
Thesis Summary - ReLight (Recurrent Traffic Light Control)

Peter Kjaer, Samuel Alexander Vall Andersen
Aalborg University

Over the last decade, cities worldwide is seeing a large influx of new cars on the road.
More cars on decades-old road network infrastructure cause traffic congestion, which cause
huge environmental and economical damage. The TomTom Traffic Index1 found that traffic
congestion in major cities like London is polluting up to 15 percent of the total yearly CO2
in their respective cities. The American Transportation Research Institute estimates that
the U.S. freight sector loses around $74.1 billion annually due to traffic congestion2 , 75
percent of which occurs in urban areas. One of the trivial solutions to this congestion is
to increase the flow throughput in the urban areas. Since around 75 percent of the traffic
congestion happens in urban areas, it is trivial to optimize traffic light control to allow for
more flow and avoid unnecessary vehicle idling.

Conventional traffic light control in many modern cities today uses pre-defined traffic
plans or cycles to control the light phases3. Conventional traffic light control, however,
cannot perceive and react to real-time traffic patterns, making them unable to dynamically
adapt to the changing spatial-temporal dynamics around the intersection.

To allow adaption towards spatial-temporal dynamics for an intersection, recent papers
incorporate Reinforcement Learning techniques to perform traffic light signal control. Rein-
forcement Learning techniques outperform previous conventional traffic control methods big
a significant margin and allowed for control adaption towards each individual intersection.
These techniques, however, disregard the cycle phases utilized in conventional traffic control
and only use flow density to predict the right action based on the current state observa-
tion. This may cause inaccurate decisions and non-adaptation towards dynamically prone
accidents, roadworks, or special days like weekends or holidays.

To properly capture traffic cycle phases, the agent must be able to know the difference
between rush/slow hours, and weekday/weekends. GPLight4 adds an additional forecasting
module to exploit future traffic information in Reinforcement Learning to capture the future
short-term traffic flow prediction and use this latent context to combine the result with
the Reinforcement Learning agent. This method, however, adds an additional loss since
the forecasting module must learn from the state observations and perform a prediction of
the short future. Realistic traffic flow is affected by a lot of environmental and temporal
factors, which makes it very deterministic and produces random flow which makes time-
series prediction a challenging and inaccurate problem. A high loss from this prediction

Email addresses: pkjar16@student.aau.dk (Peter Kjaer), sava17@student.aau.dk (Samuel
Alexander Vall Andersen)

1 June 10, 2022

module may cause the agent to take wrong decisions and end up in a state which yields bad
results.

To circumvent this limitation, we propose ReLight (Recurrent traffic Light control),
which uses recurrent controllers to capture long-short term spatial-temporal patterns in
a Partially observable Markov decision process (POMDP) environment. Where current
Reinforcement Learning solutions are Markov Decision Process (MDP), they are limited
by the Makorv Property where the future depends only on the present state and does not
depend on history. With this limitation, it restricts MDP solutions from properly capturing
nowcasting without an additional forecasting module. POMDP however, is dependent on
the history of previous belief states to predict its current belief state. POMDP state is
commonly obscured, and reliant on the spatial-temporal patterns from its history of beliefs.
By utilizing this property, we can treat the environment as a POMDP, where we use the
history to capture features from the short-term cycle phases. To combine the POMDP
environment with Deep Reinforcement Learning, we use an LSTM to capture the long-
short term dependencies to only carry the important long-term information through the
environment, while still capturing the important short-term patterns. We use the LSTM
hidden and cell state to carry on the features through the cycles, together with the general
weights of the network to capture the long-term dependencies.

We take inspiration from other papers using a DQN in a POMDP control setting, and
propose two strategies for environmental sampling and training which are customized to
properly capture cycle phases. While all papers to our knowledge perform LSTM unrolling
from the DQN replay memory during training, we claim that unrolling sequential hidden
states in training is the same as sampling through the environment and zero the hidden
state for a hyperparametric amount of steps. In this way, the model trains faster and is able
to cope with recurrent model staleness in the environment.

We compare ReLight to both current conventional and Reinforcement Learning solutions,
and the results show that ReLight performs better than the current state-of-the-art models
without the need for an additional forecasting layer or storing excessive information. Hidden
Chain Reset also performs on the same level as K-epoch unrolling, which confirms our
theory of combating recurrent staleness in the environment performs the same while training
significantly faster while still retaining the long-short term spatial-temporal patterns.

References

[1] M. Beedham, ‘See the true environmental cost of inner-city congestion with TomTom Traffic Index’,
2022.

[2] N. McCarthy, F. Richter, ‘Infographic: Congestion costs U.S. cities billions every year’, 2020.
[3] H. Wei, G. Zheng, V. V. Gayah, Z. Li, ‘A Survey on Traffic Signal Control Methods’, {CoRR}

abs/1904.08117 (2019).
[4] X. Hu, C. Zhao, G. Wang, ‘A Traffic Light Dynamic Control Algorithm with Deep Reinforcement

Learning Based on GNN Prediction’, CoRR abs/2009.14627 (2020).

2 June 10, 2022

1

ReLight: Capturing spatial-temporal context in Road
Traffic Signal Control using recurrency in POMDPs

Peter Kjaer (20164808) and Samuel Alexander Vall Andersen (20175548)

Abstract—Traffic congestion in urban areas is a problem for
the environment and the economy. One solution to minimize
congestion is optimizing traffic lights. Traffic signal control is
a challenging problem due to the complex traffic flow patterns.
Conventional traffic control use pre-coded cycle pattern plans,
which suffer from adapting to the complex flow dynamics.
Reinforcement Learning allows for dynamic control but is unable
to properly catch temporal-feature due to the Markov property.
To solve this, recent papers propose incorporating prediction
modules into Reinforcement Learning control, however, this
suffers from additional loss and generalization.

To circumvent these issues, we propose Recurrent Light
(ReLight), which treats the environment as a Partially Observable
Markov Decision Process which depends on the history of
previous belief states. We utilize this dependency to capture
spatial-temporal features and utilize an LSTM in the DQN
network to capture important long-short term features through
hidden states. To properly capture cycle phases, we propose two
sampling and two training strategies. In our experiments, we
demonstrate that ReLight outperforms state-of-the-art models
on one, multi and city-wide datasets.

I. INTRODUCTION

Cities worldwide are seeing an influx of rising traffic
congestion, and it has only been growing. The average U.S
driver spends more than 290 hours behind the wheel each year,
whereas people aged 30-49 drive on average 13,506 miles
annually [1]. It is inevitable that the world’s population is
growing, thus adding more vehicles to the road. Traffic con-
gestion harm both the environment and the economy. Based
on TomTom Traffic Index [2], traffic congestion and inefficient
traffic pollute about 2.2 megatonnes of CO2 emissions, adding
up to 15% of the total CO2 usage yearly in London. One
way to mitigate or avoid the immense CO2 emissions caused
by traffic is to keep traffic moving and limit the number of
vehicles in major cities. If we keep traffic moving and decrease
the travel time, cars would spend less time on the road and emit
less CO2. One fundamental way to increase flow throughout
large cities is to optimize road traffic lights. Conventional
traffic light control uses pre-defined fixed cycle length plans
which is pre-programmed and controlled by an algorithm [3].
A cycle-phase is a cycle-based signal plan intersection used for
different time sequences to allow for most vehicle throughput
optimally through the intersection. Each traffic cycle lasts for
a pre-defined length and is usually repeated in similar phase
sequences throughout the day [4]. The fixed plans are not
adaptive enough to cope with today’s complex traffic and
increasing flow.

Peter Kjaer, Samuel Alexander Vall Andersen are with Aalborg University,
Denmark, e-mail: pkjar16@student.aau.dk, e-mail: sava17@student.aau.dk

One way to solve the problem of dynamic adjustment
for traffic light control is to use Reinforcement Learning
techniques. [[PressLight - 2019] [5], [CoLight - 2019] [6],
[IntelliLight - 2018] [7]] have introduced the concept of
Reinforcement Learning to control the traffic light sequence
based on radar or video feed data. These papers have shown
that Reinforcement Learning has a superior performance over
traditional traffic light sequences since it learns directly from
observing the environment and reinforces the algorithm to-
wards the best possible actions.

Fig. 1. Classic Deep Reinforcement Learning framework for Road Traffic
Light Control. Each color in the state represent each inbound lanes.

To convert a traffic light into a Reinforcement Learning
environment, we can use the radar or video feed data to infer
the number of vehicles [4]. Figure 1 illustrates a traffic light
in a Reinforcement Learning setting. The state-space consists
of all inbound lanes towards the intersection, where each of
the lanes represents the number of vehicles on each lane.
Combined with Deep Reinforcement Learning algorithms like
DQN, the agent learns to generalize the traffic features. The
agent takes the state input and decides whether to keep the
current light phase or change the lights. The agent then takes
this action in the next step in the environment, where the
environment outputs an immediate reward and a next state.
With the camera or radar information, the reward function
could be calculated using elements like Queue Length, Waiting
time, or Speed [4].

By counting the vehicles in each lane over time, we can
create a time series of the traffic flow for the entire intersec-
tion. Converting environmental information into a time-series
problem, the agent can use the temporal features from the
state over time to infer the best action. Figure 2 illustrates
how state information can represent multivariate time-series
for each lane in an intersection.

GPlight [Hu et al. 2020] [8] incorporates future short-
term traffic flow prediction through time-series forecasting to

2

Fig. 2. States (s) over time can be represented as a time-series problem.

allow the agent to make better decisions based on the spatial
movement of traffic flow. In this way, the agent may prepare
in advance for rush hour traffic based on the knowledge
from the multivariate forecasting features. By implementing
a forecasting module alongside the Reinforcement Learning
agent, however, have some fundamental issues :

1) The loss from the time-series forecasting module
may lead to inaccurate predictions, which makes
the agent take the wrong actions. Suppose the time-
series forecaster does not train properly due to the lack
of training data or if the patterns are too sporadic.
In that case, the loss from the forecaster may feed
inaccurate information to the Reinforcement Learning
agent. Inaccurate information may cause the Reinforce-
ment Learning agent to take wrong actions, where the
agent may end up in states which do not infer optimal
convergence. Societal and environmental effects like the
2020 Corona Pandemic, roadworks, and other factors
may change the current traffic flow, making forecasting
a continuous adaptive process. The forecasting module
may rarely achieve highly accurate convergence since
the target is constantly moving in sporadic intervals.

2) It is rarely reasonable to assume that the causal
pattern for some time sequence always matches the
same cycle pattern for the specific intersection. It
can be easy to assume a causal pattern between each
weekday and the same cycle phases sequencing through
each weekday throughout the week. In reality, however,
this may not always be the case in most scenarios. The
causal pattern may not always be correctly identified
and may not always match the current time sequence
for the specific intersection. It is reasonable to assume
that traffic within a specific hour is affected by many
other factors like highway accidents, events, and events
happening far away, affecting long commuters. When
training with time-series data, the causal patterns within
a specific cycle may not accurately match the actual
cycle of that specific time sequence. An example could
be a rush hour cycle of 8:00 AM - 9:00 AM, where
the traffic moves around with almost the same flow
throughout Monday-Wednesday. In case of an accident
on a motorway on Thursday, this flow may be delayed
or even receive more traffic pressure. It is reasonable
to assume that no day is the same, thus assuming the
causal patterns will not always match the proper cycle
every time.

3) Reinforcement Learning algorithms will adapt to a
particular flow density, whereas in natural traffic

environments, traffic densities will change constantly
and unevenly [9]. The time-series forecasting module
may lead to the agent converging towards the learned
forecasting model rather than the cycle dynamics. If a
forecasting model samples data for one year and uses
this data to forecast the following year, the traffic pat-
terns may not look the same or be completely different.
It is essential to keep Reinforcement Learning from non-
bias estimations like a forecasting agent since we want
to learn Spatio-temporal patterns while still being able
to adapt to the current cycle phase.

The control process in Reinforcement Learning is typically
a Markov Decision Process (MDP). An MDP consists of
a set of states, actions, probabilistic transition matrix, and
immediate reward function of the actions [10]. One way to
solve an MDP control process is to create an algorithm to
find the best policy, which specifies the best actions to take
for each state [11]. An iterative algorithm iterates through the
environment, finding the best path based on its variant. One
common variant is Value Iteration [Bellman 1957] [12], which
uses the Bellman Equation to compute the optimal policy and
its value at each state. One of the major constraints of MDPs
is called the Markov Property. The Markov Property is where
the future depends only on the present state and does not
depend on history [13]. This constraint creates a time-series
problem that is difficult to incorporate into Reinforcement
Learning. To incorporate time-series forecasting in an MDP
environment, it is necessary to create an additional module
that feeds information alongside the state since the state can
not depend on the history of previous states. To circumvent the
Markov Property, we must look for a new approach to get the
spatial-temporal features for each cycle without an additional
forecasting module.
We propose Recurrent Light (ReLight), a new approach to
Reinforcement Learning traffic light control, where we treat
the environment as a Partially Observable Markov Decision
Process (POMDP). POMDP is a generalization of MDPs,
where POMDP assumes the system dynamics of an MDP;
however, it can only observe partial or no information from the
state environment. Where MDPs map state observations to ac-
tions, POMDP maps the history of observations (belief states)
to the action [10]. The idea behind POMDP is to obscure the
full observability of the current state, remove all certainty that
the agent knows its current state is, and select an action based
on the history and the current belief state. The underlying
dynamics of the POMDP are still markovian. However, the
agent must take action based on the belief state composed of
the previous beliefs, which makes POMDP unique and a non-
markovian problem [10]. The POMDP problem can be latently
inferred as a time-series problem since it keeps track of the
spatial-temporal features through time by keeping track of the
history of previous obscured beliefs. Where papers using MDP
for Reinforcement Learning like [Mnih et al. - 2015] [14]
use four sequential observations to create a state to capture
the direction and movement of elements in the environment.
To partially obscure this environment to convert this problem
to a POMDP control problem, the state could be separate,

3

only providing a single frame instead of a stack frame for the
agent, or elements from the frames could be obscured [15].
To convert the traffic environment into a POMDP, we look
into the possible state configurations for a traffic environment.
The possible metrics for an MDP state could be the number
of vehicles on the road, traffic movement, how fast each car is
going, headway, queue length, or neighboring intersections. To
provide minimal information, where the agent still can infer
some information from the environment, we use the vehicle
count per lane in a single intersection. The agent does not
get the full state information, while LSTM can utilize this
information and treat it like a time-series problem.

Previous papers [PressLight [16], FRAP [17], IntelliLight
[18]] already run their state space in this configuration, with
some getting this information from neighbouring traffic lights
as well. Compared to the information available from the
emulator, we claim that these papers are trying to run an
MDP control process on minimal viable information of what
is provided by the environment. We aim to learn from spatial-
temporal features through time with hidden states using a
history of belief states within the POMDP. This history of
hidden states infer latent context from an LSTM, which takes
the current observation together with previous hidden and cell
state as input, and produces a new hidden and cell state. We
pass the spatial-temporal features from the long and short-term
traffic features through the environment by iteratively passing
the previous hidden state to an LSTM and outputting the next
hidden state. We aim to capture the traffic cycle phases and
their latent context by passing on the hidden state.

To solve the inaccuracy of the forecasting module, we re-
move the need for an additional forecasting module altogether
by converting the environment to a POMDP. By utilizing the
POMDP features, we remove the direct need to infer time-
series forecasting and only rely on the built-in latent features
from the LSTM. Using a recurrent model will accurately
sequence the time-series spatial features to replace the need for
an additional forecasting module, thus still being Markovian.

The use of a forecasting module allows the forecasting
module to catch general patterns from the data used for
training the module. This data could be adapted continuously,
thus continuously updating the gradients for the forecasting
module during training. One problem, however, is the adaption
to the short-term patterns of cycle phases. Cycle phases
dynamically change for each time sequence and are heavily
dependent on the surrounding factors like roadworks, queues,
accidents, etc. Depending on conditions, the cycle phase can
change from every one hour to every 5 minutes. To adapt to
these rapidly changing and developing phases promptly, we
propose to our knowledge; a novel training strategy called
Hidden Chain Reset. This training strategy zeros the hidden
state carried onward in the environment and tried to reconstruct
the hidden state based on the state input and the weighted
features from the LSTM. In this way, the agent learns to
reconstruct the hidden state based on its current belief and
the history of all previous beliefs. By rolling a few hidden
and belief states through the neural network, the hidden state
will be able to adapt to the current cycle phase, thus increasing
its accuracy for each unique environment. One of the Hidden

Chain Reset’s major contributing features is its capability
to prevent recurrent state staleness, thus retaining optimal
performance. Hidden Chain Reset provides a significant lower
convergence and training time compared to current methods
like unrolling during training.

To prevent the agent from adapting to a particular density
flow, we utilize the features from the LSTM unit in the DQN,
to ensure capturing the long-term and short-term dependencies
while only retaining the important information. It is important
for the agent to learn the long-term patterns of a weekend
and weekday together with a rush and night hours while still
retaining the flexibility of the small cycle phases within those
larger cycle phases. The forget gate of the LSTM retains only
the important information, discarding the rest to the output
hidden state. In this way, the agent does not learn a particular
pattern but also weighs the short-term patterns in its decisions.

We take inspiration from previous POMDP Reinforcement
Learning papers [[Hausknecht et al. 2015][15], [Kapturowski
et al. 2015][19]], and modify these strategies for efficient cycle
sampling. For ReLight, we propose two environment sampling
strategies (Hidden Chain Reset and Episode-based Reset) and
two training strategies (Random Sampling and Burn-in K-
Unrolling). With these strategies, we aim for the agent to learn
to reconstruct states for each cycle phase to capture spatial-
temporal sequences adequately.

II. RELATED WORK

This section will first introduce works on conventional
traffic light control, then works on Reinforcement Learning
integrated into traffic light control, and lastly conclude with
POMDP works.

A. Conventional Traffic Light Control

Today, many modern cities rely on traffic signal control sys-
tems like SCATS [20] and SCOOT [21], where both systems
are designed and rely on manually crafted traffic signal panels
[22]. The pre-crafted traffic plans are then selected by the
current traffic volume detected by loop sensors or other detec-
tion tools for an intersection. These systems, however, cannot
perceive and react to real-time traffic patterns [22]. Greenwave
[23] and Maxband [24] generate cycle-based signal plans for
the individual intersection and aims to optimize the offsets
to reduce the number of vehicles stopping (calculating speed
from sensors) in one direction. Greenwave only optimizes for
unidirectional traffic and requires all intersections to share the
same cycle, which is only optimal if all intersections share the
same traffic patterns and cycles [22]. Actuated Control [25]
and Self-organizing Traffic Light Control (SOTL) [9] dynam-
ically change the next traffic phase in real-time according to
pre-defined rules and data. SOTL claims that Reinforcement
Learning algorithms adapt towards a particular flow density,
while the real-world traffic density changes constantly and
is uneven [9]. Actuated Control and SOTL, however, use a
static ruleset for controlling the traffic phases, making it non-
adaptive to find traffic patterns and prepare lanes in advance
for high or low-density traffic [22].

4

B. Reinforcement Learning Traffic Light Control

Reinforcement Learning-based algorithms like PressLight
[16], FRAP [17], IntelliLight [18] all use the Deep Q-Network
(DQN) Reinforcement Learning algorithm to achieve impres-
sive results, outperforming all previous methods on multiple
datasets for a both multi- and single intersections. One way
to achieve coordination and traffic control between multiple
intersections is to train one agent which jointly takes action
for all intersections; however, it has trouble learning from
the dimensions of the action space. [[Chu et al. 2019] [26],
[Tantawy et al. 2013] [27], [Wiering 2013] [28]] propose
to train Reinforcement Learning agents separately for each
intersection and use neighboring information to train the agent.
However, these methods concentrate information from all
intersections together and treat each with equal importance,
which leads to a flawed design since [Wei et al. 2019]
[29] argues that upstream intersections could have a more
significant influence than downstream intersections. [Wei et
al. 2019] [29] address this issue by leveraging the attention
mechanism to learn different weights of all neighboring inter-
sections to influence their importance. This method, however,
still does not extend to oncoming and outgoing traffic from
highways and any oncoming traffic outside the neighboring
traffic light state. While non-Reinforcement Learning-based
algorithms use cycle phases of weekday and holiday settings,
their adaptive capabilities are limited to specific ruleset or pre-
programmed plans. Current Reinforcement Learning-based
algorithms use flow density and Max pressure [30] to optimize
the algorithm to get the lowest travel time; however, they
ignore the cycle phases from weekdays, nights, and holidays.
Recent works [Hu et al. 2020] [8] solve this problem with
an graph neural network module to predict the future short-
term traffic at each intersection. The forecasting module is
then combined with the Reinforcement Learning algorithm for
the agent to decide based on the traffic density. This method,
however, adds an additional loss function to the traffic volume
forecasting module. Realistic traffic flow is typically very
indeterministic and random, making time-series forecasting
in this domain challenging and inaccurate. If the loss of
the forecasting module is high, the Reinforcement Learning
agent may be fed inaccurate data, unnecessarily feeding the
Reinforcement Learning agent wrong information about the
environment.

C. Partially observable Markov decision process

Both [Hausknecht et. al 2015] [15] and [Narasimhan et.
al 2015] [31] use temporal-difference update to train a DQN
agent by jointly training both convolutional and LSTM layers,
while still achieving impressive results in Atari2600 and text-
based fantasy games.

For an agent to perform well in a POMPD environment,
an Reinforcement Learning agent requires a state representa-
tion that encodes information from its state-action trajectory
through the environment, which is used as additional infor-
mation to its current state observation. One of the common
ways to get this representation is to use a Recurrent Neu-
ral Network (RNN) [32], which captures features through a

temporal sequence. However, RNNs suffer from a vanishing
gradient problem when the recurrent sequence gets too big,
forgetting information early in the recurrent chain. [Hochreiter
& Schmidhuber, 1997] [33] proposes the Long Short Term
Memory (LSTM) architecture to solve this problem, which
allows the network to remember inputs over a long period
and capture important features from all parts of the recurrent
chain. The hidden states of the LSTM architecture is then used
as a part of the agent’s state encoding.

To train an RNN agent directly from replay memory while
allowing it to capture relevant long-term dependencies, re-
quires whole state-action trajectories to be stored in the agents
replay memory and used for updating the networks gradients.
[Hausknecht et al. 2015] [15] compare two strategies for
training an LSTM architecture directly from replay memory.

1) At the beginning of the sampled sequence, the agent ini-
tializes a zero start state of hidden states to initialize the
network, which fills during environment sampling. An
entire episode is then randomly selected from the replay
memory, where the update starts from the beginning of
the sampled episode to the end.

2) At the beginning of the sampled sequence, the agent
initializes a zero start state of hidden states to initialize
the network, which fills during environment sampling.
The agent then randomly selects a point within an
episode and samples a pre-defined sequence from this
point that is unrolled and selected for gradient updating.

Where storing and replaying an entire trajectory may seem like
a simple task, it may become infeasible for very long episodes.
Very long episodes may also suffer from recurrent state
staleness since the agent only performs infrequent updates
on the same episodes with a new network. [Kapturowski et
al.2019] [19] argue that zeroing the initial start state allows the
recurrent network to learn to recover meaningful predictions
from an initial recurrent state mismatch. Since a zeroed
initial state is not a part of the recurrent chain, it has to
rely on the network’s weights to re-create the hidden state.
It may, however, limit the network’s ability to rely on the
initial state and fail to capture some long-term dependencies.
[Hausknecht et al. 2015] [15] results observed an insignificant
difference between the two strategies. To solve these problems,
[Kapturowski et al. 2019] [19] propose two new strategies for
training the network:

1) Stored State - The recurrent state is stored in replay
memory during the environment sampling and used to
initialize the network during gradient updating.

2) Burn-in - During gradient updating, the network will
randomly sample a sequence from replay memory,
where the sample will get a ’burn-in period’. The
network will use a portion of the sampled sequence for
unrolling the network to produce a start state, where the
network will be updated on the remaining part of the
sequence.

Our paper defines the environment as a Partially Observable
MDP to remove the Markovian property constraints and uses
LSTM to capture long, short-term spatiotemporal features
from each lane at all intersections and isolate the effects of

5

the recurrence properties. By leveraging the benefit of carrying
the hidden state in the environment, our model can capture the
features from the temporal sequence of the traffic flow without
additional modules. Our contribution also leverages POMDPs
and LSTMs to use faster sampling and training strategies,
which converge faster and, in most cases, better than other
state-of-the-art methods.

III. PRELIMINARIES

A. Partially Observable Markov Decision Process

Partially Observable Markov Decision Process (POMDP)
differs from the original Markov Decision Process (MDP)
[10] by the state space S not being fully observable from
the environment. Instead of the agent receiving full infor-
mation about a state from the environment, the agent only
receives an observation as an indicator for the actual state in
the system. We can define POMDPs formally as a 6-tuple
(𝑆, 𝐴, 𝑇, 𝑅, Z, 𝑂) where:

• 𝑆, 𝐴, 𝑇, 𝑅 is the states, actions, transitions and rewards as
in MDPs.

• Z is the observation space. Set of observations.
• 𝑂 is the observation model. Contains conditional obser-

vation probabilities.
Since we do not get the full information from the environment,
the agent has a new task of approximating or reconstructing
the environment. It does so by updating its belief state 𝑏(𝑠)
while it interacts with the environment [34]. A belief state
is a probability of the agent being in state 𝑠 according to
its previous history of actions and observations [35]. In a
POMDP environment, the agent does not have direct access
to the current state of the environment, so taking a decision
requires keeping track of the history of the process, which
makes a POMDP a non-Markovian problem. Non-Markovian
problems like POMDPs often requires substantial domain
knowledge to define a set of hidden states and observation
probabilities [36]. One way to circumvent this requirement is
with deep learning. Deep learning can be applied to represent
and track hidden states without a substantial amount of domain
knowledge [36]. In works by [[Narasimhan et al. - 2015] [37],
[Hausknecht & Stone - 2015] [15] and [Bakker - 2002] [38]],
RNN or LSTM is used to represent Q-functions. These works
propose two models for combining recurrent neural networks
with Reinforcement Learning. The LSTM architecture should
have a significant advantage for non-Markovian problems,
since the current belief state is depended on the previous
history of actions and observations compared to the feed-
foward network.

IV. PROBLEM DEFINITION

This section will go through the notation of our environ-
ment. All symbols can be looked up in Table I. We define an
intersection in the environment as:

𝑙1, 𝑙2..𝑙𝑛 ∈ 𝑟𝑙

𝑟𝑙1, 𝑟𝑙2 . . . 𝑟𝑙𝑛 ∈ 𝐼

1Since CityFlow is designed on the American traffic model, all right turn
traffic will always be green, thus not generating an action.

Fig. 3. State design from an 3x4 intersection with an action space of 81.

where a road link 𝑟𝑙 have 𝑙 lanes inside an intersection 𝐼. The
lanes can be inbound 𝑙in , entering the environment towards the
intersection, and outbound 𝑙out, having passed the intersection
and exiting the environment. Vehicles spawn from 𝑙in lane
and drive towards one of the 𝑙out lanes based on its pre-
scheduled route. Once a vehicle has passed the intersection
and entered an 𝑙out lane, the vehicle should no longer be
considered a part of the state. The vehicle is then passed to
another intersection, where the next Reinforcement Learning
agent will consider it as its 𝑙in , and the vehicle will be passed
to the new Reinforcement Learning agents respective state
space. Figure 3 visualizes the environment with 3 inbound
and 3 outgoing lanes, in all four directions. 𝑙in represents a
distinct traffic movement from an inbound lane towards an
outgoing lane 𝑙out.

TABLE I
SYMBOLS AND NOTATION

Symbol Description
𝐸 Environment

𝑖 ∈ 𝐼 Intersection
𝑟𝑙 Road Link

𝑙 ∈ 𝑖 Lane
𝑙𝑖𝑛 Inbound Lane
𝑙𝑜𝑢𝑡 Outbound Lane
𝑠 State
𝑎 Action
𝑟 Reward
𝑞 Q-value
𝑡 Timestep
𝑓 Flow

𝑇𝑇 Travel Time
𝑚 Vehicle count on a specific lane

We represent the state space as an array with the size
(1 × 𝑁), where N is the number of lanes 𝑙1, 𝑙2..𝑙𝑛 ∈ 𝐼 in the
environment. In the intersection on Figure 3, the number of
inbound roads has 3 lanes x 4 roads, which results in a state
size of (1 × 12). We count the number of vehicles currently
on the respective lane for each lane in the state representation.
We can count vehicles with equation 4.1.b.

𝑙𝑐𝑜𝑢𝑛𝑡 = 𝑚(𝑙) (𝑡) (4.1.b)

where 𝑚 is a function that counts the number of vehicles on a

6

given lane 𝑙 at timestep 𝑡. One timestep unit in the environment
is represented as one second. If there is a high count for a lane
in the environment, the headway is minimized, thus creating
higher traffic queues and delays.∑𝑡max

𝑡=1 𝑙𝑐𝑜𝑢𝑛𝑡 (∀𝑙𝑖𝑛 ∈ 𝐼, 𝑡) (4.1.c)

We can calculate the total amount of vehicles in the environ-
ment with 4.1.c, where 𝑡𝑚𝑎𝑥 is the maximum time to simulate
the environment in seconds. When using realistic datasets,
equation 4.1.c must be equal or close to the daily ADDT for
that intersection for 𝑡𝑚𝑎𝑥 for one day.
We can define the flow (or spawn interval) of the cars of each
lane as a function 𝑓 where one car enters 𝑙in and exits through
𝑙out as equation 4.1.d at timestep 𝑡.

𝑓 𝑙𝑜𝑤 = 𝑓 (𝑙in , 𝑙out) (𝑡) (4.1.d)

We can extend 4.1.d to get the total flow (4.1.e) of the
intersection within a given simulation time 𝑡𝑚𝑎𝑥 . A higher
flow value on a low 𝑡𝑚𝑎𝑥 generates more pressure on the
intersection. Flow is commonly low at night and off-peak
hours at most traffic distributions.∑𝑡max

𝑡=1 𝑓 𝑙𝑜𝑤((∀𝑙𝑖𝑛 ∈ 𝐼,∀𝑙𝑜𝑢𝑡 ∈ 𝐼), 𝑡) (4.1.e)

This state representation shows how well the Reinforcement
Learning agent controls vehicles through the traffic light. A
higher vehicle count in each lane means a long queue, which
results in a low traffic flow. The agent can use this state
representation to see how many vehicles are in each lane and
take the appropriate action to maximize traffic flow.

One common way to evaluate the traffic situation in the
environment is through the average travel time. We can define
the travel time (4.1.f) for one vehicle by the time the vehicles
enters 𝑙in and exits 𝑙out.

𝑇𝑇 = (𝑙𝑜𝑢𝑡) (𝑡) − (𝑙𝑖𝑛) (𝑡) (4.1.f)

We can then use travel time to find the average travel time
(4.1.g) for the environment.

1
𝑡max

(
𝑡max∑︁
𝑡=1

𝑇𝑇 ((∀𝑙𝑖𝑛 ∈ 𝐼,∀𝑙𝑜𝑢𝑡 ∈ 𝐼), 𝑡)
)

(4.1.g)

When the environment contains multiple intersections, 4.1.c,
4.1.e, 4.1.g is extended to 𝐼1, 𝐼2..𝐼𝑛 ∈ 𝐸 , where I is each inter-
section in the environment E. Each Reinforcement Learning
agent can only see information for their respective intersection;
however, this measurement allows us to measure the interpo-
lation of nearby intersections and compare results with other
multi-intersection papers.

V. METHOD

A. Framework Overview

Since the MDP environment requires comprehensive
observation of the state (like in Atari games, where you
can observe the movement of 4 frames [14]), POMDP
only requires partial state information. In our environment,
a state observes the number of vehicles in each lane at

the observation time. To isolate the effects of recurrency,
we combine LSTM with Deep Reinforcement Learning to
better capture long-short term temporal patterns between
traffic cycle phases. We utilize the hidden and cell states to
construct a tuple of a single hidden state from the output
of one iteration through the LSTM cell. We use the LSTM
to unroll the history of previously observed belief states for
the agent to guess the current belief state where the agent
is inside the environment. Recurrent controllers benefit from
robustness against missing information, even trained with
complete state information [15]. Since the number of vehicles
on each lane is sparse, information from the environment can
assist the agent in reconstructing the hidden state based on
the history of previous hidden states. By only providing the
agent state information of the number of vehicles at each
lane, the LSTM benefits from the latent temporal features
from the state observation and uses this to learn temporal
patterns. The goal of the LSTM is to learn features for the
specific intersection cycles with the short-term patterns while
still retaining patterns from the general traffic pattern.

Figure 4 visualizes the environment sampling process. At
the beginning of each episode, we sample an initial observa-
tion from the environment and a zero-initialized hidden state
containing a tuple of a hidden and cell state. The DQN network
(visualized on Figure 5) then inputs the initial observation
together with the hidden state and produces a next hidden state
and a Q-value for each action. The agent performs the action
with the highest Q-value in the environment and produces the
following state observation with an immediate reward. The
agent then samples (𝑠, 𝑠𝑛𝑒𝑥𝑡 , 𝑎, 𝑟, ℎ𝑖𝑑𝑑𝑒𝑛, ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡) to the
replay buffer and input the next state observation together
with the next hidden state into the DQN network to continue
the value iteration algorithm. The replay buffer stores the
following information, which is used for training:

1) 𝑠 is the current environment observation, containing the
number of vehicles per lane at a specific time.

2) 𝑎 is the action sampled by the DQN network (Figure 5)
3) 𝑟 is the environment reward. Our paper measures the

reward function by the waiting count of vehicles in each
lane. Longer queues will output less reward to the agent.

4) ℎ𝑖𝑑𝑑𝑒𝑛 is the current hidden state
5) ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡 is the next hidden state sampled together

with the action from the DQN network.
6) 𝑠𝑛𝑒𝑥𝑡 is the net environment observation after an action

is taken.

B. Sampling Strategy

We propose ReLight that extends [Kapturowski et al.
2019] [19] two strategies, Stored State and Burn-in, which
aims to eliminate recurrent state staleness without storing large
trajectories while maintaining long-term dependencies. Our
goal with the new modifications is to capture cycle phases
within the environment and use the hidden state to carry the
temporal features for each phase. To capture relevant long-term
dependencies in a traffic environment, we must encapsulate
the phase cycles and learn about each of the cycles and their

7

Fig. 4. POMDP Reinforcement Learning overview

Fig. 5. DQN model with an LSTM. The model takes the current observation
as input together with a tuple consisting of a hidden and cell state.

differences. The night cycle with no to low traffic consists of
half of the cycles for an entire day, and most traffic patterns
expects rush hour cycles in the morning and the afternoon.
An overview of where each element is applied can be found
on Algorithm 1. We propose two strategies for environment
sampling:

1) Hidden Chain Reset - We propose a novel hyperpa-
rameter addition to capture the cycles phases adequately.
Instead of zeroing the hidden state at the start of each
episode, we zero the hidden state during an episode
at every hyperparametric amount of steps. By zeroing
the hidden state during environment sampling, the agent
tries to re-create the hidden state from the spatial-
temporal cycle to increase correctness and combat the
recurrent state staleness by old model parameters.

2) Episode-based Reset The second strategy is to zero the
hidden state at the beginning of an episode and then pass
the hidden state onwards through the entire episode. The
hidden state should capture the features from an entire
day (or defined episode length) instead of short cycles
within a day.

An episode can be a pre-defined hour or an entire day/week
for the traffic environment, and each step within the environ-
ment is a second. For an environment spanning one hour (3600
steps), the agent zeros the hidden state 14 times an hour with
a hidden chain reset of 256.

At the beginning of an episode, we initialize an empty

Algorithm 1 ReLight Algorithm
Initialize replay memory 𝐷 to capacity 𝑁

Initialize Q-function 𝑄 with random weights 𝜃

Initialize target Q-function �̂� with weights 𝜃− = 𝜃

for episode = 1, 𝑀 do
Initialize step number 𝑡 to be 0 and 𝑇 as episode length
Zero initialize hidden state ℎ𝑡
while 𝑡 < 𝑇 do

if with probability 𝜖 then
Sample random action 𝑎𝑡 and ℎ𝑡+1.

else
Sample 𝑎𝑡 , ℎ𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , ℎ𝑡 , 𝑎; 𝜃)

end if
Execute action 𝑎𝑡 and observe 𝑟𝑡 , 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, ℎ𝑡 , ℎ𝑡+1) in 𝐷

if Burn-In K-Unrolling then
Sample J sequential transitions of
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1, ℎ 𝑗 , ℎ 𝑗+1) from 𝐷

Zero initialize first transition with ℎ 𝑗 = 0
Update ℎ 𝑗+1 = 𝑄(𝑠 𝑗 , ℎ 𝑗 ; 𝜃) for burn-in steps
Update next transition ℎ 𝑗 = ℎ 𝑗+1
Update ℎ 𝑗+1 = 𝑄(𝑠 𝑗 , ℎ 𝑗 ; 𝜃) for the remaining

sequence and only pass on this part
Update next transition ℎ 𝑗 = ℎ 𝑗+1

else
Sample a random minibatch of
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1, ℎ 𝑗 , ℎ 𝑗+1) from 𝐷

end if
𝑆𝑒𝑡 𝑦 𝑗 =

{
𝑟 𝑗 𝑖 𝑓 𝑡 = 𝑇 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑗 + 1
𝑟 𝑗 + 𝛾 𝑚𝑎𝑥𝑎𝑄(𝑠 𝑗+1, ℎ 𝑗+1, 𝑎‘; 𝜃−)

Update gradients w.r.t L = (𝑦 𝑗 −𝑄(𝑠 𝑗 , ℎ 𝑗 , 𝑎 𝑗 ; 𝜃))2

Update ℎ𝑡 = ℎ𝑡+1 and 𝑠𝑡 = 𝑠𝑡+1
if Hidden State Reset then

Every G-steps ℎ𝑡 = 0
end if

end while
end for

8

hidden state ℎ𝑖𝑑𝑑𝑒𝑛 = 0. The hidden state contains a tuple
of:

ℎ𝑖𝑑𝑑𝑒𝑛 = (ℎ𝑡 , 𝑐𝑡)

where:
• ℎ𝑡 is the hidden state
• 𝑐𝑡 is the cell state

The agent then either samples a random action (depending on
epsilon greedy or initial random sampling from [14]), or infers
an action and a hidden state from the DQN network:

𝑞, ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡 = 𝐷𝑄𝑁𝜃 (𝑠, ℎ𝑖𝑑𝑑𝑒𝑛)

where:
• 𝑞 is an array with all the action values (also referred to

as Q-values). We select the action by 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑞) .
• ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡 is the next hidden state
• 𝐷𝑄𝑁 is the Deep Q-Network subjected to some param-

eter 𝜃 with the state and hidden state as input.
The agent then executes the action in the environment and
take an environment step to generate the next state and an
immediate reward. The (𝑠, 𝑎, 𝑟, 𝑠𝑛𝑒𝑥𝑡 , ℎ𝑖𝑑𝑑𝑒𝑛, ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡) is
then appended to the replay buffer, together with updating the
hidden state and state for the next environment step:

ℎ𝑖𝑑𝑑𝑒𝑛 = ℎ𝑖𝑑𝑑𝑒𝑛𝑛𝑒𝑥𝑡
𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑥𝑡

During training, we inspire by [Kapturowski et al.
2019] [19] two proposed strategies. Since we use a strategy to
prevent recurrent state staleness in the environment sampling,
it should not be required to store large sequences in the replay
memory for iterative unrolling during training. By utilizing
Hidden Chain Reset in the environment while carrying the
hidden state during the environment step, we can create
an update strategy to avoid storing sequential transitions in
the replay buffer and perform sequential unrolling updates
altogether. We claim that there is no difference in managing the
hidden chain in environmental sampling or training, as long as
the hidden and cell state is passed throughout the environment,
carrying their parameters.

C. Training Strategy

We propose two different strategies for training:
1) Random Sampling - In random sampling, the model

samples a batch size amount of transitions from the
replay memory and performs a gradient update at each
transition inside the randomly selected batch. The ran-
dom sampling does adhere to the DQN random sampling
policy; however, it relies on the hidden states inferred
directly from the replay memory, which may be prone to
recurrent state staleness even when using Hidden Chain
Reset in the environment. Finding a good hyperparam-
eter for the Hidden Chain Reset is essential for random
sampling. If the hidden state is zeroed too frequently in
the environment, the LSTM may have trouble learning
long-term dependencies. In contrast, we may suffer from
staleness and capturing dependencies not relevant to the
current cycle if it is too big.

Fig. 6. Unrolling from replay memory, where t is a transition and R is an
element randomly sampled from the replay buffer.

2) Burn-In K-Unrolling - In this strategy, the environ-
ment samples a hyperparametric K amount of sequential
transitions and stores the sequential transitions into one
element in replay memory. When the agent trains, the
agent samples a batch size of sequential transitions
and performs hidden-state unrolling on each of the
sequential transitions starting with a zero start state and
a hyperparametric burn-in phase before updating the
gradient on the remaining part of the sequence (Figure
6). One of the significant benefits of this update strategy
is that all updates happen with recently updated model
parameters, which is prone to eliminate recurrent state
staleness. This strategy may become a problem for long-
term dependencies for a traffic environment since it is
computationally costly to save a large sequence inside
a replay memory as a single element. This model also
only partially adheres to DQN’s random sampling policy
since it updates on the sequential transitions after the
burn-in period. While the starting point is random, the
transitions are unrolled in sequential order from the
starting point.

VI. EVALUATION

During evaluation we will try to answer the following
questions:

• (Q1) How do the different sampling and training strate-
gies affect the traffic environment and experimental re-
sults?

• (Q2) How does Hidden Chain Reset strategy compare to
the unrolling strategy?

• (Q3) How does our proposed method perform compared
with other state-of-the-art methods?

• (Q4) Is ReLight scalable enough to control a city-level
traffic signals without neighbouring information?

We will first introduce the datasets and the methodology
behind training. We will then answer each question in their
independent section. Each question is answered in a section
highlighted by the header.

9

TABLE II
BEST HYPERPARAMETER RESULTS FOR WEEKDAY (WD) AND WEEKEND (WE) ON GRANNY (LEFT) AND ROSA (RIGHT) IN AVERAGE TRAVEL TIME

(SECONDS). BEST RESULTS HIGHLIGHTED IN BOLD.

Dataset Param Size 1h 3h 6h 12h

WD 166.43 664.89 1413.55 2497.84
WE Chain Length 1800 75.21 81.11 139.92 762.94

WD 168.32 654.25 1411.46 2524.64
WE Hidden Dims 30 75.33 81.51 143.52 769.95

WD 165.04 662.43 1379.97 2493.90
WE Burn-in 30 75.94 81.88 134.09 682.00

WD 161.93 664.63 1388.25 2392.54
WE Kepochs 160 77.29 82.35 125.39 661.10

Dataset Param Size 1h 3h 6h 12h

WD 58.44 177.31 143.05 113.90
WE Chain Length 3600 57.06 58.18 58.902 65.80

WD 58.24 185.61 139.86 114.80
WE Hidden Dims 256 57.05 58.09 58.83 65.79

WD 58.61 189.36 163.71 124.90
WE Burn-in 30 56.81 58.27 59.057 67.54

WD 58.64 184.77 155.90 127.35
WE Kepochs 30 56.87 58.33 59.03 68.21

A. Datasets

In this paper, we evaluate two different types of datasets.
The first type is actual intersection data fetched from different
cities in the United States and China. We use the city-
wide New York 16x3, Hangzhou 4x4 and Jinan 3x4 datasets
available from the CoLight Github2. These datasets only have
a length of one hour. Since we need to measure cycle phases
and how the models work in datasets longer than one hour,
we need to generate realistic datasets with more hours.

To generate as realistic datasets longer than one hour as
possible, we fetch real-world traffic Annual Average Daily
Traffic(ADDT) from the Tennessee Transportation Data Man-
agement System [39]. We then fetch four ADDT for each
road leading from/to an intersection in an urban environment
to represent the traffic volume for one intersection. We select
four intersections in Tennessee, United States to generate a
flow and road network file:

• Church: Church St and Easley St
• Granny: Granny White Pike and Harding Pl / Battery Ln
• Old Hickory: Edmondson Pike and Nolensville Pike
• Rosa: Rosa L Parks Boulevard

Church, Granny, and Old Hickory consist of two intersections
in each representative dataset, whereas Rosa only consists of
one intersection. Since ADDT does not tell anything about
the distribution of cars during a day, we calculate a flow
probability distribution (Equation 7.1) on the traffic flow on
the highway 20EB Bridge St in California, extracted from
the California Department of Transportation (PeMS) database
[40]. We use the PeMS dataset for distribution since, to our
knowledge is the only database where we can find authentic
time-series data of traffic flow over long periods. Since the
PeMS does not include intersections, we can only use this
dataset to approximate flow distribution.

𝑃(𝑖) =
𝑝𝛼
𝑖∑

𝑘 𝑝
𝛼
𝑘

(7.1)

We use the flow distribution from Wednesdays to represent a
weekday and Sundays to represent weekends. To make a non-
static distribution across datasets, we utilize the random bino-

2https://github.com/wingsweihua/colight/tree/master/data

TABLE III
DATASET STATISTICS FOR BOTH WEEKDAYS (WD) AND WEEKENDS (WE)

Dataset Mean Std Min Max

Rosa WD 3609.72 298.07 575.00 1336
Rosa WE 2405.13 299.22 125.66 1123.99

Granny WD 4946.79 452.07 323.09 2046.45
Granny WE 3279.45 326.1 124.74 1560.27

Church WD 1573.28 147.45 103.39 570.87
Church WE 1051.71 108.25 40.32 454.8

Old Hickory WD 5602.91 330.48 390.91 1556.97
Old Hickory WE 3743.48 267.15 156.8 1217.24

mial distribution (Equation 7.2) with the extracted probability
distribution to generate unique weeks for each intersection.

𝑃(𝑁) =

(𝑛
𝑁

)
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 (7.2)

Our generated datasets start from 06:00 AM and span 1,3,6
and 12 hours since night traffic provides a low travel time
for all hours. Figure 7 shows the vehicle distribution for a
weekday and weekend and their different time cycles. Starting
from 06:00 AM, the datasets will slowly move towards the
08:00 AM rush hour, which is the busiest cycle of the dataset.
Weekday distribution show most people go to work around
8:00 AM and get off work at different periods around 3-
4:00 PM. The weekend distribution shows no rush hour in
the morning; however, the busiest time is around 12-2:00 PM,
when most stores are still open. Table III infer the vehicle
volume per hour, where mean is the mean average of vehicles
driving through each respective intersection per hour.

B. Evaluation Methodology

We simulate the traffic environment in the city-scale
reinforcement-learning simulator CityFlow [41]. CityFlow is
20 times faster than other previous state-of-the-art emulators
like SUMO and can support simulations of multiple intersec-
tions in the same environment [41].
Before comparing ReLight to other state-of-the-art models, we
first optimize hyperparameters for the framework. We evaluate
hyperparameters and other models with 1, 3, 6, and 12 hours
in traffic intervals on an Nvidia Tesla V100 for 350 episodes.

To train the ReLight hyperparameters, we first want to
learn the best hyperparameters for the environment without the

10

Fig. 7. Distribution for vehicles / 5 minutes for the weekday (left) and weekend (right)

TABLE IV
AVERAGE EPISODE TRAINING TIME MEASURED IN SECONDS ON THE ROSA

DATASET BETWEEN 6:00-9:00 AM

DQN Colight PressLight ReLight +Unrolling

WD 18.06 59.36 16.13 19.39 53.54
WE 14.37 43.40 12.49 14.94 48.87

unrolling strategy. We do this to fairly compare the training
strategy on the same environment hyperparameters to get the
best comparison. We prepare general baselines for hidden
dimensions and hidden resets when training the environment,
where both are 256, respectively. When we found the best hy-
perparameters for the environment, we used them for the two
training strategies and the different hyperparameters within
these strategies. When we found the hyperparameters, we used
them to train to Relight on our four datasets and three large-
scale one-hour datasets available on Github3. We then compare
the results with both other conventional and Reinforcement
Learning solutions.

C. Hyperparameters (Q1 + Q2)

In this paper, we propose two strategies for environmental
sampling (Hidden Reset and Entire Trajectory) and training
(Random and Unrolling). Entire Trajectory and Random sam-
pling do not have any hyperparameters, and we can directly
use them to compare the two other strategies.

1) Hidden Reset defines the frequency the hidden state gets
zeroed to prevent recurrent state staleness and enhance
the capabilities for the LSTM to capture cycle phases.
We propose four different reset parameters (30, 256,
1800, 3600), where each parameter is in seconds. With
an empirical analysis, we default our parameters 256
during hyperparameter training.

2) Hidden dimension is the dimensionality (unit param-
eter) of the output space for the LSTM layer. This
hyperparameter defines the number of hidden units in
the hidden layer. We propose three different hidden units
(30, 256, 512), with the default parameter 256.

3https://github.com/wingsweihua/colight/tree/master/data

3) Unrolling defines the number of sequential transitions
unrolled during training. [Kapturowski et al. 2019] [19]
propose an unrolling length of 80 in their paper. We
test with three different hyperparameters (30, 80 160).
Unrolling lengths of 160 and larger are very slow since
the model must sequentially infer 160 transitions each
training step, which can be computational demanding.

4) Burn-in is a proposed extension of [Kapturowski et al.
2019] [19] strategy, where the agent gets to infer a new
hidden state for a burn-in number of transitions before
passing the remaining part of the unrolling sequence
to training. [Kapturowski et al. 2019] [19] propose a
burn-in number of 20. To mitigate the loss wasted from
this extension, we decided to keep burn-in at 20 for all
unrolling steps.

We present the results from the hyperparameter experiments
in Table II. We measure the results in average travel time
measured in seconds and highlight the best results in bold.
We propose the following hyperparameters for one and multi-
intersection:

1) One Intersection: We benchmark on the Rosa L Parks
Blvd dataset for one intersection. In most cases, chain
length got the best results with a hidden state to reset
every one hour. The optimal hidden units are very clearly
256 units. One general observation of this dataset is that
the unrolling and burn-in strategy performs worse overall
than all the random sampling strategy parameters.

2) Two Intersections: We benchmark on the Granny White
Pike and Harding Pl / Battery Ln dataset for multi-
intersection. The best parameter is resetting the hidden
state every 30 minutes, and the best hidden unit is 30.
A general observation compared to the one-intersection
is that unrolling with and without burn-in outperforms
random sampling by a very slight margin. Figure IV
shows the time taken for one episode compared across
the different strategies and other models. Based on
the time comparison for one epoch compared to the
performance of the unrolling strategy, we will highly
propose and use the Hidden Reset with the random
sampling strategies instead, even though the results are
minimally better for unrolling on multiple intersections.

11

TABLE V
OVERVIEW OF THE RESULTS FOR WEEKDAYS (WD) AND WEEKENDS (WE) IN TWO-INTERSECTION DATASETS. THE RESULTS IS IN AVERAGE TRAVEL

TIME (SECONDS), WHERE THE BEST RESULTS IS HIGHLIGHTED IN BOLD.

Granny Church Old Hickory
Model 1h 3h 6h 12h 1h 3h 6h 12h 1h 3h 6h 12h

DQN WD 598.21 2088.46 4706.60 10919.17 181.31 312.58 517.03 2501.46 179.29 527.60 824.02 3259.89
WE 299.32 1034.74 2445.01 7981.25 183.76 191.95 244.97 4248.79 145.15 162.39 248.61 3186.29

SOTL WD 380 1340.36 2989.40 5503.85 167.00 149.00 159.00 156.00 91.60 131.00 120.00 121.00
WE 158.09 264.01 847.99 2987.02 286.00 246.00 211.00 194.00 138.00 119.00 106.00 100.00

Colight WD 425.59 1378.68 3099.50 6318.06 437.23 1270.55 2837.02 5298.23 350.85 974.85 2164.69 4030.73
WE 388.77 1057.35 2040.02 4576.03 480.70 1263.06 2387.72 5065.07 361.95 943.67 1786.04 3807.83

PressLight WD 223.33 769.46 1947.22 2786.65 68.80 71.00 70.27 70.66 67.28 68.94 68.76 69.02
WE 76.69 85.82 230.83 1182.62 68.09 67.66 69.74 69.88 65.79 67.18 67.93 68.24

ReLight WD 168.66 668.31 1415.38 2515.67 67.63 70.49 69.86 70.45 67.20 68.69 68.66 68.88
WE 75.35 81.50 136.99 718.75 64.41 65.81 67.26 68.43 65.09 66.76 67.51 68.08

TABLE VI
OVERVIEW OF THE RESULTS FOR WEEKDAYS (WD) AND WEEKENDS

(WE) ON CITY-WIDE DATASETS. THE RESULTS IS IN AVERAGE TRAVEL
TIME (SECONDS), WHERE THE BEST RESULTS IS HIGHLIGHTED IN BOLD.

New York Jinan Hangzhou

DQN 1541.00 571.96 655.23
SOTL 1775.35 365.00 533.17

CoLight 361.49 347.42 338.85
PressLight 189.90 297.68 326.84

ReLight 181.25 286.58 319.72

TABLE VII
OVERVIEW OF THE RESULTS FOR WEEKDAYS (WD) AND WEEKENDS

(WE) ON SINGLE-INTERSECTION DATASETS. THE RESULTS IS IN AVERAGE
TRAVEL TIME (SECONDS), WHERE THE BEST RESULTS IS HIGHLIGHTED IN

BOLD.

Rosa Dataset 1h 3h 6h 12h

DQN WD 58.34 247.48 215.24 168.05
WE 56.47 58.16 59.03 71.00

SOTL WD 118.00 566.00 723.00 608.00
WE 181.00 126.00 139.00 248.00

CoLight WD 277.40 847.11 2039.25 3505.60
WE 282.85 713.95 1340.52 3126.02

PressLight WD 58.51 269.15 240.19 188.63
WE 58.54 261.21 261.48 209.86

ReLight WD 58.44 177.31 143.05 113.90
WE 57.06 58.18 58.90 118.16

D. Baselines and Metrics

We compare the proposed ReLight framework with other
traditional and state-of-the-art methods. 4.

• DQN: A standard DQN [14] approach applied to traffic
light intersections.

• Actuated Control - SOTL: SOTL [9] is a conventional
traffic light control algorithm which uses a request-based
phase control system to optimize traffic. If the number
of vehicles in a queue at a lane surpasses a specified

4Since IntelliLight is using SUMO as an environment simulator, we omit
this method from the results to compare other methods with the same datasets
and environments properly.

threshold, the traffic light receives a request to change
light phases. If there are no requests for the current phase
and a minimum green light phase has passed, the request
is granted, and the signal changes. If there is still a request
for the current phase due to traffic, the light signal will
only change after passing a duration threshold.

• CoLight: Colight [6] use Graph Attentional Networks to
enable cooperation between traffic signals in a reinforce-
ment learning algorithm. They incorporate the temporal
and spatial influences of neighboring intersections to the
target intersection and build up index-free modeling of
neighboring intersections.

• PressLight: Presslight [16] incorporates the state-of-the-
art method max pressure in a reinforcement learning
algorithm. In Max-pressure, the objective is to balance
queue length between neighboring intersections by min-
imizing the "pressure" of the phases for an intersection.
The pressure of a movement signal can be defined as the
number of vehicles on incoming lanes minus the number
of vehicles on the corresponding outgoing lanes.

E. Performance Comparison (Q3)

In this section, we evaluate the effectiveness of the differ-
ent strategies while comparing ReLight to other traffic light
control methods. The average training accuracy is shown in
Table VII, Table V, and Table VI respectively.

For a single intersection (Rosa - Table VII), ReLight com-
pares significantly better on all hour intervals than all other
models. DQN and PressLight both compare in result for one
hour, since it reaches the minimum time it takes for a car
to drive through the environment. One thing to note is that
12 hours have a lower average travel time than 3 and 6 hours
since the intersection got time to clear the rush hour queue and
average the pressure with the additional low-pressure cycles.
All models perform well on one hour but adding additional
hours with more pressure, all models start to get larger travel
times, however, DQN, Presslight, and Relight keep the travel
time low. We expect Colight to perform badly on single and
two intersection datasets like Rosa and Granny since their
model relies solely on the graph attention mechanism [6] for

12

Fig. 8. Average time duration of two light phases (Green and Red) for West to East traffic on the Rosa weekday dataset from a converged policy (left) and
episode reward for each episode for different time-periods for the Rosa weekday dataset (right)

each intersection. Figure 8 (right) shows the average episode
reward for the four periods on the Rosa weekday dataset. For
1 hour, the agent gets the most reward from the environment
since it is a period outside rush hour with low traffic. Both 6
and 12-hour both contain the same amount of rush and slow
cycles, so they converge around the same environment reward.
3 hour is the most challenging period for the agent since it
only sees the first hour with slow traffic and never alleviate
traffic from the rush hour cycles. All hours converge to their
periods’ full convergence fast, with only a slight deviation in
episode rewards later during training.

For two intersection datasets (Granny, Church, and Old
Hickory - Table V), Relight significantly outperforms all other
models on Granny, and is close but better for Church and Old
Hickory than Presslight since the traffic pressure is low on
both datasets. Overall it is clear that conventional traffic light
control does not adapt well to pressure, and standard DQN-
based algorithms perform well, but still fall short of ReLight.

In City-wide one-hour datasets (New York, Jinan, and
Hangzhou - Table VI), Colight is comparably closer to
Presslight and ReLight. Conventional control comes closer to
the other results, however, still falls short on all datasets. Our
ReLight model also slightly outperforms all other models on
these datasets.

F. Spatial and Temporal distribution in Multi and City-Wide
Datasets (Q4)

One of the most important parts of our contribution is that
we can achieve get spatial-temporal information from neigh-
boring intersections without directly inferring any information
from these intersections. In PressLight and CoLight, both use
independent methods to calculate network-level information
to better predict pressure for each intersection. ReLight uses
solely independent agents and single-intersection information
and uses the latent context of spatial-temporal information
from the LSTM features of the incoming traffic from other
neighboring intersections. Figure 8 (left) shows the average
time duration of two light phases (Red and Green for WE
traffic) on the Rosa weekday dataset. This figure shows that
traffic in the WE direction becomes green for longer during
the rush hour cycles to alleviate traffic. Comparing the agent
converged policy with the dataset distribution in Figure 7, it

is clear that the agent learned to adapt its cycle phases to the
specific flow for the individual intersection. For all multi and
city-wide traffic datasets, ReLight outperforms other models
in one to 48 intersections (New York), which indicates that
ReLight may capture spatial-temporal information in some
sense from neighboring intersections to properly coordinate
city-wide traffic.

VII. CONCLUSION

In this paper, we propose a novel algorithm ReLight, where
we treat the environment as a POMDP and use its properties
to capture the short history of vehicle flow while using LSTM
hidden state properties to capture spatial-temporal features
across cycle phases. We conduct our experiments with real-
world intersections for 1 to 12 hours and capture their different
cycle phases through the morning, evening, and afternoon
hours, and one-hour city-wide datasets. ReLight outperforms
other state-of-the-art traffic control models in both single,
multi, and city-wide intersections. In this paper, we only
test the model with vehicle count state information, and for
future work, we will suggest either adding or removing more
state information or additional modules to the environment to
experiment to compare the results. In future work, we also
need to consider patterns of roadworks, accidents, and sudden
high pressure together with applying our solution to other
simulators or a real intersection, and try to capture patterns for
an entire week instead of two separate days within a week.

REFERENCES

[1] “Americans Spend an Average of 17,600 Minutes Driving Each
Year,” 03 2022. [Online]. Available: https://newsroom.aaa.com/2016/
09/americans-spend-average-17600-minutes-driving-year/

[2] “The True Environmental Cost of Inner-city
Congestion | TomTom Blog.” [Online]. Avail-
able: https://www.tomtom.com/blog/traffic-and-travel-information/the-
true-environmental-cost-of-inner-city-congestion/

[3] “Traffic Signal Timing Manual: Chapter 5 - Office of
Operations.” [Online]. Available: https://ops.fhwa.dot.gov/publications/
fhwahop08024/chapter5.htm#5.2

[4] H. Wei, G. Zheng, V. V. Gayah, and Z. Li, “A Survey on Traffic Signal
Control Methods,” CoRR, vol. abs/1904.08117, 2019.

[5] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li,
“PressLight: Learning Max Pressure Control to Coordinate Traffic
Signals in Arterial Network,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
1290–1298. [Online]. Available: 10.1145/3292500.3330949

13

[6] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “CoLight: Learning Network-level Coop-
eration for Traffic Signal Control,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019.

[7] H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A Reinforcement
Learning Approach for Intelligent Traffic Light Control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 2496–2505. [Online]. Available:
10.1145/3219819.3220096

[8] X. Hu, C. Zhao, and G. Wang, “A traffic light dynamic control
algorithm with deep reinforcement learning based on GNN prediction,”
CoRR, vol. abs/2009.14627, 2020. [Online]. Available: https://arxiv.org/
abs/2009.14627

[9] C. Gershenson, Self-organizing Traffic Lights. Complex Systems, 16
(2005) 29–53; 2005 Complex Systems Publications, Inc., 2005.

[10] A. R. Cassandra, “Background on pomdps.” [Online]. Available:
https://cs.brown.edu/research/ai/pomdp/tutorial/pomdp-background.html

[11] ——, “Brief introduction to markov decision processes (mdps).”
[Online]. Available: https://cs.brown.edu/research/ai/pomdp/tutorial/
mdp.html

[12] R. BELLMAN, “A markovian decision process,” Journal of Mathematics
and Mechanics, vol. 6, no. 5, pp. 679–684, 1957. [Online]. Available:
http://www.jstor.org/stable/24900506

[13] F. Grabski, “1 - discrete state space markov processes,” in Semi-
Markov Processes: Applications in System Reliability and Maintenance,
F. Grabski, Ed. Elsevier, 2015, pp. 1–17. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128005187000016

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. [Online]. Available: https://doi.org/10.1038/nature14236

[15] M. J. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially
Observable MDPs,” CoRR, vol. abs/1507.06527, 2015.

[16] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and
Z. Li, “Presslight: Learning max pressure control to coordinate
traffic signals in arterial network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1290–1298. [Online]. Available:
https://doi.org/10.1145/3292500.3330949

[17] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang,
Y. Li, K. Xu, and Z. Li, “Learning phase competition for traffic
signal control,” CoRR, vol. abs/1905.04722, 2019. [Online]. Available:
http://arxiv.org/abs/1905.04722

[18] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery amp; Data Mining, ser. KDD ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2496–2505. [Online].
Available: https://doi.org/10.1145/3219819.3220096

[19] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos,
“Recurrent experience replay in distributed reinforcement learning,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=r1lyTjAqYX

[20] P. Lowrie, Roads, and T. A. of New South Wales. Traffic
Control Section, SCATS, Sydney Co-Ordinated Adaptive Traffic System:
A Traffic Responsive Method of Controlling Urban Traffic. Roads
and Traffic Authority NSW, Traffic Control Section, 1990. [Online].
Available: https://books.google.dk/books?id=V4PTtgAACAAJ

[21] R. B. PB Hunt, DI Robertson and M. C. Royle, The SCOOT on-line
traffic signal optimisation technique. Traffic Engineering Control 23,
4 (1982)., 1982.

[22] H. Wei, G. Zheng, V. V. Gayah, and Z. Li, “A survey on traffic
signal control methods,” CoRR, vol. abs/1904.08117, 2019. [Online].
Available: http://arxiv.org/abs/1904.08117

[23] E. S. P. Roger P Roess and W. R. McShane., Traffic engineering.
Pearson, 2004.

[24] M. D. K. John DC Little and N. H. Gartner, MAXBAND: A versatile
program for setting signals on arteries and triangular networks. Trans-
portation Research Record Issue Number: 795, 1981.

[25] U. D. of Transportation, “Traffic signal timing manual -
chapter 5.” [Online]. Available: https://ops.fhwa.dot.gov/publications/
fhwahop08024/chapter5.htm

[26] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep
reinforcement learning for large-scale traffic signal control,” CoRR, vol.
abs/1903.04527, 2019. [Online]. Available: http://arxiv.org/abs/1903.
04527

[27] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-
forcement learning for integrated network of adaptive traffic signal
controllers (marlin-atsc): Methodology and large-scale application on
downtown toronto,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[28] M. Wiering, “Multi-agent reinforcement learning for traffic light con-
trol,” 2000.

[29] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooperation
for traffic signal control,” CoRR, vol. abs/1905.05717, 2019. [Online].
Available: http://arxiv.org/abs/1905.05717

[30] P. Varaiya, “Max pressure control of a network of signalized intersec-
tions,” Transportation Research Part C: Emerging Technologies, vol. 36,
p. 177–195, 11 2013.

[31] X. Li, L. Li, J. Gao, X. He, J. Chen, l. Deng, and J. He, “Recurrent
reinforcement learning: A hybrid approach,” 09 2015.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” p. 533–536, Oct 1986.
[Online]. Available: http://dx.doi.org/10.1038/323533a0

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[34] M. Egorov, “Deep Reinforcement Learning with POMDPs,” 11 2015.
[Online]. Available: https://cs229.stanford.edu/proj2015/363_report.pdf

[35] H. A. M. Schafer, “Reinforcement Learning with Recurrent Neural
Networks,” 10 2008. [Online]. Available: https://d-nb.info/991415167/34

[36] X. Li et al., “Recurrent Reinforcement Learning: A Hybrid Approach.”
[Online]. Available: https://arxiv.org/abs/1509.03044

[37] K. Narasimhan, T. D. Kulkarni, and R. Barzilay, “Language
understanding for text-based games using deep reinforcement learning,”
CoRR, vol. abs/1506.08941, 2015. [Online]. Available: http://arxiv.org/
abs/1506.08941

[38] B. Bakker, “Reinforcement learning with long short-term memory,”
in Advances in Neural Information Processing Systems, T. Dietterich,
S. Becker, and Z. Ghahramani, Eds., vol. 14. MIT Press,
2001. [Online]. Available: https://proceedings.neurips.cc/paper/2001/
file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf

[39] T. D. of Transportation, “Annual average daily traffic (aadt) maps.”
[Online]. Available: https://www.tn.gov/tdot/driver-how-do-i/look-at-
or-order-state-maps/maps/annual-average-daily-traffic-maps.html

[40] C. D. of Transportation, “Caltrans Performance Measurement System.”
[Online]. Available: https://pems.dot.ca.gov/

[41] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang,
Y. Yu, H. Jin, and Z. Li, “Cityflow: A multi-agent reinforcement
learning environment for large scale city traffic scenario,” CoRR, vol.
abs/1905.05217, 2019. [Online]. Available: http://arxiv.org/abs/1905.
05217

