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RESUMÉ

I løbet af det seneste årti er interessen for solenergi som vedvarende energikilde vokset i takt med det øgede fokus på
den globale opvarmning [1]. Selvom dette er en positiv udvikling er der udfordringer forbundet med at integrere solenergi i
el-netværket, da el-netværket konstant skal være i balance. Dette balancekrav afhænger af præcise prognoser af produktion og
forbrug. Modsat kraftværker der anvender fossile brændstoffer, hvis produktion er forholdsvis let at forudsige, er prognosering
af energiproduktionen fra solceller en svær opgave, da produktionen afhænger af mange og komplekse forhold og variable
[2]. Dette er forhold og variable så som vejret, solens placering på himlen og jordens rotation. Selvom der findes en komplet
og veldefineret model for solens placering og jordens rotation er vejret stadig meget svært at forudsige, selv med komplekse
fysiske modeller og enorme beregningsresourcer.

Derfor har prognosering af solenergi som forskningsfelt fået meget opmærksomhed i løbet af de seneste år, hvilket har
resulteret i mange forskellige forslag til hvordan man kan opnå en præcis prognose. Forudsigelse af den direkte produktion fra
solceller kræver data fra eksisterende solceller, men da solceller ofte er ‘bag-måleren’ er denne data ikke lettilgængelig, fordi
den eksakte produktion ikke bliver registreret. Men selv hvis at alle ejere af solceller var kendt måtte deres data ikke frigives
på grund af persondataloven [3]. Derfor er forudsigelsen af solens stråling i et givet område et alternativ til forudsigelsen af
den eksakte produktion. Denne enhed kaldes GHI. Da solens stråling er inkluderet i vejrmålinger, som er vidt tilgængeligt
og direkte korreleret med produktionen fra en solcelle, er det muligt at anvende en prognose af solstråling for at estimere
produktionen af solenergi i et specifikt område [4].

Dybe maskinlæringsteknikker bliver ofte anvendt til lignende forudsigelsesproblemer, da disse teknikker formår at lære
komplekse mønstre i dataen, men en udfordring med dybe modeller er, at de ofte er ’black-box’, og derfor kan forudsigelser
fra dybe modeller være svære at forklare. Denne udfordring gør, at beslutningstagere ikke kan træffe beslutninger på baggrund
af disse forudsigelser, da baggrunden for beslutningerne ofte skal kunne forklares og dokumenteres [5, 6]. Denne artikel
præsenterer Probabilistic Solar Irradiance Transformer (ProSIT) som er en ny end-to-end maskinlæringsarkitektur der producerer
multihorizon probabilistiske forudsigelser af GHI med mulighed for øget forklarlighed. For at lære både kort- og langtids
afhængigeder på tværs af input-sekvensen gør ProSIT brug af flere komplekse komponenter for at indkode det højdimensionelle
feature space, såsom Bi-Directional Recurrent Neural Networks [7] der opfanger lokale temporale relationer i input sekvensen,
Temporal Multi-Head Self-Attention Layers [8] som opfanger temporale afhængigheder på tværs af tidspunkter i en sekvens,
hvilket giver modellen mulighed for at fokusere på flere forskellige dele af en sekvens, og Temporal Convolutional Layers [9]
som afkoder modellens komplekse repræsentation, og til sidst produceres en multi-horisont kvantil prognose.

Temporal Multi-Head Self-Attention giver muligheden for at få et indblik i modellens forudsigelse, da attention mekanismen
opprioriterer bestemte tidspunkter i en sekvens som den mener er af stor betydning for at kunne forudsige de næste timer
frem. Disse opprioriteringer er mulige er udtrække af modellen og dermed give et visuelt indblik i modellens fokus [8].
Derudover består ProSIT af Residual Connections [10] og Gating Mechanisms [11] der er med til ad-hoc at formindske brugen
af komplekse funktioner, hvor der ikke er brug for dem. Gating mekanismer og Residual Connections ‘analyserer’ produktet
af en komponent og ‘beslutter’ sig for at bruge det non-lineære produkt eller reducere produktet til en lineær funktion. Det
tilfører en fleksibilitet til ProSIT som reducerer risikoen for overfitting og dermed forbedrer modellens anvendelse i praksis.

Artiklen præsenterer en række eksperimenter hvor der sammenlignes mod andre state-of-the-art maskinlæringsmodeller, samt
der er testet på forskellige datasæt for at demonstrere at modellen kan bruges i forskellige geografiske kontekster. ProSIT er en
letvægts model sammenlignet med forhenværende state-of-the-art modeller, men opnår stadig bedre resultater testet på vejrdata
fra den virkelige verden.
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Abstract—The increased interest in solar energy as a renewable
energy source brings new challenges to the seamless operation
of the power grid due to the inherent intermittent availability.
Therefore, high precision forecasts are needed to successfully inte-
grate the growing capacity into the grid. However, forecasting the
yield from solar panels is difficult due to limited data availability.
Instead, GHI is forecasted. Several deep learning approaches
have been proposed throughout the years, however deep learning
is often considered as black-box and therefore disregarded by
decision makers. In this paper we propose the Probabilistic
Solar Irradiance Transformer (ProSIT), a novel end-to-end deep
learning architecture for interpretable probabilistic multi-horizon
forecasting of GHI. To learn both long and short-term temporal
dependencies across the entire input sequence ProSIT uses several
complex components to encode the high-dimensional feature
space such as bi-directional recurrent networks, temporal multi-
head self attention layers, and temporal convolutional layers.
ProSIT also features residual connections and gating mechanisms
to suppress superfluous components ad hoc. We conduct several
experiments benchmarking the performance of the model, and
demonstrate that ProSIT achieves state-of-the-art performance
on two real-world datasets.

Index Terms—Deep Learning, Solar irradiance, Multi-Horizon
Forecasting, Time Series, Attention mechanisms.

I. INTRODUCTION

In recent years, there has been an increasing interest in solar
energy as a renewable and sustainable energy source due to
the decrease in cost of renewable energy technologies and the
growing concern about climate change [1]. However, despite
being seen as the one of the most promising alternatives
to fossil fuels by the industrial and scientific community,
solar energy brings several challenges to the reliable and
stable integration of solar energy into the power grids, due
the intermittent availability of production [2]. Nevertheless,
according to a report from the International Energy Agency,
this does not stall the expansion of installed solar power
capacity, as the global solar energy capacity has grown from
32TWh to 821TWh during the last decade, and is estimated to
reach almost 7000TWh in 2030 [12]. This poses a challenge
for the grid operators, as in order to ensure seamless operation
of the electrical power grid, it is necessary to maintain a
precise balance between the demand and supply of power, and
therefore, power plant authorities use forecasts of demand and
supply to decide how much power to produce.

The intermittent availability of solar energy does not only
affect the grid, as the energy market functions on the basis
of competitive bidding, which implies that the larger forecast

Table I: The different factors that impact GHI [4, 15]

Variability type Variabilities

Astronomical/Angular the earths tilt, the earths orbit,
the suns zenith, the suns azimuth

Metrological

Cloud opacity, albedo, temperature,
wind speed, wind direction,
relative humidity, surface pressure,
precipitable water, dew point

Seasonal Winter, Fall, Summer, Autumn

error leads to a greater expenditure on energy [13]. Conse-
quently, the unpredictability of solar energy availability can
be an obstacle to its wider adoption by the energy industry
and therefore its penetration in the market. Forecasting solar
energy availability with high precision would allow energy
providers to effectively integrate solar energy into the grid and
allow energy trading companies to hedge their positions in the
energy market [14]. Although the solar energy companies have
the necessary historical photovoltaic (PV) data required to
make predictions about energy production, they cannot share
this information publicly because of data privacy policies [3].

Therefore, global horizontal irradiance (GHI) is often used
for prediction instead. Global horizontal irradiance is a mea-
sure of the amount of solar radiation that falls on a given
surface area and is a key parameter for forecasting solar energy
[4]. However, forecasting GHI is a difficult task due to the
many sources of variability listed in table I.

These sources of variability can be difficult to predict and
model, especially in the long-term and especially using tradi-
tional statistical methods such Auto-Regressive (AR) models.
AR models are types of linear regression models that estimate
the future value of a variable as a function of its past values
[16, 17]. These models are typically used for forecasting
financial time series data. However, they are not well suited
for forecasting solar irradiance data because solar irradiance
is a nonlinear function of time [18].

The use of machine learning methods for solar irradiance
forecasting has steadily increased along with the rise in pop-
ularity of artificial intelligence. These methods involve learn-
ing from data patterns, modelling parameters, and building
predictive models. In recent years, various different machine
learning methods such as Support Vector Machines (SVM),
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Random Forests, XGBoost etc. have been applied for solar ir-
radiance forecasting [19, 20, 21]. However, the aforementioned
methods are so called ‘shallow’ models, meaning that they are
generally limited in that they can suffer from over-fitting, are
computationally expensive, and have low performance when
handling complex and high dimensional data [22, 23]. We
refer to [24] for a comprehensive review of machine learning
methods applied to the problem of forecasting GHI.

Deep learning methods have been shown to be effective
in overcoming the limitations of shallow machine learning
models. Specifically, deep learning models are able to handle
large data sets without over-fitting and do not require the
same amount of extensive feature engineering as shallow
models [25]. The aforementioned properties may attribute
the reason for the extensive attention deep learning models
have received in research the past decade. Consequently,
deep learning approaches have also been applied to solar
irradiance forecasting. However, contrary to shallow models
and statistical models, deep learning models are generally
considered to lack interpretability [5]. This means that even
if a deep learning model is able to accurately classify or
predict data, it may be difficult to understand how or why the
model arrived at its conclusions. This lack of interpretability
can be a problem when trying to use deep learning models
to make decisions about complex real-world problems, as it
may be difficult to understand why the model is producing
certain output [6]. If a remedy to the interpretability issue was
found, decision-makers could incorporate the output of deep
learning models in risk-management and automation. Since
GHI is used directly in the calculation of the effect of PV
panels [4], an explanation of the model output would make
the model suitable for providing upper and lower bounds for
the power production from PV panels for a certain area.

Several approaches to alleviate this lack of interpretability
have been proposed the past few years. The concept of atten-
tion has been shown to help increase interpretability of deep
learning models [26]. Conceptually, attention mechanisms
function similar to how human attention functions, meaning
that models that enjoy attention mechanisms are able to focus
on the most important parts of the input data [26]. This allows
the model to better learn the relationships between the input
data and the output. Furthermore, the weights tuned by said
model can be plotted, allowing for visual interpretation of the
output [27]. Most existing deep learning approaches for time
series forecasting output point forecasts, which makes them
hard to use as critical decision tools, since point forecasts
offer no insight regarding the uncertainty of the prediction. On
the other hand, probabilistic forecasts provide to some extent
decision makers with an estimation of the forecast uncertainty
[14].

In this paper, we introduce the Probabilistic Solar Irradiance
Transformer (ProSIT), a novel end-to-end attention based deep
learning architecture for multi-horizon probabilistic time series
forecasting of GHI. Concretely, the contributions of this paper
are the following:

1) We propose an attention based deep learning model

inspired by the previous endeavours of [8] of producing
multi-horizon forecasts.

2) We adopt the framework by [9] making our proposed
model capable of producing probabilistic forecasts.

3) We conduct an ablation study demonstrating the per-
formance gains from the individual components of the
architecture, and we benchmark the scalability and com-
putational resource requirements against state-of-the-
art approaches. We evaluate the model performance of
ProSIT by benchmarking against several baselines and
a range of state-of-the-art approaches on two real-world
historical solar irradiance data sets showing that our
methods outperforms all compared methods.

Therefore, this paper is organized in the following manner:
Section 2 provides a brief overview of related work on previ-
ous approaches for forecasting GHI. The underlying theoreti-
cal preliminaries for the modules constituting the architecture
is described in section 3, and in section 4 an overview of
the architecture is provided. In section 5, the setup of the
experiments is presented, and section 6 presents the results.
The results are discussed in section 7 and section 8 concludes
this paper while providing future research directions.

II. RELATED WORK

A. Applications of deep learning to solar irradiance forecast-
ing

As stated in the previous section, deep learning methods
for time series forecasting have gained a lot of attention the
last few decades. One of the reasons for this could be the
emergence of recurrent neural networks (RNN) from Rumel-
hart, Hinton, and Williams work in 1986 [28] inspiring further
research leading to the invention of Long Short-Term Memory
Networks (LSTM) by Hochreiter and Schmidhuber in 1997
[29]. Since then, LSTM networks have been applied to nu-
merous time series forecasting tasks while showing prosperous
results. Amongst those tasks, solar irradiance forecasting is no
exception. Obiora, Ali, and Hasan applied LSTM networks to
forecast the hourly solar irradiance of Johannesburg City using
historical observed GHI values and meteorological variables
such as temperature, sunshine duration, and relative humidity.
The authors benchmark the performance of the LSTM against
an SVM showing that the LSTM outperforms the SVM by
3,2% when evaluated using normalized root mean square error
(nRMSE) [30]. Alharbi and Csala applied a bi-directional
LSTM (BiLSTM) to solar irradiance forecasting in Tabuk City
[31]. The BiLSTM architecture enjoys the capability to process
historical data in a forward and backward direction, at the cost
of computational complexity [7]. The authors demonstrate that
the use of bi-directional RNNs exhibits promising performance
when exogenous meteorological variables are introduced.
Since the emergence of the transformer architecture for natural
language processing tasks by Vaswani et al.[32], attention
mechanisms have been applied to time series forecasting as
well. Dairi, Harrou, and Sun extends the idea of utilizing a
BiLSTM by adding attention to their model architecture and
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in doing so, the authors demonstrate that this extension is
superior in performance compared to regular BiLSTMs [33].
Despite the prosperous results demonstrated by the above
mentioned research efforts, the use of RNNs, whether it be bi-
directional or not, limit the models capability to capture global
temporal dependencies in the input data set. ProSIT alleviates
this issue by incorporating a multi-head attention mechanism
and a temporal convolutional network module to encode global
and long term dependencies [34]. Furthermore, ProSIT utilizes
several gates and residual connections to dynamically control
the processing caused by each module of the model.

B. Probabilistic Time-Series Forecasting

The vast majority of the above mentioned approaches pro-
duce a point forecast, which, as stated in the previous section,
does not provide decision makers with any information re-
garding the uncertainty of the model output. However, in the
last few years, the focus has shifted towards probabilistic time
series forecasting. There exists two main strategies within the
area of probabilistic forecasting namely the parametric and
the non-parametric. The parametric strategy for probabilistic
forecasting of stochastic processes relies on the assumption
that the process has a certain inherent structure that can be
described using a small number of parameters, for instance
the mean and standard deviation of a Gaussian distribution
[35]. On the other hand, the non-parametric strategy makes
no assumption regarding structure of the stochastic process,
thus, a popular approach is to forecast a number of samples
and model the discrete quantiles [9].

Salinas, Flunkert, and Gasthaus introduce DeepAR, a deep
recurrent architecture that provides capabilities for probabilis-
tic forecasting in an auto-regressive manner [36]. By adopting
the parametric strategy the authors demonstrate that the model
is able to produce forecasts estimating the parameters of
probability distributions allowing for sampling in a Monte
Carlo manner while remaining computationally viable. The
parameters of the estimated distributions are tuned by max-
imizing likelihood and teacher forcing during training [36].
[37] also applies an RNN as a time series regressor, however
their work takes on the non-parametric objective of estimating
the quantiles of the models output by utilizing an iterative
forking strategy during training. According to the authors, this
avoids error accumulation commonly seen in auto-regressive
methods[37]. [8] expands on the capabilities of the model
aforementioned model [37]. [9] propose a framework capable
of producing both of the aforementioned approaches, that is,
estimating either a parametric or non-parametric probability
density estimation [9]. Similar to [37] this is done in a
non-auto-regressive manner, by directly forecasting the joint
distribution of future observations [9]. ProSIT builds on the
work of Chen et al.[9] and is therefore able to estimate both
parametric and non parametric probability densities, while
employing the iterative multi-horizon strategy similar to [37],
however in this paper we focus primarily on demonstrating
the performance of the non-parametric quantile forecasts.

III. PRELIMINARIES

A. Multi-Horizon Forecasting
The general probabilistic multi-horizon forecasting in dis-

crete time can be described as follows: given a length M + 1
time series yt−M :t containing historical observations, we
denote the future time series yt:t+Ω where Ω ∈ Z+ is
the length of the forecasting horizon. The objective is to
model the conditional distribution of the future time series
P(yt+1:t+Ω|yt−M :t).

This conditional distribution can be written as a factorization
of the joint conditional probability as such:

P(yt+1:t+Ω|yt−M :t) =

Ω∏
ω=1

p(yt+ω|yt−M :t+ω−1) (1)

Where ω ∈ {1, 2, ...,Ω} denotes the forecasting horizon.
The above formula implies that every future time step is
conditionally dependant on the observations at all previous
timestamps. This strategy is known as the auto-regressive
strategy and is used by generative models [9]. In practical
scenarios, to avoid error accumulation [9], we directly forecast
the joint conditional distribution:

P(yt+1:t+Ω|y1:t) =
Ω∏

ω=1

p(yt+ω|yt−M :t) (2)

Often, the target time series y has inherent patterns and de-
pendencies affected by covariates X(i)

t−M :t where i = 1, ..., N ,
N being the number of covariates. We denote γt−M :t =
(yt−M :t, X

1:N
t−M :t) the concatenation of the past observations

and the past covariates, hence the modelling objective of the
conditional distribution becomes:

P(yt+1:t+Ω|yt−M :t) =

Ω∏
ω=1

p(yt+ω|γt−M :t) (3)

The task at hand is now to output the multi-horizon quantile
forecasts ŷq

t+1:t+Ω for quantile q ∈ Q, where Q ∈ [0, 1] using
a model F with parameters of Θ such that

ŷq
t+1:t+Ω = FΘ(γt−M :t, q) = P(yt+1:t+Ω ≤ ŷq

t+1:t+Ω|γt−M :t)
(4)

Which is done by means of quantile regression described in
the next section.

B. Quantile Regression
ProSIT obtains forecasts by means of quantile regression

introduced by Koenker and Bassett in 1978 [38]. This means
that the model is trained using quantile loss defined as:

Lq(y, ŷ
q) = q(y − ŷq)+ + (1− q)(ŷq − y)+ (5)

where y is the observed target, ŷq is the prediction for a
specific quantile q, hence q ∈ {x | 0 ≤ x ≤ 1}. Furthermore,
(y)+ = max(0, y). Let Q = {q1, q2, ..., qk} be a set of k
quantile levels, the corresponding k forecasts are obtained by
minimizing the total quantile loss:

LQ =

k∑
j=1

Lqj (y, ŷ
qj ) (6)
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C. Bi-directional Recurrent Neural Networks

1) Gated Recurrent Units: As stated previously when re-
viewing existing literature, Rumelhart, Hinton, and Williams
[28] paved the way for Recurrent Neural Networks allowing
for deep sequence modelling. This framework was later ex-
tended by [29] with their architecture the Long Short-Term
Memory network (LSTM), and a decade later in 2014 the
Gated Recurrent Unit emerged (GRU) from the works of Cho
et al.[39]. The introduction of gates in the RNN architecture
alleviated the issue of vanishing gradients, a phenomenon
occurring when contribution of past information in a given
sequence tends towards very small numerical values causing
the network to ‘forget’ what it has seen [29, 39]. Figure 1
shows an example of a GRU. The generic GRU architecture

Figure 1: Inside a gated recurrent unit cell

features two gates, the update gate and the reset gate, which
are illustrated on the figure with coloured regions. These
gates allow the model to determine how much of the past
information needs to be passed along to the future and how
much of the past information to forget [40]. The GRU model
can be expressed as a set of equations that demonstrates the
numerical behaviour of the update and reset gate as well as
the auto-regressive way of handling input:

zt =σ(Wzxt +Uzht−1 + bz) (7)
rt =σ(Wrxt +Urht−1 + br) (8)

ĥt =tanh(Whxt +Uh(rt ⊙ ht−1) + bh) (9)

ht =zt ⊙ ĥt + (1− zt)⊙ ht−1 (10)

where xt and ht denote the input and output vectors respec-
tively, ĥt denotes the candidate state vector that controls the in-
fluence level of the previous hidden state. Moreover, the update
and reset gates are denoted with vectors zt and rt respectively.
The aforementioned gates and layers are parameterized by the
weight matrices U(.), W(.) and bias vector b(.). The activation
functions of the architecture are the logistic sigmoid function
denoted by σ and the hyperbolic tangent [40]. Henceforth,
the above equations defining the GRU architecture will be
abbreviated as GRU(xt,ht−1).

2) Bi-Directional Recurrent Neural Networks: The bi-
directional RNN is a concept invented by Schuster and Paliwal
which dates back to the conception of the LSTM [7]. The bi-
directional property can be applied to any RNN architecture,
including gated RNNs, by stacking an additional RNN that
processes the input in a backwards manner, as illustrated on
figure 2.

Input

Output

Backward
Layer

Forward
Layer

Figure 2: A Bi-Directional Recurrent Neural Network[7].

Applying the bi-directionality property to a GRU results in
the following expressions [41]:

←
ht = GRU(xt,

←
ht−1) (11)

→
ht = GRU(xt,

→
ht−1) (12)

ht =
→
ht +

←
ht (13)

D. Residual Connections & Gating Mechanism

1) Residual Connections: As initially stated in the first
section of this paper, deep neural networks (DNN) hold
an advantage over shallow networks due to their capability
to learn complex feature representations automatically and
approximate functions of an arbitrary number of dimensions.
However, it has been shown that as the depth of deep learn-
ing models increases, their performance in terms of training
accuracy starts degrading [42, 43]. Note that we use the
terminology ‘weight layer’ as a general term for a any kind of
layer, whether it be linear or convolutional layer. In an effort to
alleviate this degradation, He et al. propose the deep residual
framework, illustrated on figure 3 [10].

As discussed in [10], one of the main advantages of residual
neural networks compared to plain neural networks, is that
instead of fitting the layers in a network a desired mapping
H(x), the layers of the network are trained to fit a residual
mapping G(x) = H(x) − x such that the desired mapping is
recast as G(x) + x [10].

2) Gating Mechanisms: It has been shown that gates in
DNNs may improve model performance, for instance in the
GRU architecture, by controlling the information propagation
throughout the model [29, 40]. However, the concept of gating
is not exclusive to RNNs as shown in the works by Dauphin

4



identity mapping

Figure 3: He et al.’s residual building block

et al. [11] in which they propose the Gated Linear Unit (GLU)
and show an increase in model performance. Dauphin et al.’s
describe the GLU as a simplified version of [44]’s work, and
express the GLU using the following equation:

GLU(X) = σ(WX+ b)⊙ (XV + c) (14)

where X is the input, W, V are weight matrices, b, c
are bias vectors, and ⊙ denotes the element-wise Hadamad
Product [11]. Figure 4 shows a graphical representation of the
GLU. The gating property of the GLU comes from the non-

Figure 4: The Gated Linear Unit

linearity of the sigmoid function, which squishes the input
into the range between 0 and 1, hence if the input contributes
positively towards the optimization goal, the GLU approaches
the behaviour of an identity function. Conversely, if the input
contributes negatively, the output of the GLU approaches zero,
essentially cancelling out the input.

3) Gated Residual Network: Lim et al. adopts these afore-
mentioned concepts of the residual block and the GLU and
incorporates them into their proposed Gated Residual Network
(GRN) [8], as depicted on figure 5. The graphical illustration

Residual
Connection 

External
Context

(optional) 

Figure 5: The Gated Residual Network, as described in [8]

can be expressed mathematically as:

GRN(x, c) = LayerNorm(x+ GLU(η1)) (15)
η1 = W1η2 + b1 (16)
η2 = ELU(W2x+W3c+ b2) (17)

ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(18)

Where x is the input to the GRN, c is the optional external
context vector, W(.) and b(.) are weights and biases, Layer-
Norm is the layer normalization introduced by [45], ELU(x)
is the Exponential Linear Unit as introduced by [46], and
η1, η2 are intermediate fully connected layers in accordance
with the description of [8]. For clarity, equations 15-18 are
generalizations of the expressions covered in [8].

E. Multi-Head Self-Attention

The self-attention mechanism is a key ingredient in the
transformer architecture that has shown great success in vari-
ous natural language processing tasks [47, 32, 48]. Multi-head
self-attention allows the model to jointly attend to information
from different representation subspaces at different positions
[27]. This is beneficial for time series forecasting as it allows
the model to learn representations that are more robust to
changes in the input over time [49, 33].

Concretely, attention mechanisms work by scaling the input
values V ∈ RN×dV in accordance with relationships between
keys K ∈ RN×dattn and queries Q ∈ RN×dattn as such [32]:

Attention(Q,K,V) = A(Q,K)V (19)

Where A(.) is the scaled dot-product, which serves as a
normalization function [32]:

A(Q,K) = softmax

(
QKT

√
dattn

)
(20)
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By extending the above expression to the notion of Multi-head
attention we obtain [8]:

MultiHead(Q,K,V) = [H1,H2, ...,HmH
]WH (21)

Hh = Attention
(
QW

(h)
Q ,KW

(h)
K ,VW

(h)
V

)
(22)

where the head specific weights, denoted by W
(h)
Q ,W

(h)
K ∈

RN×dattn and W
(h)
V ∈ RN×dV , for the query, key and

values respectively. Furthermore, the linear combination of the
concatenated outputs are denoted by WH , where H is the
number of heads.

Lim et al. further expands the interpretability by employing
an additive aggregating strategy to the weights of the heads,
which results in [8]:

InterpretableMultiHead(Q,K,V) = H̃WH (23)

where H̃ is defined by

H̃ = Ã(Q,K)VWV (24)

=
{ 1

H

mH∑
h=1

A
(
QW

(h)
Q ,KW

(h)
K

)}
VWV (25)

=
1

H

mH∑
h=1

Attention(QW
(h)
Q ,KW

(h)
K ,VWV ) (26)

and the matrix WH ∈ Rdattn×N is used for the final linear
projection [8].

F. Temporal Convolutional Networks
The temporal convolutional network with dilated causal

convolutions is a deep learning architecture that has been
proposed by Lea et al.[50], which is evaluated in [51] for
the task of sequence modelling [51]. The network consists of
a number of layers of residual blocks, shown on figure 7, fea-
turing dilated causal convolutions (DCC) [50]. An illustration
of a DCC layer is shown on figure 6. DCCs are shown to
be more effective than traditional convolutional networks for
modelling sequences [50].

Input

Hidden

Hidden

Output

Figure 6: The dilated causal convolutional layer from [51].

Formally, A DCC operation can be expressed as such:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (27)

where f : {0, ..., k − 1} 7→ R is a filter and x ∈ Rl denotes
the one dimensional input of length l, k denotes the kernel
size of the convolutions, and d denotes the dilation size [50].

The TCN architecture is capable of processing inputs of
arbitrary length, however, the number of layers is bounded by
the length of the input, as shown in [51]. Concretely, let l be
the length of the input for a TCN with dilation base b and
kernel size k, the receptive field needed to cover the entirety
of l must be at least

1 + (k − 1)
bn − 1

b− 1
≥ l (28)

We solve for n to obtain minimum number of layers and
hereby the minimal depth for the network as such:

n =

⌈
logb

(
(l − 1)(b− 1)

k − 1
+ 1

)⌉
(29)

Consequently, this results in very deep networks for very
long inputs, which may be subject to the aforementioned
degradation issue [50]. Therefore, the TCN architecture usu-
ally features residual connections [51].

1 x 1 conv
(optional)

Figure 7: A Residual block of the TCN architecture [51, 50].

This concludes the theoretical background review. In the
next section we will address how each of these aforementioned
components and methods are used in ProSIT furthermore,
we will cover which properties each individual component
provides to the model.

IV. MODEL ARCHITECTURE

In this section we outline the architecture of ProSIT, for-
mally define the functions and operations transforming the
input to a probabilistic forecast, and motivate use of modules
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in the architecture. The complete architecture of ProSIT is
depicted in figure 8. The proposed ProSIT consists of three
modules: Covariate encoder, temporal transformer, and the
long term dependency decoder module.

Past Observations
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Figure 8: The architecture overview of ProSIT

A. Covariate Encoder

The purpose of the covariate encoder is to encode the
relationships between target yt:t+Ω and the past covariates
X1:t. As such the encoder consists of a BiGRU which gives
the model the capability to capture temporal dependencies in
both directions. The reason we chose a GRU architecture for
the encoder instead of an LSTM is that it has been shown that
a GRU is less computationally expensive to train, as the GRU
architecture features only two gates compared to the three in
the LSTM. The missing gate is made up for in the GRN that
follows directly after the encoder. A benefit of moving the gate
outside of the RNN the ability to parallel process the output,
which is not possible if the gate was situated within the RNN.
We chose the bi-directional architecture as short-term temporal
patterns such as changes in cloud cover are desirable to capture
for solar irradiance forecasting. Capturing future patterns in the
input could also have been achieved through a future covariate
encoder, as featured in [8], however, this comes at an increased
computational cost.

We consider a lookback window into the past observations
of length M as the input for the model, hence the processing of
the input by the encoder can formally be expressed by letting
γt−M : t = (yt−M :t,Xt−M :t) ∈ RN+1×M denote the N
past covariates and past observed GHI values as the input
for the encoder module with hidden size dmodel. The BiGRU
encodes the input by applying the following processing:

ϕt−M :t = BiGRU(γt−M :t,h0), (30)

where h0 denotes the initial state of the BiGRU and ϕt−M :t ∈
Rdmodel×M denotes the output of the BiGRU and represents
the temporally encoded input γt−M : t. Please note that
we use the shorthand notation (·)t−M :t to denote a whole
sequence, where in practice, the BiGRU processes the input
sequence one step at the time.

There might be cases where the complex non-linear pro-
cessing of the input would be superfluous to the model
performance, for instance during the night hours where the
GHI is constant zero. To address this, ProSIT enjoys the
capability to disregard the contribution from the various pre-
ceding components of the architecture, a capability provided
by the GRN layers placed between the modules, as seen
on figure 8. Since predicting zeros has been shown to be
difficult for deep models [52], disregarding or diminishing
the contribution of the complex components at certain time
steps allows the model to accurately predict the absence of
GHI during the night hours. Formally, this can be expressed
by letting ϕ̄t−M :t ∈ Rdmodel×M denote the output sequence
perturbed by the GRN:

ϕ̄t−M :t = GRN(ϕt−M :t), (31)

where ϕ̄t−M :t represents the information retained by the gating
property of the GRN. As Lim et al. points out this property
is attributed to the numerical behaviour of the ELU activation
function found in the GRN. Recall eq. 17 and 18 and observe
that when W2x+W3c+ b2 >> 0 then ELU behaves as an
identity function, and conversely when W2x+W3c+b2 <<
0 the ELU emits a constant output thus acting as a linear layer
[8]. An important distinction from the GRN layer proposed by
Lim et al. and the GRN in ProSIT is the exclusion of external
context, consequently, since ProSIT does not posses the ability
to process static covariates, we omit the input c from the GRN
[8].

B. Temporal Transformer

Inspired by the Temporal Fusion Transformer (TFT) by Lim
et al., ProSIT employs a multi-head attention mechanism to
capture different patterns across multiple timesteps in the input
sequence that may be difficult for the BiGRU to capture.
Concrete examples of patterns are the steep decline and
increase in GHI from day to night and vice versa, or the subtle
effects when a cloud covers the sky temporarily during the day,
resulting in a sudden decrease in GHI followed by an increase.
Since we adopt the attention mechanism as the TFT, ProSIT
enjoys the same qualities in terms of interpretation capabilities
[8].
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The temporal multi-head attention layer applies the follow-
ing manipulation to ϕ̄t−M :t:

ψt−M :t = InterpretableMultihead(ϕ̄t−M :t, ϕ̄t−M :t, ϕ̄t−M :t)
(32)

where ψt−M :t ∈ Rdmodel×M represents the manipulation
caused by the attention weight on the retained gated informa-
tion from the preceding gated input ϕ̄t−M :t. ProSIT features
a component skip-gate between following the temporal multi-
head attention layer that skip said layer if the perturbation
from the layer results in increased loss. This gate is followed
by another GRN:

ψ̄t−M :t = GRN(ψ̃t−M :t), (33)

ψ̃t−M :t = LayerNorm(ϕ̄t−M :t + GLU(ψt−M :t)), (34)

where ψ̄t−M :t ∈ Rdmodel×M denotes the output from the
temporal transformer module, and ψ̃t−M :t ∈ Rdmodel×M

denotes the gated normalized sum of ϕ̄t−M :t and the gated
output of the temporal multi-head attention layer ψt−M :t.

C. Long-range Dependency Decoder

The long-range dependency decoder serves the purpose of
interpreting the attention weighed sequence from the temporal
transformer module to capture the long-range latent corre-
lations between the past covariates and the target. ProSIT
employs a TCN to provide such a capability:

ζt+1:t+Ω = TCN(ψ̄t−M :t) (35)

Where ζt+1:t+Ω ∈ Rdmodel×Ω denotes the output sequence of
length Ω.

We chose the TCN architecture, as it has been shown
that the TCN is able to handle sequences of arbitrary length
without the shortcomings of recurrent architectures such as
vanishing gradients [9, 50], and since this is the last non-
linear processing preceding the output of the model, relevant
information from the entire length of the sequence must be
retained.

ProSIT enjoys the capability of producing quantile outputs,
a capability facilitated by passing ζt+1:t+Ω through a dense
layer parameterized by weight matrix Wα and bias vector
bα, and thereafter distributing each time step from the output
of the TCN through a dense layer:

ζ̃t+1:t+Ω = Wαζt+1:t+Ω + bα (36)

ŷqt+1:t+Ω = Wq
ω ζ̃t+ω + bq

ω for ω = {1, ...,Ω}, q ∈ [0, 1]
(37)

where Wq
ω,b

q
ω , is the weight matrix and bias vector for that

specific time step and quantile respectively.

D. Evaluation Metrics & Loss Functions

As mentioned in III-B the model is trained by jointly mini-
mizing the summed quantile loss across all selected quantiles
[8]:

L(Dtrain,Θ) =
∑

yt∈Dtrain

∑
q∈Q

Ω∑
ω=1

Lq(yt, ŷ
q
t )

MΩ
(38)

where Dtrain denotes the domain of training data consisting
of M samples, Θ is the weights of ProSIT, the set Q denotes
the output quantiles (for the sake of comparability we use
Q = {0.1, 0.5, 0.9} like [8]).

We quantitatively evaluate the performance of our model
compared to several other models using the Normalized q-
risk error metric. Normalized q-Risk for a specified quantile
q is for a univariate stochastic predicted timeseries given by
[8]:

q-Risk =
2
∑

yt∈Dtest

∑Ω
ω=1 Lq(yt, ŷ

q
t )∑

yt∈Dtest

∑Ω
ω=1 |yt|

(39)

Where Dtest denotes the domain of test samples.
In line with customary practices we also conduct bench-

marks against naive persistence models, to determine the value
added by the model in question. As such we use the Mean
Absolute Scaled Error (MASE) [53]:

MASE =

1
∥Dtest∥

∑
yt∈Dtest

∑Ω
ω=1 |yt − ŷt|

1
∥Dtrain∥−1

∑
yt∈D′

train

∑Ω
ω=1 |yt − yt−1|

(40)

Where D′train = y2:t is the training dataset where the first
value is omitted and ∥ · ∥ denotes the length of the argument.
Essentially, MASE is the mean absolute error of a forecast
scaled by the mean absolute error of a naive time series
forecast [53]. MASE is therefore a measure of the performance
of the forecast compared to the performance of a naı̈ve
forecast, i.e the forecast for time t+1 is always the last value.
We evaluate this metric on the median quantile.

V. EXPERIMENTS & IMPLEMENTATION DETAILS

A. Datasets

We chose two datasets to demonstrate the applicability and
generality our model. The two datasets are situated in two
different locations with varying climate. We chose different
climates to display the adaptability of ProSIT . The datasets
used for training and experiments are provided by Solcast
[54] and contains time-series of astronomical and metrological
variables and GHI for two areas: Groningen in the Netherlands
and Brighton in the United Kingdom, referred to as NL-GHI
and UK-GHI respectively. Typically, the inland climate of
NL-GHI is characterized by higher variance in weather com-
pared to the coastal climate of UK-GHI as the ocean regulates
the weather [55]. However, the coastal climate of UK-GHI
typically means more precipitation during the summer season
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compared to NL-GHI [55]. The data is from 2007 to 2022
and has a granularity of one hour, accounting for 131.400
data points in total. The variables and their units are listed in
table II. The observations and measurements of the variables
are made at a 10m height measured from the ground up.

Table II: Dataset variables

Variable Unit

Global Horizontal Irradiance (GHI) W
m2

Direct Normal Irradiance (DNI) W
m2

Direct (Beam) Horizontal Irradiance (EBH) W
m2

Diffuse Horizontal Irradiance (DHI) W
m2

Cloud Opacity %

Albedo (daily average) %

Solar Zenith ◦

Solar Azimuth ◦

Temperature ◦C

Wind Speed m
s

Wind Direction ◦

Relative Humidity %

Surface Pressure hPa

Precipitable Water kg
m2

Dew Point ◦C

B. Training Procedure

The optimization process during training of the models
(ProSIT and the benchmarks) was done using the ADAM
optimizer with a weight decay of 0.000005 [56] and the
learning rate scheduling method called Cosine Annealing with
Warm Restarts [57] with a restart rate of 60 epochs. For
numerical stability we employ a min-max scaling [58] on each
of the individual variables. Moreover, we employ a sine/cosine
transformation to cyclical features such as time, azimuth,
zenith and wind direction.

1) Hyper-Parameter Search: For training and evaluation
purposes we partition the two datasets into two parts, namely
a training set for learning and a validation set for hyper-
parameter search and performance evaluation. The grid-search
strategy was chosen for identifying the best performing hyper-
parameters for the model among the configurations listed
below. Each configuration was run for 50 epochs and evaluated
based on the performance on the median quantile, measured
using the Rho-Risk metric.

• Lookback Window - 72, 96, 120
• Hidden Size - 80, 92, 128
• Dropout Rate - 0.1, 0.3, 0.5
• Learning Rate - 0.0001, 0.001, 0.01
• Batch Size - 64, 128, 256

• Kernel Size - 3, 4, 5
• Dilation Size - 2, 3

The configurations resulting in the best model performance
for each dataset can be seen in table III.

Table III: The best performing configurations

NL-GHI UK-GHI

Dataset Details

Climate Inland Coastal

Model Parameters

Lookback Window 120 120

Horizon 5 5

Hidden Size 128 92

Number of Heads 4 4

Kernel Size 4 3

Dilation Size 2 2

Dropout Rate 0.3 0.3

Training Parameters

Batch Size 128 128

Learning Rate 0.0001 0.0001

Weight Decay 0.00005 0.00005

2) Implementation Details: The data from Solcast was
of the format .csv and was processed and analyzed using
the framework by PyData Pandas [59]. The proposed model
has been implemented in Python using the PyTorch library
[60]. For training and experiments, the Python framework
for time-series Darts version 0.16.1 [61] has been used. The
experiments have been run on a machine running on Linux
Ubuntu 20.04.4 with NVIDIA TESLA P100 GPUs and an
Intel(R) Xeon(R) CPU 2.20GHz with two cores, provided for
free by Kaggle.

C. Computational Cost
Figure 9 shows the benchmark of computational cost be-

tween ProSIT and the state-of-the-art model the Temporal Fu-
sion Transformer demonstrating the ‘frugality’ of our model in
terms of computational cost. These results clearly indicate that
even though ProSIT is a complex model, the computational
resources required to train the model is not extensive compared
to the Temporal Fusion Transformer. Concretely, our model is
over five times faster on the largest datasets.

D. Benchmarks
To reason about the performance of ProSIT we benchmark

against a wide range of models. Prior to training and evaluating
the models we perform a hyper-parameter search using the grid
search strategy on a pre-defined fixed search space, using the
same number of epochs across all models. The selected models
for comparison are ARIMA [17] , GRU [39], a bidirectional
LSTM [31], A Temporal Convolutional Network [9], Temporal
Fusion Transformer [8]. The Bi-LSTM and GRU have been
modified such that they are capable of producing quantile
outputs in accordance with the framework of [9].
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Figure 9: Comparison in run-time per epoch between the
Temporal Fusion Transformer [8] and ProSIT

Table IV: Benchmarks

P50, and P90 quantile losses on two GHI datasets with varying climate, with
ProSIT outperforming all competing methods across all experiments.

ARIMA GRU BiLSTM

P50 P90 P50 P90 P50 P90

NL-GHI 9.173 21.48 4.150 5.936 5.567 9.248

UK-GHI 15.42 24.32 5.519 1.905 1.946 1.180

TCN TFT ProSIT

P50 P90 P50 P90 P50 P90

NL-GHI 4.525 7.057 0.239 0.054 0.050 0.022

UK-GHI 4.761 7.824 0.430 0.090 0.036 0.017

Table V: MASE Benchmarks

The mean absolute scaled error benchmarks on two GHI datasets, lower values
are better.

ARIMA GRU BiLSTM TCN TFT Proposed

NL-GHI 4.848 1.656 1.855 2.611 1.022 0.846

UK-GHI 6.838 2.994 2.017 2.465 0.950 0.807

VI. RESULTS & DISCUSSION

Table IV shows that ProSIT outperforms all of the bench-
mark methods by several magnitudes on both datasets de-
scribed in the previous section. For median (P50) forecasts,
ProSIT outperforms the TFT, which is considered as the
former state-of-the-art architecture. In conjunction with figure
9 we see that not only does ProSIT outperform complex
models in terms of performance, but our approach is also
computationally cheaper. The same pattern emerges when
inspecting the P90 error, where ProSIT also outperforms the
TFT significantly. This demonstrates that ProSIT is not only
a cheaper but better alternative to the TFT for probabilistic
forecasting of GHI.

The results of table IV also indicate that ProSIT is robust

with regard to datasets, as the model performs similar on
both datasets, demonstrating that the architecture is capable
of handling datasets originating from both inland and coastal
climates. Moreover, table V shows the performance of ProSIT
compared to the aforementioned benchmark models, once
again indicating that ProSIT outperforms the competition
significantly.

A. Ablation Study

As the proposed model consists of multiple components, an
ablation study was conducted to examine whether the individ-
ual components are improving the performance of the model.
The ablation study included three different configurations (a,b
and c) of the model. Configuration a was the full architecture
as illustrated in figure 8. In configuration b, the temporal
multi-head attention layer and the succeeding gate and add
& norm layers were removed. For configuration c, the bi-
directional GRU layer in the covariate encoder was modified to
be unidirectional, and all other components were as illustrated
in figure 8. The training- and validation loss of the different
configurations is depicted on figure 10 (a, b and c). The
measured errors are the sum of all quantiles (0.1, 0.5 and
0.9).

The results concluded that the full architecture (config-
uration a) provided the best results with training loss and
validation loss of 0.04170 and 0.04690 respectively. Con-
figuration c provided the second best results with training
and validation loss of 0.06 and 0.0706 respectively, while
configuration b proved to be the least successful with training
and validation loss of 0.0832 and 0.244 respectively - an
increase in loss of almost 200% on the training set compared
to the full model, and over 500% worse on the validation set.
The loss curves of configurations a and c (figure 10 (a) and
(c)) show that the model has a smooth degrading loss through
the learning epochs, and both models seem to be converging
around the 80th epoch. The minor bumps in the loss curves
are caused by the cosine annealing with warm restarts in the
learning scheduler. The distance between the training loss and
the validation loss in configuration b is noteworthy, as this
shows that without the attention mechanism, the architecture
is very prone to overfitting. In conclusion, every component
contributes to the model in some way. Especially the temporal
multi-head component enables the model to generalize and
learn well. The increase in encoding capability provided by
the bidirectionalty property of the BiGRU also contributes
positively towards minimal loss.

B. Quantile Outputs

As initially stated, one of the shortcomings of point fore-
casts is the lack of information regarding the range of
potential future outcomes. ProSIT is capable of producing
non-parametric probabilistic forecasts, as seen on figure 11,
providing decision makers with prediction intervals in the
form of quantiles. Figure 11a shows forecasts on the NL-GHI
dataset, and 11b shows forecasts on the UK-GHI dataset. The
figure clearly shows that the model on both datasets is quite
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Figure 10: Ablation Study Results

certain during the night hours, which could be an indication
that the model utilizes the gates of the architecture and thereby
relying on a more simple representation instead of the complex
non-linear processing. Furthermore, the figure shows that the
model is capable of modelling both clear sky days, i.e. days
where there is none or minimal clouds, and to some extend
model the uncertainty that is inherent in days with mixed sky
cover.

C. Interpreting Attention

As initially stated, deep learning approaches often lack
interpretability thus precluding deep learning models from
being used by decision-makers in critical business areas. Con-
sequently, being able to interpret a models decision is of high
value. The Temporal Transformer module offers the capability
to obtain such insight into the underlying mechanisms for
prediction, as it captures patterns in the input sequence.

Figure 12 illustrates 120 timesteps from the past and a
forecast horizon of 5 timesteps into the future along with
attention scores for every time step. The peaks in GHI indicate
the day hours, and the valleys indicate the night hours. The
forecast is in the day hours. It is noteworthy that the attention
score has two peaks, one during the day hours of the most
recent day, and one during the day hours from four days
ago. This indicates that the GHI peaks have an influence on
the attention, however, it is obvious that some of the historic
timesteps have no influence on the attention scores. Contrary,
if the model is to forecast GHI during the night hours, the
peaks in attention scores also happen during the night hours
of the input.

VII. CONCLUSION

We present ProSIT, a novel end-to-end attention based
deep learning architecture for multi-horizon probabilistic time
series forecasting of GHI. To handle long and short term
temporal dependencies and relationships ProSIT consists of
three modules: (1) The covariate encoder that captures local
temporal relationships between past observed covariates and
the target variable, which is facilitated by a bi-directional

gated recurrent unit. (2) a temporal multi-head self attention
layer that captures dependencies across time steps in the input
sequence allowing the model to attend to multiple subspaces
of the input. (3) long term dependency decoder that decodes
the complex feature representation learnt by the model using
a temporal convolutional network. (4) an output network that
facilitates multi-horizon quantile outputs. (5) Several gates
that allows for skipping over superfluous components of the
architecture. We show that the model achieves performance
comparable to state-of-the-art forecasting performance by
comparing the performance against several other approaches
on two real-world datasets. We perform an ablation study
showing the performance gains from each component of the
model. Lastly we demonstrate the interpretability capabilities
provided by the model and discuss how quantile outputs may
be useful for decison makers. With regards to future research
directions we would like to further optimize the architecture
by exploring alternative feature encoding strategies such as
discrete wavelet transforms. Another research direction would
extending the model with the capability to process satellite
images. Furthermore, exploring the capabilities provided by
the attention module for explainable and interpretable forecasts
is another potential research direction to pursue.
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