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Chapter 1

Introduction

A wide array of modern applications and robotic system rely on tracking to provide an
understanding of moving objects. A well known application is to analyze pedestrian move-
ment in surveillance applications. This has received increasing attention with the Covid-19
pandemic and can be used to count the number of people in indoor areas and estimate
their proximity. Self-driving cars heavily rely on tracking of people and other objects along
the road to predict and prevent potential accidents. Other robotic systems such as modern
traffic regulations can use tracking of vehicles to save fuel consumption and thus reduce
the CO2 emission [1, 2, 3, 4]. Lastly, tracking is also widely used in biology and medical re-
search for tracking of e.g. cells and fish to avoid manual annotation in clinical experiments
[5, 6, 7].

All of the aforementioned applications can benefit from multi-object tracking (MOT)
to cover the association of corresponding objects across a video sequence. Depending on
the application, this association is required to establish object trajectories, keep track of
objects, predict motion of objects and avoid identity switches etc.

The work of MOT accelerated in 2015 with Taixé et al. [8] that introduced the MOTChal-
lenge benchmark1. The challenge began with the MOT15 dataset and has since been ex-
tended with more challenging datasets such as the MOT16/17 and MOT20. These initial
MOT challenges primarily focuses on pedestrian tracking in an urban environment. More
novel additions include biological data e.g. the 3D-ZeF20 dataset which consist of 3D se-
quences of zebrafish [6] and the CTMC-v1 dataset which is sequences of cells [7]. The
latest addition is the MOTSynth dataset that consists of synthetic data targeted towards
the increased used of deep learning in tracking, since it often requires a vast amount of
data [9].

An analysis of state-of-the-art MOT trackers in 2017, found that the best performing
trackers have strong affinity models that is achieved with deep learning (AI) [10]. Ad-

1The MOTChallenge benchmark is hosted at https://motchallenge.net

1
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ditionally, the use of deep learning in MOT has grown to be essential in detecting the
objects to be tracked using modern detectors such as Faster-RCNN [11] and YOLO [12].
More advanced strategies use deep learning to explore the temporal dimension of video
tracking through recurrent neural networks (RNN) to perform either motion prediction or
association of objects [13].

To this end, deep learning is a core part of most modern tracking algorithms. The
following chapter investigates state-of-the-art methods in tracking to understand the MOT
problem, and identifies how deep learning is used to improve upon the various stages of
a tracking algorithm.



Chapter 2

Multi-Object Tracking

This chapter takes its starting point in identifying state-of-the-art methods through a re-
lated work analysis. This leads to a formal definition of the MOT problem and an identifi-
cation of 5 stages of a tracking framework. It gives an introduction to the MOTChallenge
benchmark with examples of available datasets and establishes the evaluation metrics used
to assess the performance of tracking algorithms.

2.1 Related Work

Deep learning in MOT can traditionally be divided into two categories; tracking-by-detection
and joint detection and tracking. Additionally, siamese networks have proved efficient for
single-object tracking, thus they have received increased attention in MOT.

2.1.1 Tracking-by-Detection

The usage of deep learning in tracking inherits from the introduction of fast and robust
object detectors such as Faster R-CNN [11] and the various YOLO versions [12]. They
transform the MOT problem into tracking-by-detection. This separates the tracking prob-
lem into two subproblems; detection of objects to be tracked and association of detected
objects into tracklets [13]. An early tracking-by-detection approach from 2010 [14] utilized
an SVM detector to detect pedestrians and associate them with tracklets across frames.
Bewley et al. [15] introduced simple online and real-time tracking (SORT) in 2017, which is
a tracking-by-detection method that is based on a Kalman Filter for motion prediction and
performs data association between detections based on the intersection over union. The
approach has later been expanded with DeepSORT, which extends the association process
to include a deep appearance model [16]. StrongSORT included a larger CNN-backbone
(ResNet-50) to better describe the deep appearances and added a separate re-identification
module on top to re-identify lost objects and interpolate their position [17]. The latest
addition to the SORT family is the observation-centric SORT method, which modifies the

3
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motion model, e.g. the Kalman Filter, to be more robust to state noise and occlusions [18].
Other approaches for tracking-by-detection include advanced deep learning techniques to
improve the association [19]. [20] uses a trained neural solver with a deep feature repre-
sentation and [21, 22] use variations of RNNs to utilize the temporal information of both
motion and appearance.

2.1.2 Joint Detection and Tracking

Bergmann et al. [10] proposed to modify an object detector into a tracker (Tracktor). The
approach is also known in the literature as tracking-by-regression as it modifies the re-
gression head of an object detector, in this case, Faster R-CNN, to regress the next object
location of a tracklet. With the addition of a siamese network to perform re-identification,
this approach achieved state-of-the-art on several of the MOTChallenges in 2019. The
approach was later improved by [23] with more sophisticated track management and oc-
clusion handling.

Another approach that also modifies existing object detectors is CenterTrack [24]. Cen-
terTrack modifies the CenterNet [25] object detector, to predict offsets for object centers
between the previous and the current frame. It aims to simplify the tracking problem to
tracking points inspired by early tracking algorithms and uses greedy association to asso-
ciate spatially close object centers. A key issue with CenterTrack and joint detection and
tracking methods generally are that they weigh the detection task over the re-identification
task. Hence, they are rarely able to perform long-range re-identifications. To accommo-
date this, [26] proposed modifications to CenterTrack, which includes a separate network
branch dedicated to extracting features that enhance its ability to perform long-range re-
identifications.

2.1.3 Siamese Networks in Tracking

Deep appearance models are key in representing objects and thus performing association
and re-identification [10]. Other approaches utilize siamese networks to address the deep
appearance since they predict an affinity measure directly, thus making them efficient for
matching detections [27, 28].

Inspired by the joint tracking and detection methods, [29] replaced the regression head
of a Faster-RCNN with a siamese head to re-detect a single object in consecutive frames.
[30] uses a slightly different siamese network structure suited for tracking a single object,
by predicting the most similar location of the object within a small search region of the
next frame. While early work on siamese networks focused on single-object tracking [29,
30, 31], Shuai et al. [32] presented SiamMOT designed for MOT. SiamMOT extends a Faster
R-CNN with a siamese tracking head to simultaneously detect and track objects based on
their similarity. SiamMOT outperforms both Tracktor and CenterTrack that is previously
considered state-of-the-art in MOT.
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Figure 2.1: Visualization of the tracking problem. The set of objects from the three different frames O0 =
{o0

0, o0
1}, O1 = {o1

0, o1
1, o1

2} and O2 = {o2
0, o2

1, o2
2} can be associated to constitute the three tracklets T0 =

{o0
0, o1

0, o2
0}, T1 = {o0

1, o1
1, o2

1} and T2 = {o1
2, o2

2}. The example is from the MOT17 dataset [34].

2.2 The Tracking Problem

To understand the extent and the aspects of MOT, the problem needs to be formally de-
fined. This report adopts the definition of MOT from Bergmann et al. [33].

We can define an object, o, in a frame at time, t, as the bounding box given by

ot
n = (x, y, w, h) (2.1)

where n is the object number, (x, y) is the top left corner of the bounding box and
(w, h) is the width and height of the bounding box, respectively.

We describe the collection of objects in a frame at time, t, by the set

Ot = {ot
n|n 2 N}, (2.2)

where N is the total number of objects. Notice, that all objects might not be visible in the
frame due to occlusions.

Lastly, we can describe the tracklet of an object, n, as a collection bounding boxes across
the frames of a video sequence by

Tn = {ot
n, ot+1

n , · · · } (2.3)

Notice, that the objects might not be present in all frames, as they can move in and out of
the captured scene.

An example of a simplified tracking problem is given in Figure 2.1.

2.2.1 Tracking-by-detection

When solving the MOT problem in a real-case scenario, the objects positions, on, and the
total number of objects, N is not know in advantage. Taking starting point in tracking-by-
detection, we can define a set of detections for a frame at time, t, as

Dt = {dt
m|m 2 Mt}, (2.4)
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where Mt is the total number of detections in frame t. d is defined by its four bounding
box coordinates, similar to the definition of an object, o, from Equation 2.1.

After obtaining a set of detections, they need to be associated with a set of known
tracklets. This set of known tracklets is defined as

T = {Tk|k 2 K}, (2.5)

where K describes the total number of known tracklets in a video. Similarly to the previous
definition, we can define a tracklet, Tk, by a set of associated detections given by:

Tk = {dt
m, dt+1

m , · · · } (2.6)

In summary, tracking-by-detection is the problem of assigning M detections to K track-
lets across time t.

2.2.2 Tracking Stages

To this end, tracking-by-detection can be divided into five stages as given below. These
include the four stages identified by Ciaparrone et al. [13] in their survey on deep leaning
usage in MOT with the addition of a stage for track handling. Examples of common
methods found in the literature are given for each stage. Note, that depending on the
tracker, some of the stages may be intertwined. The following introduction of tracking
stages disregards the notation of time.

• Object Detection Stage
The object detector is responsible for detecting the objects that need to be tracked.
The output of the object detection stage is the aforementioned set, D, containing a
number of M detections.

The stage is visualized in Figure 2.2.
Common methods for object detection include Faster-RCNN and YOLO [11, 12, 34].

• Object Description Stage
When a set of objects are detected they need to be described. E.g. an object needs a
descriptor or some features that distinguishes it from other objects. One can think of
a function, that transforms a set of detections D into a set of feature representations
as

ffeature(D) = VM = {vm|m 2 M} (2.7)

where vm is the feature vector for the m’th detection and M is the number of detec-
tions.

The stage is visualized in Figure 2.2.
Common methods include: Deep appearance models from various CNN architec-
tures, e.g. ResNet-50, and keypoint descriptors, e.g. SIFT. The spatial information of
an object can also be used to describe it. [13, 15, 16, 17, 35].
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ObjecW DeVcUiSWiRQ

Figure 2.2: The detection and description stage of the tracking-by-detection problem. Two detections are made
for frame t = 0 and three detections are made for frame t = 1. This results in an equal amount of feature
vectors for the two frames. The example is from the MOT17 dataset [34].

• Affinity Stage
The goal of the affinity stage is to compute a measure of the similarity between the
feature vectors of all the known tracklets and the feature vectors of the detections.
The set of feature vectors for the known tracklets is given by

VK = {vk|k 2 K}, (2.8)

where K is total the number of known tracklets and vk is the feature vector describing
tracklet Tk.

One can think of a function, that calculates the similarity between Vk and Vm. We
can define such a function as

fsimilarity(VK, VM) = S 2 RK⇥M, (2.9)

where S is a similarity matrix containing all the similarity measures between the
feature vectors. The stage is visualized in Figure 2.3.

Common methods include: Cosine similarity, Euclidean distance, Mahalanobis dis-
tance and siamese networks [16, 32].

• Object Association Stage
When the affinity measures between the different objects are calculated, they need
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AffiQiW\ SWage

Figure 2.3: The affinity stage. The two feature vectors for t = 0 represents two tracklets and the three feature
vectors for t = 1 represents the three current detections. These are used to calculate their similarity in form of
the matrix S 2 RK⇥M. The example is from the MOT17 dataset [34].

to be associated to construct tracklets. Apart from a similarity measure, associations
can also be based on their movement patterns.
Common methods to perform association include: Hungarian algorithm, greedy as-
sociation, neural solvers, cascade matching [16, 17, 20, 36].

• Tracklet Handling
Tracklet handling includes instantiation of new tracklets and deletion of unused
tracklets. Additionally, this may also include motion prediction of the tracked ob-
jects.
Common methods include: Thresholding of the affinity measure sk,m and threshold-
ing on the number of missed associations [15]. Kalman Filter for motion prediction
[17]. More advanced tracklet and occlusions handling also exist, although they often
become very use-case specific to solve edge cases [23].

Figure 2.4 visualizes a collection of the independent tracking stages.

2.2.3 Online vs. Offline Tracking

Tracking algorithms can be divided into online and offline (batch) methods. Batch methods
are allowed to use future information when constructing tracklets, whereas online methods
only rely on current and previous information. Thus, offline methods often have better
tracking performance, as they can associate the tracks given more information.

On the other hand, online methods are suited for applications that require real-time
tracking, e.g. autonomous driving. However, online tracking methods are not necessarily
working in real-time. Offline tracking methods are not suited for real-time applications
[13].
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Figure 2.4: The tracking-by-detection problem with the identified tracking stages. The first column shows the
object detections for 3 different frames. An affinity measure sk,n is calculated based on the feature vectors
for the tracklets, vk, and the feature vectors for the current detections, vm, (indicated by the dotted lines).
The detections are associated to create the three tracklets, T = {T0, T1, T2}, given by T0 = {d0

0, d1
1, d2

1}, T1 =
{d0

1, d1
2, d2

2}, T2 = {d1
0, d2

0}. The example is from the MOT17 dataset [34].
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The investigations made in this report will not focus on real-time methods, since track-
ing with deep learning is computationally heavy and requires optimization. Both online
and offline methods will be considered.

2.3 Multi-Object Tracking Challenge

As stated in the introduction, Taixé et al. [8] introduced the MOTChallenge in 2015 as
a benchmark to evaluate tracking algorithms. The MOTChallenge is inspired by other
computer vision benchmarks such as ImageNet for image classification [37], Pascal VOC
for object detection [38] and builds upon the PETS (Performance Evaluation of Tracking
and Surveillance) dataset [39] and the KITTI dataset for autonomous driving [40].

All the MOT datasets consist of videos of pedestrians in an urban environment. The
first challenge, MOT15, contained sequences from the PETS and KITTI datasets. However,
the sequences were rather simple with a sparse amount of people. With the expansion
of MOT16 and MOT17, the scenes became denser in the terms of people and objects in
the scene. MOT16 and MOT17 are essentially the same sequences, with MOT17 includ-
ing deep learning detections. Additionally, the annotation quality improved compared to
MOT15. MOT20 includes far denser sequences that result in a high amount of occlusions
which imposes higher requirements on the tracker. The latest addition, MOTSynth, is a
large synthetic dataset aimed at training for the increasing amount of deep learning meth-
ods since they require a large amount of available data. Figure 2.5 includes examples of
sequences for the different MOT datasets [8, 34, 41, 9].

Since its introduction, the challenge has also been expanded with other types of datasets
e.g. biology, in terms of cell tracking [7] and tracking of zebrafish [6]. Apart from the
MOTChallenge benchmark, several datasets for autonomous driving and traffic applica-
tions also exist, including the aforementioned KITTI dataset, Argoverse and nuScenes [40,
42, 43]. Other interesting datasets not currently in the MOTChallenge include the ants
dataset with indoor and outdoor sequences [44].

2.3.1 Dataset Structure

The independent datasets of the MOTChallenge are split into a train set and a test set. The
train set includes a set of ground-truth annotations, which makes it possible to develop
and evaluate tracking algorithms. The videos are given as sequences of jpg images, with
the name being the frame number.

Both folders include sets of public detections e.g. FRCNN detections for MOT17. This
limits the task to the association of detections (tracking-by-detection). It is allowed for par-
ticipants in the MOTChallenge to use their own detections, however, it must be specified
[8]. Figure 2.6 visualizes the folder structure of a MOT dataset.
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(a) MOT15-ADL-RUNDLE-6 [8] (b) MOT16/MOT17-04 [34]

(c) MOT20-01 [41] (d) Zebrafish-04 Front-View [6]

(e) Ants Indoor Seq0001 [44] (f) Ants Outdoor Seq0006 [44]

(g) MOTSynth-512 [9]

Figure 2.5: Examples of the MOT datasets (2.5a-2.5c), the Zebrafish Dataset 2.5d, the Ants Datasets (2.5e-2.5f)
and MOTSynth 2.5g.
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Figure 2.6: Folder structure of
the MOT datasets. gt.txt is not
present in the test split.

The data structure of the ground-truth annotation files
(gt.txt) and the detection files (det.txt) are similar. They
consist of nine comma-separated values, with the six first
values being identical for both file types. Each row is an
object to be considered. The row structure is given in Equa-
tion 2.10 and 2.11.

The first column represents the frame number. The sec-
ond column is the ID (-1 for detection files). Column three
to six hold the bounding box coordinates given as x, y,
width and height (x, y, w, h). The seventh column is the
confidence score c for detection files. For annotation files,
the seventh value is a flag f that indicates, whether the
object is considered in the evaluation or not. The eighth
value indicates the object class. The ninth and last value
indicates the visibility ratio of the object (1 is fully visible).
Once again this value is -1 for detection files.

gt.txt = f rame, ID, x, y, w, h, f , class, visibility (2.10)

det.txt = f rame, �1, x, y, w, h, c, class, �1 (2.11)

Splitting of the Training Data

The training set of the dataset must be divided in two, to create a training split and a
validation split. The training split is used to train the tracking algorithm, e.g. training of
deep learning models or setting threshold parameters, while the validation split is used
to validate the algorithms. This separation is important to see how well the tracking
algorithm generalizes to the data and avoid overfitting to the training set.

The tracker design of this report will focus on the MOT17-dataset since it includes
object detections made from deep learning. The MOT20-dataset also includes deep detec-
tions, however, the scenes are very dense and thus increasingly difficult for trackers. The
split is chosen arbitrarily as below, but to represent the dataset characteristics, e.g. in terms
of scenes with moving cameras as in the sequences 05, 10, 11 and 13.

Training split: MOT17-02, MOT17-04, MOT17-05, MOT17-13
Validation split: MOT17-09, MOT17-10, MOT17-11



13

Examples of all 14 sequences from the MOT17 dataset are given in Appendix A. For
each of the 7 sequences in the training set, a similar sequence is present in the test set.

The MOTChallenge is hosted at https://motchallenge.net, which also serves as the
evaluation server for the test sequences. When evaluating the tracking algorithms in the
MOTChallengs, it is critical to measure the performance with evaluation metrics. The
following section discusses the key evaluation metrics of the MOT.

2.4 Evaluation of Multi Object Tracking

Metrics are key in evaluating the performance of independent trackers, especially in a
benchmark such as the MOTChallenge. The metrics serve as an objective way to evaluate
the best performing tracker. Although non-engineers only need one metric to assess the
performance and the relative speed to select a tracking algorithm, several metrics are
important to engineers in the development, design and debugging of tracking algorithms
[45].

However, the problem of selecting one performance metric is not immediate, since
it is difficult to claim a ground truth. As a result of this, different metrics emphasise
either the detection accuracy or the association accuracy when evaluating MOT. Therefore,
this section introduces common error types in tracking as well as the three metrics CLEAR
MOT, IDF1 and HOTA. The introduction will focus on their advantages and disadvantages
[46].

2.4.1 Error Types in MOT

Common error types in MOT can occur in different stages of the tracker and includes
detection errors, localization errors and association errors.

Detection Errors

Detection errors relate to the performance of the object detection stage. They can occur as
a false-positive (FP), which is the detection of an incorrect object class or a non-annotated
object. False-negative (FN) is when the detector fails to detect an object or incorrectly
classifies an object. An object is classified as a true positive (TP) when the object is classified
correctly and the intersection-over-union (IoU) of a detection with the annotation exerts a
certain IoU threshold, lIoU.

Localization Errors

Localization errors are also related to detections since it defines a tracker’s ability to track
the spatial location of an object. The amount of localization errors made by a tracker
inflicts its precision.

https://motchallenge.net
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Association Errors

The last major error type is association errors. Association errors occur in the construction
of tracklets, e.g. wrongly assigning IDs to correctly detected objects. This can occur either
as mismatched detections or ID switches. A tracker can only make an association error if
objects are detected correctly.

The problem of defining one single evaluation metric for tracking algorithms is the
problem of weighing the three error types. The following describes the most common
evaluation metrics and their weighing of the error types [46, 47].

2.4.2 CLEAR MOT

Bernadin and Stiefelhagen [48] introduced the CLEAR MOT metrics in 2008. They were
used as the standard metrics in the establishment of the MOTChallenge in 2015. The
metrics consist of two performance metrics; Multi-Object Tracking Precision (MOTP) and
Multi-Object Tracking Accuracy (MOTA).

MOTP addresses localization errors and is defined in Equation 2.12.

MOTP =
Âi,t ei,t

Ât ct
, (2.12)

ei,t is the of precision error for match i at time t. ct is the total number of matches for frame
t. A match refers to a match between a ground-truth annotation and a prediction made by
the tracker.

MOTA is defined in Equation 2.13 and addresses detection and association errors.

MOTA = 1� Ât(FNt + FPt + mmet)

Ât gt
, (2.13)

where FNt is the number of false-negatives (missed detections). FPt is the number of false-
positive detections. mmet is the number of mismatched detections (ID switches). gt is the
number of ground truth detections. t is the frame number [13] [48].

The twofold metric thereby has MOTP to assess the precision of tracklets and MOTA
to assess the association of detections into tracklets. An issue with the MOTA metric is
that it weighs mismatched detections the same as false-positives and missed detections,
although the mismatched detections can be more critical in some applications [47].

2.4.3 Identification F1

Unlike the CLEAR MOT metrics, which handle its matches at a detection level, the Identi-
fication F1 (IDF1) uses matches at an association level. Specifically, IDF1 defines Identity
True Positives (IDTP) as the number of matches on the overlapping parts of a tracklet.
Identity False Positives (IDFP) is the number of incorrect associations and Identity False
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Negatives (IDFN) is the number of missed associations over both overlapping and non-
overlapping part of tracklets. Based on these, the F1 metric for identification is given in
Equation 2.14.

IDF1 =
|IDTP|

|IDTP|+ 0.5|IDFN|+ 0.5|IDFP| . (2.14)

One of the issues with the IDF1 metric is that it does not consider localization errors
and it weighs association errors the highest [46, 49].

2.4.4 Higher Order Tracking Accuracy

The latest introduced evaluation metric and the common standard for evaluating new
trackers is the Higher Order Tracking Accuracy (HOTA). HOTA is proposed to accommo-
date some of the limitations outlined with the CLEAR MOT and IDF1 metrics and thus is
a complex evaluation metric taking into account several different aspects.

HOTA is defined as a double Jaccard index as given in Equation 2.15 and is calculated
for a specific lIoU.

HOTAlIoU =

s
Âc2TP A(c)

|TP|+ |FN|+ |FP| , (2.15)

where TP is the number of true positive detections, FN is the number of false negative
detections and FP is the number of false positive detections for a given lIoU . A(c) is given
in Equation 2.16 and defines whether the TP detections are assigned correctly.

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)| (2.16)

TPA(c) is the number of True Positive Associations, FNA(c) is the number of False Neg-
ative Associations and FPA(c) is the number of False Positive Associations. All the three
are calculated for the TP detections only. Thus, the tracker is only evaluated on the associ-
ations it makes for correctly detected objects.

To summarize, TPA(c) is the number of TP detections for which IDs have been assigned
correctly and FNA(c) and FPA(c) are the number of TP detections that have been wrongly
assigned or did not correspond to an object [46].

However, this metric in itself does not take into account the localization errors. HOTA
incorporates this, by calculating the HOTA metric for a set of 19 different IoU thresholds,
lIoU 2 {0.05, 0.10, . . . 0.95} and average the score. The final HOTA metric is defined in
Equation 2.17.

HOTA =
1
19 Â

lIoU2{0.05, 0.10,...0.95}
HOTAlIoU (2.17)

To this end, HOTA is the current metric that best weighs all three error types, thus it
will be used to evaluate the performance in the MOTChallenge [46].
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2.5 Contributions and Problem Statement

This chapter formally defined the tracking-by-detection problem and identified the five
tracking stages: Object detection, object description, affinity calculation, object association
and tracklet handling. The MOTChallenge is introduced as the common benchmark to
evaluate MOT algorithms. The MOT17 dataset has been divided into a training and a
validation set that will be used to develop tracking frameworks. The evaluation of a
tracking algorithm will primarily use the HOTA metric to evaluate the performance, as it
weighs the error types in tracking equally.

The analysis of related work showed how tracking algorithms utilize deep learning
in various ways to create robust MOT. As an extension to the tracking-by-detection, joint
tracking and detection frameworks aim to modify the head of detector networks, to predict
the following position of an object. Siamese networks are often used as re-identification
modules or for single-object tracking. To do so, the majority of these methods require
specific training of the tracker, to be able to track and differentiate between objects in video
sequences. As a consequence, it makes the trackers unable to generalize to other types of
data, since they are often trained for specific types of sequences and only validated on
these sequences.

2.5.1 Problem Statement

Based on the introduction and the analysis of MOT the following problem statement is
created:

How can deep learning be used to create a robust description of detected objects, that can be
used to distinguish and associate objects in MOT?

Contributions

While answering the above problem statement the report will make the following three
contributions. Firstly, an investigation of a novel idea for deep learning in tracking is
made. The idea takes its base in the tracking-by-detection framework, where it aims to
distinguish objects by masking out the background of detections. The deep feature rep-
resentation aims to incorporate both the spatial and textural information of a detection.
Secondly, the capabilities of the deep keypoint extractor SuperPoint and its deep match-
ing framework SuperGlue to describe and distinguish detections in MOT are investigated.
Thirdly, the viability of using the masked out background approach as a global description
of objects and SuperPoint as a local description to aid in the re-identification of lost objects
is explored.



17

2.5.2 Report Structure

The structure of the report is given as follows:

• Chapter 3 establishes a baseline tracking method based on the tracking-by-detection
framework and a deep appearance model. It investigates the influence of various
affinity measures and association approaches.

• Chapter 4 explains the proposed idea to incorporate the spatial and textural infor-
mation in a deep object description and evaluates its performance.

• Chapter 5 investigates the viability of using the SuperPoint keypoint descriptor for
object description and its matching framework SuperGlue to match detections.

• Chapter 6 combines the findings from the proposed idea and the SuperPoint trackers
to construct two combined tracking frameworks.

• Chapter 7 evaluates the combined tracking strategies both on the MOT17 test se-
quences and other MOT datasets.

• Chapter 8 discusses the obtained results and identifies the strengths and weaknesses
of the investigated methods.

• Chapter 9 concludes with the main findings and proposes future work areas.



Chapter 3

Baseline Tracker

Inspired by classical tracking-by-detection frameworks such as DeepSORT, a baseline tracker
is created to evaluate the performance of developed tracking frameworks. In short, the
baseline tracker revolves around deep feature extraction and association of the detected
bounding boxes. It compares two different types of feature extractions MobileNetV3 and
EfficientNetV2.
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Figure 3.1: The structure of the baseline tracker. Public FRCNN detections are used as detections to extract a
set of features, VM, for each frame. An affinity measure is calculated between the obtained feature represen-
tations and the current tracklets. The Hungarian and greedy algorithms perform associations. New tracklets
are instantiated if the similarity measure is less than a given threshold g and tracklets are deleted if they are
not associated for a number of frames, Nframes. The example is from the MOT17 dataset [34].
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3.1 Tracking Approach

The tracking approach follows the identified tracking stages from Section 2.2.2. Figure 3.1
visualizes the structure of the baseline tracker. The specifics of the independent stages are
described below.

The tracker assumes that detections only move slightly in-between frames and hence
it does not contain any motion prediction nor re-identification of any sort. It is distinct
from DeepSORT since it does not consider an object’s spatial location when making the
association, thus only evaluating the deep feature description of object detections [16].

3.1.1 Object Detection

For object detections, the public FRCNN detections of pedestrians provided in the MOT17
dataset are used. To ensure a high detection quality, only detections with
pobject > 0.5 are used.

3.1.2 Feature Extraction - Object Description

Feature extraction on the detected bounding boxes has been performed using the MobileNetV3-
Large network and the EfficientNetV2-Small. Table 3.1 compares the main parameters.

MobileNetV3-Large

The MobileNetV3-Large network is pretrained on the ImageNet dataset and has an input
shape of (224x224) [50]. The deep network performs the following feature extraction of a
detection, d:

fMobNet(d) = v = (v1, v2 · · · v960), (3.1)

A feature vector v is extracted with a total of 960 features. The TensorFlow implemen-
tation of MobileNetv3 is used [51].

EfficientNetV2-Small

The EfficientNetV2-Small is also pretrained on the ImageNet classification dataset and has
an input shape of (384x384) [52]. The network performs the following feature extraction
of a detection, d:

fEffV2S(d) = v = (v1, v2 · · · v1280), (3.2)

thus it extracts a total of 1280 deep features from the detection. The pretrained version by
Google from TensorFlow Hub is used [53].
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Network Parameters Input Shape Top1 acc*
MobileNetv3-L 5.4 M 224x224 75.2 %
EfficientNetv2-S 21.5 M 384x384 83.9 %

Table 3.1: The table compares the parameters of the two used feature extractors for the baseline tracker. ⇤ is
the top1 % accuracy on the ImageNet1k dataset [50] [52].

3.1.3 Affinity Measures

An affinity measure is calculated based on two approaches: Cosine similarity as given in
3.3 and euclidean distance as given in 3.4.

c(vk, vm) =
vk · vm

kvkk kvmk
(3.3)

e(vk, vm) = kvk � vmk , (3.4)

where c and e represents the cosine similarity and euclidean distance, respectively.
vk · vm is the dot product between the two vectors.

vm is the feature vector of the m’th detection and vk is the feature vector of the k’th
tracklet.

3.1.4 Association

The baseline tracker is evaluated on two different ways of performing associations, greedy
association and Hungarian association.

Greedy Association

The greedy association solves the association problem by making a locally optimal choice
for associating detections to tracklets. Recall, that the similarity functions establishes an
affinity matrix S 2 RK⇥M, with the independent similarity measures as given in Equation
3.5.

S =

2

64
s0,0 . . . s1,M

... . . . ...
sK,1 . . . sK,M

3

75 (3.5)

The greedy association then follows Algorithm 1. Thereby making a local optimal choice
of assigning the m’th detection to the k’th tracklet.

Hungarian Association

The Hungarian association solves the association problem different from the greedy algo-
rithm, by making the assignment choice that achieves the lowest global cost. The algorithm
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Algorithm 1 Greedy Association

while size (S) > 0 do
k, m =argmin(S) . Extract the indexes of the most similar value
Tk  dm . Assign detection m to tracklet k
S = shrink(S, k, m) . Remove row k and column n from S

end while
Notice, that the algorithm is written for the euclidean distance, since the smallest similarity
value represents the most similar detection. The algorithm is valid for cosine similarity by using
argmax(S) instead of argmin(S)

works on a cost matrix, which is chosen to be the affinity matrix S. Thus, applying the
Hungarian algorithm on S assigns detections m to tracklets k and achieves the lowest
global cost.

The implementation uses the python library munkres [54], which is an implementation
of the Kuhn-Munkres variant of the Hungarian algorithm [55].

3.1.5 Tracklet Handling

Tracklet handling is done by deleting tracklets that have not been associated for a threshold
of Nframes = 10.

New tracklets are instantiated based on a similarity threshold, g, on the affinity mea-
sures. For cosine similarity new tracklets are instantiated when c < gc and for the eu-
clidean distance when e > ge.

The similarity thresholds are chosen based on experiments with the affinity measures
on the ground-truth annotations of the training split, as described in Appendix B. Nframes
is chosen by trial and error to achieve as high a score HOTA as possible.

3.1.6 Variations

In summary these variations in feature extraction, affinity measure and association leads
to a total of eight different baseline trackers to be evaluated. A summary of the variations
are given in the listing below.

• Feature Extraction
MobileNetV3-L v EfficientNetV2-S

• Affinity Measure
Cosine similarity v Euclidean Distance

• Association
Greedy Association v Hungarian Association



22

(a) The results for euclidean distance use ge = 16. The re-
sults for cosine similarity use gc = 0.85.

(b) The results for euclidean distance use ge = 14 for hun-
garian association and ge = 15 for the greedy association.
The results for cosine similarity use gc = 0.85.

Figure 3.2: The baseline HOTA scores for the two different feature extractors.

3.2 Results

The results for the variations of the baseline tracker are given for the four training se-
quences: MOT17-02, MOT17-04, MOT17-05 and MOT17-13. The HOTA scores for the
MobileNetv3-L and the EfficientNetV2-S feature extractors are given in Figure 3.2a and
Figure 3.2b, respectively. Detailed results for the three different metrics HOTA, MOTA
and IDF1 are given in Appendix D.1.1.

Figure 3.3 shows the results of the best performing tracker on the validation sequences.
Example videos for this baseline tracker are given at: Baseline.

3.3 Findings

In establishing the baseline tracker a few conclusions can be made. Overall, the baseline
results of both feature extractors perform well on the majority of the training sequences
except MOT17-02. All the other training sequences perform well with scores around and
above 50 % HOTA, taking into account that the baseline tracker is a simple tracker without
motion prediction, re-identification module etc.

The results obtained using cosine similarity (red) are better than those obtained with
euclidean distance (blue) for the majority of the sequences.

The difference between greedy (circles) and Hungarian (triangles) association is small,
with a slight advantage over the Hungarian method. The two feature extractors perform
similarly with a slight advantage to the MobileNetv3-Large on the MOT17-02 and MOT17-
05 sequences. Hence, the best performing baseline tracker is the MobileNetV3-Large fea-

https://drive.google.com/drive/folders/13BxcoC3OAofQQJuRuAMmFOBGKxi5XoGP?usp=sharing
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Figure 3.3: The HOTA scores for the best performing baseline tracker on the validation sequences.
MobileNetV3-Large feature extraction with cosine similarity and Hungarian association. gc = 0.85 and
Nframes = 10.

ture extractor with Hungarian association and cosine similarity as an affinity measure. It
achieves an average HOTA score of 49.6 % on the training sequences. The tracker achieves
an average HOTA score of 47.6 % on the validation sequences, thus showing its ability to
generalize.

The following chapter shows the performance of the proposed idea for a deep feature
description evaluated against the baseline tracker.



Chapter 4

Proposed Method

The following chapter contains an introduction to a proposed base method for tracking
with deep learning. At first, the approach is described taking starting point in the afore-
mentioned tracking stages.

To validate the approach and discover advantages and limitations, experiments are
conducted to compare various feature extractors and variations of the proposed method.

4.1 Masking Out the Background

The idea for a base method consists of a modified way of describing the detections. In
short, the approach aims to focus a deep feature extractor by masking out the background
of object detections, thus maintaining the spatial position of the detection in the frame.
The approach is visualized in Figure 4.1 and is referred to as the masked out background
(MOB) approach.

• Object Detection For each frame detect a set of objects, D. The public FRCNN
detections from the MOT17 sequences are used with pobject > 0.5.

• Object Description For each detected object, mask out the background such that it
results in a distinct image, denoted bm (See Figure 4.1). This set of images with a
detection and a masked out blackground is denoted as:

B = {bm|m 2 M}, (4.1)

with M being the number of detections. Similarly, to the object description stage we
can apply a deep neural network on this set of of images to extract a set of deep
feature vectors:

ffeature(B) = VM = {vm| 2 M} (4.2)

Conclusively, each object detection has a deep feature representation.

24
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Figure 4.1: For each of the three detected bounding boxes, mask out the background (blurring in this case) and
perform deep feature extraction to obtain 3 feature vectors. For the three frames with background blurring,
the white marking box showing the detection is not included in the actual feature extraction. [34].

The general intuition behind the MOB approach is to incorporate all the bounding box
information in the deep feature extraction. First of all, this covers the textural information
of the bounding box, e.g. what is in the bounding box. This is somewhat in line with the
previous usages of deep learning in MOT (DeepSORT [16]). Second of all, this also covers
the spatial information of the detected bounding box, e.g. where and what is the size of
the bounding box. It aims to allow the deep feature representation to implicitly contain
all of the information in the detected box and thereby use the blurring to focus the feature
extraction. To the best of the author’s knowledge, this method has not been investigated
for MOT previously.

The experiments will compare two variations of MOB; using a blurred background and
using a black background.

4.1.1 Feature Extraction (Object Description)

Feature extraction is performed with three different deep feature extractors, the MobileNetV3-
L, the EfficientNetV2-S and the EfficientNetV2-M. The variations of MobileNetv3-Large
and EfficientNetV2-S are identical to the ones introduced for the baseline tracker in Sec-
tion 3.1.2. Table 4.1 compares their parameters.

EfficientNetV2-M

The EfficientNetV2-M is used in addition to the smaller variation, since it is pretrained for
an even larger input shape (480x480) which may be beneficial for the proposed method.
The network performs the following feature extraction on a detection with a masked out
background, b:

fEffV2M(bm) = vm = (v1, v2 · · · v1280) (4.3)
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It extracts a total of 1280 features from an image with the background masked out. The
version pretrained on ImageNet by Google from TensorFlow Hub is used [53].

Network Parameters Input Shape Top1 acc*
MobileNetv3-L 5.4 M 224x224 75.2 %
EfficientNetv2-S 21.5 M 384x384 83.9 %
EfficientNetv2-M 54.1 M 480x480 85.2 %

Table 4.1: The table compares the parameters of the two used feature extractors for the baseline tracker. ⇤ is
the top1 % accuracy on the ImageNet1k dataset [50] [52].

4.1.2 Affinity Measures

The cosine similarity is used as an affinity measure for the proposed method, since it
achieved the best results on the baseline tracker. The cosine similarity is given below
(same as Equation 3.3).

c(vk, vm) =
vk · vm

kvkk kvmk
(4.4)

4.1.3 Association

The proposed method is performed both with greedy and Hungarian association, as in-
troduced in Section 3.1.4. This is done, to compare whether the MOB approach benefits
from a local or a global association approach.

4.1.4 Variations

In summary, the different variations in feature extraction and association gives the follow-
ing combinations to be evaluated for the proposed method:

• Feature Extraction (Object Description)
Blurred Background v Black Background
MobileNetV3-L (224x224) v EfficientNetV2-S (384x384) v EfficientNetV2-M (480x480)

• Association
Greedy Association v Hungarian Association

4.1.5 Tracklet Handling

All of the variations use Nf rames = 5 to delete unassigned tracklets. The similarity thresh-
olds are chosen based on the affinity experiments from Appendix B.2 to select the param-
eters for tracklet handling that achieves the best results on the training sequences. Hence,
they differ slightly for the variations.
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Figure 4.2: Results for MobileNetV3-L (224x224).
Thresholds are Nframes = 5 and gc = 0.85

Figure 4.3: Results for EfficientNetv2-S (384x384).
Nframes = 5. The black version use gc = 0.85 and
the blurred version use gc = 0.88.

4.2 Results

The results for the three different feature extractors on the training sequences are given in
Figure 4.2, 4.3 and 4.4. Results on the validation sequences are given in 4.5.

Figure 4.4: Results for EfficientNetv2-M (480x480). Nframes = 5. The black version use gc = 0.85 and the
blurred version use gc = 0.88.

Example videos of the two best performing trackers from Figure 4.5 are given at:
EfficientNetV2-M EfficientNetV2-S

https://drive.google.com/drive/folders/1rZUMcEUhbC5vXYW9zlp7_Dv-7l0Aqba1?usp=sharing
https://drive.google.com/drive/folders/1sr6nCQ0ibWY6pLsIpRF8WkFAou0zAdVu?usp=sharing
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Figure 4.5: The EfficientNetV2-S and M with black background and hungarian association compared to the
baseline results achieved previously.

4.3 Findings

As a general trend across all the variations, the Hungarian association outperforms the
greedy association. The only exception to this trend is the MOT17-02 sequence using
MobileNetV3-L and the MOT17-13 sequence for EfficientNetV2-M. Thus, the following
only compares the Hungarian association.

The feature extractors perform rather similar on the MOT17-02 sequence. Both the Ef-
ficientNet feature extractors perform the best on the MOT17-04 and MOT17-13 sequence,
whereas the MobileNetV3-L performs the best on the MOT17-05 sequence. For the MobileNetV3-
L feature extractor the blurred background performs the best (µHOTA = 38.7%), whereas
the black background performs the best for both of the EfficientNet networks with µHOTA =
43.4% for the small version and µHOTA = 43.5% for the medium version).

However, the EfficientNetV2-S generalizes the best to the validation sequences with
µHOTA = 49.5% compared to µHOTA = 47.7% for the EfficientNetV2-M. Both trackers per-
form better on the validation sequences than the baseline which achieves µHOTA = 47.6%.
Thus, the results suggest that the MOB approach can perform comparatively and gener-
alize slightly better to the validation sequences, although it only uses a simple tracking
framework that does not require training. Due to the simple tracking framework, it strug-
gles with occlusions and re-identification of lost tracklets. In the following chapters, the
efficientNetV2-S feature extractor with a black background and Hungarian association is
referred to as the MOB tracker.
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4.3.1 Problems With Small Detections

The MOB tracker achieves low performance on the MOT17-02, 10 and 13 sequences since
they include scenes with smaller background detections. Examples of these sequences are
given in Figure 4.6. However, it is a well-known problem that the trackability decreases
with the object size [33].

(a) MOT17-02

(b) MOT17-13

Figure 4.6: Two examples of the worst performing sequences for the MOB tracker with small detections [34].

Appendix C describes additional experiments that have been attempted without essen-
tial success to improve the performance of the MOB tracker e.g. on the sequences with
smaller detections.



Chapter 5

SuperPoint as a Tracker

This chapter investigates the use of SuperPoint and SuperGlue to describe and match
objects in MOT. At first, SuperPoint and SuperGlue are described along with relevant
parameters. Thereafter, steps to adapt the SuperPoint framework to a tracker are described
along with results on the MOT17 sequences.

5.1 SuperPoint

DeTone et al. [56] from Magic Leap introduced SuperPoint in 2018 as a CNN based key-
point extractor trained to extract both points of interest and corresponding descriptors.
The network structure of SuperPoint is visualized in Figure 5.1. The network utilizes a
shared encoder and has two separate decoders to extract keypoints and descriptors.

5.1.1 Encoder

The input to the encoder is a gray-scale image I 2 RH⇥W . The encoder is inspired by
the VGG-nets and consists of 8 convolutional layers with the ReLU activation function
to introduce non-linearity. Three max-pooling operations reduce the output shape of the
decoder with 23 = 8, thus the output shape of the encoder is He = H

8 and We = W
8 with a

channel depth of F. In other words, the decoder outputs a tensor E 2 RHe⇥We⇥F, which is
used as an input to the two decoders.

5.1.2 Keypoint Decoder

The keypoint decoder starts with a convolutional head that converts the encoded tensor
E to have a fixed channel depth of 65, P 2 RHe⇥We⇥65. The first 64 channels correspond
to an 8 ⇥ 8 pixel encoding of the image and the last channel represents a bin for non-
interest points. A channel-wise soft-max operation is applied to P and the last channel is
removed. The corresponding RHe⇥We⇥64 tensor is reshaped to RH⇥W . Hence, the output
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Figure 5.1: The architecture of the SuperPoint network. A shared VGG-inspired encoder encodes the input
image to a tensor. Through two separate decoders two grids of interest points and their corresponding
descriptors are created. Adopted from [56].

of the interest point decoder is a pixel map with keypoint point-ness scores for each pixel
in the input image I.

5.1.3 Descriptor Decoder

The convolutional head of the descriptor decoder computes a tensor of shape X 2 RHe⇥We⇥X,
where X is the dimensionality of the descriptor, which in this case is 256. X then repre-
sents a smaller and not fully dense grid of descriptors, obtained from the encoded tensor
E. To obtain a dense descriptor grid with descriptors for each point in the image, Bi-
Cubic interpolation is used. Finally, an L2-normalization step ensures a fixed length of all
descriptors.

Both decoders use a non-learned way of up-sampling to a dense point and descriptor
grid with reshaping and Bi-Cubic interpolation, respectively. This is done to keep the
network fast and efficient.

To this end, one can think of SuperPoint as a function that transforms a detection, dm,
into a set of keypoints and associated descriptors, similarly to the deep feature extractors
used previously, see Equation 5.1.

fSuperPoint(dm) = {pm, xm} (5.1)

here pm 2 RNkeypoints⇥2 is a vector containing the keypoints and xm 2 RNkeypoints⇥256 is a
vector containing descriptors.

5.1.4 Adapting Parameters

For SuperPoint the default model weights obtained from the GitHub page are used [57].
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Figure 5.2: The SuperGlue matching framework. The input is the keypoint and descriptors for the tracklets
{pk, xk} and detections {pm, xm} and the output is a sum of the matching scores sk,m for the optimal match of
keypoints found with the Sinkhorn Algorithm. Nk is the number of keypoints for the tracklet and Nm is the
number of keypoints for the detection. Adopted from [58].

SuperPoint is designed to extract and describe keypoints of full-size images, thus mod-
ifications of the default parameters are needed to fit it for tracking. The default input shape
for SuperPoint is a (640x480) image, which is changed to (240x480) to fit with the approx-
imate shape of the detected pedestrians.

Experiments have been conducted with choosing a larger input shape. The larger the
input shape, the more keypoints are extracted from the images which is desirable. On
the other hand, SuperPoint loses its ability to properly describe the additionally extracted
keypoints, if detections are scaled up too much from the original size.

When downscaling the input shape from the default shape, it is also necessary to
reduce the non-maximum suppression (NMS) ratio. The NMS ratio is reduced from 4 to 2
pixels, which allows the extracted keypoints to reside closer to each other.

The threshold for the maximum amount of keypoints and the keypoint point-ness score
are left at their default values of 1024 and 0.005, respectively [56].

5.2 SuperGlue

In addition to the SuperPoint keypoint extractor, Sarlin et al. proposed SuperGlue as a deep
matching framework to match keypoints. The framework is made for matching keypoints
with associated descriptors, meaning that it can be used both for SuperPoints and more
traditional keypoint descriptors e.g. SIFT and FAST.

The SuperGlue matching framework can be divided into two parts as seen in Figure
5.2. A Graph Neural Network (GNN) is used to predict a scoring matrix s 2 RNk⇥Nm

between keypoints. Nk is the number of keypoints for a tracklet and Nk is the number of
keypoints for a detection. The GNN considers both intra- and inter-frame keypoints.

Thereafter the Sinkhorn algorithm is used to solve the optimal matching problem be-
tween keypoints. This Sinkhorn algorithm is a version of the Hungarian algorithm, that
solves the optimal matching problem between keypoints by iterative normalization of esi,j
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along rows and columns.
SuperGlue then outputs a set of matched keypoints with an associated matching score,

e.g. a probability [0, 1], that the matched keypoint is the same. A matching threshold
is used to filter out non-probable keypoints. Thus, summing the matching score for all
matched keypoints gives an estimate of the total number of matched keypoints, sk,m, be-
tween tracklets and detections [58].

One can think of the SuperGlue as a function that calculates the best possible matching
scores between two sets of keypoints and descriptors as given in Equation 5.2.

fSuperGlue({pk, xk}, {pm, xm}) = sk,m (5.2)

where the sk,m is an estimate of the number of matched keypoints between a detection m
and a tracklet k. This score can then be used as an affinity measure to associate detections
to tracklets. The score can in theory achieve a value of up to 1024 if the maximum number
of SuperPoints are extracted and perfectly matched. Affinity experiments from Appendix
B.3 investigate the number of matches between corresponding and non-corresponding
detections.

5.2.1 Adapting Parameters

For SuperGlue the default ’outdoor’ model obtained from the GitHub Page is used [59].
The rest of the parameters for SuperGlue are left at their default values. The keypoint

threshold for allowing a match is set at matching_score > 0.2, which filters out poor
matches. The default number of 20 Sinkhorn iterations is used in the optimization step
[58].

5.3 Adapting SuperPoint to be a Tracker

5.3.1 Object Detection

As the previous trackers, the SuperPoint tracker uses the public FRCNN detections with
pobject > 0.5.

5.3.2 Object Description and Affinity Measure

When using SuperPoint and SuperGlue for a tracker, it can replace the object description
stage and the affinity stage. SuperPoint is used to extract and describe the detections.
SuperGlue performs matching between potential pairs and outputs a score as an affinity
measure, that can be used to associate the objects. When a detection is associated with
a tracklet, Tk, its keypoints and descriptors are updated, hence associations are always
performed based on the latest SuperPoint description. A visualization of the tracking
framework is given in Figure 5.3.
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Figure 5.3: The tracking framework that utilize SuperPoint and SuperGlue in the object description stage and
affinity stage, respectively. New tracks are instantiated if the matching score is less than a threshold gp and
tracks are deleted if not associated Nframes. The example is from the MOT17 dataset [34].

One issue with the SuperGlue algorithm is that all potential pairs are required to pass
through SuperGlue’s GNN to predict the costs. This makes the processing time grow
quadratically with the number of potential pairs. To reduce the amount of processing,
a search region for SuperGlue is implemented to only calculate a matching score if the
pair is within the region. The region is given as: ek,m < 0.1, where the e is the euclidean
distance calculated between the normalized center points of dm and Tk. This is used to
ignore matching scores outside of the search region as given in Equation 5.3.

sk,m =

(
sk,m, if ek,m < 0.1
0, otherwise

(5.3)

5.3.3 Association

Similar to the previously introduced trackers, the Hungarian algorithm is used to associate
the tracklets.

5.3.4 Tracklet Handling

Tracklet handling is done similar to the previous frameworks. A similarity threshold is
used to instantiate new tracks if gp > sk,m with gp = 1. To this end, we require only 1
matched keypoint to perform an association. Tracklets are deleted if not associated for
Nframes = 10.
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Figure 5.4: Results for the SuperPoint tracker on the
training sequences compared to the MOB and base-
line trackers.

Figure 5.5: Results for the SuperPoint tracker on the
validation sequences compared to the MOB and base-
line trackers.

5.4 Results

The results for the SuperPoint tracker is given in Figure 5.4 for the training sequences and
in Figure 5.5 for the validation sequences. Videos for the SuperPoint tracker are given at:
SuperPoint

5.5 Findings

The performance of the SuperPoint tracker performs similar to the baseline tracker and is
better than the proposed MOB approach on the training sequences. However, the Super-
Point tracker generalizes better to the validation sequences as it achieves µHOTA = 49.1%
compared to µHOTA = 47.6% for the baseline and comparatively to the MOB tracker
µHOTA = 49.5%. Thus, the results show that SuperPoints and SuperGlue matching can
be used as a description and affinity measure that performs better on the validation se-
quences than a baseline deep learning description.

However, as with the MOB tracker, the framework struggles with occlusion handling
and tends to lose tracks after even short term occlusions, when experimenting with a larger
Nf rames. The following chapter investigates how this can be accounted for by combining
the various track description methods, to construct a more advanced tracking framework.

https://drive.google.com/drive/folders/14S7roTfC6hoOCw_FxM1iQZ36RAg9aJhL?usp=sharing


Chapter 6

Combining MOB with SuperPoint

The following chapter investigates combining the MOB tracker from Chapter 4 with the
SuperPoint framework that proved its tracking viability in the previous Chapter 5.

At first, a description of changes to the track handling strategy is made to boost the
tracking performance and enhance the generalizability of the trackers. Thereafter, two
tracking strategies are proposed to take advantage of the spatial incorporation from the
MOB approach and the robustness of the SuperPoint tracker.

The first strategy keeps the two modules separated, e.g. using the MOB module to
associate detections into tracklets and using the SuperPoint module to re-identify lost
objects after occlusions. The second strategy merges the two modules to produce a unified
cost for associating detections and re-identify lost objects.

6.1 Advanced Tracklet Handling

To enhance the generalizability of the combined trackers the following modifications are
created.

6.1.1 Adapting the Similarity Threshold

For previous tracking frameworks, a similarity threshold is used to instantiate new track-
lets based on the affinity measure. Recall, that this threshold is gc for the MOB tracker.
An issue with this is that it can be difficult to generalize this approach since the affinity
measure depends on an object’s movement speed in a frame and its size.

Thus, an adaptive threshold is proposed to reduce this problem. The adaptive thresh-
old works as a percentage value, of a moving average filter applied on the previous simi-
larity measures. We can write up the threshold gc at time t as in Equation 6.1:

gc[t] =
1

Nmov

Nmov�1

Â
i=0

c[t� i] · a (6.1)

36
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where Nmov is the length of the moving average filter and a is the percentage value [60].
To this end, we require the current affinity measure to be higher than a percentage value

of the last Nmov averaged similarities to make an association, otherwise a new tracklet is
instantiated.

Although this introduces two new variables (a and Nmov), these are more intuitive to
select and help increase the tracking performance.

6.1.2 Removing the Nframes Threshold

Additionally, removing the rigid Nframes threshold for deletion of tracklets is desirable
to fully allow for objects to be re-identified. As inspired by other tracking algorithms,
we want to keep long and more certain tracklets, while deleting short and less certain
tracklets. Thus, tracklets are deleted based on the adaptive threshold given in Equation
6.2:

Nframes = min(60,
Nassociations

2
), (6.2)

where 60 is the maximum number of frames to keep a tracklet and is chosen arbitrarily to
correspond to 2 seconds. Nassociations is the number of associations for the tracklet.

6.1.3 Interpolating Re-Identified Tracklets

Lastly, as inspired by StrongSORT, interpolation between detections is introduced when
a tracklet is re-identified in the sequence [17]. Linear interpolation is used between the
location of where the object is lost and the location where it is re-detected. The linear
interpolation is applied on both the position (x, y) and the size (w, h) of the detection.

6.2 Combined A - Joint Object Description

The first strategy (Combined A) is the one, that is most similar to other tracking ap-
proaches since it has a separate re-identification module. The first part of the tracker uses
the proposed base method as introduced in Chapter 4, to perform a strong association of
detections without considering occlusion cases. The second part is a re-identification mod-
ule with SuperPoint used to find objects that have been lost in the sequence. The tracking
structure is shown in Figure 6.1.

6.2.1 Object Description

Due to the use of the two separate tracking modules, the object description of the tracklets
is twofold. This means that a tracklet Tk is described both by its latest feature vector, vk
and by its latest keypoints and descriptors from SuperPoint, {pk, xk}.

The MOB module is used to perform the primary association of detections into track-
lets. Thus, a tracklet is handled by the MOB module if the time since the last association,



38

�

�

'HOHWH�WUDFNV�LI�QRW
DVVRFLDWHG�IRU�

�

3XEOLF�)5&11�'HWHFWLRQV 2EMHFW�'HVFULSWLRQ�

W� ��

6XSHU*OXH�

$IILQLW\�6WDJH�

$VVRFLDWLRQ�ZLWK
+XQJDULDQ�DOJRULWKP�

6XSHU3RLQW�
�

$VVRFLDWLRQ�DQG�5H�,GHQWLILFDWLRQ�

� �

(IILFLHQW1HW9��6�
�

�

&RVLQH�6LPLODULW\�
�
�

�

5H�,GHQWLILFDWLRQ�

7UDFNOHW�+DQGOLQJ
,QVWDQWLDWH�QHZ

WUDFNV

02%�PRGXOH

6XSHU3RLQW�PRGXOH

Figure 6.1: Combined A. Notice the green box that represents the utilization of the MOB module and the blue
box that represents the usage of SuperPoint as a re-identification module. The example is from the MOT17
dataset [34].

Nage < 2 (Following Figure 6.1). Conversely, if a tracklet has not been assigned a detec-
tion for two consecutive frames, it enters the re-identification module. When an object
is re-identified in the scene, Nage resets, and associations are again made with the MOB
module.

Similar to the SuperPoint tracker as described in Section 5.3, the SuperPoint re-identification
module uses a search region for the tracklets. Since the tracklets are now kept in mem-
ory for a longer time due to Equation 6.2, the euclidean distance for the search region is
expanded to ek,m < 0.3.

6.2.2 Affinity Measure and Association

As previously introduced, the MOB module uses cosine similarity between the feature
vectors as an affinity measure to perform association with the Hungarian Algorithm.

The SuperPoint module uses the SuperGlue matching score with Hungarian associa-
tion if re-identification of more than one tracklet is required.

6.2.3 Tracklet Handling

Tracklet handling for the MOB module is performed according to the aforementioned
description (Equation 6.1 and 6.2) with the parameters Nmov = 10 and a = 0.9. These
are established through trial and error and knowledge from the Affinity experiments from
Appendix B.2, however, slight variations do not affect the tracker’s performance as much
as with the previous similarity thresholds.

As for the SuperPoint module we want to be certain when making a re-identification
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Figure 6.2: Combined B. The MOB module from the green box and the SuperPoint module from the blue box
is combined to unified similarity measure used to associate and re-identify the tracklets. The example is from
the MOT17 dataset [34].

to avoid identity switches. Thus, we only choose to re-detect an object if we can find at
least 10 matching keypoints, gp = 10. This is chosen based on the affinity experiments
from Appendix B.3.

6.3 Combined B - Unified Affinity Representation

The second strategy (Combined B) is different from the first one, as it aims to fuse the MOB
module and the SuperPoint module into a unified representation of the objects. Hence,
this representation is in charge of making both associations of detections in consecutive
frames and re-identify lost objects. The tracking framework of Combined B is given in
Figure 6.2.

6.3.1 Object Description

Similar to Combined A, an object is described by its latest feature vector from EfficientNet
vk and by its latest keypoints and descriptors from SuperPoint given as {pk, xk}. Opposite
to Combined A, both feature representations are used simultaneously to provide a joint
description of the objects. A search region of ek,m < 0.3 is used as in Combined A.

6.3.2 Affinity Stage - Establishing a Unified Similarity Measure

The cosine similarity between feature vectors, ck,m, as defined in Equation 3.3 and provides
a measure of the affinity between [0, 1].

For the SuperPoint descriptions, the SuperGlue matching framework is used to calcu-
late a matching score, sk,m. Recall, that this score, in theory, can achieve a maximum value
of 1024, if the maximum number of keypoints are extracted and they match perfectly. This
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is never the case in a real case scenario, since the number of extracted keypoints varies,
which also makes the matching score vary.

To accommodate this, it is chosen to normalize sk,m as given in Equation 6.3.

s0k,m =
sk,m

Nkeypoints, k
(6.3)

where Nkeypoints, k is the number of extracted keypoints for tracklet Tk. The normalized
score, s0k,m, then represents the percent of extracted keypoints that are matched. Hence, it
also achieves a value between [0, 1] and thereby weighs the MOB and SuperPoint modules
equally.

Summing the two affinity measures from the MOB module and the SuperPoint module
we can achieve a combined similarity measure.

scom k,m = s0k,m + ck,m (6.4)

Where scom k,m is the combined similarity measure that achieves values in the range
[0, 2].

6.3.3 Association

The matrix of combined similarity measures is used as an input to the Hungarian algo-
rithm that performs the association of detections to tracklets.

6.3.4 Tracklet Handling

For tracklet handling the proposed moving average filter solution from Equation 6.1 is
used on scom instead of c.

gs[t] =
1

Nmov

Nmov�1

Â
i=0

scom[t� i] · a (6.5)

The percentage value we require to make an association is set to a = 0.7. This value
is lower than for Combined A since we also want the combined description to be able to
re-identify lost objects. Additionally, we lower the length of the moving average filter to
Nmov = 5, to accommodate for the large variations in matched keypoints as found in the
affinity experiments in Appendix B.3.

6.4 Results

The results for the combined trackers with MOB and SuperPoint (A and B) are given in
Figure 6.3 and 6.4. Extended results for the training and validation sequences are given in
Appendix D.4.

Videos for the two trackers are given at: Combined A Combined B

https://drive.google.com/drive/folders/1G6KkFQ5A_5LO04-qbxmjv17JasNMXpfk?usp=sharing
https://drive.google.com/drive/folders/13bRCA1DF8EKioJ7ABOcAq4l7BZlZRNBx?usp=sharing
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Figure 6.3: Results on the training sequences for the
two combined trackers A and B compared to the base-
line, MOB and SuperPoint trackers.

Figure 6.4: Results on the validation sequences for
the two combined trackers A and B compared to the
baseline, MOB and SuperPoint trackers.

6.5 Findings

Both strategies improve upon the MOB tracker on the training sequences and perform bet-
ter or comparatively to the baseline and the SuperPoint tracker. The exception, MOT17-13,
is captured from a bus and contains several small detections in the background. Therefore,
Combined A is not expected to perform well on this sequence, since the MOB tracker has
issues with making strong associations of small detections.

Combined B performs the best on the training sequences with an average of µHOTA =
51.6% compared to µHOTA = 47.8% for Combined A. Combined A still outperforms the
MOB tracker µHOTA = 43.4%, thus including SuperPoint as a re-identification module
improves upon the MOB tracker.

On the validation sequences, both strategies outperform all of the three previous track-
ers with µHOTA = 53.7% for Combined A and µHOTA = 54.2% for Combined B. They
perform similarly on the MOT17-11 sequence. Combined A performs the best on MOT17-
09, whereas Combined B performs the best on the MOT17-10 sequence. Examples of these
two sequences are given in Figure 6.5. The reason Combined A performs well on MO17-
09 is that the detections have a decent size, which allows the MOB module to perform
strong associations and the SuperPoint module to re-identify the lost objects. Conversely,
the MOT17-10 sequence has smaller background detections which the MOB tracker fails
to describe and associate as well as the SuperPoint module.

Overall, the combined similarity representation from Combined B performs the best on
both the training and validation sequences, thus it is considered the best of the proposed
deep description of objects for MOT.
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(a) MOT17-09

(b) MOT17-10

Figure 6.5: Examples of the MOT17-09 and 10 sequences. MOT17-09 is a static camera and MOT17-10 is a
moving camera [34].



Chapter 7

Results

The following chapter presents the results that is obtained with the developed trackers.
The best tracking representation from the previous chapter, Combined B, is evaluated
on the MOT17 test set and an analysis of common failure cases on the test sequences is
conducted to understand its strengths and weaknesses. An ablation study is conducted
to evaluate how the detection quality impacts the performance of the trackers. Lastly, the
results on the Zebrafish dataset and the two Ants datasets are given to further evaluate the
performance of the Combined B tracker on other types of data.

7.1 Submission to MOTChallenge

To fully evaluate the performance of the Combined B tracker proposed in Chapter 6 it is
evaluated on the MOT17 test sequences. Although the sequences are publicly available,
the ground-truth annotations are not, thus one can only obtain scores by submitting results
to MOTChallenge.net. It is encouraged not to tweak parameters by visually inspecting the
test sequences before submitting. The public FRCNN detections with pobject > 0.5 are used
as detections.

7.1.1 Results on the MOT17 Test Sequences

The results for the Combined B tracker on the individual sequences are given in Figure
7.1. The average scores are given in Table 7.1. Extended results for the sequences are given
in Appendix D.6. The videos of the test sequences can be found at: Combined B.

7.1.2 Computation Time

The following section gives the computation times of the combined B tracker on the
MOT17 test sequences. A total run-time for the current non-optimized tracking frame-
work is stated along with runtimes for the independent modules.
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https://drive.google.com/drive/folders/18o_GCih993DKCsiMY_JTo6SE62z36USy?usp=sharing
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Tracker Combined B
µHOTA 32.5 %
µMOTA 32.4 %
µIDF1 38.7 %

Table 7.1: The average HOTA, MOTA and IDF1 scores for Combined B tracker on the MOT17 test sequences.

Figure 7.1: The results on the independent MOT17 test sequences for the Combined B tracker.

Hardware

The tracker has been run on a PC with the following hardware. CPU: Intel Core i5-8400 6
Cores, 2.8 GHz. GPU: GeForce GTX 1050Ti. RAM: 8 GB.

The deep learning operations are GPU optimized, where EfficientNetV2-S uses Tensor-
Flow and SuperPoint/SuperGlue uses Pytorch.

Runtime

The total runtime for the Combined B tracker is given in Table 7.2. Detailed runtime
information for the deep learning methods is given in Table 7.3.

Combined B
Total Runtime 0.54 Hz

Table 7.2: Total runtime in Hz for the Combined B tracker evaluated on the test sequences. The total runtime
includes loading and assignment operations.
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MOB SuperPoint SuperGlue
Runtime pr.
Object/Pair

26.0 Hz 79.0 Hz 24.3 Hz

Table 7.3: Runtimes for the deep learning operations (GPU). For MOB (EfficientNetV2-S) and SuperPoint the
runtime is pr. object and for SuperGlue it is pr. pair.

Figure 7.2: Gain in HOTA, MOTA and IDF1 for the five trackers.

7.2 Ablation Study

The purpose of the ablation study is to evaluate how the object detection stage affects the
tracker. To simulate, that the tracker has access to perfect detections, the ground-truth
annotations are used.

The ground-truth annotations of objects in the MOT sequences are present even when
objects are fully occluded. Thus, it is chosen to only encounter annotations if more than
0.5 of their bounding box area is visible.

7.2.1 Ablation Results

The ablation study has been run on both the training and validation sequences. Figure
7.2 shows the average performance gain in percentage points (pp) for the various trackers.
Both the training and validation sequences are used. Videos for the ablation study are
given at: Ablation Study

https://drive.google.com/drive/folders/14wTuQ_qZ2PhC3g79aZdSSi4DgCNHdU-8?usp=sharing
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7.3 Generalizability to Other MOT Sequences

To establish the generalizability of the Combined B tracker to other types of data, it is
evaluated on different sequences. The results are given for the training sequences of the
Zebrafish dataset [6] and the Ants Indoor/Outdoor datasets [44]. For the Zebrafish dataset,
no public detections are available, thus the ground-truth annotations are used. Similar to
the ablation study, an annotation is only encountered if more than 0.5 or its bounding box
area is visible. For the Ants datasets, the public detections with pobject > 0.5 are used.

The averaged results on the datasets are given in Table 7.4. Extended results are given
in Appendix D.7. Videos for the sequences are given at: Combined B

Dataset Zebrafish Ants Indoor Ants Outdoor
µHOTA 75.2 % 98.2 % 74.2 %

Table 7.4: Average HOTA scores for the training sequences of the various datasets.

7.4 Analysis of Failure Cases on the MOT17 Test Sequences

An analysis of the three most common failure cases is conducted, as the combined tracking
framework did not perform as expected on the MOT17 test sequences.

7.4.1 Occlusions - What SuperPoints Should You Take?

When an object enters an occlusion case, the last detection of the object is often partly
occluded resulting in a mirrored case scenario. Consider the occlusion example in Figure
7.3. As the person with ID 7 moves into the occlusion case, his bounding box consists of his
right side and the occluder’s right side. Conversely, when the person with ID 7 leaves the
occlusion case the bounding box consists of the person’s left side and the occluder’s left
side. E.g. the bag on his right shoulder is intuitively a good feature to describe him and
contains some SuperPoints. However, this bag is fully occluded when the person leaves
the occlusion case. This makes the tracker unable to re-identify the object.

Thus, the problem of re-identifying objects in tracking is not only a matter of the deep
learning approaches being able to extract discriminate features. It is also a matter of
selecting the features, in this case, SuperPoints best allows to perform re-identification.

7.4.2 Detections

As already established in Section 4.3 the detection size has a great impact on the track-
ability of objects. However, the detection quality of the test sequences also affects the
performance if an object is not continuously detected. In Figure 7.4 an example of this

https://drive.google.com/drive/folders/1mP2d7qXu9oQJpxK6Y_PAAxvm8w7sGCB2?usp=sharing
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(a) t = 52 (b) t = 65

Figure 7.3: Example of the occlusion problem from the MOT17-08 sequence [34]. The Combined B tracker
fails to re-identify object 7.

problem for the MOT17-12 sequence is given. The video example can be seen at MOT17-
12 Example at t = 128. Here the person in white clothes obtains 4 different ids across
7 frames since the object detector does not continuously detect him. Additionally, in the
frames leading up to the case, the object detector has consistently failed to detect the per-
son. In result of this, the tracker is unaware that this object is a "visually clear" object that
should have been kept in memory.

This problem can be handled in two ways. Tracklets could either have been kept alive
for longer, allowing the tracker to re-identify the person. However, the better solution
would be for the object detector to detect the object more consistently. This can either be
done by using a different set of detections or by lowering the detection thresholds from
pobject > 0.5 to give the tracker access to less probable detections.

In hindsight, the detector detects the object somewhat consistently, but at times with
an object probability as low as pobject < 0.2.

https://drive.google.com/file/d/1ql5XQLdnI2UpSTX4vCTqx3zoN96envYL/view?usp=sharing
https://drive.google.com/file/d/1ql5XQLdnI2UpSTX4vCTqx3zoN96envYL/view?usp=sharing
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(a) t = 125 (b) t = 128

(c) t = 130 (d) t = 132

Figure 7.4: Example of the tracklet instantiation problem, if an object is not detected somewhat continuously
from the MOT17-12 sequence [34]. Notice, that the person in white clothes obtains 3 different ids across 4
seconds.

7.4.3 Failure Cases of the MOB Approach

Figure 7.5 visualizes an example of an association that moves severely in terms of spatial
position in the frame. The association of ID 25 moves 20 % of the image width in spatial
position.

The incorporation of the spatial position is handled implicitly by the deep feature
representation of the MOB approach. Ultimately, it is the affinity measure between the
deep feature representations that decide how similar the objects are both in terms of the
spatial and textural information. For the Combined B framework, the object description
stage consists partly of the cosine similarity from the MOB approach. This suggests, that
the MOB approach does not incorporate sufficient spatial information of objects, thus
allowing for associations to move severely in a frame.
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(a) t = 158

(b) t = 174

Figure 7.5: Example the MOT17-01 sequence where the association of object 25 moves 20 % of the image
width [34].



Chapter 8

Discussion

The following chapter discusses the results from the previous chapter and identifies the
strengths and weaknesses of the combined tracking framework. At first, the results from
the MOT17 test sequences are examined. Thereafter, the implications of the detection
quality are discussed. The capabilities of the MOB and SuperPoint representations are
discussed along with the perspectives of the combined tracking framework.

8.1 Results on the Test Sequences

The Combined B achieves an average score of µHOTA = 32.5% on the MOT17 test se-
quences. This result is much lower than those obtained on the MOT17 training validation
sequences (µHOTA = 51.6% and µHOTA = 54.2%, respectively). This suggests that the
difficulty of the selected validation sequences does not match the difficulty of the test
sequences, as the tracker can generalize to the validation sequences.

Assessing the performance on the individual sequences visually, the tracker performs
close to expected, but with low scores, on the 01, 03, 06, 07, 08 and 12 sequences. Thus,
the test sequences have an increased difficulty. The performance of the 14’th sequence is
considered a failure. This sequence is from a moving camera mounted on a bus, thus it
consists of small and fast-moving detections. Additionally, the sequence is one of the most
challenging sequences of the MOT17 dataset [61]. Leaving out this sequence the remaining
test sequences achieve an average score of µHOTA = 34.1% for Combined B.

The detection issues explained in Section 7.4.2 are especially a problem for the 07 and
12 sequences, as the detector does not consistently detect some clear objects. However,
the detection quality is generally a problem for the tracker, as they have a low MOTA
score of µ = 32.4% and a low recall rate of 43.0 % (See Appendix D.6). Additionally, the
tracker suffers from the associations being able to move severely in a frame, as explained
in Section 7.4.3.
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8.2 Detection Quality

Figure 7.2 shows the gain improvements of the HOTA, MOTA and IDF1 metrics for the
five trackers in the ablation study. The MOB and Combined A tracker achieve a lower
HOTA gain (0.2 pp and 0.6 pp, respectively) and IDF1 gain (1.5 pp and 1 pp, respectively)
compared to the other three trackers. This suggests, that the MOB approach does not ben-
efit from improved detections as the MOB approach also acts as the base for the Combined
A tracker.

Specifically, the low IDF1 gain suggests that there is a limit to how well the developed
MOB approach can perform associations, although it has access to ground truth annota-
tions. The baseline, SuperPoint and Combined B tracker all performs better associations
when having access to better detections. Combined B does not achieve as high an IDF1
gain as the SuperPoint tracker, most likely since its affinity measure consists partly of the
MOB description.

Using ground-truth annotations as detections makes a substantial MOTA gain of around
12 pp for all trackers, with Combined B achieving the highest gain of 13.2 These results
are expected, as the MOTA metric weights the detections the highest.

8.3 Generalizability

The results for the Combined B tracker on the Zebrafish, Ants Indoor and Outdoor datasets
(Table 7.4) show the tracker’s ability to generalize to other types of data. The Ants Indoor
dataset is tracked almost perfectly, however, the sequences do not have any occlusions.
The Zebrafish and Ants Outdoor datasets achieve an average HOTA score of around 75 %,
thus showing that the combined description can describe other objects than pedestrians
since neither MOB nor the SuperPoint module is finetuned on any of the data.

8.4 MOB and Spatial Incorporation

The MOB approach showed to some extent that it can incorporate the spatial information
of the detections, as it can associate corresponding objects across frames. Since it is an
implicit incorporation of spatial information it allows for associations to move severely in
frames since the affinity measure describes both spatial and textural similarity (Section
7.4.3). Experiments from Appendix C have tried to enhance its ability to extract valuable
information from detections through either larger input shapes, training of the feature
extractor or enlarging the detection sizes without essential success. Thus, incorporating
both the spatial and textural information into a deep feature representation with the MOB
approach is not necessarily a good representation as the objects need to have a decent size
in the frame. Additionally, the approach is not suited for the re-identification of objects.
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8.5 Potentials with SuperPoint

The SuperPoint framework aids the Combined B tracker in describing the detections with
robust keypoints extracted through deep learning. SuperPoint is aimed at performing
re-identification of lost objects, however, the framework generally has a strong object de-
scription including smaller object sizes.

Taking into account the aforementioned issues with the MOB approach not fully uti-
lizing the spatial information , the combined tracker might not take full advantage of
SuperPoint’s capabilities. Additionally, the current method uses the pretrained versions of
SuperPoint with gray-scale detections as input. Thus, potential improvements can be made
by training it for color inputs as pedestrians (and other objects) often can be distinguished
by their color representations.

8.6 Runtime Perspectives

The runtime for the combined B tracker is slow being around 2 seconds per frame on the
MOT17 test sequences. The high complexity comes from the use of SuperGlue. SuperGlue
is the slowest of the used deep learning methods. Moreover, SuperGlue needs to run for
all potential pairs to calculate a matching score. A search region is used to lower the
computation time. As re-identification of objects is required it needs a larger search region
to consider a multitude of objects.

Due to the slow runtime, the tracker is not suited for applications that require real-time
performance, e.g. tracking of pedestrians in autonomous driving or other traffic applica-
tions. Instead, it is more suited for biology or medical research, where correct associations
are more essential than the runtime. Although this would require solving some of the
failure cases described in Section 7.4, the tracker showed its ability to generalize to other
types of data.



Chapter 9

Conclusion

The analysis defined the MOT problem as tracking-by-detection, where the task is to asso-
ciate detections and utilize state-of-the-art object detectors in tracking. The MOTChallenge
is introduced as the common benchmark to evaluate tracking frameworks with the MOT17
dataset chosen to develop a tracker. The three tracking metrics MOTA, IDF1 and HOTA
are introduced, with HOTA selected as the main metric as it weighs detections and as-
sociations equally. Based on the analysis and the discovered related work, the following
problem analysis is established:

How can deep learning be used to create a robust description of detected objects, that can be used
to distinguish and associate objects in MOT?

A baseline deep tracking framework is developed consisting of the MobileNetV3-L to
obtain a deep representation of objects, the cosine similarity to calculate an affinity mea-
sure and the Hungarian algorithm to perform associations. The baseline tracker achieves
µHOTA = 49.6% on the MOT17 training split and µHOTA = 47.6% on the validation split.

The MOB approach is proposed to mask out the background of detections and implic-
itly incorporate the spatial information of detections in a deep representation. The MOB
tracker uses the EfficientNetV2-S with a black MOB as an object description, cosine sim-
ilarity as an affinity measure and the Hungarian algorithm to perform associations. The
MOB tracker achieves µHOTA = 43.4% and µHOTA = 49.5% on the training and valida-
tion sequences, respectively. The incorporation of spatial position in a deep description of
objects is able to generalize slightly better to the validation sequences than the baseline.
The ablation study shows that the MOB approach is unable to perform better associations
when using ground-truth annotations.

The SuperPoint framework is used to describe detections with keypoints descriptors
and the SuperGlue framework matches the detections to produce an affinity measure.
Using the Hungarian algorithm to perform associations, the method achieves µHOTA =
49.5% on the training sequences and µHOTA = 49.1% on the validation sequence. Thus,
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SuperPoint can obtain a robust deep description of the objects, as it performs better than
the deep baseline.

The MOB and SuperPoint approaches are merged into two combined trackers to utilize
the deep description of the two approaches. The first tracker (Combined A) uses the
MOB approach as the base module for tracking and the SuperPoint framework as a re-
identification module. The second tracker (Combined B) uses the MOB and SuperPoint
modules to create a unified affinity measure used to perform associations. Combined B
has a slight edge over the first approach as it achieves µHOTA = 51.6% and µHOTA = 54.2%
on the training and validation sequences respectively, compared to µHOTA = 47.8% and
µHOTA = 53.7% for the combined A tracker.

Results submitted to the MOTChallenge show that the Combined B tracker does not
perform as well on the MOT17 test sequences with µHOTA = 32.5%. Removing the failed
MOT17-14 sequence, a score of µHOTA = 34.1% is reported. The best performing test
sequence is the MOT17-03 with a HOTA score of 41.6 %. The public FRCNN detections
are a problem for the tracker. This is reflected in the low MOTA score (µMOTA = 32.4%)
and the low recall rate (µrecall = 43.0%).

The Combined B tracker shows generalizability to other data types as it achieves
µHOTA = 75.2%, µHOTA = 98.2% and µHOTA = 74.2% on the Zebrafish, Ants Indoor
and Outdoor datasets, respectively. Thus, the combination between MOB and SuperPoint
can be used as a deep representation to describe objects for multi-object tracking, without
the need for training. The MOB approach shows some issues with only incorporating
the spatial information implicitly, as it fails to distinguish objects that are not spatially
close. Although it has a high computation time, the SuperPoint framework can be used
as a robust deep object description and may benefit from more direct representation of
position.

9.1 Future Research Areas

Two future research areas are proposed. Better detections with a higher recall rate, e.g. not
missing as many objects, may benefit the Combined B tracker and improve its performance
on the MOT17 test sequences.

Training of the SuperPoint method to extract and describe keypoints based on color
inputs may improve SuperPoint’s description of objects. Using the SuperPoint framework
in combination with a more direct usage of the spatial information may prove beneficial.
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Appendix A

MOT17 Examples

Examples of all the MOT17 sequences are given in Figure A.1, A.2 and A.3.

(a) MOT17-01 (b) MOT17-02

Figure A.1: All of the MOT17 sequences.
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(a) MOT17-03 (b) MOT17-04

(c) MOT17-05 (d) MOT17-06

(e) MOT17-07 (f) MOT17-08

Figure A.2: All of the MOT17 sequences.
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(a) MOT17-09 (b) MOT17-10

(c) MOT17-11 (d) MOT17-12

(e) MOT17-13 (f) MOT17-14

Figure A.3: All of the MOT17 sequences.



Appendix B

Affinity Investigations

Initial experiments have been conducted to investigate how the similarity between feature
vectors is influenced in different scenarios. The experiments are conducted both for the
baseline, MOB approach and SuperPoint approach as it also helps in establishing thresh-
olds for instantiating new tracks.

In the following description corresponding refers to the ground-truth bounding box
annotations from the MOTChallenge dataset with the same tracking ID.

1. Affcorresponding: Affinity measure between the extracted feature vectors of the current
frame and the corresponding feature vectors in the previous frame.

2. Affmost_similar: Maximum affinity measure between the extracted feature vectors of
the ground-truth annotations in the current frame and the NOT corresponding ground-
truth annotation in the previous frame. E.g. the most similar, but not corresponding,
feature vector.

3. Affmean: Mean affinity measure between the extracted feature vectors of the ground-
truth annotations in the current frame and all the NOT corresponding ground-truth
annotations in the previous frame.

B.1 Affinity Results for the Baseline Tracker

The affinity results for the baseline used to set tracking thresholds. See Section B for details
of the different scenarios.
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B.1.1 Cosine Similarity

MobileNetV3-L (224x224)

Scenario MOT17-02
Affcorresponding µ = 0.96782 ± 0.01825
Affmost_similar µ = 0.85503 ± 0.03963

Affmean µ = 0.70673 ± 0.11433

Scenario MOT17-04
Affcorresponding µ = 0.97459 ± 0.01324
Affmost_similar µ = 0.8452 ± 0.02724

Affmean µ = 0.7506 ± 0.06153

Scenario MOT17-05
Affcorresponding µ = 0.95272 ± 0.02817
Affmost_similar µ = 0.81042 ± 0.06468

Affmean µ = 0.71228 ± 0.11855

Scenario MOT17-13
Affcorresponding µ = 0.95845 ± 0.02345
Affmost_similar µ = 0.83632 ± 0.06068

Affmean µ = 0.70929 ± 0.11067

Table B.1: Cosine similarity results for the three different scenarios with the MobileNetV3-L (224x224) on the
four different sequences.

EfficientNetV2-S (384x384)

Scenario MOT17-02
Affcorresponding µ = 0.97614 ± 0.01629
Affmost_similar µ = 0.86132 ± 0.05666

Affmean µ = 0.68454 ± 0.14472

Scenario MOT17-04
Affcorresponding µ = 0.97602 ± 0.01221
Affmost_similar µ = 0.83703 ± 0.04162

Affmean µ = 0.70484 ± 0.08536

Scenario MOT17-05
Affcorresponding µ = 0.96056 ± 0.02693
Affmost_similar µ = 0.79536 ± 0.09536

Affmean µ = 0.65473 ± 0.16287

Scenario MOT17-13
Affcorresponding µ = 0.97556 ± 0.01793
Affmost_similar µ = 0.87774 ± 0.07638

Affmean µ = 0.75514 ± 0.14173

Table B.2: Cosine similarity results for the three different scenarios with the EfficientNetV2-S (384x384) on the
four different sequences.
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B.1.2 Euclidean Distance

MobileNetV3-L (224x224)

Scenario MOT17-02
Affcorresponding µ = 6.49057 ± 2.27991
Affmost_similar µ = 14.21191 ± 4.10434

Affmean µ = 20.79316 ± 6.36422

Scenario MOT17-04
Affcorresponding µ = 5.99418 ± 1.64912
Affmost_similar µ = 15.11233 ± 2.79429

Affmean µ = 20.16888 ± 3.85788

Scenario MOT17-05
Affcorresponding µ = 9.11627 ± 3.1437
Affmost_similar µ = 19.30954 ± 4.4519

Affmean µ = 23.20209 ± 5.2538

Scenario MOT17-13
Affcorresponding µ = 6.37941 ± 2.34446
Affmost_similar µ = 12.86448 ± 4.52924

Affmean µ = 17.34368 ± 6.04815

Table B.3: Euclidean distance results for the three different scenarios with the MobileNetV3-L (224x224) on
the four different sequences.

EfficientNetV2-S (384x384)

Scenario MOT17-02
Affcorresponding µ = 6.03598 ± 2.45831
Affmost_similar µ = 14.94742 ± 4.9504

Affmean µ = 22.68552 ± 7.14535

Scenario MOT17-04
Affcorresponding µ = 6.79134 ± 1.85106
Affmost_similar µ = 17.89403 ± 3.28423

Affmean µ = 24.52612 ± 4.55837

Scenario MOT17-05
Affcorresponding µ = 8.57994 ± 3.11648
Affmost_similar µ = 20.33122 ± 6.00148

Affmean µ = 25.7661 ± 6.88572

Scenario MOT17-13
Affcorresponding µ = 5.60442 ± 2.32043
Affmost_similar µ = 12.6333 ± 5.20926

Affmean µ = 17.93078 ± 6.99064

Table B.4: Euclidean distance results for the three different scenarios with the EfficientNetV2-S (384x384) on
the four different sequences.
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B.2 Affinity Results for the Proposed MOB Approach

The affinity results for the proposed MOB with black and blurred background used to set
tracking thresholds. See Section B for details of the different scenarios.

B.2.1 Black

MobileNetV3-L (224x224)

Scenario MOT17-02
Affcorresponding µ0.9931 ± 0.01198
Affmost_similar µ0.94107 ± 0.06465

Affmean µ0.78935 ± 0.16822

Scenario MOT17-04
Affcorresponding µ0.99616 ± 0.00887
Affmost_similar µ0.96089 ± 0.02537

Affmean µ0.8803 ± 0.06576

Scenario MOT17-05
Affcorresponding µ0.9579 ± 0.03032
Affmost_similar µ0.7815 ± 0.13809

Affmean µ0.66928 ± 0.17031

Scenario MOT17-13
Affcorresponding µ0.98632 ± 0.01719
Affmost_similar µ0.96281 ± 0.04413

Affmean µ0.91383 ± 0.07445

Table B.5: Cosine similarity results for the proposed MOB with black background on the three different
scenarios with the MobileNetV3-L (224x224) on the four different sequences.

EfficientNetV2-S

Scenario MOT17-02
Affcorresponding µ0.99126 ± 0.01302
Affmost_similar µ0.91609 ± 0.07454

Affmean µ0.76572 ± 0.14991

Scenario MOT17-04
Affcorresponding µ0.99526 ± 0.00649
Affmost_similar µ0.93463 ± 0.0271

Affmean µ0.83789 ± 0.0679

Scenario MOT17-05
Affcorresponding µ0.95623 ± 0.03102
Affmost_similar µ0.77801 ± 0.12143

Affmean µ0.64691 ± 0.1641

Scenario MOT17-13
Affcorresponding µ0.98661 ± 0.0145
Affmost_similar µ0.94483 ± 0.04665

Affmean µ0.8754 ± 0.08081

Table B.6: Cosine similarity results for the proposed MOB approach with black background on the three
different scenarios with the EfficientNetV2-S (384x384) on the four different sequences.
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EfficientNetV2-M

Scenario MOT17-02
Affcorresponding µ0.99281 ± 0.01058
Affmost_similar µ0.93381 ± 0.05682

Affmean µ0.81151 ± 0.13022

Scenario MOT17-04
Affcorresponding µ0.99604 ± 0.00476
Affmost_similar µ0.94874 ± 0.02354

Affmean µ0.8799 ± 0.05024

Scenario MOT17-05
Affcorresponding µ0.96638 ± 0.02142
Affmost_similar µ0.81447 ± 0.1109

Affmean µ0.68765 ± 0.16738

Scenario MOT17-13
Affcorresponding µ0.98941 ± 0.01245
Affmost_similar µ0.95621 ± 0.04053

Affmean µ0.90397 ± 0.064

Table B.7: Cosine similarity results for the proposed MOB with black background on the three different
scenarios with the EfficientNetV2-M (480x480) on the four different sequences.

B.2.2 Blur

MobileNetV3-L (224x224)

Scenario MOT17-02
Affcorresponding µ0.99452 ± 0.00591
Affmost_similar µ0.95905 ± 0.04587

Affmean µ0.8517 ± 0.12671

Scenario MOT17-04
Affcorresponding µ0.99807 ± 0.00165
Affmost_similar µ0.98317 ± 0.01358

Affmean µ0.9461 ± 0.04728

Scenario MOT17-05
Affcorresponding µ0.96927 ± 0.01609
Affmost_similar µ0.8821 ± 0.05248

Affmean µ0.83671 ± 0.06413

Scenario MOT17-13
Affcorresponding µ0.993 ± 0.00613
Affmost_similar µ0.98316 ± 0.02286

Affmean µ0.96631 ± 0.04122

Table B.8: Cosine similarity results for the proposed MOB with blurred background on the three different
scenarios with the MobileNetV3-L (224x224) on the four different sequences.
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EfficientNetV2-S

Scenario MOT17-02
Affcorresponding µ0.99231 ± 0.01069
Affmost_similar µ0.9516 ± 0.06194

Affmean µ0.88847 ± 0.10153

Scenario MOT17-04
Affcorresponding µ0.9988 ± 0.00149
Affmost_similar µ0.99137 ± 0.01119

Affmean µ0.9796 ± 0.02068

Scenario MOT17-05
Affcorresponding µ0.95417 ± 0.02716
Affmost_similar µ0.85641 ± 0.06864

Affmean µ0.79301 ± 0.09162

Scenario MOT17-13
Affcorresponding µ0.99372 ± 0.0086
Affmost_similar µ0.989 ± 0.01878

Affmean µ0.98509 ± 0.02471

Table B.9: Cosine similarity results for the proposed MOB with blurred background on the three different
scenarios with the EfficientNetV2-S (384x384) on the four different sequences.

EfficientNetV2-M

Scenario MOT17-02
Affcorresponding µ0.99411 ± 0.00894
Affmost_similar µ0.97084 ± 0.04756

Affmean µ0.9313 ± 0.07986

Scenario MOT17-04
Affcorresponding µ0.99899 ± 0.00074
Affmost_similar µ0.99598 ± 0.00402

Affmean µ0.99143 ± 0.00784

Scenario MOT17-05
Affcorresponding µ0.95781 ± 0.02428
Affmost_similar µ0.88739 ± 0.05791

Affmean µ0.84241 ± 0.07174

Scenario MOT17-13
Affcorresponding µ0.99521 ± 0.00613
Affmost_similar µ0.99247 ± 0.01423

Affmean µ0.99014 ± 0.01997

Table B.10: Cosine similarity results for the proposed MOB with blurred background on the three different
scenarios with the EfficientNetV2-S (480x480) on the four different sequences.
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B.3 Affinity Results for the SuperPoint Framework

The following section includes the affinity results for SuperPoint used to set tracking
thresholds. See Section B for details of the different scenarios.

Scenario MOT17-02
Affcorresponding µ = 138.9 ± 99.6

Affmean µ = 3.81 ± 9.55
Affmost_similar µ = 20.98 ± 24.92

Scenario MOT17-04
Affcorresponding µ = 98.73 ± 64.53

Affmean µ = 4.41 ± 5.52
Affmost_similar µ = 21.07 ± 14.04

Scenario MOT17-05
Affcorresponding µ = 144.29 ± 107.41

Affmean µ = 2.87 ± 5.60
Affmost_similar µ = 6.39 ± 8.76

Scenario MOT17-13
Affcorresponding µ = 19.08 ± 18.02

Affmean µ = 2.85 ± 2.91
Affmost_similar µ = 9.36 ± 4.18

Table B.11: Estimate of number of matched keypoints as a sum matching scores for all matches for the
SuperPoint and SuperGlure



Appendix C

MOB - Additional Experiments

This chapter explains the experiments for the proposed MOB tracker, which have not
worked out. The first two sections investigate the steps that have been attempted to mit-
igate the problems with small detections. Section C.1 describes the experiments with a
larger input shape along with the results. Section C.2 describes the experiments that have
been conducted with enlarging small detections. Lastly, Section C.3 describes the train-
ing attempts that have been done with siamese networks, attempted to enhance the object
description.

C.1 Larger Input Shape

An immediate consequence of the MOB approach, is the rather limited information that
can be extracted from the smaller detections in the background shapes. Some of these
examples for the MOT17-02 sequence are visualized in Figure C.1. To increase the feature
extractor’s possibility to extract valuable information for small detections, the input shape
of the network is increased. Attempts have been done with the EfficientNetV2-M to double
the input shape to (960x960). The best-achieved results are given in Table C.1. Figure C.2
compares the results to the best performing results for the (480x480).

C.1.1 Results

Scaling MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 31.6 % 49.4 % 46.3 % 36.4 %
MOTA 26.1 % 51.6 % 39.5 % 40.0 %
IDF1 30.9 % 50.5 % 43.3 % 33.1 %

Table C.1: Results for 960x960. Cosine similarity and Hungarian Association.
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(a) Bounding box shape (40x8), 320 pixels. (b) Bounding box shape (39x7), 273 pixels.

Figure C.1: Two examples of small background detections with masked out background for MOT17-02.

Figure C.2: The best performing results for (960x960) compared to (480x480)
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(a) Normal size detection. (b) Detection enlarged to 0.5 of the image height.

Figure C.3: Example of the image alteration to enlarge the detection size.

As seen in the comparison, the larger input shape does not increase the tracking perfor-
mance. Most noticeably, the performance is decreased for the MOT17-05 sequence. This
sequence contains large close-up detections for a moving camera attached to a pedestrian.
Most likely, the bad performance arises since the trained weights in EfficientNetV2-M are
unable to extract valuable information.

C.2 Enlarging the Detection Size

As another attempt to alleviate the problem, it has been decided to scale-up the size of the
smaller detections in the background. If a detection height is less than half of the image
height, the detection is scaled-up to have a height of 0.5. This decision is a trade-off, which
gives the feature extractor more textural information to work with, however it removes its
ability to infer a size relation of smaller objects in the background. The width to height
ratio is maintained, hence it should not impact that spatial dimension. An example of this
image manipulation is given in Figure C.3.

C.2.1 Results

The results for the larger detection size are given in Table C.2 and Figure C.4 compares the
results to the normal detection size.
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Figure C.4: Normal detections size compared to larger detection size. EfficientNetV2-M with larger detection
size up to 0.5. Cosine similarity and Hungarian association.

Scaling MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 32.3 % 47.9 % 51.8 % 43.1 %
MOTA 26.0 % 51.4 % 45.6 % 42.5 %
IDF1 31.3 % 47.5 % 50.0 % 40.2 %

Table C.2: Results for EfficientNetV2-M with larger detection size up to 0.5. Cosine similarity and Hungarian
association.

As shown in the comparison, the scaled-up detection size improves the results for the
MOT17-13 sequence. This is good, since it is the sequence, with the largest amount of
small input shapes. However, the enlarged detection size performs worse on the rest of
the sequences. This is probably since the large input shape for small detections becomes
the same size as the larger detections. Thus, the MOB approach is no longer able to utilize
the size of the detection to separate small detections from large detections.

C.3 Training a Siamese Networks

It has been attempted to train a feature extractor with a siamese network architecture
to let corresponding detections be more similar and make non-corresponding detections
appear less similar. To accomplish this, a siamese network has been constructed with the
structure as given in Figure C.5. The EffientNetV2-M module the pretrained ImageNet
version from TensorFlow Hub [53] is used as a backbone. The weights of the backbone are
non-trainable Three fully connected (FC) layers are added on top (1024x1024x512) as the
trainable weights. Note, that these weights are identical for all three image samples in a
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Figure C.5: Example of the network structure used for training of the feature extractor. Three samples, anchor,
positive and negative is fed through an EfficientNetV2-M backbone and FC-layers with shared weights. The
siamese network uses the triplet loss function for training.

siamese network.
The training procedure uses the triplet loss function as it has previously achieved suc-

cess for the training of siamese networks in object tracking [62]. This is done since it both
enhances the similarity between corresponding detections and increases the dissimilarity
between non-corresponding detections. The triplet loss requires three images for training.
An anchor, a positive sample which is the corresponding object and a negative sample
which is a non-corresponding object.

C.3.1 Data

As data for the network, the MOTSynth dataset is used. Samples are collected by iterating
through the dataset and extracting samples of corresponding objects and choosing another
random object as a negative sample. Around 15,000 samples for both anchors, positive and
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negative samples are used. An example of anchor, positive and negative samples are given
in C.5. The example images are for the scaled-up detections. Attempts have been made
both with a blurred and black background, with the normal detection size and with the
smaller detections scaled-up.

C.3.2 Findings and Problems

As a general trend, the training with the siamese networks made the feature representation
from the trained FC-layers of the corresponding objects appear more similar (cosine simi-
larity). However, it also made the feature representations of the non-corresponding objects
appear more similar. Thus, the triplet loss function does not take fully into account the
loss of the negative samples, to make them appear more dissimilar. Initial thoughts are,
that the backbone extracts insufficient information from the small detections (See Figure
C.3a) to allow for training of the FC-layers.

Scaling up the detection sizes as described in Section C.2, does not help in training the
network sufficiently.



Appendix D

Extended Results

This chapter includes the extended results(MOTA, IDF1 and HOTA scores) for the various
proposed frameworks. The results for the baseline tracker are given in Section D.1. The
results for the proposed idea are given in Section D.2. The results for the SuperPoint
tracker are given in Section D.3. The results for the combined idea and SuperPoint tracker
are given in Section D.4.

D.1 Baseline Results

D.1.1 Cosine Similarity

MobileNetV3-L (224x224) hungarian association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 38.6 % 54.1 % 55.9 % 49.8 %
MOTA 25.7 % 52.0 % 38.8 % 29.0 %
IDF1 36.0 % 55.3 % 53.3 % 45.5 %

Table D.1: Baseline results for the MobileNetV3-L (224x224) using the cosine similarity and hungarian asso-
ciation. Nframes = 10 and gc = 0.85
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MobileNetV3-L (224x224) greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 38.4 % 53.4 % 54.0 % 50.0 %
MOTA 25.5 % 50.1 % 34.5 % 27.8 %
IDF1 36.3 % 54.9 % 50.8 % 45.5 %

Table D.2: Baseline results for the MobileNetV3-L (224x224) using the cosine similarity and greedy association.
Nframes = 10 and gc = 0.85

Efficientnetv2-S (384x384) hungarian association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 35.5 % 54.0 % 54.1 % 45.1 %
MOTA 25.9 % 51.9 % 38.3 % 35.6 %
IDF1 34.0 % 55.6 % 51.2 % 40.3 %

Table D.3: Baseline results for the Efficientnetv2-S (384x384) using the cosine similarity and hungarian asso-
ciation. Nframes = 10 and gc = 0.85

Efficientnetv2-S (384x384) greedy association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 35.7 % 52.7 % 51.1 % 48.8 %
MOTA 35.5 % 49.4 % 33.6 % 34.6 %
IDF1 34.3 % 54.7 % 47.8 % 45.1 %

Table D.4: Baseline results for the Efficientnetv2-S (384x384) using the cosine similarity and greedy association.
Nframes = 10 and gc = 0.85.

D.1.2 Euclidean Distance

MobileNetV3-L (224x224) hungarian association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 33.8 % 52.3 % 49.2 % 44.8 %
MOTA 25.1 % 49.9 % 29.6 % 39.0 %
IDF1 32.3 % 53.2 % 45.6 % 41.4 %

Table D.5: Baseline results for the MobileNetV3-L (224x224) using the euclidean distance and hungarian
association. Nframes = 10 and gd = 16.
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MobileNetV3-L (224x224) greedy association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 34.0 % 52.3 % 50.0 % 45.0 %
MOTA 25.1 % 49.9 % 30.0 % 38.2 %
IDF1 31.9 % 53.2 % 46.0 % 41.6 %

Table D.6: Baseline results for the MobileNetV3-L (224x224) using the euclidean distance and greedy associa-
tion. Nframes = 10 and gd = 16.

EfficientNetV2-Small (384x384) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 34.6 % 53.2 % 49.0 % 45.6 %
MOTA 25.1 % 50.2 % 29.2 % 37.5 %
IDF1 33.5 % 54.6 % 45.0 % 41.7 %

Table D.7: Baseline results for the EfficientNetv2-S (384x384) using the euclidean distance and hungarian
association. Nframes = 10 and gd = 14.

EfficientNetV2-Small (384x384) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 33.2 % 52.7 % 48.8 % 43.4 %
MOTA 24.5 % 50.0 % 24.2 % 34.4 %
IDF1 31.9 % 54.0 % 41.6 % 40.6 %

Table D.8: Baseline results for the EfficientNetv2-S (384x384) using the euclidean distance and greedy associ-
ation. Nframes = 10 and gd = 15.

D.1.3 Validation Sequences

Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 52.0 % 34.8 % 56.1 %
MOTA 56.5 % 16.0 % 53.2 %
IDF1 51.0 % 26.0 % 52.6 %

Table D.9: Results on the validation sequences for the MobileNetV3-L (224x224) using the cosine similarity
and hungarian association. Nframes = 10 and gc = 0.85
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D.2 Results for the MOB Approach

D.2.1 Black Backgrounds

MobileNetV3-L (224x224) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 28.3 % 34.8 % 49.4 % 30.5 %
MOTA 25.2 % 50.5 % 43.2 % 34.0 %
IDF1 26.5 % 32.2 % 47.7 % 25.6 %

Table D.10: Results for proposed idea with black background, MobileNetV3-L (224x224) and hungarian asso-
ciation. Nframes = 5, gc =0.85

MobileNetV3-L (224x224) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 30.3 % 33.7 % 49.0 % 26.9 %
MOTA 25.1 % 49.0 % 37.9 % 32.0 %
IDF1 28.1 % 32.0 % 47.7 % 21.2 %

Table D.11: Results for proposed idea with black background, MobileNetV3-L (224x224) and Greedy associa-
tion. Nframes = 5, gc =0.85

EfficientNetV2-S (384x384) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 31.4 % 49.6 % 50.4 % 42.4 %
MOTA 25.7 % 51.3 % 44.4 % 40.7 %
IDF1 29.6 % 50.6 % 48.4 % 38.0 %

Table D.12: Results for proposed idea with black background, EfficientNetV2-S (384x384) and hungarian
association. Nframes = 5, gc =0.85
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EfficientNetV2-S (384x384) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 31.9 % 45.6 % 48.7 % 36.5 %
MOTA 25.4 % 45.8 % 39.7 % 37.3 %
IDF1 31.6 % 45.0 % 46.8 % 33.9 %

Table D.13: Results for proposed idea with black background, EfficientNetV2-S (384x384) and Greedy associ-
ation. Nframes = 5, gc =0.85

EfficientNetV2-M (480x480) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 33.2 % 48.7 % 53.9 % 38.2 %
MOTA 26.2 % 51.4 % 47.7 % 41.3 %
IDF1 33.2 % 48.4 % 51.1 % 34.0 %

Table D.14: Results for proposed idea with black background, EfficientNetV2-M (480x480) and hungarian
association. Nframes = 5, gc =0.85

EfficientNetV2-M (480x480) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 32.1 % 41.0 % 47.0 % 29.2 %
MOTA 25.6 % 41.0 % 38.3 % 33.5 %
IDF1 32.4 % 35.3 % 44.5 % 22.3 %

Table D.15: Results for proposed idea with black background, EfficientNetV2-M (480x480) and greedy asso-
ciation. Nframes = 5, gc =0.85

D.2.2 Results for the Blurred Background

MobileNetV3-L (224x224) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 31.6 % 46.3 % 53.0 % 35.7 %
MOTA 26.0 % 51.3 % 45.6 % 41.2 %
IDF1 29.0 % 45.9 % 52.2 % 30.7 %

Table D.16: Results for proposed idea with blurred background, MobileNetV3-L (224x224) and hungarian
association. Nframes = 5, gc =0.85
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MobileNetV3-L (224x224) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 32.7 % 38.5 % 51.2 % 30.7 %
MOTA 25.4 % 40.8 % 39.4 % 35.1 %
IDF1 31.8 % 34.2 % 50.2 % 23.9 %

Table D.17: Results for proposed idea with blurred background, MobileNetV3-L (224x224) and greedy asso-
ciation. Nframes = 5, gc =0.85

EfficientNetV2-S (384x384) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 31.8 % 49.4 % 49.0 % 34.8 %
MOTA 25.9 % 51.4 % 43.4 % 41.5 %
IDF1 29.6 % 50.7 % 46.1 % 31.0 %

Table D.18: Results for proposed idea with blurred background, EfficientNetV2-S (384x384) and hungarian
association. Nframes = 5, gc =0.88

EfficientNetV2-S (384x384) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 27.8 % 39.4 % 48.0 % 16.9 %
MOTA 24.6 % 40.5 % 38.3 % 28.3 %
IDF1 25.8 % 34.1 % 44.9 % 11.1 %

Table D.19: Results for proposed idea with blurred background, EfficientNetV2-S (384x384) and greedy asso-
ciation. Nframes = 5, gc =0.88

EfficientNetV2-M (480x480) Hungarian Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 29.8 % 48.8 % 48.2 % 37.7 %
MOTA 25.9 % 51.3 % 44.4 % 41.5 %
IDF1 29.5 % 50.8 % 46.0 % 33.7 %

Table D.20: Results for proposed idea with blurred background, EfficientNetV2-M (480x480) and hungarian
association. Nframes = 5, gc =0.88
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EfficientNetV2-M (480x480) Greedy Association

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 25.1 % 35.4 % 41.7 % 16.4 %
MOTA 23.5 % 40.1 % 36.5 % 26.7 %
IDF1 22.2 % 29.8 % 39.4 % 11.2 %

Table D.21: Results for proposed idea with blurred background, EfficientNetV2-M (480x480) and hungarian
association. Nframes = 5, gc =0.88

D.2.3 Validation Sequences

Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 53.0 % 39.0 % 56.4 %
MOTA 56.6 % 41.8 % 55.7 %
IDF1 54.4 % 34.5 % 53.3 %

Table D.22: Validation Sequences for the Black Background, EfficientNetV2-S (384x384) and Hungarian Asso-
ciation. Nframes = 5, gc =0.88

Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 51.1 % 36.8 % 55.4 %
MOTA 56.8 % 42.2 % 56.2 %
IDF1 51.8 % 32.8 % 52.3 %

Table D.23: Validation Sequences for the Black Background, EfficientNetV2-M (480x480) and Hungarian As-
sociation. Nframes = 5, gc =0.88

D.3 Results for SuperPoint Tracking

D.3.1 Training Sequences

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 38.4 % 53.8 % 56.9 % 48.4 %
MOTA 26.7 % 51.6 % 46.9 % 38.4 %
IDF1 27.6 % 54.9 % 55.8 % 44.8 %

Table D.24: Results for the SuperPoint tracker on the Training Sequences.
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D.3.2 Validation Sequences

Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 54.1 % 37.5 % 55.6 %
MOTA 57.0 % 29.7 % 55.1 %
IDF1 56.1 % 30.7 % 52.5 %

Table D.25: Results for the SuperPoint tracker on the Validation Sequences

D.4 Combined MOB and SuperPoint Results

This section provides the extended results for the combined trackers with the Idea and
SuperPoint, given as Combined A and B.

Combined A

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 37.7 % 54.9 % 56.7 % 41.9 %
MOTA 26.5 % 52.2 % 47.6 % 39.1 %
IDF1 35.1 % 57.2 % 55.2 % 37.3 %

Table D.26: Training Sequences

Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 59.7 % 40.9 % 60.4 %
MOTA 59.2 % 41.2 % 58.1 %
IDF1 61.6 % 35.6 % 56.9 %

Table D.27: Validation Sequences

Combined B

Input Shape MOT17-02 MOT17-04 MOT17-05 MOT17-13
HOTA 39.2 % 57.9 % 56.0 % 53.1 %
MOTA 26.0 % 51.7 % 43.5 % 39.5 %
IDF1 37.4 % 58.3 % 53.1 % 47.1 %

Table D.28: Training Sequences
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Input Shape MOT17-09 MOT17-10 MOT17-11
HOTA 55.3 % 47.8 % 59.5 %
MOTA 58.2 % 38.9 % 56.8 %
IDF1 57.7 % 42.3 % 57.7 %

Table D.29: Validation Sequences

D.5 Ablation Results

The section contains the extended results for the ablation study.

Sequence 02 04 05 09 10 11 13 Avg/Total
HOTA[%] 40.3 62.4 54.4 54.0 38.3 58.2 62.9 52.9
MOTA[%] 42.1 59.2 40.3 61.9 34.1 60.7 59.8 51.2
IDF1 [%] 42.9 62.5 51.9 63.0 29.8 54.5 63.0 52.5

Table D.30: Ablation results for the baseline tracker.

Sequence 02 04 05 09 10 11 13 Avg/Total
HOTA[%] 34.2 55.4 48.9 53.7 39.2 56.9 35.1 46.2
MOTA[%] 39.7 58.4 48.8 60.4 66.0 64.0 59.7 56.7
IDF1 [%] 33.4 54.8 46.3 54.9 36.5 54.1 29.8 44.3

Table D.31: Ablation results for the MOB tracker.

Sequence 02 04 05 09 10 11 13 Avg/Total
HOTA[%] 40.8 61.4 55.2 57.6 40.4 59.0 58.0 53.2
MOTA[%] 40.8 58.7 48.7 61.0 51.6 62.5 60.7 54.9
IDF1 [%] 44.2 61.9 54.6 59.2 35.3 56.7 56.1 52.6

Table D.32: Ablation results for the SuperPoint tracker.

Sequence 02 04 05 09 10 11 13 Avg/Total
HOTA[%] 37.6 56.2 55.4 58.6 45.7 62.8 39.8 50.9
MOTA[%] 40.5 59.0 50.0 62.0 65.7 66.3 59.2 57.5
IDF1 [%] 37.3 55.1 56.0 58.3 41.3 63.3 34.8 49.4

Table D.33: Ablation results for the Combined A tracker.
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Sequence 02 04 05 09 10 11 13 Avg/Total
HOTA[%] 47.4 61.3 51.2 58.4 57.0 65.4 58.6 57.0
MOTA[%] 43.3 59.3 46.2 62.4 66.2 65.6 63.8 58.1
IDF1 [%] 48.0 60.1 48.2 60.7 53.0 64.0 53.0 55.3

Table D.34: Ablation results for the Combined B tracker.

D.6 Results on the Test Sequences

This section contains the extended results for the combined tracking framework B on the
MOT17 test sequences. The results are placed in Table D.35.

Sequence 01 03 06 07 08 12 14 Avg/Total
HOTA[%] 34.1 41.6 34.0 30.8 29.3 35.2 22.7 32.5
MOTA[%] 27.4 58.3 37.8 30.8 24.1 33.7 14.7 32.4
IDF1 [%] 40.3 51.8 40.6 35.4 31.3 43.3 28.0 38.7
Prcn [%] 68.1 95.5 75.2 79.1 88.6 83.8 66 79.5
Rcll[%] 52.9 61.6 62.1 43.6 28.3 43.4 35.2 43.0

Table D.35: Extended results for the Combined B tracker on the MOT17-test (FRCNN) sequences. Preci-
sion(Prcn), Recall(Rcll), TP, FP and FN are metrics mostly for the detections.

D.7 Results for Other MOT Sequences

This section presents the extended results for the Combined B tracker on the Zebrafish,
Ants Indoor and Outdoor sequences.

D.7.1 Zebrafish

Input Shape 01 02 03 04
HOTA 58.1 % 80.0 % 100 % 62.5 %
MOTA 99.5 % 99.3 % 100 % 95.8 %
IDF1 54.3 % 79.9 % 100 % 57.3 %

Table D.36: Results for the Combined B tracker on the Zebrafish sequences.
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D.7.2 Ants Indoor

Input Shape 01 02 03 04 05
HOTA 97.1 % 94.4 % 99.7 % 100 % 100 %
MOTA 99.9 % 99.8 % 99.5 % 100 % 100 %
IDF1 97.7 % 94.2 % 99.4 % 100 % 100 %

Table D.37: Results for the Combined B tracker on the Ants Indoor sequences.

D.7.3 Ants Outdoor

Input Shape 06 07 08 09 10
HOTA 78.9 % 73.7 % 74.8 % 66.6 % 77.2 %
MOTA 93.7 % 91.9 % 83.1 % 89.2 % 94.9 %
IDF1 75.2 % 65.6 % 73.7% 62.0 % 71.7 %

Table D.38: Results for the Combined B tracker on the Ants Outdoor sequences.
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