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Abstract:
Rektum kræft er blandt de hyppigst forek-
ommende, typer af kræft, og det har en
dødelighed på mere en 900,000 as of 2020.
Til behandlingen af rektum kræft udby-
des der på nuværende tidspunkt tre be-
handlingsformer, operation, kemoterapi og
stråleterapi, som oftest tilbydes i kombina-
tion. Der er dog i de senere år sket et skift i
behandlingsstrategien, hvorledes at der an-
vendes kemoterapi og radioterapi som be-
handlingsmetode uden operation. Denne
tilgangs til behandling har vist sig effektiv
dog, er det ikke alle patienter der bliver
kureret eller respondere på behandlingen.
Derfor er det foreslået at øge stråle dosis,
hvilket har øget antallet af patienter der
responderer på behandlingen. Dog med-
følger der med den øgede stråle dosis en
række bivirkninger, som følge af skade på
rask væv og derfor skal området der be-
stråles. Dette område skal dog under hele
behandlingen dække det kræft ramte væv
og derfor skal der tages højde for bevæge-
ligheder der forekommer. Derfor er det
foreslået at indsnævre området ved hjælp
af bevægeligheden. Dog optages der nor-
malt ikke skanninger under behandlingsfor-
løbet og derfor er placering a kræft vævet
ikke kendt. Derfor er der forslået et de-
sign til en algoritme, bestående af et re-
gressions neuralt netværk, til at prædik-
tere den fremtidige position af lymfeknuder.
Dette er gjort med udgangspunkt i en række
prædiktors der er udvalgt of udtrækket ud
udgangspunkt i litteraturen. Resultaterne
for the implementerede model viser en sta-
bil træning, dog opnås der en relativ høj
MSE, og dermed er yderligere udvikling a
modellen eller udviklingen af en ny model
nødvendigt for at opnå en model med hø-
jere prædiktions nøjagtighed.
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Reading Guide
For the current project employs the Harvard citation style for referencing of sources, as
the the last name of the main author is presented followed by the year of publication.
These are presented in two ways, as either an active or passive citation. Active citation is
used when the source is placed within the sentence as part of the statement and is not
surrounded by parenthesis. The passive citation is employed when the source is used
following the sentence at the end of a sentence, and is indicated by a source enclosed by
parenthesis.

The bibliography on page on page 65 is structured in alphabetic order in accordance
with the last name of the main author. If the author is not available, the article is listed
according to the first word of the title. For the figures presented in the rapport, figures
with citations is from other works. However if no citation is by the figures these are
made by the author or from the provided dataset.

Citation Style

An example of the citations is presented here:

Passive citation: [R. Siegel, DeSantis, and Jemal 2014]

Active citation: R. Siegel, DeSantis, and Jemal 2014
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1 Summary

Rectum cancer is one of the most common types of cancer, which has a mortality of
more than 900,000 as of 2020. Current treatment consist of chemotherapy, surgery and
radiotherapy, which are often combined for treatment of rectum cancer. However in
recent years there has been a shift in the treatment strategy where surgery is omitted.
This shift is occurring as a fraction of the patients receiving chemo-and radiotherapy
obtained a curative stage, without surgery and therefore surgery was omitted. There is a
remaining patient population which did not obtain a curative stage or did not respond
to the treatment and therefore it was suggested to increase the dosage of radiotherapy.
This increase the rate of patients which benefited from this treatment approach, but it
likewise produced a new set of side effects as more damaged was imposed on the healthy
tissues which received the higher dosages. Therefore to omit these side effects it has
been suggested to reduce the area in which this is applied. As there is motility within
the area, it has been suggested that it is performed by quantifying these motilities and
based on these reduce the area, to retain coverage of the cancer tissue. This requires
knowledge of the current of stage of the pelvis during treatment which is not available
as scans usually are acquired prior to treatment. Therefore this new locations has to be
predicted. For this purpose different models has been proposed to predict a subsequent
position of an organ. However, none of these are for the lymph nodes and therefore the
aim of the project was to develop a model which could predict the future location of
these during treatment.

The pipeline developed for this purpose consisted of initial identification and quantifica-
tion of predictors which could be indicative of the future location or motility. Subsequent
to this data augmentation was performed as a deep learning model requires a large
dataset. Data augmentation was performed using a stacked autoencoder to increase the
size of the dataset. For prediction of a future lymph node location during treatment a
combination of previously proposed models was utilized. This consisted of deep learning
and regression models which combined produced a deep learning regression model. The
structure design was based on the aim, the output of the predictors and the target values.
This produces a network with three branches which produced two separate models which
predicted three outputs representing the location of a lymph node.

Validation on the predictors and the prediction model found that there was an indication
that the assumptions made for the identified predictors was true, both in a qualitative
and quantitative assessment. As associations between the predictors was found, different
models were trained of different versions of the dataset where it was found that the
model which obtained the lowest loss was the model trained on the full dataset and
therefore the final validation was performed on the model. The final validation of the
model obtained a high mean square error for all three outputs, and therefore further
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SUMMARY

development of a model is needed to obtain a high accuracy for the determination of the
lymph node location
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2 Resume

Rektum kræft er en af de hyppigste forekommende kræfttyper med mere end 900.000
dødsfald. Den nuværende behandlingsform består af kemoterapi, operation og radioter-
api, hvilket som udgangspunkt tilbydes samlet. Der er dog ved at ske et skift i behandlings
strategi, hvorledes at man udgår at anvende operation som en behandling og udelukkende
anvender kemo-og radioterapi, hvorledes en del af patientgruppen opnår at bliver kræft
fri. Det er dog ikke alle der bliver kræft fri eller respondere på behandlingen og derfor er
det foreslået at øge dosis af radioterapien til at forbedre raten af patienter der respon-
derer. Dette forbedrede responsraten, men medførte en række nye bivirkninger som er
et resultat af skade på det sundevæv der ligeledes bliver ramt af den højere stråledosis.
Derfor er det foreslået at indsnævre området for radioterapien påføres. Dette skal dog
gøres således at kræftvævet stadig får påført radioterapi og derfor er det foreslået at
reduktionen af områder gøres på baggrund af bevægeligheden af vævet. Der optages
dog ingen skanninger under behandling of derfor skal placeringen af vævet prædikeres.
PÅ nuværende tidspunkt er der udviklet forskellige metoder for prædiktionen af dette,
dog er ingen af disse udviklet til lymfeknuder og derfor er formålet med projektet at
undersøge om der kunne udvikles en metode dette.

Til dette er der udviklet en pipeline der indledningsvis bestod i at identificere of kvan-
tificere forskellige prædiktors der kunne være indikative for bevægeligheden eller der
fremtidige placering af lymfeknuderne. Dette er efterfulgt af en dataaugmentation idet
der anvendes en deep learning model, hvilket typisk kræver en større mængde data.
Denne augmentation udføres ved brug af en stacked autoencoder til at udvide datasættet.
Prædiktionsmodellen består af en deep learning regression model som er inspireret at
tidligere udviklede modeller. Selve strukturen for denne model er designet med bag-
grund i målet for modellen, outputtet af prædiktorerne og output placeringerne der
skulle prædikeres. Dette producerede to modeller der samlet prædikterede værdier der
repræsenterede lymfeknude placeringen.

Resultaterne for prædiktorerne of prædiktionsmodellen fandt and der var en indikation
på at de antagelser for associationerne der blev anvendt i forbindelse med at udvælgelsen
af prædiktors kunne være sand idet disse kom til udtryk både i den kvalitative og
kvantitative evaluering. Fordi der ligeledes blev identificeres associationer mellem de
forskellige prædiktors, blev flere modeller trænet på forskellige dataset, hvorledes det på
baggrund af de forskellige træninger fremstod at den model der opnåede det lavest loss
var den model der var trænet på det fulde dataset. Derfor var den endelige evaluering af
prædiktionsmodellen. Den endelig model havde en høj MSE for alle tre outputs og derfor
er der behov for yderligere udvikling af modellen eller udvikling af en ny model for at
kunne opnå en model der med høj nøjagtighed kan prædiktere lymfeknude placeringen.
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3 Introduction

Rectal cancer is a deadly disease which has a mortality rate of 900,000 patients worldwide
as of 2020. It is a disease in which cancerous tissue develops, accumulate and spread to the
surrounding tissues and lymph nodes[R. L. Siegel et al. 2020] The conventional approach
for treatment of this type of cancer consist of chemotherapy, surgery and radiotherapy,
which is given as either a monotherapy or a consolidation of these. Currently a shift
in treatment strategy is occurring as studies has shown that the surgical approach can
be omitted for a portion of the patient population. This new approach referred to as
watch and wait approach, uses a combination of radiotherapy and chemotherapy to
obtain a curative stage for the patients. Watch and wait has shown promising results
in regards to providing treatment to patients with rectal cancer, however a remaining
patients group do not respond to this treatment, and therefore an increase the dosage of
the radiotherapy treatment has been used. The increases in radiotherapy improved the
response rate for the patients, but likewise produced new side effects. To avert these it
has been proposed to reduce the area which this treatment is applied. The reduction of
this area, requires knowledge regarding the location and motility of the tumor and lymph
nodes to retain coverage of these. By quantifying and determining this, a reduction of the
volume can be performed, which still contains the lymph nodes and tumor. However, as
no scans are acquired during treatment the location during treatments has to be obtained
by predicting the new position of the lymph nodes. This new location is the product
of a displacement caused by varying organ stages which impacts the motility of others,
and therefore these might also impact the lymph nodes and could therefore be used to
determine the future position of lymph nodes. Therefore the initial research question is:

Which different factors could contribute to reducing the area of radiotherapy application to
improve the treatment of rectum cancer?
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4 Background

4.1 Rectal cancer

Rectum cancer is a deadly disease which is associated with symptoms such as rectal
bleeding, abdominal pain, tiredness, weakness and unexplained weight loss. [R. L. Siegel
et al. 2020] This is because of development and accumulation of cancer cells within the
rectum wall, which further migrates when malignant. These abnormal cells expands
beyond the circumference of rectum wall and migrate to the surrounding tissues and
enters the blood stream, and is transported to distant location where distant metastasis
is then established. [Mahadevan 2014]

4.2 Treatment

The treatment of rectal cancer consists of three different approaches, chemotherapy,
surgery and radiotherapy. The administration of these can be either as monotherapy or
as a cumulation, where the recommendation suggests utilizing the cumulation of the
treatment strategies for rectal cancer. [ Poulsen,Laurids Østergaard and et. al 2021;
Spindler,Karen-Lise Garm et.al 2021]

4.2.1 Surgery

Surgical intervention is a treatment which is rarely performed as a monotherapy but
rather utilized in combination with radiotherapy and chemotherapy. During surgery
the tumor, cancerous lymph nodes and the tissues surrounding these areas are likewise
removed. Three different surgeries are used for the treatment of rectal cancer which are
presented in the following list

• Open surgery

• Laparoscopic

• Transanal Endoscopic Microsurgery (TEM)

Regardless of the surgery approach it makes the patient more susceptible to infections,
while other side effects is likewise affiliated with this treatment type. [Recio-Boiles
et al. 2018; J. S. Wu 2007] The side effects are apparent as functional disturbances
which includes irregular bladder function, impotency, retrograde ejaculation, and urinary
retention that contributes to a reduced quality of life. [Dizdarevic et al. 2020; Recio-Boiles
et al. 2018; J. S. Wu 2007]
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4.2.2 Chemotherapy

The second treatment option is chemotherapy. This treatment is offered as either
a monotherapy or in composite with radiotherapy, which is referred to as chemo-
radiotherapy (CRT). [ Poulsen,Laurids Østergaard and et. al 2021] It is a treatment
strategy which utilizes a drug with cytotoxic effects to induces cell death. Therefore,
it is used to reduce the proliferation of cancer cells, and inhibit the tumor growth and
metastasis. The cells death is induced by the drug which contains antineoplastic which
interfere with the DNA of the cells, and then induce cell death. [How does chemotherapy
work? [updated 22. august 2019] 2007]

4.2.3 Radiotherapy

Radiotherapy is the last treatment options of the currently recommended treatment
strategy for rectal cancer. It is a treatment strategy which applies high energy x-rays to a
local area containing cancerous tissue, to kill the cancer cells. The high energy x-rays
alters the DNA, by creating an unstable environment where free radicals damage the
DNA of the cells, and induces cell death. The area this is applied on is based on three
volumes, which encloses different proportions of the cancerous tissue. The three volumes
are the gross tumor volume, clinical target volume, and planning target volume. [Burnet
et al. 2004]

Gross tumor volume

The smallest volume is the gross tumor volume. It is a volume which encloses the tumor
and malignant lymph nodes and it is therefore anticipated to have the highest density
of cancer cells. Therefore this could potentially be the recipient of higher dosages of
radiotherapy. An example of the GTV is presented in figure 4.1. [E. V. Maani and C. V.
Maani 2019; Burnet et al. 2004]

Figure 4.1: A representation of the GTV where the red delineation represents the GTV
area that contains the tumor, while the brown delineation is the rectum.
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Clinical target volume

The second volume defined for radiotherapy application is the clinical target volume
(CTV). This volume encloses the GTV and is added to include the additional microscopic
spread of the cancerous tissue surrounding the GTV. To achieve a curative stage this must
be treated adequately as this margin encloses the local cancerous tissue. [E. V. Maani
and C. V. Maani 2019; Burnet et al. 2004] A representation of the CTV is presented in
figure 4.2.

Figure 4.2: A representation of the clinical target volume where the blue delineation rep-
resents the CTV, the red represents the tumor position and the brown represents the
rectum.

Planning target volume

The planning target volume is the last volume which is added as a margin to manage
the uncertainties in the beam positioning and ensure coverage of the cancerous tissue
despite displacement of this. This margin encloses the CTV and therefore this volume
contains healthy tissue. A representation of the PTV is presented in figure 4.3.

Figure 4.3: A representation of the planning target volumes extension which extends be-
yond the CTV in blue, and the GTV which is delineated in red. The PTV extension beyond
the CTV is delineated in green.
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4.3 Evolvement in rectal cancer treatment

Recently an evolvement in the treatment of rectal cancer has been occurring. This
evolvement is based on a selective groups of rectal cancer patients which has obtained
a curative stage without the utilization of surgical intervention. This watch and wait
approach, has shown favoring results and it is estimated that upwards of 25 % of rectal
cancer patients can obtain a curative stage with this treatment strategy. [Papaccio et al.
2020; Dossa et al. 2017] The watch and wait approach facilitates the avoidance of the
side effects associated with the surgical intervention, mentioned in section 4.2.1, while
also improving the conditions for organ preservation during treatment. [Papaccio et al.
2020]

4.3.1 Watch and wait

The watch and wait approach utilize chemo-radiotherapy (CRT) to obtain a curative
stage, and thereby omits surgical intervention. [D’Amata et al. 2021; Bahadoer et al.
2022; Kim et al. 2021; Al-Najami et al. 2021; X. Zhang et al. 2022; Bahadoer et al.
2022] This has shown to be an effective treatment for a select portion of the patient
group, as presented in table 4.1. A varying level of curative responses was achieved that
ranged from 44 % in Al-Najami et al. 2021 to 84.3 % who obtained a curative stage in
Shiao, Fakhoury, and J. Olsen 2020, which suggest that the watch and wait approach
can be utilized for treatment and surgical approach can be omitted in select cases. The
specification and results of the studies investigating this is presented in table 4.1.

Study Year n Curative CRT
[Chadi et al.] 2017 608 68. 4%
[Kong et al.] 2017 256 69.2 %
[On, Shim and Aly et al.] 2019 248 84 %
[Shiao, Fakhoury and Olsen] 2020 306 84.3 %
[Al-Najami et al.] 2021 42 44 % – 76.4 %
[D’Amata et al.] 2021 55 75 %
[Kim et al.] 2021 19 68 %
[Bahadoes et al.] 2022 1552 74 % - 76%
[Zhang et al.] 2022 1254 74.8 %

Table 4.1: A representation of the number of patients (n) included in the studies and re-
sults of di�erent which addresses the outcome of CRT treatment for the patients which
initially had a positive response to CRT.
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The results in table 4.1, are indicative of a positive response for the watch and wait
approach. However, the results likewise show that not all patients responds to CRT and
achieve a curative stage and there is likewise a patient group which do ot respond to CRT.
These patient groups do not benefit from the watch and wait approach and therefore it
has been suggested to increase the dosage of the radiotherapy, to improve the number of
patients who benefits from this treatment and achieves a curative stage. [Hearn et al.
2021; Pang et al. 2021]

4.3.2 Increased radiotherapy dosage

As not all patients benefit or obtain a curative stage utilizing the traditional CRT treatment,
it has been suggested to increase the dosage of radiotherapy to improve the response
rate. A dosage increase can be obtained by increasing the dosage which is given at
each treatment, or by giving the dosage corresponding to a regular treatment, but with
additional treatments which accumulatively gives a higher dosage. [Rega et al. 2021]
Independent of the approach for dosage increase, studies suggest an increased response
rate for the patients receiving the higher dosages, when compared to patients receiving
a dosage corresponding to current treatment. [Hearn et al. 2021; Pang et al. 2021]
Specified response rates for the different studies is presented in 4.2.

Study Year n CRT Increased CRT
[Habr-Gama et al.] 2013 69 30 % 67 %
[São Julião et al.] 2018 221 27.4 % 33.4 %
[Habr-Gama et al.] 2019 81 58 % 78 %

Table 4.2: The results of comparative studies including n patients which have investi-
gated higher dosages of radiotherapy, where the CRT represents the groups which has
been recipient of normal radiotherapy and whom obtained a curative stage while the
Extended CRT represent the groups which where recipient of a higher dosage of CRT
who obtained a curative stage.

The higher dosages increased the response rate, so an improvement in the number
of patients who benefits the higher dosage CRT treatment was achieved. With the
higher response rate, there was likewise an improvement in the effectiveness of the
treatment as there was an increased number of patients which responded to the CRT,
and remained disease free which is indicative of improvement in disease free survival,
when receiving higher dosages radiotherapy. [Lorimer et al. 2017] The rates for these
results are presented in table 4.3.
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Study Year n pCR
[ Huang, Lee, and Young] 2020 1186 66.1 %
[ Hearn et al.] 2021 1817 24.1 %
[Delishaj et al.] 2021 TBD 28.2 %
[Wilson et al.] 2021 4359 35% – 40 %
[Fok et al.] 2021 127 43 % - 77.2 %

Table 4.3: The results of studies which have investigated higher dosages of radiotherapy,
where the pCR represents the groups the recipient of a higher dosage of RT who ob-
tained a pathological curative stage.

4.3.3 Side e�ects

Despite the improvements in the disease survival rate, the increased dosage of radio-
therapy inflicted upon healthy tissues included in the PTV margin imposed damage.
Therefore, this has been associated with new side effects which is present as a result of
this newly damaged tissue. [Dizdarevic et al. 2020] The most commonly reported side
effect is anorectal bleeding, which could be associated with tissue damage of the rectum.
The higher dosages also caused inconsistent bowel and bladder movement, which could
be because of the radiation damage inflicted on the bladder and bowel tissue, as these
often lies within the PTV. [Mahadevan 2014; Dizdarevic et al. 2020]

4.4 Reduction of the planning target volume

Because of these side effects presented in section 4.3.3 it has been suggested to decrease
the size of the PTV volume to reduce the exposure of healthy tissue, and lessen the
damage. However, the PTV is introduced to address the displacement caused by motility
to ensure coverage of the cancerous tissue, to administer adequate treatment. Therefore,
the reduction of the PTV performed by quantification of the motility displacements, to
obtain a new margin while ensuring the dosage delivery, has been suggested. [Björeland
et al. 2018]

4.4.1 Motility of displacement estimation and relations

It is suggested to reduce the area of the application of the radiotherapy by quantifying
the motility of the cancerous tissue and organs in the area. Motility is the motion of
the organ which causes displacements of these in the pelvis. The causes of motility can
be attributed to different factors which collectively produces a displacement. Organ
deformation and size variations has been associated with the motility. In particular an
association between the motility of the prostate and the size variation of the rectum and
the bladder has been identified. [Pos et al. 2003; Bairstow et al. 2020; Roch, Zapatero,
Castro, Hernández, et al. 2021] In addition this, the properties of the different tissues in
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the pelvis, impacts the motility as different tissues has different elasticity, and thereby can
expand and contract with differently. [Rafaelsen et al. 2013] An depiction of different
tissue types is presented in figure 4.4.

Figure 4.4: Illustration of the di�erent tissue types in di�erent layers of the pelvis

Quantification of this motility is a contributing factor which for reduction the PTV volume.
To do this, different methods has been identified through the literature search presented
in appendix A. These methods quantify the displacement caused by the motility. These
can be divided into three subgroups, manual methods, semi-automatic methods, and
automatic methods. Each of these sub-division consist of different methods which can be
utilized to quantify the displacement of different organs.

Manual

Early methods to quantize the displacement of organs in the pelvic area is generally
manually performed. These approaches manually annotate markers which represents
either the center of mass (COM) or the delineation of the organ. Studies utilizing this is
presented in table 4.4. Independently of the marker type, these are used as the starting
point for the calculation where the displacement is quantified based on the difference
between manually annotated markers and a reference markers. [Akino et al. 2013]
This approach has been utilized by multiple studies on different imaging protocols. One
protocol utilizes cine MRI to obtain the displacement margin based on largest distance
between the COMs’ by measuring the distance on acquired scans of the pelvic area,
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between each of the frames. [Mah et al. 2002] A similar approach is employed for lymph
node displacement, where the COM is likewise used as a measure, but with the reference
COM being based on an average of the scans. [Akino et al. 2013] In addition to the cine
imagery the same methodology has been used to determine the displacement between
scans acquired before and after treatment to determine the displacement of the prostate
between these scans. [Su et al. 2019; Bell et al. 2021]

Study Year Method Displacement Organ Reference
[Mah et al.] 2002 Fiducial marker Rectum Previous
[Akino et al.] 2013 Center fiducial Lymph nodes Previous
[Jensen et al.] 2019 Border fiducial marker Cervix / Uterus ITV(PTV)
[Su et al.] 2019 Center Fiducial marker Lymph nodes Prostate
[Bell et al.] 2021 Center Fiducial marker Prostate Previous

Table 4.4: The table contains an overview of article which utilize manual assessments
to estimate the motility, of the organ, referred to as the displacement organ and the
reference which is used as the starting point.

Semi-automatic

In addition to the manual methods which has been utilized to assess the displacement
other methods which are less reliant on manual assessment than the previously presented
methods has been developed. Those are semi-automatic approaches which although
still reliant on interaction includes a automatic component, for the displacement quan-
tification. Rather than obtaining the displacement as the direct distance between two
points, these methods rely on defining the motility present, and based on this obtain the
displacements. For this approach the methods presented in table 4.5 has been proposed.
Collectively the methods utilize registration to determine this motility, where the type of
registration is dependent on the purpose. Two registration types which are used in rigid
registration and deformable image registration (DIR). Rigid registration performed by
Pilskog et al. 2020 and Kershaw et al. 2018 is a registration which allows for translational
and rotational deformation of scans to obtain the highest similarity between structures in
the different scans, this is therefore be used to align anatomical structure such as bones
and organ structures while retaining scaling difference that occurs between scans. The
rigid registration is therefore used to to reduce the intra-patient movement, and then
to quantify the displacement a DIR registration is performed subsequent to obtain an
output which represents the displacement. [Kershaw et al. 2018; Pilskog et al. 2020] The
deformable image registration is a registration method which uses translation, rotation
and scaling of localized areas on the scans to calculate a deformation vector field (DVF)
which represents the deformations. [Gonzalez, Woods, and Masters 2009] This is used
to determine the motility of lymph nodes and vessels, by performing the registration on
fiducial markers which have been implemented or annotated along the bony anatomy.
The DVF then represents the translations, rotations, and scaling for the intra-patient

14



BACKGROUND: Reduction of the planning target volume

motion, when estimated for the bony anatomy, and the motility when performed in
accordance with markers along the lymph nodes or vessels. [Kershaw et al. 2018; Pilskog
et al. 2020; Marnouche et al. 2021]

Study Year Method Displacement Organ
[Schippers et al.] 2014 Border annotation enclosure Lymph nodes

[Groher et al.] 2017
Translations calculation/
Registration bony anatomy

Lymph nodes

[Kershaw et al.] 2018
Local rigid registration/
Distance

Lymph nodes

[Pilskog et al.] 2020
Rigid registration fiducial markers/
distance

lymph nodes

[Marnouche et al.] 2021
Registration border annotations/
distance

Vessels

[Krishnatry et al.] 2021
Registration bony anatomy/
Distance based on seeds

Lymph nodes

Table 4.5: This table is an overview of articles which utilize semi automatic assessments
to calculate the motility, of the organs which is presented as the displacement organ

Automatic

Methods for quantification of the motility which not rely on manual intervention has
been proposed in the recent years. These are methods which employ the registration
component, which are equivalent to the presented registrations in section 4.4.1, but
incorporate an additional component for quantification of the motility. Thereby a fully
automatic quantification of displacement is performed, which is less prone to inter-
observer variability, and all the margins are assess using the same methodology. Methods
using rigid registration determine the displacements based on implanted fiducial markers
which then provides the translation in three dimensions, which is extracted to represent
the displacement. [Roch, Zapatero, Castro, Büchser, et al. 2019; Roch, Zapatero, Castro,
Hernández, et al. 2021] Other methods uses DIR to provide a local images registration
that produces a vector field to represent the displacements. These methods performed
the DIR on implanted markers, annotated markers, or contours to calculate a vector
field for the displacement of the markers, which translation is used as a pseudonym for
the motion of the organ. Different placement of these markers is used to correct for
intra-patient motion when placed along the bony anatomy, while markers placed along
the organs provides the insight into the displacement of the organ. [Velema et al. 2012;
Björeland et al. 2018; Pilskog et al. 2020; Marnouche et al. 2021; Lawes et al. 2021;
Krishnatry et al. 2021] The output DVF of the DIR on markers along the organ, contains
the vectors which length represents the displacement of the organ. The full overview
of proposed automatic methods, and the organ which the displacement is quantified, is
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presented in table 4.6.

Study Year Method Displacement Organ

[Velema et al.] 2012

- Local deformable image
registration
- Calculate the vector
lengths for 95 % describes shift.

Lymph nodes

[Björland et al.] 2018
Local deformable image
registration between same image
sections of different scans

Lymph nodes

[Roch , Zapatero et al.] 2021
3D rigid registration
with fiducial markers

Rectum

[Lawes et al.] 2021

- Registration in relation to
bones and prostate.
- Registration in relation to
bones and lymph nodes
- Distance measurement based on
fiducial markers for prostate,
lymph nodes
- Subtraction of prostate
displacement from lymph node,
to obtain lymph node motility

Lymph nodes

Table 4.6: This table is an overview of articles developed fully automatic methods to cal-
culate the motility of an organ, represented in the table as the displacement organ

4.4.2 Current prediction models

There has been proposed a few models for prediction and description of the motility, however
as few models has been proposed, the following section will not be constrained to the pelvis
area.

The motility of organs in the rectum can be estimated, however, to do this scans was
acquired prior to treatment, during treatment and post treatment or acquired but without
treatment purpose. When administering radiotherapy treatment scans are acquired prior
to treatment but not between treatment sessions therefore the displacement caused
by motility during treatment cannot be directly assessed. The availability of the pre-
treatment scans could be used to derive a model which can predict the future location or
the displacement during treatment. Different models which can predict or associate the
displacements has been presented and are presented in table 4.7. These, were identified
through a structured literature search presented in appendix A, and are divided into two
subgroups which consist of regression models and Markov models.
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Regression models

Initially, models consisted of various regression models, where Qiu et al. 2007 and Van
Liew et al. 2007 obtained a model for prediction of organ placement based on an input
from surrogate marker on the skin. To do this a partial least regression models was
trained, which produced a linear regression model. More recent studies likewise use
regression models for prediction of the quantity of displacement, where Oates et al. 2017
used linear regression to associate MRI scans threshold with the probability of small
prostate displacement and Chen et al. 2018 used a linear regression model to correlate
internal and external markers to predict the internal motion of the tumor in the lungs.

GAN models

In addition to regression models two studies suggest using a Markov model or a Markov-
like model based on a generative adversarial network (GAN) to predict subsequent
location of an organ. The Markov model was based on cine MRI of the lungs and was
used to predict the subsequent phase of the respiratory cycle given the previous image. A
similar model was derived by Dai et al. 2021, where a GAN was used to extract features
from two ultrasound images and used DIR to calculate a deformation vector field which
was then used for prediction of the tumor location.

Study Year Model Displacement Organ
[Qiu et al.] 2007 Partial least regression Diaphragm
[Van Liew et al.] 2007 Partial least regression Tumor
[Oates et al.] 2017 Regression model Prostate
[Chen et al.] 2018 Regression model Lungs

[A. Mirzapour et al.] 2018, 2019
Markov model
- Semi markov model

Lungs

[Dai et al.] 2021
Markov-like network
- GAN network

Tumor

Table 4.7: An overview of the identified articles which developed models for predicting
the subsequent location of a particular organ or tumor.
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5 Research question

The patient group which has achieved the curative stage after CRT has facilitated a shift
in the treatment strategy for rectal cancer, as this approach has shown to be an effective
treatment strategy. However, a remaining group of patients do not obtain a curative stage
or do not respond to the current CRT treatment, and it has therefore been suggested to
increase the dosage of radiotherapy, which improved the rate of patients which responded
to the treatment. This imposed new side effect and therefore to omit those a reduction in
the area which the radiotherapy is applied, is proposed, to reduce the amount of healthy
tissue which is damaged. [Björeland et al. 2018; Dizdarevic et al. 2020] However as
scans are acquired prior to treatment and a coverage of the lymph nodes must remain to
administer adequate treatment, the position of the lymph nodes during treatment has to
be estimated. Current methods for predicting the future location of organs or tumors
has been proposed and is presented in section 4.4.2. None of these are developed for the
prediction of the pelvis lymph nodes locations. Therefore, developing a method for this,
could contribute to reducing the area in the pelvis where the radiotherapy is applied,
while ensuring coverage of the of the lymph nodes.

Research aim

How can a model for prediction of lymph node location be develop to predict the
future placement of the lymph nodes in pelvis during treatment based on scans ac-
quired prior to treatment

5.1 Objectives

To develop this methods sub goals are used to orient the process, throughout the devel-
opment, and to achieve the different aspects of the projects and produce the final model.
The objectives are therefore constructed to define different aspects which collectively
defines a final model. The objectives collectively contribute to obtain a model which
achieves the presented aim. In section 4.4.1 it was mentioned that different associations
between the state of organs and tissue properties was associated with a higher motility
and therefore these are used to define the state of the pelvis which further together with
the treatment strategy can contribute to determine the current state and thereby the new
placement of the lymph nodes. The objectives to obtain this is presented in the following
list:

• Identify different factors which could affect the lymph node location

• Implement methods for quantification of the identified factors
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• Develop a model which can predict the lymph node position during treatment

• Validate the prediction model performance quantitatively.
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6 Data

6.1 Provided data

The data which is provided for the model construction is from the AMPERE study
at Aalborg university hospital. Data consist of T2W 3 mm slices MRI, which were
interpolated to obtain full 3D scans. 16 patients has been included, and for each patient
a set of six scans are available, where three of the scans was acquired prior to treatment
and three scans was acquired during treatment, an example of a scan, with annotations
is presented in figure 6.1 Complimentary annotations for the scans vary, these available
annotations and the scans. These are presented in the table 6.1.

Annotations Patient
Bladder, bowel, CTV, Lymph node, Rectum 1, 2,3 ,4,5,6, 8, 9, 10
Bladder, bowel, CTV, lymph node, penile bulb, femoral heads, rectum, sacrum 7
Bladder, rectum, lymph node, tumor 11, 14, 15, 16
Lymph node, tumor 12, 13

Table 6.1: A representation of the annotations which is available for each patient, where
tumor and lymph nodes is available for all patients while the remaining annotation
di�er

There is a different number of available number of scans for each patient, the number of
scans available for each patient is presented in the following table 6.2

Patient Number of scans
1,2,3,4,5,6,7,8,11,12,13, 14, 15, 16 6

9 5
10 4

Table 6.2: A table representing the number of scans that is available for each of the pa-
tients

6.2 Additional annotations

Additional annotations was acquired through last semester project which developed a
model for detection of lymph nodes. As these annotations did not fully depict the lymph
nodes, further development on this model has been performed, to obtain fuller outlines
of the lymph nodes.
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Figure 6.1: Illustration of a scan with complementary annotations
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7 Methods

In the following section the methods for detection of lymph and tracking of these will be
presented

7.1 Model pipeline

Figure 7.1: A representation of the pipeline which is designed to develop a model for
prediction of lymph nodes future location. This consist of multiple steps which are
illustrated by the individually colored boxes

The purpose of the project is to develop a model which can determine the location of
lymph nodes for when a radiotherapy treatment is performed to give adequate treatment
to these. The location of these vary though out the treatment course, because of the
motility, size variations, and changes in disease progression, which is a results of one or
more radiotherapy treatments given to the patient. However, as no scans are acquired
during treatment the location of the lymph nodes has to be estimated based on scans
acquired prior to treatment. Therefore, the following pipeline shown in figure 7.1 is
proposed to determine the lymph node location in scans acquired prior to treatment.
This pipeline presents a model, which based on pre-treatment scans should predict the
future location of the lymph nodes in scans acquired during treatment. This prediction
of the displacement is performed using different steps that collectively determines the
lymph node position, in the during treatment scans. As input to the model different
predictors which has been associated with the location of the lymph nodes or the motility,
is used. The predictors which are introduced is influenced by different factors that affect
the motility or location such as, the size, deformation of the surrounding organs, and the
tissue properties which is presented in section 4.4.1, as these were associated with the
motility or range of motion. Therefore these are introduced for prediction the lymph
node location.

The model which is proposed for prediction of the future lymph node location is based
on the previous studies which is presented in section 4.4.2 where recent model uses
deep learning GAN, while earlier models use regression. By combining the deep learning
model and regression models a deep learning regression model for prediction of the
lymph node position is obtained. Deep learning regression model allows for identifying
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and describe hidden patterns and associations, such as the ones found in Roch, Zapatero,
Castro, Büchser, et al. 2019 and Mah et al. 2002, between the predictors to identify
a specific target, such as location markers. Because a deep learning model is utilized,
data augmentation is introduced as deep learning model requires a large amount of data
for training, which the dataset, presented in chapter 6 do not provide. Therefore, to
increase the size of the dataset, an approach recently adapted in biomedical classification
problems and widely used in material science called stacked autoencoders is used for
this purpose. [Wang, Liu, and Yuan 2020]
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7.2 Predictors

Different associations of the motility of organs in the pelvis region has been identified
as mentioned in section 4.4.1 and 7.1. Therefore, to predict the lymph node location
different factors, such as these association, which can contribute to determining the
location during treatment are identified to be used as predictors. The predictors which
has been identified are presented in figure 7.2 where size and tissue properties has been
associated with a higher motility of an organs or tumor tissues in the pelvis, and therefore
these are extracted and used as predictors, while the previous location is utilized to
provide a distinguishment between the different lymph nodes while also providing an
insight in to the area of the future location. [Dai et al. 2021; E. V. Maani and C. V. Maani
2019; Rafaelsen et al. 2013] The final predictor included is the motility as this provide
an insight into the range of displacement.

Figure 7.2: A representation of the di�erent predictors which has been identified which
could contribute to the prediction of the future position of the lymph nodes

The quantification of the presented predictors is achieved using different methods or
measures which is presented in figure 7.3. These computes values which represents the
specific predictors, and as there is different predictors there is likewise multiple methods
which are used for the quantification of the individual predictors.

Figure 7.3: A representation of the the metrics or methods used to quantify the di�erent
predictors
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Volume of bladder and rectum

The first predictor presented in figure 7.2 is the organ size, which is used as a predictor
as the size of the particular organs, bladder and rectum was in Roch, Zapatero, Castro,
Büchser, et al. 2019 and Mah et al. 2002 found to impact the motility of the prostate. In
particular, these studies found that a larger diameter of the rectum and size of bladder
was associated with a larger motility. The tumor volume is likewise included to describe
the disease progression, as other factors describing this is unknown. The determination
of the size is based on the 3-dimensional scans where the size of the organs is described
with volume as a measure, as this quantifies an enclosed 3-dimensional space. [Adams
and Essex 1999] This volume is based on the provided scans’ annotations of the bladder,
rectum and volume. Initially the voxel volume of one voxel is determined by calculating
the product of the length of one voxel for the length, width and height. Once the voxel
volume has been estimated the number of pixels which the organ consist is quantified, as
the summation of voxel values > 0 which represents the number of voxels in the organ.
The volume of the organ is then calculated as the obtained sum of voxels multiplied by
the voxel volume for one voxel.

Lymph node location

The second predictor which is introduced in figure 7.2 for prediction of the location of
lymph nodes is the location of the lymph nodes in the pre-treatment scans. There is
multiple lymph nodes in the pelvis therefore to separate the lymph nodes while also
determining the changes in position of equivalent lymph nodes, the previous locations
for these used as a predictor.

As the lymph node position during treatment is predicted based on scans acquired prior
to treatment, there is a progression in the size of the lymph nodes, which influence
the location. Therefore, as a measure for the location, the center of mass (COM) used,
as this is less affected by the size variations. The COM is the calculation of the 3-
dimensional object relative to the mass distribution, so there is an equal distribution of
mass surrounding the center. [Serway and Jewett 2018] The location of a lymph node
given as the COM as this is less dependent of the size as the shrinkage and growth of
the lymph node continues to progress before and during treatment, this continues to
represent location independent of the increase in mass.

The calculation of center of mass for the lymph nodes is based on the annotated and
the segmented lymph nodes from the previous project. On these segmentations and
annotation the value of a voxel values > 0 represents mass. The center of the lymph
nodes are then estimated by calculating the mean values of the mass for the height,
width and length, as illustrated in equation 7.1. The mean values in each direction then
collectively represents the center of mass, of the 3-dimensional lymph node.

Meanmassx =
Mx

MTotal
(7.1)
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With multiple lymph nodes present in the pelvis, the COM is calculated within a con-
strained region therefore to calculate the true COM for the lymph nodes a coordinate
defining the constrained region is added to calculate the true location on the full scan.
The equation to calculate this is presented in 7.2.

Truecentero f massn =
Mx

MTotal
+ xn (7.2)

In this equation the calculation of the true center of mass depends on the direction of
the calculation where an x, y or z coordinate defining the area of the region is added to
the direction which the mean of mass is calculated.

Tissue properties

Different lymph nodes are located in and adjacent to different types of tissues, as pre-
sented in figure 7.4. These tissue has different properties which could influence the
motility as Rafaelsen et al. 2013 found a larger motility of the tumor placed in the
perirectal fat when compared to the tumor in the rectum wall. Therefore, these different
properties are included as a predictor 7.2. An approach to quantify these properties is to
perform a texture analysis, which describes the appearances of a surface, such as a tissue,
by calculating different representative values. To do this Haralich features are extracted,
as these provides an insight into the appearance, feel, and consistency of the scan which
collectively can describe the different properties of the tissue. [Löfstedt et al. 2019]

Figure 7.4: Illustration of the tissues, which the lymph nodes are located in and adjacent
to. These mainly consist of fat and muscle tissue

To extract the Haralick features, a gray level co-occurrence matrix (GLCCM) is calculated,
which is matrix that defines the distribution of co-occurring gray level voxels of the area
surrounding the lymph node. Then based on this matrix different texture quantities is
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extracted, which then describes the different characteristics of the tissues. [Miyamoto
and Merryman 2005] An example of a representation of haralick features of fat tissue
with and without lymph nodes is presented in figure 7.5.

Figure 7.5: Representation of extracted haralick features from a tissue sample with and
without a lymph node present in the tissue. Here an indexing of the di�erent co-
occurring intensity values, where a di�erence in tissue representation can be seen at
the pixels labeled 5

Quantification of motion

Figure 7.6: The implemented pipeline which used used to obtain the obtain the motility
of the lymph nodes. Here the same two scans are registered in the first pipeline and in
the second pipeline

The last predictor which is extracted for prediction of the future lymph node location is as
presented in figure 7.2 the motility of the lymph nodes in the pre-treatment scans. This
motility, is introduced as a predictor to indicate the range of motility and displacement
for the lymph nodes.

The determination of this motility is based on a previous study Lawes et al. 2021 which
uses image registration of the scans to quantify the motility. The motility is estimated

28



METHODS: Predictors

through two registration pipelines. The first pipeline is performed to determine the
size variations, which consist of an initial rigid registration to create alignment of the
structures in the scans, followed by a local DIR of the lymph nodes that produces a DVF
which represents the size variations of the lymph nodes. A representation of the output
DFV is illustrated in figure 7.8. The second pipeline consist a DIR, where the output DVF
represent the motility and the size variations. The two DFVs from the registrations are
subtracted to obtain the motility to obtain a vectors which represents the translation
in the three dimensions which represent the medial-lateral (ML), anterior-posterior
(AP) and the superior inferior (SI) translations. An example of the rigid registration is
represented in figure 7.9.

Figure 7.7: representation of images before and a�er registration, where alignments of
the anatomical structure is presented as a shi� can be seen of the green coloration of
the edges of the tissue structure on the a�er image

For the rigid registration a translations and rotation of the scans is performed to obtain
the highest correlation with the reference image. This translation and rotations are
performed using transformation matrices for translation and rotation to deform the scans
to obtain the highest similarity to the reference scan, which is the previous scan. [Hill
et al. 2001] An example of this is represented in figure 7.7.

Figure 7.8:An illustration of the DVF a�er the initial registration pipeline which consisted
of rigid registration followed by a DIR.
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The DIR is based on the optical flow principle, which determines the motion of object,
relative to the velocities of the intensities in the scans. Different tissue has varying
intensity appearances as shown in figure 7.4 and therefor the determination of a shift
in location can be based on those tissue representations. This is implemented as an
optimization process which utilizes a similarity metric, normalized cross correlation, to
determine the highest intensity similarity between the voxel and neighboring voxels of
the next scan. The voxels with the highest similarity, within the neighborhood determines
the shift, which is represented by a vector. This process is continuing and is performed
for multiple neighborhoods of of voxels in the region containing the lymph nodes. The
multiple calculated shift the generates a vector field which represents shift in location.
[Lefébure and Cohen 2001; Brahme 2014] An illustration of an vector field representing
the final shift for a lymph node is presented in figure 7.9.

Figure 7.9: A representation of an up-scaled output vector field from the deformable im-
age registration of a lymph node.

7.3 Data augmentation

Once the predictors has been extracted, the subsequent step is to augment the extracted
data 7.10.

Figure 7.10: A representation of the current step in the full pipeline, with the method for
the current step

As a deep learning model is proposed for the prediction of the lymph node location, data
augmentation is needed. Deep learning models typically requires a large amount of data
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when training, which is not available as presented in chapter 6. Therefore, to improve the
training conditions for the model, the dataset is artificially increased using augmentation.
A method for data augmentation approach which recently has been introduced approach
to biomedical data for classification models and often used in material science is a stacked
autoencoder, presented in figure 7.10. An autoencoder is a type of neural network which
can be used to replicate the input data. It consist of two path an encoding path and a
decoding path as illustrated in figure 7.11, where the encoding path compresses the data,
and it dimensionalities, and the decoder reconstructs the data based on the compressed
dataset. [Wang, Liu, and Yuan 2020]

Figure 7.11: A representation an autoencoder structure, with the encoding an decoding
path

The implemented autoencoder is trained to replicate the entire dataset, the extracted
features, the future location of the lymph nodes, and after training the model from
the autoencoder is used to predict on the same dataset. These predictions are then
introduced into the dataset, to artificially increasing the dataset size. Subsequent to the
first autoencoder a second auto encoder is trained on the new expanded dataset, and a
prediction with the new model is then performed on the expanded dataset. These new
predictions are then introduced to the dataset. The final number of autoencoders, is
illustrated in figure 7.12.
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Figure 7.12: A representation of the stacked autoencoder principle, where autoencoder
2 is stacked on autoencoder 1, where the prediction of the autoencoder 1 is used as
input for training autoencoder 2

7.4 Prediction model

Once the predictors has been extracted and augmented the subsequent step in the pipeline
presented is to develop a prediction model. For this a deep learning regression model as
presented in figure 7.13 is developed, to predict the future location of the lymph nodes.

Figure 7.13: The last step of the pipeline used for prediction of lymph node location

7.4.1 Deep learning regression model

Deep learning regression models is an approach that has emerged in the recent years
which allows for identifying hidden patterns and associations which initially is not
evident. Using artificial neurons, as shown in figure 7.14, arranged in layers deep
learning regression models, identify these associations to create a model which can
predict an output. [Ramsundar and Zadeh 2018]
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Figure 7.14: Artificial neuron in the dense layers, which computes the dot product which
is then input the the activation function

When developing a deep learning model there is three main layers in which these neurons
are arranged, input layers, hidden layers, and output layers, as illustrated in figure 7.15.
The neurons in the hidden and output layers are computational units with two adjustable
parameters the weight and bias, which are altered throughout training of the model. The
weight parameter describes the importance of the different inputs to the neuron while the
bias determines the offset for when the neuron is computationally active. The adjustment
of these parameters is based on a loss function, which calculates the performance of
the model, and through backpropagation using gradient descend alters weight and bias.
[Ramsundar and Zadeh 2018]

Figure 7.15: The basic layers in a neural network input layer, hidden layer and output
layer.

Furthermore, non-adjustable parameters called hyperparameters are used to configure
different aspects of the model training. These are pre-determined parameter, that are
manually selected prior to training and impacts the networks performance and training.
In different ways these contribute to defining the training of the model, and it can thereby
impact the duration of training, the ability to learn, as well as how data is introduced
to the network. The hyperparameter which determines how data is presented to the
network is the batch size and epochs. These define the number of samples presented
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to the network for each iteration, and the number of times in which the full dataset is
presented to the network, during training. The duration of training, and the networks’
ability to learn is affect by a hyperparameter called learning rate which determines the
quantity of learning for each training iteration. [Ramsundar and Zadeh 2018]

7.4.2 Data splitting

To train and validate the model, the provided dataset has to be divided into subsets which
individually contributes to improvement of the model. The dataset is divided into to three
sub-sets, which is used for the training of the model, validation of the model throughout
training and test of the final model. [Ramsundar and Zadeh 2018; Hart, Stork, and Duda
2000] The full dataset is composed of the extracted features and the augmented features
produced by the stacked autoencoders. Of the collective dataset approximately 66 %
is augmented data points. For test-set 10 % of the full dataset is retained to the final
evaluation of the model. The remaining dataset is split approximately 90% for training
and 10% validation.

7.5 Implemented network

The design of the model for prediction is based on a multitude of factors, but with the
backbone in the traditional structure for a prediction network. Each of these factors
contribute with specifications to the network design, which is presented in this section.
The initial layer of the network is the input layer, which is a distribution layer that is
not computationally active, therefore the number of predictors determine the number of
channels in the layer. The implemented input layer is a common layer feature distribution
to the subsequent hidden layers in the network. The generalized construction of the
hidden layers consist of dense layers, regularization layers L1, L2, and flatten layers,
which each contribute with different computational functionalities to the network.

7.5.1 Layer types

Dense layer

A Dense layer is a commonly used layer which computes the output as the dot product
of the input and the kernel summed with the bias and send through the loss function
this principle is illustrated in figure 7.14. [Keras 2022]

L1 regularization

L1 regularization is to regularize the weights of the layer by shrinking these to zero. This
thereby indirectly acts as a feature selector, as if the weight is zero, the particular input
doesn’t contribute to the collective output. [Tensorflow 2021] For this layer a particular
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coefficient called lambda is used to determine the percentage of the weights which is
to be returned to zero. Therefore a larger lambda value can return a high number of
weights to zero, which can increase the loss. This is illustrated in figure 7.16. [Tensorflow
2021]

Figure 7.16: Illustration of L1 regularization with multiple lambda coe�icient for regu-
larization, in this particular case, a lambda value above zero return to many weight to
zero and the loss increases.
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L2 regularization

L2 regularization is likewise used in the initial layers as well as the final layers the
regularization technique regularizes the weights evenly, by reducing the magnitudes of
the weights evenly. This can therefore be used in layers which identify co-dependencies
between features, to reduce overfitting. [Tensorflow 2021]

Similarly to L1 regularization a lambda coefficient is likewise used in L2 regularization.
Here the term determines the penalty which is applied to the squared sum of the weights
in the layer, this regularization is illustrated in figure 7.17. [Tensorflow 2021]

Figure 7.17: Illustration of L2 regularization with multiple lambda coe�icient for regular-
ization, a lambda value of above 0 increases the loss and thereby regularization is not
need in the illustrated case.
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Dropout layer

Dropout layer is introduced to reduce overfitting as well. This is performed by dropping
part of the input data given to the subsequent layer. [Keras 2022]

Figure 7.18: Illustration of functionality of the dropout layer

Flatten layer

The flatten layer is used for flattening the inputs to the next layer. So the output of the
previous layer is reshaped into a 1D tensor which can then be passed to every subsequent
neuron effectively. This improves effectiveness and reduce the likelihood of overfitting
when dealing with multidimensional input data. [Keras 2022]

Figure 7.19: Illustration of the functionality of the implemented flatten layers

7.5.2 Structure of hidden layer and output layer

The layers which follow the input layers is the hidden layers which in the implemented
structure consist of dense layers, regularization layers and a dropout layer. The arrange-
ment of the layers following the input layer is impacted by the extracted predictors which
produced a large range of values for the output targets, as there is a more diverse range
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of y coordinates for location of the lymph nodes between scans for one patient when
compared to the x and z direction as presented in figure 7.5.2. It can be difficult to
predict such diverse output values on a small dataset, despite normalization of the inputs,
and therefore the hidden layers following the input is two separate layers as presented
in figure 7.21.

The hidden layers implement dense layer to identify the co-dependencies between the
extracted predictors that was identified in previous studies presented in section 4.4.1.
Moreover, other layer types are introduced to the hidden layers to stabilize the training
conditions for the network, as few data samples are available. These layers are flatten
layers, which reduce the dimensionalities of the data and regularization layers which
evenly penalizes the weights in the neurons to prevent overfitting.

(a) Locations variation in the ML direction
for a lymph nodes for the 14 patients
across scans

(b) Locations variation in the AP direction
for a lymph nodes for the 14 patients
across scans

Figure 7.20:A representation of the fluctuations of coordinate locations for lymph nodes
where it can be see that a larger fluctuations and less systematic variation in the ante-
rior posterior direction

Subsequent to the initial hidden layers, the network structure is refined to determine
which of the predictors contribute to the prediction of the specific output target values,
which describes the lymph node location. The target values consist of a 3-dimensional
coordinate an x, y and z coordinate which represents the COM of the lymph nodes and
therefore three output layers is implemented, which are connected to separate hidden
layers. These hidden layer implements L1 regularization to prevent overfitting of the
network during training while also contributing to refining the predictor selection for
the individual the COM displacements in the ML, AP or SI direction. For the final hidden
layer in the branches which predicts the lymph node position in the superior inferior
direction, one dropout layer is included to further prevent overfitting. The final specified
structure of layer is presented in figure 7.21.
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Figure 7.21: A representation of the final implemented network structure, which illus-
trates the branches as well as then output layers for prediction.
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7.5.3 Implemented hyperparameters

To train the network a number of manually adjust hyperparameters has been implemented
which was used to define the training. The implemented hyperparameters is presented
in table 7.1

Hyperparameter Implemented values model1/ model2
Batch size 15
Learning rate initial/final Decaying 1e-2/1e-5
Epochs Early stopping, patience=10
Optimizer Adam
Number of layers model1/model2 8/10
Regulizer L1/L2 L1 = 1 · 10−6 / L2 = 1 · 10−8

Table 7.1: Table representing the final implemented hyperparameters for the prediction
models

The hyperparameters was determined through an trial an error approach to obtain the
lowest loss while retaining a stable training of the model. For the parameters a static
batch size was used while the number of epochs and the learning rate was re-determined
based on the network performance on the validation loss, throughout training. The
number of epochs is determined using early stopping with a patience of 10, to prevent
overfitting. The learning rate is a decaying learning rate meaning that it slowly decays in
value within the predefined limitations. This is performed to avoid underfitting of the
model by preventing unsuited adjustments in weights and thereby not reach the proper
min of the loss. The optimizer implemented is the standard Adam optimizer, as this uses
two gradient descend to obtain an efficient training and weight adjustment.
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7.6 Validation

7.6.1 Predictors

For evaluation of the predictors is based on both a quantitative and qualitative assessment
of the extracted predictors to determine if these are viable for the prediction of the lymph
node motility and the displacement in scans acquired during treatment. This is performed
through a qualitative and a quantitative assessment.

Qualitative assessment of predictors

For the qualitative assessment a graphical approach for representation of the different
features is opted for to represented to output of the extracted features. These are used to
assess if the pre-treatment are representative and related to the during scans to provide
if these would be representative and if these where related to other in the same time and
the future location. Furthermore this is used to evaluate if the presumed associations
with the motility and displacements which was presented in section 4.4.1, is evident.

Quantitative assessment of predictors

The quantitative assessment of the predictors is performed to determine if there is an
correlation between the different predictors and how the predictors is correlated to
the future locations. Therefore a correlation analysis is used to determine if there is
associations between the different predictors and the future location.

7.6.2 Prediction model

The implemented prediction network is based of regression and therefore prediction
are evaluated as how much this deviates from the true value. [Hart, Stork, and Duda
2000; Zar 1999] A measure for this deviance between the predicted value and true
value is error, which is be used as a metric to calculate the average deviation of the
predicted from the true value. There is multiple evaluation metrics which can be used
for regression problems, however most commonly three metrics are used for evaluating
the performance,mean square error(MSE), Root mean square error(RMSE) and mean
absolute error (MAE). To validate the system one of the most commonly used metrics
MSE is used to calculate the difference between the predictions and the true value. The
MSE is an error metric which measures the squared difference of the predicted value
and the true value.

MSE =
1
n

n
∑

n=1

(yi − ŷi)
2 (7.3)

The calculation is based on the equation presented in 7.3, where n represent the number
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of samples, yi represents the predicted value and ŷi represents the true value. To
determine if the correct COM is predicted each output of the model has to be evaluated.
Therefore, the validation of the prediction model is performed by calculating the MSE
for the x, y and z to determine the models error.
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8 Results

8.1 Predictors

8.1.1 Qualitative assessment

The qualitative assessments of the extracted predictors is used to determine how the
chosen predictors associates with the displacements and motilities which was presumed
in section 7.2. Therefore, because these were presumed associations, they are evaluated
in the following section to determine if these were true.

Volume

As a predictor the bladder, rectum volume was extracted given that these has previously
been associated with the motility of the prostate. The volumes for the rectum and the
bladder varied between patients and scans. The extracted volumes for each patient is
presented in figure 8.3 and 8.2.

Figure 8.1: Illustration of the volume proportions for the tumor across scans for each
of the patients with available annotations. Here scans 1, 2 and 3 is the pre-treatment
scans and scan 4, 5 and 6 are acquired during treatment

For the bladder and rectum there were found to be inconsistencies of the volumes as
these were varying and therefore the pre-treatment scan does not represent the volumes
for the rectum or the bladder volume during treatment. There was found a larger bladder
volume for multiple patients in the initial scan, while there was also found a larger
rectum volume for multiple patients in the second scan, while the smallest volume for
the rectum volume was found in the last scans for multiple patients.
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Figure 8.2: Illustration of the volume proportions for the Bladder across scans for each
of the patients with available annotations of the bladder. Here scans 1, 2 and 3 is the
pre-treatment scans and scan 4, 5 and 6 are acquired during treatment

Figure 8.3: Illustration of the volume proportions for the Bladder across scans for each
of the patients with available annotations of the rectum. Here scans 1, 2 and 3 is the
pre-treatment scans and scan 4, 5 and 6 are acquired during treatment
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Lymph nodes center of mass

It was assumed that the lymph node locations shift between because of the motility,
and therefore these are assessed, to determine if there is a change in location. This is
evaluated based on the COMs and the motilities extracted from different scans. The
COMs is presented to determine if there is a change in the location and to see if these
represents the area. The COMs of one lymph node for all patients illustrated in figure
8.1.1.

(a) x placement for one lymph node, where
scans 1, 2 and 3 is the pre-treatment
scans and scan 4, 5 and 6 are acquired
during treatment

(b) y placement for one lymph node, where
scans 1, 2 and 3 is the pre-treatment
scans and scan 4, 5 and 6 are acquired
during treatment

(c) z placement for one lymph node, where
scans 1, 2 and 3 is the pre-treatment
scans and scan 4, 5 and 6 are acquired
during treatment

Figure 8.4: A representation of the variation the x, y and z coordinate for center of mass
for the same lymph nodes

The center of masses presented in figure 8.1.1 suggest that the displacement of the
lymph nodes in superior-inferior (SI), appears to be systematic. This is evident in both
the pre-treatment and during treatment scans. Similar patterns are not evident for the
displacement in the ML and AP direction as these do not exhibit a repetitive pattern and
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appears differently for each of the patients, throughout the pre-treatment and during
treatment scans. It is however evident that there is changes in the COM location of
the lymph nodes between scans, and these do exhibits similar area of location in the
pre-treatment and during treatment scans.

Lymph nodes motility

Initially it was presented in section 4.4.1 that at motility of the lymph node in the
pelvis was present, and the COM results suggest that there is a change in the location.
As different associations was assumed to influence the motility, the lymph motility is
evaluated to determine´if this was true. The results for the quantified motility ranges
between different scans for all patients is presented in figure 8.5, 8.6 and in figure 8.7.

Figure 8.5: A representation of the estimated lymph node motility in the medial lateral
direction. So 1/2 represents the motility estimated between the first and second scan

The presented plots show that the range of motility for the scans are largest between
the first and second scan in the SI and ML direction. For the motility in the AP direction
the obtained motility was representative of the motility in the remaining scans, however
with there being a slightly larger range for motility obtained for scan 4/5, which could be
contributed to increase in bladder volume for multiple patients. The motility in the AP
direction co-exist with a significant change from large to smaller volume of the bladder
for multiple patients between the first two scans. Thereby the size of the bladder might
affect the motility of the lymph nodes. Similarly there was found to an higher average
motility between the last two scans in the ML and SI direction which co-exists with
a smaller rectum volume for multiple patients, which could indicate that the rectum
volume likewise affects the motility of the lymph nodes. Additionally, there is found to
generally to have slightly larger values for the motility between the first two scans and
the last two scans in the SI and ML direction for multiple patients which is evident with
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Figure 8.6: A representation of the estimated lymph node motility in the AP direction
between scans. So 1/2 represents the motility estimated between the first and second
scan

Figure 8.7:A representation of the estimated lymph node motility in the superior inferior
between scans. So 1/2 represents the motility estimated between the first and second
scan
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smaller tumors volumes for multiple patients.

8.1.2 Quantitative assessment

In addition to the qualitative assessment a quantitative evaluation of the predictors is
performed to determine if there is associations between the motility of lymph nodes, the
COM and volumes as presumed in section 7.2. To obtain this quantitative assessment a
correlation analysis is performed, which presents the correlation between the predictors,
including the motility, and the future location of the lymph nodes. A figure representing
the correlation between the predictors and the location is presented in figure 8.8.

Figure 8.8: Illustration of the correlation analysis performed to determine if there is an
association between the di�erent predictors and the motility of the lymph nodes. Here
the x-motility is the motility in the ML direction, y-motility is the motility in the AP di-
rection and the z-motility is the motility in the SI direction

The correlation between the different predictors and the future location is presented in
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figure 8.8. This suggest that there is association between the predictors and different
parts of the coordinate, which represents the current and future location. The correlation
analysis found a correlation for the x and y coordinate of the COM and the bladder
volume which was indirectly found in the qualitative assessment as the motility in the AP
and the bladder was associated. Furthermore, there was found to be a slight correlation
between the motility in the ML direction,shown as Motility-x 2/3 was associated, and
the rectum volume, which is compatible with the qualitative assessment which likewise
found that the might be an association between the motility and the rectum volume. A
high correlation between the motility in the SI direction represented as motility-z-2/3
and the tumor volume, which in the qualitative assessment was with the ML motility,
presumed to be somewhat related to tumor volume or the disease progression.

Furthermore, there is found a high correlation in between the previous and future
z coordinate, which could be associated with the identified pattern in described in
qualitative assessment.

8.2 Data augmentation results

Data augmentation

Data augmentation was employed to increase the datasets size. This was obtained
through training of stacked autoencoders, which produced new data with the same
association between all the values, which is similar to the original dataset. The increase
in the size of the dataset was achieved an illustration of the data samples and their
distribution relative to to the true values is illustrated in figure 8.9.

There is a small deviance in the values, that has been augmented which is evident in
the small blue edges which represent the true values on the figure 8.9. The precision
of the augmented data samples varied where the new data samples for the volumes
and the x and y coordinate generally distributed around the original values within the
dataset , while values for the z-coordinates, texture features, and the motilities deviated
significantly, was returned close to zero or to zero as illustrated for the motility in the AP
and ML direction and therefore all the new augmented points are located on the same
spot in the plots on the second row in figure 8.9.

8.3 Prediction model

Hyperparameters

For training of the network hyperparameters was used to determine the different aspects
of training. The hyperparameters which was implemented in the network is presented in
table 8.1. It was found that there was a deviation in the hyperparameters which produced
a stabilized training for the two models, where the training of the final network models
is shown to be stable with minor fluctuations in the training for all three coordinates.
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Figure 8.9: Illustration of the distribution of the bladder and tumor volume augmented
where the red is augmented values and the blue with lies under some of these data
points are the true values. Similarly the 3rd and 4th plots illustrate the distributions of
the true values and augmented values for the motility in the ML and AP direction

Hyperparameter Implemented values model1/ model2
Batch size 15
Learning rate initial/final Decaying 1e-2/1e-5
Epochs Early stopping, patience=10
Optimizer Stocastic gradient descend
Number of layers model1/model2 8/10
Regulizer L1/L2 L1 = 1 · 10−6 / L2 = 1 · 10−8

Table 8.1: Table representing the final implemented hyperparameters for the prediction
models
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Prediction model

Different correlations between the predictors, as presented in figure 8.8, was found.
Because of this different models was trained to determine which final input predictors
produces models with the lowest loss. In particular the future location and motility
was related to the organ volume and therefor models were trained, on dataset which
excluded motility or volume, to evaluate which predictors produced a model with the
lowest loss. The same model structure was used to train, these variations of the dataset,
and the loss curves for these models are presented in figure 8.10.

Figure 8.10: Illustration of the correlation analysis performed to determine if there is an
association between the di�erent predictors and the motility of the lymph nodes.

The loss curves in figure 8.10 suggest that the model could identify patterns and associa-
tions which is related with the future position. The final model which obtained the lowest
loss was the model what was trained on the full dataset, that included all predictors and
therefore the final validation is performed on this model.

Validation is performed using the test set, with the MSE as the validation metric, presented
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in section 7.6. The validation MSEs for the final model is presented in table 8.2.

Output MSE
Output layer X 0.009
Output layer Y 0.065
Output layer Z 0.057

Table 8.2: Output MSE prediction models

A high MSE is obtained for the currently trained model and thereby the positional
predictions deviated from the true values of the lymph node locations which suggest
that the current model, despite stable training, is incapable of generalization using the
identified assciations for predictions on new data.
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9 Discussion

9.1 Results

The purpose of the project was to develop a model that could predict the future location
of lymph nodes based predictors associated with the motility or the future location. To
do this a pipeline consisting of extracting multiple predictors, data augmentation and a
deep learning regression model to predict the next location, was proposed.

9.1.1 Identification and quantification of predictors

The assessment of the identified predictor both the quantitative and the qualitative
revealed direct and indirect associations with the other predictors and the future location
of the lymph nodes. Through the qualitative assessment it was revealed that an average
larger motility in the ML and SI direction was present when there was a smaller rectum
volume, while a larger bladder in the first scans with a smaller in the second scans
for the pre-treatments scans co-existed with a larger range motility of the AP direction.
The identified associations were likewise supported by the quantitative analysis which
found a correlation of the bladder and rectum with the future locations and motility.
These associations, in the quantitative and qualitative analysis, between the location
and motility is compatible with findings in Roch, Zapatero, Castro, Büchser, et al. 2019
which likewise found there to be an association between the rectum and bladder size
and location. Therefore, these results could be indicative that the assumption regarding
the lymph nodes motility and volumes are true.

The qualitative assessment of the COM showed variation in the locations of the COMs
which indicates that the COMs was somewhat representative of the area, in which the
lymph nodes are located. However the z-coordinate revealed a particular pattern, as this
occurred in a repetitive fluctuating pattern which is indirectly evident in the correlation
analysis as there is a high correlation between the future and current locations. As this
particular pattern is not evident in the volumes or motilities, this could indicate that the
variance in this particular direction is affected by another predictor, other than the inverse
correlated rectum volume, which has not been extracted such as respiration. Respiration
exhibits a similar fluctuation pattern, and has previously been shown to have an impact
on the motility of lymph nodes for cervical cancer. [Rai et al. 2016] Therefore, an
additional predictors which represents this should be included as a predictor to improve
the performance of the model.

The estimated margins of the motility are inconsistent with the margins found in the
study by Björeland et al. 2018. However, there is obtained an average larger margin in
the AP direction when compared to SI, and ML directions which is similar to the study.
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The estimated motility ranges is similar to the once found in Rai et al. 2016, where the
margins, for pelvic lymph nodes, in the SI direction is within the same range to the once
found in this study, while the margin for the AP and ML directions is slightly smaller. The
motility is similar, but still deviates in the AP and ML direction, which could be attributed
to the method which is used for quantification of this. The estimation of the motility
was based on multiple registration of the images which each is prone to error that can
accumulate with each alignment. This becomes evident in the final DVF, and therefore in
the final translations, which are used as representations for the motility.

For the tumor volume the qualitative assessment, based on figure 8.1, showed a pro-
gression in tumor volume which increases or slightly fluctuates in the pre-treatment
scans while a reduction occurs in the during treatment scans. These changes in the
tumor volume provided an insight into the disease progression, where smaller volumes
for the tumor was generally obtained in the first and last scans, this co-existed with an
average larger motility between the first two scans and the last two scans in the ML and
SI direction. This was likewise supported by the quantitative assessment was found a
significant correlation between the tumor volume and the SI motility. These association
might be attributed to less cancer tissue being present or less swelling of the damaged
tissue in the first and final scans. This could indicate that there is a variation of the
tissues, and therefore including different texture features contributed to quantifying
the properties and describing how the tissue was altered throughout the disease-and
treatment progression.

9.1.2 Data augmentation and prediction model

Data augmentation

Varying results was obtained regarding the output of the stacked autoencoder as the
augmented values for most predictors was representative, such as the volumes and the
COMs’ while the motilities, textures and z coordinate was returned close to zero. The
values close to zero could be associated with the range of values which are present in the
dataset as an autoencoder is used to replicate the dataset by inducing small deviance from
the original values. This might force the smaller values for these extracted parameters to
return close to zero and induces noise and uncertainties into the model when training
which could contribute to the high MSEs’ for the final prediction model. Because of
this another augmentation approach could be employed, to obtain additional data. This
could be performed directly on the scans as the properties and relations between the
stage of the pelvis and the lymph nodes motilities, is known. Therefore augmentation in
a new manner which is based on this new knowledge could be developed, by generating
scans which is based on these.
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Hyperparameters

The implemented hyper parameters of the model was found through a trial and error
approach, which might not be suitable for determining the hyperparameters as these
influence the training of the model and therefore affects the final models performance.
Therefore, a systematic approach to determining these values, such as grid search, should
be employed for estimation of the the proper values for the current model which could
improve the training and subsequent the generalization performance of the model.

Prediction model

Multiple prediction models was trained on the full dataset and on datasets which excluded
certain predictors where the losses for the losses for the training is presented in figure
8.10. The training losses show that the model with the lowest loss was trained on a
dataset which included all the predictors, and therefore despite the correlations between
the predictors one predictor does not compensate for another, when training a prediction
model. Therefore each of these predictors contributes to predicting the future location
through improvements of the training and lowering of the loss. This further supported
the choice of identified predictors in section 7.2, as the performance was reduced when
predictors was removed. Despite this the final model still produced a high MSE during
the validation and therefore there was a significant deviance between the predicted
location of the lymph nodes and the true location of the lymph nodes. This deviance of
the predicted values could be attributed to different parameters previously , or other
parameters such as the included layer or the network structure.

The implemented network consist of three layer types, dense, regularization and dropout
layers which was included as these are the common layers in prediction models, while
also providing regulation of the weight and biases in the network. This might have
affected the model performance as to much regularization could apply penalties to
appropriately fitted weights and therefore increased the MSE. This could have been
omitted by simplifying the model, but this might also reduce the model performance.
Other model structures could be employed to obtain a model which has a lower error.
Such a model could be designed as three separate models which each predict part of the
coordinates which collectively estimates the COM location of the lymph nodes. A model
design composed of three different models would be less reliant on balancing the losses
from the different outputs of the model throughout training. Furthermore, the network
parameters for this model structure would be fully be customized for the prediction of the
individual coordinates. This would however not utilize of the co-dependencies and high
correlation between the target coordinates shown location presented in the correlation
analysis 8.8. Therefore, an alternative model type could be opted for.
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Alternative model designs

Currently the model structure obtains a high MSE for the output of the model indepen-
dently of predictors are presented as input, and therefore an alternative model could
be opted for to estimating the future locations. An alternative could be to predict the
future scans containing these locations which could be achieved, with a GAN network as
in Mirzapour et al. 2019 and Dai et al. 2021. A GAN network could be utilized to predict
the subsequent scan at a given time and then based on the newly predicted scans the
locations would be extracted. For this approach to predicting the location, the multiple
outputs which currently describe the location as well as balancing the losses, would be
omitted, however this would require a significant amount of data to create this model.

Alternatively, this prediction could be to defined as a probabilistic classification with many
different classes where each voxel coordinate location is represented by a class. This
approach could be used as there is limitations for the values which the future location of
lymph nodes can have, and therefore a discrete approach such as classification could be
used instead of an continuous prediction. The limitations for the values could be defined
by different constraints such as the image dimensionalities which provides constraints to
the possible values that can contain anatomical information while additional constrains,
can be given by using the values for the motility range found in articles Rai et al. 2016 or
Björeland et al. 2018 or by using the estimated calculated motility presented in section
8.1.1.

9.2 Limitations

There have been different limitations which is associated with the current model. These
limitations are affiliated which different aspect of the model, the inputs, and the training
of the final model. Limitations which has been identified to affect the model includes the
available annotations combined with the method approach and the size of the dataset.
Having a small dataset consisting of 16 patients, is a limited number of patients to provide
a generalized picture of a patient population which therefore affects the models structure
and the generalization of the model. In addition to this a varying number of annotations
as presented in table 6.1. The model was build to predict the future location based on
the scans acquired pre-treatment which generally consisted of 3 scans. However, there
was not three scans available for all patients 9, and 10 was not included for training
or validation of the model, furthermore a varying number of annotations was available
and for patient 12 and 13 the annotations for the bladder and rectum was not available.
As the patients lacked scans or annotations these were not included in the final dataset
and therefore these was not included in the final dataset for the prediction model which
consisted of 12 patients.

To omit the annotation limitation and thereby re-introduce patient 12 and 13 to the
dataset, unsupervised segmentation approaches, such as region growing could be used
to obtain the annotations. Based on the representation of the organs on the scans, these
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methods could provide a viable representation of the organs. Unsupervised methods are
however prone to have to having a lower accuracy of the outline, which would influence
the extracted volumes and this could further negatively impact the MSE of the model, if
the segmentations are not reliable.

Segmentation reliability of the lymph node annotations is also a limitation which could
influence the model performance. The COMs was based on the segmentations provided by
a deep learning model developed prior to the project which has a slight error and thereby
did not represent the full lymph node outline, this could have provided inaccuracies
which would be evident in the calculated COMs. This would influence the training of
the model and subsequent the output of the model, and therefore the accuracy of the
segmentation model provided a limitation to the model.

9.3 Future perspectives

The aspect of predicting the future location based on previous scans and predictors
can be applied for other types of cancer or to other physiological phenomenons. This
methods could be used with multiple other types of cancer where radiotherapy treatment
is applied. It be utilized to predict the future location of the lymph nodes and maybe
tumor to decrease the area of application, to refine the volumes, and reduce the amount
of damaged healthy tissue. This could however require to identify other predictors which
is specific to this type of cancer, as this would be area specific. An area such as in the lung,
could introduce this concept where the respiratory phase could be used as a predictor.

Another aspects were it could be beneficial to use such a system when looking a blood
flows. This could be used to determine whether blood flow is turbulent or not, using the
previous location and viscosity as a predictors. A specific target could be represented
by a marker which in blood could be an air bubble as this would be evident in scans.
Significant deviance in the specific target value and the predicted value could be indicative
of a turbulent flow of the blood.

Although there could be different applications of the specific methodology and altered
versions of this the current model need further development and alterations for it to be
applicable in clinical practice is needed.
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10 Conclusion

The project aim was to develop a model which could predict the location of the lymph
nodes in scans acquired during treatment. An approach for this was presented in chapter
7.1 which consisted on extracting different predictors and which was used as input to
a deep learning regression model, which produced an output prediction of the lymph
node location. For the presumed assumptions there was found to be associations for the
rectum and bladder volumes and the motility of the lymph nodes in different directions.
This, therefore, indicates that the assumptions made regarding the lymph node motility
was true. However other predictors exhibited pattern which was not similar to the
motility and therefore additional predictors associated with this should be identified.
Based on the extracted loss plots these suggest that the presented model structure was
able to identify association within the predictors and therefore the features to determine
the future position. However, the validation suggests a large error and thereby the
models generalization performance is low, which can be attributed to a small dataset,
the extracted predictors, or the model structure. Therefore another model design should
be employed to improve the generalization, while acquiring additional data, identifying
new predictors and include new predictors which could contribute to obtain a model
with a better generalization performance.
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11 Portfolio

This portfolio is regarding the project management throughout the 10th semester on
biomedical engineering and informatics. The following portfolio describes the the process
for the work,including the motivation for the project and the opted approach for the
project work, as well as the method for time management throughout the semester.
Lastly the the project was performed with external collaboration, which will likewise be
described.

11.1 Motivation

Throughout my masters degree the focus has been to explore current and develop
new methods for signal and image processing and analysis. This provided different
competencies and insight into approaches for analyzing and processing images, therefore
the motivation for this project has been to develop methods which could contribute
to improve the current treatment rectal cancer using these competencies. It through
literature it was identified that there is currently few assessments of different aspects
which affects the lymph nodes motility, and no model for predicting the future location of
the lymph nodes. This absence of knowledge regarding the associations with the pelvis
lymph nodes and the lack of method for determining the future location provided a
constraint for decreasing the area for application of radiotherapy, as the location during
treatment is unknown. Therefore to provide a contribution to the currently unresolved
problem, I tried to contribute using existing competencies and develop new competencies
within image processing and analysis, to identify the pelvis’ organs associations with
the lymph nodes location and motility and develop a model which could predict the
future location so the area of application could be decreased. Thereby contributing to
investigating this area, remove this limitation and improve the treatment of rectal cancer.

11.2 Work approach

The process for the work throughout the development and execution of the project was
an iterative. This iterative approach was employed for the background, design and the
development of the model. The approach was employed as the design and implementation
of the final model was depended on the output of the previous steps in the pipeline
including the presumed assumptions as well as the size of the dataset. Furthermore this
process was iterative as the design of the prediction model was found through literature,
while also being impacted by other factors which influence the structure and performance.
Therefore the literature, data and predictors were revisited on multiple occasions to
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obtain a final model structure. The re-visiting to the literature to determine the pipeline
allowed for looking into different fields to gain knowledge of how to approach some
of limitations and models, as no previously models for location prediction has been
identified, and thereby there was no previous model as an starting point. This provided
inputs from different aspects and fields to generate, the final pipeline.

This was however goal oriented as it is very target specific , which might have induced a
slight bias into the pipeline design and thereby into the obtained results.

11.3 Time management

The work progress was in an iterative manner and to manage this and to produce a
final product a time table was utilized. Time management was performed using a
time schedule which was derived in the initial stages of the project and the iterated
throughout the project duration to compensate for the addition to new tasks or to adjust
for unforeseen changes. This time schedule was developed is presented in the following
section.

11.3.1 Time schedule

To structure the project and time though-out the semester and example is this is presented
in figure 11.1

Figure11.1:A representation of the constructed time table which was used for time man-
agement

The construction of the time table is based on initially on defining the task which in the
presented figure 11.1is shown to the left. These consist of all the different task which has
to be written or a task which has to be performed is included to delineate a overview of
the different aspects which the project consists of. These task are grouped into different
pools according to larger segments of the project rapport such as background, method
or results, which then provides an overview of completion of different segments of the
rapport.
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Following the definition of the tasks a timeline for the different tasks is established
through back casting from the deadline. This timeline is presented in a multitude of
ways to provide additional information regarding when the task is performed, how long
it takes, the time which has already been used on the task and visual representation
of the duration of the individual task over the entirety of the semester. The different
time definitions are represented in the columns which are placed subsequent to the
column defining the individual task. Thereby the time which is provided for each task
is placed subsequent to the specific task. The task duration is visualized the row of the
specified task across a time series which represents the semester. The length of the row
is determined based on the start and end date which then colors the rows of that time
span. The coloration of these are in two colors, one which represents active task and
tasks which have not been completed , blue and the other representing when completed,
gray. This visualization is likewise presentment in figure 11.1

11.4 Supervisor

Supervisor meetings were held consistently throughout the 10th semester to provide
feedback on written material, inputs regarding the projects background and the develop-
ment and design of the solutions. This furthered the project through out the semester
by giving inputs and question which allowed for reflection of the current methods and
contents of the project. Furthermore, supervisor likewise provided drop-in supervision
either in person or through email where quick questions or inputs to the project which
did not require an entire meetings, where discussed or answered.

11.5 External collaborations

The semester was performed with external collaboration from the Aalborg university
hospital which provided data, as well as insight into different aspect of the project. As
these had different backgrounds which provided insights and knowledge from different
fields.

The external collaborators provided help in a multitude of ways such as providing articles
which contributed to different aspects of the project in the background, methods and
discussion. Furthermore the external collaborators provided insights into how to interpret
the outputs of steps in the project and suggested different aspect could influence these.
Thereby different aspects of the background and results were provided which contributed
to the development as well as the interpretation and discussion of the results of the
project.
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A Literature search

The databases which are utilized as tools for obtaining the literature are PHYSICAL
REVIEW JOURNALS Published by the American Physical Society, PubMed, Embase and IOP
SCIENCE These are utilized for accessing material as these allow for addressing medical
as well as the physics aspects of the problem. The final literature search was performed
the 27th feburary 2022, using a search query consisting of keywords combined using the
operators AND, OR and NOT. Keywords were identified through an initial unstructured
literature search which provided the and based on the a query string was constructed.
This was searched in the four previously mentioned databases. The keyword included
in the search queries is presented in table A.1, for the motility methods and A.2, for
the prediction and quantification. These table represent the searches performed for the
methods presented in section 4.4.1 and 4.4.2.

AND
Motion Pelvis organ Quantification
Movement Rectum lymph node Estimation

OR

Motility

Table A.1

AND
Intra fraction motion Prediction Model
Intra fraction movement Predict Models
Intrafraction motility Association

OR

Regression

Table A.2

Once the searched for the respective areas there where for motility estimation found 157
number of articles and the prediction models found 67 number of articles. Subsequent
to identification of the article these were sorted according to pre-defined requirements
to the articles which excluded article which were not relevant for the study. The process
and number of articles from the literature search is presented in the following prisma
charts in figure A.1 and in figure A.2.
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LITERATURE SEARCH

Figure A.1: Illustration of the prisma charts which describes the approach for obtaining
literature which contains the currently developed methods for estimation of motility
in the pelvis area with a fucus regarding lymph nodes presented in section 4.4.1
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LITERATURE SEARCH

Figure A.2: Illustration of the prisma charts which describes the approach for obtaining
the currently proposed methods for prediction in section 4.4.2
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