814 0.00212 3.84088 0.00012
Gini.index − 0.000003 0.00004 − 0.08475 0.93246
Children.institutionalized.pct 0.04252 0.00790 5.38374 0.0000001
Stringency.index.I.Service.concentration.pct − 0.00072 0.00010 − 6.83651 0
Stringency.index.I.Children.institutionalized.pct − 0.00340 0.00043 − 7.84218 0

Table A.20. Spatial time fixed effects regression.
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