
Heterogeneous Federated
Learning in Robotic Systems

Jan Przybyszewski
Master’s Thesis

ROB10
June 2, 2022

Aalborg University
Department of Electronic Systems

Department of Electronic Systems
Aalborg University

https://www.aau.dk

Title:
Heterogeneous Federated Learning in
Robotic Systems

Theme:
Master’s Thesis

Project Period:
Spring Semester 2022

Participant(s):
Jan Przybyszewski

Supervisor(s):
Prof. Chen LI, Ph.D.

Copies: 1

Page Numbers: 78

Date of Completion:
June 2, 2022

Abstract:

In modern, data-driven word, privacy
becomes a significant concern for users
of robotic systems. Federated learning
(FL) is a machine learning paradigm in
which a federation of clients is trained
collaboratively, without sharing local
datasets, consequently increasing their
privacy. In this work, a novel heteroge-
neous FL framework is proposed, ca-
pable of training federations regard-
less of the model architectures used.
With this framework, grasp prediction
models are trained, and a pick-and-
place pipeline is deployed, presenting
the first application of FL in industrial
robotics. In addition, the flexibility of
the system is shown in image classi-
fication and sentiment analysis tasks.
The influence of knowledge distilla-
tion on training results is also inves-
tigated. As the results show, the pre-
sented FL framework can significantly
improve client performance compared
to training clients in isolation. At the
same time, contrary to standard dis-
tributed learning approaches, it miti-
gates privacy risks introduced by data
sharing.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

https://www.aau.dk

Preface

Although the topic of data privacy has recently emerged as one of the key research
interests, when I prepared to select a topic for my Master’s thesis, it appeared to
me that it has not yet been thoroughly investigated in the context of robotics. As
more and more systems in this domain are data-driven, sensitive information can
be exploited by malicious actors and put user privacy at risk. Fortunately, there are
some ways to protect data used by machine learning applications, one of which I
find especially interesting is Federated Learning (FL). In this thesis, my goal is to
bring FL and robotics together, explaining the benefits of this setting and showing
a practical example on how it can be used in robotic systems. As a result, I hope
to encourage the reader to pursue the investigation of this interesting topic, which
in my opinion could be very beneficial to the fascinating domain of robotics.

ii

Acknowledgements

I express my sincere appreciation for the supervision of Prof. Chen LI, Ph.D. dur-
ing the work on this thesis. The very valuable feedback provided by Prof. LI in
every meeting allowed me to improve the thesis and expand my knowledge. The
straightforward attitude of the professor and the calm communication provided
the environment to finish this work without unnecessary stress, for which I am
very grateful.

I would also like to thank all members of the Sano Center for Computational
and Personalized Medicine [1] for collaborating on this thesis and creating a great
space in which I could conduct exciting research. Specifically, I want to show
my appreciation for Prof. Maciej Malawski, Ph.D. The professor’s suggestion to
investigate the heterogeneous setting allowed me to come up with an interesting
research direction, which resulted in this thesis. Finally, robotic experiments would
not be possible without Przemysław Korzeniowski, Ph.D., who is the Head of the
VR and Robotics lab at Sano.

This work was supported by the EU H2020 grant ’Sano’ No 857533; and by the
project ’Sano’ carried out within the International Research Agendas Program of
the Foundation for Polish Science, co-financed by the European Regional Develop-
ment Fund. This research was supported in part by the PL-Grid infrastructure.

iii

Contents

Preface ii

Acknowledgements iii

1 Introduction 2

2 Literature review 6
2.1 FedAvg . 6
2.2 Federated optimization methods . 8
2.3 Personalized federated learning . 10
2.4 Privacy in federated learning . 11
2.5 Attacks analysis . 13
2.6 Incentive and fairness in federated learning 14
2.7 Decentralized federated learning . 15
2.8 Heterogeneous federated learning . 16
2.9 Federated learning in robotics . 19
2.10 Summary . 20

3 Problem statement and system requirements 22
3.1 Problem analysis . 22
3.2 Problem statement . 23
3.3 System requirements . 23

4 System design 25
4.1 Architecture . 25

4.1.1 Central server . 25
4.1.2 Clients . 26

4.2 Workflow . 27
4.2.1 Local training . 27
4.2.2 Peer assignment . 29
4.2.3 On-peer training . 30
4.2.4 Model reassignment . 32

iv

1

4.2.5 Model evaluation . 32
4.3 Experimental setup . 32

4.3.1 Dex-Net experiments . 33
4.3.2 MNIST experiments . 38
4.3.3 IMDB experiments . 41

4.4 Implementation details . 42

5 Results 44
5.1 Dex-Net experiments . 44

5.1.1 Pick-and-place evaluation . 44
5.1.2 Full vs local-only training . 45
5.1.3 Influence of the α parameter 46
5.1.4 Influence of the T parameter 46

5.2 MNIST experiments . 47
5.2.1 Full vs local-only training . 47
5.2.2 Influence of the α parameter 48
5.2.3 Influence of the T parameter 50

5.3 IMDB experiments . 53
5.3.1 Full vs local-only training . 53
5.3.2 Influence of the α parameter 54
5.3.3 Influence of the T parameter 55

6 Discussion 63
6.1 System requirements fulfillment . 63
6.2 Robotics applicability . 63
6.3 Collaborative training flexibility . 65
6.4 The influence of α and T . 66
6.5 Study limitations . 67
6.6 Future research directions . 67

7 Conclusion 69

Bibliography 71

Chapter 1

Introduction

In modern robotics, machine learning (ML) has become an essential part of many
of the applications. Having great success in computer vision tasks, such as object
detection, image segmentation or object classification, as well as in other domains,
including natural language processing (NLP) and signal processing, ML can be
a solution to nearly every common challenge for a typical robotic system, from
perception [2], through sensor fusion [3], to grasp detection in industrial manip-
ulators [4] and path planning for mobile robotics [5]. When the amount of data
is sufficient, solving many problems in the aforementioned domains is often triv-
ial. However, data sparsity can greatly restrict ML model performance. In many
conventional applications, for example, image classification, data samples are col-
lected from many sources and stored in a central location, to accumulate the largest
dataset possible and then train a single model to obtain the best performance [6].
Even though some ML-based robotic systems are deployed in thousands of in-
stances [7], creating a potential to aggregate the information from each robot and
collect a sufficiently large dataset, in practice robotic applications are usually un-
able to create a centralized dataset. This could be the result of two restricting fac-
tors: data transmission restrictions and privacy protection. Although many robots
have the ability to connect to a centralized service through standard communi-
cation protocols, the connection is often not persistent due to application-specific
factors. For example, a mobile robot can operate in an environment that cannot be
reached by any communication means for an unspecified time. In other instances,
the communication may not be stable enough for data transfer. A third example
of such constraints may be data transmission costs, where economic reasons pre-
vent the system from sending data over the communication channel, although the
connection parameters are sufficient for this purpose. On the other hand, even
when communication means are present, many robotic systems process sensitive
data, bringing great privacy concerns to the table. Transferring these data to a
centralized location may not be advised because of legal regulations protecting the

2

3

system’s user, inability to collect required consent from the user, or just to mit-
igate classified information leaks. An example of exposing the user to privacy
risks could be any robotic system based on automatic speech recognition (ASR),
such as robotic assistants [8]. These systems have access to the user’s verbal com-
munication, containing often very sensitive information, which, if accessed by an
unauthorized third party, can be exploited and cause harm. Furthermore, in many
industrial applications, there may be robotic ML systems that operate on visual
data, e.g. for grasp detection or quality control. Passing these data to a third
party can also create privacy risks, leading to information leaks about the produc-
tion process, including product details, procedures or manufacturing equipment,
and other industrial secrets, crucial for the company to keep the edge over its
competitors. The aforementioned considerations restrict many ML models to use
only samples collected by robotic systems locally, resulting in inferior performance,
when compared to the centralized models trained on datasets aggregated from a
number of clients.

To address similar issues, in a 2017 article by McMahan et al. [9], a novel ap-
proach to distributed learning was presented, called Federated Learning (FL). As
mentioned above, standard ML services collect training data from client devices
in a centralized location to improve the performance of a common model. FL ap-
proach breaks this paradigm, creating an improved model without any training
data transfer between the client devices. To implement this idea, the authors pro-
posed the Federated Averaging (FedAvg) algorithm, originally used in a so-called
cross-device setting, characteristic of services deployed on mobile phones. In this
setting, there is a large pool of devices with small computational resources, of-
ten unreliable in terms of both availability (owing to communication constraints
and/or costs) and reliability (the devices may often break down). The algorithm
was successfully used to improve Google Board (GBoard) [10] predictions. GBoard
is a service available on Android devices [11], which can prompt the user with sug-
gestions for the next word while typing, using an ML model. Each time the user
clicks on one of the words prompted to use it in the sentence, the device stores the
text that has been typed and the word chosen as a data sample for model train-
ing. Each FL round, a number of devices is chosen, and a local model’s training is
triggered on each of them. This is done while the device is idle and connected to
power, to prevent the user from noticing degradation in performance and availabil-
ity, as training removes computational resources and battery life. After a number
of local training steps, the models are transferred from each client to a central
server and aggregated using weighted averaging. The resulting model is used as
an updated central model and broadcast to update the clients and improve their
performance. Storing the latest model in a central location has another advantage:
in case any brand-new devices join the federation, they can receive the most-recent
model straightaway from the central server, and provide the best user experience

4

right from the start.
In robotics, the characteristics of the cross-device setting are typical for the ser-
vices deployed on small mobile robots. However, FL use cases are not limited to
pools of unreliable clients. Another setting that could use the advantages of FL is
a so-called cross-silo setting [12], where a smaller number of relatively reliable and
well-communicated clients participate in the federation. This could be multiple
organizations that collaborate to improve a common process. This sort of setting
also applies to robotic applications, e.g. when multiple companies collaborate on
training a model for a common robotic task, such as grasp prediction, at the same
time avoiding privacy risks related to business secrets outlined earlier. Such ap-
plications could be used not only in manufacturing but also in healthcare, when
sharing sensitive patient information is not advised.

Due to the clear advantages of FL, the domain has seen a considerable amount
of research activity since its inception. The main research topics currently ex-
plored include discovering new optimization methods, evaluating the implications
for user privacy, defending against malicious attacks, and ensuring fairness and
low bias in FL systems. In general, current research in the field focuses on homo-
geneous environments, which means that all clients employ a model of the same
deep learning architecture. In this case, a shared model must be suited for all of the
clients. This approach is surely not optimal if the potential heterogeneity is consid-
ered - each client may have different computational capabilities, and sharing the
architecture means that it has to be suitable for the client with the lowest compu-
tational resources, often leaving more powerful clients underutilized. At the same
time, as established before, sharing the knowledge between clients is proven to be
beneficial; therefore, investigating how the knowledge can be transferred between
clients with differing model architectures could be very important, especially in
the cross-silo setting, where there are many companies with different resources
that would like to participate in a federation. Unfortunately, heterogeneous envi-
ronments cannot use standard FL optimization methods, e.g. FedAvg, as they are
designed with homogeneity in mind.

The objective of this thesis is to contribute to the robotics and FL domains. A
novel FL framework is proposed, in which collaborative training of clients with
heterogeneous models is possible without any data transfer. As a robotic contribu-
tion, the framework is employed in a grasp prediction task, showing the method’s
suitability in this setting. For this purpose, I train an adaptation of the Grasp Qual-
ity Convolutional Neural Network (GQ-CNN) on the grasp prediction dataset and
use the trained models in a pick-and-place pipeline deployed with the use of a
robotic arm. In this way, to the best of my knowledge, I present the first docu-
mented use of FL in a pick-and-place application, expanding the limited amount
of research in the robotic federated learning domain. In addition, the applicabil-
ity of the method for two other ML datasets is investigated, for natural language

5

processing (NLP) and computer vision (CV) tasks, to showcase its flexibility. I also
evaluated the use of knowledge distillation (KD) [13] as a way to improve knowl-
edge transfer during training. Contrary to existing heterogeneous FL approaches,
the presented framework allows the federation to be trained without any auxiliary
public dataset, which is essential for tasks where data collection is difficult.

The organization of this work is as follows. The current research directions in
FL are described in Ch. 2. I reiterate on the motivation of the work and define the
research problem in Ch. 3. In Ch. 4, I explain the architecture and workflow of the
framework, as well as the experimental setup (including datasets) and implemen-
tation details. In Ch. 5 the results of this work obtained during the experiments are
presented. In Ch. 6, I discuss the results, analyze the limitations of the framework,
and outline possible future improvements. The work is summarized in Ch. 7.

Chapter 2

Literature review

2.1 FedAvg

As described in the Introduction, research in the FL domain was initiated by the
paper published by McMahan et al. [9] in 2016. In the paper, the authors defined
the decentralized training problem solved by FL, proposed a practical algorithm
(FedAvg), and evaluated it in three machine learning tasks. Importantly, they de-
fined the Federated Optimization (FO) problem and outlined key distinctions that
differentiate this problem from Distributed Optimization (DO). Key distinctions
are:

• Non-IID assumption

• Unbalanced device utilization

• Extreme-scale distribution

• Limited communication

In DO, the usual assumption is that the data for each participating device is drawn
from a uniform distribution and that each data sample is independent of previous
samples; therefore, the data for each client are independent and identically dis-
tributed (IID). This is achievable because in DO a central dataset is distributed in
a controlled way to the participating clients, and thus the central server has con-
trol over the data distribution. This assumption is, however, not true for FO, as
the central server has no control over the distribution, each client is collecting its
own data, and there are many factors (geographic factors, time zone, etc.) that
in practice make the data non-IID. The notion of unbalanced device utilization
comes from the fact that DO usually takes place in data centers, which have highly
available client devices, so the goal of the optimization algorithm is to balance the
utilization as much as possible and to optimize the available hardware resources.

6

2.1. FedAvg 7

However, with FO, client devices can be highly unavailable. Some available clients
may be used very frequently, and some that are available only from time to time
can hardly be used to perform the optimization. The extreme-scale distribution
means that FO can potentially use many more clients than the number of training
samples on each client, which is not typical for DO. Limited communication is once
again related to the optimization infrastructure: in DO, there are no assumptions
of limited communication, as it takes place within a data center, with bandwidth
restrictions and related bariers. However, FO should be suitable for mobile devices,
for which bandwidth restrictions and costs are an important factor. McMahan et
al. decided to focus on the first two characteristics of the FO problem. The authors
compared two algorithms: the so-called FederatedSGD (FedSGD) and Federated
Averaging (FedAvg). FedSGD is a naive implementation of DO in a federated set-
ting: In each training round, the participant k with the learning rate η performs
one training epoch, computing the average gradient gk on all local data, result-
ing in an updated local model wk

t (Eq. 2.1). The update is then sent to a central
server, which computes a mean of all the received gradients and updates the cur-
rent model (Eq. 2.2). The model is also sent to each client, so that during the next
training round all clients work on the most recent model (Eq. 2.3).

∀k, wk
t+1 ← wt − ηgk (2.1)

wt+1 ← wt − η
K

∑
k=1

nk

n
wk

t+1 (2.2)

wk
t+1 ← wt+1 (2.3)

On the other hand, in FedAVG, in each round, the client k performs a number of
training epochs, where each local training epoch results in a local model update
(Eq. 2.4). Only after a selected number of epochs are performed do the clients send
an updated local model to the central server for averaging.

wk ← wk − ηgk (2.4)

An important factor in the FedAvg algorithm is the batch size, which, as the au-
thors find, strongly influences FO performance. With the number of computations
E and the batch size B explicitly formulated as hyperparameters of this algorithm,
FedAvg can be thought of as a generalization of FedSGD. When E = 1 and B = S,
where S is the number of local training samples in each client, the FedAVG al-
gorithm becomes FedSGD. The authors indicate that they found the averaging of
models trained on different subsets of data to work very well if the model weights
were initialized using the same weight distribution. The experiments carried out
consisted of four machine learning problems: two image classification tasks and

2.2. Federated optimization methods 8

two language modeling tasks. For each parameter set, the authors evaluated al-
gorithm’s convergence rate, measured as a number of global updates (commu-
nication rounds) necessary to obtain a set performance score, e.g. 0.95 accuracy.
The authors explored the influence of three algorithm parameters on convergence:
the fraction of federation clients that participate in training, the number of local
training rounds, and the batch size. As expected, the increase in the number of
participants speeds up the training. More interestingly, the authors found that the
higher the number of local updates on clients (which can be the result of decreas-
ing B or increasing E) between communication rounds, the faster the algorithm
converges. Additionally, this effect is present for both IID and non-IID data. How-
ever, for too large E values, the algorithm can diverge or plateau, which means that
this parameter must be carefully tuned. The key findings presented were observed
on benchmark datasets, including MNIST [14] and Shakespeare [15], but the au-
thors also run large-scale tests on CIFAR [16] and 10-million post-social network
datasets, which supports their research as one that is possible to implement for
real-life application.

2.2 Federated optimization methods

After FedAvg was published, several works focused on FO followed. As a mo-
tivation for the FedProx [17] method, the authors pointed out that FedAvg does
not fully address the issues related to variation of client hardware, referred to as
system heterogeneity. It does not allow clients to do a variable amount of work
according to their computational potential. Instead, at each round, all clients com-
pute the same number of local epochs, and if any client is a straggler, then this
client is just dropped to prevent training stoppage. Moreover, there is an issue
of statistical heterogeneity; it was later proven that FedAvg can often diverge in a
non-IID setting. FedProx is a generalization of FedAvg with two simple, yet key,
changes. First, FedProx introduced partial work aggregation: If during a train-
ing round, some clients take more time to locally train the model, then after a set
time, the algorithm does not wait for them to finish. Instead, it uses the partial
update computed so far by the straggling client to perform the central model up-
date. In addition, the authors introduce a term called the proximal term. Adding
this term to the client loss function forces clients not to diverge too much from the
global model. Intuitively, even though the FO algorithm should make the best use
of clients with more computational capability, these clients can dominate the FO
task and reduce global model performance. By keeping such clients close to the
global model received at the beginning of the training round, the proximal term
restricts the negative impact of the variable number of computations. The authors
thoroughly evaluated the algorithm on both synthetic and real datasets. The in-
vestigation shows that the proximal term can greatly stabilize the training of the

2.2. Federated optimization methods 9

federated model, but its value has to be carefully tuned. The use of partial updates
can also positively influence training, even when operating with many straggling
clients.

The authors of the stochastic controlled average algorithm (SCAFFOLD) [18]
attempted to solve the FedAvg problem with heterogeneous data. As a result
of unfavorable data distribution across the clients, the SCAFFOLD authors have
proven that simply averaging the updates misleads the global model far from the
optimum, as the clients diverge on their local datasets, especially when a large
number of local computations are done at each training round. SCAFFOLD alle-
viates this problem by introducing control variables for all participating clients (ci)
and the global model (c). Control variables can be initialized with 0 and updated
after each training step, both for the global model and the clients. Note that in this
setting, the clients are stateful - control variables are adjusted between the rounds,
not overwritten. After each calculation of the local model yi gradient gi, a term is
added to the standard model update, which adjusts the update direction to be sim-
ilar to the direction of the global model (Eq. 2.5). After computing local updates,
the global model and the control variables are updated.

yi ← yi − η(gi(yi) + c− ci) (2.5)

This term resembles the momentum term [19],a popular technique used to stabilize
convergence in gradient-based optimization. The authors show that the introduc-
tion of control variables acts as a variance reduction mechanism and prevents the
global model from divergence in scenarios with many local computation steps.
Whereas FedAvg is prone to reduced performance in this case, SCAFFOLD can
be resistant to any deterioration. With this characteristic, the FO can be greatly
accelerated, as more local computation steps speed up training in general, as also
found in the FedAvg paper.

Another method that focuses on ways to alleviate the issue of objective incon-
sistency, when the number of local updates varies between clients, is the Federated
Normalized Averaging Algorithm (FedNova) [20]. As stated when describing the
SCAFFOLD algorithm, this can reduce the convergence time as it prevents many
local computations between global model updates. The authors of FedNova pro-
pose a novel aggregation strategy. In FedAvg, each client runs local computation
steps, and, after all steps are computed, the resulting local models are aggregated.
In FedNova, instead of aggregating the resulting local models, each client com-
putes the average of the gradients obtained during the local computation. Then
those mean gradients are averaged using a weighted average. The weights decide
which clients are more important for the global model update and can be tuned
accordingly to the application. The algorithm has been evaluated on a synthetic FL
dataset, as well as CIFAR [16]. The results show that FedNova allows for faster con-
vergence, compared to FedAvg and FedProx. The authors outline that this method

2.3. Personalized federated learning 10

is also very flexible and can incorporate additional strategies to alleviate the ob-
jective inconsistency issue, e.g. by adding the proximal term from the FedProx
method.

2.3 Personalized federated learning

In the Iterative Federated Clustering Algorithm (IFCA) [21], the authors focus on
one of the formulations of the non-IID FL problem, termed clustered FL. In clus-
tered FL, non-IID data is tackled by clustering the federation participants into
groups, e.g. in recommender systems, these may be the users interested in dif-
ferent domains, such as sport, or politics. A global model may not be suitable in
this setting, but it may be beneficial for users to personalize the model to better
fit each cluster, maximize performance, and improve user experience. To address
issues with data heterogeneity and different model objectives, the authors propose
that the centralized server will track the k central models, where k is the number
of clusters. Each training round, all central models are sent to the clients. Each
client finds their respective models by performing inference and finding the model
with the lowest loss. Local training is then performed by the client on the best-fit
model. In the aggregation step, for each central model, only the updates presented
by the clients in the respective cluster are aggregated, and the updated models are
broadcast back to the clients. The tests conducted on the CIFAR [16] and MNIST
[14] datasets show that tracking a number of models and customizing them ac-
cording to the group membership of the client allows the algorithm to obtain a
higher classification performance than the FedAvg method. However, this comes
at the cost of more computations and a larger memory footprint of the algorithm.

The authors of the pFedMe algorithm [22] also investigate how to personalize
the global model. Their approach is similar to the one presented in the FedProx al-
gorithm. The global model update works in the same way as the FedAvg algorithm.
During local computation, however, clients use a special loss function, with a regu-
larization term based on the l2 norm, to keep the local models as close as possible
to the global model, At the same time minimizing standard loss term, respectively,
to the objective. This use of the Moreau envelope [23] allows the models to overfit
to local data, improving the performance for each client. At the same time, the
regularization term prevents the global model from a reduced performance due
to the aforementioned objective inconsistency. The results show that this strategy
yields better results, compared to the FedAvg algorithm: the average performance
of personalized models was improved both on convex and non-convex problems.

2.4. Privacy in federated learning 11

2.4 Privacy in federated learning

In addition to investigating FO approaches, many researchers focused on different
aspects of privacy related to FL in general. In the DPFL article [24] the authors
point out that the fact that data are not transmitted alone does not mean that there
are no risks, as the transferred model weights pose privacy risks; it is proven that
both image recognition and language models can memorize unique patterns in
training data, which can be exploited by privacy attacks [25, 26, 27]. As described
by Geiping et al. [28], there are numerical methods that can reconstruct inputs just
from gradient information, both for Stochastic Gradient Descent (SGD) [29] optimi-
sation, as well as for batch gradient descent. The methods work not only for fully
connected architectures, but also for mixed models, such as convolutional neural
networks (CNNs) [30]. Geiping et al. is able to reconstruct low-noise images even
when the local training step operated on a large number of images and states that
no data transfer does not mean that the privacy of the clients is fully protected.
This motivates the authors of DPFL to use a differential privacy (DP) mechanism
to hide client contributions while maintaining high optimization performance. DP
is a promise of the data holder that the privacy of the data subject will not be ham-
pered, even if their data will be shared to a different data holder. In other words,
in differentially private databases, reidentification of the data samples is not pos-
sible, even using auxiliary information related to the data samples present outside
the database. To date, many works have suggested ways to identify anonymized
data samples based on auxiliary information [31]. DP mechanisms can address
this problem, preventing such mechanisms from being effective. To achieve this,
the authors used a Gaussian mechanism (GM). The local training step is carried
out as in the FedAvg algorithm; however, when the updates are aggregated, Gaus-
sian noise is added, effectively hiding client contributions. The results show that
with a sufficient number of clients (10000), DPFL has a performance comparable to
standard FedAvg, which is consistent with the law of large numbers [32] located at
the base of DP. At the same time, introducing a great increase in client privacy, pre-
venting potential attackers from accessing information about local training datasets
using client updates. For federations with a small number of clients (100-1000), this
method yields inferior results.

Another work related to this topic presented a DP-FedAvg algorithm [33], an
improvement over FedAvg to incorporate the DP mechanisms proposed by the
original authors. They introduce several steps to improve privacy. Contrary to
FedAvg, they randomly sample the number of clients selected for each round,
rather than always using the same number of clients. The updates computed by
each client during the local computation steps are restricted by adding a L2 norm
term. Bounding the client updates is an essential step to estimate the sensitiv-
ity, which in turn is used to scale the Gaussian noise added during the client

2.4. Privacy in federated learning 12

updates aggregation, thus ensuring DP. The authors evaluate the algorithm on a
next-word prediction task, using a recurrent neural network with long short-term
memory layers (LSTM-RNN) [34, 35] in a Reddit post dataset [36]. The authors
thoroughly investigate the influence of various update clipping strategies, differ-
ent levels of noise, and the comparison of predictive performance with vanilla
FedAvg. In terms of predictive accuracy, the DP algorithm yields results only
minimally decreased scores, compared to its non-DP counterpart. Although the
aforementioned approaches to DP in FL used the so-called global DP with noise-
adding step conducted in a central location, some representatives of local DP [37]
proposed to conduct the privatization on clients, before the updates are sent to the
central server.

Apart from using DP to increase the privacy of participating clients, some au-
thors also add secure multiparty computation (SMC) mechanisms to the domain.
A hybrid approach was proposed in [38], where SMC is combined with DP to en-
sure privacy at the same time, preventing a decrease in predictive performance of
ML models. In the first step of the training round, a central server sends a query
to a subset of clients. This query can, e.g. ask the clients to compute updates to
current global model, as in a standard FO scheme. Next, the clients use local DP
mechanism, e.g. adding Gaussian noise to the local updates. Updates are then
encrypted using a Paillier cryptosystem [39] and sent back to the central server.
The Paillier cryptosystem allows SMC to be implemented - using this method, the
central server can aggregate the updates in encrypted form, preserving client pri-
vacy. To decrypt the aggregated model, the central server has to query a number
of clients to participate in the decryption. This results in an updated, decrypted
model, which can be broadcast back, as in standard FL. This hybrid approach
further increases the security of client information. The authors evaluated the al-
gorithm on three ML predictors: Decision Trees [40], CNNs and multiclass SVM
[41]. The results show that this method retains high prediction performance while
at the same time reinforcing privacy guarantees over standard DP approaches in
the FL domain.

Following the publication of the FedAvg algorithm, another SMC approach was
presented in [42], in the form of the Secure Aggregation protocol. This work uses
two types of coordinated perturbation applied to model updates after local training
steps. The perturbations are agreed between the clients so that they cancel out
during aggregation. At the same time, the central server has no information about
the perturbation, so even if the server is overly curious about the client’s data,
it cannot reconstruct client’s original updates. The protocol also provides strict
communication encryption guidelines, which further increase security, e.g. against
man-in-the-middle attacks. This algorithm, together with FedAvg, is implemented
in the Gboard application [10].

2.5. Attacks analysis 13

2.5 Attacks analysis

In addition to investigating ways to improve user privacy, researchers also demon-
strated ways to exploit the FL setting in malicious attacks. Bagdasaryan et al. [43]
presented a backdoor attack on any standard FO algorithm in which, during the
local training step, the attacker can train its local model on a specially prepared
dataset. For instance, a classification task is considered, this dataset could make
the local model misclassify images containing specific features, e.g. images of pur-
ple cars can be misclassified as birds for image classification task. In language
modeling, this could mean that, for specific inputs, the attacker wants to output
a swear word for the next-word prediction. When attacking the federation, the
attacker can influence the global model to obtain a different objective from all the
other users. The naive way to do this would be to poison the local dataset with
data samples re-labeled according to the malicious objective. Standard FL algo-
rithms are, however, quite robust to such attacks - with many clients, the updates
from the attacker’s model are canceled and overwhelmed by other updates. To
target the FedAvg algorithm, the authors propose using an estimation of the up-
date necessary for the attacker’s model to influence the global model sufficiently,
so that it can fulfill the malicious objective. In this way, the attacker essentially
substitutes the global model for a malicious one, thus executing an attack. As the
objective can mean just misclassifying a small fraction of samples in the dataset, it
can be impossible to notice tracking only the predictive performance. The authors
showed that this attack is very effective and conducting it even for one training
round during FO can influence the global model for a number of the following
epochs. The authors were able to reproduce this on both image classification and
language modeling tasks.

Bhagoji et al. [44] presented a very similar approach to backdoor attacks, with
the attacker boosting its model updates to preserve it during the FedAvg aggrega-
tion step. In their approach, the authors added a regularization term that keeps
malicious updates close to the global model. This allows the attacker to increase
the stealthness of the attack, as the global model retains high performance on the
original objective and no negative impact can be noticed. At the same time, the
global model can implicitly fulfill the attacker’s objective. The authors also pro-
pose a strategy of alternative minimization, where the attacker’s objective is min-
imized every other round, alternating with the original objective, to mitigate the
risk of detection. Another important characteristic of the proposed method is that
it is also efficient for Byzantine-resistant aggregation algorithms, such as Krum [45]
and coordinate-wise median [46].

Xie et al. [47] show a distributed attack model. Contrary to previous, central-
ized approaches, the authors show that they are able to divide malicious features
(e.g., an image pattern) into parts and distribute crafted data samples containing

2.6. Incentive and fairness in federated learning 14

those parts between a number of malicious clients. Then, all these clients can par-
ticipate in FO. The phenomenon observed is that the parts of the attacker’s objec-
tive fulfilled by the adversarial clients can together make the global model achieve
the malicious objective. Furthermore, the authors prove that the distributed nature
of the approach not only makes a better use of the available computation, but is
also more persistent compared to non-distributed attack methods, even in instances
where the attack is carried out during one training round (one-shot attack). In a
detailed evaluation of the approach, the authors investigate the influence of the
number of adversarial clients, the distribution of features, and other factors on the
predictive performance of the attacker’s objective.

2.6 Incentive and fairness in federated learning

So far, the methods mentioned evaluated various FO algorithms, analyzed privacy
risks, and proposed solutions to these risks. A very practical question that is out
of focus for this method is: What motivates the user to join the federation in the
first place? This question was asked by Kang et al. [48], who investigated the
incentive mechanisms that can influence users to participate in FL. As noted above,
without incentives, selfish users will not be motivated to participate in the training,
preventing FL from being used in practical applications. The authors propose to
classify potential participants with a profit function that assigns value to each of
them, depending on the quality and reliability of their dataset. Grades can be
based on observations from previous FL tasks in which these users participated.
After grading potential users, the task provider should propose each user a custom
contract with an incentive proportional to the profit value brought by the user to
the federation. This way it can motivate the user by providing a beneficial incentive
(material or any other) in exchange for participation. The authors also proposed a
formulation of the incentive mechanism metrics that can help assess whether users
are properly motivated, as well as whether the task provider benefits from the user
contributions.

A topic closely related to incentive mechanisms is fairness in FL. In most of
the proposed FO algorithms, the global model accuracy is frequently measured as
an average of the accuracies of clients on their respective test sets. The authors
of q-Fair Federated Learning (q-FFL) [49] point out that this may not be the best
metric. Obtaining a high average accuracy for the federation does not mean that
the accuracy for all users is close to this value. In reality, it may happen that some
users have a very low accuracy score, but this is offset by users with a very high
accuracy. This means that the global model is not fair, as for some users it works
very well, while at the same time yielding poor results for the rest. q-FFL focuses
on providing a more fair (more uniform) accuracy distribution in the federation.
After each local training round, q-FFL can estimate the loss of each client based on

2.7. Decentralized federated learning 15

their gradients. When the model updates are aggregated, but using the weighted
average, the weights proportional to the loss are used to assign more emphasis
on the weaker models. This results in a shift in the distribution of the model
performance towards more uniform. The method is tunable; the user can benefit
from fairness at the expense of mean model performance, and vice versa. The
authors evaluated the algorithm on many FL benchmarks and showed that it can
be used efficiently to increase the uniformity of the federation results, providing
more fairness.

2.7 Decentralized federated learning

Most traditional FL methods worked in a centralized framework, where the cen-
tral server coordinates the work of the clients. However, some articles presented
different distributed workflows. In [50], the authors show the use of blockchain
technology [51] in FL, called BlockFL. As outlined, the centralized approach has
several issues: The federation is prone to central server malfunction. Moreover,
when the clients participate in FL they do not have any voice, and they are es-
sentially forced to contribute every training round. As mentioned when describing
incentive mechanisms, this leaves clients with more data unmotivated because they
cannot benefit from the FL as much as smaller clients. BlockFL allows clients to
choose peers with whom they want to form a federation, without central server
oversight. In addition, the method also encapsulates incentive mechanisms, since
clients can seek reward for participating in the training. For this purpose, the so-
called mining rewards, which are essentially built into blockchain technology [52],
can be used. Therefore, the authors argue that Blockchain is a natural setting for
decentralized FL.

Another work on this topic is FedLess [53]. To conduct training, the authors use
a Function-as-a-Service (Faas) platform [54, 55, 56, 57]. FaaS functions are small
code units that are stateless. They are an emerging paradigm in cloud comput-
ing. The reason they are so appealing is that they can be executed using a chosen
trigger, e.g. a HTTP request. Only after the function is triggered is the function
instance created, and the needed computing resources are allocated by the cloud
infrastructure provider. This means that only when the function outcome is really
requested, the resources are used, with no idle time-related costs. FL can be im-
plemented using the FaaS paradigm. Contrary to traditional approaches, where
clients wait idle until they are selected for training and waste resources, FedLess
instantiates the functions responsible for training only when the respective client
is selected. This provides better scalability and reduces costs. Note that FaaS is
stateless; therefore, client models and datasets still have to be stored in a database
instance to be persisted between the rounds; however, database operating costs are
far smaller than the cost of idle computing instances. A limitation to this method

2.8. Heterogeneous federated learning 16

is the usual restriction applied by FaaS providers; for example, for AWS Lambda
[57], the function execution cannot take longer than 15 minutes and it cannot use
more than 15 GBs of memory. Although the authors are aware of these limitations,
they state that with fast developments in the FaaS domain, these constraints may
soon disappear or be relaxed.

2.8 Heterogeneous federated learning

The FedDF [58] method is one of the very first works that addresses the limita-
tion introduced to FL with standard algorithms, restricting them to use models of
the same architecture for all clients. The aim of FedDF is to train a centralized
model using a federation of clients that use heterogeneous models, using knowl-
edge distillation (KD). Knowledge distillation was originally proposed by Hinton
et al. in [13] as a way to extract knowledge from an ensemble into a single model.
In general, using an ensemble of models instead of a single model trained on the
same data always yields better results. However, it is often impractical, as there
are larger hardware requirements and additional considerations to take into ac-
count when deploying ensemble-based machine learning systems. Hinton et al.
attempted to distill knowledge from an ensemble into a single model without sac-
rificing performance. To do that, the authors hypothesize that for classification
tasks, much of the cumbersome (ensemble) model’s generalization ability lies in
the ratios between probability distributions of each class. They assume that a stan-
dard training approach, in which the trained model is penalized just for predicting
the incorrect class, is not sufficient to transfer this ability. Instead, the authors pro-
pose a novel loss function, which they denote as the "distillation loss". Using the
multinomial classification task as an example, the standard output produced by a
neural network classifier is the class probabilities qi, calculated from logarithmic
results of the last layer zi using the softmax function denoted in Eq. 2.6.

qi =
exp zi/T

∑j exp zj/T
(2.6)

The parameter T in Eq. 2.6 is the temperature and affects the resulting probability
distribution. A higher value of T makes the distribution over classes softer. In
standard objective functions, it is set to 1. In distillation loss, knowledge can be
distilled (transferred) from the complex model (denoted the teacher model) into a
simple model (denoted the student model), using the loss formulation shown in
Eq. 2.7.

E(x|t) = −∑
i

ŷi(x|T) log yi(x|T) (2.7)

Eq. 2.7, presents a cross-entropy value calculation between the probabilities yi(x|T)
outputted by the student model and the probabilities ŷi(x|T) produced by the

2.8. Heterogeneous federated learning 17

teacher model. Intuitively, this forces the student to match all the probabilities
of the teacher, whereas in standard objectives the model would be only forced to
assign a high probability to the correct class. To extract knowledge from an ensem-
ble, the authors use a training strategy in which training input is inferred through
all ensemble models. The resulting probabilities are then averaged and used as
teacher model probabilities. They are calculated using the softmax function; how-
ever, the authors found that in distillation loss, higher T values (usually in the
[2.0;10.0] interval) often yield better results. This is one of the hyperparameters
that should be carefully tuned. After obtaining teacher probabilities, the input is
inferred through the student model, and student probabilities are also computed,
using softmax with the same T as for the teacher. The teacher and student proba-
bilities are then used to calculate the distillation loss, and on the basis of the loss
value, the student weights are updated. Note, that distillation loss essentially does
not need labeled training samples. The authors evaluated the distillation loss on
computer vision and NLP tasks. The results proved that the use of knowledge dis-
tillation during training allows smaller models to obtain performance comparable
to that of a model ensemble. Crucially, the authors found that using a loss function
consisting of both distillation loss and standard objective loss often leads to better
results. An example of such a function for a classification task is shown in Eq. 2.8

E(x|t) = −T2 ∑
i

ŷi(x|T) log yi(x|T)−∑
i

ȳi log yi(x|1) (2.8)

Here, the function has a term added to the distillation loss, which corresponds to
the cross-entropy between a known label ȳ and the student’s probabilities com-
puted with T = 1. Note that in this formulation, the distillation loss term is
weighted by T2. When higher values of T are used in softmax, the gradient of the
model weights is scaled by 1

T2 . This weight mitigates this scaling effect, prevent-
ing the distillation loss from being overwhelmed by the second term. Research
conducted in conjunction with the work of Hinton et al. further reinforces this
notion - the most notable application of knowledge distillation is the DistillBERT
model [59], distilled from the BERT model [60]. 40% smaller in terms of training
parameters, DistillBERT is able to retain 97% of its teacher performance. Return-
ing to FL, in FedDF, the central model (the student model) is trained to obtain the
same output as the ensemble of client models using a special loss function. One
by one, the inputs are inferred through k client models, obtaining k logits. The
logits are averaged, and this average is treated as the ground truth for the dis-
tilled model. Intuitively, the distilled model has the objective of outputting values
as close as possible to the average logits obtained from the teacher models. Dur-
ing distillation, an unlabeled central dataset is used, so there is no data transfer
between the central server and the clients. The authors evaluated the algorithm us-
ing different architectures (ResNet [61], VGG [62], ShuffleNetV2 [63], DistillBERT
[59]) in image classification and NLP tasks using the CIFAR [16], ImageNet [64],

2.8. Heterogeneous federated learning 18

AG News [65] and Stanford Sentiment Treebank [66] datasets. An important part
of the evaluation was the comparison with the FedAvg and FedProx algorithms.
During experiments, for each training dataset, an out-of-domain dataset was used
as a distillation dataset; e.g., when the experiments used ImageNet to train local
models, samples from CIFAR were used for distillation. The results show that
FedDF, contrary to FedAvg, benefits from longer local computational rounds, ac-
tually obtaining better results in this setting and being robust to divergence. The
opportunity to increase the number of computations per round means that the
algorithm can converge faster than its competitors. In non-IID settings, the dis-
tilled central model is able to retain high performance, which makes it superior
to the compared algorithms. The authors also managed to prove that even in het-
erogeneous systems, when the ensemble comprises different architectures, FedDF
still obtains a well-performing global model. The heterogeneous system tests used
an ensemble of ResNet-32, ResNet-20, and ShuffleNetV2. In general, training the
central model using KD has been shown to be efficient and robust.

The authors of the FedMD method presented a similar approach [67], however,
here the authors focused on improving the client models, regardless of their un-
derlying architecture. Each training round, clients train their models on local data.
After local training is finished, the distillation round starts: using a public dataset,
each client passes the same data sample through their respective model and ad-
vertises the obtained logits to the central server. The server aggregates the logits
from all the clients to form a consensus, which is then used by the clients to train
their respective models with the distillation loss function. Using an averaged con-
sensus and broadcasting it to clients, the information is exchanged, and clients can
benefit from the federated setting. The steps are repeated for each training round.
Evaluation on FL benchmark datasets proved that this approach improves feder-
ated models beyond their performance obtained during solitary training, while
allowing each client to use its own model architecture.

Hu et al. [68] proposed another federated distillation framework. In the MHAT
method, each client has two datasets: private and public. First, the private datasets
are used to train the models for each client. After this step, clients use their re-
spective public dataset to obtain logs from the trained model. The logits are broad-
casted to the server along with their respective inputs. The server then trains a
central model on all data transmitted, using KD loss. Following this step, the
server uses its own separate data set and sends logits obtained from this dataset
along with the respective samples to the clients, which perform distillation locally,
improving their models. The experimental results show that this approach is ef-
fective and obtains favorable results compared to the standard method that uses
logits averaging to aggregate knowledge from the participants.

2.9. Federated learning in robotics 19

2.9 Federated learning in robotics

Documented research on FL in robotic applications is very limited. Majcherczyk et
al. [69] investigated the use of FL in trajectory forecasting tasks. In the simulation,
the robots moved in a swarm, using different behaviors such as flocking, foraging,
and diffusion. Each robot continuously collected data on the trajectory of its neigh-
bors. These data samples were used during the local training step to train a local
trajectory forecasting model based on LSTM [34]. The aggregated global model
was obtained using a standard FedAvg algorithm. Furthermore, the authors evalu-
ated a decentralized FL approach, with models aggregated in a serverless fashion,
on a peer-to-peer basis. In experiments, the authors compared FL, non-FL and
decentralized FL approaches and showcased the superiority of FL over the non-FL
approach in most settings. However, for some swarm behaviors, the decentralized
FL showed favorable results over the centralized approach.

Related research was carried out by Yu et al. [70]. The authors investigated
the application of FL in vision-based obstacle avoidance. For testing purposes,
three simulated environments were designed using the Nvidia Isaac simulator [71].
The authors used a mobile platform to carry out experiments in which the robots
trained a convolutional neural network to classify camera input into two classes:
blocked and free. Each robot trained his model on data collected in a different
environment. Redundant sensors: a lidar and a 2D range finder were used to
collect training data. The resulting FL model was superior, compared to a fully
centralized approach, in which the data samples collected by all robots were used
to train a single model, without resorting to FL. Apart from assessing that the FL
approach is beneficial for the performance of the robots, they observed that the
FL model trained on simulation is able to obtain good results in reality, with an
insignificant sim-2-real change in performance.

Zhang et al. [72] studied the use of FL in dynamic mapping fusion settings for
intelligent vehicles. The work used FL to fine-tune feature models on vehicles that
aggregate information from sensors and detect objects approached during vehicle
movement. In general, the framework achieved good results during experiments
carried out on the CARLA simulation platform [73], and provided low communi-
cation overhead, which is a vital characteristic for the setting of intelligent vehicles.

As the number of applications of reinforcement learning (RL) in robotics in-
creases every year [74, 75, 76], some researchers attempted to use RL in the FL
setting. Liang et al. [77] used RL to train mobile agents to avoid obstacles in dif-
ferent environments. FL allowed autonomous vehicles to share knowledge with
each other, resulting in improved obstacle avoidance and a decrease in collision
counts. Four agents were deployed in their respective environments (both real and
simulated using Airsim [78]). Agents were trained to avoid obstructions using the
deep determination policy gradient method (DDPG) [79]. During each training

2.10. Summary 20

round, agents trained their models using RL and subsequently exchanged model
updates with a central server. The aggregate updates, using FedAvg, were then
used to update the global model, which was broadcast to the agents. In this way,
the agents exchanged information during the learning process and continuously
benefited from receiving the most recent global model. In experiments, the au-
thors investigated in a real-life environment whether the FL improves the training
of the agents, compared to the non-FL scenario, with agents not exchanging their
models. The tests included driving on an obstacle course. The results showed
that knowledge aggregation and the distributed learning characteristic to FL allow
agents to achieve better performance. Moreover, the authors found that training
the federation of not only real-life agents, but also additionally simulated agents,
yields better results. This proves that FL can also be used to minimize the sim-to-
real gap in practical applications.

The ability to avoid different types of obstacles by continuously learning from
agents operating in distinct environments, as the authors of the Lifelong Feder-
ated Reinforcement Learning (LFRL) method [80] point out, can be regarded as a
Lifelong Machine Learning (LML) system. During its lifetime, a system can learn
many small tasks (navigating in the presence of different types of obstacles). This
is a very appealing setting that promises the ability of a system once deployed to
improve over time. The authors of LFRL provide a general framework that is very
similar at a high level to the work of Liang et al. LFRL assumes the use of agents
based on a Q-network [81] method. For each generation of deployed agents, the
system provides an initial model which agents improve in their respective envi-
ronments. After some time, the trained models are transferred to a central server.
A central traning dataset is next created by artificially generating sensor input and
asking each model for a prediction, together with the confidence score. The predic-
tions are then fused together, producing labeled training samples. The system then
trains a new central model on these training data. It can be used by a new gener-
ation of actors as an initial local model. The presented approach obtained better
results, compared to standard RL without knowledge transfer, allowing agents to
achieve better obstacle avoidance performance and accelerating their initial train-
ing.

2.10 Summary

In this section, a comprehensive overview of current research directions in the
federated learning domain was presented, including the pioneering FedAvg al-
gorithm, the main optimization methods, and personalization. Many topics sur-
rounding this setting were described, such as attack analysis, incentive mecha-
nisms, or fairness. In this work, I will focus on heterogeneous FL in robotic
systems. As outlined in Sec. 2.8, current approaches focus on using an auxil-

2.10. Summary 21

iary dataset to perform training, which may not be optimal for some applications,
when the available training dataset is small. When it comes to robotics, FL is still
not widely known as a relevant research topic. This results in a very limited num-
ber of articles on FL in this context. Specifically, existing research focuses on mobile
robotic systems, ignoring the possibilities that FL can introduce to industrial envi-
ronments. Therefore, I wish to fill this gap by applying an FL framework to deploy
a relevant robotic system and present the suitability of FL in this setting.

Chapter 3

Problem statement and system re-
quirements

3.1 Problem analysis

In Ch. 1 and Ch. 2 a context for the research problem was established. FL is an
emerging machine learning setting where a federation of clients benefits from each
other’s knowledge without any training data exchange, as is the case in standard
distributed learning approaches. The collaborative nature of FL allows clients to
share knowledge while avoiding privacy risks related to training data leakage.
Without data transfer, FL algorithms are also very efficient in terms of commu-
nication overhead compared to DL, which is crucial for many applications. In
Ch. 1 the reasons why FL is very attractive for robotics were outlined, including
potential use cases for mobile robots and industrial applications. As shown in
Ch. 2, only a very limited number of publications are available that apply FL in
robotic systems [69, 70]. Standard FL methods focus on training a single, central-
ized model, but some authors relax this assumption and present heterogeneous FL
frameworks, where each client has its own unique model of a specific architecture.
As described in Ch. 1, the use of heterogeneous FL makes this paradigm more
flexible and applicable to settings where clients are not consistent in terms of the
architecture used. This can be very attractive in many cases, e.g., when clients have
different computational capabilities. In standard FL, all the clients would have to
use the architecture suitable for the least computationally able member. On the
other hand, in heterogeneous FL, every client can use the architecture best suited
for its computational resources, enabling all participants to perform to their full
potential.

22

3.2. Problem statement 23

3.2 Problem statement

Taking into account the use cases outlined in Ch. 1, I see great potential in apply-
ing FL in robotics. However, existing limited research on this topic presents only
mobile robotics applications. There are no documented examples of FL for tasks
that require industrial manipulators, for example, in pick-and-place. I believe that
showing practical usefulness of this paradigm is key to increase the amount of
research on the intersection of those domains, which in turn could contribute to
the improvement of user’s privacy in robotic applications. To contribute to this
end, heterogeneous FL approaches could be especially interesting, as in industrial,
cross-silo settings, cooperating institutions (e.g., manufacturers, e-commerce ware-
houses) often have different budgets, which could result in disparities in terms of
computational capabilities of the federated participants.

Regarding the state of FL, the single-model assumption of most of the current
methods is a limitation, which could make it unpractical for federations consist-
ing of clients with heterogeneous hardware. A limited number of heterogeneous
methods exist, but they are all using auxiliary public datasets (that can be shared
with no privacy concerns) for knowledge transfer, as a workaround to the no-data-
exchange assumption. I see this as a drawback, because it forces clients [68] or the
central server [67, 58] to collect additional training samples for this purpose. For
clients, this is often impossible, as they can collect only a small amount of data
in the first place. Moreover, a practical question arises: How can the client col-
lect data samples that can be made public without raising privacy concerns? For
central servers, it also means that to run the training, it has to collect a sufficient
amount of data, which is an additional and cumbersome responsibility.

In this work, a limited amount of research on FL in robotics is addressed, by
using a heterogeneous FL system in a pick-and-place task, to demonstrate practical
applicability in industrial settings. Moreover, I expand the current state-of-the-art
in FL, by presenting a heterogeneous method that does not require any auxiliary
dataset to train the federation, which can be especially useful for environments
with limited training data available.

3.3 System requirements

To apply a new heterogeneous framework in a robotic application, I would like
to present an FL system that is capable of collaboratively training a federation of
clients. The framework should not use any training data transfer between clients
but should allow them to share knowledge with their peers. At the same time, the
system must allow models of various architectures to participate in the federation.
Contrary to existing approaches, the system should not use any auxiliary public
datasets. To summarize these requirements, I compared the system with existing

3.3. System requirements 24

heterogeneous FL approaches in Tab. 3.1. Furthermore, I classified the technical

Table 3.1: The As-Is vs. To-Be table comparing existing heterogeneous FL methods (As-Is) and the
proposed approach (To-Be).

Characteristic As-Is To-Be

Allows heterogeneous models training Yes Yes
Auxiliary training datasets Required Not required
Applied in an industrial robotic setting No Yes

requirements using the MoSCoW methodology [82], as follows.
Must:

• Allow for distributed training with no data transfer

• Allow for heterogeneous models training

• Not require additional public datasets

Should:

• Allow for straightforward model customization

• Allow for straightforward dataset customization

Could:

• Allow for straightforward hyperparameters customization

Won’t:

• Support different FO algorithms, e.g. FedAvg

Chapter 4

System design

In this chapter, I will describe the proposed collaborative training system, including
the architecture, the participating actors, and the overall workflow. In addition, the
experimental setup for the robotic application that was deployed with the use of
this system and two other machine learning experiments that were investigated in
this work will be described.

4.1 Architecture

The system consists of a central server and a federation of clients (Fig. 4.1). In
each training round, clients communicate with the central server and participate
in federated training. The goal of the system is to train heterogeneous models to
obtain the highest possible performance on a common machine learning task. In
principle, this framework is not limited to any communication protocol - the server
can communicate with clients using any communication means that are available,
for example using the Hypertext Transfer Protocol [83] or WebSockets [84].

4.1.1 Central server

The central server is an entity that serves as a proxy between clients. It does
not perform any machine learning-related computation or update aggregation. Its
function is to orchestrate federated learning: trigger local training, assign models,
and start on-peer training (the workflow stages are described in Sec. 4.2). Due to
the limited computing responsibilities of the central server, it is a lightweight part
of the system, which mitigates maintenance costs.

25

4.1. Architecture 26

Client

Private
dataset

ML
model

Client

Private
dataset

ML
model

Central server

Client

Private
dataset

ML
model

Client

Private
dataset

ML
model

Client

Private
dataset

ML
model

Client

Private
dataset

ML
model

Figure 4.1: A high-level architecture overview. The central server acts as a proxy between the clients,
passing models to conduct on-peer training, as well as triggering other federated training stages.

4.1.2 Clients

Clients are entities that can connect to the central server and form a federation,
participating in collaborative training. As the presented system is mostly designed
to work in a cross-silo scenario, each client represents an institution (silo), which
has its own private dataset and a machine learning model. Clients are assumed to
have computational capabilities to train their own model, as well as a guest model
of a foreign client, assigned by the central server during the on-peer training step
of the system workflow (described in Sec. 4.2). In addition, they should have com-
munication channels open to allow models and trigger messages to be exchanged
with the central server.

4.2. Workflow 27

4.2 Workflow

The system is capable of training a number of clients that form a federation to
improve their local models. Its workflow consists of five steps that are repeated in
sequence for a number of training rounds:

• Local training

• Peer assignment

• On-peer training

• Model reassignment

• Model evaluation

Each step will be described in detail in the following sections. The high-level
overview of the workflow is shown in Fig. 4.2 and in Alg. 1.

4.2.1 Local training

The goal of the local training step is to train the local model of each client on
the respective private datasets. In this stage, clients work on their own and do
not communicate with the central server. During local training, a gradient descent
optimization [85] of the local model wk is performed, using a loss function l, chosen
according to the machine learning task carried out by the federation. In this work,
the system is evaluated on classification tasks. Therefore, the loss function used
is the negative logarithmic likelihood (NLL) loss (Eq. 4.1). The optimizer seeks to
find the weights of the model wk, which minimize the NLL loss on the training
dataset. The input x is passed through wk to obtain the output ȳc(x|T), which is
calculated using the softmax function according to Eq. 2.6 with temperature T = 1.

l(wk; b) = − 1
bs

∑
x

C

∑
c=1

ycln(ȳc(x|T)), T = 1 (4.1)

At each epoch, the client splits the private dataset Dk into b batches, using a suitable
batch size bs. Next, it uses the local model wk to calculate the loss l(wk, b) on a
batch of training samples b for each input x in the batch. One-hot encoded labels
y, contain C values specific to the number of classes in the task. Finally, the client
calculates the loss’ gradient ∇l(wk; b). This gradient is used to update the model,
after being scaled by the learning rate η (Alg. 2).

4.2. Workflow 28

Algorithm 1 heterogeneous federated learning with K clients (indexed with k),
each with a model wk; N denotes the number of training rounds; Np denotes the
number of on-peer training rounds; Dt denotes a common test dataset; Dk denotes
private dataset of client k; E denotes the number of local training epochs; h denotes
the target host id; Dh denotes the private dataset of the target host; Ep denotes the
number of on-peer training epochs. The algorithm returns a set of trained models.

inputs: K, Dk, Dt, Np, E, Ep

Orchestrated by the central server:
for k in range(K) do

initialize wk
end for
for i in range(N) do

for k in range(K) do
wl

k ←− LocalTraining(wk, Dk, E)
ModelEvaluation(wl

k, Dt)
end for
for j in range(Np) do

targets←− PeerAssignment(K)
for k in range(K) do

h ←− targets[k]
wp

k ←− OnPeerTraining(wl
k, wh, Dh, Ep)

ModelEvaluation(wp
k , Dt)

wk ←− wp
k // model reassignment

end for
end for

end for
return {w1, w2, ..., wk}

4.2. Workflow 29

Model Dataset

Client

Model Dataset

Client

Model Dataset

Client

Model Dataset

Client

Model Dataset

Client

ModelDataset

Client

ModelDataset

Client

ModelDataset

Client

Client A Client B

Local
training

Model
B

Dataset

Client A

Knowledge
distillation

Model
A

Model
A

Model
B

A B

CD

Figure 4.2: System workflow. A: A federation participating in training consists of a population of
clients, each with their own private dataset and a ML model. B: In the first step of the training
procedure, each client performs the local model training on the private dataset. C: The updated
model weights are assigned to foreign clients for the on-peer training. D: The on-peer training
trains the model of the guest client not only using the private dataset of the host, but also using
the knowledge of the host model by means of knowledge distillation. For evaluation purposes, the
models are tested using a common test dataset after steps B and D.

4.2.2 Peer assignment

During the peer assignment step, the central server assigns the model weights of
each client to a foreign host to undergo on-peer training. The assignment approach
should take into account application-specific requirements. For example, the cen-
tral server could consider the computational capabilities of the clients so that larger
models are not assigned to hosts that cannot fulfill their hardware requirements.
Another instance of application-specific conditions could be the availability of the
clients - the central server should not assign unavailable clients as hosts for on-
peer training, as waiting until such clients become available could result in a large
latency.

In this work, it is assumed that all clients are available and have the com-
putational means to train any model in the federation. With this assumption, a

4.2. Workflow 30

Algorithm 2 LocalTraining. The client model wk is trained on a private dataset
Dk; bs denotes the batch size; η denotes the learning rate; E is the number of local
training epochs; ∇l(wk; b) is the gradient of loss function calculated in each step of
gradient descent optimization on batch b using model wk.

inputs: wk, Dk, E
parameters: bs

B←− split Dk into batches of size bs

l(wk; b) = − 1
bs

∑x ∑C
c=1 yc log(ȳc(x|T)), T = 1

for e in range(E) do
for b in B do

wk ←− wk − η∇l(wk; b)
end for

end for
return wk

stochastic approach in which clients are assigned to hosts uniformly at random is
used (Alg. 3).

Algorithm 3 PeerAsignment. Each client ck is assigned to a foreign host client
uniformly at random; K is the number of clients; U is a list of unassigned clients;
T is a list of target hosts for each client.

inputs: K
U ←− client ids from 1 to K
for k in range(K) do

t ←− k
while t = k do

t ←− draw sample id from U with uniform distribution

end while
remove t from U
append t to T

end for
return T

4.2.3 On-peer training

After the central server assigns a peer to each client, the client model is sent to the
assigned host to perform the on-peer training step. The guest model is trained on
the assigned client, using the host’s private dataset. Contrary to the local train-
ing step, where the loss function used is the NLL loss, during on-peer training,
an additional distillation loss term is used to improve training using knowledge

4.2. Workflow 31

distillation. According to Eq. 2.8, the complete loss function is described in Eq. 4.4,
with ŷc denoting the output of the host model wh, which is used for distillation as
a reference for the guest model.

kd(wk; wh; x|T) = T2 1
bs

∑
x

C

∑
c=1

ŷc(x|T) log ȳc(x|T) (4.2)

nll(wk; wh; x|T) = 1
bs

∑
x

C

∑
c=1

yc log(ȳc(x|T))), T = 1 (4.3)

l(wk; wh; x|T) = −(1− α) ∗ nll(wk; wh; x|1)− α ∗ kd(wk; wh; x|T) (4.4)

There are two terms, scaled by the ratio α ∈ [0, 1]. The first term (Eq. 4.2) is
the distillation loss term, described earlier in Sec. 2.8. The second term (Eq. 4.3)
is the standard NLL loss term. The composed loss allows the guest model to
improve not only thanks to the host’s private dataset, but also by distilling the
knowledge from the host’s model. The tunable parameters of this loss formulation
are α and T. Parameter α allows to tune the amount of distillation. With α = 1.0,
the guest model is trained using only the NLL loss term. With α = 0.0, the NLL
loss term is ignored and the guest is only trained using knowledge distillation. T
is the temperature value used in softmax and can influence the performance of
knowledge distillation. The impact of both hyperparameters is evaluated in Sec. 5.
Alg. 4 describes the on-peer training procedure.

Algorithm 4 OnPeerTraining. The client model wk is trained on a private dataset
Dh of the host using its model wh; bs denotes the batch size; η denotes the learning
rate; Ep is the number of on-peer training epochs; ∇l(wk; wh; b) is the gradient of
loss function calculated in each gradient descent optimization step on batch b for
the guest model wk using host’s model wh.

inputs: wk, wh, Dh, Ep

parameters: bs, T, α

B←− split Dh into batches of size bs

l(wk; wh; x|T) = −(1− α) ∗ nll(wk; wh; x|1)− α ∗ kd(wk; wh; x|T)
for e in range(Ep) do

for b in B do
wk ←− wk − η∇l(wk; wh; b)

end for
end for
return wk

4.3. Experimental setup 32

4.2.4 Model reassignment

After completing the on-peer training step, the improved guest models are sent
back and update the models of their respective clients

4.2.5 Model evaluation

After each training step (local and on-peer), the models are evaluated on a common
test dataset. As experiments focus on classification tasks on balanced datasets, for
each model, the accuracy metric score obtained on the test dataset is calculated [86]
(Alg. 5).

Algorithm 5 ModelEvaluation. The mean accuracy metric score is calculated
using the ground truth y and the output ȳ of the model wk on the test dataset Dt.

inputs: wk, Dt

parameters: bs

B ←− split Dt into b batches of size bs

acc←− 0
for x, y in B do

acc += Accuracy(y(x), ȳ(x))
end for
return acc

b

4.3 Experimental setup

To evaluate the proposed framework, it was applied to three different ML tasks in
the robotics, computer vision and NLP domains. Specifically, the framework was
used to train federations for grasp prediction (Dex-Net dataset [87]), image classi-
fication (MNIST dataset [14], and sentiment analysis (Large Movie Review Dataset
[88]. For each task, the participats were divided into 3 groups. Within each group,
the clients used neural network models of the same architecture. However, between
the groups, the models varied in size (number of parameters); in all experiments,
there was a group of small, medium, and large models. With this setup, the hetero-
geneity of the federation was simulated. In all experiments, the dataset used was
divided into training and test subsets. The training subset was divided equally
between the clients. On the other hand, all clients shared the same test data set,
which was used for evaluation purposes. In addition to showcasing the application
of FL to robotics and the flexibility of the proposed system, the following questions
were investigated:

4.3. Experimental setup 33

• Is the on-peer training step improving the federation’s training, compared to
the local training only for each client?

• How does the parameter α influence the performance of the models?

• How does the parameter T influence the performance of the models?

To answer the first question, training using the proposed framework, including all
the steps described in 4.2 was compared to a situation in which clients were trained
only on their private dataset (local-only training), without model exchange in the
form of the on-peer training. This mirrored the instance when the clients were not
performing federated learning - they were trained in isolation instead. To investi-
gate the influence of α and T, a grid search was performed and the performance
of the models was evaluated for each value considered. Furthermore, in the grasp
prediction task, the grasp quality convolutional neural network (GQCNN [87]) was
trained on the Dex-Net 2.0 dataset using the presented framework, and the models
were practically evaluated in a pick-and-place task.

4.3.1 Dex-Net experiments

The presented framework was employed to train an adaptation of grasp quality
convolutional neural network (GQ-CNN) for a robotic task, grasp prediction. As
a first documented use of FL in industrial application, the models were evalu-
ated with the use of an industrial manipulator. For this purpose, a pick-and-place
pipeline was implemented, based on the Dex-Net 2.0 paper [87]. Dexterity Net-
work 2.0 builds on the Dex-Net 1.0 study [89], where 1500 3D objects were ana-
lyzed in simulation using grasp wrench space (GWS) analysis [90] for grasp quality
metric calculation. Based on their previous work, Mahler et al. created a dataset of
6.7 million depth images with the corresponding grasp success probabilities, which
can be used to predict the grasp success. Furthermore, the authors designed a GQ-
CNN architecture that can be trained on the aforementioned dataset to perform
the grasp prediction task.

Mahler et al. considered parallel-jaw grasps with the grasp axis parallel to the
table plane, using the coordinates of the center point of the grasp (x, y, z) and its
orientation θ, in a selected coordinate frame. This grasp description is shown in
Fig. 4.3.

The dataset consists of depth images of the simulated objects, the grasp height
value (the distance between the camera and the grasp center point height), and
a binary label denoting the probability of grasp success (1 - grasp successful, 0 -
grasp unsuccessful), as shown in Fig. 4.4. To create the Dex-Net 2.0 dataset, each
depth image was sampled from the scene by picking the grasp pixel coordinates
and grasp orientation. The grasp area was then rotated to align the grasp axis
with the horizontal axis of the image, cropped around the center of the grasp, and

4.3. Experimental setup 34

gripper

θ
p(x, y, z)

Figure 4.3: In this work, top-down parallel-jaw grasps described by the coordinates of the grasp
center point p and a grasp angle θ were considered.

Table 4.1: The group configuration for Dex-Net experiments.

Group name FC layers size Number of filters

small 256 16
medium 512 32

large 1024 64

resized to a resolution of 32x32 (Fig. 4.5). GWS analysis allowed for automatic
labeling of the sampled grasps.

Instead of a standard GQ-CNN, in the experiments, I used a slightly altered ar-
chitecture, denoted as alt-GQ-CNN (Fig. 4.6), according to suggestions from [91].
Instead of entering the distance from the center point of the grasp to the camera
and the depth image, this distance was subtracted from the pixel values of the cor-
responding image. In this way, the input consisted of only the image. Furthermore,
instead of local response normalization [92], batch normalization [93] was used.

To examine the influence of client cooperation during training, compared to
the case where clients only perform solitary training, 6 clients with α = 1.0 were
first trained in isolation for 70 local training rounds. Then, a federation with the
same number of participants was trained using the entire proposed workflow for
35 training rounds (which equals 70 training epochs, 35 in the local training step,
and 35 in on-peer training). The client parameters for each group are summa-
rized in Tab. 4.1. In addition to comparing the framework with isolated train-
ing, the influence of T and α was investigated using a grid search strategy, with
T ∈ {1.0, 1.5, 2.0, 4.0, 7.0, 10.0} and α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. All experi-
ments had the learning rate set to η = 0.001 and batch size to bs = 64. To evaluate
the models, in each experiment we selected a randomly sampled common test

4.3. Experimental setup 35

0 20

0

10

20

30

label: 1.0, height: 0.67

0 20

0

10

20

30

label: 0.0, height: 0.64

0 20

0

10

20

30

label: 0.0, height: 0.66

0 20

0

10

20

30

label: 0.0, height: 0.67

0 20

0

10

20

30

label: 0.0, height: 0.73

0 20

0

10

20

30

label: 0.0, height: 0.63

0 20

0

10

20

30

label: 0.0, height: 0.72

0 20

0

10

20

30

label: 0.0, height: 0.66

0 20

0

10

20

30

label: 0.0, height: 0.66

0.65

0.66

0.67

0.68

0.69

Figure 4.4: Sample images and corresponding heights and labels from the Dex-Net 2.0 dataset. The
images were generated from the simulated scenes, so that the grasp center point is at the middle
pixel in the image and the grasp axis is aligned with the image horizontal axis.

subset from the original Dex-Net 2.0 dataset, using 0.8:0.2 train-test ratio.
To present how federated learning can be used in an industrial robotics setting,

trained models were evaluated in a pick-and-place pipeline, using the UFACTORY
xArm 7 robotic arm [94] and Intel RealSense D415 depth camera [95]. The high-
level overview of the pipeline is depicted in Fig. 4.7.

The robot was set up in an eye-in-hand configuration, with the camera mounted
on the gripper. Before the experiments, the Zhang method [96] was used, to esti-
mate the intrinsic parameters of the camera, and based on the estimates, collected
images were undistorted. To perform a hand-eye calibration, the Tsai et al. [97]
algorithm was used. The setup is shown in Fig. 4.8.

The pick-and-place pipeline starts by commanding the robot to move to the

4.3. Experimental setup 36

Figure 4.5: To create Dex-Net 2.0 dataset, after sampling a grasp from the scene (including grasp
height), the image from the simulated camera was rotated to align the grasp axis with the horizontal
axis of the image. Additionally, the image was centered around grasp center point. Before entering
the model, the image was normalized. The sampled grasp is visualized in red.

input

image

32x32

Conv 7x7

K Filters

Softmax

class

probabilities

2x1

Conv 5x5

K Filters

Conv 3x3

K Filters

Max Pool

2x2

ReLU

Conv 3x3

K Filters

ReLU

BatchNorm

ReLU

BatchNorm ReLU ReLU

FC

S outputs

FC

S outputs

FC

2 outputs

ReLU

Figure 4.6: Alt-GQ-CNN architecture. The grasp height information is included in the image, by
subtracting this value from the depth image pixel values for each sample. The image is then pro-
cessed by a set of convolutional layers with K filters, which varies between model groups trained
in experiments. The image is downsampled with the use of max pooling and a pair of additional
convolutional layers. Finally, the output is adjusted using a set of fully connected layers. All convo-
lutional layers use no padding and stride 1. For the second and second-to-last convolutional layer,
batch normalization was used.

image acquisition position above a flat workspace. Next, a depth image is acquired
from the camera and a grasp sampling strategy similar to that of the Dex-Net
2.0 paper [87], is used to sample a number of grasps for an object placed in a
pick region of 0.2x0.2m in the workspace. To implement this sampling strategy,
thresholding and Canny edge detection [99] are used to find the edges on the
upper surface of the object. Next, two points are sampled uniformly at random
from the resulting set. The average position of the point is then considered as the

4.3. Experimental setup 37

Evaluate grasps
using alt-GQ-CNN

Sample graspsAcquire imageGo to image
acquisiton position

Choose the grasp
with the highest

probability
Go to grasp position

Attempt to close
gripper jaws Go to place position

Grasp successful

Grasp unsuccessful

Open the jaws

Figure 4.7: The employed pick-and-place pipeline overview. First an image is acquired from the
starting position. Next, a number of grasps is sampled from the scene and for each an image is
prepared according to Fig. 4.5. The inputs are passed through a trained alt-GQ-CNN model to
estimate grasp success for each sample. Then, the grasp with the highest success probability is
selected and the robot attempts to place the gripper according to this grasp’s position and orientation.
If the grasp is successful, the robot is commanded to place the object in the place area. Otherwise, it
aborts the operation and goes back to the image acquisition position.

center of grasp. The grasp axis is the line that connects these two points and is
used to calculate the angle θ between the grasp axis and the horizontal axis of the
image. To obtain the height of the center point of the grasp, a number of values
are sampled in the range between the height of the object in the center of the grasp
and the height of the base plane of the workspace. Note that in this case, the height
of the grasp is considered the difference between the camera height and the height
of the center point of the grasp (Fig. 4.9).

After sampling 4096 grasps (512 grasp center points, 8 heights each), for each
grasp, an alt-GQ-CNN input is generated, as shown in Fig. 4.5, translating, rotat-
ing, and cropping the image, additionally with the grasp height subtracted from
the pixel values. The images are then passed through the alt-GQ-CNN model to
obtain the success probabilities for each grasp. The grasp with the highest proba-
bility of success is selected and its coordinates are used to guide the robot gripper
to the grasp location. After a grasp attempt, if it was successful, the object is
transported to a location above the target box and dropped.

In robotic experiments, models trained using local training only were compared
to those trained using the proposed collaborative training scheme to showcase the
improvement over isolated training. For this purpose, two metrics were used: the
Success Rate is the percentage of grasps in which the object is successfully placed in

4.3. Experimental setup 38

Figure 4.8: The pick-and-place experiments setup. The Intel RealSense D415 RGB-D camera was
mounted on the xArm Gripper (eye-in-hand configuration), which had custom fingers to mirror the
specification of ABB Yumi gripper [98], used originally in Dex-Net 2.0 experiments. The test objects
were placed on the workspace before each grasp attempt. The goal of the pipeline was to pick the
object and place it in the box next to the workspace.

the target box. Furthermore, the Robust Grasp Rate metric was computed, which
is the percentage of sampled grasps that have a grasp success probability value
greater than 0.5. Each model was evaluated on a set of 10 objects (Fig. 4.10) in an
uncluttered scene, in 50 trials, five picking attempts for each object. The orientation
of the objects was determined at random.

4.3.2 MNIST experiments

To demonstrate the use case of the presented framework outside of robotics, it
was evaluated on a computer vision task using the widely known MNIST dataset
[14]. The dataset consists of 70000 28x28 grayscale images of handwritten digits
(Fig. 4.11), split into training (60000 images) and test datasets (10000 images). The
objective of the models trained on this dataset is to classify the digit on the image
into one of 10 classes. Before using the images, the pixel values were standardized.
The smaller size of this dataset allowed to experiment with a larger number of
clients - in each run, a federation of 24 clients was trained, divided into 3 groups,

4.3. Experimental setup 39

Figure 4.9: To sample grasps, the original depth image (top left) is first thresholded and edges are
detected (top right) on the object’s top surface. Next, from the edges found, for each grasp two
points are sampled (bottom right) and the grasp center point and the grasp axis angle are computed.
Finally, the resulting grasp description is passed to the input preparation procedure (Fig. 4.5).

Figure 4.10: Pick-and-place test objects consisted of 6 custom shapes and 4 everyday use objects.

with the configuration of each group summarized in Tab. 4.2. All clients used
a fully connected neural network with two hidden layers of size S ∈ {8, 16, 32}
(Fig. 4.12). The Rectified Linear Unit (ReLU) activations are used with dropout
regularization. In all experiments, the batch size was set to bs = 128 and the
learning rate to η = 0.001. To evaluate the models, we used 10000 test images
as a common test dataset. To evaluate the influence of the on-peer training step
introduced by the proposed system, a federation was trained for 200 full rounds

4.3. Experimental setup 40

Table 4.2: Group configuration for MNIST experiments.

Group name Hidden layers sizes

small 8
medium 16

large 32

Figure 4.11: Example MNIST data samples. Each sample is a 28x28 grayscale image of a handwritten
digit, representing one of 10 classes (indicated above the images). This makes the MNIST dataset
suitable as a benchmark for multiclass classification tasks.

input

image

28x28

Flatten

784x1 output

Fully Connected

S outputs

Fully Connected

S outputs

Fully Connected

10 outputs

ReLU

Dropout

ReLU

Dropout

Softmax

class

probabilities

10x1

Figure 4.12: Neural network architecture used in the MNIST experiments. For each hidden layer size
S ∈ {8, 16, 32} there were 8 representatives in the federation, totalling in 24 clients. The input image
is first flattened and then passed through a set of two fully connected layers with ReLu activations
and Dropout regularization. The output is a vector of 10 values, scaled using softmax to represent
probabilities for each class.

until convergence and I compared the results with the setup, where the on-peer

4.3. Experimental setup 41

training step was omitted, and the clients were only conducting local-training.
The clients were trained locally for 400 epochs, to equal the amount of training
resulting from 200 full rounds in the former scenario (200 full rounds equal to 200
local training rounds and 200 on-peer rounds, giving 400 training epochs overall).
In this scenario α was set to 1.0, disregarding the distillation term in the on-peer
training.

Furthermore, to evaluate the impact of the distillation procedure and the distil-
lation parameters, a grid search was performed in a separate experiment, training
the federation for 200 full rounds in each trial. The hyperparameter values investi-
gated included α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0} and T ∈ {1.0, 1.5, 2.0, 4.0, 7.0, 10.0}.

4.3.3 IMDB experiments

To show the applicability in an NLP task, sentiment analysis experiments were
carried out, using the Large-Scale Movie Review dataset (also known as IMDB
dataset), created by Maas et al. [88]. It consists of 50000 highly polar movie re-
views that are suitable for binary classification. Contrary to the MNIST dataset,
which only requires standarization of the inputs, a couple of data preprocessing
steps had to be implemented to pass the reviews into the classifier in a suitable
form. First, HTML tags were removed because they were present in the review
text. The data samples were then lowercased and tokenized [100], resulting in a
list of lowercase tokens for each review. To create a numerical representation for the
reviews, word2vec embeddings [101] were chosen. For this purpose, the continu-
ous bag-of-words (CBOW) model was trained on the available corpus to predict the
target word from the context. After training, the hidden layer of the CBOW model
consisted of embeddings (dense vectors) for each token in the training corpus. Intu-
itively, training stimulates the model to place tokens that appear in a similar context
close to each other in the latent space. This method was used successfully in the
NLP domain and has been proven to improve classification performance over stan-
dard encoding approaches. The input of the classifier was constructed by stacking
embeddings of size 16 for each word in the review. Each embedding vector was
also normalized to unit length. As a classifier, a recurrent neural network (RNN)
architecture [102] was used, based on long short-term memory (LSTM) layers [34].
LSTM layers address the problem of vanishing gradients, commonly encountered
in vanilla RNN layers. The introduction of forget and input gates allows LSTM
to improve modeling long-range dependencies in input sequences. The architec-
ture of the models used for sentiment prediction is shown in Fig. 4.13. Similarly
to the MNIST experiments described in Sec. 4.3.2, a federation of 24 clients with
α = 1.0 was trained for 800 full training rounds, and model performance is com-
pared with a group of isolated models trained using local-only training, for 1600
epochs. Again, a different model architecture was used for each group of clients,

4.4. Implementation details 42

input

review

Nx16

LSTM

S outputs

Fully Connected

2 outputs

Softmax

class

probabilities

2x1

Figure 4.13: The architecture used in sentiment analysis experiments. It consists of an LSTM layer
with hidden size S ∈ {4, 8, 16} followed by a fully connected layer is used. The input to the network
is a stack of N word2vec embeddings with dimensionality 16, one for each word in the review.

Table 4.3: Group configuration for IMDB experiments.

Group name Hidden layer size

small 4
medium 8

large 16

using the hidden layer size of the LSTM S ∈ {4, 8, 16}. The batch size was set to
bs = 1024 and the learning rate was η = 0.01 (Tab. 4.3). As a common test dataset,
we used the 25000 reviews originally separated for this purpose by the dataset cre-
ators. In grid search experiments, the influence of α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}
and T ∈ {1.0, 1.5, 2.0, 4.0, 7.0, 10.0} was investigated.

4.4 Implementation details

All experiments code was written in Python (version 3.8) [103]. The distributed
training framework was implemented using the tools provided by the Ray library
(version 1.11.0) [104]. Deep learning models were implemented in Pytorch (version
1.11.0) [105] using the Pytorch Lightning wrapper (version 1.5.10) [106], to reduce
the amount of boilerplate code and handle the logging of the training procedures.
For image pre-processing, the OpenCV library (version 4.5.5.64) [107] was used.
In the sentiment analysis task, the text was pre-processed and word embeddings
were obtained using the Gensim module (version 4.1.2) [108].

4.4. Implementation details 43

Training during the prototyping phase was executed on a local workstation
with a NVIDIA 3080TI GPU, an Intel Core i9-11900K processor, and 64 GB of
RAM. For the evaluation phase, training for all experiments was performed on the
Prometheus High Performance Computing Cluster [109] within the PL-Grid initia-
tive [110], with access granted by the Academic Computer Centre Cyfronet AGH
[111]. For each experiment, a single node with Intel Xeon Gold 5220 processor (24
cores) and 8 NVIDIA V100 SXM2 GPUs with 32 GBs of VRAM was used.

The Github repository containing all the code used to implement the frame-
work and the experiments is available at [112] (please request access from the
author by email).

Chapter 5

Results

In Sec. 4.3, the setup for robotic, NLP and computer vision experiments was de-
scribed. In the following section, the results obtained with that experimental con-
figuration are presented, including the results from the pick-and-place pipeline
and federated learning on each dataset. The average score values for all model
groups are summarized in tables. In addition, insightful plots for each experiment
are provided. Note that the scores for each training step showcased in the graphs
were processed with a rolling window of size 5 and mean aggregation, to improve
the visibility of the trends observed in the collected data.

5.1 Dex-Net experiments

5.1.1 Pick-and-place evaluation

The experiments carried out on the robot compared the models trained in isola-
tion (local-only strategy) with the FL training scheme presented in a real-world
pick-and-place task. Using the federated training framework to train alt-GQ-CNN
models of various sizes on the Dex-Net 2.0 dataset, the proposed pipeline obtained
a grasp success rate of 0.72 for 10 test objects in 50 trials. The results of these exper-
iments are provided in Tab. 5.1. Most importantly, they indicate that alt-GQ-CNN
models trained in isolation obtained grasp success rates lower by 0.12 for all model
groups, compared to models trained collaboratively. Robust grasp rates are also
generally higher for isolated models, the difference being 0.0976 for small models
and 0.007 for large models. This trend does not hold for medium models - in this
group, the models trained collaboratively had a robust grasp rate higher by 0.0072.

44

5.1. Dex-Net experiments 45

Table 5.1: The results obtained during evaluation of the alt-GQ-CNN models trained using different
strategies (local-only vs. full proposed federated training) on a pick-and-place task for six models,
one representative for each group and strategy. The success rate values are listed with 95% confidence
intervals. The best results for each group are highlighted in bold. All models were tested by making
50 trials, 5 for each test object.

Training strategy FC size Number of filters Success Rate Robust Grasp Rate

Local-only 256 16 0.6± 0.069 0.0106
Full 256 16 0.72±0.063 0.0084

Local-only 512 32 0.58± 0.070 0.0031
Full 512 32 0.70±0.065 0.0103

Local-only 1024 64 0.6± 0.069 0.0011
Full 1024 64 0.72±0.064 0.0004

Table 5.2: Mean accuracy values for all alt-GQ-CNN model groups, showcasing the comparison
between local-only model training vs. the proposed training framework, with an on-peer training
step included, at training step 68, obtained on the test subset of Dex-Net 2.0 data. The best results
for each group of models are highlighted in bold.

Training strategy FC layers size Number of filters Accuracy Std

Local-only 256 16 0.950 0.004
Full 256 16 0.959 0.003

Local-only 512 32 0.952 0.004
Full 512 32 0.966 0.009

Local-only 1024 64 0.934 0.001
Full 1024 64 0.966 0.016

5.1.2 Full vs local-only training

At the end of the training procedure, the federation of clients trained on the Dex-
Net 2.0 dataset using the proposed framework obtained higher accuracy scores on
test Dex-Net 2.0 dataset, compared to when models were trained in isolation, only
on their respective local datasets. This was the case for all model groups. For
small alt-GQ-CNN models, the average result of collaborative training at step 68
was 0.959 (local-only - 0.950). For medium models, the result was 0.966 (local-only
0.952). Finally, for large models, it was 0.966 (local-only 0.934). These results are
visualized in Fig. 5.1 and summarized in Tab. 5.2.

5.1. Dex-Net experiments 46

20 30 40 50 60 70
Training epoch

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

 sc
or

e
Local-only vs full training for different model sizes

('local', 256, 16)
('local', 512, 32)
('local', 1024, 64)
('full', 256, 16)
('full', 512, 32)
('full', 1024, 64)

Figure 5.1: Comparison between accuracy scores for local-only (’local’) and the full proposed training
framework (’full’) obtained on the test subset of Dex-Net 2.0 data, for different alt-GQ-CNN model
groups (small - 256 neurons in the FC layers and 16 convolutional filters, medium - 512 neurons and
32 filters and large - 1024 neurons and 64 filters.

5.1.3 Influence of the α parameter

For small models, the tuning of α parameter influenced the obtained predictive
performance in the following way: for small models group, the α ∈ {0.4, 0.5} pro-
vided the best performing clients (Fig. 5.2). For medium models α = 0.5 produced
the best results on average, although experiments with α = 0.4 and α = 0.3 ac-
quired similar performance (Fig. 5.3). For large models α = 0.5 was superior over
other values of this parameter, as shown in Fig. 5.4. The results of this experiment
are summarized in Tab. 5.3.

5.1.4 Influence of the T parameter

The influence of the temperature parameter for each model group at the finish of
the training is summarized in Tab. 5.4. For small models (Fig. 5.5), the best value of
T was 1.0, indicating the beneficial influence of the hard-softmax probabilities ratio.
For the medium and large model groups, two peak values for T were observed:
for the former, they were 1.0 and 2.0, and for the latter, the values were 1.0 and 4.0,
although due to very similar performance, it is hard to visualize the results clearly
(Fig. 5.6 and Fig. 5.7).

5.2. MNIST experiments 47

20 30 40 50 60
Training epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Ac

cu
ra

cy
 sc

or
e

ACC with variable Alpha for small models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.2: Mean accuracy scores comparison for small alt-GQ-CNN models group with T = 1.0,
using variable α values.

20 30 40 50 60
Training epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for medium models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.3: Mean accuracy scores comparison for medium alt-GQ-CNN models group with T = 1.0,
using variable α values.

5.2 MNIST experiments

5.2.1 Full vs local-only training

The comparison between models trained using only local training and models
trained using the full framework is shown in Fig. 5.8. In these experiments, the
results are proportional to model size; best results are obtained for the largest
models, regardless of the training strategy used. Improvement of training in a
federation, compared to when models are isolated, can be as high as 0.049 in the

5.2. MNIST experiments 48

20 30 40 50 60 70
Training epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Ac

cu
ra

cy
 sc

or
e

ACC with variable Alpha for large models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.4: Mean accuracy scores comparison for large alt-GQ-CNN models group with T = 1.0,
using variable α values.

20 30 40 50 60
Training epoch

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for small models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.5: Mean accuracy scores comparison for small alt-GQ-CNN models group with α = 0.5,
using variable T values.

accuracy score for the small model group at step 200. The mean accuracy scores
for step 200 for all models are summarized in Tab. 5.5.

5.2.2 Influence of the α parameter

To evaluate the influence of the α parameter on the accuracy for the models trained
using the proposed framework, the scores for each group of models with T set to
1.0 and variable α was investigated (Fig. 5.9, Fig. 5.10, and Fig. 5.11). The results
show that for the smallest models, the best mean accuracy scores were obtained

5.2. MNIST experiments 49

Table 5.3: Mean accuracy scores for all alt-GQ-CNN model groups with T = 1.0 and variable value
of α in step 1600. The best configuration in each group has the accuracy score highlighted in bold.

α FC layers size Number of filters Accuracy Std

0.0 256 16 0.966 0.005
0.1 256 16 0.973 0.001
0.2 256 16 0.972 0.004
0.3 256 16 0.970 0.002
0.4 256 16 0.974 0.001
0.5 256 16 0.974 0.001
1.0 256 16 0.964 0.001
0.0 512 32 0.967 0.004
0.1 512 32 0.972 0.001
0.2 512 32 0.971 0.001
0.3 512 32 0.972 0.003
0.4 512 32 0.974 0.003
0.5 512 32 0.975 0.002
1.0 512 32 0.965 0.012
0.0 1024 64 0.960 0.012
0.1 1024 64 0.966 0.004
0.2 1024 64 0.968 0.005
0.3 1024 64 0.972 0.001
0.4 1024 64 0.972 0.004
0.5 1024 64 0.976 0.001
1.0 1024 64 0.972 0.003

when using α equal to 0.3. The second and third best α values were 0.5 and 0.2.
With α equal to 1.0, when the on-peer training does not use knowledge distillation,
only the fourth best result was obtained. A significant decrease in performance
is observed for α ∈ {0.0, 0.1}. Similarly to the small model group, for the large
and medium model groups, the lowest performance scores were obtained using
α ∈ {0.0, 0.1}. However, in these two groups, the best performance was observed
by a large margin when α = 1.0, with no KD used. When KD was used, the best
values of α were 0.5, 0.4, 0.3 and 0.2, in this order from the best score to the worst
score. The complete results obtained for each model group and the values of α for
step 380 are presented in Tab. 5.6.

5.2. MNIST experiments 50

20 30 40 50 60
Training epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Ac

cu
ra

cy
 sc

or
e

ACC with variable T for medium models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.6: Mean accuracy scores comparison for medium alt-GQ-CNN models group with α = 0.5,
using variable T values.

20 30 40 50 60 70
Training epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for large models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.7: Mean accuracy scores comparison for large alt-GQ-CNN models group with α = 0.5,
using variable T values.

5.2.3 Influence of the T parameter

The comparison of accuracy scores obtained for different T values are shown on
Fig. 5.12, Fig. 5.13, and Fig. 5.14, for α = 0.5. For small models, the best value T
was equal to 2.0. The worst results were obtained using a high-temperature value
of 7.0. All other T values resulted in similar performance. Also, for medium and
large models, T = 7.0 was the worst parameter configuration. T = 10.0 gave a
similarly poor performance. For large models, the best temperature value turned
out to be equal to 1.0, with 2.0 and 1.5 performing similarly. For medium-sized

5.2. MNIST experiments 51

Table 5.4: Mean accuracy scores for all alt-GQ-CNN model groups with α = 0.5 and variable value
of T at step 70. The best configuration in each group has the accuracy score highlighted in bold.

T FC layers size Number of filters Accuracy Std

1.0 256 16 0.974 0.001
1.5 256 16 0.972 0.003
2.0 256 16 0.973 0.001
4.0 256 16 0.970 0.001
7.0 256 16 0.971 0.001
10.0 256 16 0.967 0.002
1.0 512 32 0.975 0.002
1.5 512 32 0.974 0.001
2.0 512 32 0.975 0.003
4.0 512 32 0.971 0.005
7.0 512 32 0.972 0.003
10.0 512 32 0.973 0.001
1.0 1024 64 0.976 0.001
1.5 1024 64 0.975 0.001
2.0 1024 64 0.972 0.003
4.0 1024 64 0.976 0.002
7.0 1024 64 0.973 0.003
10.0 1024 64 0.968 0.005

Table 5.5: Mean accuracy values for all MNIST model groups, showcasing the comparison between
local-only model training vs. full proposed training framework, with an on-peer training step in-
cluded, at step 200, obtained on the test dataset. The best results for each model group are high-
lighted in bold.

Training strategy Hidden layer size Accuracy Std

Local-only 8 0.825 0.021
Full 8 0.874 0.011

Local-only 16 0.884 0.008
Full 16 0.921 0.003

Local-only 32 0.909 0.003
Full 32 0.945 0.003

5.2. MNIST experiments 52

0 25 50 75 100 125 150 175 200
Training epoch

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 sc
or

e
Local-only vs full training for different model sizes

('local', 8)
('local', 16)
('local', 32)
('full', 8)
('full', 16)
('full', 32)

Figure 5.8: Comparison between accuracy scores for local-only (’local’) and the full training frame-
work (’full’) for different MNIST model groups (with 8, 16 or 32 neurons in the hidden layer),
obtained on the test dataset.

0 50 100 150 200 250 300 350 400
Training epoch

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for small models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.9: Mean accuracy scores comparison for small MNIST models group with T = 1.0, using
variable α values.

models, T = 1.5 allowed the models to obtain the best mean accuracy at the end of
training, with T ∈ {1.0, 2.0, 4.0} providing medicore scores. The results show that
the optimal value of T can improve the performance by up to 0.019 in terms of the
accuracy score, for some model groups (small models in Tab. 5.7, at step 380.)

5.3. IMDB experiments 53

0 50 100 150 200 250 300 350 400
Training epoch

0.89

0.90

0.91

0.92

Ac
cu

ra
cy

 sc
or

e
ACC with variable Alpha for medium models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.10: Mean accuracy scores comparison for medium-size MNIST models group with T = 1.0,
using variable α values.

50 100 150 200 250 300 350 400
Training epoch

0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for large models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.11: Mean accuracy scores comparison for large MNIST models group with T = 1.0, using
variable α values.

5.3 IMDB experiments

5.3.1 Full vs local-only training

In this investigation, an improvement of 0.123 was observed in the accuracy score
for the small model group, 0.185 for medium models, and 0.188 for large mod-
els when using the proposed training framework, compared to local-only training
(Tab. 5.8, for step 1600). This result is also visualized in Fig. 5.15.

5.3. IMDB experiments 54

Table 5.6: Mean accuracy scores for all MNIST model groups with T = 1.0 and variable value of α

at step 380. The best configuration in each group has the accuracy score highlighted in bold.

α Hidden layer size Accuracy Std

0.0 8 0.843 0.035
0.1 8 0.832 0.047
0.2 8 0.854 0.032
0.3 8 0.874 0.016
0.4 8 0.849 0.033
0.5 8 0.871 0.014
1.0 8 0.865 0.011
0.0 16 0.861 0.062
0.1 16 0.909 0.007
0.2 16 0.897 0.029
0.3 16 0.893 0.032
0.4 16 0.896 0.023
0.5 16 0.894 0.026
1.0 16 0.917 0.007
0.0 32 0.889 0.062
0.1 32 0.883 0.047
0.2 32 0.907 0.039
0.3 32 0.918 0.024
0.4 32 0.932 0.026
0.5 32 0.828 0.018
1.0 32 0.946 0.002

5.3.2 Influence of the α parameter

When considering variable α parameter influence on the predictive performance,
the results show, that for small models, the highest mean accuracy scores were
obtained with α set to 1.0 (Fig. 5.16). For this group of models, the lower the α

value, the worse the accuracy obtained at the end of the training. This is also the
case for the medium model group; however, the disparities in scores obtained with
α = 1.0 and α ∈ {0.3, 0.4} are smaller than for the small model group (Fig. 5.17).
For large models, this trend does not hold; the best mean accuracy within this
group was obtained with α = 0.5 (Fig. 5.18). Also, for large models, the difference
between the best α values and the worst values was the largest: the improvement
in the score for α = 0.5 (best value) compared to α = 0.0 (worst value) was 0.086.
The results at the end of the training (step 1600) are shown in Tab. 5.9.

5.3. IMDB experiments 55

0 50 100 150 200 250 300 350 400
Training epoch

0.85

0.86

0.87

0.88

0.89
Ac

cu
ra

cy
 sc

or
e

ACC with variable T for small models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.12: Mean accuracy scores comparison for small MNIST models group with α = 0.5, using
variable T values.

0 50 100 150 200 250 300 350 400
Training epoch

0.906

0.908

0.910

0.912

0.914

0.916

0.918

0.920

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for medium models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.13: Mean accuracy scores comparison for medium MNIST models group with α = 0.5,
using variable T values.

5.3.3 Influence of the T parameter

The study of the influence of the T parameter value for the IMDB dataset shows,
that the small models improved their predictive performance with smaller T values
- the best result at the training finish was obtained with T = 2.0 (Fig. 5.19). The
model group with the best average performance, containing medium-size models,
provided the best performance with the 0.759 accuracy score at step 1600 using
T = 7.0, as shown in Fig. 5.20. For the large model group, the best average scores
were obtained for T = 1.0 (Fig. 5.21). The complete results for this investigation at

5.3. IMDB experiments 56

0 50 100 150 200 250 300 350 400
Training epoch

0.9200
0.9225
0.9250
0.9275
0.9300
0.9325
0.9350
0.9375
0.9400

Ac
cu

ra
cy

 sc
or

e
ACC with variable T for large models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.14: Mean accuracy scores comparison for large MNIST models group with α = 0.5, using
variable T values.

200 400 600 800 1000 1200 1400 1600
Training epoch

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 sc
or

e

Local-only vs full training for different model sizes

('local', 4)
('local', 8)
('local', 16)
('full', 4)
('full', 8)
('full', 16)

Figure 5.15: Comparison between accuracy scores for local-only (’local’) and the full proposed train-
ing framework (’full’) for different IMDB model groups (with 4, 8 or 16 neurons in the hidden layer
of the LSTM architecture used), obtained on the test dataset.

the last training step (step 1600) are shown in Tab. 5.10

5.3. IMDB experiments 57

Table 5.7: Mean accuracy scores for all MNIST model groups with α = 0.5 and variable value of T
at step 380. The best configuration in each group has the accuracy score highlighted in bold.

T Hidden layer size Accuracy Std

1.0 8 0.876 0.012
1.5 8 0.873 0.008
2.0 8 0.885 0.006
4.0 8 0.871 0.023
7.0 8 0.866 0.019

10.0 8 0.866 0.01
1.0 16 0.919 0.006
1.5 16 0.923 0.005
2.0 16 0.919 0.002
4.0 16 0.918 0.002
7.0 16 0.915 0.003

10.0 16 0.912 0.005
1.0 32 0.945 0.002
1.5 32 0.944 0.002
2.0 32 0.942 0.003
4.0 32 0.938 0.003
7.0 32 0.932 0.004

10.0 32 0.932 0.003

Table 5.8: Mean accuracy values for all IMDB model groups, showcasing the comparison between
local-only model training vs. the full proposed training framework, with an on-peer training step
included, at step 1600, obtained on the test datase. The best results for each group of models are
highlighted in bold.

Training strategy Hidden layer size Accuracy Std

Local-only 4 0.620 0.032
Full 4 0.743 0.035

Local-only 8 0.571 0.015
Full 8 0.756 0.012

Local-only 16 0.564 0.019
Full 16 0.742 0.020

5.3. IMDB experiments 58

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for small models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.16: Mean accuracy scores comparison for small IMDB models group with T = 1.0, using
variable α values.

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for medium models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.17: Mean accuracy scores comparison for medium IMDB models group with T = 1.0, using
variable α values.

5.3. IMDB experiments 59

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

 sc
or

e

ACC with variable Alpha for large models, T=1.0

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
1.0

Figure 5.18: Mean accuracy scores comparison for large IMDB models group with T = 1.0, using
variable α values.

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for small models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.19: Mean accuracy scores comparison for small IMDB models group with α = 0.5, using
variable T values.

5.3. IMDB experiments 60

Table 5.9: Mean accuracy scores for all IMDB model groups with T = 1.0 and variable value of α at
step 1600. The best configuration in each group has the accuracy score highlighted in bold.

α Hidden layer size Accuracy Std

0.0 4 0.712 0.021
0.1 4 0.710 0.022
0.2 4 0.710 0.033
0.3 4 0.716 0.028
0.4 4 0.701 0.045
0.5 4 0.737 0.030
1.0 4 0.742 0.035
0.0 8 0.705 0.017
0.1 8 0.713 0.029
0.2 8 0.730 0.023
0.3 8 0.748 0.021
0.4 8 0.752 0.030
0.5 8 0.740 0.034
1.0 8 0.756 0.012
0.0 16 0.664 0.018
0.1 16 0.681 0.023
0.2 16 0.690 0.026
0.3 16 0.737 0.019
0.4 16 0.739 0.0162
0.5 16 0.750 0.014
1.0 16 0.742 0.021

5.3. IMDB experiments 61

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for medium models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.20: Mean accuracy scores comparison for medium IMDB models group with α = 0.5, using
variable T values.

200 400 600 800 1000 1200 1400 1600
Training epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

 sc
or

e

ACC with variable T for large models, Alpha=0.5

T
1.0
1.5
2.0
4.0
7.0
10.0

Figure 5.21: Mean accuracy scores comparison for large IMDB models group with α = 0.5, using
variable T values.

5.3. IMDB experiments 62

Table 5.10: Mean accuracy scores for all IMDB model groups with α = 0.5 and variable value of T at
step 1600. The best configuration in each group has the accuracy score highlighted in bold.

T Hidden layer size Accuracy Std

1.0 4 0.737 0.003
1.5 4 0.750 0.003
2.0 4 0.753 0.025
4.0 4 0.744 0.023
7.0 4 0.746 0.025

10.0 4 0.721 0.029
1.0 8 0.740 0.034
1.5 8 0.750 0.021
2.0 8 0.745 0.025
4.0 8 0.723 0.046
7.0 8 0.759 0.014

10.0 8 0.721 0.029
1.0 16 0.750 0.014
1.5 16 0.733 0.024
2.0 16 0.735 0.037
4.0 16 0.736 0.022
7.0 16 0.731 0.038

10.0 16 0.723 0.037

Chapter 6

Discussion

6.1 System requirements fulfillment

The proposed framework complied with the technical requirements outlined in
Ch. 3, as summarized in Tab. 6.1. In terms of its main purpose, this collaborative
training system allows a federation of clients with heterogeneous architectures to
be trained on a common machine learning task without any data transfer, which
was the main requirement. The proposed objective function used during on-peer
training step allowed the incorporation of knowledge distillation, which proved to
boost performance for some model groups. Moreover, by conducting guest models
training directly on the clients, it alleviated the need to use an auxiliary dataset for
this purpose, which distinguished this approach from the existing heterogeneous
solutions. In terms of implementation, the framework also meets the requirements.
A general interface was used to set up the training: it allows for easy integration
with any dataset and architecture suitable for knowledge distillation, which was
showcased in three different ML tasks and architectures used in this study. In
addition, the distillation parameters can be fully customized for each client, which
expands the flexibility of the implementation.

6.2 Robotics applicability

I expand the state-of-the-art in FL for robotics, employing the proposed framework
to train an alt-GQ-CNN model designed for grasp prediction. Models trained col-
laboratively in a federation on the Dex-Net 2.0 dataset were used to create a real-
world pick-and-place pipeline, successfully deployed on a robotic arm. A success
rate of 0.72 was obtained for the best models, which is a lower result than what
was achieved in the original Dex-Net 2.0 article. I believe that this inferior result
can be attributed to the available hardware. The original study was conducted us-
ing an ABB Yumi robot and a Primesense Carmine camera. I was unable to obtain

63

6.2. Robotics applicability 64

Table 6.1: The proposed system met all the technical requirements considered in Ch. 3, listed in this
table.

Technical requirement Fulfilled

Allows distributed training with no data transfer Yes
Allows heterogeneous models training Yes

Does not require additional public datasets Yes
Allows straightforward model customization Yes
Allows straightforward dataset customization Yes

Allows straightforward hyperparameters customization Yes

the original setup; instead, a different manipulator, UFACTORY xArm7 (crucially,
with different gripper fingers) was used, as well as a different camera - RealSense
D415. This may have played a major role in the inability to reproduce the original
results, as the Dex-Net 2.0 dataset was prepared using the geometrical properties
of this gripper and camera combination during dataset generation. Moreover, I
have used a different grasp sampling strategy. It sampled grasps uniformly at ran-
dom, whereas in the original article the best results were obtained by resampling
grasps around the most probable grasp points (which was referred to as the cross-
entropy sampling policy). This could reduce the number of high-quality grasps
that the algorithm presented was able to sample and, in effect, reduce the overall
performance.

With that said, I believe that the absolute values obtained by the pipeline com-
pared to the original article are not the main point of interest. My goal was to
show that taking into account all potential benefits of heterogeneous FL in robotics,
which were outlined in Sec. 1, I can propose a framework that is suitable for train-
ing client federations on a robotic ML task and then present a practical application
of such framework. To this end, I have contributed successfully. The influence
of the FL training system presented on performance in this task was investigated,
compared to the situation in which clients are trained in isolation on their private
datasets. The results show the major advantage of the proposed training strategy:
Using this framework, the success rate in the pick-and-place pipeline increased by
0.12 over isolated clients (Tab. 5.1). This indicates that the use of the framework
presented in industrial tasks, such as pick-and-place, can positively influence the
quality of the service provided by the robotic system. At the same time, the pro-
posed framework reduces privacy risks - no private dataset is shared, which makes
it interesting for entities that value increased data security, e.g., to protect sensitive
information from rival companies. I believe that this improvement in performance

6.3. Collaborative training flexibility 65

could be even greater when the number of participating clients is larger and their
private datasets are smaller. Due to hardware constraints, I was unable to test
a federation with more than six clients, which meant that each client had about
890000 training samples in the local training dataset. If the original dataset was
divided between a larger number of clients resulting in smaller local datasets, I
hypothesize that the discrepancies would be even larger.

These results are especially relevant for industries such as the automotive in-
dustry, where classified information about the manufacturing process and part de-
sign is very valuable. Furthermore, I believe that there is great potential to use this
framework in healthcare. Sano Center for Computational Personalized Medicine,
which was the institution that collaborated on this study, sees potential in FL for
medical applications. In discussions with senior researchers, I learned that using
FL to train ML models on data from hospitals around the world could increase
their overall performance while avoiding problems with cross-border distributed
learning. These issues are related to legal barriers that prevent the transfer of sen-
sitive medical data abroad from the original institutions. In this context, a natural
application of robotic FL could be surgical robots. Senior Sano researchers indi-
cated their interest in FL also in this context, as they become more and more aware
that traditional distributed training may not be practical for healthcare. Therefore,
the consultants positively evaluated the presented system, indicating that the pos-
sibility of training heterogeneous models is a strong advantage, as differences in
the computational infrastructure between hospitals can be very large, especially
when collaborating with institutions across different countries.

6.3 Collaborative training flexibility

As a result of a generalized implementation, the framework is suitable not only
for robotic ML tasks. I have presented its application to three different ML prob-
lems: grasp prediction, image classification, and sentiment analysis. Each problem
used different datasets and architectures. As shown in Ch. 5, in all cases, the
improvements introduced by the FL system were clear. In Sec. 5.1.2, Sec. 5.2.1,
and Sec. 5.3.1, I have presented the difference in model performance on validation
datasets, for isolated and collaboratively trained models. For the MNIST experi-
ments, the increase in mean accuracy scores at the end of federated training was
equal to 0.049, 0.037 and 0.045 for the small, medium, and large model groups,
respectively. Even higher differences were observed for the IMDB dataset: 0.123,
0.185 and 0.178. This trend was also reinforced by Dex-Net experiments, although
with smaller differences in performance (0.009, 0.014, 0.032). Intuitively, these re-
sults are expected; participation in the collaborative training exposes the client
models to a larger number of training samples, thus allowing them to obtain better
performance compared to a situation where the model is trained only on a private

6.4. The influence of α and T 66

dataset. However, contrary to a standard distributed learning approach, where
the dataset is shared between clients, the proposed system allows models to ben-
efit from this larger amount of data without raising concerns about privacy. It is
also worth noting that the improvement observed when using this system could be
more significant than that indicated by the MNIST and Dex-Net experiments. In
the case of MNIST, it is one of the most straightforward datasets, and even clients
trained on a small subset of data can obtain very high performance, therefore, con-
cealing the benefits of the on-peer training step. On a more difficult dataset, when
each sample counts, the difference in the number of samples to which the models
are exposed when using collaborative training, compared to isolated training, can
be even more significant. The difference could also potentially increase for DexNet,
as explained in Sec 6.2.

6.4 The influence of α and T

By using an objective function that not only incorporated standard loss functions
for the ML tasks considered, but also introduced a KD term, I allowed the frame-
work to benefit from this interesting approach to model training. The heterogene-
ity of the participants was simulated using three different model groups in each
experiment. The introduction of the parameter α allowed for easy adjustment of
the amount of KD that was used in the experiments. This way, it was possible
to investigate the influence of KD on the predictive performance of the models.
It was observed that the models that benefit the most from KD are the ones that
perform the worst within the federation. This was visible in all experiments. For
the MNIST dataset, on average, the worst performing models were representatives
of the small model group. In Fig. 5.9 I could observe that those models obtained
an improved accuracy score when using α ∈ {0.3, 0.5, 0.2}. This indicates that the
models were able to extract additional knowledge from the host model during the
on-peer training procedure. However, for the medium and large model groups, the
best results were provided using α = 1.0, without knowledge distillation. These
observations are also visible in the experiments of the IMDB (Fig. 5.18) and Dex-
Net 2.0 (Tab. 5.3) experiments, although I was unable to obtain as large difference
in average performance between the groups, as with the MNIST dataset, which
could hide the dynamics between models. In Dex-Net, all model groups benefited
from the KD. In general, observations show that KD can indeed improve training
results, but if the differences between model groups are large, only the weakest
performers will benefit. If the disparity between the performance of the models
is too large, it is recommended to use a personalized value α, which can be tuned
according to a historical performance comparison between the guest and host mod-
els, which could disable distillation if the guest model performed better than the
host. It is also important to note that, when using KD, the temperature parameter

6.5. Study limitations 67

has to be carefully tuned. The results shown in Tab. 5.4, Tab. 5.7, and Tab. 5.10
show that this parameter can greatly influence the results and is an additional hy-
perparameter to consider when using the proposed framework, although no clear
trends were observed, indicating that the optimal values are application specific.

6.5 Study limitations

In the proposed training workflow, the main limitation that could create difficul-
ties when using the framework in practice are the costs associated with the on-peer
training step. This step in the workflow uses resources of the host, such as energy
and storage, which means that this cost must be taken into account when partici-
pating in federation. Theoretically, the more proficient models are participating in
the federation, the better for the participants, which should motivate clients to help
each other; however, there is the question of the incentive for the best clients. They
benefit the least from the training and therefore may not be motivated to share
their resources with other participants, which could effectively be a disadvantage
of the proposed scheme.

Another limitation of this study is the potential privacy risks that should be
thoroughly analyzed. Although the proposed collaborative training scheme re-
duces privacy risks compared to standard distributed learning approaches, it does
not guarantee the full security of sensitive data. As presented in Ch. 2, there are
documented methods that can extract information directly from models. In the
proposed training scheme, models that were trained on private datasets of other
clients are indeed exchanged. Potentially, this could lead to information leaks that
could be used by malicious users.

6.6 Future research directions

The presented study sets the basis for several topics that could be investigated in
the future. The use of FL is not widely investigated in robotics; therefore, finding
more applications for the presented framework could prove essential to reinforce
FL in this domain, which, as indicated, can be very beneficial for robotic systems
in many industries. Investigations could focus on documenting more ML methods
for robotic tasks that are suitable for training with the use of the proposed system.
One direction could be to test a different grasp prediction method. Another pos-
sibility would be to apply the framework to mobile robotics. An important topic
is also finding applications of the framework on a higher level, by conducting case
studies for different industries, which would raise awareness of the applicability
of federated learning in robotics and potentially increase the amount of research
in this domain. As always, evaluation of the framework on a larger number of

6.6. Future research directions 68

datasets is advised to better understand the dynamics between model groups and
system advantages.

A question relevant to the FL domain is how the presented framework performs
on the non-IID data. In this study, I assumed that the data are IID between clients,
which will not be the case for most federations. Investigating how the non-IID state
influences collaborative training is, therefore, very important. Furthermore, I did
not investigate the influence of some of the training parameters. Specifically, for
each training round, I conducted exactly one local training epoch and one on-peer
training epoch. Future experiments could investigate how different values of these
parameters influence the results of federation training. An interesting study direc-
tion could also consider incentive analysis. As indicated in Sec. 6.5, if the weakest
clients benefit the most from participating in the federations, what could be the
incentive mechanism that will attract clients with larger computational capabili-
ties? What could be their motivation to join the training? These questions are very
relevant, and without answering them through a number of case studies, frame-
works like the one proposed cannot be used in practice. Another question related
to the limitations of the study is: How secure is this framework? The priority of
future work should be to identify privacy risks and methods to prevent malicious
behavior. An interesting direction relevant to this matter, which could be the focus
point in the future, is the incorporation of secure multiparty computation methods
and differential privacy mechanisms to improve the safety of the federation.

Chapter 7

Conclusion

In this work, my aim was to turn the reader’s attention to the privacy issues that
have so far been widely overlooked in the robotics domain, but, in my opinion,
pose great risks for the users of many data-driven robotic applications. I believe
that data protection will be a matter of great relevance in the near future; therefore,
in Ch. 1 I showed how FL can alleviate potential privacy risks. In a comprehensive
review of the literature (Ch. 2), I provided the reader with current FL research di-
rections and proved that this setting is not yet widely investigated in the robotic
context. To contribute to this end, a novel heterogeneous FL framework was pro-
posed, which allows a federation of clients to be trained collaboratively, so that they
can increase performance compared to isolated training, without sharing private
datasets with their peers, as in standard distributed learning approaches. I showed
the suitability of this method in an industrial robotics task, by training alt-GQ-CNN
models on the Dex-Net 2.0 grasp prediction dataset. With the trained models, a
pick-and-place pipeline was deployed and evaluated, using a robotic manipulator.
The results show an increase in pipeline performance when the proposed training
system is used, even though it does not transfer local datasets between participants,
thus improving privacy. To the best of my knowledge, this is the first documented
use of an FL framework in industrial robotics. I believe that such frameworks can
increase robotic system performance when privacy is an important factor, which is
crucial, e.g., in manufacturing and healthcare.

In addition, to contribute to the FL domain, this framework addressed two
problems with existing FL approaches. Standard FL methods are limited to fed-
erations containing clients that are heterogeneous in terms of the deep learning
architectures used, which is not optimal, as they often have inconsistent compu-
tational capabilities. To solve this issue, I presented a heterogeneous federated
learning framework, which can be used to train a federation of clients, regardless
of their architecture, on a common machine learning task. In experiments, the
framework was evaluated and compared with the results of clients trained in iso-

69

70

lation, demonstrating the superiority of the proposed FL approach in sentiment
analysis and image classification, in addition to the aforementioned positive impli-
cations for the grasp prediction task. I also evaluated the influence of the two term
objective function on the clients’ performance. I found that knowledge distillation
can increase accuracy scores for less-proficient clients, compared to training with
a standard objective function. What distinguishes this method from existing het-
erogeneous FL approaches is that it can perform heterogeneous FO without any
auxiliary dataset. This trait is especially useful for tasks in which data collection is
difficult.

The use of FL in robotic systems is a broad topic and this study focused only
on its part. As described in Ch. 6, there are many possible directions for future re-
search, including investigation of privacy risks, case study of robotic applications,
influence of non-IID data, and incentive analysis.

I believe that FL is providing solutions to privacy issues related to information
sharing that are becoming more and more apparent in the increasingly data-driven
world. User privacy can soon find itself as a main point of interest for many do-
mains, including robotics. I encourage the reader to investigate FL and generally
privacy in this context, as this emerging field could soon become one of the cor-
nerstones of modern robotic systems.

Bibliography

[1] Sano Center for Computational and Personalized Medicine. https : / / sano .
science/. Accessed: 2022-05-14.

[2] Thomas George Thuruthel et al. “Soft robot perception using embedded
soft sensors and recurrent neural networks”. In: Science Robotics 4.26 (2019),
eaav1488.

[3] Jamil Fayyad et al. “Deep learning sensor fusion for autonomous vehicle
perception and localization: A review”. In: Sensors 20.15 (2020), p. 4220.

[4] Shehan Caldera, Alexander Rassau, and Douglas Chai. “Review of deep
learning methods in robotic grasp detection”. In: Multimodal Technologies
and Interaction 2.3 (2018), p. 57.

[5] Yang Yang, Li Juntao, and Peng Lingling. “Multi-robot path planning based
on a deep reinforcement learning DQN algorithm”. In: CAAI Transactions on
Intelligence Technology 5.3 (2020), pp. 177–183.

[6] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In:
2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848.

[7] iRobot Vacuums. https://www.irobot.com/roomba. Accessed: 2022-04-01.

[8] Chen Li et al. “How can i help you? an intelligent virtual assistant for in-
dustrial robots”. In: Companion of the 2021 ACM/IEEE International Conference
on Human-Robot Interaction. 2021, pp. 220–224.

[9] H. Brendan McMahan et al. “Communication-Efficient Learning of Deep
Networks from Decentralized Data”. In: (2016). doi: 10.48550/ARXIV.1602.
05629. url: https://arxiv.org/abs/1602.05629.

[10] Gboard. https://play.google.com/store/apps/details?id=com.google.
android.inputmethod.latin&hl=en&gl=US. Accessed: 2022-04-01.

[11] Android OS. https://developer.android.com/about.

[12] Peter Kairouz et al. “Advances and open problems in federated learning”.
In: Foundations and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

71

https://sano.science/
https://sano.science/
https://doi.org/10.1109/CVPR.2009.5206848
https://www.irobot.com/roomba
https://doi.org/10.48550/ARXIV.1602.05629
https://doi.org/10.48550/ARXIV.1602.05629
https://arxiv.org/abs/1602.05629
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en&gl=US
https://developer.android.com/about

Bibliography 72

[13] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. “Distilling the knowledge
in a neural network”. In: arXiv preprint arXiv:1503.02531 2.7 (2015).

[14] Li Deng. “The mnist database of handwritten digit images for machine
learning research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–
142.

[15] William Shakespeare. The complete works of William Shakespeare. url: https:
//www.gutenberg.org/ebooks/100.

[16] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. “CIFAR-10 (Canadian
Institute for Advanced Research)”. In: (). url: http://www.cs.toronto.
edu/~kriz/cifar.html.

[17] Tian Li et al. “Federated optimization in heterogeneous networks”. In: Pro-
ceedings of Machine Learning and Systems 2 (2020), pp. 429–450.

[18] Sai Praneeth Karimireddy et al. “Scaffold: Stochastic controlled averaging
for federated learning”. In: International Conference on Machine Learning. PMLR.
2020, pp. 5132–5143.

[19] Ning Qian. “On the momentum term in gradient descent learning algo-
rithms”. In: Neural networks 12.1 (1999), pp. 145–151.

[20] Jianyu Wang et al. “Tackling the objective inconsistency problem in hetero-
geneous federated optimization”. In: Advances in neural information process-
ing systems 33 (2020), pp. 7611–7623.

[21] Avishek Ghosh et al. “An efficient framework for clustered federated learn-
ing”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 19586–
19597.

[22] Canh T Dinh, Nguyen Tran, and Josh Nguyen. “Personalized federated
learning with moreau envelopes”. In: Advances in Neural Information Pro-
cessing Systems 33 (2020), pp. 21394–21405.

[23] Abderrahim Jourani, Lionel Thibault, and Dariusz Zagrodny. “Differential
properties of the Moreau envelope”. In: Journal of Functional Analysis 266.3
(2014), pp. 1185–1237.

[24] Robin C Geyer, Tassilo Klein, and Moin Nabi. “Differentially private feder-
ated learning: A client level perspective”. In: arXiv preprint arXiv:1712.07557
(2017).

[25] Reza Shokri et al. “Membership inference attacks against machine learning
models”. In: 2017 IEEE symposium on security and privacy (SP). IEEE. 2017,
pp. 3–18.

[26] Chiyuan Zhang et al. “Understanding deep learning requires rethinking
generalization (2016)”. In: arXiv preprint arXiv:1611.03530 (2017).

https://www.gutenberg.org/ebooks/100
https://www.gutenberg.org/ebooks/100
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Bibliography 73

[27] Nicholas Carlini et al. “The secret sharer: Evaluating and testing unintended
memorization in neural networks”. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, pp. 267–284.

[28] Jonas Geiping et al. “Inverting gradients-how easy is it to break privacy in
federated learning?” In: Advances in Neural Information Processing Systems 33
(2020), pp. 16937–16947.

[29] Léon Bottou. “Large-scale machine learning with stochastic gradient de-
scent”. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[30] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural
networks”. In: arXiv preprint arXiv:1511.08458 (2015).

[31] Arvind Narayanan and Vitaly Shmatikov. “How to break anonymity of the
netflix prize dataset”. In: arXiv preprint cs/0610105 (2006).

[32] Pao-Lu Hsu and Herbert Robbins. “Complete convergence and the law
of large numbers”. In: Proceedings of the National Academy of Sciences of the
United States of America 33.2 (1947), p. 25.

[33] Galen Andrew et al. “Differentially private learning with adaptive clip-
ping”. In: Advances in Neural Information Processing Systems 34 (2021).

[34] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[35] Ralf C Staudemeyer and Eric Rothstein Morris. “Understanding LSTM–a
tutorial into long short-term memory recurrent neural networks”. In: arXiv
preprint arXiv:1909.09586 (2019).

[36] Rami Al-Rfou et al. “Conversational contextual cues: The case of personal-
ization and history for response ranking”. In: arXiv preprint arXiv:1606.00372
(2016).

[37] Abhishek Bhowmick et al. “Protection against reconstruction and its ap-
plications in private federated learning”. In: arXiv preprint arXiv:1812.00984
(2018).

[38] Stacey Truex et al. “A hybrid approach to privacy-preserving federated
learning”. In: Proceedings of the 12th ACM workshop on artificial intelligence
and security. 2019, pp. 1–11.

[39] Michael O’Keeffe. “The paillier cryptosystem”. In: Mathematics Department
April 18 (2008), pp. 1–16.

[40] John F Magee. Decision trees for decision making. Harvard Business Review
Brighton, MA, USA, 1964.

[41] Corinna Cortes and Vladimir Vapnik. “Support vector machine”. In: Ma-
chine learning 20.3 (1995), pp. 273–297.

Bibliography 74

[42] Keith Bonawitz et al. “Practical secure aggregation for federated learning
on user-held data”. In: arXiv preprint arXiv:1611.04482 (2016).

[43] Eugene Bagdasaryan et al. “How to backdoor federated learning”. In: Inter-
national Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2938–
2948.

[44] Arjun Nitin Bhagoji et al. “Analyzing federated learning through an ad-
versarial lens”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 634–643.

[45] Peva Blanchard et al. “Machine learning with adversaries: Byzantine toler-
ant gradient descent”. In: Advances in Neural Information Processing Systems
30 (2017).

[46] Haibo Yang et al. “Byzantine-resilient stochastic gradient descent for dis-
tributed learning: A lipschitz-inspired coordinate-wise median approach”.
In: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE. 2019,
pp. 5832–5837.

[47] Chulin Xie et al. “Dba: Distributed backdoor attacks against federated learn-
ing”. In: International Conference on Learning Representations. 2019.

[48] Jiawen Kang et al. “Incentive design for efficient federated learning in mo-
bile networks: A contract theory approach”. In: 2019 IEEE VTS Asia Pacific
Wireless Communications Symposium (APWCS). IEEE. 2019, pp. 1–5.

[49] Tian Li et al. “Fair resource allocation in federated learning”. In: arXiv
preprint arXiv:1905.10497 (2019).

[50] Hyesung Kim et al. “Blockchained on-device federated learning”. In: IEEE
Communications Letters 24.6 (2019), pp. 1279–1283.

[51] Michael Nofer et al. “Blockchain”. In: Business & Information Systems Engi-
neering 59.3 (2017), pp. 183–187.

[52] Satoshi Nakamoto. “Bitcoin whitepaper”. In: URL: https://bitcoin. org/bitcoin.
pdf-(: 17.07. 2019) (2008).

[53] Andreas Grafberger et al. “FedLess: Secure and Scalable Federated Learning
Using Serverless Computing”. In: 2021 IEEE International Conference on Big
Data (Big Data). IEEE. 2021, pp. 164–173.

[54] Sarah Allen et al. “Cncf serverless whitepaper v1. 0”. In: Dosegljivo: https://github.
com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview (2018).

[55] Apache OpenWhisk. “Apache openwhisk is a serverless, open source cloud
platform”. In: Apache Foundation,[Online]. Available: http://openwhisk. apache.
org/.[Accessed 21 June 2018] (2018).

[56] Google Cloud Platform. Cloud Functions — Google Cloud.

Bibliography 75

[57] Amazon AWS. AWS Lambda-Serverless Compute-Amazon Web Services.

[58] Tao Lin et al. “Ensemble distillation for robust model fusion in federated
learning”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 2351–2363.

[59] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

[60] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[61] Kaiming He et al. “Identity mappings in deep residual networks”. In: Euro-
pean conference on computer vision. Springer. 2016, pp. 630–645.

[62] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[63] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn ar-
chitecture design”. In: Proceedings of the European conference on computer vision
(ECCV). 2018, pp. 116–131.

[64] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[65] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level convolutional
networks for text classification”. In: Advances in neural information processing
systems 28 (2015).

[66] Richard Socher et al. “Recursive deep models for semantic compositionality
over a sentiment treebank”. In: Proceedings of the 2013 conference on empirical
methods in natural language processing. 2013, pp. 1631–1642.

[67] Daliang Li and Junpu Wang. “Fedmd: Heterogenous federated learning via
model distillation”. In: arXiv preprint arXiv:1910.03581 (2019).

[68] Li Hu et al. “MHAT: An efficient model-heterogenous aggregation training
scheme for federated learning”. In: Information Sciences 560 (2021), pp. 493–
503.

[69] Nathalie Majcherczyk, Nishan Srishankar, and Carlo Pinciroli. “Flow-fl: Data-
driven federated learning for spatio-temporal predictions in multi-robot
systems”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2021, pp. 8836–8842.

[70] Xianjia Yu, Jorge Pena Queralta, and Tomi Westerlund. “Federated Learning
for Vision-based Obstacle Avoidance in the Internet of Robotic Things”. In:
arXiv preprint arXiv:2204.06949 (2022).

Bibliography 76

[71] NVIDIA. NVIDIA Isaac.

[72] Zijian Zhang et al. “Distributed dynamic map fusion via federated learning
for intelligent networked vehicles”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2021, pp. 953–959.

[73] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[74] Hai Nguyen and Hung La. “Review of deep reinforcement learning for
robot manipulation”. In: 2019 Third IEEE International Conference on Robotic
Computing (IRC). IEEE. 2019, pp. 590–595.

[75] Wenshuai Zhao, Jorge Pena Queralta, and Tomi Westerlund. “Sim-to-real
transfer in deep reinforcement learning for robotics: a survey”. In: 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE. 2020, pp. 737–
744.

[76] Neziha Akalin and Amy Loutfi. “Reinforcement learning approaches in so-
cial robotics”. In: Sensors 21.4 (2021), p. 1292.

[77] Xinle Liang et al. “Federated transfer reinforcement learning for autonomous
driving”. In: arXiv preprint arXiv:1910.06001 (2019).

[78] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles”. In: Field and Service Robotics. 2017. eprint: arXiv:
1705.05065. url: https://arxiv.org/abs/1705.05065.

[79] Xinle Liang et al. “Federated transfer reinforcement learning for autonomous
driving”. In: arXiv preprint arXiv:1910.06001 (2019). url: https://arxiv.
org/abs/1509.02971.

[80] Boyi Liu, Lujia Wang, and Ming Liu. “Lifelong federated reinforcement
learning: a learning architecture for navigation in cloud robotic systems”.
In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4555–4562.

[81] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”.
In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/
abs/1312.5602.

[82] Janet Kuhn. “Decrypting the MoSCoW analysis”. In: The workable, practical
guide to Do IT Yourself 5 (2009).

[83] R. Fielding et al. RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. 1999. url:
http://www.rfc.net/rfc2616.html.

[84] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. http://www.
rfc-editor.org/rfc/rfc6455.txt. RFC Editor, 2011. url: http://www.
rfc-editor.org/rfc/rfc6455.txt.

[85] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747 (2016).

arXiv:1705.05065
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://www.rfc.net/rfc2616.html
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt

Bibliography 77

[86] Gavin Hackeling. Mastering Machine Learning with scikit-learn. Packt Publish-
ing Ltd, 2017.

[87] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics”. In: arXiv preprint
arXiv:1703.09312 (2017).

[88] Andrew Maas et al. “Learning word vectors for sentiment analysis”. In: Pro-
ceedings of the 49th annual meeting of the association for computational linguistics:
Human language technologies. 2011, pp. 142–150.

[89] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for
robust grasp planning using a multi-armed bandit model with correlated
rewards”. In: 2016 IEEE international conference on robotics and automation
(ICRA). IEEE. 2016, pp. 1957–1964.

[90] Domenico Prattichizzo and Jeffrey C Trinkle. “Grasping”. In: Springer hand-
book of robotics. Springer, 2016, pp. 955–988.

[91] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. “On-Policy Dataset Syn-
thesis for Learning Robot Grasping Policies Using Fully Convolutional Deep
Networks”. In: IEEE Robotics and Automation Letters (2019).

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet clas-
sification with deep convolutional neural networks”. In: Advances in neural
information processing systems 25 (2012).

[93] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. PMLR. 2015, pp. 448–456.

[94] UFACTORY xArm collaborative robots. https://www.ufactory.cc/xarm-
collaborative-robot. Accessed: 2022-05-14.

[95] Intel RealSense D415 Camera. https://www.intelrealsense.com/depth-
camera-d415/. Accessed: 2022-05-14.

[96] Zhengyou Zhang. “A flexible new technique for camera calibration”. In:
IEEE Transactions on pattern analysis and machine intelligence 22.11 (2000),
pp. 1330–1334.

[97] Roger Y Tsai, Reimar K Lenz, et al. “A new technique for fully autonomous
and efficient 3 d robotics hand/eye calibration”. In: IEEE Transactions on
robotics and automation 5.3 (1989), pp. 345–358.

[98] ABB Yumi Grippers. https://new.abb.com/products/robotics/collaborative-
robots/irb-14050-single-arm-yumi. Accessed: 2022-05-14.

[99] John Canny. “A computational approach to edge detection”. In: IEEE Trans-
actions on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

https://www.ufactory.cc/xarm-collaborative-robot
https://www.ufactory.cc/xarm-collaborative-robot
https://www.intelrealsense.com/depth-camera-d415/
https://www.intelrealsense.com/depth-camera-d415/
https://new.abb.com/products/robotics/collaborative-robots/irb-14050-single-arm-yumi
https://new.abb.com/products/robotics/collaborative-robots/irb-14050-single-arm-yumi

Bibliography 78

[100] Dan Jurafsky and James H. Martin. Speech and language processing : an in-
troduction to natural language processing, computational linguistics, and speech
recognition. 2009. isbn: 9780131873216 0131873210. url: http://www.amazon.
com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_
bxgy_b_img_y.

[101] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[102] Tomas Mikolov et al. “Recurrent neural network based language model.”
In: Interspeech. Vol. 2. 3. Makuhari. 2010, pp. 1045–1048.

[103] Guido vanRossum. “Python reference manual”. In: Department of Computer
Science [CS] R 9525 (1995).

[104] Philipp Moritz et al. “Ray: A distributed framework for emerging {AI} ap-
plications”. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 2018, pp. 561–577.

[105] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems 32
(2019).

[106] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Ver-
sion 1.4. Mar. 2019. doi: 10.5281/zenodo.3828935. url: https://github.
com/PyTorchLightning/pytorch-lightning.

[107] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[108] Radim Rehurek and Petr Sojka. “Gensim–python framework for vector space
modelling”. In: NLP Centre, Faculty of Informatics, Masaryk University, Brno,
Czech Republic 3.2 (2011).

[109] Prometheus HPC information. https://kdm.cyfronet.pl/portal/Prometheus:
en. Accessed: 2022-05-14.

[110] Marian Bubak, Tomasz Szepieniec, and Kazimierz Wiatr. Building a National
Distributed E-Infrastructure–PL-Grid: Scientific and Technical Achievements. Vol. 7136.
Springer Science & Business Media, 2012.

[111] Academic Computer Centre CYFRONET AGH. https://kdm.cyfronet.pl/
portal/Main_page. Accessed: 2022-05-14.

[112] Heterogeneous Federated Learning framework. https://github.com/SanoScience/
heterogeneous-federated. Accessed: 2022-06-02.

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.5281/zenodo.3828935
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://kdm.cyfronet.pl/portal/Prometheus:en
https://kdm.cyfronet.pl/portal/Prometheus:en
https://kdm.cyfronet.pl/portal/Main_page
https://kdm.cyfronet.pl/portal/Main_page
https://github.com/SanoScience/heterogeneous-federated
https://github.com/SanoScience/heterogeneous-federated

	Front page
	English title page
	Contents
	Preface
	Acknowledgements
	1 Introduction
	2 Literature review
	2.1 FedAvg
	2.2 Federated optimization methods
	2.3 Personalized federated learning
	2.4 Privacy in federated learning
	2.5 Attacks analysis
	2.6 Incentive and fairness in federated learning
	2.7 Decentralized federated learning
	2.8 Heterogeneous federated learning
	2.9 Federated learning in robotics
	2.10 Summary

	3 Problem statement and system requirements
	3.1 Problem analysis
	3.2 Problem statement
	3.3 System requirements

	4 System design
	4.1 Architecture
	4.1.1 Central server
	4.1.2 Clients

	4.2 Workflow
	4.2.1 Local training
	4.2.2 Peer assignment
	4.2.3 On-peer training
	4.2.4 Model reassignment
	4.2.5 Model evaluation

	4.3 Experimental setup
	4.3.1 Dex-Net experiments
	4.3.2 MNIST experiments
	4.3.3 IMDB experiments

	4.4 Implementation details

	5 Results
	5.1 Dex-Net experiments
	5.1.1 Pick-and-place evaluation
	5.1.2 Full vs local-only training
	5.1.3 Influence of the parameter
	5.1.4 Influence of the T parameter

	5.2 MNIST experiments
	5.2.1 Full vs local-only training
	5.2.2 Influence of the parameter
	5.2.3 Influence of the T parameter

	5.3 IMDB experiments
	5.3.1 Full vs local-only training
	5.3.2 Influence of the parameter
	5.3.3 Influence of the T parameter

	6 Discussion
	6.1 System requirements fulfillment
	6.2 Robotics applicability
	6.3 Collaborative training flexibility
	6.4 The influence of and T
	6.5 Study limitations
	6.6 Future research directions

	7 Conclusion
	Bibliography

