
Parametric Tuning of Extended
Reverberation Algorithm Using Neural

Networks
Søren Vøgg K. Lyster

Sound and Music Computing, 2022-05

Master’s Project

S
T

U

D
E

N
T R E P O R T

Parametric Tuning of Extended
Reverberation Algorithm Using

Neural Networks

Søren Vøgg. K. Lyster
Sound And Music Computing, 2022-05

Master’s Project

S
T

U

D
E

N
T R E P O R T

Copyright © Aalborg University 2015

Studyboard of Media Technology
Aalborg University Copenhagen

http://smc.aau.dk

Title:
Parametric tuning of extended reverber-
ation algorithm using neural networks

Theme:
Master thesis

Project Period:
Spring Semester 2022

Project Group:
Individual

Participant(s):
Søren Vøgg Krabbe Lyster

Supervisor(s):
Cumhur Erkut

Copies: 1

Page Numbers: 66

Date of Completion:
May 25, 2022

Abstract:

This thesis sets out to implement an
extended feedback delay network with
a comprehensive set of parameters that
can be estimated by a proposed neu-
ral network. The goal of the neu-
ral network is to use audio differen-
tiation to tune the parameters of the
feedback delay network, to allow it to
emulate other reverberators. The feed-
back delay network is implemented as
a VST3 audio plugin and embedded
in the neural network via a proposed
audio processing model. Qualitative
evaluation is done on the performance
of the plugin and the neural network,
and a perceptual listening test is done
to evaluate the subjective quality of the
reverberated signals created by the es-
timated reverberation parameters.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://smc.aau.dk

Studyboard of Media Technology
Aalborg University Copenhagen

http://smc.aau.dk

Titel:
Parametric tuning of extended reverbe-
ration algorithm using neural networks

Tema:
Master thesis

Projektperiode:
Spring Semester 2022

Projektgruppe:
Individuel

Deltager(e):
Søren Vøgg Krabbe Lyster

Vejleder(e):
Cumhur Erkut

Oplagstal: 1

Sidetal: 66

Afleveringsdato:
25. maj 2022

Abstract:

This thesis sets out to implement an
extended feedback delay network with
a comprehensive set of parameters that
can be estimated by a proposed neu-
ral network. The goal of the neural
network is to use audio differentiation
to tune the parameters of the feedba-
ck delay network, to allow it to emu-
late other reverberators. The feedba-
ck delay network is implemented as a
VST3 audio plugin and embedded in
the neural network via a proposed au-
dio processing model. Qualitative eva-
luation is done on the performance
of the plugin and the neural network,
and a perceptual listening test is do-
ne to evaluate the subjective quality of
the reverberated signals created by the
estimated reverberation parameters.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med

forfatterne.

http://smc.aau.dk

Contents

Preface xi

1 Introduction 1
1.1 Thesis Concept . 1
1.2 Background . 1

1.2.1 Reverberation . 1
1.2.2 Neural Networks . 2

1.3 State-of-the-art . 2
1.4 Black-Box Reverberators . 3

1.4.1 Ableton Reverb . 3
1.4.2 Hall Of Fame 2 . 3
1.4.3 Valhalla Room . 4

2 Feedback Delay Network 7
2.1 Architecture . 7

2.1.1 Lossless Prototype Design . 8
2.2 Delay-Line Lengths . 9
2.3 Graphic Equalizer . 10

2.3.1 Interaction-Matrix-Based Design 10
2.3.2 Attenuation Time . 12
2.3.3 High Shelf Filter . 12

2.4 Feedback Matrices . 13
2.4.1 Householder Matrix . 13
2.4.2 Hadamard Matrix . 13
2.4.3 Matrix Difference . 14

2.5 Time Varying Delays . 14
2.6 Pre-Delay . 15

3 Neural Network 17
3.1 Parameter Model . 17

3.1.1 Mel-Spectrogram . 17

vii

viii Contents

3.1.2 Convolutional Network . 18
3.2 Audio Processing Model . 18

3.2.1 Gradient Approximation Method 18
3.3 Full Model . 20
3.4 Losses . 20

3.4.1 Multi-Scale Spectral Loss . 21
3.4.2 Envelope Loss . 22
3.4.3 Echo Density Loss . 22
3.4.4 Total Loss . 25

3.5 Optimizer . 27

4 Implementation 29
4.1 VST3 in JUCE . 29

4.1.1 GUI . 30
4.1.2 Sampling Rates . 30
4.1.3 Parameters . 30
4.1.4 Compatibility . 32
4.1.5 Internal State . 32
4.1.6 Lossless Prototype . 33

4.2 Pedalboard . 33
4.2.1 Process and Reset Functions 34
4.2.2 Parameter Control . 34

4.3 Neural Network . 34
4.3.1 Hyperparameter Estimation 34
4.3.2 Pretraining . 35

4.4 Toy Model . 35

5 Evaluation 37
5.1 Perceptual Evaluation . 37

5.1.1 Training . 38
5.1.2 Test Design . 39

5.2 Qualitative Evaluation . 40
5.2.1 Plugin Performance . 40
5.2.2 Neural Network Performance 40

6 Results and Discussion 43
6.1 Perceptual Evaluation Results . 43

6.1.1 Ableton Reverb . 43
6.1.2 Hall Of Fame 2 . 43
6.1.3 Valhalla Room . 44

6.2 Discussion . 44

Contents ix

7 Conclusion 47
7.1 Conclusion . 47
7.2 Future Work . 47

Bibliography 49

A Appendix A - Evaluation Data 53
A.1 MUSHRA Interface . 53
A.2 Test Instructions . 53
A.3 Test Results . 58

B Appendix B - Neural Network Models 59
B.1 Summary of the parameter model . 59
B.2 Summary of the full model with both parameter model and audio

processing model . 60

C Appendix C - Jupyter Notebook for Training 61

Preface

This Master Thesis looks at the often cumbersome task of tuning algorithmic pa-
rameters when developing artificial reverberation by implementing a reverbera-
tion plugin based on an extended feedback delay network, and tuning it with
the help of a proposed neural network. The thesis work has been done for the
Sound and Music Computing Master’s program at Aalborg University Copen-
hagen from February 1st to May 25th 2022. I have always had a high interest
in audio effects, and the development of them, especially reverberation. I recall a
story told at my previous workplace at TC Electronic where multiple audio engi-
neers used months tuning algorithm parameters during their development of one
of their world-renowned artificial reverberators. With my introduction to machine
learning and work with differential digital signal processing during my masters
program, the idea of using artificial intelligence to tune algorithmic parameters of
a designed reverberator plugin formed. I would like to extend a thanks to the su-
pervision I have received during the thesis work, and to all the lovely testers that
helped me with the perceptual evaluation.

Aalborg University, May 25, 2022

Søren Vøgg Krabbe Lyster
<slyste20@student.aau.dk>

xi

Chapter 1

Introduction

A state-of-the-art artificial reverberator will usually consist of multiple delay-lines
with frequency attenuation and time-varying delay modulation, with the result
being a complex set of parameters that needs to be estimated for a desired re-
verberation. This task of estimating parameters is a tedious task but might be
enhanced by the use of a neural network. A neural network can be efficient at es-
timating a large set of parameters when given a suitable design and configuration.
By creating training data by recording audio sources processed by a reverberator
the neural network model should be able to utilize audio differentiation to tune
the parameters of a custom reverberator plugin to recreate a target reverberation.

1.1 Thesis Concept

The goal of this thesis work is in two parts. One is to create a feedback delay
network reverberation plugin in the VST31 format, using extended feedback delay
network techniques. The second part is to create a neural network with an accom-
panying toolset, that can use the reverberation plugin in a differentiable digital
signal processing approach to estimate a set of parameters that will allow the re-
verberation plugin to emulate other reverberators. Three commercially available
black-box reverberators were chosen as the emulation targets for this work.

1.2 Background

1.2.1 Reverberation

In 1961 the first artificial reverberation was introduced by Schroeder and Logan
[20] as a digital comb and allpass filter with a negative feedforward path. The

1An audio plugin framework that allow audio effects to be run in digital audio workstations.

1

2 Chapter 1. Introduction

following years Schroeder expanded on the design to increase the initially rather
sparse echo density. In 1979 Moorer added [12] a lowpass filter inside the comb
filter to attenuate higher frequencies to reduce the artificial metallic sound that ear-
lier implementations suffered, and to approach a more natural sounding reverb. In
1991 Jot and Chaigne introduced the feedback delay network consisting of multi-
ple delay-lines with different lengths with a feedback matrix [8]. This approach
has a high control over the echo density and frequency dependent reverberation
times with attenuating filters in the delay-lines and can in many cases be seen as
state-of-the-art [25].

1.2.2 Neural Networks

The concept of neural networks began in the 1940’s with the first ideas of brain-
inspired computers, followed by the first successful perceptron in the 1950’s [28].
With the rise in computational power and widely accessible toolsets for working
with neural networks, the field of artificial intelligence, machine learning, and deep
learning is constantly growing. In 2015 the TensorFlow library was released by
Google’s Google Brain team [1] with focus on deep learning. On top of TensorFlow
is the Keras2 library for python, an API for creating machine learning models.
TensorFlow and Keras allow for quick design and implementation.

1.3 State-of-the-art

When discussing differential digital signal processing it is hard not to mention
the Differential Digital Signal Processing (DDSP) library from the Google Magenta
team [6]. DDSP uses audio differentiation and a multi-scale spectral loss to gen-
erate parameters driving audio synthesizers incorporated into the neural network.
One application of the DDSP library is to transfer amplitude and pitch information
from an input to various trained instruments, emulating timbre in what they call
Timbre Transfer. The DDSP paper has spawned a lot of work based on the concept
of differential digital signal processing. Various work have been focused on bring-
ing more digital signal processing and audio generating concepts into the neural
network domain (e.g., differentiable wavetable synthesis [21], differentiable IIR fil-
ters [9], and differentiable reverberation[10]), though this keeps the audio process-
ing in the domain and is still not suitable for most audio and music workflows,
e.g., working in digital audio workstations. We have recently seen the beginning
integration of differential digital signal processing moving into these workflows
with Mawf3 and DDSP-VST4, two plugins both working with timbre transfer. An-

2https://github.com/keras-team/keras
3https://mawf.io/
4https://magenta.tensorflow.org/ddsp-vst

https://github.com/keras-team/keras
https://mawf.io/
https://magenta.tensorflow.org/ddsp-vst

1.4. Black-Box Reverberators 3

other approach is to make the neural network compatible with a third-party audio
processing environment. Ramírez et. al [15] introduce DeepAFx. DeepAFx is a li-
brary inspired by the differential digital signal processing done by DDSP, but with
utilizing third-party LV2 plugins for Linux as their digital signal processing entity.
They propose embedding the LV2 plugin calls in a multi-threaded neural network
layer allowing them to train the network to change the parameters depending on
the incoming audio. In three experiments they achieve tube amplifier emulation,
removal of unwanted artifacts from vocals, and automatic music mastering using
open-source plugins. Recent toolchains have made the integration between audio
plugins and neural network environments easier. DawDreamer [4] is an extensive
Python module that seeks to include many digital audio workstation roles in code
that is callable from a neural network, with support for both VST plugins and
the FAUST5 programming language. The goal of DawDreamer is to enable intelli-
gent music production with artificial intelligence. Pedalboard by Spotify’s Audio
Intelligence Lab [24] is another python library that offers simple support for the
control of VST3 and Audio Unit format plugins. The Pedalboard library is directly
compatible with TensorFlow.

1.4 Black-Box Reverberators

Three commercial black-box reverberators have been selected for this thesis work.
These reverberators can be considered state-of-the-art in terms of reverberation and
are highly accessible. These three reverberators will act as our targets for which to
estimate parameters.

1.4.1 Ableton Reverb

The digital audio workstation Ableton Live comes with a large set of different
audio processing effects. One of these effects is the Reverb unit. Even though
many users opt out of using this in favor of third-party reverberators it is still a
decent performing reverberation effect, and worth considering as a target for this
thesis work. The Reverb unit has an expansive amount of parametric controls as
seen in figure 1.1.

1.4.2 Hall Of Fame 2

The Hall Of Fame 2 is the second version of the award winning Hall Of Fame
reverb by TC Electronic. This reverb comes in a hardware unit, and is designed
for guitar players, even though it performs as well for other instruments. With the

5https://faust.grame.fr/

https://faust.grame.fr/

4 Chapter 1. Introduction

Figure 1.1: Ableton Reverb GUI

associated preset editor software there is access to a large amount of parameters.
A sub-set of the parameter controls through the editor can be seen in figure 1.2.

1.4.3 Valhalla Room

ValhallaDSP is a rising star in the reverberation plugin scene. The Valhalla Room
is one of their reverberation audio plugins with a selection of reverberation modes,
and a high level of control over both the early reflections and the late reverberation.
The Valhalla Room plugin can be seen in figure 1.3.

1.4. Black-Box Reverberators 5

Figure 1.2: Hall Of Fame 2 GUI on Android device

Figure 1.3: Valhalla Room GUI

Chapter 2

Feedback Delay Network

2.1 Architecture

The original feedback delay network (FDN) as proposed by Jot and Chaigne [8]
consists of multiple parallel delay-lines with feedback scattered through an or-
thogonal feedback matrix.

The relationship between the input x(n) and output y(n) for N number of
delay-lines can be described in the following two equations:

y(n) =
N

∑
i=1

cisi(n) + dx(n) (2.1)

si(n + Mi) =
N

∑
j=1

Ai,jsj(n) + bix(n) (2.2)

where s is the output of the delay-lines, Mi is the delay-line length at index i, b
and c are the input and output gains, d is the dry signal gain, N is the number of
delay-lines, and A is the orthogonal feedback matrix of size N × N. For our design
of the FDN algorithm we disregard the dry path signal dx(n) in equation 2.1, as
we chose to only focus on the fully reverberated signal in this project. The task of
reintroducing the dry/wet mixing gain in later designs can be seen as trivial. Since
the original FDN design was introduced in 1991 a number of extensions has been
proposed for the design [25], and most commercial FDN based reverberators will
have multiple of those. One important extension for perceptual natural sounding
reverb is the frequency dependent attenuation. This attenuation is achieved by
introducing attenuation filters in the delay-lines. If we consider a filter function hi
to be our attenuation filter at delay-line index i, we can update equation 2.2

si(n + Mi) =
N

∑
j=1

Ai,jhisj(n) + bix(n) (2.3)

7

8 Chapter 2. Feedback Delay Network

A FDN design with attenuation is shown for a single delay-line in figure 2.1. In
some cases it is preferable to be able to change the spectral gain of the signal in
addition to the frequency dependent attenuation in the delay-lines [22]. For this
design a spectral coloration equalizer is added to the output of the FDN algorithm.
Many state-of-the-art reverberators also include delay-line length modulation and
pre-delay, so these are also added to the design. A diagram of the proposed FDN
architecture can be found in figure 2.2.

Figure 2.1: Single delay-line at index i with attenuation filter H

b1

b0

bN

M0 delay +
Mod

M1 delay +
Mod

MN delay +
Mod

Matrix (N x N)

c1

c0

cN

y

Spectral Coloration
EQ

Pre-delayx

EQ0

EQ1

EQN

Figure 2.2: Diagram of the proposed FDN architecture for N number of delay-lines.

2.1.1 Lossless Prototype Design

When designing a FDN reverberator it is common to work with the concept of
lossless prototypes [7]. The goal of the lossless prototype is to create a unitary
feedback system, where there is no internal loss of power. With the introduction
of attenuation filters we introduce a potential loss, but if the attenuation gain of
all filters in the system is set to 0dB no loss should occur. The lossless prototype
design approach is a great help when designing attenuation filters, since errors
in the filter design will lead to perceptual attenuation, or in worst case exploding
signals where the output of the system quickly rises towards infinity.

2.2. Delay-Line Lengths 9

2.2 Delay-Line Lengths

The length of the individual delay-lines in a FDN reverberator can greatly influence
the perception of reverb, where too high delay values can result in a low echo
density, amplitude modulation, and unwelcome ringing [22]. To ensure correct
ranged delay times we can look at the mode density of the reverberator. The mode
density M can be described as the sum of the delay-line lengths Mi and poles Pi (if
using attenuation) in the system

M =
N

∑
i=1

Mi + Pi (2.4)

Schroeder and Logan [20] notes that a mode density of 150ms per Hz is adequate
for a reverberation time of 1 second, so the desired mode density can be described
as

M ≤ 0.15t60 fs, (2.5)

where t60 is the reverberation time and fs is the sampling rate. Though not used
in the real-time implementation of the FDN reverberator, the observation of mode
density can be beneficial in design and debugging.

Besides mode density it is also important to look at the delay-line length values
in reference to each-other, since lengths containing common factors can produce
echo cancellation or superposition [19]. The choice of delay-line lengths is often
set to a fixed value in reverberator designs, but when the lengths need to be pa-
rameterized some considerations must be taken. Since mutually prime delay-line
lengths are desired, the different lengths can be chosen as integer powers of primes,
as proposed by J. O. Smith [22] and implemented in the Faust Programming Lan-
guage. If we consider a minimum and maximum desired delay-line length, we can
define a range of N delay-line lengths Mi as

Mi = Lmin

(
Lmax

Lmin

)i/N

, (2.6)

where i is the index of the delay-line length, Lmin is the minimum desired length,
and Lmax is the maximum desired length. To ensure that these delay-line lengths
are mutually prime we calculate them by taking a integer power of a prime number

Mprime,i = pmi
i , (2.7)

where Mprime,i is the delay-line length at index i calculated to be coprime with other
lengths, pi is the prime number indexed at i in the range of naturally occurring
primes pi ∈ {2, 3, 5, 7, 11, 13, 17, ...}, and mi being the integer power calculated from
the initial delay-line length Mi in

mi = 0.5 +
⌊

log Mi

log pi

⌋
. (2.8)

10 Chapter 2. Feedback Delay Network

2.3 Graphic Equalizer

The expanded feedback delay network has frequency attenuation embedded in the
delay-lines. Frequency attenuation can be done in multiple ways, so an objective of
this problem can be defined as selecting a frequency attenuation implementation
that works well in a neural network structure. An original expanded FDN structure
might have simple bi-quad filter structures implemented, but estimating bi-quad
filter coefficients leads to a classical machine learning gradient issue of exploding
gradients due to their instability. Another approach to this is the state variable filter
implementation used in [11], but this tuning of multiple filters in multiple delay-
lines with codependent parameters was deemed too hard for the neural network
when working with more than one delay-line, and the performance of the attenu-
ation was highly dependent on the selected delay-line lengths. A third approach
was investigated by looking at a graphic equalizer design. This design consists of
a graphic equalizer bank for each delay-line. The graphic equalizers consist of 10
bandpass filters and a high shelf filter each. By calculating frequency dependent
gain values from desired reverberation time values, and known sampling rate and
delay-line lengths, this solution has been observed to be much easier for the neural
network to interact with. This section describes the graphic equalizer design that
is used with attenuation time values in the delay-lines and with dB gain values in
the spectral coloration equalizer.

2.3.1 Interaction-Matrix-Based Design

One modern method of creating a graphic equalizer is by cascading second-order
filters and solving a set of linear equations for the gains at the center frequency of
each filter [26, 27]. The overall frequency response of this graphic EQ design is the
product of the filter response for each filter

HC(ejωTs) = G0

M

∏
m=1

Hm(ejωTs) (2.9)

where M is the number of filters in the graphic EQ, G0 is the overall gain factor,
Hm(ejωTs) is the frequency response of filter m, ω is the radial frequency, and Ts

is 1/ fs with fs being the sample rate. The amplitude response of HC(ejωTs) can be
described as the sum of the amplitude response of each filter

AC(ejωTs) = g0 +
M

∑
m=1

Am(ejωTs) (2.10)

where g0 = 20 log(G0) and Am(ejωTs) = 20 log(|Hm(ejωTs)|) An interaction matrix
A of size M × M is created to store the normalized amplitude response of all the
M filters at M center frequencies

2.3. Graphic Equalizer 11

Ak,m = Am(ejωkTs)/gp (2.11)

where m is the filter index, k is the center frequency index, and gp = 20 log(Gp) is
an initial prototype gain for all the filters. An approximation to the gain in dB at
each center frequency t̂ can be defined as

t̂ = Ag (2.12)

where g is a vector containing the gain for each filter in dB. Since A is square and
invertible a solution can be found using matrix inversion

gopt = A−1t (2.13)

where t is a vector containing the desired gains for each filter, and gopt is a vector
with the optimum gains to reach the target amplitude response of each filter.

Välimäki and Liski proposes an improved method to minimize the amplitude
errors that could arise in the cascading graphic equalizer: By adding extra fre-
quency points between the command frequencies and updating the interaction
matrix with these new values [26]. The result is a slightly more complex least-
squares problem with less potential amplitude error. The updated EQ design has
19 frequency points instead of 10, where the new 9 points are chosen to lie in be-
tween the command frequencies. The resulting new interaction matrix B is now of
size 2M − 1 × M

Bk,m = Am(ejωkTs)/gp (2.14)

where m is the filter index, k is the index of the expanded frequency vector, and gp

still being the initial prototype gain. Since the interaction matrix now is non-square
the least-square solution is as follows

g = (BTB)−1BTt1 (2.15)

where t1 is a vector of 2M − 1 elements with the target command gains at odd
indices and the linear interpolated values at even indices. To further increase the
precision of the resulting gain values a second iteration is done. This time the new
interaction matrix is defined as

B1,k,m = A1,m(ejωkTs)/gm, (2.16)

where A1,m is the new amplitude responses with the gain value gm is the g from
equation 2.15 indexed at each filter m. The least-square solution can then be

g1 = (BT
1 B1)

−1BT
1 t1, (2.17)

12 Chapter 2. Feedback Delay Network

resulting in a new command gain vector g1 with an error rate of < 1dB. When
designing the interaction matrices, the amplitudes are derived using this following
second-order filter equation:

H(z) =
1 + Gβ − 2 cos(ωc)z−1 + (1 − Gβ)z−2

1 + β − 2 cos(ωc)z−1 + (1 − β)z−2 (2.18)

where G is the gain at peak, GB is the gain at the bandwidth B, ωc is the center
frequency, and

β =

 tan(B/2), when G = 1√
|G2

B−1|
|G2−G2

B|
tan(B

2), otherwise
(2.19)

2.3.2 Attenuation Time

To allow for accurate control of the reverberation time T60 at the defined control
frequencies we must calculate the target magnitude response AdB for the graphic
equalizer [13, 17]. First we can calculate the attenuation-per-sample in dB at ω:

γdB(ω) = −60
1

fsT60(ω)
, (2.20)

where ω = 2π f / fs is the normalized angular frequency, f is the selected frequency
in Hz, and fs is the sampling rate in Hz. To calculate the target magnitude response
from the attenuation-per-sample value we need to know the length of the delay-
line in samples L. Since the lengths of the delay-lines in the FDN are different, we
need to calculate AdB for each delay-line M:

AdB,M(ω) = LMγdB(ω) (2.21)

The desired magnitude response can now be used to calculate the optimum gains
for each filter in the graphic equalizer using the method in 2.3.1.

2.3.3 High Shelf Filter

As suggested in [27] and implemented in [14] a high shelf filter is added in succes-
sion to the other 10 bandpass filters. The shelf filter is a first order shelf filter and
works at the same center frequency as the highest bandpass filter frequency. The
purpose of this filter is to attenuate broadly in the highest spectral part of the sig-
nal, as most natural sounding reverberation attenuates the signal the most in that
frequency range. The transfer function for the high shelf filter HHS is as follows:

HHS(z) =
√

G tan(ωc/2) + G + [
√

G tan(ωc/2)− G]z−1
√

G tan(ωc/2) + 1 + [
√

G tan(ωc/2)− 1]z−1
, (2.22)

where G is the gain at the center frequency and ωc is the normalized center fre-
quency.

2.4. Feedback Matrices 13

2.4 Feedback Matrices

The choice of feedback matrix should ensure the goal of a lossless prototype design,
where an input impulse will grow to a smooth noise signal [7]. A feedback matrix
can fulfill being lossless if it is a unitary matrix [8], that is when the matrix A
conjugate A∗ is equal to its inverse A−1:

AA∗ = AA−1 (2.23)

Two methods of generating feedback matrices that adheres to this principle are
selected for our FDN design: the Householder Matrix and the Hadamard Matrix.

2.4.1 Householder Matrix

The Householder matrix AN of size N × N is constructed using a N × N permuta-
tion matrix and a N × 1 column vector of 1’s as follows:

AN = JN − 2
N

uNuT
N (2.24)

where uT
N denotes the transposed column vector. In our case the permutation ma-

trix JN is the identity matrix IN . Jot found that the Householder matrix transforma-
tion worked best for feedback delay networks with four delay-lines. For systems
with 16 delay-lines he proposed a 16 × 16 matrix A16 with embedded A4 matrices
[22]:

A16 =
1
2

A4 −A4 −A4 −A4

−A4 A4 −A4 −A4

−A4 −A4 A4 −A4

−A4 −A4 −A4 A4

 (2.25)

2.4.2 Hadamard Matrix

Another commonly used unitary feedback matrix is the Hadamard matrix [22].
The 2 × 2 Hadamard matrix is defined as:

A2 =
1√
2

[
1 1
1 −1

]
, (2.26)

where higher order matrices can be created with recursive embedding matrices

A4 =
1√
2

[
A2 A2

A2 −A2

]
=

1
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (2.27)

14 Chapter 2. Feedback Delay Network

2.4.3 Matrix Difference

The difference that the two feedback matrices has on the echo density growth has
in the feedback delay network can be subtle but is apparent when the echo density
growth is inspected. Figure 2.3 has the echo density plotted for both matrix types
in a lossless prototype.

Figure 2.3: Echo density growth over 0.5 seconds plotted for both matrix types in a lossless prototype.

2.5 Time Varying Delays

To emulate the time invariances in natural reverberation caused by, e.g., temper-
ature fluctuations [3] we can make use of delay-line length modulations. A low
frequency oscillator can be used to vary the delay-line lengths in real time, so that

2.6. Pre-Delay 15

a modulated delay-line length Lmod could be defined as

Lmod = L + v(t), (2.28)

where L is the initially fixed delay length and v(t) is the oscillating delay-line
variation.

2.6 Pre-Delay

Pre-delay is implemented using a simple delay-line delaying the incoming signal
before it hits the FDN algorithm, as it exists in most commercial reverberators. The
pre-delay can be seen context with the FDN algorithm in figure 2.2.

Chapter 3

Neural Network

The task of the neural network is to converge towards a set of parameters using
audio differentiation. With our approach we need to be able to embed a VST3
plugin within the neural network model. The neural network is designed to take
a dry signal as input, and a wet signal as the target signal on which to do audio
differentiation. This chapter describes the various parts of the proposed neural
network model structure, along with a proposed novel combination of losses.

3.1 Parameter Model

The parameter model is a sub-model in the neural network reverberation estima-
tion model. This model takes an audio signal input and returns a set of parameters.
Since we want to encode a large number of samples into a relatively small number
of parameters, we need to reduce our input audio into smaller features. This is
done by converting the audio into logarithmic Mel-spectrogram frames. The re-
sulting frames are then encoded through a 2D convolutional network. The design
of the convolutional network has been found empirically by iterative testing and
training.

3.1.1 Mel-Spectrogram

By converting the input audio to Mel-Spectrogram frames we reduce the raw input
audio data to a number of two-dimensional frames for the 2D convolutional net-
work. Since our parameter model is a problem of compressing the input audio into
a neural network with weights and biases that results in an output of parameters,
we do not need to be too concerned about the way we convert the input audio into
frames. With this reasoning we keep the Mel-Spectrogram implementation used in
earlier work by the author [11].

17

18 Chapter 3. Neural Network

3.1.2 Convolutional Network

Initially we used the MobileNetV2 [16] for encoding in the parameter model, since
this encoder has been used in other implementations [11, 15]. But during the devel-
opment of the neural network we found that a simplified 2D convolutional network
performed better for this case. This model was inspired by another encoder model
used previously in the DeepAFx implementation [15]. The 2D convolutional model
consists of 4 repeats of a configuration of Keras layers: Conv2D → MaxPooling2D
→ BatchNormalization. The output is then flattened and reduced into a dense
layer, followed by a drop-out layer. A final dense layer is added with a number of
output-neurons consistent with the amount of parameters to estimate. The flow of
the entire parameter model can be seen in figure 3.1.

3.2 Audio Processing Model

The Audio Processing model is a single-layer model where we embed our FDN
plugin in the neural network. The task of this model is to generate an audio signal
from an input signal processed through the reverberator with a given parameter
set. The functionality of the model can simply be described as

y = f (x, θ), (3.1)

where f () is the VST3 processing function, x is the input signal, θ is the set of VST
parameters, and y is the output signal.

3.2.1 Gradient Approximation Method

Backpropagation through the model requires that all layers can calculate and/or
propagate gradients. Gradients are a part of the off-the-shelf network layers in
Keras and TensorFlow, but our introduction of the custom audio processing layer
has no such functionality provided, so a custom gradient implementation is re-
quired. As the input to the custom audio processing layer consist of an audio signal
and a parameter vector, gradients must be calculated for both to enable backprop-
agation. Looking at the audio input graph through the system we can observe that
no weights need to be updated, so we can disregard calculating gradients for this
path and just return a gradient vector of same size as the input audio signal filled
with zeros. The parameter vector is where we need to estimate the gradients. The
problem of estimating gradients for backpropagation for the parameter vector is
a problem of estimating the individual parameters gradient. Since we disregard
backpropagation with regards to the input signal x in equation 3.1 we only need
to calculate the gradients for θ. If we consider our current value of θ as θ̂0 then the
gradient can be defined as the change in f (x, θ̂0). As we can ignore the gradients

3.2. Audio Processing Model 19

Conv2D
MaxPooling2D

BatchNormalization
Conv2D

MaxPooling2D
BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization
Conv2D

MaxPooling2D
BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization
Conv2D

MaxPooling2D
BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization
Conv2D

MaxPooling2D
BatchNormalization

Conv2D
MaxPooling2D

BatchNormalization

LogMelgramLayer

Flatten

Dense

Dropout

Dense

Parameters Output

Audio Input

Figure 3.1: The layers of the parameter model.

20 Chapter 3. Neural Network

for x we can define the gradient for a single parameter at index i as

∇̃ f (θ̂0)i =
δ f (θ̂0)

δθi
, (3.2)

where ∇̃ f (θ̂0) is our notation for the gradient at index i, and δ f (θ̂0)i/δθi is the
change in output signal at a change in the parameter θi. Calculating the gradient
for each parameter can be a time-consuming task as we would need to process
the input signal x through the audio processor twice for each parameter to get the
gradients for all of θ. As we also need one forward pass for each call to this model
the amount of processing calls would be 2 × P + 1 calls, where P is the amount
of parameters in θ. The chosen solution to this problem is an approach called
Simultaneous Perturbation Stochastic Approximation.

Simultaneous Perturbation Stochastic Approximation

Simultaneous Perturbation Stochastic Approximation (SPSA) is an optimization
method that can be used when estimating gradients in a neural network with high
dimensional problems, e.g., a large set of parameters [23]. Estimating the gradient
for a parameter θ̂i with SPSA can be written as

∇̃SPSA f (θ̂0)i =
f (θ̂0 + ϵ∆̂P)− f (θ̂0 − ϵ∆̂P)

2ϵ∆P
i

, (3.3)

where ∆̂P is a vector of perturbations the size of the number of parameters P
containing a binomial distribution of -1 and 1, and with ϵ being a small positive
number. Using SPSA requires only 2+ 1 process runs through the VST3 to estimate
the gradients for all parameters and do the forward pass. We can therefor utilize
SPSA to greatly increase the speed of our neural network.

3.3 Full Model

The full neural network model consists of the parameter model followed by the
audio processing model. A diagram of the full model can be seen in figure 3.2.
The summary of the parameter model and the full model can be seen in appendix
B.

3.4 Losses

For the audio differentiation in our neural network we need a loss value that
describes how the signal generated by the network differs from the target sig-
nal. The loss calculated should result in meaningful and minimizable values

3.4. Losses 21

Parameters

Parameter Model

Audio

Gradients

Audio Processing
Model

Input Audio

Loss

Loss FunctionTarget Audio

Figure 3.2: A diagram of the full neural network model.

for the backpropagation. There are various different approaches to calculating
a loss when working with audio differentiation, with some simply might using
mean-absolute-error or mean-squared-error, others look at the spectral compo-
nents utilizing multi-scale short-time Fourier transformations [6, 15]. The issue
with sample-wise losses in mean-absolute-error and mean-squared-error is that
various waveforms might be similar but differ perceptually and vice versa [6].

When calculating losses for reverberation where the target signal originates
from black-box algorithms mean-absolute-error and multi-scale spectral losses seemed
to lack information about key temporal properties. To help with this problem a
hybrid-loss approach was investigated with a combination of multi-scale spectral
loss, envelope loss, and echo-density loss.

3.4.1 Multi-Scale Spectral Loss

The Differential Digital Signal Processing library from Google Magenta introduced
a multi-scale spectral loss approach that compares the magnitude spectrogram of
target and synthesized audio at multiple different FFT sizes. This was done to
cover the differences at different spatial-temporal resolutions [6]. We can define
the partial loss value Li with an FFT size at index i as the sum of the L1 difference
between S and Ŝ and between log S and logŜ

Li = ||Si − Ŝi||1 + || log Si − log Ŝi||1, (3.4)

22 Chapter 3. Neural Network

where S is the STFT of the target signal, and Ŝ is the STFT of the signal generated
by the neural network. If we do this for a range of N FFT sizes our multi-scale
spectral loss will be

Lspectral =
N

∑
i=1

Li (3.5)

For this project the range of FFT sizes are {2048, 1024, 512, 256, 128, 64}. The magni-
tude spectrogram for three different FFT sizes can be seen plotted for the Ableton
Reverb impulse response in figure 3.3.

3.4.2 Envelope Loss

Sample-by-sample comparison such as mean-absolute-error and mean-square-error
can be difficult to utilize in this black-box approach. An envelope loss function is
created to give the model some information about the envelope of the reverberated
signal. Since a strong perceptual component of reverberation is decay time [5] this
should provide the network with an informed loss component based on reverber-
ation. The envelope of a signal is in this case calculated by splitting the signal into
multiple frames and finding the maximum value of each frame. The smoothness
of the envelope is dependent on the frame size used. We found that a good frame
size for representing a useful signal envelope was 4096 samples at 48kHz. The
envelope of the three target case impulse responses can be seen in figure 3.4. The
resulting loss is the L1 difference between the envelope of the target signal A and
the envelope of the signal generated by the neural network Â

Lenv = ||A − Â||1 (3.6)

3.4.3 Echo Density Loss

Echo Density Loss is a proposed novel loss function used for estimating the delay-
line parameters of the FDN algorithm. The loss function is implemented with a
echo density measure algorithm proposed by Abel and Huang [2]. This algorithm
is using a weighted sliding window function to estimate the amount of taps that
lie outside a standard deviation. The algorithm is as follows:

η(t) =
1

erfc(1/
√

2)

t+δ

∑
τ=t−δ

w(τ)1{|h(τ)| > σ} (3.7)

where σ is

σ =

[
t+δ

∑
τ=t−δ

w(τ)h2(τ)

] 1
2

, (3.8)

3.4. Losses 23

Figure 3.3: STFTs of Ableton Reverb response at three different FFT sizes.

24 Chapter 3. Neural Network

Figure 3.4: Envelope for three different recorded reverb impulses.

3.4. Losses 25

the function w(τ) is a weighted Hanning window, the function h(τ) is the audio
signal, erfc(1/

√
2) is the complementary error function describing the expected

fraction of samples outside the standard deviation of a Gaussian distribution, and
1{|h(τ)| > σ} is the indicator function{

1 if |h(τ)| > σ

0 if |h(τ)| ≤ σ
(3.9)

The loss value is then defined as the L1 difference in echo density for the target
signal σ and the signal generated by the neural network σ̂:

Lecho = ||η − η̂||1 (3.10)

The algorithm has been implemented in TensorFlow and optimized for TensorFlow
operations. The three figures in figure 3.5 show the echo density for the first
0.25 seconds of the impulse responses of the three black-box reverberators. The
light blue dashed lines are the echo densities with the early reflections ignored.
A boolean parameter has been implemented in our echo density loss function to
allow the removal of what is assumed as being early reflections. Since our FDN
design does not include early reflections, we need to ignore these to reduce our
echo density loss. Early reflections often exist in the first 100ms of an artificial
reverberated signal, before the late reverberation takes over [22]. If we inspect the
echo density of the Hall Of Fame 2 and Valhalla impulse responses in figure 3.5, we
can see an initial relatively high echo density in the first ∼ 60 and ∼ 40 milliseconds
respectively, with a following steady growth of echo density from a near-zero.
Since we do not know the internal structure of the black-box reverberators we can
make the assumption that this initial region in the echo density is early reflections.
The early reflections are removed from the echo density graph by zeroing echo
density values before the near-zero point.

3.4.4 Total Loss

With the different loss function contributions the total loss value Ltotal is then de-
fined as

Ltotal = αLspectral + βLenv + γLecho, (3.11)

where α, β, and γ is the weights of the individual losses. A good weight distri-
bution has been found empirically by testing the neural network, with α = 1.0,
β = 50.0, and γ = 1.0.

26 Chapter 3. Neural Network

Figure 3.5: Echo density of three reverberated signals.

3.5. Optimizer 27

3.5 Optimizer

As the optimizer in the neural network we use the ADAM optimizer. The ADAM
optimizer is an advanced optimizer using gradient descend, and is used in many
modern neural networks as well as both the DDSP and DeepAFx implementations
[6, 15].

Chapter 4

Implementation

In this chapter we will discuss the various methods and considerations that has
been in play when implementing the various parts of this project. The code used
for the FDN plugin can be found at https://github.com/VoggLyster/Reverberator/
tree/thesis. The code used for the neural network can be found at https:
//github.com/VoggLyster/ReverberatorEstimator/tree/thesis.

4.1 VST3 in JUCE

The proposed extended FDN system has been implemented in C++ using the JUCE
application framework1. JUCE is an open-source application framework that in-
cludes a large tool-set for digital signal processing and audio plugin development,
as well as GUI and VST3 support. JUCE also includes a build management tool
called the Projucer that can create and manage build solutions for multiple plat-
forms. This tool has been used to manage Makefiles for Linux compilation and
Visual Studio Solutions for Windows compilation, allowing for easy cross-platform
build management. Throughout the implementation and testing it has been benefi-
cial to have different number-of-delay-lines configurations of the plugin, and differ-
ent configurations with different extended FDN features left out. Instead of having
a fragmented codebase and cluttered version control the different configurations
were made dynamically available in the implementation using C++ preprocessor
directives.

Continuous Delivery

During the development of this project continuous delivery has been managed
and maintained using Github Actions workflows2. Using the different configura-

1https://juce.com/
2A CI/CD tool available on Github, https://github.com/features/actions

29

https://github.com/VoggLyster/Reverberator/tree/thesis
https://github.com/VoggLyster/Reverberator/tree/thesis
https://github.com/VoggLyster/ReverberatorEstimator/tree/thesis
https://github.com/VoggLyster/ReverberatorEstimator/tree/thesis
https://juce.com/
https://github.com/features/actions

30 Chapter 4. Implementation

tions available via preprocessor definitions multiple VST3 plugins could be com-
piled continuously in a virtual machine environment when code changes were de-
ployed to version control. The newest version of the FDN plugin can be found at
https://github.com/VoggLyster/Reverberator/releases/latest, with the cur-
rent version at writing this thesis being 0.1.61.

4.1.1 GUI

A simple GUI has been implemented. This has been done to make testing easier
but does not have any effect on the implementation in the neural network. The GUI
has been programmed to dynamically add parameters to conform to the different
number of available delay-line builds. The top of section of the GUI for a 16 delay-
line configuration can be seen in figure 4.1.

4.1.2 Sampling Rates

The FDN plugin was originally implemented with compatibility for a wide range
of sampling rates, but the graphical equalizer design is not yet optimized for lower
sampling rates, as it quickly becomes unstable, as shown in figure 4.2.

4.1.3 Parameters

To be easily compatible with the neural network architecture, all parameters are
normalized to the range [0, 100]. In the reverberator plugin these parameter values
are mapped linearly into their desired ranges through these various mappings:

• Delay-line minimum length is in the range [20, 30] meters.

• Delay-line maximum length is [20, 40] meters, offset by the delay line mini-
mum length.

• Pre-delay is in the range [0, 40] ms.

• Reverberation time parameters for the delay-line attenuation graphic equal-
izer are in the range [0.3, 2.43] seconds.

• Gain values for the spectral coloration graphic equalizer are [−57, 3] dB.

• Gain values for the delay-line input gains are [−12, 0] dB.

• Gain values for the delay-line output gains are [−12, 0] dB.

• Delay-line length modulation frequency [0, 3] Hz.

• Delay-line length modulation depth is [0, 10] samples.

https://github.com/VoggLyster/Reverberator/releases/latest

4.1. VST3 in JUCE 31

Figure 4.1: Cutout of the dynamic GUI.

32 Chapter 4. Implementation

Figure 4.2: Impulse response of the reverberator plugin at different sampling rates, with filter atten-
uation.

The linear mapping is done as following

p =
pin

100
∗ (pmax − pmin) + pmin (4.1)

An additional parameter has been added for selecting the feedback matrix type.
This parameter does not conform with the mapping of the other parameters, since
it performs as boolean. Lastly a bypass parameter is available through the default
JUCE audio plugin framework - this parameter is not used.

4.1.4 Compatibility

Embedding the VST plugin in a neural network requires some considerations re-
garding compatibility. The plugin needs to be able to run headless since the process
is unlikely to run in an environment with display access. This has been an issue in
earlier work [11] that could be fixed by utilizing the headless support included in
the JUCE framework versions 6.0+.

4.1.5 Internal State

It is important for the functionality of the neural network that each process call
resets the internal state of the plugin. The internal state of the plugin includes the
state-values of the second order filters cascaded in the graphic equalizers and the
content of the delay-lines. The phase of the oscillators used for delay-line length
modulation should also be reset.

4.2. Pedalboard 33

4.1.6 Lossless Prototype

During the implementation we still want to adhere to the lossless prototype design
concept mentioned in 2.1.1. By setting the control gain values of all filters to 0dB
and applying a single one-sample impulse to the input of the reverberator, we
should be able to observe an output that settles on a steady noise-like signal. The
response of a one-sample impulse can be seen in figure 4.3 for both unitary matrix
designs.

Figure 4.3: Output of the implemented plugin with parameters set to achieve lossless state. The two
plots show the lossless signal for both matrix implementations.

4.2 Pedalboard

Pedalboard is a python package created by Spotify’s Audio Intelligence Lab, that
uses python bindings to allow studio grade audio plugin formats to be used and

34 Chapter 4. Implementation

controlled via python and TensorFlow [24]. Through the Pedalboard package one
can load the VST3-format plugins and access them through function calls. All
parameters available in the loaded plugins are available through key-value pairs.
Even though the Pedalboard package works out-of-the box it requires some con-
siderations.

4.2.1 Process and Reset Functions

A lot of debugging has gone into checking the process calls from Pedalboard to
the VST3 plugin. When processing in mono it is important that you only write to
the first channel of the output buffer, since the process would halt otherwise. The
virtual reset function available through JUCE needs to be overwritten to clear all
internal states of delay-lines and filters.

4.2.2 Parameter Control

As the Pedalboard package allows parameter control through key-value pairs the
task of setting the parameters from a parameter vector is trivial. Inspired by the
DeepAFx implementation by Ramírez et. al [15] a parameter mapping has been
implemented, allowing control of what parameters to set via the neural network,
and what parameters to set to an initial fixed value. This has been usefull both
to reduce the parameter set when training various toy model problems, to fix the
modulation frequencies and depths, and when selecting feedback matrix design
between the implemented Householder and Hadamard matrices.

Parameter Ranges

The Pedalboard package has been found to have a high error ratio at ∼ 5% when
dealing with values between 0 and 1. To decrease the error ratio all parameters
have been scaled from [0, 1] to [0, 100], where the error rate is reported to be at
∼ 0.1%. We did not want to do any changes in the parameter model of the neural
network, so a factor of 100 is added to the parameter values when setting the values
via Pedalboard in the audio processing model.

4.3 Neural Network

4.3.1 Hyperparameter Estimation

Hyperparameters has been estimated empirically throughout the implementation
of the models. A well functioning learning rate has been found to be 1e-5, with a
callback reducing it when the training plateaus over a set number of epochs. Each
of the four losses has been given weight values to weight their contribution to the

4.4. Toy Model 35

overall model loss. The ϵ-value used in the SPSA gradient estimation (equation
3.3) has been found to work best at 0.01. All hyperparameters, along with various
values used doing training, has been added to a configuration file for each training
case. The configuration file serves as a python dictionary which helps to organize
the various training parameters.

4.3.2 Pretraining

Pretraining the weights of the parameter model is beneficial to set an initial starting
point for the training. Without pretraining the weights of the parameter model is
randomized, and this can lead to unfortunate parameter combinations that the
model has a high difficulty moving away from, as well as instability caused by
the graphic equalizer exceeding 0dB gain at extreme cases. When pretraining the
system the audio processing model is disconnected from the entire model. The
training can then be done by creating a tensor of desired initial parameter values as
the parameter model output target. Differentiation is done by measuring the mean-
absolute-error between the target parameter tensor and system output parameter
tensor.

4.4 Toy Model

To test the compatibility of the plugin and neural network a toy model problem
was constructed. The idea of this toy model problem is for it to be a simple version
of the problem investigated in this thesis. For this a configuration of the FDN
plugin was created with only one delay-line, and with a minimized parameter set.
The initial toy model problem was to test the integration between the different
neural network parts and the FDN plugin, where the only parameters were for
the attenuation filters. The result of training this toy model problem can be seen
in figure 4.4, where the target audio was created with the same configuration of
the FDN plugin that was used under the test, with a specific parameter set. With
the toy model problem approach it was possible to test and iterate over different
configurations of the neural network. This proved usefull in many different cases,
e.g., testing the attenuation filter parameters with spectral loss, and testing delay-
line length parameters with echo density loss. The configuration considerations
during the plugin implementation mentioned in section 4.1 proved very usefull for
quickly generating versions of the FDN plugin with different features.

36 Chapter 4. Implementation

Figure 4.4: Result of the toy model training with one delay-line FDN.

Chapter 5

Evaluation

This chapter contains the multiple evaluations made for this project. A percep-
tual evaluation is done as a listening test using the MUltiple Stimuli with Hidden
Reference and Anchor (MUSHRA) method. A qualitative evaluation is done on
the performance of the implemented FDN plugin, and on the performance of the
proposed neural network. As the FDN plugin is used in context with the neural
network, and not with an end-user in mind, we did not consider a user-evaluation
on the plugin.

5.1 Perceptual Evaluation

Reverberation as an audio effect can be hard to compare outside of a perceptual
context. Different reverberation algorithms may have vastly different architecture,
different attenuation methods, and different interfaces and parameters [5]. A per-
ceptual evaluation is a widely used method of evaluation reverberated signals.
This evaluation was done as a listening test using MUSHRA, where the testers
were tasked with ranking different audio signals on a scale from 0-100 on their
similarity to a reference signal, with 0-20 being bad perceived similarity, 20-40
being poor perceived similarity, 40-60 being fair perceived similarity, 60-80 being
good perceived similarity, and 80-100 being excellent perceived similarity. The
audio signals for each test trial consist of following:

Hidden Reference - This signal is expected to be scored at a 100, as it is a copy of
the reference signal.

Estimation - This is the signal generated from the FDN plugin with parameters
estimated by the neural network. This is the audio under test.

Anchor35 - This is an anchor signal that is the reference signal low-pass filtered at
3.5 kHz. This anchor is expected to be scored at a low score (0-20 points).

37

38 Chapter 5. Evaluation

Anchor1ch - This is an anchor signal created like the estimation signal with pa-
rameters from the neural network, but with a FDN plugin configuration with
only one delay-line. Like the other anchor, this is expected to perform badly,
as the perception of a one delay-line FDN reverberator is tangent to an echo
effect.

5.1.1 Training

To generate audio for the perceptual evaluation three different commercially avail-
able black-box reverberators were selected:

Ableton Live 10 Reverb by Ableton. A preset called Small Room with an adver-
tised decay time of 1.4 seconds was selected. This preset has no modulation.
A screenshot of the parameter settings for the reverb can be seen in figure
1.1.

Hall Of Fame 2 by TC Electronic. A copy of a Hall preset was created through
the editor. This new preset has no modulation, and an advertised decay time
of 1.818 seconds and some early reflections. A screenshot of the important
subset of parameters can be seen in figure 1.2.

Valhalla Room by ValhallaDSP. This reverberator was set to a mode called Large
Chamber with an advertised decay at 1.9 seconds. The reverberator has some
slight modulation and advertised early reflections. A screenshot of the pa-
rameter settings in the GUI can be seen in figure 1.3.

A simple data-set was constructed for each black-box reverberator using a colored
impulse-like signal of a finger-snap. The Ableton Reverb and the Valhalla Room
are software plugins, so recording these was done entirely through the digital au-
dio workstation Ableton Live1. The TC Electronic Hall Of Fame 2 used in this
evaluation is a reverberation algorithm embedded in the TC Electronic Plethora X5
hardware unit. The Hall Of Fame 2 was recorded using a M-Audio M-Track Eight
audio device. All reverberation impulses were recorded for two seconds at 48kHz.
The three datasets was then constructed as a pair of the recorded wet impulse
response and the dry impulse-like signal. Training was done for each black-box
effect in a Jupyter Notebook2 environment (see appendix B) for 3000 epochs. For
each training the result was a parameter set that could be applied to the FDN
plugin. The parameter set selected for training consisted of: delay-line minimum
and maximum length, pre-delay value, attenuation graphic equalizer reverbera-
tion time values, spectral coloration graphic equalizer control gain values, and
input and output gain values. The parameters for time-varying modulation were

1https://www.ableton.com/en/live/
2A web-based environment for coding and creating documents.

https://www.ableton.com/en/live/

5.1. Perceptual Evaluation 39

omitted. The parameter for feedback matrix selection was set by visual inspection
of the echo density graph for the target audio.

MUSHRA-Ready Audio

With the FDN plugin tuned to the parameters given by the neural network training
multiple reverberated audio signals could be created for the MUSHRA listening
test. Three different dry mono audio signals were gathered for the test. These au-
dio signals were chosen on their different perceptual qualities and musical context:

• One signal should have multiple transients and natural gaps. For this a two-
bar drum loop was created with natural sounding drum samples.

• One signal should have varying harmonic content and still keep contain some
percussive elements. For this a piano signal was recorded with different
chords.

• One signal should have vocal properties. For this a short vocal recording was
provided by a singer.

The three audio signals were then processed through the FDN plugin for each
estimated parameter set to create the audio signals for the MUSHRA test. All
audio signals under test were normalized and converted to pseudo-stereo, where
the mono signal was applied to both left and right channel. This was done to
conform to the webMUSHRA implementation, and to let testers listen to the audio
with stereo-headphones. The MUSHRA-ready reference audio was recorded for
each black-box reverberator in similar manner to the training dataset. With the
three test audio signals and the three black-box effects the MUSHRA listening test
consist of nine trials.

5.1.2 Test Design

An online server-hosted implementation of a MUSHRA evaluation test was set up
using webMUSHRA [18]. Having an online server-hosted implementation allowed
for offsite evaluation, where the testers were able to do the listening test without
supervision. The instructions given to the testers can be found in appendix A. After
the initial instructions the testers were shown a page with an example listening test,
where they could familiarize themselves with the MUSHRA interface and controls.
When advancing they were then prompted that the test was about to begin. The
nine listening trials were then presented for the testers in randomized order. After
the listening-test the testers were given a post-test questionnaire with following
points to answer:

1. Age

40 Chapter 5. Evaluation

2. Years of music experience

3. Years of audio-engineering experience

4. Briefly describe your audio setup used in the test

5. Briefly describe the environment you were in during the test

6. Do you have any hearing impairments?

7. Are there any thoughts or observations you want to share?

The first three points in the questionnaire are for demographic survey data. Points
4-6 in the questionnaire was mainly to be able to investigate if there was any reason
for large deviations in the answers, that could be due to hearing impairments, bad
equipment, or noisy environments. The last point acts as an interview question
where the answers are acknowledged, but not reported on, unless some answers
contain something of direct interest for this project.

5.2 Qualitative Evaluation

Qualitative evaluation has been done on the FDN plugin and neural network,
where the plugin could be evaluated as a standalone product but is an integral
part of the neural network performance.

5.2.1 Plugin Performance

One requirement stated earlier is for the plugin to be able to be set as a lossless
prototype. This requirement has been fulfilled as discussed in section 4.1.6, though
this required expanded parameter ranges of near-infinite reverberation time values
or direct gain control, that is not available in the final implementation used in the
neural network. When dealing with VST plugins that should be usable in a digital
audio workstation CPU usage percentage is an important metric. The CPU usage
has been tested on an Intel Core i5-8400 CPU 2.80GHz processor with 6 cores where
it did not exceed 10% and usually stayed around 4%. This seems acceptable for an
extended FDN implementation.

5.2.2 Neural Network Performance

An epoch with four VST plugin processes running takes ∼ 5 seconds, giving us
an average training time for the 3000 epochs used to train the network at around 4
hours and 10 minutes. We can compare multiple qualities of the estimated and
target impulse responses to investigate the performance of the neural network

5.2. Qualitative Evaluation 41

Estimated T60 Target T60 Difference
Ableton Reverb 1019ms 1458ms 30.1%
Hall of Fame 2 1576ms 1757ms 10.3%
Valhalla Room 1912ms 1815ms 5.3%

Table 5.1: Calculated T60 values from estimated and target signals for each black-box reverberator.

Figure 5.1: STFT of estimated and target signal for Ableton Reverb

training. By calculating the T60 values for each signal we get insight to the re-
verberation time, and by plotting STFT of the signals we can compare the spectral
content.

T60 Values

The T60 values have been calculated using MATLAB3 and are reported, along with
their difference in percent, in table 5.1. It is clear that the estimated T60 values
differ a great deal from the target values.

Spectral Content

The spectral content of the estimated and target impulse responses have been plot-
ted in dB using the Librosa4 STFT function. The power spectrograms for the three
cases can be seen in figure 5.1, 5.2, and 5.3.

3https://se.mathworks.com/products/matlab.html
4https://librosa.org/

https://librosa.org/

42 Chapter 5. Evaluation

Figure 5.2: STFT of estimated and target signal for Hall Of Fame 2

Figure 5.3: STFT of estimated and target signal for Valhalla Room

Chapter 6

Results and Discussion

In this chapter we will discuss the results of the perceptual evaluation. We will
report on the mean-value across the test answers for each case and compare the
results with the data from the qualitative evaluation.

6.1 Perceptual Evaluation Results

In all trials the two anchors have been correctly identified, with the 3.5kHz filtered
anchor performing a bit better than the 1 delay-line FDN implementation. In this
section we will look at the three cases, each consisting of their three respective
trials (drums, piano, vocals). A one-way ANOVA analysis has been done on the
test results but yielded no results worth reporting. 15 testers have participated in
the listenening test. Their mean age is 29.6 years, with a mean reported music
experience at 15.4 years. 10 of the participants report having audio-engineering
experience, with a mean of 10.4 years of experience between them. Three of the
testers report that they have mild tinnitus. All testers report that they took the test
with a combination of environment and setup hardware deemed acceptable.

6.1.1 Ableton Reverb

The estimated signal for the Ableton Reverb scored a 66.18/100. With 52.5 for the
drum signal, 66.4 for the piano signal, and 79.6 for the vocal signal. A violin plot
of the results can be seen in figure 6.1

6.1.2 Hall Of Fame 2

The estimated signal for the Hall Of Fame 2 scored a mean rating at 71.02/100.
With 62.13 for the drum signal, 81.33 for the piano signal, and 69.6 for the vocal

43

44 Chapter 6. Results and Discussion

Figure 6.1: The perceptual evaluation results for the Ableton Reverb test case.

signal. This case has the best overall performance mean score. A violin plot of the
results can be seen in figure 6.2

6.1.3 Valhalla Room

The estimated signal for the Valhalla Room scored a 70.42/100. With 66.07 for the
drum signal, 65.93 for the piano, and 79.27 for the vocal signal. A violin plot of the
results can be seen in figure 6.3

6.2 Discussion

Looking at the results of the perceptual evaluation it is clear that the neural net-
work has not been able to correctly estimate the parameters to emulate the target
reverberated signals to satisfaction. We should however not dismiss that the train-
ing has yielded good enough results for the mean-value scores of to be within a
range that the scale in the MUSHRA listening test labels as good. Overall the Hall
Of Fame 2 estimation case scores the highest with a 71.02, followed by the Valhalla
Room case, and finally the Ableton Reverb case. If we consider the T60 values
extracted in qualitative evaluation section 5.2.2 it would make sense that the Able-
ton Reverb estimation performs the worst, given its T60 value difference at 30.1%,
where as the T60 value difference is only 5.3% for the Valhalla Room, which is
close to the just-noticeable-difference for reverberation time of 5% [13]. In two of

6.2. Discussion 45

Figure 6.2: The perceptual evaluation results for the Hall Of Fame 2 test case.

Figure 6.3: The perceptual evaluation results for the Valhalla Room test case.

46 Chapter 6. Results and Discussion

the three cases the drums performed the worst (see appendix A for individual trial
violin plots). This is likely because of its transient and percussive nature, giving
room for the reverberation tail to stand out. It is also common to tune reverberation
to the sound of a snare, both in studio and live settings. It is interesting to note
that for all three test cases the vocal trial scored no less than 69.6, with it being the
highest performer in two of the cases.

Chapter 7

Conclusion

7.1 Conclusion

Through the work of this master thesis a well-performing extended feedback delay
network has been implemented in C++ and compiled to the VST3 format, along
with a neural network structure for estimating parameters of said FDN. Through
qualitative and perceptual evaluation, it has been shown that the performance of
the neural network has not been optimal for the estimation problem, but it has
given initial useful results. Both FDN and neural network have been implemented
with compatibility in mind, allowing for easy modification and further develop-
ment. The FDN is partially compatible with different sampling rates, and the de-
sign and implementation of state-of-the-art graphic equalizers and delay-line mod-
ulation brings its functionality close to many commercially available reverberators.
With the addition of preprocessor configurability and multi-platform continuous
delivery workflows further work is encouraged. For the neural network a novel
echo density loss function has been implemented and optimized for TensorFlow
operations, and the proposed audio processing model with embedded VST3 com-
patibility is a novel contribution with the possibility of extending it to different
VST3 plugins, not just the proposed FDN plugin.

7.2 Future Work

The next step in the development of the neural network will be to look at the
performance. With a deeper knowledge in deep learning and neural networks
it should be possible to optimize the parameter estimation to allow for further
convergence of a fitting parameter set. As mentioned in the conclusion the audio
processing model would be compatible with different VST3 plugins, allowing for
the reuse in different estimation problems. At the current state the FDN plugin
is performing well at 44.1kHz and 48kHz, and is capable of creating high quality

47

48 Chapter 7. Conclusion

reverberation. Therefore it makes sense to continue work on the plugin to bring
it to a state intended for normal use in a digital audio workstation. This requires
the ability to process audio in stereo, which could be implemented with, e.g., Inter
Aural Cross Correlation. With the introduction of the graphic equalizers the range
of functioning sampling rates were reduced, but this could be alleviated with an
investigation into the graphic equalizers, and following changes in design and
implementation. Furthermore a graphical user interface could be developed, and
the exposed parameters of the FDN could be reduced to a number of higher level
parameters for better user experience.

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

[2] Jonathan S Abel and Patty Huang. “A Simple, Robust Measure of Rever-
beration Echo Density”. In: Audio Engineering Society Convention 121. Audio
Engineering Society. 2006.

[3] Barry A. Blesser. “An Interdisciplinary Synthesis of Reverberation View-
points”. In: Journal of the Audio Engineering Society 49.10 (2001), pp. 867–903.

[4] David Braun. “DawDreamer: Bridging the Gap Between Digital Audio Work-
stations and Python Interfaces”. In: arXiv preprint arXiv:2111.09931 (2021).

[5] Brecht De Man, Kirk McNally, and Joshua Reiss. “Perceptual Evaluation and
Analysis of Reverberation in Multitrack Music Production”. In: Journal of the
Audio Engineering Society 65 (Feb. 2017), pp. 108–116.

[6] Jesse Engel et al. “DDSP: Differentiable Digital Signal Processing”. In: arXiv
preprint arXiv:2001.04643 (2020).

[7] William G. Gardner. “Reverberation Algorithms”. In: Applications of Digital
Signal Processing to Audio and Acoustics. Ed. by Mark Kahrs and Karlheinz
Brandenburg. Springer US, 2002, pp. 85–131.

[8] Jean-Marc Jot and Antoine Chaigne. “Digital Delay Networks for Designing
Artificial Reverberators”. In: Audio Engineering Society Convention 90. Audio
Engineering Society. 1991.

[9] Boris Kuznetsov, Julian D Parker, and Fabián Esqueda. “Differentiable IIR
filters for Machine Learning Applications”. In: Proc. Int. Conf. Digital Audio
Effects (eDAFx-20). 2020, pp. 297–303.

[10] Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee. “Differentiable Artificial
Reverberation”. In: arXiv preprint arXiv:2105.13940 (2021).

[11] Søren V.K. Lyster and Cumhur Erkut. A Differentiable Neural Network Ap-
proach to Parameter Estimation of Reverberation. Accepted for SMC-22 confer-
ence. 2022.

49

https://www.tensorflow.org/
https://www.tensorflow.org/

50 Bibliography

[12] James A Moorer. “About This Reverberation Business”. In: Computer Music
Journal (1979), pp. 13–28.

[13] Karolina Prawda, Sebastian J Schlecht, and Vesa Välimäki. “Improved Re-
verberation Time Control for Feedback Delay Networks”. In: Proc. Int. Conf.
Digit. Audio Effects. 2019, pp. 1–7.

[14] Karolina Prawda et al. “Flexible Real-time Reverberation Synthesis With Ac-
curate Parameter Control”. In: 23rd International Conference on Digital Audio
Effects. 2020, pp. 16–23.

[15] Marco A Martínez Ramírez et al. “Differentiable Signal Processing With
Black-box Audio Effects”. In: ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 66–70.

[16] Mark Sandler et al. “Mobilenetv2: Inverted Residuals and Linear Bottle-
necks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 4510–4520.

[17] Sebastian J Schlecht and Emanuël AP Habets. “Accurate Reverberation Time
Control In Feedback Delay Networks”. In: 2017, pp. 337–344.

[18] Michael Schoeffler et al. “webMUSHRA—A Comprehensive Framework for
Web-based Listening Tests”. In: Journal of Open Research Software 6.1 (2018).

[19] Manfred R. Schroeder. “Natural Sounding Artificial Reverberation”. In: Jour-
nal of the Audio Engineering Society 10.3 (1962), pp. 219–223.

[20] Manfred R Schroeder and Benjamin F Logan. “" Colorless" Artificial Rever-
beration”. In: IRE Transactions on Audio 6 (1961), pp. 209–214.

[21] Siyuan Shan et al. “Differentiable Wavetable Synthesis”. In: ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2022, pp. 4598–4602.

[22] Julius O. Smith. Physical Audio Signal Processing. online book, 2010 edition.
http://ccrma.stanford.edu/˜jos/pasp/, accessed 25/05/2022.

[23] James C Spall. “An Overview of the Simultaneous Perturbation Method for
Efficient Optimization”. In: Johns Hopkins APL Technical Digest 19.4 (1998),
pp. 482–492.

[24] Spotify. Pedalboard. https://github.com/spotify/pedalboard. accessed
25/05/2022. 2021.

[25] Vesa Valimaki et al. “Fifty Years of Artificial Reverberation”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 20.5 (2012), pp. 1421–1448.

[26] Vesa Välimäki and Juho Liski. “Accurate Cascade Graphic Equalizer”. In:
IEEE Signal Processing Letters 24.2 (2017), pp. 176–180.

http://ccrma.stanford.edu/~jos/pasp/
https://github.com/spotify/pedalboard

Bibliography 51

[27] Vesa Välimäki and Joshua D. Reiss. “All About Audio Equalization: Solutions
and Frontiers”. In: Applied Sciences 6.5 (2016), p. 129.

[28] Neha Yadav, Anupam Yadav, and Manoj Kumar. “History of Neural Net-
works”. eng. In: An Introduction to Neural Network Methods for Differential
Equations. SpringerBriefs in Applied Sciences and Technology. Dordrecht:
Springer Netherlands, 2015, pp. 13–15.

Appendix A

Appendix A - Evaluation Data

A.1 MUSHRA Interface

A screenshot of the webMUSHRA interface can be seen in figure A.10.

A.2 Test Instructions

Following are the test instructions tester were given as part of the MUSHRA lis-
tening test.

• Page 1 Welcome to the reverberation comparison test for the master thesis by Søren
V. K. Lyster at Aalborg University Copenhagen. In this experiment you will be given
a reference audio signal and 4 test audio signals that you have to evaluate. The 4 test
audio signals need to be judged on their similarity to the reference signal on a moving
scale from bad to excellent. You will be shown 9 different cases during the test.

All participation in this test is anonymous, and no meta-data will be collected. Par-
ticipation is voluntary. By continuing you agree on these terms.

• Page 2 This first page is just for you to get familiar with the controls. There are
5 buttons below the audio waveform that allow you to play and pause the reference
signal and the 4 test signals. The stop button on the left will stop the audio. The
horizontal slider below the waveform allows you to control what part of the audio is
played. The audio will loop automatically. When you are ready to start the test, press
the next button.

• Page 3 The test will begin on the next page.

53

54 Appendix A. Appendix A - Evaluation Data

Figure A.1: The perceptual evaluation results for the Ableton Reverb drum signal.

Figure A.2: The perceptual evaluation results for the Ableton Reverb piano signal.

A.2. Test Instructions 55

Figure A.3: The perceptual evaluation results for the Ableton Reverb vocal signal.

Figure A.4: The perceptual evaluation results for the Hall Of Fame 2 drum signal.

56 Appendix A. Appendix A - Evaluation Data

Figure A.5: The perceptual evaluation results for the Hall Of Fame 2 piano signal.

Figure A.6: The perceptual evaluation results for the Hall Of Fame 2 vocal signal.

A.2. Test Instructions 57

Figure A.7: The perceptual evaluation results for the Valhalla Room drum signal.

Figure A.8: The perceptual evaluation results for the Valhalla Room piano signal.

58 Appendix A. Appendix A - Evaluation Data

Figure A.9: The perceptual evaluation results for the Valhalla Room vocal signal.

Figure A.10: Screenshot of the webMUSHRA interface

A.3 Test Results

Figure A.1 through A.9 shows the violin plots for the test results for the nine
individual trials in the listening test (drums, piano, and vocal for each black-box
reverberator).

Appendix B

Appendix B - Neural Network Mod-
els

B.1 Summary of the parameter model

Model : " parameter_model "

Layer (type) Output Shape Param #
===
audio_time (InputLayer) [(None , 9 6 0 0 0)] 0

logMelgram (LogMelgramLayer) (None , 372 , 128 , 1) 0

conv2d (Conv2D) (None , 371 , 127 , 128) 640

max_pooling2d (MaxPooling2D) (None , 185 , 63 , 128) 0

batch_normal izat ion (BatchNo (None , 185 , 63 , 128) 512

conv2d_1 (Conv2D) (None , 184 , 62 , 32) 16416

max_pooling2d_1 (MaxPooling2 (None , 92 , 31 , 32) 0

batch_normal izat ion_1 (Batch (None , 92 , 31 , 32) 128

conv2d_2 (Conv2D) (None , 91 , 30 , 16) 2064

max_pooling2d_2 (MaxPooling2 (None , 45 , 15 , 16) 0

batch_normal izat ion_2 (Batch (None , 45 , 15 , 16) 64

59

60 Appendix B. Appendix B - Neural Network Models

conv2d_3 (Conv2D) (None , 44 , 14 , 32) 2080

max_pooling2d_3 (MaxPooling2 (None , 22 , 7 , 32) 0

batch_normal izat ion_3 (Batch (None , 22 , 7 , 32) 128

f l a t t e n (F l a t t e n) (None , 4928) 0

dense (Dense) (None , 32) 157728

dropout (Dropout) (None , 32) 0

dense_1 (Dense) (None , 55) 1815
===
Tota l params : 181 ,575
Tra inable params : 181 ,159
Non− t r a i n a b l e params : 416

B.2 Summary of the full model with both parameter model
and audio processing model

Model : " ful l_model "
__
Layer (type) Output Shape Param # Connected to
==
audio_time (InputLayer) [(None , 9 6 0 0 0)] 0
__
parameter_model (Funct ional) (None , 55) 181575 audio_time [0] [0]
__
vs t_processor (VSTProcessor) (None , 96000) 0 audio_time [0] [0]

parameter_model [0] [0]
==
Tota l params : 181 ,575
Tra inable params : 181 ,159
Non− t r a i n a b l e params : 416
__

Appendix C

Appendix C - Jupyter Notebook for
Training

61

ReverberatorEstimator

May 23, 2022

1 ReverberatorEstimator notebook
Jupyter Notebook for Parameter Estimation of Reverberation Using a Neural Network project by
Søren Lyster

1.1 Import needed packages

[]: import matplotlib.pyplot as plt
import IPython
import tensorflow as tf
print(tf.__version__)
import tensorflow.keras as tfk
from ReverberatorEstimator import loss, models, utils, config
import warnings
warnings.filterwarnings('ignore')
import time
import os
import datetime
import IPython

1.2 Setup environment

[]: os.environ['CUDA_VISIBLE_DEVICES'] = '0'

1.3 Setup variables for the notebook

[]: k = config.k
sample_rate = k['sample_rate']
sample_length = k['sample_length']
num_epochs = k['epochs']
num_processors = k['n_processors']
steps_per_epoch = k['steps_per_epoch']
batch_size = steps_per_epoch * num_processors
epsilon = k['epsilon']
learning_rate = k['learning_rate']
dry_audio_path = k['dry_audio_path']
wet_audio_path = k['wet_audio_path']
vst_path = k['vst_path']

1

time_loss_weight = k['time_loss_weight']
spectral_loss_weight = k['spectral_loss_weight']
envelope_loss_weight = k['envelope_loss_weight']
echo_density_loss_weight = k['echo_density_loss_weight']
use_multiscale = k['use_multiscale']
num_params = k['n_parameters']
parameter_map = k['parameter_map']
non_trainable_parameters = k['non_trainable_parameters']
pretrained_weights = k['pretrained_weights']
checkpoint_path = k['checkpoint_path']

print(parameter_map)

1.4 Setup dataset for batch training

[]: x_train, y_train = utils.get_dataset(dry_audio_path, wet_audio_path,␣
↪→batch_size, resample=True, old_sample_rate=48000,␣
↪→new_sample_rate=sample_rate)

1.5 Create layers, create partial models, and compile full model

[]: model, parameter_model, processor = models.get_models(sample_length,␣
↪→sample_rate, num_params, num_processors,

vst_path, epsilon,␣
↪→parameter_map, non_trainable_parameters,

pretrained_weights)

reverberation_loss = loss.reverberationLoss(sample_rate=sample_rate,
spectral_loss_weight=spectral_loss_weight,
spectral_loss_type='L1',
time_loss_weight=time_loss_weight,
time_loss_type='L1',
envelope_loss_weight=envelope_loss_weight,
envelope_loss_type='L1',
echo_density_weight=echo_density_loss_weight,
echo_density_type='L1',
use_multiscale=use_multiscale,
)

optimizer = tfk.optimizers.Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer, loss=reverberation_loss, run_eagerly=True)

2

1.6 Print model summaries
[]: parameter_model.summary()

model.summary()

1.7 Setup checkpoint and callbacks

[]: checkpoint_dir = os.path.dirname(checkpoint_path)

model_cp = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
monitor='loss',
verbose=1,
save_best_only=True,
mode='min')

lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor='loss',
factor=0.5,
patience=500,
cooldown=1,
verbose=1,
mode='auto',
min_lr=1e-10)

log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tfk.callbacks.TensorBoard(log_dir=log_dir,␣
↪→histogram_freq=1)

1.8 Restore from previous checkpoint if it exists

[]: try:
model.load_weights(checkpoint_path)

except:
print("No previous checkpoints found at %s" % checkpoint_path)

1.9 Run model and save data before training for analysis and debugging

[]: input_audio = tf.reshape(x_train[0], (1, sample_length))
target_audio = tf.reshape(y_train[0], (1, sample_length))

audio_pre = (model.call(input_audio)).numpy()[0]
old_params = parameter_model(input_audio).numpy()[0]
print(old_params)

3

1.10 Run the model.fit to begin training.

[]: start_time = time.time()
history = model.fit(x_train, y_train, verbose=1, epochs=num_epochs,␣
↪→steps_per_epoch=steps_per_epoch,

callbacks=[model_cp, lr_callback])
print("Training took %d seconds" % (time.time() - start_time))

1.11 Plot training loss metrics

[]: fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(7,5))
ax.plot(history.history['loss'])
ax.set_title('loss')
ax.set_ylabel('loss')
ax.set_xlabel('epoch')
ax.legend(['train', 'test'], loc='upper left')

1.12 Run a forward pass and get the output audio of the trained model

[]: model.load_weights(checkpoint_path)
output_audio = model(input_audio)
processor.print_current_parameters()

1.13 Display the output audio from before training the model
This is done to inspect the changes the training has done

[]: utils.plot_single(audio_pre, sample_rate, sample_length)

1.14 Plot the output audio against the target audio

[]: utils.plot_output_and_target(output_audio, target_audio, sample_rate)
IPython.display.display(IPython.display.Audio(output_audio, rate=sample_rate,␣
↪→autoplay=True))

IPython.display.display(IPython.display.Audio(target_audio, rate=sample_rate))

1.15 Plot the loss function differences
[]: utils.plot_differences(output_audio, target_audio, sample_rate,␣

↪→weights=[time_loss_weight,spectral_loss_weight,envelope_loss_weight,echo_density_loss_weight])

[]: utils.plot_differences(output_audio, tf.reshape(tf.
↪→convert_to_tensor(audio_pre), (1,sample_length)), sample_rate)

1.16 Print the parameters
These parameters are from the parameter model subpart of the full model. These values are
transferable to the FDN reverberator plugin at [https://github.com/VoggLyster/Reverberator]

4

[]: params = parameter_model(input_audio).numpy()[0]
print('New parameter set: ', params)
plt.stem(params)
plt.ylim(0,1)

1.17 Plot the parameter differences of before and after training
This shows the movement of the parameters after training and can give a good picture of the
momentum of the training loop

[]: param_diff = params - old_params
print('Parameter set difference: ', param_diff)
plt.stem(param_diff)
plt.ylim(-1,1)

1.18 Generate MUSHRA-ready audio files

[]: audio_data, audio_names = utils.generate_MUSHRA_ready_audio(vst_path, params,␣
↪→sample_rate)

for i in range(len(audio_data)):
print(audio_names[i])
IPython.display.display(IPython.display.Audio(audio_data[i],␣

↪→rate=sample_rate))
utils.write_audio_files(audio_data, audio_names, 'MUSHRA_audio/Wet/
↪→AbletonReverb', sample_rate)

5

	Front page
	Front page
	English title page
	Danish title page
	Contents
	Preface
	1 Introduction
	1.1 Thesis Concept
	1.2 Background
	1.2.1 Reverberation
	1.2.2 Neural Networks

	1.3 State-of-the-art
	1.4 Black-Box Reverberators
	1.4.1 Ableton Reverb
	1.4.2 Hall Of Fame 2
	1.4.3 Valhalla Room

	2 Feedback Delay Network
	2.1 Architecture
	2.1.1 Lossless Prototype Design

	2.2 Delay-Line Lengths
	2.3 Graphic Equalizer
	2.3.1 Interaction-Matrix-Based Design
	2.3.2 Attenuation Time
	2.3.3 High Shelf Filter

	2.4 Feedback Matrices
	2.4.1 Householder Matrix
	2.4.2 Hadamard Matrix
	2.4.3 Matrix Difference

	2.5 Time Varying Delays
	2.6 Pre-Delay

	3 Neural Network
	3.1 Parameter Model
	3.1.1 Mel-Spectrogram
	3.1.2 Convolutional Network

	3.2 Audio Processing Model
	3.2.1 Gradient Approximation Method

	3.3 Full Model
	3.4 Losses
	3.4.1 Multi-Scale Spectral Loss
	3.4.2 Envelope Loss
	3.4.3 Echo Density Loss
	3.4.4 Total Loss

	3.5 Optimizer

	4 Implementation
	4.1 VST3 in JUCE
	4.1.1 GUI
	4.1.2 Sampling Rates
	4.1.3 Parameters
	4.1.4 Compatibility
	4.1.5 Internal State
	4.1.6 Lossless Prototype

	4.2 Pedalboard
	4.2.1 Process and Reset Functions
	4.2.2 Parameter Control

	4.3 Neural Network
	4.3.1 Hyperparameter Estimation
	4.3.2 Pretraining

	4.4 Toy Model

	5 Evaluation
	5.1 Perceptual Evaluation
	5.1.1 Training
	5.1.2 Test Design

	5.2 Qualitative Evaluation
	5.2.1 Plugin Performance
	5.2.2 Neural Network Performance

	6 Results and Discussion
	6.1 Perceptual Evaluation Results
	6.1.1 Ableton Reverb
	6.1.2 Hall Of Fame 2
	6.1.3 Valhalla Room

	6.2 Discussion

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	A Appendix A - Evaluation Data
	A.1 MUSHRA Interface
	A.2 Test Instructions
	A.3 Test Results

	B Appendix B - Neural Network Models
	B.1 Summary of the parameter model
	B.2 Summary of the full model with both parameter model and audio processing model

	C Appendix C - Jupyter Notebook for Training

