
Control of Differential Driven Rover by
Means of Sensor Fusion

Master Thesis

Andreas Holst Thøgersen & Jesper Skovager Thomsen
Mechatronic Control Engineering

MCE4 - 1025

Aalborg University
Department of Energy Technology

10th Semester
Mechatronic Control Engineering

Department of Energy Technology
Pontoppidanstræde 111

9220 Aalborg
https://www.et.aau.dk/

Title:

Control of Differential Driven
Rover by Means of Sensor Fusion

Project Period:

From 01-02-2022 to 15-06-2022

Project Group:

MCE4 - 1025

Authers:

Andreas Holst Thøgersen
Jesper Skovager Thomsen

Supervisors:

Petar Durdevic
Simon Lennart Sahlin

Number of Pages: 78
Appendices: 3

Abstract:

In this report, a differential-driven rover
for use in agriculture is analyzed with the
end goal of determining and controlling its
position.
For determining the rover’s position as well
as its other states, an extended Kalman
filter has been designed combining multiple
sensors to achieve higher precision than
what would have been achievable by using
only one sensor. The sensors used are wheel
encoders, an inertial measurement unit, a
magnetometer, and a GNSS with RTK
capabilities.
The system states are used for designing
two different kinds of controllers. The first
one is a heading controller, to ensure that
the rover keeps the correct heading while
driving along at a constant linear velocity.
The second is an inertial frame controller,
ensuring that the rover reaches predefined
positions.
The extended Kalman filter as well as all
the sensor input are handled by a micro-
controller running FreeRTOS to ensure real-
time operation. While the control and in-
terface to the motors are handled by an
NVIDIA Jetson Nano running Robot Op-
erating System.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

By accepting the request from the fellow student who uploads the study group’s project report in

Digital Exam System, you confirm that all group members have participated in the project work,

and thereby all members are collectively liable for the contents of the report. Furthermore, all group

members confirm that the report does not include plagiarism.

Summary

This master thesis is concerned with the design of a control system for the navigation
of a differential-driven rover. The main objective of the thesis is to develop a generic
control platform that may be extended in different ways. The control platform is
built around an Nvidia Jetson Nano board running Robot Operating System (ROS)
as this allows for the incorporation of different premade functionalities developed
by the open-source ROS community. The NJN is the main junction between any
potential rover expansions, and will for the thesis receive state estimates, generated
on a Nucleo development board and use these state estimates for feedback control
of the rover, and send the commands to a dual-motor drive unit.

The Nucleo board will read the sensor data coming from the motor encoders, an
inertial measurement unit (IMU), a magnetometer as well as a global navigation
satellite system board and fuse it by means of an extended Kalman filter (EKF).
The Nucleo board is running freeRTOS which is a real-time operating system to
ensure consistent timing.

The general accuracy of the EKF cannot be quantified in this report as this requires
knowledge of the true system states. Despite this, the performance of the filter in
the event of a data fallout of 40 seconds has been simulated and has shown a high
similarity to the position estimates recorded by the GNSS.

Two different control structures have been proposed in the report one being an
alignment controller and the other an inertial frame controller. The alignment
controller will attempt to align the rover heading with a given reference while driving
at a constant set linear velocity. This controller is designed as it may be used with
camera vision but also serves as part of the control structure for the inertial frame
controller. The inertial frame controller is designed to handle the navigation of the
rover in the inertial frame and will therefore take in the desired location (xref , yref)

and navigate the rover to within some distance ϵ from this point. Simulation results
of the complete system show that the inertial frame controller has completed the
predefined trajectory with a root mean square error of 7 cm and a max deviation
from the trajectory of 18 cm. These values are however dependent on the velocity
at which the trajectory is completed as higher velocities generally require higher
system bandwidth.

v

Contents

Summary v

Nomenclature ix

1 Problem Formulation 1
1.1 Introduction . 1
1.2 Problem Description . 2
1.3 Problem Statement . 2

2 System Description 3
2.1 System Structure . 4
2.2 Wiring Diagram . 5
2.3 ROS Implementation on NJN . 5

3 System Model 9
3.1 Dynamic Model . 10
3.2 Transformation to Inertial Frame . 11

4 Parameter Identification 13
4.1 System Parameters . 13
4.2 Time Delay . 15
4.3 Discussion . 16

5 Sensor Calibration and Interpretation 17
5.1 Encoders . 17
5.2 GNSS . 17
5.3 Accelerometer . 18

5.3.1 Accelerometer Model . 21
5.3.2 Accelerometer Testing . 21

5.4 Gyroscope . 23
5.5 Magnetometer . 24

6 State Observer Design 29
6.1 Inertial Navigation Filter . 29
6.2 Extension of Kalman Filter . 32
6.3 Scalar Implementation . 35
6.4 Computational Load of Nucleo Board 36
6.5 Validation of EKF . 36

7 State Estimation from Measured Sensor Data 41
7.1 Test Scenario . 41

vii

MCE3-926 Contents

7.2 Performance Evaluation . 42
7.3 Performance Evaluation During Data Fallout 44
7.4 Discussion . 44

8 Control 47
8.1 Alignment Controller . 47

8.1.1 Controller Evaluation . 50
8.2 Inertial Frame Controller . 51

8.2.1 Controller Evaluation . 54

9 Discussion 59

10 Conclusion 61

11 Future Work 63

Bibliography 65

Appendices:

A Component Description 69

B Determination of Measurement Uncertainty 71

C State Estimation Plots 75

viii

Nomenclature

Symbols:
∆ψ Angle between rover current heading and reference point rad

∆d Distance from current position to d m

∆l Distance from current to reference position m

∆x Distance from current to reference position in the x direction m

ẋ Inertial frame velocity m/s

ẏ Inertial frame velocity m/s

ω̇ Rotational acceleration rad/s2

ϕ̇l Rotational velocity of left motor rad/s

ϕ̇r Rotational velocity of right motor rad/s

ϕ̇l,ref Rotational velocity reference for the left motor rad/s

ϕ̇r,ref Rotational velocity reference for the right motor rad/s

ϵ Radius of around reference location m

x̂ Estimated state vector −
µ Average value for measurement uncertainty −
ω Rotational velocity of the rover rad/s

ωmeas Gyroscope measurement rad/s

ωref Rotational velocity reference rad/s

ωtrue Gyroscope true value rad/s

ϕ Wheel position rad

ψ Angle between rover position and reference point rad

τ l Left motor torque Nm

τ r Right motor torque Nm

θ Heading of the rover rad

θIMU Angle difference between body and IMU frame rad

θmeas Magnetometer measurement rad

θref Heading reference rad

θtrue Magnetometer true value rad

ỹ Error between estimated and measured states −
ab,x Acceleration in x direction of body frame m/s2

ab,y Acceleration in y direction of body frame m/s2

Abias Accelerometer bias m/s2

acen Centripetal acceleration m/s2

aIMU,x Acceleration in x direction of IMU frame m/s2

aIMU,y Acceleration in y direction of IMU frame m/s2

ameas Accelerometer measurement m/s2

atan Tangential acceleration m/s2

atrue Accelerometer true value m/s2

b Friction constant Ns/rad

d Closest point to the reference position along current heading m

ix

MCE3-926 Contents

eθ Error in heading rad

es Error in distance rad

f State transition function m/s

Gbias Gyroscope bias rad/s

J Inertia of the rover kgm2

Ki Integral gain for motor controller −
Kp Proportional gain for motor controller −
KDen Kalman gain denominator
KNum Kalman gain numerator −
Kp,θ Proportional gain for heading controller −
Kp,s Proportional gain for distance controller −
L Width of the rover m

LIMU Length from center of rotation to IMU m

lat latitude of the rover ◦

lato latitude of the rover at the origin of the coordinate system ◦

lon longitude of the rover ◦

lono longitude of the rover at the origin of the coordinate system ◦

m Mass of the rover kg

Mbias Magnetometer bias rad

nt Number of ticks from encoder −
qẋ Velocity in x process noise variance (m/s)2

qẏ Velocity in y process noise variance (m/s)2

qω Rotational velocity process noise variance (rad/s)2

qθ Heading process noise variance (rad)2

qAbias
Accelerometer bias process noise variance (m/s2)2

qGbias
Gyroscope bias process noise variance (rad/s)2

qMbias
Magnetometer bias process noise variance (rad)2

qV Velocity process noise variance (m/s)2

qx Distance in x process noise variance (m)2

qy Distance in y process noise variance (m)2

r Radius of the wheels m

racc Accelerometer measurement uncertainty variance (m/s2)2

rGNSS GNSS measurement uncertainty variance (m)2

rgyro Gyroscope measurement uncertainty variance (rad/s)2

rmag Magnetometer measurement uncertainty variance (rad)2

S Body frame position m

Sref Body frame position reference m

Ts Kalman filter sampling time s

tenc Time between encoder measurements s

V Linear velocity of the rover m/s

va Accelerometer zero-mean Gaussian noise m/s2

vg Gyroscope zero-mean Gaussian noise rad/s

Vmeas Velocity measurement m/s

x

Contents Aalborg University

vm Magnetometer zero-mean Gaussian noise rad

Vref Linear velocity reference m/s

x Inertial frame position m

xb Body frame x direction −
xIMU IMU frame x direction −
xmag,max/min Maximum and minimum raw values in the x direction −
xmag,o,max Maximum hard iron compensated values in the x direction −
xmag,os Magnetometer hard and soft iron compensated data in the x direction

−
xmag,o Magnetometer hard iron compensated data in the x direction −
xmag Magnetometer raw data in the x direction −
xref Reference point in the inertial frame x direction m

y Inertial frame position m

yb Body frame y direction −
yIMU IMU frame y direction −
ymag,max/min Maximum and minimum raw values in the y direction −
ymag,o,max Maximum hard iron compensated values in the y direction −
ymag,os Magnetometer hard and soft iron compensated data in the y direction

−
ymag,o Magnetometer hard iron compensated data in the y direction −
ymag Magnetometer raw data in the y direction −
yref Reference point in the inertial frame y direction m

z Measurement vector −

Matrices:
P̂ Error covariance matrix −
Ass System matrix of the rover −
A Generic system matrix −
Bss Input matrix of the rover −
B Generic input matrix −
C Generic output matrix −
F State transition matrix −
Gϕ̇ Rotational velocity transfer function matrix −
Gkin Kinematic transfer function matrix −
G Control matrix −
H Observation matrix −
K Optimal Kalman gain −
M Kinematic relation between motor rotational velocity and linear/rota-

tional velocity of the rover −
Q Error covariance matrix −
R Error covariance matrix −

Abbreviations:

xi

MCE3-926 Contents

BMS Battery Management System
CV Camera Vision
DoF Degrees of Freedom
DSP Digital Signal Processor
EKF Extended Kalman Filter
ENU East, North, UP
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INF Inertial Navigation Filter
KF Kalman Filter
NJN Nvidea Jetson Nano
PCB Printed Circuit Board
RMSE Root Mean Square Error
ROS Robot Operating System
RPM Revolutions Per Minute
RTK Real Time Kinematics
VO Visual Odometry

Constants:
g Gravitational acceleration 9.82m/s2

Rearth Radius of the earth 6371·103m

xii

Problem Formulation 1
1.1 Introduction
Agriculture machinery is conventionally large and heavy. The idea of using smaller
machines, in larger quantities, proposes some interesting features which might
benefit the field of agriculture. Smaller rovers have the benefit of being lighter,
and thereby not compacting the soil in the same way larger machinery might. It
may also allows for crop management on the level of individual plants rather than
on a field level, as a large quantity of small rovers, would be able to comb through
a field more efficiently than if done manually. In this report the rover depicted
on Figure 1.1 is considered. This is a differential-driven rover with approximate
dimensions of 650mm long, by 450mm wide, by 330mm tall without the robotic
arm, can be seen on Figure 1.1. The rover is designed for agriculture, where the
terrain is rough and sometimes muddy, tracks are fitted instead of conventional
wheels, to prevent slip, between the wheels and the ground. The rover is meant to
have a robotic arm attached to it, making it a very versatile machine, not only for
agriculture, but for many fields of interest.

Figure 1.1. Rendering of the rover considered in this project

1

MCE3-926 1. Problem Formulation

1.2 Problem Description
The rover will for the project be viewed as a general platform with the main focus
being on the navigation and control of the rover. To navigate the rover, the position,
velocity, and heading of the rover will have to be estimated. This may either be used
directly in a feedback controller or to track the rover. This state estimation will for
the report be done by means of an extended Kalman filter where sensor data from
motor encoders, an Inertial Measurement Unit (IMU), a magnetometer as well as
a Global Navigation Satellite System (GNSS) module will be fused to achieve a
better overall state estimation. Using different sensors rather than just relying on
e.g. GNSS means that state estimations of the rover may be performed in between
the relatively slow update frequency of the GNSS. Another benefit of this strategy
is that the system will have some redundancy which means that the states of the
rover may be estimated despite events such as a data fallout.

1.3 Problem Statement
How can an extended Kalman filter be designed to estimate system states, by means
of sensor fusion, for use in a feedback controller to navigate a differential-driven
rover?

2

System Description 2
The following chapter will be concerned with the components of the rover, and how
they interact. A close-up of the rover electronics with annotations can be seen on
Fig. 2.1. The electronics of the system may be split up into three different main
components being:

• Main Computer
• Motor and motor drive
• Sensor pack

A full description of the different sub-components, as well as their respective
capabilities, can be found in Appendix A but a summary of their different system
tasks and how they fit into the system will be provided here.

A full picture of the rover can be seen on the left part of Figure 2.1 while the right
part is a zoom of the content of the light blue dashed box. In this picture all USB
connections for the Nvidia Jetson Nano (NJN) has been removed in order to provide
a clear view of the boards. The main computer for the system will be the NJN, seen
on the bottom right of the acrylic plate on Figure 2.1, which will be running Robot
Operating System (ROS) and will function as the junction between the different
components of the system, as well as run the control code. The NJN will then send
velocity commands to the motor drive, which will internally handle the individual
velocity control loops for the two motors. The NJN is used as it allows for various
extensions to the rover capabilities, such as camera vision, control of the robot arm,
etc.

The Nucleo board on the top level of the acrylic plate of Figure 2.1 will for the project
act as a sensor junction point that will take in data from the IMU, magnetometer,
GNSS, and encoders to estimate the rover states by means of an EKF. The estimated
rover states will then be transmitted to the NJN over a UART connection. The
Nucleo board will be running FreeRTOS which is a real-time operating system to
ensure strict timing.

On Figure 2.1 a radio frequency (RF) module can be seen. This has initially been
intended for remote control of the rover but is not used in the project as it has been
observed to cause problems due to interference of the radio signal from the real-time
kinematics signal from the GNSS.

3

MCE3-926 2. System Description

Figure 2.1. Picture of physical setup with annotations

2.1 System Structure
The internal communication of the system can be seen on Figure 2.2, giving an
overview of how the system components interact. Starting from the bottom left
corner two GNSS modules will be linked together to generate a Real-Time Kinematic
(RTK) signal for the positioning of the rover. This RTK signal will, along with the
data from the IMU and the wheel encoders, be processed by the Nucleo board after
which the estimated rover states are sent to the NJN.

RS485NJN

I2CIMU

UART1

UART2

Nucleo

Motor Controller

Motor

Digital Encoder Signal

Encoder

433MHz RF

Motor Encoder

Figure 2.2. High level block diagram of system setup

One bottleneck expected to be encountered in the system is the RS485 connection
between the NJN and the motor controller board. During the initial tests of the

4

2.2. Wiring Diagram Aalborg University

motor controller, the board is observed only to be reliable in transmitting data to
the NJN at a rate of approximately 10 Hz. This will heavily impact the bandwidth
which may be expected from the controller and will serve as a justification as to why
the controller may be deployed on the NJN although it does not guarantee real-time
operation.

2.2 Wiring Diagram
The wiring diagram of the setup can be seen in Figure 2.3. Where the specific
connections between the boards are outlined. As the IMU unit is a direct plugin
for the Nucleo board no wiring is necessary between these. The 36V rail is to be
supplied by the main battery of the rover while a separate auxiliary 5V battery will
be used to supply power for the different modules of the rover.

A-L PB6Motor,

Encoder and

Motor drive

USBRS485 to USB
Converter

Nucleo

A B

J5

B-L PB7
A-R PA8
B-R PA9

J4

IMU

Auxiliary

Battery

GNSS
 J8

Tx

PC7

Rx

PC6

Trigger

Jetson
USB

USB

Camera

5V

5V

5V

5V

36V

Figure 2.3. Wiring diagram of rover

2.3 ROS Implementation on NJN
In ROS the system is made up of different nodes, running python scripts, all with
the possibility of publishing and/or subscribing to different topics. With this, it is
possible to run multiple scripts at the same time while exchanging information. An
illustration of the ROS structure can be seen on Figure 2.4, and the different nodes
will be further elaborated in the following subsections.

5

MCE3-926 2. System Description

ROS Core

Keyboard

Control

Data Log

State Estimation

Figure 2.4. Node structure in ROS

State Estimation
This node is intended to read the data coming in on the USB connection from the
Nucleo. This data is made up of the system states calculated by the Kalman filter,
as well as a timestamp for when the data has been sent from the Nucleo. This
information is published to the /x̂ topic.

Keyboard
This node is for controlling the rover with a keyboard. It reads what keys are being
pressed, and publishes that information to the /Key topic. This node is primarily
introduced as it will allow for remote control of the rover to e.g. change mode and
perform manual overwrite.

Control
The control node is made up of multiple functionalities. The first functionality is
reading a predetermined trajectory from a .CSV file. The second is writing the
commanded motor values to the motor controller. The third is the actual controller.
This node subscribes to the /Key and /x̂ topics. What key is pressed has multiple
purposes in this node. Different keyboard keys have been mapped to determine
whether the rover should run a trajectory, disable motors, or perform manual

6

2.3. ROS Implementation on NJN Aalborg University

overwrite of the commanded velocities. /Key is also mapped to determine the rover’s
linear and angular velocity during manual control. The node is publishing to the
/ref and /cmdvel topic, where /cmdvel also contains the timestamp for when the
commanded velocity has been sent to the motors.

Data log
The data log note subscribes to the topics /Key, /x̂, /ref and /cmdvel. A key
is mapped to start and stop the data log. After the datalog has started the node
gathers the different topics in a .CSV file.

Topics
A list of the topics and what they contain is listed in Table 2.1. Tx̂ is the timestamp
of when the estimated states is sent from the Nucleo and T/cmdvel is the time stamp
of when the velocity references are sent to the motors.

Table 2.1. Table og ROS topics and their contents

/x̂ /ref /cmdvel /Key
Tx̂ xref Tcmdvel key
V̂ yref ϕ̇ref

ω̂ θref ϕ̇ref

θ̂ Vref
ˆ̇x
ˆ̇y
x̂
ŷ

Âbias

Ĝbias

M̂bias

Expansion
Using ROS enables further expanding the capabilities of the rover. The nodes
implemented at the moment are necessary for the basic functionality of the rover.
However, more nodes can be implemented to enable features such as CV, without
having to change the other nodes of the structure. With ROS being an open-source
community-based platform, many different libraries and extensions already exist
which means that additional functionality may easily be integrated.

7

System Model 3
In order to design control for the rover, a model of a differential drive robot is
derived, folowing the method in [1].
A simplified illustration of the rover can be seen on Figure 3.1.

L

V

r

φ

Figure 3.1. Simplified illustration of the rover

The motion can be described by the linear velocity(V) as well as the rotational
velocity(ω). For the project the wheels of the rover will be assumed never to slip,
this is justified by the fact that the rover will be driving on tracks and is further
strengthened by the relative low accelerations expected. The linear velocity of each
wheel can be described by the rotational velocity of the wheel multiplied by the
radius of the wheel and can be related to the velocity and rotation of the rover as
described in Equations (3.1) and (3.2).

V +
L

2
ω = rϕ̇r (3.1)

V − L

2
ω = rϕ̇l (3.2)

Where r is the radius of the wheel, ϕ̇r and ϕ̇l is the angular velocity of the motor
on the right and left side of the rover, and L is the length between the wheels.
Solving Equations (3.1) and (3.2) for V and ω respectively results in Equations (3.3)
and (3.4).

9

MCE3-926 3. System Model

V =
r

2
(ϕ̇r + ϕ̇l) (3.3)

ω =
r

L
(ϕ̇r − ϕ̇l) (3.4)

Which may be represented on matrix form as Equation (3.5), with M being the
kinematic relation matrix between wheel rotational velocities and linear/rotational
velocity of the rover. [

V

ω

]
= M

[
ϕ̇r

ϕ̇l

]
(3.5)

M =

[
r
2

r
2

r
L

− r
L

]

3.1 Dynamic Model
The dynamics of the rover can be described by the torque at the two motors (τ r

and τ l), as seen in Equations (3.6) and (3.7), assuming the the center of mass is
directly in between the two motors.

mV̇ =

(
τ r

r
− bϕ̇r

)
+

(
τ l

r
− bϕ̇l

)
(3.6)

Jω̇ =

(
τ r

r
− bϕ̇r

)
L

2
−
(
τ l

r
− bϕ̇l

)
L

2
(3.7)

Where m is the mass of the rover, J is the moment of inertia about the center of
mass, and b is the friction coefficient, assuming that the friction at both wheels are
the same.
This results in the matrix form in Equation (3.8).[

V̇

ω̇

]
=

[
1
mr

1
mr

L
2rJ

− L
2rJ

] [
τ r

τ l

]
+

[
− b

m
− b

m

− bL
2J

bL
2J

] [
ϕ̇r

ϕ̇l

]
(3.8)

Taking the time derivative of Equation (3.5) and inserting into Equation (3.8),
results in the state space model of the system as given in Equation (3.9).

[
ϕ̈r

ϕ̈l

]
= Ass

[
ϕ̇r

ϕ̇l

]
+Bss

[
τ r

τ l

]
(3.9)

Ass =

 − b(L2m+4J)
4rmJ

− b(−L2m+4J)
4rmJ

− b(−L2m+4J)
4rmJ

− b(L2m+4J)
4rmJ

 ,Bss =

[
L2m+4J
4r2mJ

−L2m+4J
4r2mJ

−L2m+4J
4r2mJ

L2m+4J
4r2mJ

]

10

3.2. Transformation to Inertial Frame Aalborg University

3.2 Transformation to Inertial Frame
The rover model represented above is in a body-fixed rover frame. For this project,
the rover will be assumed only to be moving in a two-dimensional xy plane. To
track the rover in the inertial frame a transformation of the rover states will have
to be made. This can be done with simple geometric relations based on Figure 3.2
given the angle of the rover with respect to the inertial frame θ and its velocity V
as Equations (3.10) and (3.11).

ẋ = V cos(θ) (3.10)

ẏ = V sin(θ) (3.11)

Where the body-fixed velocity of the rover V is defined in the direction of yb as the
rover is constrained to linear movement in this direction.

Figure 3.2. Rover body frame inside inertial north east frame

11

Parameter Identification 4
4.1 System Parameters
To make the model emulate the physical system the parameters of the system have
to be determined. As the motor controller is a closed system with no access to set
the controller gains. These gains will have to be found experimentally along with
the weight of the rover(m), the inertia(J), and the friction coefficient(b). A block
diagram of the combined motor drive and rover dynamics can be seen in Figure 4.1.

ye u
+

-

Figure 4.1. combined motor and motor drive system structure

Setting up the model in Simulink, and subjecting it to the same motor velocity
reference as used in the physical system, the parameters can be determined using
the Parameter Estimation plugin to Simulink. The Parameter Estimation tool, is
an optimization tool using the sum of squares cost function on the error between
the real values and the simulated values, in order minimize this. The reference
is a pseudo-random reference with steps close to the expected working point of
the rover. A similar reference on both motors result in the rover moving forwards,
whereas different references result in the rover turning. The result of the fitted model
compared to the encoder data from the rover can be seen on Figure 4.2, where it is
plotted along with the reference.

13

MCE3-926 4. Parameter Identification

Figure 4.2. Physical and model response to sudo random reference

The fitted parameters are listed in Table 4.1. It should be noted that these
parameters, except for radius(r) and width(L), do not represent the actual values
of the system, only a combination that makes the model respond similarly to the
physical system. Finding the actual parameters is out of scope for this project, as
this part of the system is seen as a black box that transforms ϕ̇ref → ϕ̇.

Table 4.1. Parameters used for the model

Symbol Value Unit
Radius of wheel r 0.086 m
Width of rover L 0.41 m
Mass of rover m 35 kg
Inertia around center of rotation J 1.4 kgm2

Friction Coefficient b 10 Ns/rad
Proportional Gain Kp 1e−5 -
Integral Gain Ki 2.4 -

A time delay from when the NJN sends a reference to when the motors start moving
is observed which is compensated in the parameter estimation, but still visible on
Figure 4.2. This will be further elaborated in the following section.

14

4.2. Time Delay Aalborg University

4.2 Time Delay
The time delay observed is better illustrated on a zoom of Figure 4.2 as seen on
Figure 4.3. The time delay is observed to be approximately 150ms and is relatively
consistent across different steps in reference.

Figure 4.3. Illustration of system time delay

The time delay can come from different places in the system, the main concerns
being the possible delay caused by the operating system (OS) on the NJN, and the
other being, caused by the motor controller, over which we have no control.
To evaluate a potential delay caused by the NJN, a logic analyzer has been connected
to the system. The logic analyzer is connected to the output port of the USB to
the RS485 converter, as well as the trigger signal used for making Figure 4.2. This
trigger signal is set to high when the reference is set in the code and then set to low
when the code is done sending. The result of this can be seen on Figure 4.4.

Figure 4.4. Trigger signal compared to the message signal

15

MCE3-926 4. Parameter Identification

It is observed that when the reference signal is set, setting the trigger signal to high,
a small amount of time passes before the message signal starts coming through. The
falling edge of the trigger signal may therefore be seen as a worst-case scenario of
the OS delay.
With a total time delay of approximately 150ms, the OS delay observed on
Figure 4.4, is relatively small. This means that the larger part of the time delay
comes from the motor drive.

4.3 Discussion
Even though the parameters make the model fit the actual trajectory, it is important
to note that the parameters do not represent the actual physical properties of the
system. This will potentially cause problems when adding a new feature to the rover
such as the robotic arm. In this case, a new parameter fit will have to be done, as
the weight of the arm cannot simply be added to the weight, based on the parameter
fit, of the rover. Additional work can be done to determine the exact parameters,
but since there is no way of changing the controller gains in the motor drive, this is
not beneficial for the project.
The time delay in the motor drive is higher than what would be expected. When
looking at the step response of the system on Figure 4.3, an approximate settling
time of 0.8 seconds can be observed. Based on this the response may be approximated
as a first-order system with a time constant of approximately 200ms, it would be
expected that the time delay is much lower than this. This is however not the case
with a 150ms time delay. This will consequently add additional phase to the system
which results in lower stability margins. This has to be taken into account when
designing the controllers.

16

Sensor Calibration and
Interpretation 5

In the following chapter, the sensors of the system will be presented while calibration
and interpretation steps for the individual sensors will be performed to use the data
for the state observer. Sensor models will in addition to this be made for use in
the simulation. This is done in order for the simulation results to represent the
performance that may be expected from the physical setup.

5.1 Encoders
The raw signal from the encoders is fed directly into the microcontroller. The encoder
signals are interpreted in the microcontroller as an angular position of the motors.
Each encoder outputs two signals, so it is possible to know the direction of rotation.
Each signal provides two counts per tick of the encoder. The encoder used in this
project has 4096 ticks per revolution, which means the microcontroller gets four
times that per rotation. The position of the motor can be determined by ϕ = nt

2π
4·4096 ,

where nt is the recorded number of ticks. Calculating the discrete time derivative of
this position yields the rotational velocity of the motor which can be described by
Equation (5.1).

ϕ̇ =
ϕk − ϕk−1

tenc
(5.1)

With subscript k representing the current time step, and tenc representing the size
of the time step, which for the encoder in this project is set to 10ms.

5.2 GNSS
The GNSS module gets signals from the surrounding satellites to get a geographic
position on earth, represented by latitude and longitude. It is desirable to get this
position represented in a local east north up (ENU) frame, though we are not
interested in the up component, as the rover will be assumed only to move in an
east north plane. This is done with the Equirectangular projection, which can be
used to estimate cartesian coordinates based on the latitude and longitude. The
formula used for this is presented in Equation (5.2) [2].

17

MCE3-926 5. Sensor Calibration and Interpretation

x = Rearth(lon− lono) cos(lato) (5.2)

y = Rearth(lat− lato) (5.3)

With x being aligned with east, y aligned with north, and Rearth being the mean
radius of the earth. Subscript o represents the position at the origin of the chosen
coordinate system.

This is a simple map projection that projects the earth to a cylindrical shape. This
makes it only accurate along the equator line. In order to compensate for this the
term cos(lato) is added to the x coordinate.

To compensate for some of the errors associated with using a GNSS, an RTK link
between two receivers can be used. This is due to the fact that a signal traveling
from a satellite to a receiver on earth is bound to pick up some disturbances on
the way. By placing a stationary base module at a known location in the vicinity
of the rover, the error between the GNSS position and the actual position can be
measured. This error is then transmitted to the rover to compensate for the same
error.

5.3 Accelerometer
For the calibration of the accelerometer, a few assumptions have to be made in
order to simplify the calculations. It is assumed that the accelerometer is placed
parallel to the floor of the rover and the rover is driving on a level surface so that
the gravitational effect on the accelerometer is only present in the z direction. This
gravitational effect is neglected as it is assumed that the rover only moves in the xy
plane. In the case where the rover does not move on a level surface, this assumption
does not hold, and the contribution from the gravitational acceleration will not only
be limited to the z axis. This potential accelerometer bias will have to be considered
when designing the state estimator. It is desirable to rotate the coordinate frame
of the accelerometer to align with the coordinate frame of the rover. This potential
offset is illustrated on Figure 5.1.

18

5.3. Accelerometer Aalborg University

Figure 5.1. Rotation of the accelerometer coordinate frame to the rover
body frame

The correction can be calculated by the rotation matrix seen in Equation (5.4).[
ab,x
ab,y

]
=

[
cos θIMU − sin θIMU

sin θIMU cos θIMU

] [
aIMU,x

aIMU,y

]
(5.4)

As the linear acceleration only happens in the y direction of the body frame, only the
calculation of ab,y is necessary. The angle θIMU will depend on the mounting of the
sensor and will have to be found experimentally. This can be done by driving both
motors at the same velocity, resulting in the rover moving in a straight line while
recording the acceleration values. This should ideally only result in an acceleration
in the y direction, and it is possible to calculate θIMU by using the inverse tangent,
as described in Equation (5.5).

θIMU = 90◦ − tan−1 aIMU,y

aIMU,x

(5.5)

As this angle of rotation between the coordinate frames does not change over time,
it is not necessary to use computing power on calculating cos θIMU and sin θIMU on
the Nucelo as these will be constant, and therefore only need to be calculated once.
This calibration of the accelerometer is under the assumption that it is placed
directly in the center of rotation of the rover. This is likely not to be the case,

19

MCE3-926 5. Sensor Calibration and Interpretation

as the ideal mounting point may be obstructed by other components such as the
robotic arm. For the case where the accelerometer is not placed ideally, as seen on
Figure 5.2, rotation of the rover will also affect the accelerometer readings.

Figure 5.2. Rotation and displacement of the accelerometer coordinate
frame to the rover body frame

The first thing to consider is the centripetal acceleration which is excited by the
rover rotating, and has an acceleration pointing towards the center of rotation, this
acceleration is describe in Equation (5.6).

acen = ω2LIMU (5.6)

Where LIMU is the displacement length from the rover’s center of rotation to
the accelerometer. The second thing to consider is the resulting linear tangential
acceleration atan of the IMU coming from the angular acceleration of the rover, this
can be described by Equation (5.7).

atan = ω̇LIMU (5.7)

Both these accelerations will have to be subtracted from the measurements, for the
accelerometer to represent the linear acceleration of the vehicle body. Combining
Equations (5.5) to (5.7) and rotating the centripetal and rotational component to
the vehicle body frame yields Equation (5.8).

20

5.3. Accelerometer Aalborg University

[
ab,x
ab,y

]
=

[
cos θIMU − sin θIMU

sin θIMU cos θIMU

] [
aIMU,x

aIMU,y

]
− ω2LIMU

[
cos θe
sin θe

]
− ω̇LIMU

[
sin θe
cos θe

]
(5.8)

By measuring the rotational velocity with the gyroscope, and using the previously
calculated value for θIMU it is possible to calculate the constants and compensate for
the displacement of the sensor when calculating the body frame linear accelerations.

Even though compensating for the displacement of the accelerometer is possible,
it is not ideal as it would mean the accelerometer signals, are dependent on the
gyroscope signal. This means that the noise-dependent variance of the accelerometer
signal includes the gyroscope noise. This could be a problem since the gyroscope
signal is squared, resulting in the noise no longer being Gaussian distributed, which
could cause problems in the calculation of the Kalman filter.
To avoid having to compensate for this displacement, it is desirable to place the
accelerometer as close as possible to the center of rotation. This would make L

small and possibly make the acceleration contribution of the rotation negligible.

5.3.1 Accelerometer Model

To design a model of the rover, it is necessary to make a model of the accelerometer.
This is done by taking Equation (5.8) and isolating for the accelerometer signal aacc,x
and aacc,y. This can be seen in Equation (5.9)[

aIMU,x

aIMU,y

]
=

[
cos θ − sin θ

sin θ cos θ

]−1([
ab,x
ab,y

]
+ ω2LIMU

[
cos θe
sin θe

]
+ ω̇LIMU

[
sin θe
cos θe

])
(5.9)

The accelerometer values are measured in thousands of a g, where g is the
gravitational force which approximates to 1 g = 9.82m/s2. Therefore the output
signal from the accelerometer has to be scaled with 9.82·10−3m/gs2

5.3.2 Accelerometer Testing

Driving the rover forward and backward with 200RPM on both motors, results in the
raw accelerometer data seen on Figure 5.3. The rover stands still from approximately
0-1.5 s, where it starts driving forwards nearly until the 4 s mark, after which it drives
backward until around the 7 s mark where it stands still again.

21

MCE3-926 5. Sensor Calibration and Interpretation

Figure 5.3. Raw accelerometer data from the rover driving forth and
back

It is observed that the acceleration in the z direction contains approximately
9.82m/s2 at a standstill which is expected, and picks up a lot of disturbances and
noise when the rover is driving, especially in reverse where it seems to diverge from
its mean. This may be caused by the rover tilting slightly, due to the absence of the
trailing wheel, as well as heavy components such as the battery not being strapped
down, causing a shift in the weight distribution. The x direction seems to pick up
nothing but disturbance and noise. While the y direction picks up the acceleration
and deceleration of the rover. This indicates that the IMU frame is aligned with the
body frame of the rover.
Taking the acceleration and integrating this over time in order to get the velocity
results in Figure 5.4, where it is compared to the velocity calculated from the wheel
encoders. The accelerometer data is compensated for the small dc-offset detected
before the rover starts moving.

Figure 5.4. Velocity of the rover as determined by the accelerometer
and the encoder

22

5.4. Gyroscope Aalborg University

The accelerometer-based velocity is seen to compare well against the encoder-based
velocity. There is some deviation but overall show the same tendencies. The plot of
the integrated acceleration in the x direction is also shown, emphasizing the validity
of the assumption that the linear acceleration is only observed in the y direction.
It is observed that while the rover stands still in between going forwards and
backward, the accelerometer determined velocity still shows movement. This is likely
due to the rover tilting slightly while accelerating, and thereby the y axis picking
up some of the gravitational acceleration, resulting in an offset in the velocity.
It is also important to notice that the accelerometer velocity drifts slightly at the
end of the trajectory. This is due to the dc offset, which has been compensated
for, does not stay the same, and therefore is included in the integration over time
causing a drift. Figure 5.4 is a short trajectory, with relatively high velocities and
the rover driving on a smooth surface. Driving the rover back and forth multiple
times for a longer period on a rough surface reveals the plot seen on Figure 5.5.

Figure 5.5. Velocity of the rover as determined by the accelerometer
and the encoder

On this graph, a much higher drift is observed. This is likely due to multiple reasons,
one being the rover running for a longer time and therefore keeps integrating over a
small error in the acceleration value. Another reason is the rover moving on rougher
terrain and therefore picks up a lot of disturbances. The third reason might be that
the rover does not move as fast as in Figure 5.4, and therefore the difference between
actual acceleration and disturbances is smaller and harder to distinguish.

5.4 Gyroscope
The gyroscope measures a rotational velocity and does not need any calibration for
it to output a useful signal. With this sensor, the only signal that is of interest is
the rotation around the z axis. The velocity is measured in thousands of a degree

23

MCE3-926 5. Sensor Calibration and Interpretation

per second. This has to be converted in order to be used in the calculations. This is
done by multiplying it with 1

1000
2π
360

.
It is assumed that the gyroscope is placed parallel to the ground which eliminates
the need for any calibration of this sensor. Looking at the data from the rover
rotating around its center of rotation on a level surface, as seen on Figure 5.6, only
a noticeable signal on the z axis is observed.

Figure 5.6. Raw data of the gyroscope

5.5 Magnetometer
The magnetometer measures the heading of the rover based on the earth’s magnetic
field. This does however also mean that other magnetic sources will have an impact
on the reading of the magnetometer. The raw data from the magnetometer can
be seen on Figure 5.7. This data is made by rotating the motors of the rover in
opposite directions on a level surface, resulting in the rover rotating around its
center of rotation.

24

5.5. Magnetometer Aalborg University

Figure 5.7. Raw data of the magnetometer

Since the rover is assumed to only have planar movement, the z component can be
ignored. Plotting the x and y components against each other results in a circle offset
from the origin of the coordinate system. This offset is due to hard iron disturbances
and can be compensated by taking the average of the maximum and minimum values
of the x and y values, and subtracting them from the respective data points, as
described in Equation (5.10). The effect of this can be seen in Figure 5.8.[

xmag,o

ymag,o

]
=

[
xmag

ymag

]
− 1

2

[
xmag,max + xmag,min

ymag,max + ymag,min

]
(5.10)

Figure 5.8. Magnetometer values with the hard iron disturbance
compensation

Soft iron sources can cause the shape of the data point to be ellipsoidal rather
than the desired circular shape. This can be compensated by taking the largest
value in the x direction and dividing it by the largest value in the y direction, for

25

MCE3-926 5. Sensor Calibration and Interpretation

normalization of the data as seen in Equation (5.11). The data in the y direction
remains unchanged in this step. The effect of this compensation can be seen on
Figure 5.9. [

xmag,os

ymag,os

]
=

[
ymag,o,max

xmag,o,max
0

0 1

][
xmag,o

ymag,o

]
(5.11)

Figure 5.9. Magnetometer values with the hard iron disturbance
compensation

It should be noted that when the rover does not move on a level surface compensation
does not hold true, as the ellipsoid would look different. This is a bias that should
be considered in the design of the state estimator.
With the magnetometer data scaled correctly, it is possible to calculate the angle
of the rover in comparison to the inertial frame (θ). This is done with the atan2
function.

θ = atan2(ymag,os, xmag,os) (5.12)

atan2 returns a value in the interval −π > θ < π, this is not desirable as this makes
a non linear jump for every full rotation of the rover. Therefor everytime the rover
completes a rotation 2π is added to θ and subtracted when completing a rotation
in the opposite direction.
As a sanity check this angle can be plotted as seen on 5.10. Here the rover starts at
an arbitrary angle and rotates around its center of rotation.

26

5.5. Magnetometer Aalborg University

Figure 5.10. Heading of the rover based on the magnetometer readings

With all of the sensors being calibrated the actual values provided from the sensors
may now be utilized. To combine the measurements a state observer will therefore
be designed in the following chapter to yield the best estimate of the rover states
based on the available sensor information.

27

State Observer Design 6
In order to control the rover it is essential to know its current states. These states
will for this project be estimated by means of an Extended Kalman Filter (EKF).
This filter will take in data from the different sensors and fuse this into a state
estimation for the system. Fusing data in this way will allow for the different sensor
measurements to complement each other as different noisy measurements may be
combined to establish a better state estimation than either of the individual sensors
can.

6.1 Inertial Navigation Filter
As a starting point for the filter design, an inertial navigation filter (INF) will
be designed, whereafter the GNSS input will be included to improve the overall
accuracy of the state estimations in the following section. The exclusion of the
GNSS signal will mean that the INF may be constructed exclusively on in the rover
body frame which means that an ordinary linear Kalman filter may be used. The
Kalman filter will therefore primarily be constructed and designed as a linear filter
whereafter it will be extended to allow for the non-linearities introduced by the
transformation from the body frame to an inertial frame.

The Kalman filter (KF) is a recursive prediction correction algorithm and it is
therefore essential to be able to describe the system dynamics. The state transition
and measurement function of a linear system with no direct feed through may be
described as Equations (6.1) and (6.2) [3].

ẋ = Ax+B u+ w (6.1)

z = C x+ v (6.2)

Where x is the states of the system, z is the output of the system, and u is the system
inputs. w and v are zero-mean Gaussian random variables with error covariance
Q and R respectively. A,B, and C are the system, input, and output matrix
respectively. Note here that the bold symbols represent matrix quantities.

Discretizing this using the forward euler integration ẋ ≈ xk+1−xk

Ts
yields

Equations (6.3) and (6.4), where the superscript k denotes current time step while
k+1 denotes the time step one sampling time ahead, and Ts is the interval between
each sample.

29

MCE3-926 6. State Observer Design

xk = F xk−1 +Guk + wk (6.3)

zk = H xk + vk (6.4)

The system matrices are redefined as F = I + A · Ts, G = B · Ts and H = C

while I is the identity matrix. Based on this the Kalman filter can be implemented
as described in [4] with the prediction and correction steps as seen in Table 6.1.

Table 6.1. Prediction and correction equations for linear Kalman filter

Prediction:
1 Predict states x̂−k = F x̂k−1 +Guk

2 Predict error covariance P̂
−
k = F P̂ k−1 F

T +Q
Correction:
3 Inovation ỹk = zk −H x̂−k
4 Calculate Kalman gain Kk = P̂

−
k HT (H P̂

−
k HT +R)−1

5 Correct state estimate x̂k = x̂−k +Kk ỹk

6 Update error covariance P̂ k = (I −Kk H) P̂
−
k

Where x̂− is the predicted state estimate, x̂ is the corrected state estimate while
P̂

−
is the predicted error covariance and P̂ is the corrected error covariance. F ,

G and H are respectively the state transition, control, and observation matrix for
the filter. ỹ is the error between the prediction model and the measured states z
while K is the optimal Kalman gain for the correction of the state estimate. The
superscript T of the table above denotes the transpose of a vector or matrix.

The IMU sensors measurements are assumed to be composed of the true
measurement as well as a bias and a zero-mean Gaussian noise as seen in
Equations (6.5) to (6.7).

akmeas = aktrue + Ak
bias + vka (6.5)

ωk
meas = ωk

true +Gk
bias + vkg (6.6)

θkmeas = θktrue +Mk
bias + vkm (6.7)

Where Abias, Gbias and Mbias is the accelerometer, gyroscope, and magnetometer
bias respectively both acceleration and angular velocity are in the body frame of the
rover while the magnetometer measurement is in the inertial frame. The acceleration
measurement will however be integrated to convert it into the linear velocity of the
rover such that V k

meas = V̂ k−1 + akmeas Ts. This integration also highlights why it is
essential to compensate for any sensor bias as it will accumulate error over time.

For the implementation into the system in question the state, input, and
measurement vectors will be defined as in Equations (6.8) to (6.10). It should be

30

6.1. Inertial Navigation Filter Aalborg University

noted here that the input vector u for the KF is the measured rotational velocities
of the two motors measured by the respective encoders, effectively removing motor
dynamics from the KF.

x̂k = [V̂ k ω̂k θ̂k Âk
bias Ĝ

k
bias]

T (6.8)

uk = [ϕ̇k
r ϕ̇

k
l]

T (6.9)

zk = [V k
meas, ω

k
meas, θ

k
meas]

T (6.10)

The state propagation equations of the INF filter is.

V̂ k =
r

2
· ϕ̇k

r +
r

2
· ϕ̇k

l (6.11)

ω̂k =
r

L
· ϕ̇k

r −
r

L
· ϕ̇k

l (6.12)

θ̂k = θ̂k−1 + Ts · ω̂k−1 (6.13)

Âk
bias = Âk−1

bias (6.14)

Ĝk
bias = Ĝk−1

bias (6.15)

Here it should be noted that the magnetometer bias Mbias is not included as an
estimated state as it cannot be estimated based on known information (at least
not without assuming perfect information of initial conditions). The sensor bias is
here modeled as random walks as no information is available. The state propagation
equations may be split up into the following F and G matrices.

F =


0 0 0 0 0

0 0 0 0 0

0 Ts 1 0 0

0 0 0 1 0

0 0 0 0 1

 G =


r/2 r/2

r/L r/L

0 0

0 0

0 0

 (6.16)

The output equations of the model are based on the different sensor models as seen
in Equations (6.17) to (6.19).

V k
meas = V̂ k + Ts · Âk

bias (6.17)

ωk
meas = ω̂k + Ĝk

bias (6.18)

θkmeas = θ̂k (6.19)

Which yield the following H matrix.

31

MCE3-926 6. State Observer Design

H =

1 0 0 Ts 0

0 1 0 0 1

0 0 1 0 0

 (6.20)

In addition to the system matrices, a covariance matrix for both process noise
and measurement uncertainty will have to be defined. These will both be
defined as diagonal matrices, effectively assuming no cross-correlation between the
disturbances in either of the states as well as no correlation between the measurement
noise. For the system, the values for the entries of the Q and R matrix will be
determined empirically.

Q =


qV 0 0 0 0

0 qω 0 0 0

0 0 qθ 0 0

0 0 0 qAbias
0

0 0 0 0 qGbias

 (6.21)

R =

racc 0 0

0 rgyro 0

0 0 rmag

 (6.22)

6.2 Extension of Kalman Filter
The above INF is exclusively designed to estimate the states of the system in a
body-fixed frame. To expand the filter to include the data from the GNSS module
the Kalman filter will have to be expanded to allow for the non-linearity from the
sine and cosine relations introduced from the coordinate transformation from the
body-fixed frame to a global one. To allow for the non-linear dynamics the state
propagation equations may be rewritten to the more general form as Equation (6.23)
while the measurement function is unchanged as it is linear for the system.

xk = f(xk−1, uk) + wk (6.23)

The state transition function f may be used in its non-linear form for the state
transition, but will have to be linarized locally in order for it to be used for the
covariance calculations. The Jacobian of the state transition function will therefore
have to be evaluated in the vicinity of the current predicted states as:

F k =
∂f

∂x

∣∣∣∣
xk−1,uk

(6.24)

32

6.2. Extension of Kalman Filter Aalborg University

The expanded state, input and measurement vectors may therefore be redefined as:

x̂k = [V̂ k, ω̂k, θ̂k, ˆ̇xk, ˆ̇yk, x̂k, ŷk, Âk
bias, Ĝ

k
bias, M̂

k
bias]

T (6.25)

uk = [ϕ̇k
r , ϕ̇

k
l]

T (6.26)

zk = [V k
meas, ω

k
meas, m

k
meas, x

k
meas, y

k
meas]

T (6.27)

The state transition function f is then defined by appending the state transition
equations for the velocities and positions in the inertial x-y plane as well as the
magnetometer bias (Equations (6.28) to (6.32)) to the state transition equations
from the INF in Equations (6.11) to (6.15).

ˆ̇xk = V̂ k−1 · cos(θ̂k−1) (6.28)
ˆ̇yk = V̂ k−1 · sin(θ̂k−1) (6.29)

x̂k = x̂k−1 + Ts · ˆ̇xk−1 (6.30)

ŷk = ŷk−1 + Ts · ˆ̇yk−1 (6.31)

M̂k = M̂k−1 (6.32)

Calculating the Jacobian of f as defined in Equation (6.24) yields F k as:

F k =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 Ts 1 0 0 0 0 0 0 0

c(θ̂k−1) 0 −V̂ k−1 · s(θ̂k−1) 0 0 0 0 0 0 0

s(θ̂k−1) 0 V̂ k−1 · c(θ̂k−1) 0 0 0 0 0 0 0

0 0 0 Ts 0 1 0 0 0 0

0 0 0 0 Ts 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


(6.33)

Where the short hand notation s(θ) is used to represent sin(θ) and c(θ) for cos(θ).
The output equations of the system can then be redefined as:

V k
meas = V̂ k + Ts · Âk

bias (6.34)

ωk
meas = ω̂k + Ĝk

bias (6.35)

θkmeas = θ̂k + M̂k
bias (6.36)

xkmeas = x̂k (6.37)

ykmeas = ŷk (6.38)

33

MCE3-926 6. State Observer Design

Which results in a linear measurement matrix H

H =


1 0 0 0 0 0 0 Ts 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

 (6.39)

As for the INF the process noise covariance and the measurement uncertainty
matrices will be defined as diagonal matrices as:

Q =



qV 0 0 0 0 0 0 0 0 0

0 qω 0 0 0 0 0 0 0 0

0 0 qθ 0 0 0 0 0 0 0

0 0 0 qẋ 0 0 0 0 0 0

0 0 0 0 qẏ 0 0 0 0 0

0 0 0 0 0 qx 0 0 0 0

0 0 0 0 0 0 qy 0 0 0

0 0 0 0 0 0 0 qAbias
0 0

0 0 0 0 0 0 0 0 qGbias
0

0 0 0 0 0 0 0 0 0 qMbias


(6.40)

R =


racc 0 0 0 0

0 rgyro 0 0 0

0 0 rmag 0 0

0 0 0 rGNSS 0

0 0 0 0 rGNSS

 (6.41)

This concludes the design of the traditional EKF. One problem general for both the
KF and the EKF is however the fact that it relies on a matrix inversion of an nz by
nz matrix where nz is the dimension of the measurement vector for the calculation
of the Kalman gain. Matrix inversion is in general a high computational load, and it
may therefore be desirable to implement a different version where the Kalman gain
is approximated rather than calculated.

34

6.3. Scalar Implementation Aalborg University

6.3 Scalar Implementation
For this project, the implementation will be done by use of a scalar implementation
as described in [5]. In this implementation, the Kalman gain is approximated one
line at a time, which effectively reduces the matrix inversion into a scalar inversion.
When doing so we define the innovation of the i’th measurement as ỹik = zik+H

(i,:)x̂+k ,
where zik is the i’th measurement and H(i,:) is the i’th row of H . The Kalman
gain denominator can thereafter be calculated based on the i’th diagonal of the
measurement uncertainty matrix R which has now been reduced to a scalar value.
Here it should be noted that this means that if any cross-correlation between the
measurements exists they will be completely disregarded for the calculations.
Other than the lower computational load, scalar implementation also has the benefit
that it allows for sensors with different sampling frequencies to be used. For the
specific sensors used for this project, this is very essential as the measurements
from IMU and the encoders, can be updated with a frequency of 1000Hz while the
magnetometer and GNSS module may be updated at 100Hz and 2Hz respectively.
By using this scalar implementation it is possible to correct the predictions as new
measurements become available while disregarding any unupdated measurements.

Table 6.2. Prediction and correction equations for extended scalar
updated Kalman filter

Prediction:
1 Calculate Jackobian F k =

∂f
∂x
|x̂k−1,uk

2 Predict states x̂−k = f(x̂k−1, uk)

3 Predict error covariance P̂
−
k = F kP̂ k−1(F k)

T +Q
Correct:
For i = 1 : nz

If sensor i has updated
4 Inovation ỹik = zik −H(i,:)x̂−k
5 Calculate Numerator of Kalman gain KNum = P̂

−
k (H

(i,:))T

6 Calculate Denominator of Kalman gain KDen = H(i,:)KNum +R(i,i)

7 Correct state estimate x̂k = x̂−k +KNum (ỹik/KDen)

8 Update error covariance P̂ k = P̂
−
k − 1/KDen(KnumK

T
num)

9 Update estimates x̂−k = x̂k , P̂
−
k = P̂ k

end
end

35

MCE3-926 6. State Observer Design

6.4 Computational Load of Nucleo Board
Although the encoder and IMU may be updated at 1000Hz implementation on the
Nucleo board has proven to be too demanding for the DSP, as it is observed to lose
timing. The update frequency of these sensors, as well as the EKF calculations, will
therefore have to be reduced to 100Hz. Doing so results in the loading of the DSP
presented in Figure 6.1.

49%

41%

8%
2%

Figure 6.1. Time usage of the DSP during operation at 100Hz, the
category "Others" include the reading of GNSS, encoders
as well as some miscellaneous functions

From Figure 6.1 the code on the Nucleo board is seen to run with a time overhead
of 49%. This indicates that some increase in the system frequency may be achieved
without compromising real-time operation, but only to a limited extent. The
IMU reading function can be seen to occupy 8% of the DSP time which seems
rather excessive but is hard to optimize as it relies on a toolbox provided in the
STM32CubeIDE.

6.5 Validation of EKF
In the above sections, a filter has been described and designed. The validation of the
designed filter will initially be done on the simulation model as this yields a way of
knowing the ground truth of the rover, but will however not include any disturbance
to the system states.
For the simulations, the values for the sensor noise will be chosen as seen in Table 6.3
while the process noise uncertainty is chosen as Table 6.4. The method used for the
derivation of the R values can be found in Appendix B while the values chosen for
Q is the values found in Chapter 7.

36

6.5. Validation of EKF Aalborg University

Table 6.3. Measurement uncertainty variance

Parameter Value Unit
racc 4e-4 (m/s2)2

rgyro 6e-3 (rad/s)2

rmag 1e-3 rad2

rGNSS 2e-3 m2

Table 6.4. Process noise variance

Parameter Value Unit
qV 1e-3 (m/s)2

qω 1e-2 (rad/s)2

qθ 1e-3 (rad2)
qẋ 1e-2 (m/s2)
qẏ 1e-2 (m/s)2

qx 1e-5 m2

qy 1e-5 m2

qAbias
5e-3 (m/s2)2

qGbias
1e-4 (rad/s)2

qMbias
1e-2 rad2

For the validation of the EKF, the reference for the two motors is chosen as seen
in Figure 6.2. This reference is chosen as it will trigger some linear and angular
acceleration of the rover and does not require any additional controller to be designed
at this stage. For the simulation, all sensor inputs are modeled with an added
band-limited white noise therm with a noise power according to their respective
measurement uncertainty.

Figure 6.2. Motor references for the validation

The estimated states along with their true states can be seen on Figure 6.3. The
sensor bias for the IMU is here initialized as one and then stepped up to a value of
two after 10 seconds while the magnetometer bias is stepped from 0.25 to 0.5 rad

to test the capabilities of the filter to cope with this. For this simulation, the IMU
board is assumed to be placed 20 cm of the center of rotation of the vehicle as this
may be assumed to be a worst-case scenario regarding the sensor placement. A
noticeable deviation between the actual acceleration bias and the estimated one is

37

MCE3-926 6. State Observer Design

observed as the motor references are changed to sinus curves, which is caused by
this sensor misplacement. No additional disturbance has been injected to any of the
rover states as no information is available of these.

Figure 6.3. Comparison of estimated and true system states

Figure 6.4 illustrates the estimated position of the rover in the inertial frame where
the true position, as well as the GNSS data points, is added for illustrative purposes.

38

6.5. Validation of EKF Aalborg University

Figure 6.4. Comparison of estimated and actual rover position in the
inertial frame

The position estimate is initially seen to drift off due to the magnetometer bias
which is poorly estimated at the start but the estimated position is seen to converge
towards the true state as more GNSS data is received as this allows for a better
magnetometer bias estimation.
With the EKF validated it can be tuned and tested on data from the rover driving
around.

39

State Estimation from
Measured Sensor Data 7

In the following chapter the EKF will be tuned and further validated on measured
data from the utilized sensor pack. A general problem for tuning the Q matrix is
the fact that the true states of the rover cannot be determined with the available
equipment.

7.1 Test Scenario
The test is made by driving around on an empty parking lot in an arbitrary
trajectory which is known to have the same starting and ending position and heading
as this will allow for an evaluation of the general drift of the filter. The trajectory on
the parking lot, as well as a photo of the test conditions, can be seen on Figure 7.1.
This parking lot is surrounded by buildings which might affect the GNSS readings.
The parking lot is also not level, which will effectively act as a disturbance for the
filter as the transformation from the rover body frame to the inertial frame presented
in Equations (3.10) and (3.11) will have an error.

(a) Top down view of trajectory on parking lot
[6]

(b) Photo of test conditions

Figure 7.1. Test scenario

41

MCE3-926 7. State Estimation from Measured Sensor Data

7.2 Performance Evaluation
For the evaluation the primary focus will be on the x,y (East, North) position of the
rover as any small error in either of the other system states will heavily impact the
position of the rover. Three different scenarios will be investigated in this section,
being a KF only with IMU measurements, a KF with IMU and magnetometer
measurements available, and a last scenario GNSS data is fed to the filter in addition
to the IMU and magnetometer data.

The first scenario where only IMU measurements are used for correction is shown to
highlight the general trend when using a pure dead reckoning approach to estimate
the position based on an estimated angular and linear velocity. This approach may
be good for a shorter duration of time but will drift with time as any error in either
angular or linear velocity will accumulate over time. A plot of the state estimates
compared to their measured values is shown in Figure 7.2, where the measured
angle from the magnetometer θ, and position from the GNSS x,y are plotted, but
not included in the correction step. Similar plots for the scenario including the
magnetometer and the GNSS signal can be found in Appendix C.

Figure 7.2

42

7.2. Performance Evaluation Aalborg University

A representation of the rover position for all of the above mentioned scenarios can be
seen in Figure 7.3. In this figure arrows have been added to indicate direction as well
as a full line at approximately [0,0] to indicate the start/stop position. The accuracy
of the rover position is observed to increase as the magnetometer measurements are
added as this will mean that the heading of the rover can be determined within
some span. Any bias of the magnetometer can however still not be determined
as this requires measurements from the GNSS. Some drift is however still observed
between the GNSS measurements and the estimated position for the second scenario
as this still relies on dead reckoning for the estimation of the position.

For the third scenario where all sensor data is used in the EKF. A constant correction
from the GNSS eliminates the need for dead reckoning and therefore increases the
accuracy of the estimates. Some different artifacts of the GNSS signal can also
be observed from the GNSS position data points, being a short data fallout when
moving in the western direction (negative x) at the start of the trajectory, and
two sudden jumps in the GNSS position when moving north (positive y) towards
the ending of the trajectory. The data fallout of the GNSS highlights one of the
main benefits of using different sensors for the estimation of the position, as this
will allow for state estimations despite missed data. The first jump observed in the
GNSS position is caused by the rover GNSS module losing the RTK link to the
base GNSS module while the second jump is observed at the point when the GNSS
regains RTK information. This will have to be considered as a loss of RTK link will
mean that the KF places too much trust in the GNSS data.

Figure 7.3. Estimated rover position based on different available sensors

43

MCE3-926 7. State Estimation from Measured Sensor Data

7.3 Performance Evaluation During Data Fallout
In the GNSS dataset used in Figure 7.3 A minor data fallout of 2 seconds is observed.
To test the navigation system in case of a greater data fallout a test is conducted
on the same data set, but where the GNSS signal is assumed lost for 40 seconds

represented by the data points marked with red in Figure 7.4.

Figure 7.4. Estimated rover position during a data fallout of 40 seconds

The general trend of the position estimates is here observed to follow that of the
GNSS well although some deviation is observed towards the end. It should however
be pointed out here that the GNSS signal does not represent the ground truth of
the rover’s position but can be expected to be in the vicinity of it. Another scenario
with an 80 seconds data fallout is shown in Appendix C where the GNSS signal is
used in the EKF for the first 10 seconds to allow for an estimation of the initial
states of the rover where after the data fall out is simulated.

7.4 Discussion
When comparing the measured and estimated states it is clear why a dead reckoning
strategy, where states are estimated based on the integral of their derivatives is
undesirable. This is highlighted by inspecting Figure 7.2, where both the linear and
angular velocity is seen to approximately match their respective measurements while
the measured and estimated heading are seen to diverge over time. When adding
the magnetometer measurements the accuracy is highly increased as this reduced
the extent to which the filter relies on dead reckoning.

The tests performed with the filter have in general not been ideal as they have all

44

7.4. Discussion Aalborg University

been made in an urban area with tall surrounding buildings which may distort the
GNSS signals. This may also have been the cause of both the data fallout observed
initially in the trajectory and of the RTK compensation loss observed towards the
end. The lost RTK connection may be compensated by changing the measurement
uncertainty variance for the GNSS module in the EKF as this will make the filter
rely more on the other sensors.

45

Control 8
Two different control structures will be proposed for the rover. The different control
structures will be a heading controller and an inertial frame controller. The reason
for proposing both structures is that the heading controller will be feasible for use
with CV, while the inertial frame control structure will be feasible if the objective
is to navigate the rover to a given position in the inertial frame.

The kinematic transfer function Gkin can be defined based on the rotational velocity
transfer function Gϕ̇ which is derived by numerically closing the feedback loop of
the motor dynamics and the PI-controller of Figure 4.1 with the parameters found
in Table 4.1. Gkin is calculated as Gkin = M−1Gϕ̇M where the transfer function
Gkin takes in a linear and angular velocity reference and outputs the actual linear
and angular velocity, while M represents the kinematic relation between ϕ̇ and
the rotational/linear velocity. The frequency response of this transfer function is
depicted on Fig. 8.1. It is observed that the gain of the off-diagonals of Gkin is
negligible compared to the diagonals, which indicates that a controller for Vref and
ωref may be designed separately as they can be assumed to be decoupled.

-100

-50

0

T
o

:
O

u
t(

1
)

From: In(1)

-180

0

180

T
o

:
O

u
t(

1
)

-100

-50

0

T
o

:
O

u
t(

2
)

10
-2

10
-1

10
0

10
1

10
2

-180

0

180

360

T
o

:
O

u
t(

2
)

From: In(2)

10
-2

10
-1

10
0

10
1

10
2

Bode Diagram

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)
;
P

h
a
s
e
 (

d
e
g
)

Figure 8.1. Bode plot of the rover kinematic transfer function Gkin

8.1 Alignment Controller
The purpose of the alignment controller will be to control the heading of the rover
while a constant velocity command will be used. The velocity may then be chosen

47

MCE3-926 8. Control

based on different factors such as e.g. the required precision of the rover alignment.
No additional feedback is here added to the velocity command which effectively
means that the rover velocity will purely be based on the calculated velocity from
the encoders.

The heading of the rover will be handled by a proportional controller as depicted
on Figure 8.2.

z Sensors
Extended

Kalman Filter

True System States+

-

Time
Delay

u Encoders

Figure 8.2. Alignment control structure of the rover

A proportional controller is chosen as it is the simplest possible controller and will
still yield zero steady-state error for a step input in the rover heading due to the
free integrator of the transfer function from θ

ω
.

The time delay observed in Section 4.2 will for the tuning of the controller be
approximated as a low pass filter with a time constant equivalent to the length of
the time delay. The impact on the frequency response of this assumption compared
with a true delay and the non-delayed system can be seen on Fig. 8.3.

M
ag

n
it

u
d

e
(d

B
)

P
h

as
e

(d
eg

)

Bode Diagram

Frequency (rad/s)

Figure 8.3. Bode plot of Gkin(2, 2) · 1
s with and without time delay as

well as with an approximation of the time delay

The approximated transfer function is seen to accurately model the behavior of the
true system at frequencies below 4 rad/s where after both phase and magnitude are

48

8.1. Alignment Controller Aalborg University

seen to diverge. This discrepancy is however expected to be negligible as the system
gain at this frequency is low.

The root loci of the open-loop transfer function with the approximated time delay
for the alignment controller can be seen on Figure 8.4.

Figure 8.4. Root loci for θ
ωref

with the approximated time delay

The controller gain Kp,ω will here be chosen to be 0.94 as this places the dominant
pole pair of the combined closed-loop transfer function such that a damping of 0.7
is achieved. This is chosen as it will yield a compromise between fast response time
and minimizing overshoot. This results in a bandwidth of 1.3 rad/s for the combined
alignment controller and system dynamics. The step response of this can be seen on
Figure 8.5.

49

MCE3-926 8. Control

Figure 8.5. Step response of the closed loop time delayed transfer
function, the transfer function with the approximated time
delay is added for reference

8.1.1 Controller Evaluation

To evaluate the controller performance, on the model of the system with the designed
EKF, a constant reference of 1m/s is given to the velocity, while the heading is
stepped from 0− π rad after 3 seconds. The result of this is shown on Figure 8.6.

Figure 8.6. Heading of the rover compared to the reference

As there is no feedback control designed for the velocity of the rover, the desired
velocity may differ from the actual velocity. The heading controller is observed to
behave as anticipated in the design of the controller. It is also observed that the

50

8.2. Inertial Frame Controller Aalborg University

slight coupling between velocity and rotational velocity, which has been assumed
decoupled in the controller design, has no influence on the response of the system.

8.2 Inertial Frame Controller
The alignment controller ensures the correct heading but may offset in the inertial
frame as it only ensures that the rover will drive parallel to some line. This section
will therefore focus on a way of expanding the control structure such that the rover
may navigate to a given reference point.

The inertial controller will however still utilize the above designed heading controller
but will in addition to this have a distance control feedback loop designed to control
the motor velocity reference Vref .

This distance controller will be designed similarly to the heading controller and
will also be using a proportional controller as this will result in a type one system,
yielding zero steady-state error to a step input. This controller will generate an error
signal based on the body frame position S and a reference for this Sref . The rover
distance traveled S could potentially be estimated by the EKF but will not be done
as another problem with this control structure is the fact that Sref is meaningless
in the inertial frame. This problem will be handled later in this section and S will
therefore be assumed known.

The root loci of the system can be sen on Figure 8.7. The S controller will for this
case be tuned such that the dominant pole pair of the system is critically damped,
to prevent overshoot. Doing so results in a gain for Kp,s of 0.74.

51

MCE3-926 8. Control

Figure 8.7. Root loci for S
Vref

with the approximated time delay

Closing the feedback loop with this controller gain yields the approximated and
exact step response seen on Figure 8.8, where a closed-loop system bandwidth of
1.9 rad/s is achieved.

Figure 8.8. Step response of the closed loop time delayed transfer
function, the transfer function with the approximated time
delay is added for reference

With both the heading and distance controllers of the system designed, a reference
for both controllers will have to be determined such that the distance ∆l from the

52

8.2. Inertial Frame Controller Aalborg University

rover to the goal position (xref , yref) will approach zero. The robot position control
proposed in this section will be based upon the methods presented in [7].

To ensure that ∆l → 0 two new variables ∆d and ψ will have to be defined where
∆d represents the distance to the point d which is defined as the point with the
shortest distance to the reference point, along with the rover’s current orientation
while ψ is the angle between the rover position and the reference point as illustrated
on Figure 8.9.

Figure 8.9

∆ψ may then be defined as the difference between ψ and θ as: ∆ψ = ψ − θ. Based
on trigonometric relations it can be seen that:

∆l =
∆d

cos(∆ψ)
(8.1)

This effectively means that if a controller can be designed to drive both ∆d and ∆ψ

to zero then ∆l will consequently approach zero. To ensure this we will define the
error signals, fed into the heading and distance controllers, as eθ = ∆ψ and es = ∆d

respectively. By defining θref = ψ this can be calculated as:

θref = atan2(∆y,∆x) (8.2)

Where ∆y and ∆x represent the distance from the current to the desired location
in the y and x direction. This means that the error signal for the heading controller
will be: eθ = θref − θ which is what the control law is designed to handle.

53

MCE3-926 8. Control

By defining the point d along the orientation of the rover from Figure 8.9 as being
the desired reference point, the error is seen to be: es = Sref − S = ∆d which can
be calculated, based on Equation (8.1) as:

es = ∆l cos(∆ψ) =
√
∆x2 +∆y2 · cos(∆ψ) (8.3)

A general problem for non-holonomic constraint systems is that they cannot be
completely stabilized by any continuous control law [7]. A circle of radius ϵ will
therefore have to be defined around the reference point (xref , yref) such that when
∆l ≤ ϵ the controller errors eθ and es will be set to zero as the reference angle θref
will be undefined in the case where the actual position is equivalent to the reference
point, while any estimation noise in (x, y) will make the heading controller highly
oscillatory when close to (xref , yref). The rover will for the control strategy of this
project be constrained to forward movement, but the reference generation will work
for movement in either direction. A block diagram of the designed control strategy,
as well as the designed reference generation, is sen on Figure 8.10

Sensors

Extended
Kalman

Filter

True System States+

-

Time
Delay

Encoders

Reference
Generation+

-

+

-

Figure 8.10. Inertial Control structure of the rover

8.2.1 Controller Evaluation

The above designed controller will for the project be evaluated in two different
manners. In the first scenario, a simple reference is generated where four different
way-points are given to the controller with a fixed time interval in between. For
this scenario, the controller will be allowed to reach its reference and will therefore
come to a full stop during the validation. For the second test scenario, a reference
trajectory will be constructed by calculating way-points along the desired path of
the rover. A new way-point will then be fed to the rover at each time step without
the rover reaching any other way-points than the last. This effectively means that
the controller in the first scenario is free in its choice of the trajectory to a given
reference point while the second scenario is more constrained as the rover constantly
will be trailing the reference point in a follow the carrot manner.

The generated error signals eθ as well as the distance to the desired location ∆l

during the first scenario can be seen on Figure 8.11. A new way-point is here fed
to the controller at an interval of 15 seconds to allow the controller to reach the
desired location. The controllers are observed to drive the distance to the way-point
∆l towards the chosen error tolerance ϵ which for this case is chosen to be 20 cm.

54

8.2. Inertial Frame Controller Aalborg University

Figure 8.11. Angular error and length to the desired reference point

A visualization of the route taken by the rover can be seen on Figure 8.12. The
trajectory will start and stop in (0,0) while the rover is driving in an anti-clockwise
direction. The rover is here only given the objective of reaching the separate way-
points and will therefore not follow any predefined trajectory to reach these.

55

MCE3-926 8. Control

Figure 8.12. Comparison of reference trajectory and true rover location

To test the tracing capabilities of the inertial controller another scenario is
constructed where an array of way-points is fed into the controller as this will allow
not only to define the end goal of the rover but also the path that the rover should
follow to reach the point. The simulated rover position compared to the reference
trajectory can be seen on Figure 8.13. This trajectory has been designed to drive
with a linear velocity of 0.9m/s for the straight sections and 0.45m/s for the curved
parts.

Figure 8.13. Comparison of reference trajectory and true rover location.
Left graph shows the full trajectory while the right plot is
a zoom of the first turn

During the entire course of the trajectory, the maximum recorded deviation from the
intended trajectory is 18 cm while the root mean square error (RMSE) during the

56

8.2. Inertial Frame Controller Aalborg University

trajectory is 7 cm. Note that these errors are not calculated as the difference between
the position and the way-point, but as the difference from the actual position to the
closest point on the trajectory. These results are dependent on the velocity during
the trajectory and if the linear velocity is increased by a factor of two for the
complete trajectory the RMSE and max error are respectively increased to 15 cm

and 35 cm.

57

Discussion 9
In the following chapter, some additional considerations of parts of project content
will be discussed.

When driving the rover around, it has been observed that the RTK signal may drop
out from time to time. This has a large influence on the estimated states in the
EKF, as a high amount of confidence is put into the GNSS readings, which are less
accurate without the RTK. This can potentially be mitigated by changing the R

matrix whenever an RTK fallout is detected.

The EKF has been designed based on an assumption of planer movement. With the
sensors used this basically means that additional information of the rovers states
is measured but not used. Using all of the available sensor information may help
to get a better estimation of the pose of the rover. This could potentially prove
beneficial when driving on rougher terrain where the assumption of the rover driving
on a level surface is challenged. This could however also prove to be even harder
computationally, as the EKF at the current state already consumes 41% of the time
available on the Nucleo. Implementing more states to the filter could potentially
require the filter to run even slower than it already does, to maintain timing.
At the moment the filter is slower than the fastest sensor in the system. The filter
runs at 100Hz while the IMU has the potential of producing data at 1000Hz, as
the fastest sensor. So running the filter at a higher frequency will also be beneficial,
though this will require a more efficient way of calculating the filter.

The proposed inertial frame controller of the project is designed with the objective of
controlling the rover to some desired location. It may however be feasible to expand
this control structure in order not only to control the end position but also the
the heading of the rover at the desired destination. This control strategy has been
investigated in [7]. Doing so will yield an extra degree of freedom when controlling
the rover to reach a certain way-point as the rover in addition to reaching a specific
point will do so from a well defined heading.

The heading controller is beneficial when it is combined with CV. The CV algorithm
intended for the report has been a line detection algorithm to find rows in a field, as
described in Appendix A. This line detection should return an error value between
the heading of the rover, and the desired heading in the body frame. This can
be projected to the inertial frame, and act as the reference input to the heading
controller. This approach can allow the rover to navigate within the crop rows on a
field.

59

MCE3-926 9. Discussion

The proposed structure of the thesis does require a lot of different boards for the
general control of the rover. This has meant that a lot of project time has been
consumed by the general programming of these boards as well as on establishing
the communication between them. As a consequence of this, it has not been possible,
with the given time frame, to implement the proposed control structures on the rover
in order to validate the system performance on the physical setup.

A general concern when using the NJN for the implementation of the control
structure is that ROS does not guarantee real time operation. This is however
only expected to have a minor impact on the system performance due to the low
bandwidth of the system. The achieved system bandwidth of the alignment and
position controllers are respectively 0.2Hz and 0.3Hz. A general rule of thumb
is that a discrete controller will approximately behave if it is continuous if it is
discretized at a rate five to ten times faster than the desired system bandwidth.
This means that an update rate of 3Hz will be sufficient to ensure that the no
significant changes to the system response, which is expected to be well within the
capabilities of the NJN.

60

Conclusion 10
In the report, an extended Kalman filter has been designed to fuse the incoming
data streams from the wheel encoders, an IMU, a magnetometer, as well as a GNSS
module. Using a large sensor pack as proposed in the project will allow for the
estimation of biases in the different sensors, and will in addition to this give the
system some redundancy. An example of this system redundancy is seen in Figure 7.4
where a GNSS data fallout has been simulated on recorded sensor data. The filter
is in this case observed to closely follow the GNSS data points despite the missing
data over a period of 40 seconds. The overall accuracy of the filter can however not
be evaluated in the report as this will require knowledge of the true system states.

A feedback controller has also been designed for the rover which utilized the state
estimates from the EKF to navigate the rover to a given reference point in the
inertial reference frame. During the evaluation of the inertial frame controller on the
defined trajectory, an RMSE of 7 cm has been achieved with a maximum deviation
from the trajectory of 18 cm. The precision of the controller is however observed
to be highly dependent on the velocity as a higher velocity generally will require a
higher controller bandwidth.

61

Future Work 11
Implementation of Camera Vision
As described earlier in the project the rover has initially been intended to navigate
through field rows based on an error angle generated from a CV algorithm. Another
interesting aspect to investigate would have been Visual Odometry (VO) which may
be expected to further increase the accuracy of the EKF. A benefit of VO is that
it, like the IMU and magnetometer, does not rely on an external signal and may
therefore increase the accuracy of the rover when operating either indoors or in an
urban scenario where GNSS may be unavailable.

Power Management and Distribution
The rover platform described in the project is seen to have a large number of
different connected components. It would therefore be feasible to create a custom
Printed Circuit Board (PCB) to handle all of these different interconnections as this
would reduce the chance of any connections coming loose. In addition to distributing
power and data connections between the boards, the PCB should also have charging
capabilities for the main and auxiliary battery such that a rover may operate and
charge itself without any human intervention. The board should also include some
battery management system to prevent battery abuse such as deep discharge of the
batteries as this will permanently damage lithium batteries.

Live Data Visualization and Communication
Another feature that would increase the overall quality of the rover would be to have
full control of the rover from a remote station such that e.g. manual override and
changing of the control mode could be accessible online. With online capabilities
on the rover, it would also be possible to live stream data such as rover position,
battery level from the BMS, and any potential error codes. This would especially be
beneficial as the rover is intended to operate in larger fleets where it may be hard
to keep track of every individual rover.

63

Bibliography

[1] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling And
Control. John Wiley & Sons, Ltd, 2nd edition, 2020.

[2] John P. Snyder. Map projections: A working manual, 1987.

[3] Charles L. Philips & John M. Parr. Feedback Control System. Pearson, 5th
edition, 2011.

[4] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT Press, 2005. ISBN 0262201623 9780262201629.

[5] Tucker McClure. How Kalman Filters Work, Part 2, 2016. URL https://www.
anuncommonlab.com/articles/how-kalman-filters-work/part2.html.
Visited 19/05/2022.

[6] Google. Fredrik Bajers Vej 7G, 9220 Aalborg, 2021. URL
https://earth.google.com/web/@57.01393348,9.9885678,14.88211059a,
120.17636259d,35y,0h,0t,0r@. Visited 30/05/2022.

[7] Frederico C. Vieira., Adelardo A. D. Medeiros., Pablo J. Alsina., and
Antônio P. Araújo Jr.. Position and orientation control of a two-wheeled
differentially driven nonholonomic mobile robot. In Proceedings of the First
International Conference on Informatics in Control, Automation and Robotics
- Volume 2: ICINCO,, pages 256–262. INSTICC, SciTePress, 2004. ISBN
972-8865-12-0. doi: 10.5220/0001138702560262.

65

https://www.anuncommonlab.com/articles/how-kalman-filters-work/part2.html
https://www.anuncommonlab.com/articles/how-kalman-filters-work/part2.html
https://earth.google.com/web/@57.01393348,9.9885678,14.88211059a,120.17636259d,35y,0h,0t,0r@
https://earth.google.com/web/@57.01393348,9.9885678,14.88211059a,120.17636259d,35y,0h,0t,0r@

Appendices

67

Component Description A
IMU and Magnetometer

The IMU used for this project is an X-NUCLEO-IKS01A3, which is a motion
MEMS expansion board mounted on a NUCLEO-F401RE development board both
manufactured by STMicroelectronics. The expansion board consists of multiple
sensors, including a 6DoF accelerometer(3D) and gyroscope(3D), as well as a 3D
magnetometer. The expansion board communicates with the development board
with I2C. A benefit of the IMU and magnetometer is that they may be updated at
1000Hz and 100Hz respectively which means that faster system dynamics can be
determined. Another benefit of the IMU and magnetometer is the fact that they
are very reliable as they do not rely on external factors such as GNSS which means
that they may not be jammed and will also work in an indoor environment.

GNSS

The GNSS used in this project is the NEO-M8P-2 module mounted on the C94-M8P-
E application board from U-Blox. With two of the application boards, it is possible
to use one as a base station while the other is attached to the rover, enabling the
use of Real-Time Kinematic(RTK) and allowing for a more precise rover position
measurements. The rover and base station communicate with a radio link over a
433Mhz frequency. Sending data from the rover GNSS module to the mainboard
is done over UART using the UBX protocol from U-blox. The GNSS used in this
project can update with a frequency of 2Hz which is slow compared to the IMU but
comes with the benefit of being an absolute measurement which effectively means
that the position may be determined directly and will therefore not rely on dead
reckoning.

Motor/Encoder and controller

The motors and controller are from ZLTECH. The motors are the model
ZLLG65ASM250-4096 V2.0, which is a 350W motor with a rated torque of 8Nm
and a maximum speed of 300RPM with a build-in magnetic incremental encoder.
The motor driver is the ZLAC8015D. This is a dual servo motor driver, making it
possible to supply/control both motors with one motor drive. The drive has a built-
in torque and speed control. So the input to the motor drive is a speed reference.
The motor drive communicates with RS485 protocol.

69

MCE3-926 A. Component Description

Computer

The computer in the system is the Nvidia Jetson Nano (NJN), running Robot
Operating System (ROS). The use of the NJN is to run the control for the rover,
as well as interpret the camera feed, and extract the necessary lines to use in the
control.

Camera Vision

A camera may be attached to the rover to run a camera vision program for line
extraction of the crop rows in the field. This camera vision software is not something
that will be evaluated in this report. It will be considered as a black box, with an
output error angle between the center of the rows and the heading of the rover, as
illustrated on Figure A.1

θhead

Rover

Heading

Center of

Rows

Figure A.1. A sketch of the calculation of the CV error angle, from the
camera’s point of view

70

Determination of
Measurement Uncertainty B

The measurement uncertainty of the different sensors will be determined in the
following section, based on sampled data during different scenarios. The measured
variances of the signals can be found in Appendix B.

Gyroscope
The measurement uncertainty of the gyroscope is determined by commanding the
motor controller to drive each wheel of the rover in opposite direction at a constant
speed. This results in a rotation of the rover as seen on Figure B.1. To calculate
the variance of the signal the transient phase from zero to two seconds has been
removed and may be calculated as:

µ =
1

n

n∑
i=1

zi (B.1)

rgyro =
1

n− 1

n∑
i=1

(zi − µ)2 (B.2)

where µ is the average value of the signal, zi is i’th measurement and n is the total
number of observations.

Figure B.1. Angular velocity of rover measured from gyroscope

71

MCE3-926 B. Determination of Measurement Uncertainty

This approach will include cross-correlation terms between the motor speeds and
the gyroscope measurements, but will still be used as measurement uncertainty
cross-correlations will have to be neglected to use the scalar implementation of the
EKF.

Accelerometer
The accelerometer measurements will for the implementation be integrated to yield
the velocity of the rover. For this test, both motors are commanded a constant
similar velocity. A steady-state accelerometer bias compensation is here made as
any bias will heavily impact the calculated velocity. This may be expected to be
valid for a short duration as the bias is expected to drift slowly. The variance of the
velocity is calculated as above and the collected data can be seen on Fig. B.2.

Figure B.2. linear velocity of rover measured from accelerometer

The same argument about the cross-correlation between motor velocity and velocity
measurement can be made here as above. An alternative approach would be to
measure the uncertainty with no rover movement by is not chosen as this may
result in the EKF having too much confidence in the measurements.

Magnetometer
For the measurement of the heading uncertainty, the rover will be stationary while
data is collected as small control/actuation errors for the two motors are observed
to cause the trajectory of the rover to curve. The obtained measurements can be
seen in Figure B.3.

72

Aalborg University

Figure B.3. rover headding measured by magnetometer

RTK GNSS
The same data set as above is used for the measurement uncertainty of the GNSS
module. The position of the rover in Figure B.4 is observed to drift forth and back
over time and the assumption of a normal distributed white noise error term may
therefore not hold. It should however be noted that the test conditions at which this
data has been collected may not be ideal as it has been performed in a parking lot
enclosed by buildings which may affect the results. As there is quite a substantial
difference in the variance of the East and North signals the variance of the east
signal will be chosen as this is the largest.

Figure B.4. rover position measured by GNSS with established RTK
connection

The measured variance of all the different sensors can be seen in Appendix B

73

MCE3-926 B. Determination of Measurement Uncertainty

Parameter Value Unit
racc 4e-4 (m/s2)2

rgyro 6e-3 (rad/s)2

rmag 2e-3 (rad2)
rGNSS 2e-3 m2

74

State Estimation Plots C

Figure C.1. Comparison of state estimates and measured data for KF
using IMU and magnetometer data

75

MCE3-926 C. State Estimation Plots

Figure C.2. Comparison of state estimates and measured data for KF
using IMU, magnetometer and GNSS data

Figure C.3 shows the estimated rover position at a data fallout of 80 seconds, the
filter is here fed the GNSS signals for the first 10 seconds in order to ensure that
the initial conditions of the filter at the time of the data fallout is correct.

76

Aalborg University

Figure C.3. Estimated rover position during a data fallout of 80 seconds

77

	Front page
	Titelblad
	Summary
	Table of Contents
	Nomenclature
	Problem Formulation
	Introduction
	Problem Description
	Problem Statement

	System Description
	System Structure
	Wiring Diagram
	ROS Implementation on NJN

	System Model
	Dynamic Model
	Transformation to Inertial Frame

	Parameter Identification
	System Parameters
	Time Delay
	Discussion

	Sensor Calibration and Interpretation
	Encoders
	GNSS
	Accelerometer
	Accelerometer Model
	Accelerometer Testing

	Gyroscope
	Magnetometer

	State Observer Design
	Inertial Navigation Filter
	Extension of Kalman Filter
	Scalar Implementation
	Computational Load of Nucleo Board
	Validation of EKF

	State Estimation from Measured Sensor Data
	Test Scenario
	Performance Evaluation
	Performance Evaluation During Data Fallout
	Discussion

	Control
	Alignment Controller
	Controller Evaluation

	Inertial Frame Controller
	Controller Evaluation

	Discussion
	Conclusion
	Future Work
	Bibliography
	Component Description
	Determination of Measurement Uncertainty
	State Estimation Plots

