
MAES 2.0: A ROS Compatible Simulation Tool for Multi Robot
Exploration and Coverage

Malte Z. Andreasen1 a, Philip I. Holler1 b and Magnus K. Jensen1 c

1Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark
malte@mza.dk, philipholler94@gmail.com, magnjensen@gmail.com

Keywords: Distributed Systems, ROS, Robot Operating System, ROS 2, Distributed Exploration, Area Exploration,
Continuous Space, Autonomous Robots, Online Terrain Coverage, Exploration, Coverage, Simulation,
Swarm Robotics, Multi Agent, Frontier-Based Exploration, MAES, Nav2, SLAM

Abstract: Multi Agent Exploration Simulator (MAES) is an open-source physics based discrete step multi robot simula-
tor created using Unity (Andreasen et al., 2022a). We present MAES 2.0 as an extension to MAES 1.0, which
introduces improved features in the form of heatmap visualization, custom signal degradation, custom user-
provided maps, and an extended GUI for debugging. Furthermore, MAES 2.0 allows for interfacing with the
simulator through ROS (Robot Operating System), which results in easier portability of developed algorithms
to real world robots. MAES 2.0 includes both unit tests and system tests to ensure intended behavior of the
code. Furthermore, performance tests were conducted with modest hardware, which showed that MAES 2.0
is able to simulate up to 5 robots in ROSMode (using the ROS integration) and up 120 robots in UnityMode.
A usability test was conducted which showed that the target audience of robotics researchers and developers
were able to quickly install, setup, and use MAES for implementing simple robot logic.

1 INTRODUCTION

Testing implementations of swarm robotics can be an
expensive and difficult task. For this reason, many
developers look to simulations as they offer a cheaper
and easier solution for testing an algorithm or swarm
behavior. Popular simulation solutions include Argos
(ARGoS, 2022) and Gazebo (Open Robotics, 2022e).
Even simulations, however, can be difficult to set up
and configure. This difficulty is usually caused by the
simulation tools having a heavy emphasis on modu-
larity and customizability, which often comes at the
cost of increased complexity for the user. Addition-
ally, some simulation software have heavy require-
ments in terms of CPU power on the host machine,
which can necessitate using multiple computers, or
even clusters.

In this paper we introduce a new version (2.0)
of the Multi Agent Exploration Simulator (MAES)
tool. MAES 1.0 was initially developed for simulat-
ing swarm behavior for achieving online exploration
and/or coverage of an unknown space. Developing

a https://orcid.org/0000-0002-2338-265X
b https://orcid.org/0000-0001-7587-531X
c https://orcid.org/0000-0001-9594-0297

algorithms was done directly in the C# code in the
Unity Editor (Andreasen et al., 2022a). While this ap-
proach allows for easy development, it is not compat-
ible with the workflow of many robotics researchers
and developers. In addition, the algorithms developed
in MAES 1.0 were not easily ported to real robots,
because the interface had very little overlap with ex-
isting approaches used in robotics.

For this reason, MAES 2.0 introduces a new in-
terface for controlling the robots using ROS 2 (Robot
Operating System) (Open Robotics, 2022h), which is
a commonly used tool-set for developing robot soft-
ware for both simulation and real life applications.
This allows robotics researchers and developers to use
many existing libraries and solutions when develop-
ing control algorithms in MAES. The ROS-based al-
gorithms can also be more easily ported to real robots.

MAES 2.0 thus has two modes: UnityMode with
support for C# development and ROSMode which en-
ables the new ROS integration.

This aims at documenting and presenting the work
done to create MAES 2.0. In Section 2 we will dis-
cuss ROS in further detail, as well as provide a quick
summary of the features of MAES 1.0. In Section 3
we introduce MAES 2.0 including the new architec-
ture and adaption for ROS compatibility. In Section 4

1



we showcase how MAES 2.0 scales when increasing
the number of robots and the size of the map. Section
5 provides a description of, and the results from, a
usability test conducted with robotics researchers and
students. In Section 6 we conclude on the results of
MAES 2.0, the results of the performance test, and
results of the usability test. Section 7 touches on re-
lated work before Section 8 describes the future work
in stall for MAES.

The main contributions of this paper include

• Integrating ROS 2 into MAES

• A usability test proving that robotics researchers
and developers are able to use MAES with ROS 2

• Performance test showing that MAES scales well
with the number of robots, even on low-power
platforms

• Integrating additional visualization features into
MAES, e.g. a heatmap and environment tags

2 BACKGROUND INFORMATION

This section introduces important concepts necessary
for understanding the rest of the paper. These include
a quick summary of ROS, other simulator tools and
their ROS support, as well as a quick overview of
MAES 1.0.

2.1 ROS and Simulators

Multiple simulation tools exists for robotics, such
as Argos (ARGoS, 2022), Gazebo (Open Robotics,
2022e), PlayerStage (Player/Stage, 2022), NVIDIA’s
Isaac (NVIDIA, 2022), and more. All of the afore-
mentioned simulators also include some kind of ROS
support, either for ROS1 or ROS2.

ROS is a set of libraries and tools for build-
ing robotics systems (Open Robotics, 2022h). ROS
is currently developed and maintained by Open
Robotics (Open Robotics, 2022g). One of the main
ideas behind ROS is that the software can be used in
both real world robots and simulated environments.

As of writing, the most popular simulator for use
with ROS appears to be Gazebo, as it is a first party
simulator, that is also developed by Open Robotics.
Gazebo is highly modular and customizable. For ex-
ample the user can specify the physical structure of
the robots through URDF (Unified Robot Descrip-
tion Format) files. This type of flexibility allows it
to support most use cases but comes at the cost of
increased structural complexity, a cumbersome setup
process and a high computational overhead.

2.2 ROS Definitions

Throughout this article we will use several ROS spe-
cific terms. In this Section these terms will be de-
fined. As no formal definition is provided in the ROS
2 documentation, the following definitions are sum-
maries of the explanations from the ROS2 documen-
tation (Open Robotics, 2022h). There are many other
domain specific terms when working with ROS, but
in this section we focus on the ones used in this paper.

Definition 1. A node is a fundamental ROS 2 el-
ement that serves a single, modular purpose in a
robotics system (Open Robotics, 2022o).

Definition 2. Nodes publish messages over topics,
which allows any number of other nodes to sub-
scribe to and access that information (Open Robotics,
2022p).

Definition 3. A message is data formatted to follow
a specification defined in a ROS workspace and can
be sent through a topic. ROS2 contains many built-in
message definitions, e.g. geometry msgs/Pose (Open
Robotics, 2022a).

Definition 4. ROS 2 relies on the notion of com-
bining workspaces using the shell environment.
Workspace is a ROS term for a location in the file
system that contains a number of ROS related devel-
opment files. The core ROS 2 workspace is called
the underlay. Subsequent local workspaces are called
overlays. A workspace can contain any number of
packages (Open Robotics, 2022c).

Definition 5. A package can be considered a con-
tainer for ROS 2 code. To be able to install code or
share it with others, it is required to have it organized
in a package. With packages, it is possible release
ROS 2 work and allow others to build and use it eas-
ily (Open Robotics, 2022d).

Definition 6. A launch file is a file with a definition
of how to one or more nodes with a specific param-
eter configuration. A launch file can be called from
the ROS 2 CLI (Command Line Interface) (Open
Robotics, 2022f).

Definition 7. A transform tree defines the rela-
tions between different coordinate frames, in terms
of translation, rotation, and relative motion (Open
Robotics, 2022b)(Open Robotics, 2022k).

Definition 8. Actions are one of the communication
types in ROS 2 and are intended for long running
tasks. They consist of three parts: a goal, feedback,
and a result (Open Robotics, 2022l)

Definition 9. Services are another method of com-
munication for nodes in the ROS graph. Services are

2



based on a call-and-response model, versus topics’
publisher-subscriber model (Open Robotics, 2022n).

Definition 10. Nodes have parameters to define
their default configuration values. You can get and set
parameter values from the ROS 2 CLI. You can also
save the parameter settings to a file to reload them in
a future session (Open Robotics, 2022m).

Definition 11. A costmap is grid-like structure of
cells (an occupancy grid), representing the surround-
ing environment in terms of the cost of moving from
the current location to the location represented by the
cell. A low/zero value means a cell is free and a
high value means a cell is occupied (Open Robotics,
2022j).

2.3 MAES 1.0

MAES 1.0 is a discrete-step simulator created in
Unity for comparing online exploration/coverage al-
gorithms in continuous space (Andreasen et al.,
2022a). MAES 1.0 allows for implementing custom
algorithms with custom robot hardware capabilities
using C#. Included in the MAES 1.0 tool are im-
plementations of several state-of-the-art exploration
and coverage algorithms including Local Voronoi
Decomposition(LVD) (Fu et al., 2009), The Next
Frontier(TNF) (Colares and Chaimowicz, 2016), and
Selective Spiraling and Backtracking(SSB) (Gautam
et al., 2018). Additionally, an implementation of Ran-
dom Ballistic Walk (Kegeleirs et al., 2019) is pro-
vided as a baseline for comparison. The algorithms
all have different requirements in terms of hardware
capabilities for the robots, which allowed MAES 1.0
to provide insight into the benefit of integrating more
extensive hardware into the robot. MAES 1.0 has
built-in simulated SLAM, broadcast communication,
environment tagging, and a robot controller for mov-
ing the robot. The tool also features a map genera-
tor for dynamically generating cave type and building
type maps given a random seed and some parameters.
This allows users to test a given algorithm in the gen-
eral case and not just a predefined map. Furthermore,
MAES 1.0 includes functionality for exporting statis-
tics for both exploration and coverage. Using MAES
1.0, it was shown that SSB provides the best coverage
and exploration performance, while also having the
strictest assumptions about robot hardware and inac-
curacies. TNF performed nearly as well in terms of
exploration, but with fewer assumptions.

3 MAES 2.0

This section describes the new development featured
in MAES 2.0. In Section 3.1 we provide detailed in-
sights into how ROS support is integrated into MAES.
In Section 3.2 additional new features in MAES 2.0
are discussed.

3.1 Integration of ROS

This Section describes how ROS is integrated into
MAES 2.0. Section 3.1.1 discusses which version
of ROS is used and why. In Section 3.1.2 we de-
scribe the adaptions made from MAES 1.0 to MAES
2.0 to allow for ROS integration. Section 3.1.3, 3.1.4
and 3.1.5 describe in detail the architecture and com-
munication of MAES with ROS. In Section 3.1.7 an
example of an algorithm for controlling the robots
is shown. Finally, Section 3.1.8 provides details on
how MAES can be deployed both with and without
Docker.

3.1.1 ROS1 or ROS2?

As of writing, ROS exists in two major versions,
ROS1 and ROS2, where ROS2 is a complete remake
created based on observations and lessons learned
from ROS1. The latest release for ROS1 is ROS
Noetic Ninjemys, which came out in May 2020 and
has end-of-life in May 2025. No further releases for
ROS1 are planned. The first version of ROS2 was
released as alpha1 in August 2015 and the first offi-
cial release came out in 2017. The currently newest
version of ROS2 is Galactic Geochelone, which came
out in May 2021(Open Robotics, 2022i). Galactic is,
however, not a long term support (LTS) version. The
first LTS version of ROS2, Humble Hawksbill, came
out on the 23rd of May 2022 and will have support
until May 2027. As of the time of writing, Humble
Hawksbill does not yet support some important pack-
ages used for navigation purposes, thus the descrip-
tions in this document refer to the non-LTS ROS2
(Galactic Geochelone) release.

The downside of using ROS2 is that a large
amount of existing libraries are written for ROS1 and
many of them do not have a version compatible with
ROS2. However, due to the end of life of ROS1 in
2025 and the continued support for ROS2, we chose
to target ROS2 for the MAES simulator. Addition-
ally, we assume it to be easier to upgrade from ROS
2 Galactic Geochelone to Humble Hawksbill, com-
pared to upgrading from one of the ROS 1 LTS ver-
sions.

3



3.1.2 Adapting MAES for ROS2

Unity, on which MAES is based, already supports
both ROS1 and ROS2 communication through the
’ROS TCP Connector’ and ’ROS TCP Endpoint’ plu-
gins. These plugins work in tandem to facilitate com-
munication between Unity and an external ROS sys-
tem. The TCP Endpoint is a ROS node that relays
communication from Unity to the ROS system and
vice versa. The TCP Connector is responsible for es-
tablishing a connection between between Unity and
the TCP Endpoint node.

As described in (Andreasen et al., 2022a), in
MAES 1.0 all algorithms had to implement the IEx-
plorationAlgorithm interface in order to be injected
into the controller of the robot. This interface con-
tains an update function called every logic tick of the
simulation as well as a start method for bootstrap-
ping. In adapting MAES 1.0 for ROS we want to
maintain compatibility with the old algorithms by us-
ing the same interface. For this purpose we created
the Ros2Algorithm class that implements the IEx-
plorationAlgorithm interface. During the logic up-
date phase, the Ros2Algorithm evaluates messages
received from the ROS system and translates them
to the corresponding action in MAES as described in
3.1.5. This algorithm also publishes the current robot
state every logic tick as described in 3.1.4.

Unlike the C# algorithm implementations
described in (Andreasen et al., 2022a), the
ROS2Algorithm is nondeterministic because it
is dependent on the timing of network messages. For
this reason the MAES simulator is non-deterministic
when used in ROSMode and deterministic when in
UnityMode.

MAES 2.0 continues to allow usage of controller
algorithms that are written in C# and compiled along
side the simulator itself. To avoid the computational
overhead introduced by the ROS TCP Endpoint and
TCP Connector plugins, the global settings configu-
ration contain a boolean value that toggles these plu-
gins, such that they no dot consume resources when
they are actually not needed.

3.1.3 Architecture

The architecture of MAES 1.0 was designed for the
personal use of the developers themselves. As a re-
sults of this design, any addition of new algorithms
and scenarios required editing the existing MAES
code. As MAES 2.0 is intended for use as an im-
portable library - the architecture is remodeled to sup-
port a framework-like structure where the implemen-
tation details of the simulator are encapsulated and
hidden from the user. MAES 2.0 exposes an interface

that allows full configuration without needing to ma-
nipulate MAES code. This interface exposes meth-
ods for simulator instantiation, injection of algorithms
and scenarios, and allows for extraction of perfor-
mance metrics. MAES 2.0 now also contains a Unity
Package definition, which allows it to be used in the
official Unity Package Manager tool. This means that
users with access to a Unity Editor also can access
the MAES 2.0 library by pasting the Github reposi-
tory url into the Unity Package Manager. Code snip-
pet 1 shows an example of how a simulation can be
set up using the MAES 2.0 framework. This code can
be attached to an empty Unity GameObject (the base-
objects used in the Unity Editor) which will cause the
simulator to be instantiated and run.

The configuration classes (CaveMapConfig,
BuildingMapConfig, RobotConstraints, Simulation-
Scenario) all have a large set of optional parameters
that can be used to tweak the simulation. All of these
parameters are described in the documentation in the
public repository. For example the user can provide
custom robot control algorithm by providing the
scenario class with an algorithm factory. This custom
algorithm must, however, still extend the IRobotAl-
gorithm interface as described in the original MAES
paper (Andreasen et al., 2022a).
Listing 1: Example of MAES 2.0 usage in a unity project.

1 void Start(){

2 // Get/instantiate simulation

3 var simulator =

Maes.Simulator.GetInstance();↪→

4

5 // Configure the scenario

6 var caveConfig = new CaveMapConfig(123,

widthInTiles: 75, heightInTiles: 75);↪→

7 var scenario = new
SimulationScenario(123, mapSpawner:

generator =>

generator.GenerateCaveMap(caveConfig));

↪→

↪→

↪→

8 simulator.EnqueueScenario(scenario);

9

10 simulator.StartSimulation();

11 }

The size and complexity of the MAES architec-
ture increases significantly when in ROSMode due
to the large amount of ROS nodes running alongside
MAES. When using MAES in ROSMode, the user
must first launch the ROS components, and then sub-
sequently launch MAES. All ROS nodes for all robots
are launched from a single custom ROS Launch file
called maes ros2 multi robot launch.py. An abstract
overview of the ROS nodes launched from this launch

4



file can be seen in Figure 1. The overview is abstract
in the sense, that the internal sub nodes created by the
Nav2 and Slam toolbox packages are excluded from
the graph for the sake of readability. A full picture
containing all nodes and topics can be seen in Ap-
pendix C.

In our configuration the script
maes ros2 multi robot launch.py initially launches
the default server endpoint node from the
ROS TCP Endpoint, which is used to commu-
nicate with MAES, as described in Section 3.1.4.
This node is not namespaced, and only a single
default server endpoint node is launched for all
robots. After launching the default server endpoint,
maes ros2 multi robot launch.py starts launching
namespaced nodes. Namepace refers to a prefix, e.g.
/robot0/, which is prepended to all topic names used
by the node, as well as the node name itself

In order to know how many robots, i.e. names-
paces, to create, maes ros2 multi robot launch.py
reads from the same configuration file as
MAES, which ensures that they are synchro-
nized. In addition to the number of robots,
maes ros2 multi robot launch.py also reads pa-
rameters such as the raytrace range from the
configuration file and injects it into the parameter
file of each robot. This approach allows for a single
parameter file to be modified and used for all robots,
which enables easier development and debugging.
A disadvantage of this approach is that all robots
have the exact same configuration, which can reduce
realism and flexibility.

After successfully reading and injecting the
parameters, maes ros2 multi robot launch.py
starts launching the robot specific nodes inside
their respective namespaces. For each robot a
maes robot controller node is launched, which is the
node containing the robot logic written in Python.
Additionally, for each robot, a namespaced launch
file called maes bringup launch is called. Each
instance of the maes bringup launch further launches
the slam toolbox and Nav2 nodes inside the given
namespace. These nodes are used for navigation and
mapping purposes respectively.

Finally, for each robot a namespaced rviz
(ROS’ integrated visualization tool) instance can be
launched depending on the value of a command line
argument.

3.1.4 Publishing Robot State through ROS

Many nodes in the MAES ROS workspace depend
on input from MAES to function. To supply the
needed input MAES publishes data to the /tf, /scan
and /maes state topics. The /tf topic contains infor-

mation about the transforms, i.e. the position and ro-
tation of a given robot including the relative positions
of sub-components of the robot. As of writing, the
transforms published by MAES do not contain any
inaccuracies. This reduces realism, as a position de-
rived through odometry would likely be imprecise due
to sensor inaccuracies. However, in the future this
could be adapted to use the positional inaccuracy vari-
able that already exists for SLAM in UnityMode al-
gorithms (Andreasen et al., 2022a).

The /scan topic data is created by performing a se-
ries of ray casts from the current position of the robot.
Every message sent to the /scan topic consists of dis-
tance information for 180 ray casts performed at a
2 degree interval around the robot. The scan is per-
formed and published ten times per second for each
robot.

The /maes state topic data is constructed from the
robot state inside MAES and contains information
specific to the simulated robot in MAES. The scope
of information is very similar to what is provided to
the UnityMode algorithms, which are implemented in
C#.

The /maes state topic uses a custom ROS2 mes-
sage called StateMsg. StateMsg contains informa-
tion regarding the current simulation tick, the current
status of the given robot (e.g. rotating or moving),
whether the robot is colliding with something, incom-
ing broadcast messages, environment tags nearby as
well as information about other nearby robots.

As mentioned in Section 3.1.2 we use the ROS
TCP Connector package from Unity in order to
publish the messages to the ROS topics (Unity-
Technologies, 2022a). The ROS TCP Connector al-
lows for generating serializable C# classes from mes-
sage definitions found in a ROS workspace. The gen-
erated classes can then be instantiated as objects in the
C# code, populated with values, serialized, and then
published to the corresponding topic. The messages
are sent through the ROS TCP Connector and then di-
rectly to the ROS TCP Endpoint(Unity-Technologies,
2022b) node through a direct TCP connection. The
ROS TCP Endpoint relays all messages as if they
came from a regular ROS node, e.g. a component of
a real robot publishing to the ROS network. A visual-
ization of this system can be seen in Figure 2.

5



Figure 1: Visualization of how nodes are launched from our ROS launch script

Figure 2: A visualization of how MAES publishes to ROS
nodes on ROS topics

The /maes state topic is used by the
maes robot controller ROS node (described in
Section 3.1.7). Information received from this topic
can then be used in the logic controller for the robot
to decide what action to perform next.

Nav2 is the ROS2 package used for naviga-
tion(Macenski et al., 2020). Nav2 contains several
nodes that depend on the /tf topic for information

regarding current position. Additionally, Nav2 con-
structs costmaps from the /scan topic used for naviga-
tion.

Slam toolbox (Macenski and Jambrecic, 2021)
also uses both the /tf and /scan topics for SLAM. /scan
is used for creating the map with the /tf used for posi-
tioning the robot within the map. Slam toolbox, how-
ever, differs from Nav2 by having a higher resolution
and the ability to export the map for later use. The
costmap does not necessarily need as high a resolu-
tion as the map generated for export.

For MAES 2.0 we initially wanted to be able to
merge maps for both the slam toolbox as well as the
Nav2 costmap, in order to mirror the map merging
feature that is available to UnityMode algorithms and
allow cooperative navigation in Nav2. This is, how-
ever, not yet possible using the official slam toolbox
and nav2 packages. In ROS1, the de facto standard for
slam is the slam gmapping package (ros-perception,
2022). Gmapping supports multiple map merging,
but has not yet been ported to ROS 2. Some unof-
ficial forks using the binaries from gmapping for map
merge using slam toolbox have been made available,
e.g. (robo-friends, 2022), but for MAES we choose to
wait for the official release.

3.1.5 Mapping Nav2 Commands to MAES

Whenever a robot is instructed to navigate to some
point using Nav2, the Nav2 nodes publish movement
instructions on the ’cmd vel’ topic. These instruc-
tions consist of a desired force application for each
wheel of robot. The standard Nav2 configuration as-
sumes that differential steering is possible, i.e. that
the robot can rotate while moving. This was not pos-
sible in MAES 1.0, but has been introduced to the

6



MAES 2 controller interface. In addition, the Nav2
stack in the MAES 2.0 ROS workspace uses a ’Ro-
tation Shim Controller’ plugin. This plugin ensures,
that the Nav2 nodes map the movement instructions
such that the robot will stand still while performing
large rotations and only do small rotational correc-
tions while moving forward.

3.1.6 Configuring ROS 2 and MAES

One of the goals of MAES is to allow for easier
development and less setup and configuration com-
pared to using ROS 2 with other simulators. This is
achieved partly by having a single configuration file
maes config.yaml, where all customization is done.
In addition, most of the parameters have default val-
ues, allowing the user to quickly configure a stan-
dard simulation. Both MAES, and the ROS2 launch
file (see more in Section 3.1.3) read from this same
file, and configure themselves depending on the val-
ues found.

3.1.7 Controlling the Robot in MAES using ROS

In MAES UnityMode it is possible for the user to pro-
gram their own algorithm (i.e. robot logic), using C#.
We introduce the maes robot controller node to allow
for similar functionality when running in ROSMode.

When the maes robot controller is initialized, all
of the subscriptions and clients for the topics, ser-
vices, and action servers are created in the given
namespace, including callback functions. The ser-
vices and action servers include functionality for nav-
igation, broadcasting messages, and depositing envi-
ronment tags in MAES. This allows the user to start
implementing logic immediately instead of also hav-
ing to configure the controller. The logic controlling
the behavior of the robot is written in the main func-
tion of the maes robot controller. The user can then
utilize the services, information received on topics,
and action servers to express the intended behavior.
A more detailed description of the data published to
ROS from MAES can be found in Section 3.1.4.

An example of a very simple frontier algo-
rithm implemented using this interface can be
seen in Code Snippet 2, where it is shown how
maes robot controller exposes easy to use interfaces
for logging, getting the state of the robot, and using
the costmap for navigation.

Additionally, maes robot controller exposes
methods for using the asynchronous navigation
server such as nav to pos. nav to pos makes the
robot navigate to an (x,y) coordinate asynchronously.
Since actions servers in ROS can be canceled, we
allow for checking the status of the current goal with

a goal handle, but we also implement easy to use
functions such as cancel nav, which simply cancels
the current goal using the navigation action client.
Listing 2: Example of a Frontier Algorithm implemented in
the maes robot controller in Python

1 def main(args=None):

2 rclpy.init(args=args)

3
4 # Initialise controller

5 robot = RobotController()

6 robot.wait_for_maes_to_start_simulation()

7
8 # Declare of logic variables

9 next_goal: Coord2D = None

10 next_goal_costmap_index: int = None

11
12 # This method returns true if the tile is not itself

unknown, but has 2 neighbors, that are unknown↪→
13 def is_frontier(map_index: int, costmap: MaesCostmap):

14 # -1 = unknown, 0 = certain to be open, 100 =

certain to be obstacle↪→
15 # It is itself unknown

16 if costmap.costmap.data[map_index] == -1:

17 return False

18 # It is itself a wall

19 if costmap.costmap.data[map_index] >= 65:

20 return False

21
22 return

costmap.has_at_least_n_unknown_neighbors(index=map_index,

n=2)

↪→
↪→

23
24 # While ROS is running

25 while rclpy.ok():

26 rclpy.spin_once(robot) # Allow for callback execution

27
28 # If no goal found or current nav complete

29 if next_goal is None or robot.is_nav_complete():

30 # Find index of first tile in costmap that is a

frontier↪→
31 goal_index = next((index for index, value in

enumerate(robot.global_costmap.costmap.data) if

is_frontier(index, robot.global_costmap)), None)

↪→
↪→

32
33 # No more frontiers found, just continue

34 if goal_index is None:

35 robot.logger.log_info("Robot {0} has no more

frontiers".format(robot._topic_namespace_prefix))↪→
36 continue

37
38 next_goal =

robot.global_costmap.costmap_index_to_pos(goal_index)↪→
39 next_goal_costmap_index = goal_index

40 # Deposit tag every time a new target/goal is

found↪→
41 robot.deposit_tag("From tick

{0}".format(robot.state.tick))↪→
42 robot.nav_to_pos(next_goal.x, next_goal.y)

43 # If goal present but not yet reached, i.e. it is

still a frontier↪→
44 elif is_frontier(next_goal_costmap_index,

robot.global_costmap):↪→
45 # This section allows for logging feedback from

action server↪→
46 continue

47 # If goal is explored

48 else:

49 next_goal_costmap_index = None

50 next_goal = None

51 robot.cancel_nav()

7



3.1.8 Setup & Deployment

In the Github Repository(Andreasen et al., 2022b) we
include release packages and a readme with documen-
tation to guide the user. This readme was also used
in the usability test found in Section 5. While it is
possible to install all ROS 2 and Nav2 dependencies
required for the MAES ROS workspace natively, we
also include Docker support to make it easier to in-
stall. The docker image has everything preinstalled,
which allows for a much easier installation process,
while not being dependent on running a specific ver-
sion of Ubuntu as the host OS. Additionally, we in-
clude the dependencies in the correct version in the
Docker image, which ensures that no dependency up-
grade from a third party breaks the code.

A Dockerfile, i.e. a script for building our docker
image from the basis of public docker repositories
(MAES, 2022a), is included in the release alongside
the MAES executable. The Docker image depends
on using a shared directory with the release package
found on Github, where the MAES ROS workspace
is found. Sharing said directory with docker is also
explained in the readme. This allows the user to open
the workspace in their favorite IDE (Integrated Devel-
opment Environment), instead of having to use termi-
nal editors like Vim or Nano directly within a run-
ning container. Additionally, instructions for allow-
ing a docker container to display GUI elements (e.g.
the window from rviz) through to the host system can
also be found in the readme. This means, that the
user can still use rviz visualization, even though the
ROS environment is running in a docker container.
Piping the rviz window from the Docker container to
the host system is, however, only tested to work on
Ubuntu (22.04, 21.10, 21.04 and 20.04), but we ex-
pect it to be doable on most fairly recent Linux distri-
butions. Some limited functionality can be achieved
in Windows 10 as well, albeit at a reduced perfor-
mance. Windows 11 has not been tested at all, and
the piping is not supported on macOS.

In the future, whenever a new version of MAES
or the MAES ROS workspace is completed, a new
release package should be posted to Github with the
newest version of the docker image and the MAES
executable.

3.2 Additional features in MAES 2.0

This Section describes new features of MAES 2.0
in addition to ROS support. These include a new
Heatmap, signal degradation, custom maps, expanded
statistics gathering and more.

3.2.1 Signal Degradation

In MAES 1.0 it was possible specify parameters that
determined the maximum communication range and
whether robots can communicate through walls. In
MAES 2.0 we expand upon this by allowing the user
to provide a custom function for calculating commu-
nication success. This function takes as arguments the
total distance traveled for the signal, and the distance
traveled through solid walls. This function then must
return a boolean value indicating whether the signal
can be received.

The advantage of this approach is that the user can
control the model used for signal degradation. If a
stochastic model is desired, the user can factor ran-
dom number generation into the signal success func-
tion. If no signal success function is supplied, MAES
will use a default function that always yields success,
which results in lossless communication at any dis-
tance.

3.2.2 Custom Maps

As detailed in (Andreasen et al., 2022a), MAES 1.0
provided automated map generation for building and
cave map types with configurable parameters. In
MAES 2.0 we introduce an additional option of spec-
ifying a completely custom map by providing an im-
age in the ’Portable Gray Map’ format (.pgm). PGM
is also the format exported by the Nav2 Map Saver
node, meaning that ROS generated SLAM maps can
now imported into MAES. When provided with an
image, the MAES 2.0 map generator creates wall tiles
for every completely black pixel and open tiles for ev-
ery other pixel. Figure 3 shows an example of an im-
age that has been converted into a map.

Figure 3: This figure shows an example of a custom map of
size 50x50 tiles, i.e. image has a resolution of 50x50 pixels.
The map generator uses the input image (a) and generates a
map (b) with walls for each black pixels.

8



3.2.3 Heatmaps

To allow better analysis of algorithm behavior, MAES
2.0 features two new heatmap visualization modes:
one for the exploration measure and one for coverage.
This could for example be useful for testing surveil-
lance algorithms. The heatmaps display a color at
each tile of the map, indicating how recently it has
been explored/covered by an agent. Tiles that have
been explored/covered recently have a red tint. The
tiles progressively change to a blue tint as time passes
without a robot exploring/covering the tiles.

Figure 4: (a) Shows the heatmap visualisation for coverage
and (b) shows the heatmap for exploration. Red areas have
been explored/covered recently. Blue areas have been ex-
plored/covered earlier. The beige areas have not yet been
explored at all.

Figure 5: A screenshot from MAES 2.0 with an environ-
ment tag visualized with the hover menu containing sender
and content of the tag.

3.2.4 Environment Tags

In MAES 1.0 it was difficult as a user to see and de-
bug environment tags, since they were only displayed
as Unity Gizmos (debugging elements only visible in
the Unity Editor). In MAES 2.0, environment tags
are now rendered the same way as the robots, which
means they are visible outside of the Unity Editor.
Additionally, MAES 2.0 includes functionality for
showing the content of the environment tag by hover-

ing over the tag with the cursor. A tag can be selected
by clicking on the tag, after which the content will
permanently (or until another tag is selected) be dis-
played in the debug info menu on the right side of the
screen. in Figure 5 the new environment tag model
can be seen.

3.2.5 MAES 2.0 Graphical User Interface

As shown in Figure 5, the GUI of MAES 2.0 in-
cludes several panels for controlling the simulation.
In MAES 2.0, the GUI adapts to whether it is run in
ROSMode or UnityMode. For example, the visual-
isation of the ROS connection in the top left corner
is not present when running in UnityMode. Addition-
ally, the fast forward buttons are hidden in ROSMode,
due to timing issues in the nodes when fast forwarding
with ROS - some Nav2 nodes have some assumptions
about the robot speed, which can be violated if MAES
is sped up.

The settings menu on the right of the screen is
mostly identical to MAES 1.0. However, the visu-
alization options for all robots and a given selected
robot have been added.

The GUI panel for controlling the camera in the
bottom left corner of the screen allows for zoom, tilt
and rotation of the camera and is identical to the one
found in MAES 1.0.

3.3 MAES 2.0 Tests

MAES 2.0 is intended as an open source project
where new features may be implemented by many
different contributors who may not have in-depth ex-
perience with the MAES framework. To assist in
verifying the correctness of new code, we introduce
tests that assert the correctness of existing function-
ality and as such function as regression tests. These
tests can help detect when new changes break exist-
ing code. MAES 2.0 provides automated unit tests
that verify the behavior of selected individual compo-
nents. The components are chosen for testing based
on how likely we deem it that future changes may af-
fect them. Moreover, we also specify a test plan for a
manually executed system test that can help verify the
correctness of the system as a whole. The system test
also verifies correct behavior of the ROS components
which can be difficult to achieve with unit tests.

3.3.1 Unit Tests

Unity provides a framework for unit testing that is
split into two modes: edit mode tests and play mode
tests. Edit mode tests are akin to traditional unit tests
where each component is tested in complete isolation

9



independent from the Unity engine. In contrast, play
mode tests are executed while the unity engine runs
the simulator in the background. This allows us to
evaluate the behavior of components that are depen-
dent on the state of the simulator or whose behavior
is otherwise tied to the Unity engine.

For example, we perform play mode tests for the
2DRobotController. The controller is responsible for
moving and rotating the robot which is dependent on
the Unity Physics2d Engine. Code snippet 3 shows
an example of a play mode test for the 2DRobotCon-
troller. This test verifies that the distance provided to
the Move() function of the controller approximately
corresponds to the distance that the robot actually
moves. This is a parameterized test which takes the
target movement distance as input. A separate unit
test is executed for each input specified by the [Test-
case] entries in lines 2-4.
Listing 3: Pseudo code example of a play mode test for
the RobotController that verifies the distance traveled when
issuing a move command.

1 [UnityTest]

2 [TestCase(1.0f)]

3 [TestCase(5.0f)]

4 [TestCase(20.0f)]

5 void CorrectDistanceTest(targetDistance):

6 startPos = robot.currentPosition()

7 simulation.start()

8

9 robot.controller.move(targetDistance)

10 while (robot is moving)

11 waitTillNextFrame()

12

13 endingPos = robot.currentPosition()

14 movedDistance = endingPos - startPos

15 Assert.Equals(targetDistance,

movedDistance, delta: 0.1f)↪→

In addition to parameterizing individual tests we
also parameterize the entire 2DRobotController test
suite through TextFixtures, which allows us to test all
of these behaviors on different simulation configu-
rations, for example scenarios where the movement
speed of the robots is altered.

As of writing, the play mode tests and edit mode
tests provide a total of 30% code coverage. The
reason for this relatively low coverage percentage is
that we chose to down prioritize testing in the early
stages of development. This was done because we
found the requirements and functionality to be chang-
ing so rapidly that tests would quickly become obso-
lete or even serve as a hindrance for further develop-
ment. However, as the work progresses and the tool

is now becoming more clearly defined, it could be ar-
gued that there is a need for more extensive regres-
sion testing to properly facilitate open source devel-
opment. While the coverage percentage is relatively
low, it should be mentioned that we prioritize testing
the components that we assess to be the most criti-
cal. This includes the robot controller, communica-
tions manager and the performance metrics handlers.

None of the unit tests cover any functionality re-
lated to external ROS components as these are ex-
ceedingly difficult to properly setup in an isolated and
reproducible testing environment. Instead testing of
the ROS environment is done through system tests.

3.3.2 System Test in ROSMode

Running MAES 2.0 in ROSMode is inherently non-
deterministic due to the timing differences of running
many ros nodes (processes) at the same time. Even
external factors like the scheduler of the host oper-
ating system in use can impact the results slightly.
However, running a system test in ROSMode may
still yield useful results, that can show whether all of
the components can work together. For this reason
we design a system test with ROSMode. The test is
not automated, but this would be a useful addition in
the future, e.g. through a script running and closing
MAES and ROS automatically. The test consists of a
yaml configuration file for MAES and ROS, where we
know that the configuration produces fairly consis-
tent results in terms of exploration rate. A contributor
can then use this configuration and run the example to
check if some new feature has significantly impacted
the compatibility between the components of the sys-
tem in some way. The configuration file is called
maes config ros system test.yaml and can be found
in the maes ros2 interface package in the MAES ROS
workspace.

The test yaml file creates a small 30x30 map
with a single robot, and should be run with
the example frontier algorithm included in the
maes robot controller.py file.

As can be seen in Table 1, the exploration results
are quite similar between runs. Additionally, the sys-
tem test only takes about 2-3 minutes to complete,
which is also an advantage when trying to make con-
tributors use it, compared to requiring a daunting 30-
40 minute test. This test can thus be used before cre-
ating a merge request to the repository in order to test
functionality of the system as a whole. As long as
the robot achieves ∼99,9% explored within about 2,5
minutes, the code contribution is unlikely to have bro-
ken any critical parts of the system.

A downside of this test is that a host-system slow-
down could impact the exploration performance and

10



thus the reliability of the test. For example, if the
computer running the test does not have the needed
resources, or is busy with a lot of other background
tasks, and therefore cannot execute commands in all
processes fast enough, the robot may receive outdated
commands or even no commands at all.

The test has been shown to work on a laptop
with modest hardware, and should thus work on most
computers. The test results found in Table 1 were
achieved on a laptop with Ubuntu 20.04, 4 cores /
8 threads @3.0GHz, 8GB ram laptop with integrated
Intel graphics.

Table 1: ROSMode system test results

Time spent until 99,9% explored
Run 1 1450 ticks (2:25 minutes)
Run 2 1500 ticks (2:30 minutes)
Run 3 1480 ticks (2:28 minutes)

4 PERFORMANCE TESTS

As mentioned in Section 1, existing simulating tools
have heavy requirements in terms of computing
power, which is an obstacle that might be encountered
even when simulating just a single robot. As robots in
real life are more and more likely to act as a part of a
swarm rather than as a single isolated agent, the sim-
ulating tools must be able to simulate more than one
robot in the same environment.

To accommodate this, we orchestrated a perfor-
mance test, which both gives insight in the cur-
rent state of performance, and can act as a base-
line for benchmarking future performance-upgrades
to MAES.

The tests were conducted on a thin and light laptop
with an AMD 4500U CPU (6 cores @2.3GHz) and 8
GB of DDR4 memory running Ubuntu 20.04 LTS as
its operating system.

A logging-script was constructed which enabled
us to log the total CPU utilization, the total mem-
ory usage, and the network traffic to/from a specified
networking interface - all data points being logged
once per second. Each log entry would be labeled
with timestamp, making alignment of the data eas-
ier. While the logging-script was running, it was pos-
sible to type in events in the terminal, which would
also be labeled with a timestamp, making it easier
to determine which event triggered some particularly
interesting-looking data point.

Tests were run in both ROSMode and UnityMode,
each with the goal of seeing performance impact of
a varied amount of robots as well as varied map

sizes. The robots in the ROSMode tests were run-
ning the simple frontier algorithm example found in
the MAES ROS workspace, and the robots in the
UnityMode tests were running with the same base-
line random-walk algorithm used in (Andreasen et al.,
2022a). Tests in UnityMode had no network activity
to log, since it does not communicate with other pro-
cesses. During each test, we logged when MAES was
started, when and how ROS was started (when appli-
cable), and when simulation was started and halted.
Tests were run once for each configuration.

4.1 Map sizes

Both ROSMode and UnityMode was tested with map
sizes 30x30, 40x40, and 50x50, but the map size did
not notably impact the network use or CPU utiliza-
tion. When running in ROSMode, there was a sig-
nificant increase in network traffic, when enabling the
rviz plugin. This difference is seen in Figures 7 and
9 (the red lines on the right half of each figure). This
increase is due to the entire map of every robot be-
ing sent from MAES to rviz, and a larger map means
more data to send.

4.2 Number of robots

Both ROSMode and UnityMode was tested with one,
three, and five robots, each on maps of sizes 30x30,
40x40, and 50x50. The impacts of the map sizes were
covered in Section 4.1. Varying between these num-
bers of robots produced no significant performance
impacts in UnityMode. In ROSMode, however, there
were several increases in resource usage.

Figures 6, 7, and 8 all show a run on the same
50x50 cave-map, with their respective number of
robots. The results show that using MAES in ROS-
Mode is highly dependent on the available CPU re-
sources (green solid line), as this is the only resource
reaching its limit during the run with five robots on
a 50x50 size map with rviz enabled (i.e. the heaviest
run throughout all tests).

If rviz is not enabled, the tests show that running
with up to five robots is possible given test system.
If rviz is needed, the test system was unable to run
more than three robots without slow downs, that could
impact the performance of the robots.

These limits are, of course, highly dependent on
machine running MAES in ROSMode, and we pur-
posely chose not to run these tests on a high per-
forming computer in order to cement the fact that
MAES is a relatively lightweight simulator compared
to other ROS 2 compatible simulators. Figure 10 fur-
ther backs up the claim of MAES being lightweight.

11



Here, MAES is run with the same number of robots,
with the same size cave-map as the test in Figure 8,
but now in UnityMode. The resource demands are
thus significantly lower when running in UnityMode,
and this test demonstrates the overhead of running
ROS 2.

As a final set of tests we also tried pushing the lim-
its of MAES in UnityMode with respect to the number
of robots. Figure 11 shows the results of 120 robots
being simulated on a cave-map of size 75x75, where
MAES is still was able to simulate in real-time. It
should be noted that the frame rate was reduced to
4-5 frames per second when trying to simulate this
many robots, but the underlying physical simulation
was not affected by this. As Figure 11 also shows,
the computer still had a surplus of CPU resources, but
increasing the number of robots from 120 resulted in
simulations not keeping up with real-time. This is due
to MAES not being able to fully utilize multiple CPU
cores, which is an optimization that could be investi-
gated in the future, which we will expand further upon
in Section 8.

5 USABILITY TEST

The ROS MAES integration was made in cooperation
with the Robotics Lab at AAU, which provided us
with continuous feedback during development. Re-
gardless, we still choose to design and perform us-
ability tests to confirm the usability of MAES 2.0 in
ROSMode for the target audience, i.e. robotics re-
searchers and students. The design and execution of
this usability test is described in Section 5.1. In Sec-
tion 5.2 we analyze the results of the usability test.
Finally, in Section 5.3 we discuss the changes made
to MAES following the feedback from the usability
test.

5.1 Test Description

The goal of the usability test is to test whether the
target audience can setup and use MAES in ROS-
Mode only using the guides and documentation from
the readme included in the GitHub repository. In or-
der to test that claim, we must first define the target
audience. Since the primary function of MAES is to
simulate multi robot behavior, we determine the target
audience to be robotics developers and researchers.
We recruit the subjects for the usability test directly
from the target audience, meaning we can make some
assumptions about their domain knowledge. For ex-
ample, we assume that they have at least some knowl-
edge of ROS.

The test design consists of a short interview, fol-
lowed by three phases of tasks, and then finally a
small closing interview with room for open discus-
sions. The entire test takes at most 60 minutes for
each subject. The complete list of tasks, questions,
interviewer guidelines etc. can be seen in Appendix
B. The interviewer guidelines helps ensure a similar
experience for all subjects. Additionally, we define
the ways in which the interviewer is allowed to help
the subject, since we are interested in testing whether
the subject can complete the setup using only the doc-
umentation in the readme from the repository. This is
important, as MAES is intended as an Open Source
project, where everyone can use it and contribute to
it.

The initial interview is meant to get an under-
standing of the subject’s current knowledge of ROS,
MAES, Gazebo, and Python. This is important to
know, since some of the tasks require some knowl-
edge of Python. If a subject struggles with a task re-
quiring Python skills, we cannot necessarily assume
that something is wrong with MAES or ROS, if the
subject has never worked with Python.

The tasks are divided into the Setup Phase, the
Configure Phase, and the Use Phase. This division
was done, since each phase depends on the previous
phase. A subject can struggle with setup and still have
a good experience using it, once it is set up and con-
figured. For this reason we have included a limit of
20 minutes for each phase, after which the interviewer
helps the subject finish the current task and move on
to the next phase.

The Setup Phase includes tasks for setting up
Docker and initially running MAES. The Configu-
ration Phase revolves around changing the system
parameters in MAES. Phase 3, the Use Phase, in-
cludes tasks for testing if the subject can alter the
maes robot controller python script to control the be-
havior of the robots, as well as tasks for using the ROS
services exposed by MAES, such as depositing envi-
ronment tags.

The closing interview is meant as an open discus-
sion. This is included, since MAES 2.0 is still in de-
velopment, and we are still open to new ideas.

5.2 Results of Usability Test

The usability test was completed by five subjects,
which we will refer to as S1 through S5. The sub-
jects are anonymized except for their title and ex-
perience using ROS, Python, and Gazebo. The full,
anonymized information about all of the subjects can
be found in Appendix D.

Table 12 shows the time spent on each task for all

12



Seconds since test-start

M
eg

ab
yt

es
 (m

em
or

y)
 - 

K
ilo

by
te

s 
(n

et
w

or
k)

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 50 100 150

MemoryUsageInMegabytes KilobytesReceived/sec KilobytesTransmitted/sec CpuUtilizationInPercent

1 robot, 50x50 cave-map, ROSMode

Figure 6: Performance metrics of one robot in a 50x50 cave-type map in ROSMode

Seconds since test-start

M
eg

ab
yt

es
 (m

em
or

y)
 - 

K
ilo

by
te

s 
(n

et
w

or
k)

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 50 100 150

MemoryUsageInMegabytes KilobytesReceived/sec KilobytesTransmitted/sec CpuUtilizationInPercent

3 robots, 50x50 cave-map, ROSMode

Figure 7: Performance metrics of three robots in a 50x50 cave-type map in ROSMode

Seconds since test-start

M
eg

ab
yt

es
 (m

em
or

y)
 - 

K
ilo

by
te

s 
(n

et
w

or
k)

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 50 100 150 200

MemoryUsageInMegabytes KilobytesReceived/sec KilobytesTransmitted/sec CpuUtilizationInPercent

5 robots, 50x50 cave-map, ROSMode

Figure 8: Performance metrics of five robots in a 50x50 cave-type map in ROSMode

13



Seconds since test-start

M
eg

ab
yt

es
 (m

em
or

y)
 - 

K
ilo

by
te

s 
(n

et
w

or
k)

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 50 100 150

MemoryUsageInMegabytes KilobytesReceived/sec KilobytesTransmitted/sec CpuUtilizationInPercent

3 robots, 30x30 cave-map, ROSMode

Figure 9: Performance metrics of three robots in a 30x30 cave-type map in ROSMode

Seconds since test-start

M
eg

ab
yt

es

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 20 40 60 80

MemoryUsageInMegabytes CpuUtilizationInPercent

5 robots, 50x50 cave-map, UnityMode

Figure 10: Performance metrics of five robots in a 50x50 cave-type map in UnityMode

Seconds since test-start

M
eg

ab
yt

es

0

2000

4000

6000

8000

0%

25%

50%

75%

100%

0 25 50 75 100

MemoryUsageInMegabytes CpuUtilizationInPercent

120 robots, 75x75 cave-map, UnityMode

Figure 11: Performance metrics of 120 robots in a 75x75 cave-type map in UnityMode

14



subjects. The exact data can be found in Appendix
D, and audio recordings from the usability test can
be found in (MAES, 2022b). Note that these audio
recordings include both the interviews before and af-
ter the test, as well as the introduction and some unex-
pected interruptions during the interview. For this rea-
son the timestamps do not exactly match the results of
Figure 12, as we only include the time actually spent
on the test in this Figure.

Figure 12: Comparison of time used for each task for all
subjects. X axis is phase and task and y axis is time spent
in seconds.

The subjects spent time in the range of 22 to 37
minutes completing all the tasks. Phase 1 Task 1
(P1T1) includes building the docker image and the
ROS workspace, and for this reason a lot of the time
spent was waiting for the computer to complete the
build. This is probably also the reason why, the sub-
jects were so close in terms of time spent completing
P1T1. All tasks in Phase 1 were completed by all sub-
jects. The target audience thus appear to be able to set
up MAES in ROSMode.

In Phase 2, four out of five subjects finished all
tasks. S3, however, accidentally changed the map
type to custom map and not cave map, and thus did
not finish P2T2. Regarding P2T3, S1 tried build the
ROS workspace from the wrong directory once, but
managed to build it correctly later. Configuration of
MAES in ROSMode, i.e. Phase 2, appears to be pos-
sible for the target audience.

In Phase 3, i.e. the Use Phase, the subjects had
some difficulties. P3T1 is to implement some very
simple logic into the controller of the robot. While
S1 finished this task without difficulties, both S2, S3
and S4 made the same mistake. It was unclear to S2,
S3 and S4 where to put the code, and they all tried
to put it into the main function of the robot controller
Python script. This made sense to the subjects, since
many ROS nodes are controlled this way. For the ver-
sion of MAES used for testing, however, the logic of
the robot had to be written in the logic loop callback

function, which is continuously called whenever the
controller receives a state update from MAES, which
happens every 0.1 second with default settings. (Note:
This has since been changed as a result of this us-
ability test. See Section 5.3) Information regard-
ing the logic loop callback function was included in
the readme directly below the steps for configura-
tion. Additionally, some instructions were left in the
logic loop callback function itself. The subjects did,
however, not read the rest of the readme nor the afore-
mentioned instructions. Subject S2, S3, S4 eventually
did either read the readme or find the instructions, but
it took significantly longer to complete P3T1 in this
way.

S5 did read the readme, but misunderstood how
the Nav2 ActionClient is implemented into the con-
troller. ActionClients can be used with either asyn-
chronous or synchronous calls. S5 assumed syn-
chronous calls and tried to wait for a result, but this
blocked the execution of the rest of the code. Even-
tually, S5 figured out, that the call used in our con-
troller is asynchronous, and that S5 should use the
goal handle to ask for the status of the action call, af-
ter which S5 finished P3T1.

P3T2 was finished by S1, S3, S4 and S5 without
major issues. S2, however, did not complete P3T2.
S5 created logic, that continuously sent navigation
requests and then canceled them immediately after-
wards. This way, the robot enters an infinite loop
oscillating between canceling and requesting naviga-
tion.

P3T3 asked the subjects to implement logic for
continuously depositing environment tags. P3T3 was
finished without major issues by all subjects.

P3T4 regarding opening the topic menu was al-
ready finished by S1 during P3T1, and S1 thus did
not try again. S5 had trouble finding the topic menu,
since S5 assumed it to be a menu in the top menu bar
of the Ubuntu operating system. S5 eventually found
the topic menu.

5.3 Changes made after usability test

As described in Section 5.2, most subjects of the us-
ability test were able to complete almost all tasks.
Most of the subjects, however, struggled with Task
1 in Phase 3 (P1T3). Specifically S2, S3, and S4 were
unable to easily figure out where to put the logic code
inside the controller. Most subjects initially tried the
main function, even though we already had a descrip-
tion in the readme telling how to do it, as well as in-
structions in the correct function inside the robot con-
troller. In the version used for the usability test, the
logic had to be expressed inside of a logic loop call-

15



back function called every time the state of the robot
was published to ROS. While this solution provided
easy coupling of MAES and ROS, it was not intuitive
to use for the target audience. For this reason the logic
is now moved to the main function.

S1 and S5 did not understand the notion of a tick
(i.e. the smallest unit of progression in the MAES
simulation). In order to help the user understand this
more easily, we now include a small explanation in
the robot controller node, which is where the user is
supposed to utilize it.

S2 suggested having a grid to show the size of one
unit of length in MAES, since it was difficult to grasp
from the visualization numerically how far two robots
were from each other. The suggestion from S2 with
a grid in the middle of the map would mimic the be-
haviour of RVIZ. We, however, do not consider this a
good solution, since the map can easily be larger than
the grid, and it can then eventually again be difficult
to see the size of a unit. We solve the problem in a dif-
ferent way. Instead of the grid, MAES now shows the
coordinate of the point in the map which the cursors
points to. This eases debugging of robot movement,
since it is possible to find target positions visually us-
ing the cursor. An screenshot showing the coordinate
GUI can be seen in 13.

Figure 13: New UI element showing the coordinates of the
position pointed to with cursor

S5 suggested having a list of all robots in the UI
to allow for easily selected and finding a robot with a
given name. While we like the suggestion, we do not
consider it essential for version 2.0. A list of robots
would be especially useful for swarm systems with
many robots. We include this as an ’Issue’ for an en-
hancement on the GitHub code repository (Andreasen
et al., 2022b).

S2 was unsure of how to evaluate the physical dy-
namics of a robot in MAES, e.g. the interactions be-
tween different parts. However, this is expected, as
the design of MAES prioritized reduced complexity
over customizable robots. We thus do not consider
doing more about this suggestion.

S5 suggested making it clearer, that the topic
menu in the top left corner of the MAES GUI is a in
fact a menu. However, 4 out of 5 of the subjects found
the menu quickly and S5 also did within a minute, so

we do not consider this critical and will thus not act
on it.

6 CONCLUSION

MAES 2.0 can be used for simulating, and develop-
ing, the logic behind swarm robots in a 2 dimensional
environment. MAES 2.0 includes both UnityMode
with C# development as well as the new ROSMode.
ROSMode allows for developing the logic of the robot
directly as a ROSNode, and thus bridge the gap to real
world robot programming. MAES 2.0 also includes
several improvements from 1.0, e.g. heatmaps, cus-
tom maps, improved environment tags, and a better
graphical user interface. MAES 2.0 is tested using
both system tests and unit tests. Furthermore, per-
formance tests showed, that MAES 2.0 can be run in
real time on modest hardware with up to 5 robots in
ROSMode. UnityMode has less overhead than ROS-
Mode, and MAES 2.0 can run with up to 120 robots in
UnityMode given the same hardware. A usability test
was conducted, that shows that MAES can be setup,
configured, and used by target audience of robotics
researchers and developers within 60 minutes.

7 RELATED WORK

MAES is intended as an alternative simulator to use
with ROS with an emphasis on ease of use. Many
other simulation tools for robots already exist which
emphasize different aspects of robotics in different
ways. ARGoS (ARGoS, 2022), for example, is an-
other popular simulation tool with ROS support is
with a main focus on multi robot systems. Further-
more, Gazebo (Open Robotics, 2022e) is very popular
due to is vast modularity and compatibility with ROS.
Gazebo is part of the Open Robotics Foundation,
which ROS also belongs to. There exist other sim-
ulation tools like NVIDIA’s Isaac (NVIDIA, 2022),
Player/Stage (Player/Stage, 2022) and more.

8 FUTURE WORK

MAES is intended to continue as an open source
project. In order for an open source project to suc-
ceed, contributors and a community are needed. We
want to make it as easy as possible to join and start
contributing to MAES by making sure the tools used
are modern and have support for many years.

As mentioned in Section 3.1.1, on the 23rd of

16



May 2022 the first long-term support (LTS) version of
ROS2, called Humble Hawksbill, is released. Humble
Hawksbill will have support until May 2027. Addi-
tionally, Humble Hawksbill will have Ubuntu 22.04
as its first tier operating system. Ubuntu 22.04 is also
an LTS version with support until 2027. The Unity
editor used for creating MAES is the LTS version
2021.3.2f1 with support until at least mid 2023. If we
can upgrade the ROS workspace to Humble Hawks-
bill, we thus significantly expand the possible lifetime
of MAES given the current code base. For this reason
we consider upgrading to Humble Hawksbill the most
important future work.

In addition, we also want to create a community
around the GitHub code repository. We already know,
that a few groups at Aalborg University will continue
work on MAES in 2022, and as such we will leave
them a bit of guidance on the GitHub page. This in-
cludes community rules for merge requests, ideas for
future features, as well as a list of known issues in
the current version 2.0, which all in all should allow
contributors to jump right in and help. MAES will be
released under the GPL-3 license, which allows ev-
eryone to copy, distribute and modify the code as long
as they also release it under the same license. Some of
the future work features, which we did not have time
to implement, include headless runs in ROSMode,
position inaccuracies when running in ROSMode, as
well as a small bug with the UI where scrolling on the
TCP connector visualisation also zooms in/out in the
simulation. We hope that implementing these features
will allow the contributors to get a better understand-
ing of the code, and thus make it easier to implement
new ideas and features.

Furthermore, we want to support ROS map merg-
ing between robots to allow for the robots to co-
operate in mapping an environment. However,
as mentioned in Section 2, the current version of
slam toolbox does not support this, and as such this
feature would have to wait for a newer version of
slam toolbox or be implemented manually.

Another interesting feature for the future is that of
multiple robot types. Currently MAES only supports
a single robot type. This would allow for simulating
and testing system with multiple robots of different
types.

Unity, which is used to construct MAES, has built-
in systems to support safe, high performing multi-
threaded code and very efficient memory manage-
ment called Data-Oriented Technology Stack (DOTS)
(Unity-Technologies, 2022c). Upgrading MAES with
Unity DOTS would likely increase MAES’ perfor-
mance greatly, but we predict it will be a significant
feat to accomplish as it would require redesigning and

rewriting a lot of MAES’ internal workings. How-
ever, this would likely only notably affect algorithms
running in UnityMode, as the ROS system appears to
be the main bottleneck when in ROSMode.

Making performance optimizations would also
warrant a more systemized performance test. As men-
tioned in Section 4, we have supplied a script for log-
ging data and events, which could be expanded with
event triggering automation (or a manuscript) to make
sure certain use cases have their performance tested in
a consistent manner.

9 ACKNOWLEDGMENTS

We thank Simon Bøgh and Casper Schou from the
Robotics and Automation department at AAU for
their support in the development of the ROS 2 inter-
faces for MAES. Additionally, we want to thank all of
who participated in the usability test.

REFERENCES

Andreasen, M., Holler, P., Jensen, M., and Albano, M.
(2022a). Comparison of online exploration and cover-
age algorithms in continuous space. In Proceedings of
the 14th International Conference on Agents and Ar-
tificial Intelligence - Volume 1: SDMIS,, pages 527–
537. INSTICC, SciTePress.

Andreasen, M. Z., Jensen, M. K., and Holler, P. I. (2022b).
Maes. https://github.com/MalteZA/MAES.

ARGoS (2022). Argos - large-scale robot simulations.
https://www.argos-sim.info.

Colares, R. G. and Chaimowicz, L. (2016). The next fron-
tier: Combining information gain and distance cost for
decentralized multi-robot exploration. In Proceedings
of the 31st Annual ACM Symposium on Applied Com-
puting, SAC ’16, page 268–274, New York, NY, USA.
Association for Computing Machinery.

Fu, J. G. M., Bandyopadhyay, T., and Ang, M. H. (2009).
Local voronoi decomposition for multi-agent task al-
location. In 2009 IEEE International Conference on
Robotics and Automation, pages 1935–1940.

Gautam, A., Richhariya, A., Shekhawat, V. S., and Mohan,
S. (2018). Experimental evaluation of multi-robot on-
line terrain coverage approach. In 2018 IEEE Interna-
tional Conference on Robotics and Biomimetics (RO-
BIO), pages 1183–1189.

Kegeleirs, M., Garzón Ramos, D., and Birattari, M. (2019).
Random walk exploration for swarm mapping. In Al-
thoefer, K., Konstantinova, J., and Zhang, K., editors,
Towards Autonomous Robotic Systems, pages 211–
222, Cham. Springer International Publishing.

Macenski, S. and Jambrecic, I. (2021). Slam toolbox: Slam
for the dynamic world. Journal of Open Source Soft-
ware, 6(61):2783.

17

https://github.com/MalteZA/MAES
https://www.argos-sim.info


Macenski, S., Martı́n, F., White, R., and Ginés Clavero, J.
(2020). The marathon 2: A navigation system. In
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

MAES (2022a). aaumaes/ros4maes. https://hub.docker.
com/r/aaumaes/ros4maes.

MAES (2022b). Maes article raw data
file. https://drive.google.com/drive/folders/
1a YjI1w0TLiakSW6m0-3XuDf7yt0vZfQ.

NVIDIA (2022). Nvidia isaac sim. https://developer.nvidia.
com/isaac-sim.

Open Robotics (2022a). About ros 2 inter-
faces. https://docs.ros.org/en/galactic/Concepts/
About-ROS-Interfaces.html.

Open Robotics (2022b). About tf2. https://docs.ros.org/en/
galactic/Concepts/About-Tf2.html.

Open Robotics (2022c). Configuring your ros 2 en-
vironment. https://docs.ros.org/en/galactic/Tutorials/
Configuring-ROS2-Environment.html.

Open Robotics (2022d). Creating your first ros 2
package. https://docs.ros.org/en/galactic/Tutorials/
Creating-Your-First-ROS2-Package.html.

Open Robotics (2022e). Gazebo - simulate before you
build. https://gazebosim.org/home.

Open Robotics (2022f). Introducing ros 2 launch.
https://docs.ros.org/en/galactic/Tutorials/Launch/
CLI-Intro.html.

Open Robotics (2022g). Powering the world’s robots. https:
//www.openrobotics.org.

Open Robotics (2022h). Ros - robot operating system.
https://www.ros.org.

Open Robotics (2022i). Ros - robot operating system. https:
//docs.ros.org/en/galactic/Releases.html.

Open Robotics (2022j). Setting up sensors.
https://navigation.ros.org/setup guides/sensors/
setup sensors.html#costmap-2d.

Open Robotics (2022k). Setting up transforma-
tions. https://navigation.ros.org/setup guides/
transformation/setup transforms.html.

Open Robotics (2022l). Understanding ros 2 ac-
tions. https://docs.ros.org/en/galactic/Tutorials/
Understanding-ROS2-Actions.html.

Open Robotics (2022m). Understanding ros 2 pa-
rameters. https://docs.ros.org/en/galactic/Tutorials/
Parameters/Understanding-ROS2-Parameters.html.

Open Robotics (2022n). Understanding ros 2 services.
https://docs.ros.org/en/galactic/Tutorials/Services/
Understanding-ROS2-Services.html.

Open Robotics (2022o). Understanding ros2
nodes. https://docs.ros.org/en/galactic/Tutorials/
Understanding-ROS2-Nodes.html.

Open Robotics (2022p). Understanding ros2 top-
ics. https://docs.ros.org/en/galactic/Tutorials/Topics/
Understanding-ROS2-Topics.html.

Player/Stage (2022). The player project. http://playerstage.
sourceforge.net.

robo-friends (2022). m-explore ros2 port. https:
//github.com/robo-friends/m-explore-ros2#
multirobot-map-merge.

ros-perception (2022). slam gmapping. https://github.com/
ros-perception/slam gmapping.

Unity-Technologies (2022a). Ros tcp connec-
tor. https://github.com/Unity-Technologies/
ROS-TCP-Connector.

Unity-Technologies (2022b). Ros tcp endpoint. https://
github.com/Unity-Technologies/ROS-TCP-Endpoint.

Unity-Technologies (2022c). Unity dots. https://unity.com/
dots/packages.

APPENDIX

A Links to code repository

https://github.com/MalteZA/MAES

B Usability Test

Goal: Can MAES with ROS be set up and used
by the target audience? (Robotics developers and
Researchers)

Duration: At most 60 minutes
Allowed aid: Readme from Github

B.1 Interviewer Guidelines

1. Inform the subject that their names will be
anonymized, but we will record their voices and
the screen.

2. Remember to start screen recording

3. Record audio with a phone as backup

4. Do not interrupt, unless the fault is clearly in
MAES / ROS / our docker-image and not the sub-
ject.

5. If any phase is not finished within 20 min, the in-
terviewer steps in and finishes the phase to allow
for the next phase to start

6. If any phase is completed incorrectly and then
next depends on it completed correctly, the inter-
viewer can correct the error.

7. Do not elaborate on the guide, but it is allowed
to explain terms (We are not testing their english
skills)

8. In case of crash it is allowed to help get them to
the point before the crash

9. SPEAK English!

18

https://hub.docker.com/r/aaumaes/ros4maes
https://hub.docker.com/r/aaumaes/ros4maes
https://drive.google.com/drive/folders/1a_YjI1w0TLiakSW6m0-3XuDf7yt0vZfQ
https://drive.google.com/drive/folders/1a_YjI1w0TLiakSW6m0-3XuDf7yt0vZfQ
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://docs.ros.org/en/galactic/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/galactic/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/galactic/Concepts/About-Tf2.html
https://docs.ros.org/en/galactic/Concepts/About-Tf2.html
https://docs.ros.org/en/galactic/Tutorials/Configuring-ROS2-Environment.html
https://docs.ros.org/en/galactic/Tutorials/Configuring-ROS2-Environment.html
https://docs.ros.org/en/galactic/Tutorials/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/galactic/Tutorials/Creating-Your-First-ROS2-Package.html
https://gazebosim.org/home
https://docs.ros.org/en/galactic/Tutorials/Launch/CLI-Intro.html
https://docs.ros.org/en/galactic/Tutorials/Launch/CLI-Intro.html
https://www.openrobotics.org
https://www.openrobotics.org
https://www.ros.org
https://docs.ros.org/en/galactic/Releases.html
https://docs.ros.org/en/galactic/Releases.html
https://navigation.ros.org/setup_guides/sensors/setup_sensors.html#costmap-2d
https://navigation.ros.org/setup_guides/sensors/setup_sensors.html#costmap-2d
https://navigation.ros.org/setup_guides/transformation/setup_transforms.html
https://navigation.ros.org/setup_guides/transformation/setup_transforms.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/galactic/Tutorials/Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/galactic/Tutorials/Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/galactic/Tutorials/Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/galactic/Tutorials/Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/galactic/Tutorials/Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/galactic/Tutorials/Topics/Understanding-ROS2-Topics.html
http://playerstage.sourceforge.net
http://playerstage.sourceforge.net
https://github.com/robo-friends/m-explore-ros2#multirobot-map-merge
https://github.com/robo-friends/m-explore-ros2#multirobot-map-merge
https://github.com/robo-friends/m-explore-ros2#multirobot-map-merge
https://github.com/ros-perception/slam_gmapping
https://github.com/ros-perception/slam_gmapping
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://unity.com/dots/packages
https://unity.com/dots/packages
https://github.com/MalteZA/MAES


B.2 The test

Initial Interview
1. Which semester are you on? (If working: What is

your title at work)

2. What is your experience using Python?

3. What is your experience using ROS / ROS2?

4. What is your experience using Gazebo?

5. What is your current knowledge of MAES?

Phase 1 - Setup

Task 1: Build and start ROS2 with RVIZ run-
ning in Docker container

Task 2: Start MAES.x86 64 from MAES pack-
age

Task 3: Stop ROS2 and close MAES

Phase 2 - Configure

Task 1: Set number of robots to 1 (current
is 2) using maes config file found in the
maes ros2 interface ROS package

Task 2: Change map type from building to cave
using maes config file (and remember to
’colcon build’ after changes to make them
take effect)

Task 3: Launch first ROS and then MAES and
confirm new number of robots and map type
from the GUI. Close ROS and MAES when
done.

Phase 3 - Use

Task 1: Open maes robot controller.py found
in the maes robot controller ros package.
Change the behaviour to make the robot
move to coordinate (0, 0). Colcon build and
start first ROS and then MAES. Click play
in MAES and click the robot to follow and
show debug information for the robot. Close
ROS and MAES.

Task 2: Now change behaviour so that the robot
cancels its navigation to (0, 0) if the tick is
higher than 30. Colcon build and start first
ROS and then MAES. Confirm behaviour,
and then close ROS and MAES.

Task 3: Now change behavior to also make the
robot deposit an environment tag with a
message saying “Hello world!” continuously.
Colcon build, open ROS and then MAES and
confirm behaviour. Click ”Visualize Tags”
under ”All Robots” in the side menu to en-
able visualization of tags.

Task 4: Click the topic menu in top left corner
of MAES and click the /robot0/maes state
topic to see what is published on this topic.
Now close ROS and MAES.

Closing Interview
1. What are your thoughts on the ROS integration

with MAES?

2. Do you have any further remarks, comments or
feedback?

19



C ROS2 System Overview

Figure 14: Overview of R OS2 system with two robots
launched with maes ros2 multi robot launch.py. The graph
is generated using the rqt graph tool. Showing only
Nodes/Topics (active). Dead sinks, leaf topics, debug, tf,
unreachable and parameters are hidden to make it more
readable. Oval shapes are nodes and squares are topics.

20



D Usability Test Results & Interviews

Table 2: Time used for each task for subject 1 (S1) to 5
measured in seconds

S1 S2 S3 S4 S5

Phase 1
Set up

Task 1 349 311 333 284 295
Task 2 137 72 64 42 190
Task 3 107 25 56 18 58

Phase 2
Config

Task 1 17 114 103 42 60
Task 2 95 96 1201 68 128
Task 3 842 72 65 120 120

Phase 3
Use

Task 1 287 9433 10313 6013 6334

Task 2 119 3145 312 111 421
Task 3 136 148 132 254 222
Task 4 06 61 15 1417 778

Total 1331 2156 2231 1681 2204

D.1 Subject 1 Answers

Title: 10th semester student at Robotics
Experience with Python: 1 year
Experience with ROS/ROS2: 4.5 years on and off (1
year for ROS2)
Experience with Gazebo: Used as main simulation
for ROS/ROS2 systems
Knowledge of MAES: Heard two 5 minute presenta-
tions, but not looked into code

Feedback:
Seems nice with MAES and Rviz visualization.
Liked the topic list visualization. Liked the docu-
mentation. Did not initially understand the notion of
a ‘tick’.

D.2 Subject 2 Answers

Title: 10th semester student at Robotics
Experience with Python: 1 year
Experience with ROS/ROS2: 5 years ROS1, 1 year

1Did not finish. Changed the map type to custom map
instead of cave map

2Used colcon build from wrong directory
3Initially added logic to main function instead of logic

loop
4Misunderstood the asynchronous call to navigation and

tried waiting for return value
5Did not finish. Was unable to make the robot cancel,

since the subject kept sending navigation requests to the
robot every tick. S2 did, however, explain the correct so-
lution

6S1 already finished this during Phase 3 Task 1
7S4 already finished this earlier, but did not realize it
8S5 spent a long time looking for a system menu called

topic, instead of a menu in MAES

ROS2
Experience with Gazebo: Used for 5 years along
ROS1 and ROS2
Knowledge of MAES: Heard two 5 minute presenta-
tions, but not looked into code

Feedback:
Hard to evaluate from this short usability test. MAES
seems much more user friendly than Gazebo to get
going. Easy to set up, which is important to new ROS
users. MAES’ graphical interface is much prettier
than Gazebo’s, but also lacks some of the features of
Gazebo. Was unsure of how to see the TF links of the
robot in MAES. Subject is unsure of how to evaluate
the physical dynamics of the robot in MAES, i.e.
the movement of individual parts. A good stepping
stone for learning ROS. Suggests a grid to show the
size of 1 unit in the coordinate system as well as a
measurement system. It is hard to see, “what is a
meter?”

D.3 Subject 3 Answers

Title: 10th semester student at Robotics
Experience with Python: 5-6 years
Experience with ROS/ROS2: 3 years ROS1, 5 days
ROS2
Experience with Gazebo: Single course at University
and two weeks of debugging
Knowledge of MAES: Heard one 5 minute presenta-
tion, but not looked into code

Feedback:
Seems cool. Nice that it works with RVIZ. It was un-
clear where to put navigation logic in the controller.
Seems to be built well.

D.4 Subject 4 Answers

Title: Assistant Professor
Experience with Python: Not a lot
Experience with ROS/ROS2: A lot with ROS1, but
none with ROS2
Experience with Gazebo: Minimal to none
Knowledge of MAES: Heard two 5 minute presenta-
tions, but not looked into code

Feedback:
It’s great. It seems like almost a direct replacement
for Gazebo. Although Gazebo is built for any kind of
robot (MAES is only for mobile robots), Gazebo is
also significantly more difficult to set up, configure
and use. MAES seems tailored for mobile robots.
MAES is a lot easier to set up, especially with
Docker. Nice integration with RVIZ. MAES interface

21



is easier to comprehend than RVIZ. Suggestion:
Spawn each robot at a predefined position.

D.5 Subject 5 Answers

Title: 6th semester student at Robotics
Experience with Python: 1 year
Experience with ROS/ROS2: ROS1 6 months, ROS2
4 months. Prefers ROS2
Experience with Gazebo: Almost a year
Knowledge of MAES: Heard two 5 minute presenta-
tions, but not looked into code

Feedback:
Looks very promising. Likes the UI and 3D render-
ings of MAES. Unsure of what a ’tick’ is. It was not
clear why one could not click a robot before running
the simulation. Suggests to make it more clear that
the topic menu is in fact a menu. Suggests a UI
element with a list of all robots, where a given robot
could be selected more easily.

22


