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Abstract:

In recent times, the wind turbine industry is
pushing towards larger and more efficient wind
turbines to decrease the cost of energy produc-
tion. This requires the use of more refined con-
trol strategies able to deal with structural load
reduction, while optimising power production.
In order to consider multiple objectives as well
as system constraints, Model Predictive Control
(MPC) was selected as control strategy. A non-
linear model of the wind turbine was derived,
including the dynamics of each blade such that
their pitch could be controlled independently.
State estimation was performed by means of an
Unscented Kalman Filter (UKF) using data from
GH Bladed simulation tool as system measure-
ments. It was not possible to obtain acceptable
results due to the large mismatch between the
model outputs and the data from Bladed, so the
first ones were used as virtual measurements by
adding typical sensor noise. Afterwards, the
MPC was given a prediction model derived by
successive linearisation, and designed to account
for both partial and full load operation of the
wind turbine. The results at the present time
are not satisfactory due to not having considered
that the states of the linearised model are rela-
tive to the operating points in every iteration. It
is believed that the results will be promising as
soon as this issue is solved.

http://es.aau.dk/
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Chapter 1

INTRODUCTION

Wind power has been used since the Egyptian civilisation started implementing sails
on boats to propel them along the Nile river, at around 5000 BC. In the last five millen-
nia, wind-powered machines have grown substantially, starting from the Babylonians and
their desire to use the wind for irrigation purposes [1]. Other great examples can include
9th century Iranian, Afghan and Pakistani windmills and wind pumps [2], or traditional
Spanish windmills, famously used in literature as the hallucinatory giants fought by Don
Quixote.

The first electricity generating wind turbine was discovered by James Blyth, and it
was used to power his home town’s (Marykirk, Scotland) lights on holidays [3]. The key
difference between the two main wind power generators is that wind turbines generate
electricity, while windmills are used to generate mechanical energy.

In Denmark, the first small electricity-producing turbines arrived at the hands of physi-
cist Poul La Cour, with a desire to mechanise many manual labours involved in farming. In
1891 he was granted financial support to build a wind turbine to pass electricity through
water using electrolysis. That way, he erected the first experimental windmill in Askov
[4]. In 1903 La Cour’s Danish Wind Power Society started promoting the idea of wind-
generated electricity. And, by 1920, even if most Danish windmills were used for me-
chanical work, the wind turbines provided an equivalent estimation between 120 MW and
150 MW [5].

After World War II, the interest in wind power waned except for some scientists such
as Johannes Juul, who worked on a three-bladed, stall-regulated, upwind rotor at Gedser
with a span of 24 m. In 1981, a national goal of 1000 MW wind-power was set to increase
the contribution of wind to the national electricity up to 10%. In 2001, it provided 16%
of the national electricity [5]. By 2020, Denmark’s wind share of electric consumption
corresponded to 50.4%, or the equivalent of 1.46 TW h [6].

Looking into the future, Denmark as a world leader in wind power will try to reduce
CO2 emissions by 70% by 2030 [7]. One of the solutions in hand, is the construction of two
Energy Islands in the North and Baltic seas, equipped with offshore wind turbines [8].

1.1 Project Setting

This section provides an overview of wind turbine technology used nowadays, as well
as basic operation and control strategies, in order to provide the necessary background to

2



1.1. Project Setting Aalborg University

properly define the scope of the project.

1.1.1 Types of wind turbines

Modern wind turbines mainly present two different design models depending on the
disposition of the blades. If the blades are connected to a vertical shaft, the turbine is
called Vertical Axis Wind Turbine (VAWT), while Horizontal Axis Wind Turbine (HAWT)
represent the ones that use a horizontal axis [9].

Horizontal axis wind turbines produce the majority of the wind energy nowadays.
Some of their advantages are presented below:

• Ability to pitch rotor blades to maximise power generation and minimise structural
loads.

• Tall towers allow access to stronger winds.

• Can be placed on uneven terrains or offshore.

Nevertheless, they also present some disadvantages generally related to complicated trans-
portation, operation and maintenance. On the other hand, vertical axis wind turbines
present the following advantages [10]:

• Easy maintenance.

• Low transportation and construction cost.

• They are not directional.

Despite the facts presented above, they are overall less efficient, as only the blades facing
the wind are driven by it, while the others just follow along. Furthermore, vertical axis
rotors present more aerodynamic resistance, and meet a lower and more unstable wind
speed as they are installed on ground level.

Figure 1.1: Wind turbine types [11].

3
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1.1.2 HAWT components overview

As seen in Fig. 1.2, a modern wind turbine consists of a nacelle located on top of
a tower. The nacelle has the hub with the blades attached to it, and contains several
key components that serve the purpose of converting wind energy into electrical energy,
namely the turbine rotor, the transmission system and the generator. After the generator,
there is usually a power electronics interface connected to the grid via a transformer [12].

Figure 1.2: Main HAWT components [13].

Aerodynamic rotor

The aerodynamic rotor receives the power from the wind, which causes it to rotate.
The rotor mainly consists of the hub, which is attached to the low speed shaft of the wind
turbine, and the blades, shaped similarly to an aeroplane wing [12].

Drive train

The drive train is generally composed of the rotor shaft, mechanical brakes and a
gearbox. The low speed shaft contains pipes for the hydraulic system to enable the aero-
dynamic brakes to operate. The gearbox converts the slow high-torque rotation of the
aerodynamic rotor into a faster rotation that drives the generator. The high speed shaft
is equipped with emergency mechanical brakes, that are used as a backup system for the
aerodynamic brakes in case of failure or when the wind turbine is stopped [12].

4
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A relatively new wind turbine topology, which does not present a gearbox, was intro-
duced in 1991 to avoid transmission losses and other issues related to gearbox mechanisms.
This technology is known as direct-drive wind turbines [14].

Generator

The generator transforms the mechanical power into electrical power. The most com-
mon devices used in the wind turbine industry are synchronous and asynchronous (in-
duction) generators. Synchronous generators are classified into the following types [12]:

• Wound Rotor Synchronous Generator (WRSG).

• Permanent Magnet Synchronous Generator (PMSG).

Asynchronous generators are classified with respect to their rotor design as:

• Squirrel Cage Induction Generators (SCIG).

• Wound Rotor Induction Generator (WRIG).

Figure 1.3 depicts the different types of wind turbine topologies depending on the
generator they contain.

(a) Wind turbine with SCIG (b) Wind turbine with WRIG

(c) Wind turbine with WRSG (d) Wind turbine with PMSG

Figure 1.3: Different wind turbine topologies depending on generator type [15].

Power electronics interface

The wind industry comes with the disadvantage of the weather unpredictability, which
makes this power source intermittent and unreliable. This has a clear impact on the elec-
trical grid power quality, protection, generation dispatch control and reliability [16]. The
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power electronics interface should ensure that the generated power complies with the tech-
nical specifications of the grid. The most common power electronics interfaces in the wind
turbine industry are the following [12]:

• Soft starter: power electrical component used in wind turbines with SCIG to reduce
the inrush current to the grid, thereby avoiding large voltage disturbances.

• Capacitor bank: electrical component that supplies reactive power to the asyn-
chronous generators of wind turbines.

• Frequency converter: power electronic component that facilitates interconnection
of two electrical systems with independent frequencies. It is used to control the
frequency and voltage of the generator in order to regulate its torque.

1.1.3 Modes of operation

The power available from the wind is given by the following expression [17]:

Pwind(t) =
1
2

ρAv3(t) (1.1)

where:

Pwind : power available from the wind [W]

ρ : air density
[
kg/m3]

A : swept area of the rotor
[
m2]

v : average wind speed in the rotor at hub height [m/s]

Considering the power coefficient of the wind turbine, which has a theoretical maxi-
mum of 0.593 known as the Betz limit [18], the power is more commonly defined as:

P(t) =
1
2

ρACp(θ, λ)v3(t) (1.2)

where Cp refers to the aerodynamic efficiency which depends on the pitch angle of
the blades, θ, and the tip speed ratio, λ, this last one assumed for now to be adjusted
collectively on the three blades. The tip speed ratio is defined as the ratio between the
tangential speed of the blade tip and the wind speed as follows:

λ(t) =
ω(t)R
v(t)

(1.3)

where R represents the rotor radius.
Depending on the available wind speed, v, the wind turbine will operate in different

modes, as depicted in Fig. 1.4. These regions are delimited by the cut-in, rated and cut-
out wind speeds, as well as minimum rotational speed, rated power and rated rotational
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speed. At the cut-in wind speed, the wind turbine starts generating power as it starts being
economically profitable. If the wind exceeds the cut-out speed, the wind turbine will shut
down in order to prevent damage to the mechanical components or the generator. In the
region between cut-in and rated wind speed, called partial load region, the wind turbine
operates at variable rotor speed to maximise power generation. In the full load region,
corresponding to the last region represented in the figure, the power and rotor speed are
fixed to their rated values in order to minimise dynamic loads.

Figure 1.4: Rotational speed and generated power of the wind turbine as functions of wind speed in different
operating regions [19].

1.1.4 Wind turbine control overview

Wind turbines can be classified according to the rotational speed of the rotor into
Fixed Speed Wind Turbine (FSWT) and Variable Speed Wind Turbine (VSWT) [12, 15].
FSWT rotate at almost constant speed, determined by the gear ratio, grid frequency and
number of poles of the generator. They are designed to achieve maximum efficiency only
at one given wind speed. They incorporate an SCIG connected directly to the grid, a soft
starter, and a capacitor bank for reduction of reactive power consumption. On the other
hand, VSWT can adjust the rotor rotational speed according to the wind speed to obtain
maximum energy conversion efficiency. It is the most common type of wind turbine used
in the wind industry, as it presents advantages regarding efficiency and mechanical stress.
However, this comes at the cost of generally requiring more complex control systems and
presenting higher costs than their counterpart.

Depending on their operation, wind turbines present different closed-loop control sys-
tem strategies. The most common are [20]:

• Blade pitch control.

• Stall control.

• Yaw control.

7
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• Generator torque control.

Blade pitch control

The pitch of the blades is changed in order to regulate the power output to the rated
value. This control strategy is therefore needed when the turbine is working above-rated
wind speed so that design limits are not exceeded. To achieve appropriate load atten-
uation and power generation, the control system must have a fast response to changing
conditions, and thus it should be carefully designed taking into account the turbine dy-
namics. The control strategy is called Collective Pitch Control (CPC) if the pitch of the
three blades is changed collectively by the same amount. In the last decade, there has been
an increasing amount of research regarding individual blade pitch regulation for mitigat-
ing unsteady loads on the mechanical components of the turbine. These loads are caused
by deviations on the estimated mean wind speed due to deterministic effects such as wind
shear or tower shadow [21] as well as from turbulence, which presents a more stochastic
nature. This strategy is known as Individual Pitch Control (IPC). It can be seen in the
literature that both control loops can be designed independently, as the frequency range
of the loads considered in each controller is different [17, 20].

Stall control

Some turbines are designed to stall when the wind speed exceeds the design limit,
restraining the rotor speed by the generator without utilising any pitch actuation. Subse-
quently, this method comes with a loss in aerodynamic efficiency [20], which makes it to
be generally considered obsolete.

Yaw control

Yaw control must ensure at all times that the nacelle is pointing exactly in the direc-
tion of the wind. The corresponding control signal is typically generated using heavily
averaged error measurements from a wind vane mounted in the top of the nacelle. Due
to the slow response of the yaw control system, a dead-band controller is often adequate
enough, turning the nacelle in the appropriate direction when the error exceeds a certain
value and stopping it after some time or when a specific angle has been covered [20].

Generator torque control

Variable speed wind turbines present a double fed induction machine or a PMSG. If a
frequency converter is situated between the generator and the power grid, the generator
speed will be able to vary and the frequency converter could be actively controlled to keep
the generator torque at a constant level, by determining the voltage as well as the frequency
and phase of the current flowing from the generator [20]. Field Oriented Control (FOC)
and Direct Power Control (DPC) are the two typical control strategies applied [22, 23].
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1.1.5 Modal analysis

Wind turbines experience several dynamical loads such as aerodynamic loads, varia-
tions in wind direction and the effect of gravity. The dynamic behaviour and structural
integrity of wind turbines are tested by analysing the structure response to external forces,
which could provoke resonance effects. Resonant vibrations are produced when a struc-
ture is exposed to a periodical external force taking place close to one or more of its natural
frequencies, which depend on its configuration, materials and boundary conditions. At
this resonant frequency, the structure will vibrate at higher amplitudes than if the external
vibration is applied at any other frequency, compromising the system’s integrity. The mo-
tion pattern of a system submitted to vibration at its resonant frequency is called normal
mode (if the whole system oscillates sinusoidally with the same frequency and fixed phase
relation).

Modal analysis is typically used in order to extract the vibrational modes of the struc-
ture (represented by their natural frequencies, damping factors and mode shapes) and use
them to derive a reliable representation of the dynamics of a system. As the number of
modes is the same as the number of Degree of Freedom (DOF)s, lets clarify those first.
The structural model in a traditional wind turbine has about 19 to 27 DOFs, which can be
classified into:

1. One or two pairs of tower bending modes and one torsional tower mode (3-5 DOFs).

2. Two or three pairs of bending modes and a torsional mode for each blade (15-21
DOFs).

3. One rotor/drive train torsional mode (1 DOFs)

The eigen-frequencies of wind turbine structures lie in the range of 0 to 5 Hz. Table 1.1
shows the results of a modal analysis of a 15-MW wind turbine GH Bladed model consid-
ering tower bending and torsion and blade bending modes. All the technicalities of the
modal analysis procedure have been skipped; check out the literature for a more in-depth
formulation [24, 25]. Some of the different modes are depicted in Fig. 1.5.

Table 1.1: Modal analysis of the 15 MW wind turbine Bladed model structure.

Frequencies
[Hz]

Damping
ratio

Modal
mass [kg]

Modal
stiffness
[Nm2]

Mode type

0.541 0.03 2145.8 24763 Blade flapwise normal mode
0.636 0.03 2398.5 38321 Blade edgewise normal mode
1.668 0.03 559.49 61431 Blade flapwise normal mode
2.012 0.03 709.61 113360 Blade edgewise normal mode
0.179 0.005 1804600 2290700 Tower lateral translational at-

tachment mode
Continued on next page
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Frequencies
[Hz]

Damping
ratio

Modal
mass [kg]

Modal
stiffness
[Nm2]

Mode type

0.180 0.005 1789200 2290700 Tower fore-aft translational at-
tachment mode

0.794 0.005 2.3853× 108 5.9365× 109 Tower torsional rotational at-
tachment mode

1.091 0.005 4.1113× 108 1.9311× 1010 Tower lateral rotational attach-
ment mode

1.228 0.005 3.2442× 108 1.9311× 1010 Tower fore-aft rotational at-
tachment mode

2.413 0.005 361680 8.3109× 107 Tower fore-aft normal mode
2.413 0.005 361680 8.3109× 107 Tower lateral normal mode

Figure 1.5: Wind turbine structural modes [25].
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1.2 Description of Use Case

This section defines more clearly the extent of the project. The manufacturing company
that suggested the topic and its delimitations is introduced, and the scope of the task is
formulated.

1.2.1 Mita-Teknik

Mita-Teknik is an electrical/electronic manufacturing company that provides wind tur-
bine control solutions to the wind energy industry. It was founded in 1969, and it offers
products regarding Turbine Control, Electrical Pitch, Condition Monitoring, Supervisory
Control And Data Acquisition (SCADA), Optimization, Retrofit and Customer Partner-
ing. In the field of pitch regulation, they offer CPC and IPC strategies to optimise power
generation and ensure minimum structure loads [26].

Figure 1.6: Some of Mita-Teknik competences on the wind industry [26].

1.2.2 Problem scope

The power efficiency of a variable-speed variable-pitch wind turbine highly depends
on the implemented control algorithms. Conventional methods are not able to consider
system constraints, e.g. actuator limitations, constraints in system variables (generator
speed, pitch angle, and electrical power), etc. Therefore, it is of interest to study the
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performance of MPC strategies in this context, as it allows to tackle several objectives like
the previously mentioned ones.

The main goal of this project is then to use MPC to design a control strategy that is
able to attenuate structural loads while optimising power production. The present design
should cover partial and full load operation of the wind turbine, and some strategy to
switch between both operations. Furthermore, the benefits of using individual pitch con-
trol to reduce structural loads can also be studied. Finally, the robustness of the presented
control strategy could also be addressed.

The designed control strategy can be compared with conventional Proportional Integral
Derivative (PID) control methods, provided by Mita-Teknik in the software GH Bladed.

1.2.3 Final case description

The project will comprise the following topics:

• Development of a mathematical model of the variable-speed variable-pitch wind
turbine structure for controller synthesis.

• Validation of the mathematical model against the reference GH Bladed model pro-
vided by Mita-Teknik.

• Specification of requirements (e.g. constraints) for the MPC.

• Synthesis of the MPC for partial and full load operation.

• Simulation and testing of the designed MPC in Matlab/Simulink, GH Bladed, FAST
or another similar tool, and comparison with reference model performance.

1.3 Problem Formulation

The problem formulation forms the foundation for the delimitations and functional
requirements, and it will determine the contents of the report.

How can MPC be implemented in a wind turbine to handle multiple system constraints?

1.4 Delimitations

At the time of this project, the 15 MW turbine remains a prototype, and the first instal-
lation is planned to take place in the second half of 2022 in Østerild national test centre
in the second half of 2022 by Vestas. Additionally, in a real life scenario a turbine must
be able to handle several scenarios with regards to wind speeds which call for different
control strategies. Due to time constraints, not all scenarios can be accounted for. Based
on these factors, the following delimitations have been set up:
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1. The present design will solely be tested in a simulation environment:

• Matlab/Simulink

• GH Bladed

2. The controller will only account for wind speeds from cut-in to cut-out speeds. No
mechanism will be designed for stopping the turbine entirely.

1.5 Functional Requirements

Now that the scope of the problem has been defined, a set of functional requirements is
specified to define which aspects of the wind turbine behaviour are to be controlled. First,
the pitch of the blades should be kept at an optimal value while the rotor speed must be
adapted to the wind speed to maximise power capture in partial load conditions. This
can be done by adjusting the generator torque, which affects edgewise blade dynamics
and drive-train torsion, as well as sideways tower dynamics. In full load conditions, the
rotor speed should follow the rated speed, or vary slightly around it. Slow wind speed
fluctuations will be tackled by modifying the pitch of the blades collectively, which will
reduce the inflow angle as the wind speed increases, thus limiting the captured power.
This action affects the thrust, which influences flapwise and edgewise blade dynamics and
fore-aft tower dynamics [27].

Additionally, cyclic load variations are caused by the movement of the blades through
different altitudes and across the tower as well as by stochastic turbulence. Wind shear
and tower shadow cause harmonic bending moment variations in the blades at the angular
frequency of the rotor (P) and integers multiples of it, referred to as nP, n = {1, 2, 3...}.
Turbulence provokes stochastic blade load variations with a large frequency content, and
peaks centred around nP. A three-bladed rotor will present these load components with
a difference in phase of 120° between the three blades, so ideally the structure will only
experience the nBP (B = 3, n = {1, 2, 3...}) harmonic content, where the others tend to
cancel out. Nevertheless, this assumption become less valid when considering larger wind
turbines [28]. Individual pitch control strategies can help reducing these loads.

Therefore, the following requirements have been established:

1. Maximise captured power in partial load conditions by keeping the pitch of the
blades at an optimal value and varying the rotor speed.

2. Maintain power production at rated power in full load conditions while keeping the
rotor speed at its rated value by varying the pitch of the blades.

3. Reduce blade flapwise and edgewise structural loads.

4. Reduce tower fore-aft and sidewards structural loads
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1.6 Solution Overview

As the scope of the project is already outlined, an overview to the proposed solution
can be proposed at an early stage. The model of the turbine must consider the aerody-
namics, mechanics, electrics and actuators. MPC requires an estimate of all internal states
at time k in order to both create a set of optimal control inputs over the control horizon
and predict the state up to the prediction horizon. As the model will be highly non-linear,
the state estimation will be carried out with an UKF. The MPC itself will take state and
actuator constraints into account, and will calculate a series of optimal control inputs of
which only the first is used, which will then serve as the Kalman filter input at time k + 1.
A simple block diagram of the proposed solution is shown in Figure 1.7

Aerodynamics

Mechanics

Electrics

Actuators

Non-linear
Turbine Model

Unscented Kalman Filter

Wind Turbine

Model Predictive Control

Optimizer
Constraints

Cost function

Reference state

-+r

+-

Aerodynamics

Mechanics

Electrics

Actuators

Linear
Turbine Model

Prediction

Figure 1.7: Block diagram of the solution
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Chapter 2

WIND TURBINE MODELLING

2.1 Introduction

Wind turbine aero-elastic simulation models such as the ones used in the Fatigue,
Aerodynamics, Structures and Turbulence (FAST) simulation tool, commonly describe the
wind turbine dynamics with around 24 DOF, which is not appropriate for control design
purposes due to excessive difficulty and computational cost, which can lead to numerous
implementation issues. Therefore, a simpler reduced-order dynamic model including only
the essential dynamics will be derived.

Wind

Aerodynamics

Drive-train

GeneratorGenerator 
Servo 

Tower & 
bladesPitch Servo

Figure 2.1: Global system block diagram [19].

The wind turbine structure is usually divided into 4 subsystems as can be seen in
Fig. 2.1: the aerodynamics, several models for the mechanical structure (drive train, tower
and blades), the electrical part (generator and converter) and the actuators (pitch and
generator torque). The aerodynamics deal with the transformation of the kinetic energy
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of the wind into mechanical torque as a consequence of the aerodynamic shape of the
blades. The drive train transfers the rotor torque to the generator, while the tower and
blade structures are constantly being deformed by the wind thrust forces. Finally, the
generator and converter transform the mechanical energy into electrical energy and the
actuators modify their respective control variables when provided with a control signal.
The inputs and outputs seen in Fig. 2.1 refer to the effective wind speed, ve, the relative
wind speed measured at the rotor, vr, the thrust force in the rotor, Fr, the pitch angle, θ, and
its reference, θre f , the rotor aerodynamic torque, Tr, the angular speed of the rotor, ωr and
of the generator, ωg, the generator torque, Tg, and its reference, Tgre f , and the generated
electrical power, Pe.

2.1.1 Degrees of freedom and coordinate systems

The basic DOF considered are depicted in Fig. 2.3. The coordinate systems used
throughout this project are based on the "GL" convention, and are defined hereafter [29].

For hub loads, the reference frame is placed at the centre of the hub as seen in Fig. 2.2a.
This frame can be static or rotatory, with the ZN axis aligned with blade 1 axis in the
second case. For tower loads, the reference frame is placed at the tower station as seen in
Fig. 2.2b.

(a) (b)

Figure 2.2: Coordinate system for hub loads (a) and for tower loads (b) [29].
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Generator-drive train 
 torsion 

Blade flapwise 

Tower longitudinal
(fore-aft)

Blade edgewise 

Tower lateral
(sidewards)

Figure 2.3: DOFs considered for the mathematical modelling [15].

Blade loads can be specified in 4 different coordinate systems: principal axes, root axes,
aerodynamic axes and user axes. The GH Bladed model available outputs blade loads in
principal axes and root axes.

Regarding the principal axes, the positive z-axis follows the local deflected neutral axis
at each blade station towards the blade tip. The positive y-axis is defined by the principal
axis orientation, and the positive x-axis is orthogonal to x and y. For output loads, the
origin of the axes is located on the neutral axis at each local deflected blade station as seen
in Fig. 2.4a.

On the other hand, the orientation of the root axes is fixed to the blade root and does
not rotate with blade twist or deflection, but rotates about the z-axis with pitch. For output
loads, the origin of the axes is on the neutral axis at each local deflected blade station as
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seen in Fig. 2.4b.

(a) (b)

Figure 2.4: Principal axes (a) and root axes (b) [29].

18



2.1. Introduction Aalborg University

2.1.2 List of constants and variables

Table 2.1: Variables

Variable Description Unit
µv Fixed mean wind speed m/s
v Wind speed in the x direction in arbitrary point around the tower m/s
rt Tower radius dependant on the height m
vm Mean wind speed m/s
ψ Angular position of the rotor rad
z Elevation above the surface m

Ws Wind share disturbance in wind speed m/s
ve Effective wind speed at hub height m/s
vt Turbulent wind speed m/s
nm White noise mean and variance σ2

m ·
σt White noise standard deviation of turbulent wind speed ·
Cl Lift coefficient ·
Cd Drag coefficient ·
Ib Blade moment of inertia kgm2

It Tower moment of inertia kgm2

l Force of lift per length N/m
d Force of drag per length N/m
α Local angle of attack rad

ωr Angular velocity of the rotor rad/s
φ Angle of the incoming flow rad
θ Local pitch of the individual blade with respect to the tip rad
θp Pitch angle of the blade rad
β Twist of the blade relative to the rotor plane rad
Va Axial wind velocity m/s

Vrot Tangential wind velocity m/s
∆p The pressure drop over the rotor plane Pa
vr Relative wind velocity seen by the rotor m/s
xt Tower fore-aft top displacement m
yt Tower sideways top displacement m
xb Blade flapwise top displacement m
yb Blade edgewise top displacement m
ωg Angular velocity of the generator rad/s
Tg Generator torque Nm
Pe Electric power W

θre f Reference pitch actuator angle rad
θ Pitch actuator angle rad

Continued on next page
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Variable Description Unit
Tgre f Reference generator torque Nm
Fx Rotor out-of-plane aerodynamic thrust force N
Fy Rotor in-plane aerodynamic thrust force N
Tr Rotor aerodynamic torque force Nm
αb Blade stiffness tuning parameter ·
λ Tip Speed Ratio (TSR) ·

Table 2.2: Constants

Constant Description Value Unit
rtop Tower top radius 3.25 m
rbase Tower base radius 5 m
H Tower height 144.582 m
α Wind shear exponent for smooth terrain 0.15 ·

σ2
m White noise variance of mean wind speed 3.333e−4 ·

Ts Sampling time 0.05 s
ti Turbulence intensity 0.1 ·

ωp Peak frequency for the Kaimal spectrum 0.0462 rad/s
ρ Air density 1.225 kg/m3

R Rotor radius 120.998 m
Mt Tower mass 1, 086, 002 kg
Mn Nacelle mass 630, 888 kg
mt Tower equivalent mass 992, 889 kg
kt Tower stiffness 1, 270, 005 N/m
ct Tower damping 11, 229 Ns/m
ft Tower 1st normal mode frequency 0.18 Hz
ξt Tower damping ratio 0.005 ·
lb Blade length 117.1836 m
rb Blade radius 2.6 m
Mb Blade mass 65, 566 kg
mb Blade equivalent mass 6, 561 kg
kbx Blade stiffness flapwise 82, 314 N/m
cbx Blade damping flapwise 1, 453 Ns/m
kby Blade stiffness edgewise 113, 761 N/m
cby Blade damping edgewise 1, 708 Ns/m
fbx Blade 1st flapwise normal mode frequency 0.541 Hz
fby Blade 1st edgewise normal mode frequency 0.636 Hz
ξbx Blade 1st flapwise normal mode damping ratio 0.03 ·
ξby Blade 1st edgewise normal mode damping ratio 0.03 ·

Continued on next page
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Constant Description Value Unit
B Total number of blades 3 ·
Jg Generator moment of inertia 3, 223, 000 kgm2

Jr Rotor moment of inertia 321, 699, 000 kgm2

xh Hub overhang 10.93 m
cd Drive train damping 0.005 Nms/rad
kd Drive train stiffness 1.409e+10 Nm/rad
µd Mechanical loss 0.05 ·
ηg Electrical efficiency 0.93 ·
ωθ Natural frequency of pitch actuator model 1.2 Hz
ξθ Damping factor of pitch actuator model 0.8 ·
τg Generator time constant 0.001 s
Ar Rotor area 45, 995 m2

θmin Minimum blade pitch angle −0.2618 rad
θmax Maximum blade pitch angle π/2 rad

Tg,max Maximum generator torque 21, 030, 000 Nm
θ̇min Minimum angular velocity of blade pitching −0.1571 rad/s
θ̇max Maximum angular velocity of blade pitching 0.1571 rad/s

ωr,min Minimum angular velocity of the rotor 0.5236 rad/s
ωr,rat Rated angular velocity of the rotor 0.7917 rad/s
ωr,max Maximum angular velocity of the rotor 0.8709 rad/s
Pe,opt Rated electric power 15 MW
Pe,max Electric power 22 MW
λopt Optimal TSR 9.0621 ·

2.2 Wind Model

The wind affecting a wind turbine has both a deterministic and stochastic nature. Their
influence in the wind profile will be analysed hereafter.

2.2.1 Deterministic wind model

Part of the variation of the wind profile over the whole structure of the wind turbine
can be described by two deterministic properties, referred to as tower shadow and wind
shear [30]. Tower shadow describes the alteration of the wind flow due to the presence of
the tower, which is perceived by the blades when they pass in front of it. Wind shear refers
to the variation of the wind profile with respect to the height as a result of aerodynamic
friction with the ground.
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Tower shadow

The presence of the tower cylinder amidst the wind flow generates changes in pressure,
and subsequently in the speed of the fluid. Figure 2.5 shows the deformation of the flow
lines and the pressure field around the tower section in an aerial view. This will have an
impact on the blades when passing in front of the tower, as they will experience minimum
wind speed at that point. Using potential flow theory around an infinitely long cylinder,
an equation for the wind speed around the tower can be derived [21, 30]:

v(x, y, h) = vm + vmrt(h)2 y2 − x2

(x2 + y2)2 (2.1)

which can be rewritten as a function of the azimuth angle of the rotor ψ, and substituting
x by the hub overhang xh:

v(R, ψ, h) = vm + vmrt(h)2 (R sin ψ)2 − x2
h

(x2
h + (R sin ψ)2)

2 (2.2)

where:

v : wind speed in the x direction in an arbitrary point around the tower [m/s]

vm : mean wind speed [m/s]

rt(h) : tower radius dependant on the height [m]

R : rotor radius [m]

ψ : angular position of the rotor [rad]

xh : hub overhang [m]

Figure 2.5: Wind flow around circular cylinder (black curves), including velocity potentials (white curves) and
pressure field (colours), where red indicates high pressure and blue low pressure [31].
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The computed wind speed will not only have a component in the x-axis, but also
another in the y-axis that will be disregarded due to its minimal contribution to the rotor
torque [30].

Figure 2.6 shows the change in the tower outer radius with respect to its height. For
simplicity, it is assumed that the radius varies linearly with the height, and thus its value
can be found as follows:

rt(h) =
(

rtop − rbase

H
h
)
+ rbase (2.3)

where:

rtop : tower top radius [m]

rbase : tower base radius [m]

H : hub height [m]

Figure 2.6: Outer diameter of the tower with respect to the height [32].

The wind perturbation produced by the tower shadow with respect to the angular
position of the blades is depicted in Fig. 2.7. It can be seen that the wind speed reaches
its minimum when the blade is right in front of the tower, and it slightly increases in its
vicinity.
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Figure 2.7: Tower shadow for different rotor radii R. Mean wind speed vm = 10 m/s. Hub overhang xh =
10.93 m. Tower radius measured at height h = 31.75 m corresponding to the tower height minus the blade
length.

Wind shear

Wind shear describes the effect that the friction between the air and the ground has
on the wind speed profile. Wind gets slowed down when moving close to the Earth’s
surface due to the different irregularities that obstruct its flow. Therefore, the blades will
experience minimum wind speed when facing downwards. Wind shear can be modelled
by [21]:

v(z) = vm

( z
H

)α
(2.4)

where z represents the elevation above the surface and α refers to the wind shear exponent,
which takes into account the type of terrain in which the wind turbine is located. Typical
values of α can be seen in Table 2.3.

Table 2.3: Different values of α with terrain [33]

Terrain α

Open water 0.1
Smooth, level, grass-covered 0.15

Row crops 0.2
Low bushes with a few trees 0.2

Heavy trees 0.25
Several buildings 0.25

Hilly, mountainous terrain 0.25
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Writing Eq. 2.4 as a function of the rotor radius R and the blade azimuth angle ψ yields
[21]:

v(R, ψ) = vm

(
R cos ψ + H

H

)α

(2.5)
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Figure 2.8: Wind shear for different rotor radii R. Mean wind speed vm = 10 m/s. Wind shear exponent
α = 0.1, corresponding to open water.

Figure 2.8 helps with the visualisation of the effect of the wind shear on the blades
with respect to their azimuth angle.

The addition of wind shear and tower shadow effects results in the following expres-
sion for wind speed variation with respect to the blades azimuth angle. This is depicted
in Fig. 2.9.

v(R, ψ) = vm

[
r2

t
(R sin ψ)2 − x2

h

(x2
h + (R sin ψ)2)

2 +

(
R cos(ψ) + H

H

)α
]

(2.6)
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Figure 2.9: Wind shear and tower shadow combined effect for different rotor radii R. Mean wind speed
vm = 10 m/s. Wind shear exponent α = 0.1 (open water). Hub overhang xh = 10.93 m. Tower radius
measured at height h = 31.75 m corresponding to the tower height minus the blade length.

2.2.2 Stochastic wind model & effective wind speed

The deterministic wind profile model derived in the previous sections will be used to
design the individual pitch controller. This is because the spatial distribution of the wind
is needed to try to compensate unbalanced loading on the wind turbine structure. Never-
theless, a stochastic wind model is still needed to properly represent the wind behaviour,
and it will be derived for all the rotor area. Therefore, an equivalent value of the wind
variation over the entire rotor area needs to be estimated, called effective wind speed.

Effective wind speed, ve, can be modelled by a mean wind speed, vm, which varies
slowly and can be considered as an average of wind speed measurements in 10 min, and a
turbulent term, vt, as seen in Eq. 2.7.

ve = vm + vt (2.7)

The fore-aft movement of the nacelle when submitted to wind forces will also be con-
sidered in the implementation of the effective wind speed estimation. Lets then define a
new variable, vr, that describes the effective wind speed at the rotor including the tower
fore-aft velocity, ẋt, in its expression:

vr = vm + vt − ẋt (2.8)
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Mean wind speed

The mean wind speed can be considered as varying slowly from zero to at least 30 m/s.
A simple model would be the following random walk:

vm[k] = vm[k− 1] + Tsnm[k− 1]; nm ∈ NID(0, σ2
m) (2.9)

where nm represents white noise of zero mean and variance σ2
m. This means that the

variance of vm will increase with each time step, reaching a value of kσ2
m after k time steps.

Hence, changes over 2
√

kσm will be unlikely. If it is assumed that the mean wind speed
can change approximately 2 m/s in a time lapse of 10 min, then σm would be defined as

σm =
√

(2 m/s)2

600 s .

Turbulent part

The turbulent part of the wind speed has zero mean and variance dependent on the
mean wind speed. This is expressed with the turbulence intensity, ti, which is defined
as the ratio of standard deviation of fluctuating wind velocity to the mean wind speed
(Eq. 2.10) and represents the intensity of wind velocity fluctuation [34]. This parameter is
known in statistics as coefficient of variation (CV).

ti =
σvt

µv
(2.10)

where µv refers to a fixed mean wind speed.
The turbulence can be approximated by a first order low pass filter driven by white

noise:

H(s) =
Vt(s)
Nt(s)

=
ωp

s + ωp
(2.11)

where Vt(s) and Nt(s) refer to the turbulent component of the wind and the low pass filter
white noise input in the Laplace domain respectively. The frequency ωp can be chosen to
give the same bandwidth as the peak frequency for the Kaimal spectrum [20]:

ωp =
µvπ

2L
(2.12)

where L = 8.1 ·Λ1 = 8.1 · 42 = 340.2 [35]. Reorganising Eq. 2.11 yields:

Vt(s)s = −ωpVt(s) + ωpNt(s) (2.13)

which can be expressed in the continuous time domain as:

v̇t(t) = −ωpvt(t) + ωpnt(t) (2.14)

In order to discretize the previous stochastic differential equation, Euler discretization
method is used:

vt[k]− vt[k− 1]
Ts

= −ωpvt[k− 1] + ωpnt[k− 1] (2.15)
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Rearranging the previous expression yields:

vt[k] = (1− Tsωp)vt[k− 1] + Tsωpnt[k− 1] (2.16)

By defining a = 1− Tsωp, the standard formula for an infinite-impulse response (IIR)
low pass filter is obtained:

vt[k] = avt[k− 1] + (1− a)nt[k− 1]; nt ∈ NID(0, σ2
t ) (2.17)

Considering a stationary stochastic process, it is possible to calculate the variance of
the previous expression as follows:

Var(vt) = a2Var(vt) + (1− a)2Var(nt) (2.18)

Defining Var(nt) = σ2
t , Var(vt) = σ2

vt
and rearranging terms:

σ2
vt
=

(1− a)2

1− a2 σ2
t (2.19)

As it was stated before, σ2
vt
= (tiµv)2, which results in the following:

σt = tiµv

√
1− a2

(1− a)2 (2.20)

Figure 2.10 shows a simulation of the two previously derived wind speed components
and the effective wind speed as the addition of both.
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Figure 2.10: Stochastic wind speed simulation with V11 = 4/600 m2/s3, ti = 0.1, µv = 10 m/s
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A non linear model could also be formulated by replacing the fixed mean wind speed
µv in the turbulent part by the time varying mean wind speed, vm.

2.3 Aerodynamic Model

The aerodynamic model considers the force applied to the turbine by the wind. Some
of the force will be converted into an in-plane torque acting on the rotor based on the pitch
of the blades of the turbine. The remainder will be applied as an out-of-plane thrust force
applied to the rotor plane. One reliable way to get a detailed look into the aerodynamic
forces acting on a turbine is through Blade Element Momentum Method (BEM). BEM
involves dividing the rotor area of the turbine into annular elements and determining the
thrust and torque acting on each element based on the vortices left in the wake of the
rotor plane. A drawback of BEM is that it involves iterative calculations to determine
key variables. So while it is well suited for analysing wind turbine performance, it is
not well suited for control of a turbine. BEM is derived in Appendix A along with the
theoretical background that supports it including a derivation of the Betz limit mentioned
in Section 1.1.3. A simpler model will have to be used instead, which considers the total
thrust and torque acting on each individual blade based on wind velocity, rotor angular
velocity and blade pitch angle. Coefficients are defined for the thrust applied to the blades,
as well as the power generated, as functions of blade pitch angle and the ratio between the
tip speed and relative wind velocity, seen below:

λi =
ωrR− ẏbi

vri − ẋbi

(2.21)

Note that the tip speed ratio has been modified with respect to the original expression
presented in Section 1.1.3 by considering the blade tip sideways and flapwise velocity
(ẏbi and ẋbi respectively) and the wind speed experienced by each blade, vri , defined in
Section 2.2, in order to make the expression take into account blade dynamics.

The thrust coefficient describes the relationship between the maximum possible thrust,
and the actual thrust generated as seen in Equation 2.22.

Ct(λ, θ) =
Fr

1
2 ρv2

r Ar
(2.22)

Cp(λ, θ) =
P

1
2 ρv3

r Ar
(2.23)

where:

Ct: thrust coefficient [·]
Cp: power coefficient [·]
Fr: aerodynamic thrust applied to rotor [N]
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P: power obtained from the wind [W]

ρ: density of the air
[
kg/m3]

vr: relative wind velocity seen by the rotor [m/s]

Ar: area of the rotor plane
[
m2]

Isolating Fr and P yields:

Fr =
1
2

ρv2
r ArCt(λ, θ) (2.24)

P =
1
2

ρv3
r ArCp(λ, θ) (2.25)

The power coefficient and subsequent derivation of the Betz limit is explained further
in Appendix A.2. The power obtained from the wind, P, can be expressed as a function of
the angular velocity of the rotor and the torque applied to it as seen in Equation 2.26

P = Trωr (2.26)

Inserting the definition of P in Equation 2.26 and isolating the expression for the aero-
dynamic torque yields:

Tr =
1
2

ρv3
r ACp(λ, θ)

1
ωr

(2.27)

For the purpose of implementing IPC, the in-plane and out-of-plane thrust (Fyi and Fxi

in Eqs. 2.28 and 2.29) experienced by each blade will be defined based on the relative wind
velocity seen by the individual blades, vri , rewritten further down, which will be inserted
instead of vr. The in-plane thrust is derived from the torque applied to the rotor. Taking
into account that torque increases with distance from the rotor hub, the point of application
of that torque is estimated to be at two thirds the blade length, lb. To convert the torque
into thrust, the torque equation is divided by this length. The out-of-plane thrust will
employ the same equation as that for the thrust for the whole rotor. Both in-plane and
out-of-plane thrust will be scaled down by dividing the power and thrust coefficients by
the amount of blades, B, to account for the force only applying to one blade.

Fyi =
1
2

ρv3
ri

Ar
Cp(λi, θi)

B
1

ωr

3
2lb

(2.28)

Fxi =
1
2

ρv2
ri

Ar
Ct(λi, θi)

B
(2.29)

where:

vri =

(
vt + vm

[
r2

t
(R sin (ψi))

2 − x2
h

(x2
h + (R sin (ψ))2)

2 +

(
R cos (ψ) + H

H

)α
]
− ẋt − ẋbi

)
(2.30)

ψi = ψ + i
2 π

B
(2.31)
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Ct and Cp are found by means of a look-up table, where the closest equivalent to the
current scenario is chosen [9, 17].

As stated previously, the in-plane thrust force Fyi represents the aerodynamic torque
applied to each individual blade. The resulting torque on the rotor can then be written
as the summation of the in-plane displacement of each blade ybi (with negative sign due
to the deflection being in the negative y-axis direction) multiplied by the blades sideways
stiffness kby (found out in Section 2.4) and the distance to the application point of the force
as follows:

Tr = ∑
i
−ybi kby

2lb

3
(2.32)

with i ∈ {0, 1, 2} and lb referring to the length of the blades.

2.4 Simple Tower and Blade Models

For control design purposes, a simple mechanical wind turbine model is considered,
consisting on five DOF: fore-aft and sidewards tower bending, flapwise and edgewise
blade bending and rotor rotation.

The tower and blade movement can be expressed as a simple two mass spring damper
model as seen in Fig. 2.11. The masses used in this model should be computed as the
equivalent mass of the blades, and the equivalent mass of the tower and nacelle, assuming
that all the mass is located in a point at a distance lb and H from the axis of rotation for the
blades and the tower/nacelle respectively. This equivalent masses are calculated by using
the respective moments of inertia assuming the tower and blades geometry as a cylinder
and a cone respectively [36]:

It = mnH2 +
1
3

mtH2 +
1
4

mtr2
t = mteq H2 → mteq = mn +

1
3

mt +
1

4H2 mtr2
t (2.33)

Ib =
1
10

mbl2
b +

3
20

mbr2
b = mbeq l2

b → mbeq =
1
10

mb +
3

20l2
b

mbr2
b (2.34)

where:

It: tower and nacelle moment of inertia
[
kgm2]

Ib: blade moment of inertia
[
kgm2]

mt: tower mass [kg]

mn: nacelle mass [kg]

mteq : tower/nacelle equivalent mass [kg]

mbeq : blade equivalent mass [kg]

H: tower height [m]

rb: blade chord radius [m]
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lb: blade length [m]

Figure 2.11: Tower and blade two mass spring damper models [37].

2.4.1 Tower model

Focusing solely on the tower for the moment and thus ignoring the effect of blade
dynamics would result in the following rigid blade model for the fore-aft and sidewards
tower bending [17, 27]:

mteq ẍt = Fx −
3

2H
Mtilt − ct ẋt − ktxt (2.35)

mteq ÿt = −
3

2H
Tg − ctẏt − ktyt (2.36)

where:

xt & yt: tower fore-aft and sidewards top displacement [m]
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ct: tower damping [N/(m/s)]

kt: tower stiffness [N/m]

Fx: rotor out-of-plane thrust force [N]

Mtilt: aerodynamic tilt moment [N m]

Tg: generator torque [N m]

The term 3
2H refers to the ratio between displacement and rotation of the fore-aft tower

motion approximated by the motion of a prismatic beam of length H subjected to a bend-
ing force load. The aerodynamic tilt moment Mtilt is the torque component along the
y-axis due to blade asymmetry, found out in Appendix A.4 as a result of applying the
Coleman transform to the flapwise blade root bending moments.

The aerodynamic tilt moment Mtilt is considered to have a minor effect in comparison
with the out-of-plane thrust force Fx, hence, the tower model is rewritten as:

mteq ẍt = Fx − ct ẋt − ktxt (2.37)

mteq ÿt = −
3

2H
Tg − ctẏt − ktyt (2.38)

2.4.2 Tower and blade model

As the blades are attached to the tower, their dynamics should be considered when
describing the tower movement. Apart from the out-of-plane thrust force Fx, which now
affects the blade dynamics instead of directly affecting the tower, an in-plane thrust force
Fy needs to be included to account for the effect of the wind on each individual blade in
the rotor plane. This in-plane thrust force is basically the aerodynamic torque decomposed
in three individual forces on each blade, and therefore will only be included when dealing
with IPC, as in CPC they would cancel each other.

In CPC, the three blades would be accounted as a single entity with one DOF, and
therefore the tower and blade model will be as follows [37]:

mteq ẍt = Bkbx(xb − xt) + Bcbx(ẋb − ẋt)− ktxt − ct ẋt (2.39)

Bmbeq ẍb = Fx − Bkbx(xb − xt)− Bcbx(ẋb − ẋt) (2.40)

mteq ÿt = −
3

2H
Tg + Bkby(yb − yt) + Bcby(ẏb − ẏt)− ktyt − ctẏt (2.41)

Bmbeq ÿb = −Bkby(yb − yt)− Bcby(ẏb − ẏt) (2.42)

where:

xb & yb: blade flapwise and edgewise top displacement [m]

cbx : blade damping flapwise [N/(m/s)]

cby : blade damping edgewise [N/(m/s)]
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kbx : blade stiffness flapwise [N/m]

kby : blade stiffness edgewise [N/m]

B: total number of blades [·]

If it was desired to use a more precise model, the effect that the centrifugal forces have
on the stiffness of the blades could be considered. This creates the following relationship
between the angular speed of the rotor ωr and the blade stiffness parameter kb:

kb(ωr) = αbmbeq rbω2
r (2.43)

where:

rb: distance from the blade root to the blade centre of mass [m]

αb: blade stiffness tuning parameter [·]

It has been decided not to use this relationship for simplification purposes.
In IPC, three DOF should be used to account for the flapwise motion of each individual

blade depending on the wind speed they come across at each angular position. In that case,
the tower and blade model would be:

mteq ẍt = ∑
i

[
kbx(xbi − xt)

]
+ ∑

i

[
cbx(ẋbi − ẋt)

]
− ktxt − ct ẋt (2.44)

mbeq ẍbi = Fxi − kbx(xbi − xt)− cbx(ẋbi − ẋt) (2.45)

mteq ÿt = −
3

2H
Tg + ∑

i

[
kby(ybi − yt)

]
+ ∑

i

[
cby(ẏbi − ẏt)

]
− ktyt − ctẏt (2.46)

mbeq ÿbi = −Fyi − kby(ybi − yt)− cby(ẏbi − ẏt) (2.47)

with Fyi refering to the individual blade in-plane thrust force and the subindex i ∈ {0, 1, 2}
indicating that the corresponding variable is related to each individual blade.

The values of the stiffness and damping parameters kbx , kby , cbx and cby are found out by
using the results of the modal analysis (Table 1.1). The equation of motion for the flapwise
and sidewards vibration of a viscously damped blade is given by:

mbeq ü + cbu̇ + kbu = F (2.48)

where F refers to the excitation to the system. Dividing by the mass results in the follow-
ing:

ü + 2ξbωbu̇ + ω2
bu =

F
mbeq

(2.49)

where ξb refers to the damping ratio and ωb corresponds to the natural pulsation, which
are defined as:

ξb =
cb

2mbeq ωb
, ωb =

√
kb

mbeq

(2.50)
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Using the natural frequencies of the blade flapwise and edgewise normal modes and the
corresponding damping ratios extracted from the modal analysis, it is possible to compute
the stiffness and damping constants.

Generally, when IPC is being applied to a wind turbine, blade root sensors need to
be installed for each blade. The blade root sensors measure the flapwise and edgewise
bending moments Myi and Mxi at the root of each blade, which can be related to the blade
displacement by:

Myi = xbi kbx

2lb

3
(2.51)

Mxi = ybi kby

2lb

3
(2.52)

where lb refers to the blade length and thus, the term 2lb
3 refers to the distance from the

blade root to the application point of the thrust forces.

2.5 Drive Train Model

The drive train of the wind turbine transfers the rotor’s torque to the electrical gen-
erator. There are two different kinds of drive train designs; direct- or gearbox-drive.
Modelling-wise, the main difference between these two is the gearbox ratio (Nd). For a
direct drive train it is considered to be 1, as the synchronous generator is directly powered
by the rotor, while for a gearbox drive it depends on the turbines specifications.

Figure 2.12: Drive train model

For modelling the gearbox drive train, a simple mass-spring-damper will be used for
dealing with the drive train torsion DOF, considering this way the model flexibility in the
form of stiffness and damping [19].

Jrω̇r = (1− µd) Tr − cdγ̇− kdγ (2.53)

Jgω̇g = cdγ̇ + kdγ− Tg (2.54)

γ̇ = ωr −ωg (2.55)
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where:

Tr: aerodynamic torque [Nm]

Tg: generator torque [Nm]

Jr: rotor inertia
[
kgm2]

Jg: generator inertia
[
kgm2]

Nd: gearbox ratio [·]
ωr: rotational speed of the rotor [rad/s]

ωg: rotational speed of the generator [rad/s]

cd: drive train damping [Nms/rad]

kd: drive train stiffness [Nm/rad]

µd: mechanical losses [·]

Therefore:

γ̈ =
1
Jr
[(1− µd) Tr − cdγ̇− kdγ]− 1

Jg

(
cdγ̇ + kdγ− Tg

)
(2.56)

Rearranging the expression:

Jr Jg(
Jg + Jr

) γ̈ =
Jg(

Jg + Jr
) (1− µd) Tr − cdγ̇− kdγ +

Jr(
Jg + Jr

)Tg (2.57)

If the wind turbine is considered to be a direct drive wind turbine, the flexibility of the
model can be assumed negligible and thus the generator speed, ωg, would be equal to the
rotor speed, ωr. This rigid model would then be expressed as:(

Jr + Jg
)

ω̇r = (1− µd)Tr − Tg (2.58)

If the individual blades are considered for IPC, then the aerodynamic torque can be
rewritten as seen in Section 2.3:(

Jr + Jg
)

ω̇r = (1− µd)∑
i
−ybi kby

2lb

3
− Tg (2.59)

with i ∈ {0, 1, 2}.
The generator electrical power can be expressed as:

Pe = ηgTgωg (2.60)

with ηg referring to the generator efficiency.

2.6 Actuator Models

In order to model the response of the generator counter torque and pitch angle change,
a first and second order system are used for each respective actuator.
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2.6.1 Pitch actuator model

The pitch of the wind turbine blades can be controlled by an electric or hydraulic servo
system. The first type is considered hereafter. Electric pitch actuators are commonly driven
by a DC-motor or a vector controlled permanent magnet synchronous machine. For the
pitch control design, the basic dynamics can be approximated by a 2nd order system [27]:

θ̈ = ω2
θ θre f − 2ωθξθ θ̇ −ω2

θ θ (2.61)

This model can be expressed in the Laplace domain as follows:

Θ(s)
Θre f (s)

=
ω2

θ

s2 + 2ωθξθs + ω2
θ

(2.62)

The undamped natural frequency ωθ has a value of 1.2 Hz, and the damping factor ξθ

is 0.8. The pitch position range goes from 0° to 90°, while the pitch rate limits are −9 °/s
and 9 °/s according to the GH Bladed model.

2.6.2 Generator model

Variable speed wind turbines equipped with a gearbox commonly present an electric
conversion system consisting of a double fed asynchronous machine, power electronics
and control loops for the desired generator torque and reactive power in the stator of
the machine. On the other hand, direct drive wind turbines generally present conversion
system based on a permanent magnet synchronous machine. In order to represent the
essential dynamics, the model can be approximated by a 1st order system with a certain
time constant [27]:

Ṫg =
Tgre f − Tg

τg
(2.63)

which can be written in the Laplace domain as:

Tg(s)
Tgre f (s)

=
1

τgs + 1
(2.64)

Based on the data provided by the GH Bladed model, the generator has a time constant
of 0.001 s, a minimum demanded torque of 1 Nm and a maximum demanded torque of
2.159× 107 Nm.

2.7 State Estimation With UKF

An important aspect of implementing MPC is the estimation of the states of the system.
Estimation will be done through the use of a Kalman filter. As the turbine model is non-
linear, the decision has been made to implement an UKF, as it has similar computational
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complexity to the Extended Kalman Filter (EKF), but is either as efficient or potentially bet-
ter at estimating states in a non-linear system. The UKF uses Unscented Transform (UT),
which picks a number of weighted samples, called sigma points, and propagates them
through the non-linear state transition and measurement functions to get the a priori state
and measurement prediction respectively. These are subsequently used to calculate the a
posteriori state estimate. The noise for both state and measurement will be considered to
me additive, as sensor noise is listed in their respective documentation as being stochastic
with a constant variance. The Kalman filter has similarities to observer based control in
that unknown states have to be estimated based on a series of measurements. Figure 2.13
shows how the error between true output and output estimated based on expected model
parameters is used to tweak future state estimates through the Kalman feedback gain,
which is also recursively calculated.

  

 

  

+

-

State estimate

System

Observer

Figure 2.13: General block diagram of the Kalman principle

2.7.1 Choosing weights and sigma points

There are different sampling strategies for choosing the sigma points and weights. The
approach used in Scaled Unscented Transform will be outlined here[38]. The first sigma
point is defined as X (0)

k−1 = x̂k−1. The number of sigma points are chosen according to
the number of dimensions in the input distribution. For every dimension, two additional
points should be added. This means that the total number of sigma points will be 2n + 1
where n is the number of dimensions. The remaining 2n sigma points should be chosen
such that they are equally and symmetrically distributed around the mean. The procedure
for choosing sigma points is shown below:

X (0)
k−1 = x̂k−1 (2.65)
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X (i)
k−1 = x̂k−1 +

√
(n + λ) ci 1 ≤ i ≤ n (2.66)

X (n+i)
k−1 = x̂k−1 −

√
(n + λ) ci 1 ≤ i ≤ n (2.67)

Xk−1 = [X (0)
k−1 X

(i)
k−1 X

(n+i)
k−1 ] (2.68)

where:

λ : scaling parameter to be defined

ci : i’th column of a lower Cholesky factor of Pk−1

n : dimension of the state space

X (i)
k−1 : the i’th untransformed sigma point

x̂k−1 : last iteration’s state estimate

Pk−1 : last iterations a posteriori state covariance

Weights will be designated for calculating the mean and covariance of the state and
measurement predictions as shown below:

Wm
0 =

λ

n + λ
(2.69)

Wc
0 = Wm

0 + (1− α2 + β) (2.70)

Wi =
1

2(n + λ)
1 ≤ i ≤ 2n (2.71)

Wc = [Wc
0 Wi] (2.72)

Wm = [Wm
0 Wi] (2.73)

where:

Wm : additional weight for the estimated state mean

Wc : additional weight for the estimated state covariance

Wi : i’th weight for the i’th sigma point

κ, α, β : adjustable scaling parameters

Note that Wc and Wm become vectors of length 2n + 1.

2.7.2 Choosing free parameters

There is no unique solution to the UKF due to the free parameters α, β and κ. These
parameters can be tweaked to adjust the outcome. α is used to scale the spread of the sigma
points around the mean. A demonstration for a two-dimensional Gaussian distribution
can be seen in Figure 2.14.
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Figure 2.14: Effects on alpha on the spread of the sigma points [38]

The value of κ alters the influence that the state estimate x̂ has on calculating the output
estimate ŷ and covariance Pyy. It should be ensured that κ ≥ 0, as otherwise Pyy might
not be positive definite. β is used to calculate different weights for ŷ and Pyy. α should be
greater than 0 but no larger than 1. α and κ can be combined into one variable λ. Based
on [38], the following values are chosen as a starting point:

α = 1

β = 2

κ = 0

λ = α2(n + κ)− n

2.7.3 Procedure

For calculating the a priori state prediction, the sigma points Xk−1 are propagated
through the non-linear state transition function to get the transformed sigma points Xk|k−1:

Xk|k−1 = f (Xk−1, uk−1) (2.74)

The mean and covariance of the a priori state prediction, which are used in calculating
the mean and covariance of the a posteriori state estimate, can now be calculated with the
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weights defined in Equations 2.72 and 2.73 and the transformed sigma points:

x̂k|k−1 =
2n+1

∑
i=1

Wm(i)X (i)
k|k−1 (2.75)

Pk|k−1 = Qk−1 +
2n+1

∑
i=1

Wc(i)(X (i)
k|k−1 − x̂k|k−1)(X

(i)
k|k−1 − x̂k|k−1)

T (2.76)

where:

Qk−1 : process noise covariance

x̂k|k−1 : mean of a priori state prediction

Pk|k−1 : covariance of a priori state prediction

The transformed sigma points are then propagated through the measurement function:

ψk|k−1 = h(Xk|k−1, uk) (2.77)

The mean and covariance of the a priori measurement prediction are then calculated:

ŷk|k−1 =
2n+1

∑
i=1

Wm(i)ψ(i)
k|k−1 (2.78)

Pyy
k = R +

2n+1

∑
i=1

Wc(i)(ψ(i)
k|k−1 − ŷk|k−1)(ψ

(i)
k|k−1 − ŷk|k−1)

T (2.79)

where:

R : measurement noise covariance

ŷk|k−1 : mean of a priori measurement prediction

Pyy
k : covariance of a priori measurement prediction

Before calculating the Kalman gain, the cross-covariance of the a priori state and mea-
surement Pxy

k must be calculated:

Pxy
k =

2n+1

∑
i=1

Wc(i)(X (i)
k|k−1 − x̂k|k−1)(ψ

(i)
k|k−1 − ŷk|k−1)

T (2.80)

Calculating the Kalman gain for the a posteriori state estimate:

Kk = Pxy
k (Pyy

k )−1 (2.81)

The mean and covariance of the a posteriori state estimate can now be updated:

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1) (2.82)
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Pk = Pk|k−1 − KkPyy
k KT

k (2.83)

where:

x̂k : mean of a posteriori state estimate

Pk : covariance of a posteriori state estimate

yk : measurement of true state

The algorithm is run recursively with Pk being used to form next iteration’s Cholesky
factor [39].

2.8 Linearized Model

There exist multiple versions of MPC depending on the type of model available. In this
project it has been decided to implement linear MPC due to its advantages regarding com-
putational efficiency and well addressed stability. However, it is then required to linearise
the non-linear model around its operating points, which vary with time. The following
derivations detail a Taylor series expansion used to find the linear approximations. It has
been decided to use directly the IPC model, as it is the one which would allow the MPC
to account for structural load minimisation.

As seen in Section 2.5, the drive train model can be expressed as:(
Jr + Jg

)
ω̇r = (1− µd)Tr − Tg (2.84)

Inserting the expression for Tr and rearranging the expression:

ω̇r = −
(1− µd)2kby lb

3
(

Jr + Jg
) ∑

i
ybi −

Tg

Jr + Jg
(2.85)

which is linear and thus can be expressed as:

∆ω̇r = −
(1− µd)2kby lb

3
(

Jr + Jg
) ∑

i
∆ybi −

1(
Jr + Jg

)∆Tg (2.86)

The tower and blade model was developed in Section 2.4 as:

ẍt =
kbx

mteq
∑

i

(
xbi − xt

)
+

cbx

mteq
∑

i

(
ẋbi − ẋt

)
− kt

mteq

xt −
ct

mteq

ẋt (2.87)

ẍbi =
Fxi

mbeq

− kbx

mbeq

(
xbi − xt

)
− cbx

mbeq

(
ẋbi − ẋt

)
(2.88)

ÿt = −
3

2Hmteq

Tg +
kby

mteq
∑

i

(
ybi − yt

)
+

cby

mteq
∑

i

(
ẏbi − ẏt

)
− kt

mteq

yt −
ct

mteq

ẏt (2.89)
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ÿbi = −
Fyi

mbeq

−
kby

mbeq

(
ybi − yt

)
−

cby

mbeq

(
ẏbi − ẏt

)
(2.90)

Equations 2.87 and 2.89 are linear and therefore can be simply rewritten as:

∆ẍt =
kbx

mteq
∑

i
∆xbi +

cbx

mteq
∑

i
∆ẋbi −

(
B

kbx

mteq

+
kt

mteq

)
∆xt −

(
B

cbx

mteq

+
ct

mteq

)
∆ẋt (2.91)

∆ÿt = −
3

2Hmteq

∆Tg +
kby

mteq
∑

i
∆ybi +

cby

mteq
∑

i
∆ẏbi −

(
B

kby

mteq

+
kt

mteq

)
∆yt

−
(

B
cby

mteq

+
ct

mteq

)
∆ẏt

(2.92)

Conversely, Eqs. 2.88 and 2.90 need to be linearised, which is not straightforward. By
substituting vri by its expression considering wind shear and tower shadow as seen in
Section 2.2, as well as Fxi by the expression derived in Section 2.3, Eq. 2.88 is rewritten as:

ẍbi =
ρArCt

2Bmbeq

[
vmr2

t
R2 sin2 ψ− x2

h(
x2

h + R2 sin2 ψ
)2 + vm

(
R cos ψ + H

H

)α

+ vt − ẋt − ẋbi

]2

− kbx

mbeq

(xbi − xt)−
cbx

mbeq

(ẋbi − ẋt)

(2.93)

Note that the thrust coefficient Ct(λi, θi) is written as just Ct from now on for simplicity,
but always taking into account its dependency on θi and λi, which in turn depends on ωr,
ẏbi , vm, vt, ẋt and ẋbi . The same will be done for the power coefficient, Cp. Furthermore,
and due to the complexity of the following expressions, the relative wind speed seen by
each blade with all of its variables set in the corresponding operating points will be kept
as v∗ri

. All in all, the Taylor expansion results in the following:
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∆ẍbi =−
kbx

mbeq

∆xbi +

[
ρAr

2Bmbeq

(
∂Ct

∂ẋbi

∣∣∣∣
eq.

v∗2ri
− 2C∗t v∗ri

)
− cbx

mbeq

]
∆ẋbi

+
kbx

mbeq

∆xt +

[
ρAr

2Bmbeq

(
∂Ct

∂ẋt

∣∣∣∣
eq.

v∗2ri
− 2C∗t v∗ri

)
+

cbx

mbeq

]
∆ẋt

+
ρAr

2Bmbeq

[
∂Ct

∂vm

∣∣∣∣
eq.

v∗2ri
+ 2C∗t

(
r2

t
R2 sin2 ψ∗ − x2

h(
x2

h + R2 sin2 ψ∗
)2 +

(
R cos ψ∗ + H

H

)α
)

v∗ri

]
∆vm

+
ρAr

2Bmbeq

[
∂Ct

∂vt

∣∣∣∣
eq.

v∗2ri
+ 2C∗t v∗ri

]
∆vt +

ρv∗2ri
Ar

2Bmbeq

∂Ct

∂θi

∣∣∣∣
eq.

∆θi +
ρv∗2ri

Ar

2Bmbeq

∂Ct

∂ẏbi

∣∣∣∣
eq.

∆ẏbi

+
ρAr

2Bmbeq

[
C∗t 2v∗m

[
r2

t

(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)2(

x2
h + R2 sin2 ψ∗

)4

− r2
t

(
R2 sin2 ψ∗ − x2

h

)
2
(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)(

x2
h + R2 sin2 ψ∗

)4

+ α

(
−R sin ψ∗

H

)(
R cos ψ∗ + H

H

)α−1
]

v∗ri
+

∂Ct

∂ψ

∣∣∣∣
eq.

v∗2ri

]
∆ψ +

ρv∗2ri
Ar

2Bmbeq

∂Ct

∂ωr

∣∣∣∣
eq.

∆ωr

(2.94)

where:

∂Ct

∂ẋbi

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂ẋbi

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

ω∗r R− ẏ∗bi

v∗2ri

(2.95)

∂Ct

∂ẋt

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂ẋt

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

ω∗r R− ẏ∗bi

v∗2ri

(2.96)

∂Ct

∂vm

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂vm

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

−(ω∗r R− ẏ∗bi
)

v∗2ri

(
r2

t
R2 sin2 ψ∗ − x2

h(
x2

h + R2 sin2 ψ∗
)2

+

(
R cos ψ∗ + H

H

)α
) (2.97)

∂Ct

∂vt

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂vt

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

−(ω∗r R− ẏ∗bi
)

v∗2ri

(2.98)

∂Ct

∂ẏbi

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂ẏbi

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

−1
v∗ri

(2.99)
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∂Ct

∂ψ

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂ψ

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

−(ω∗r R− ẏ∗bi
)

v∗2ri

v∗m

[
r2

t

(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)2(

x2
h + R2 sin2 ψ∗

)4

− r2
t

(
R2 sin2 ψ∗ − x2

h

)
2
(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)(

x2
h + R2 sin2 ψ∗

)4

+ α

(
−R sin ψ∗

H

)(
R cos ψ∗ + H

H

)α−1
]

(2.100)

∂Ct

∂ωr

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

∂λ

∂ωr

∣∣∣∣
eq.

=
∂Ct

∂λ

∣∣∣∣
eq.

R
v∗ri

(2.101)

with ∂Ct
∂λ

∣∣∣
eq.

being computed from a lookup table. Note that the Taylor expansion has not

been simplified to see more clearly whether each of the terms has been correctly derived
from the corresponding partial derivatives.

Eq. 2.90 is also rewritten by substituting vri and Fyi by their corresponding expressions
as follows:

ÿbi = −
3ρArCp

4Bmbeq ωrlb

[
vmr2

t
R2 sin2 ψ− x2

h(
x2

h + R2 sin2 ψ
)2 + vm

(
R cos ψ + H

H

)α

+ vt − ẋt − ẋbi

]3

−
kby

mbeq

(
ybi − yt

)
−

cby

mbeq

(
ẏbi − ẏt

) (2.102)

and subsequently linearised as:
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∆ÿbi =−
kby

mbeq

∆ybi −
(

3ρv∗3ri
Ar

4Bmbeq ω∗r lb

∂Cp

∂ẏbi

∣∣∣∣
eq.

+
cby

mbeq

)
∆ẏbi

+
kby

mbeq

∆yt +
cby

mbeq

∆ẏt −
3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂vm

∣∣∣∣
eq.

v∗3ri

+ 3C∗p

(
r2

t
R2 sin2 ψ∗ − x2

h(
x2

h + R2 sin2 ψ∗
)2 +

(
R cos ψ∗ + H

H

)α
)

v∗2ri

]
∆vm

− 3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂vt

∣∣∣∣
eq.

v∗3ri
+ 3C∗pv∗2ri

]
∆vt −

3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂ẋt

∣∣∣∣
eq.

v∗3ri
− 3C∗pv∗2ri

]
∆ẋt

− 3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂ẋbi

∣∣∣∣
eq.

v∗3ri
− 3C∗pv∗2ri

]
∆ẋbi −

3ρv∗3ri
Ar

4Bmbeq lb

[
∂Cp

∂ωr

∣∣∣∣
eq.

1
ω∗r
− C∗p

1
ω∗2r

]
∆ωr

− 3ρAr

4Bmbeq ω∗r lb

[
C∗p3v∗m

[
r2

t

(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)2(

x2
h + R2 sin2 ψ∗

)4

− r2
t

(
R2 sin2 ψ∗ − x2

h

) (
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin2 ψ∗
)(

x2
h + R2 sin2 ψ∗

)4

+ α

(
−R sin ψ∗

H

)(
R cos ψ∗ + H

H

)α−1
]

v∗2ri
+

∂Cp

∂ψ

∣∣∣∣
eq.

v∗3ri

]
∆ψ

−
3ρv∗3ri

Ar

4Bmbeq ω∗r lb

∂Cp

∂θi

∣∣∣∣
eq.

∆θi

(2.103)

where the partial derivatives of Cp with respect of each corresponding variable can be
computed analogously to the ones for Ct in the expression for ∆ẍbi .

The generated power was expressed in Section 2.5 as:

Pe = Tgηgωr (2.104)

which can be linearised as:
∆Pe = ηg(ω

∗
r ∆Tg + T∗g ∆ωr) (2.105)

The relationship between blade root moments and blade deflections is already linear,
and therefore it can be written as:

∆Myi = kbx

2lb

3
∆xbi (2.106)

∆Mxi = kby

2lb

3
∆ybi (2.107)
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The turbulent part of the wind model was chosen in Section 2.2 as:

v̇t = −ωpvt + ωpnt (2.108)

Using this continuous time formulation requires nt to be interpreted as generalised con-
tinuous time white noise corresponding to a Wiener process with incremental variance σ2

t
as defined in Section 2.2. For more information on stochastic differential equations and
Wiener processes see [40].

Substituting the Kaimal spectrum peak frequency ωp by its definition and extracting
the variance out of the noise due to its dependency on vm, the following is obtained:

v̇t = −
vmπ

2L
vt +

vmπ

2L
σtet (2.109)

where et is (generalised continuous time) white noise with autocorrelation function δ(t)
(Dirac delta function). For simplification purposes, it will be assumed that the Kaimal
spectrum frequency and noise variance depends on the constant mean wind speed µv

instead of depending on the time varying mean wind speed vm. This directly makes the
expression linear:

∆v̇t = −
µvπ

2L
∆vt (2.110)

The mean wind speed was chosen as:

v̇m = nm (2.111)

where nm is interpreted analogously to nt, and presents an incremental variance of σ2
m,

defined in Section 2.2. The previous differential equation has no dependency on the states,
hence:

∆v̇m = 0 (2.112)

The effective wind speed at the rotor measured in the nacelle is simply written as:

∆vr = ∆vm + ∆vt − ∆ẋt (2.113)

Finally the actuator models are taken into account, starting with the pitch actuator,
which is linear and therefore can be written as:

∆θ̈i = ω2
θ ∆θire f − 2ωθξθ∆θ̇i −ω2

θ ∆θi (2.114)

and the same for the generator torque:

∆Ṫg =
∆Tgre f − ∆Tg

τg
(2.115)
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2.9 Linear Model in State Space Representation

The model has the following states, inputs, measured outputs and outputs to be con-
trolled (see Section 4.3 for a justification on the chosen outputs to be controlled):

x =
[
ωr xt ẋt yt ẏt xbi ẋbi ybi ẏbi θi θ̇i Tg vt vm ψ

]T
(2.116)

u =
[
θire f Tgre f

]T
(2.117)

y =
[
ωr ẍt ÿt Myi Mxi θi Pe vr ψ

]T
(2.118)

z =
[
ωr ẋt ẏt ẋbi ẏbi λ θi θ̇i Pe

]T
(2.119)

The model equations can be rearranged in state space form as follows:

ẋ = Ax + Bu =

[
A1 A2

A3 A4

]
x + Bu (2.120)

y = Cyx (2.121)

z = Czx (2.122)

It is assumed that the system matrices remain constant throughout the control horizon
of the MPC (see Sections 3.5 and 4.3 to find the definition and chosen value of this param-
eter respectively), and subsequently they are updated by changing the operating points of
the linear model for the next iteration of the algorithm. The system matrix is defined as
follows:

A1 =



0 0 0 0 0 0 0 −a1

0 0 1 0 0 0 0 0
0 −b3 −b4 0 0 b1 b2 0
0 0 0 0 1 0 0 0
0 0 0 −c4 −c5 0 0 c2

0 0 0 0 0 0 1 0
d10 d3 d4 0 0 −d1 d2 0
0 0 0 0 0 0 0 0


(2.123)

A2 =



0 0 0 −a2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
c3 0 0 −c1 0 0 0
0 0 0 0 0 0 0
d8 d7 0 0 d6 d5 d9

1 0 0 0 0 0 0


(2.124)
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A3 =



−e9 0 −e7 e3 e4 0 −e8 −e1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


(2.125)

A4 =



−e2 −e11 0 0 −e6 −e5 −e10

0 0 1 0 0 0 0
0 − f1 − f2 0 0 0 0
0 0 0 −g1 0 0 0
0 0 0 0 −ωp 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(2.126)

where the constants a1−2, b1−4, c1−5, d1−10, e1−11, f1−2, g1 represent the expressions shown
below:

a1 =
(1− µd)2kby lb

3
(

Jr + Jg
) (2.127)

a2 =
1

Jr + Jg
(2.128)

b1 =
kbx

mteq

(2.129)

b2 =
cbx

mteq

(2.130)

b3 = B
kbx

mteq

+
kt

mteq

(2.131)

b4 = B
cbx

mteq

+
ct

mteq

(2.132)

c1 =
3

2Hmteq

(2.133)

c2 =
kby

mteq

(2.134)

c3 =
cby

mteq

(2.135)

c4 = B
kby

mteq

+
kt

mteq

(2.136)

c5 = B
cby

mteq

+
ct

mteq

(2.137)
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d1 =
kbx

mbeq

(2.138)

d2 =
ρAr

2Bmbeq

(
∂Ct

∂ẋbi

∣∣∣∣
eq.

v∗2ri
− 2C∗t v∗ri

)
− cbx

mbeq

(2.139)

d3 =
kbx

mbeq

(2.140)

d4 =
ρAr

2Bmbeq

(
∂Ct

∂ẋt

∣∣∣∣
eq.

v∗2ri
− 2C∗t v∗ri

)
+

cbx

mbeq

(2.141)

d5 =
ρAr

2Bmbeq

[
∂Ct

∂vm

∣∣∣∣
eq.

v∗2ri
+ 2C∗t

(
r2

t
R2 sin ψ∗2 − x2

h

(x2
h + R2 sin ψ∗2)2

+

(
R cos ψ∗ + H

H

)α
)

v∗ri

]
(2.142)

d6 =
ρAr

2Bmbeq

[
∂Ct

∂vt

∣∣∣∣
eq.

v∗2ri
+ 2C∗t v∗ri

]
(2.143)

d7 =
ρv∗2ri

Ar

2Bmbeq

∂Ct

∂θi

∣∣∣∣
eq.

(2.144)

d8 =
ρv∗2ri

Ar

2Bmbeq

∂Ct

∂ẏbi

∣∣∣∣
eq.

(2.145)

d9 =
ρAr

2Bmbeq

[
C∗t 2v∗m

[
r2

t

(
x2

h + R2 sin ψ∗2
)2 (

2R2 cos ψ∗ sin ψ∗
)

(
x2

h + R2 sin ψ∗2)4

− r2
t

(
R2 sin ψ∗2 − x2

h

)
2
(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin φ∗2
)

(
x2

h + R2 sin ψ∗2)4

+ α

(
−R sin ψ∗

H

)(
R cos ψ∗ + H

H

)α−1
]

v∗ri
+

∂Ct

∂ψ

∣∣∣∣
eq.

v∗2ri

]
(2.146)

d10 =
ρv∗2ri

Ar

2Bmbeq

∂Ct

∂ωr

∣∣∣∣
eq.

(2.147)

e1 =
kby

mbeq

(2.148)

e2 =
3ρv∗3ri

Ar

4Bmbeq ω∗r lb

∂Cp

∂ẏbi

∣∣∣∣
eq.

+
cby

mbeq

(2.149)

e3 =
kby

mbeq

(2.150)

e4 =
cby

mbeq

(2.151)
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e5 =
3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂vm

∣∣∣∣
eq.

v∗3ri
+ 3C∗p

(
r2

t
R2 sin ψ∗2 − x2

h

(x2
h + R2 sin ψ∗2)2

+

(
R cos ψ∗ + H

H

)α
)

v∗2ri

]
(2.152)

e6 =
3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂vt

∣∣∣∣
eq.

v∗3ri
+ 3C∗pv∗2ri

]
(2.153)

e7 =
3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂ẋt

∣∣∣∣
eq.

v∗3ri
− 3C∗pv∗2ri

]
(2.154)

e8 =
3ρAr

4Bmbeq ω∗r lb

[
∂Cp

∂xbi

∣∣∣∣
eq.

v∗3ri
− 3C∗pv∗2ri

]
(2.155)

e9 =
3ρv∗3ri

Ar

4Bmbeq lb

[
∂Cp

∂ωr

∣∣∣∣
eq.

1
ω∗r
− C∗p

1
ω∗2r

]
(2.156)

e10 =
3ρAr

4Bmbeq ω∗r lb

[
C∗p3v∗m

[
r2

t

(
x2

h + R2 sin ψ∗2
)2 (

2R2 cos ψ∗ sin ψ∗
)2(

x2
h + R2 sin ψ∗2)4

− r2
t

(
R2 sin ψ∗2 − x2

h

)
2
(
2R2 cos ψ∗ sin ψ∗

) (
x2

h + R2 sin φ∗2
)

(
x2

h + R2 sin ψ∗2)4

+ α

(
−R sin ψ∗

H

)(
R cos ψ∗ + H

H

)α−1
]

v∗2ri
+

∂Ct

∂ψ

∣∣∣∣
eq.

v∗3ri

]
(2.157)

e11 =
3ρv∗3ri

Ar

4Bmbeq ω∗r lb

∂Cp

∂θi

∣∣∣∣
eq.

(2.158)

f1 = ω2
θ (2.159)

f2 = 2ωθξθ (2.160)

g1 =
1
τg

(2.161)

ωp =
µvπ

2L
(2.162)

The inputs are included in the system by means of B:

B =

[
0 0 0 0 0 0 0 0 0 0 f1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 g1 0 0 0

]T

(2.163)
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The sensor measurements are related to the states using Cy:

Cy =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −b3 −b4 0 0 b1 b2 0 0 0 0 0 0 0 0
0 0 0 −c4 −c5 0 0 c2 c3 0 0 −c1 0 0 0
0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
q2 0 0 0 0 0 0 0 0 0 0 q1 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(2.164)

where:

p1 = kbx

2lb

3
(2.165)

p2 = kby

2lb

3
(2.166)

q1 = ηgω∗r (2.167)

q2 = ηgT∗g (2.168)

Finally, the outputs to be controlled are related to the states using Cz:

Cz =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
r1 0 r4 0 0 0 0 0 0 0 0 0 r3 r2 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
q2 0 0 0 0 0 0 0 0 0 0 q1 0 0 0


(2.169)

where:

r1 =
R
v∗r

(2.170)

r2 = r3 =
−ω∗r R

v∗2r
(2.171)

r4 =
ω∗r R
v∗2r

(2.172)

2.10 Observability

The UKF state estimation will not converge unless the system is observable. Observ-
ability evaluates whether a system’s internal states can be deduced from the knowledge of
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its measurements. More rigorously, a continuous time system:

ẋ(t) = Ax(t), y(t) = Cx(t) (2.173)

is said to be observable if and only if y(t) ≡ 0→ x(t) ≡ 0.
If the following discrete time system is considered:

x(k + 1) = Ax(k), y(k) = Cx(k), x(0) = x0 (2.174)

it is possible to iterate in the following way:

x(0) = x0 y(0) = Cx0

x(1) = Ax0 y(1) = CAx0

x(2) = A2x0 y(2) = CA2x0

...

x(n− 1) = An−1x0 y(n− 1) = CAn−1x0

which can be expressed in matrix form as:
C

CA
...

CAn−1

 x0 =


0
0
...
0

 (2.175)

This system of equations with n unknowns has a unique solution if and only if this matrix,
called the observability matrix O, has rank n. Checking this condition in the linear wind
turbine model, and using Cy as C matrix, it was found out that the rank of O is 27, which
matches the number of states of our system. Hence, the system is observable.
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Chapter 3

WIND TURBINE CONTROL

3.1 Introduction

Wind turbines are large aeroelastic structures subjected to a continuously changing
stochastic wind, which require complex control strategies in order to fulfil the functional
requirements introduced in Section 1.5. All in all, the designed control methods have
the mission of reducing the structural loads in order to increase the lifetime of the wind
turbine as well as optimising power production.

Several sensors and actuators are commonly used for control purposes. As stated
in Section 2.6, an electric servo system corresponding to the generator torque actuator is
available, while blade pitch actuators can be hydraulic or electric servo systems. The struc-
ture also comprises blade load sensors, commonly strain sensors or optical fibres used to
measure the flapwise and edgewise blade bending moments [17], and accelerometers to
determine the sidewards and fore-aft tower motion. Furthermore, speed sensors are em-
ployed to measure the rotational speed of the generator and rotor, and an anemometer
situated in the top of the nacelle provides wind speed measurements at hub-height. Apart
from this, LIDAR solutions have been studied in the last decade to explore remote wind
measuring, but are not that widely used in real life implementations due to high mainte-
nance costs and thus it has been decided not to use them in this project.

3.2 Requirement Specification

Based on information in Chapter 1 and Chapter 2, a set of requirements can be set up
for the various parts of the solution.

3.2.1 General control objectives

Based on the functional requirements, the following general control objectives can be
formulated [27]:

1. Regulation of generator counter torque based on rotational speed ωr for optimal tip
speed ratio operation in partial load (obj. 1).

2. Regulation of generator counter torque based on tower sidewards loads for their
reduction (obj. 4).
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3. CPC based on the rotational speed ωr for rated power operation and reduced fore-aft
tower structural loads in full load (obj. 2, 4).

4. IPC based on flapwise blade loads in order to reduce flapwise and edgewise bending
loads (obj. 3).

3.2.2 Kalman Filter

The requirements for the state estimator have been defined based on the theory pre-
sented in Section 2.7. Specific numbers such as errors have been designated based on
subjective self-determined goals rather than any objective metric.

1. The state estimator must be in the form of a UKF.

2. The UKF must be able to estimate states with an average error of less than 5%.

3.2.3 MPC

Goals for the MPC concentrate largely on desired function and control priorities.

1. MPC must be computationally feasible on available hardware.

2. MPC must have control and prediction horizon that ensure stability.

3. MPC must have rotor speed as main priority to avoid physical strain.

4. MPC must have power output as secondary priority to avoid damaging the generator.

5. MPC must have tower and blade loads as tertiary priority to minimise fatigue and
extend lifetime.

3.3 Control Loops

The main regulation strategies can be seen in Fig. 3.1. The control loop based on
Generator Torque Control (GTC) measures the generator rotational speed ωg and the side-
wards tower displacement acceleration ÿt in order to compute a torque reference Tgre f in
order to reduce tower sidewards tower bending and drive train torsion. Apart from that,
CPC is in charge of generating a global pitch angle reference θ̄re f using generator speed ωg

and fore-aft tower top acceleration ẍt in order to reduce fore-aft tower loads and optimise
power production. Furthermore, IPC will reduce blade and nacelle loads using flapwise
blade moments and fore-aft tower top acceleration measurements, as well as the blades’
azimuth angle [27].

55



Group 934 Chapter 3. WIND TURBINE CONTROL

CPC

IPC

+ +

+ +

+ +

GTC

Figure 3.1: Schematic of the main control loops, with GTC refering to generator torque control, and CPC and
IPC to collective and individual pitch control respectively [15, 27].

It will not be necessary to design each of these control loops separately, as the cost
function of the MPC will be designed to fulfil all control objectives at the same time in an
optimal way by making use of its internal linear model derived in Sections 2.8 and 2.9, as
explained in Section 3.5.

3.4 Below-Rated Wind Speed Proportional Torque Control

The non-linear model used for UKF state estimation has to follow a pitch and torque
reference, which will be generated in an optimal way by the MPC by the end of this project.
Nevertheless, the UKF algorithm should be tested prior to the MPC implementation. For
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this reason, a basic controller needs to be implemented, which will try to maximise the
power production in below-rated wind speed. To accomplish that, the tip speed ratio λ

should have an optimum value λopt, that is, the value at which Cp is maximum as seen in
Fig. 3.2. From λopt, the optimal rotor speed can be computed based on the wind speed
measured at each instant (ignoring blade dynamics for simplicity) as [41]:

ωopt =
λoptvr

R
(3.1)

This method would be feasible if the wind speed measurements were reliable, but dis-
turbances occasioned by the rotor movement as well as the inherent delay due to the
anemometers being placed on top of the nacelle and the lack of spatial information pro-
vide noisy and unreliable measurements. Hence, the control objective should be achieved
in a different way.

0 2 4 6 8 10 12 14 16 18 20
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theta=5º
theta=10º
theta=15º
theta=20º

Figure 3.2: Power coefficient dependency on tip speed ratio λ and blade pitch angle θ.

If it is assumed that the rotor speed is following ωopt and that the controller and turbine
dynamics are infinitely fast so that the actual rotor speed is equal to this reference, then
the aerodynamic torque for this rotor speed would be given by:

Tr =
1
2

ρv3
r ArCp(λ, θ)

1
ωr

(3.2)

Note that CPC has to be assumed for the design of this controller; otherwise the aero-
dynamic torque would be expressed taking into account each individual blade as seen in
Section 2.3. This approximation should also provide acceptable references in the IPC case.
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The previous equation can be rearranged by replacing vr by its expression isolated
from the tip speed ratio:

Tr =
1
2

ρR3ArCp(λ, θ)

λ3 ω2
r (3.3)

which in the optimal case yields:

Tr =
1
2

ρR3ArCpmax

λ3
opt

ω2
ropt

(3.4)

Eq. 3.4 relates the rotor speed and the aerodynamic torque and can be simply written as:

Tr = Kω2
ropt

(3.5)

where:

K =
1
2

ρR3ArCpmax

λ3
opt

(3.6)

As the optimal value for the tip speed ratio does not depend on rotor speed, Eq. 3.5 can
be used for any given value of ωr, resulting in the following optimal aerodynamic torque:

Tr = Kω2
r (3.7)

In steady state, the generator torque is the aerodynamic torque minus the loss torque. As-
suming that these losses are negligible for the derivation of this controller would mean that
it would be possible to obtain optimal power production if the generator torque follows
Eq. 3.7:

Tgre f = Kω2
r (3.8)

The performance of this controller relies on wind speed variations and rotor inertia, as
it has been derived assuming steady state conditions.

3.5 MPC Formulation

This section is mainly based on [42] and gives a theoretic insight on MPC, providing
the design procedure needed for its proper implementation.

The objective of MPC is to control a plant in an optimal manner with respect to a given
cost function by:

1. Optimising over a certain prediction horizon Hp (that is, Hp samples into the future)
to obtain a sequence of predicted optimal control inputs.

2. Applying the 1st sample of the determined predicted optimal inputs to the plant.

3. Moving one sample and repeating the above procedure (receding horizon).
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Consider the discrete time linear system [42]:

x(k + 1) = Ax(k) + Bu(k) (3.9)

y(k) = Cyx(k) (3.10)

z(k) = Czx(k) (3.11)

with:

x ∈ Rn : state vector

u ∈ Rl : input vector

y ∈ Rmy : vector of measured outputs

z ∈ Rmz : vector of outputs to be controlled

The variables y and z typically overlap, so all the controlled outputs will be measured.
Also, if y ≡ z, the set m ≡ my ≡ mz and C ≡ Cy ≡ Cz. At time step k, the sequence of
actions will be the following:

1. Obtain measurements y(k).

2. Calculate the optimal plant input u(k).

3. Apply u(k) to the plant.

In order to derive the basic formulation of MPC it should be assumed that the plant model
is linear, that the cost function is quadratic and that the constraints are in the form of linear
inequalities. Apart from that, the model should be time invariant, and the cost function
penalises changes in the input vector ∆u(k) instead of particular values u(k) in order to
introduce integral action and thus avoid steady state error.

To make this formulation realistic, it should not be assumed that the state variables can
be measured, so an estimate x̂(k|k) based on the measurements up to time k of the state
x(k) will be used. That means the estimate is based on measurements of outputs up to
y(k) and inputs up to u(k− 1), as the next input u(k) is yet to be determined. The future
value of the input u at time k + i is denoted as û(k + i|k), while x̂(k + i|k), ŷ(k + i|k) and
ẑ(k + i|k) indicate the predictions made at time k of x, y and z at time k + i, supposing that
a sequence of inputs û(k + j|k) with j ∈ [0, 1, ..., i− 1] has taken place.

We optimise with respect to the quadratic cost function [42]:

V(k) =
Hp

∑
i=Hw

||ẑ(k + i|k)− r(k + i|k)||2Q(i) +
Hu−1

∑
i=0
||∆û(k + i|k)||2R(i) (3.12)

where:

||w||M =
√

wT Mw
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Q(i), R(i) ≥ 0 : positive semi-definite weight matrices

r(k + i|k) : reference signal

Hp : prediction horizon

Hu : control horizon (Hp ≥ Hu)

Hw : window parameter (Hw ≥ 1)

Therefore, the cost function penalises deviations (error vector) on the predicted controlled
outputs ẑ(k + i|k) from a reference trajectory r(k + i|k). It is important to remark that the
prediction horizon has length Hp, but it is not required that we start penalising deviations
of z from r immediately (if Hw > 1), as there might be some delay between applying an
input and observing any effect. It will be always assumed that Hu ≤ Hp, and the change
in input (or control move) will be ∆û(k + i|k) = û(k + i|k)− û(k + i− 1|k) for i < Hu and
∆û(k + i|k) = 0 for i ≥ Hu so that û(k + i|k) = û(k + Hu − 1|k) for all i ≥ Hu.

The parameters Q(i), R(i), Hp, Hu, Hw are generally tuning parameters.
Constraints on the actuator slew rates (Eq. 3.13), actuator ranges (Eq. 3.14) and con-

trolled variables (Eq. 3.15) can be introduced as follows [42]:

E
[

∆U (k)
1

]
≤ 0, ∆U (k) = [∆û(k|k)T · · ·∆û(k + Hu − 1|k)T]

T
(3.13)

F
[
U (k)

1

]
≤ 0, U (k) = [û(k|k)T · · · û(k + Hu − 1|k)T]

T
(3.14)

G
[
Z(k)

1

]
≤ 0, Z(k) = [ẑ(k + Hw|k)T · · · ẑ(k + Hp|k)T]

T
(3.15)

with E, F and G being matrices of appropriate dimensions.
It is now crucial to find a way of computing the predicted values of the controlled

variables ẑ(k + i|k) from the estimate of the current state x̂(k|k) and the last input u(k− 1)
and the assumed future input changes ∆û(k + i|k). Lets consider a situation in which the
whole state vector is measured (x̂(k|k) = x(k) = y(k), so Cy = I) and we know nothing
about disturbances or measurement noise for simplicity. Then it is possible to predict by
iterating the model as follows:

x̂(k + 1|k) = Ax(k) + Bû(k|k) (3.16)

x̂(k + 2|k) = Ax(k + 1|k) + Bû(k + 1|k) (3.17)

= A2x(k) + ABû(k|k) + Bû(k + 1|k) (3.18)
...

x̂(k + Hp|k) = Ax̂(k + Hp − 1|k) + Bû(k + Hp − 1|k) (3.19)

= AHp x(k) + AHp−1Bû(k|k) + · · ·+ Bû(k + Hp − 1|k) (3.20)

Note that û(k|k) has been used in the 1st line instead of u(k), as we do not know the value
of u(k) at the time when we need to calculate the predictions.
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As the input was assumed to only vary from time k to k + Hu − 1, and remain constant
afterwards, û(k + i|k) = û(k + Hu − 1) for Hu ≤ i ≤ Hp − 1. Furthermore, it is desired
to reformulate the inputs û(k + i|k) in terms of ∆û(k + i|k) by ∆û(k + i|k) = û(k + i|k)−
û(k + i− 1|k):

û(k|k) = ∆û(k|k) + u(k− 1) (3.21)

û(k + 1|k) = ∆û(k + 1|k) + ∆û(k|k) + u(k− 1) (3.22)
...

û(k + Hu − 1|k) = ∆û(k + Hu − 1|k) + · · ·+ ∆û(k|k) + u(k− 1) (3.23)

Therefore:

x̂(k + 1|k) = Ax(k) + B[∆û(k|k) + u(k− 1)] (3.24)

x̂(k + 2|k) = A2x(k) + AB[∆û(k|k) + u(k− 1)]

+ B[∆û(k + 1|k) + ∆û(k|k) + u(k− 1)] (3.25)

= A2x(k) + (A + I)B∆û(k|k) + B∆û(k + 1|k) + (A + I)Bu(k− 1) (3.26)
...

x̂(k + Hu|k) = AHu x̂(k|k) + (AHu−1 + · · ·+ A + I)B∆û(k|k) + · · ·
+ B∆û(k + Hu − 1|k) + (AHu−1 + · · ·+ A + I)Bu(k− 1) (3.27)

x̂(k + Hu + 1|k) = AHu+1 x̂(k|k) + (AHu + · · ·+ A + I)B∆û(k|k) + · · ·
+ (A + I)B∆û(k + Hu − 1|k) + (AHu + · · ·+ A + I)Bu(k− 1) (3.28)

...

x̂(k + Hp|k) = AHp x̂(k|k) + (AHp−1 + · · ·+ A + I)B∆û(k|k) + · · ·
+ (AHp−Hu + · · ·+ A + I)B∆û(k + Hu − 1|k)
+ (AHp + · · ·+ A + I)Bu(k− 1) (3.29)

In matrix notation this yields:

X (k) = Ax̂(k|k) + Buu(k− 1) + B∆u∆U (k) (3.30)

where:

X (k) =



x̂(k + 1|k)
...

x̂(k + Hu|k)
x̂(k + Hu + 1|k)

...
x̂(k + Hp|k)


, A =



A
...

AHu

AHu+1

...
AHp


, Bu =



B
...

∑Hu−1
i=0 AiB

∑Hu
i=0 AiB

...

∑
Hp
i=0 AiB
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B∆u =



B 0 0 · · · 0
AB + B B 0 · · · 0

...
. . . . . .

...
∑Hu−1

i=0 AiB · · · B
∑Hu

i=0 AiB · · · AB + B
...

...
...

∑
Hp
i=0 AiB · · · ∑

Hp−Hu
i=0 AiB


The predictions of z are computed as:

ẑ(k + 1|k) = Cz x̂(k + 1|k) (3.31)

ẑ(k + 2|k) = Cz x̂(k + 2|k) (3.32)
... (3.33)

ẑ(k + Hp|k) = Cz x̂(k + Hp|k) (3.34)

that in matrix notation yields:
Z(k) = CX (k) (3.35)

with:

Z(k) =

ẑ(k + Hw|k)
...

ẑ(k + Hp|k)

 , C = diag(Cz)

Substituting X (k) by the expression derived in Eq. 3.30:

Z(k) = Ψx̂(k|k) + Υu(k− 1) + Θ∆U (k) (3.36)

where:
Ψ = CA, Υ = CBu, Θ = CB∆u

Furthermore, lets define a vector with the difference between the future target trajectory
and the response of the system over the prediction horizon if no input changes were made
(∆U (k) = 0):

E(k) = T (k)−Ψx̂(k|k)− Υu(k− 1) (3.37)

where:

T (k) =

r(k + Hw|k)
...

r(k + Hp|k)


Now it is possible to reformulate the cost in terms of ’known’ signals at time k and ∆U (k):

V(k) =
Hp

∑
i=Hw

||ẑ(k + i|k)− r(k + i|k)||2Q(i) +
Hu−1

∑
i=0
||∆û(k + i|k)||2R(i)
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= ||Z(k)− T (k)||2Q + ||∆U (k)||2R (3.38)

= ||Θ∆U (k)− E(k)||2Q + ||∆U (k)||2R (3.39)

where the weighting matrices are defined as:

Q = diag(Q(Hw), · · · , Q(Hp)) (3.40)

R = diag(R(0), · · · , R(Hu − 1)) (3.41)

Finally, the cost function is reformulated again for computational reasons:

V(k) = ||Θ∆U (k)− E(k)||2Q + ||∆U (k)||2R (3.42)

= E(k)TQE(k)− 2∆U (k)TΘTQE(k) + ∆U (k)T[ΘTQΘ +R]∆U (k) (3.43)

= const− ∆U (k)TG + ∆U (k)TH∆U (k) (3.44)

with:
G = 2ΘTQE(k), H = ΘTQΘ +R

3.6 Solving the Unconstrained Case

The unconstrained control law can be found by setting the gradient of the cost function
V(k) to zero:

0 = 5∆U (k)V(k) = −G + 2H∆U (k) (3.45)

and then solve with respect to ∆U (k):

∆U (k)opt =
1
2
H−1G (3.46)

The minimum is guarantied by differentiating the gradient again with respect to ∆U (k) to
obtain the Hessian of V:

∂2V
∂∆U (k)2 = 2H = 2(ΘTQΘ +R) > 0 (3.47)

Now, the control move at time k is applied as the first l rows of the vector ∆U (k)opt:

∆û(k|k)opt = [Il 0l · · · 0l ]∆U (k)opt (= ∆u(k)opt) (3.48)

In order to get the controller gain in the same form as the one computed by MATLAB,
some rearangement has to be made. Recalling that:

G = 2ΘTQE(k) = 2ΘTQ(T (k)−Ψx̂(k|k)− Υu(k− 1)) (3.49)

H = ΘTQΘ +R (3.50)
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the following is obtained:

∆û(k|k)opt = [Il 0l · · · 0l ]
1
2
H−1G (3.51)

= [Il 0l · · · 0l ](ΘTQΘ +R)−1ΘTQE(k) (3.52)
∆
= KMPCE(k) (3.53)

= KMPC(T −Ψx̂(k|k)− Υu(k− 1)) (3.54)

= KMPC[I −Ψ − Υ]

 T
x̂(k|k)

u(k− 1)

 ∆
= Ks

 T
x̂(k|k)

u(k− 1)

 (3.55)

with KMPC being the controller gain matrix and Ks the gain computed by "smpccon" MAT-
LAB function. A block diagram of the derived controller can be seen in Fig. 3.3.

Figure 3.3: MPC controller with no constraints and full state measurement [42].

In a more realistic case, not all the states would be available for measurement, and an
observer needs to be used. Hence, the observer will provide the state estimate x̂(k|k) that
would replace x(k), as seen in Fig. 3.4.
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Figure 3.4: MPC controller with no constraints and state observer [42].

Some computational aspects need to be taken into account. First, the following needs
to be guaranteed:

H = (ΘTQΘ +R) > 0 (3.56)

Secondly, the inverse of H in:

∆U (k)opt =
1
2
H−1G (3.57)

should never be computed directly, as Θ is often ill conditioned, wich can result in H
being ill conditioned. Instead, Cholesky or SVD factorisation of Q and R should be used
to obtain a least squares problem, and then solve it by QR factorisation.

3.7 Solving the Constrained Case

When the control problem incorporates constraints, they should be expressed in terms
of ∆U (k) and variables known at time k.

For the actuator range constraints:

F
[
U (k)

1

]
≤ 0 (3.58)

the matrix F is expressed as F = [F1 · · · FHu ] such that:

F
[
U (k)

1

]
=

Hu

∑
j=1

Fjû(k + j− 1|k) + f ≤ 0 (3.59)

which can be written in terms of ∆û as:

Hu

∑
i=1

Hu

∑
j=i

Fj∆û(k + i− 1|k) +
Hu

∑
j=l

Fjû(k− 1) + f ≤ 0 (3.60)
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and then written as a matrix inequality in ∆U :

F∆U (k) ≤ −F1u(k− 1)− f (3.61)

with F = [F1 · · · FHu ] and Fi = ∑Hu
j=1 Fj.

For the controlled variable constraints:

G
[

∆Z(k)
1

]
= G

[
Ψx̂(k|k) + Υu(k− 1) + Θ∆U (k)

1

]
≤ 0 (3.62)

it is possible to write G = [Γ g] to obtain a matrix inequality in ∆U :

Γ(Ψx̂(k|k) + Υu(k− 1) + Θ∆U (k)) + g ≤ 0 (3.63)

Rearranging the expression:

ΓΘ∆U (k) ≤ −Γ(Ψx̂(k|k) + Υu(k− 1))− g (3.64)

For the actuator slew range constraints:

E
[

∆U (k)
1

]
≤ 0 (3.65)

it is possible to write E = [W − w] to obtain a matrix inequality in ∆U :

W∆U (k) ≤ w (3.66)

The constrained MPC problem can now be formulated as:

min
∆U (k)

V(k) = −∆U (k)TG + ∆U (k)TH∆U (k) (3.67)

subject to:  F
ΓΘ
W

∆U (k) ≤

 −F1u(k− 1)− f
−Γ(Ψx̂(k|k) + Υu(k− 1))− g

w

 (3.68)

This has the standard form of a quadratic optimisation algorithm with linear inequality
constraints, which is convex due to H ≥ 0, and thus there exist standard algorithms to
compute its solution.

There exists the possibility of softening the constraints in order to avoid possible infea-
sibility due to large disturbances, which is briefly explained in Appendix A.5.
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3.8 Mita-Teknik Controller

Mita-Teknik has provided a solution in the form of two controllers; a torque controller
that follows a rotor speed reference and a pitch controller that follows a collective pitch
reference as a function of TSR as seen in Figure 3.5.

Figure 3.5: Optimal pitch

For below-rated wind speeds, the TSR can be as high as 14 due to the minimum ro-
tor speed of 5 rpm. For rated and above-rated wind speeds, the TSR will instead drop
lower than the optimal TSR. For below-rated wind speeds, where possible, the pitch and
torque controllers combined will achieve a rotor speed that results in a TSR of 9.0621. This
combination maximises the power coefficient, Cp, which determines the amount of energy
that is extracted from the wind. Figure 3.6 shows the graph from Figure 3.5 superimposed
on a contour map of the power coefficient. This demonstrates how the optimal pitch and
TSR combined result in a high power coefficient. The generator torque controller will
not be covered here in great detail. For below-rated rotor speeds the generator torque is
proportional to the rotor speed. For above-rated rotor speed, the torque will be inversely
proportional to keep power production at the rated output.
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Figure 3.6: Blade performance

As can be seen in Figure 3.6, the highest power coefficient is achieved for a TSR of
9.0621, making this the optimal TSR, and a pitch of 0°. For above-rated wind speeds, the
pitch controller must maintain the rated rotor speed of 7.56 rpm. This means that the
optimal TSR can no longer be maintained, as it would require the rotor speed to exceed
the rated value. This occurs at wind speeds of approximately 10.5 m/s. At this point, the
collective pitch reference will be adjusted to keep the rotor speed at its rated speed. As a
consequence, there is a drop-off in the power coefficient at wind speeds of 10.5 m/s and
above, shown in Figure 3.7, as this energy cannot be utilised.

Figure 3.7: Cp curve

The turbine reaches rated power output at 10.5 m/s, corresponding to the point where
the rotor reaches rated speed. As wind speeds increase, the pitch increases to reduce the
aerodynamic torque acting on the rotor and keeping the rotor speed and generator torque
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at rated values. This also reduces the thrust force on the blades, which does not contribute
to rotor speed, but acts as a load on the blades. Figure 3.8 shows the pitch, rotor speed,
generator power and thrust force for static wind speeds, i.e. without turbulence. Note
how the pitch for below-rated wind speeds stays at approximately 0° corresponding to the
optimal pitch for the optimal TSR of 9.0621, demonstrating that the controller correctly
maximises the power output.

Figure 3.8: Static performance

There are both mechanical and electrical losses in the turbine as a function of aerody-
namic torque and generator power respectively. The electrical losses are calculated simply
as a scalar value of generator power. The mechanical losses are modelled by an unknown
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function. Both electrical and mechanical losses are shown in Figure 3.9. Note that the
mechanical function is likely a curve, but is presumably only evaluated for three points
and plotted linearly between the points.

Figure 3.9: Loss tables

Two simulations will be carried out for this controller; one for a mean wind speed of
16 m/s and one for 6 m/s with normal turbulence as defined by the third edition of the
IEC 64100-1 standard. These wind speeds represent above-rated and below-rated wind
speeds respectively and will demonstrate situational behaviour of the controller. As the
controller employs collective pitch control, only one blade will be shown for each scenario
as the pitch is the same for all blades. All figures, including tower and blade loads, can be
seen in Appendix B.1.
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3.8.1 6 m/s mean wind speed test

The following test is carried out for a mean wind speed of 6 m/s. As can be seen in
Figures 3.10b to 3.10d, the power generated is proportional to the generator torque and
effective wind speed. As the wind speed increases, generator torque also increases which
results in a larger power output. The rotor speed seen in Figure 3.10e can be seen to be
correlated to to wind and generator torque but the relationship is not quite as clear as the
torque. The pitch, meanwhile, can be seen to be approximately inversely proportional to
the torque, wind and power generated, as power output is greater for lower pitch angles
in below-rated production.
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Figure 3.10: Bladed simulation results for 6 m/s wind speed.

3.8.2 16 m/s mean wind speed test

The pitch in Figure 3.11a can be seen to change proportionally to the wind in Fig-
ure 3.11d to maintain the rotor speed at a mean value of 7.56 rpm. As the turbine is
operating at rated production, the power output seen in Figure 3.11b maintains a value of
approximately 15 MW. However, due to a less than instantaneous response time for the
pitch, the rotor speed fluctuates substantially. For this reason the generator torque can
be seen to be inversely proportional to the rotor speed to ensure a relatively stable power
output.
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Figure 3.11: Bladed simulation results for 16 m/s wind speed.
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Chapter 4

IMPLEMENTATION

4.1 Introduction

In this chapter, all the theory covered in Chapter 2 and Chapter 3 will be implemented.
The specific settings used for state estimation will be presented, including variables to be
measured and their typical noise associated to them, and parameters such as the prediction
and control horizon, weight matrices, lower and upper bounds for variables and reference
setpoints will be discussed within the context of MPC. Finally, an overview of the whole
estimation and control algorithm will be shown.

4.2 Kalman Filter Implementation

The design of the Kalman filter is explained in Section 2.7. Here, that design is im-
plemented by formulating a set of states, inputs and outputs, and the Kalman filter’s
effectiveness will be documented.

The states of the system will be the angular velocity of the rotor/generator, the fore-aft
and sidewards position and velocity of the tower, the flapwise and edgewise position and
velocity of each individual blade, as well as their pitch angle and its derivative, the gen-
erator torque, the turbulent and mean wind velocity and the blades azimuth angle. The
inputs of the system will be the desired pitch of individual blades of the turbine and the
desired generator torque. The outputs will be the angular velocity of the rotor/genera-
tor, the fore-aft and sidewards acceleration of the tower, the flapwise and edgewise root
bending moments for each blade, the pitch angle of each blade, the generated power, the
relative wind velocity in the rotor and the azimuth angle. The state space system then
becomes:

x = [ωr xt ẋt yt ẏt xbi ẋbi ybi ẏbi θi θ̇i Tg vt vm ψ]T (4.1)

u =
[
θire f Tgre f

]T
(4.2)

y = [ωr ẍt ÿt Myi Mxi θi Pe vr ψ]T (4.3)

The state transition functions are as follows:

ẋ1 =
(1− µd)Tr − x24

Jr + Jg
(4.4)
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ẋ2 = x3 (4.5)

ẋ3 =
kbx

mteq
∑

i
(x6+i − x2) +

cbx

mteq
∑

i
(x9+i − x3)−

kt

mteq

x2 −
ct

mteq

x3 (4.6)

ẋ4 = x5 (4.7)

ẋ5 =
3

2Hmteq

x24 +
kby

mteq
∑

i
(x12+i − x4) +

cby

mteq
∑

i
(x15+i − x5)−

kt

mteq

x4 −
ct

mteq

x5 (4.8)

ẋ6+i = x9+i (4.9)

ẋ9+i =
Fxi

mbeq

− kbx

mbeq

(x6+i − x2)−
cbx

mbeq

(x9+i − x3) (4.10)

ẋ12+i = x15+i (4.11)

ẋ15+i =
Fyi

mbeq

−
kby

mbeq

(x12+i − x4)−
cby

mbeq

(x15+i − x5) (4.12)

ẋ18+i = x21+i (4.13)

ẋ21+i = ω2
θ u1+i − 2ωθξθx21+i −ω2

θ x18+i (4.14)

ẋ24 =
u4 − x24

τg
(4.15)

ẋ25 = − x26π

2L
x25 +

x26π

2L
nt (4.16)

ẋ26 = nm (4.17)

ẋ27 = x1 (4.18)

where:

Tr = ∑
i
(−x12+i)kby

2lb

3
(4.19)

Fxi =
1
2

ρv2
ri

Ar
Ct

B
(4.20)

Fyi =
1
2

ρv3
ri

Ar
Cp

B
1
x1

3
2lb

(4.21)

and with vri defined as:

vri = x26

r2
t

R2 sin
(

x27 +
2π
B i
)2 − x2

h(
x2

h + R2 sin
(
x27 +

2π
B i
)2
)2 +

(
R cos

(
x27 +

2π
B i
)
+ H

H

)α


+ x25 − x3 − x9−11

(4.22)

with i ∈ {0, 1, 2}.
The measurement functions are as follows:

y1 = x1 (4.23)
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y2 =
kbx

mteq
∑

i
(x6+i − x2) +

cbx

mteq
∑

i
(x9+i − x3)−

kt

mteq

x2 −
ct

mteq

x3 (4.24)

y3 =
3

2Hmteq

Tg +
kby

mteq
∑

i
(x12+i − x4) +

cby

mteq
∑

i
(x15+i − x5)−

kt

mteq

x4 −
ct

mteq

x5 (4.25)

y4+i = x6+ikbx

2lb

3
(4.26)

y7+i = x12+ikby

2lb

3
(4.27)

y10+i = x18+i (4.28)

y13 = ηgx24x1 (4.29)

y14 = x26 + x25 − x3 (4.30)

y15 = x27 (4.31)

The process noise covariance matrix is derived from the state space equations above,
describing the variance of the stochastic variables seen in Equations 4.16 and 4.17. Equa-
tions 4.32 and 4.33 show the variances present in the system.

var
( x26π

2L
nt

)
=
( x26π

2L

)2
σ2

t (4.32)

var (nm) = σ2
m (4.33)

Note that σt and σm are defined in Section 2.2. The process covariance matrix Q would
then present the terms

( x26π
2L

)2
σ2

t and σ2
m located in the row and column corresponding to

the turbulent (x25) and mean wind speed (x26) respectively, and zeros otherwise.
The standard deviation of the noise for all measurements has been chosen by finding

out the typical errors for each sensor, which can be seen in Table 4.1.

Table 4.1: Standard deviation for sensor measurement noise

Sensor measurement σ

Generator speed 0.017
Accelerometer 0.04

Blade root −
Electrical power 0.035

Wind speed 1
Azimuth angle −

Pitch angle 0.01

Apart from this, the state covariance P should be, by definition, symmetric positive
definite. It was found out that this was not always possible to fulfil. The reasons for it
not being positive definite could go from the system being unstable or not observable,
both of which do not apply to our case, to having low values of the initial P with respect
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to the actual errors or having high model uncertainty. If the Bladed data is taken as
measurements, then it makes sense that initialising P with variances of magnitude close
to 0.01 does not correctly represent the huge mismatch there is between our model and
the one used by the simulation tool (which will be discussed in detail in Chapter 5). To
prevent the code from stopping due to this issue, it was decided to implement Higham’s
method [43], which finds the nearest positive definite approximate of P (minimising the
Frobenius norm of the difference) in case there is an iteration in which this condition is
not fulfilled.

4.3 MPC Implementation

The theory behind MPC is explained in Section 3.5. Implementation and design choices
are outlined here. Key consideration to make are the prediction horizon, control horizon,
constraints, and weights. The MPC must be able to pursue two separate objectives de-
pending on the wind speed. At rated and above-rated wind speeds, the objective is to
maintain the rated ωr of 7.56 rpm. In this scenario, the turbine has achieved rated pro-
duction, and the blades will be pitched to maintain the rotor speed. Below rated wind
speed, the blade pitch is fixed at 0° while the controller will maintain a TSR of 9.0621
which maximises the power coefficient. The generator torque will be altered as necessary
to achieve this. While each blade has its own tip speed ratio, they are all relative to the
rotor speed. As there is only one collective pitch reference, the lambda used will be based
on the estimated effective wind velocity at hub height. This means that for below-rated
wind speeds, the controller will utilise collective control. For above-rated wind speeds,
the controller will utilise individual pitch control to maintain a constant torque on the
rotor while compensating for cyclic variations in relative wind speeds seen by individual
blades resulting from wind shear and tower shadow. Simultaneously, collective pitch will
compensate for overall changes in wind speed. There are no separate setpoints, but both
forms are implicit in the MPC control. The approach for individual pitch control should
also attenuate the stress placed on the blades resulting fluctuations in loads. Additionally,
the MPC should be able to use the turbine model to predict tower loads and minimise
those as well. The controlled variables z that are of interest are the angular velocity of
the rotor, tower fore-aft and lateral velocities, blade flap-wise and edge-wise velocities, tip
speed ratio, pitch rate of the blades, and power generated. The controlled variables then
become:

z =
[
ωr ẋt ẏt ẋb ẏb λ θi θ̇i Pe

]T
(4.34)

MathWorks [44] provides a simple and comprehensive approach to MPC design, and
will serve as the guiding inspiration with the caveat that the guide is designed to be used
with MATLAB tools, and will have to be adapted for use in a general case.

77



Group 934 Chapter 4. IMPLEMENTATION

4.3.1 Horizons

The window parameter Hw is defined to be equal to 1 as input is assumed to be ap-
plied without delay. As a rule of thumb, the prediction horizon should be approximately
equivalent to the closed-loop response time such that T ≈ Hp Ts ⇔ Hp = T

Ts
, though it

must also considered that larger prediction horizons can be computationally infeasible.
Since pitch is only a concern for above-rated wind speeds, that is the region that will be
considered. As turbulence is modelled as a first order system driven by white noise, large
sudden fluctuations will be limited to a few outliers. The largest change in wind velocity
seen by individual blades in the span of a few seconds thus happens as a result of the
change in azimuth angle. For a given wind speed measured at the hub, the wind speed
perceived by individual blades will increase and decrease with changes in altitude relative
to the hub, with the lowest speeds additionally being affected by the tower shadow. As
such the response time will be considered the time it takes for a blade to undertake the
pitch adjustment in order to maintain a constant aerodynamic torque on the rotor in a
worst case scenario.

The wind speed that brings about the largest difference in pitch from highest to lowest
azimuth angle must be found. Using Equation 2.30, the wind seen by individual blades
can be calculated. As the influence on the relative wind velocity caused by the tower fore-
aft and blade flapwise movements are tiny compared to the wind itself, their influence on
relative wind speed will not be considered, and in any case they amount to high frequency
noise that the pitch cannot possibly adjust for. Similarly, the linearised model used for the
MPC would not foresee the tower shadow until the blade is inside it due to the model’s
profound non-linearity, hence the tower shadow will also be disregarded from the relative
wind calculation for each blade.

According to the Bladed model, the rated torque is 21, 030, 000 Nm. Fixing the desired
torque for individual blades at 21, 030, 000/B Nm = 7, 010, 000 Nm, the required power
coefficient can be found, and with it the required pitch angle of the blades when the TSR
of individual blades is known. Converting the force in Equation 2.28 back to torque and
isolating the expression for Cp yields:

Cp(λ, θ) =
2BFyωr

ρv3
r Ar

(4.35)

Testing on all wind speeds from 10.5 m/s to 24 m/s in increments of 0.1 m/s, a wind
speed of 12.8 m/s is found to yield the largest pitch range. This gives a power coeffi-
cient of 0.4656 and 0.2358 for the lowest and highest azimuth angle respectively, wind
speeds of 10.8274 m/s and 13.5843 m/s and local tip speed ratios of 8.8474 and 7.0518.
The corresponding pitches are −3.4° and 9.1°. Considering a maximum pitch rate of 9°
and disregarding an acceleration period for the pitching, the response time comes out to
approximately 1.39 s. As a rule of thumb, the sampling time should be 10 % to 25 % of
the response time. Setting the sample time Ts = 0.25 s and padding the response time
up to 1.5 s to account for model inaccuracies yields a prediction horizon of Hp = 6. It
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is generally preferable to have a substantially lower control horizon than prediction hori-
zon, as this promotes faster computation and a more stable controller. For this reason,
the control horizon will be set to Hu = 3. These values are subject to change following
experimentation.

4.3.2 Constraints

For the input increment there are three variables to consider; maximum angular veloc-
ity of the blade pitch for each individual blade. Although the inputs are references and
do not have limitations on how quickly they can change, experimentation has shown that
the MPC is not stable without constraints placed on the slew rates of the blades. From
Bladed data it is apparent that the blade pitch can attain a maximum angular velocity of
± 9 °/s, corresponding to approximately ± 0.15708 rad/s. Accounting for sampling time,
pitch constraints θ∆u,min = −0.15708 · Ts rad and θ∆u,max = 0.15708 · Ts rad are defined. As
the generator torque can change virtually instantaneously, no constraint will be imposed
on the change in generator torque. The input increment constraints can be defined accord-
ingly:

θ∆u,min ≤ ∆θire f ≤ θ∆u,max ⇔
{
−∆θire f + θ∆u,min ≤ 0

∆θire f − θ∆u,max ≤ 0
(4.36)

The inequality constraints are defined accordingly:

E
[

∆U (k)
1

]
≤ 0 (4.37)

where:

E =



−1 0 0 0 . . . 0 θ∆u,min
1 0 0 0 . . . 0 −θ∆u,max
0 −1 0 0 . . . 0 θ∆u,min
0 1 0 0 . . . 0 −θ∆u,max
0 0 −1 0 . . . 0 θ∆u,min
0 0 1 0 . . . 0 −θ∆u,max
0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0



,
[

∆U (k)
1

]
=



∆û1(k|k)
∆û2(k|k)
∆û3(k|k)
∆û4(k|k)

...
∆û1(k + Hu − 1|k)
∆û2(k + Hu − 1|k)
∆û3(k + Hu − 1|k)
∆û4(k + Hu − 1|k)

1


Constraints on input ranges will be defined according to Bladed data. The pitch refer-

ence for all blades as well as the generator torque are considered. The pitch of each blade
ranges from −15° to 90° corresponding to −0.2618 rad to π/2 rad. From Bladed data, the
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demanded generator torque at above-rated wind velocities is found to be 21, 030, 000 Nm.
For simplicity, the pitch lower and upper boundaries are defined as θmin = −0.2618 rad
and θmax = π/2 rad and the generator torque upper boundary as Tg,max = 21, 030, 000 Nm.
The input ranges can be defined accordingly:

θmin ≤ θire f ≤ θmax ⇔
{
−θire f + θmin ≤ 0

θire f − θmax ≤ 0
(4.38)

0 ≤ Tgre f ≤ Tg,max ⇔
{
−Tgre f ≤ 0

Tgre f − Tg,max ≤ 0
(4.39)

The inequality constraints are defined accordingly:

F
[
U (k)

1

]
≤ 0 (4.40)

where:

F =



−1 0 0 0 . . . 0 θmin
1 0 0 0 . . . 0 −θmax

0 −1 0 0 . . . 0 θmin
0 1 0 0 . . . 0 −θmax

0 0 −1 0 . . . 0 θmin
0 0 1 0 . . . 0 −θmax

0 0 0 −1 . . . 0 0
0 0 0 1 . . . 0 −Tg,max
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 0
0 0 0 0 . . . 1 −Tg,max



,
[
U (k)

1

]
=



û1(k|k)
û2(k|k)
û3(k|k)
û4(k|k)

...
û1(k + Hu − 1|k)
û2(k + Hu − 1|k)
û3(k + Hu − 1|k)
û4(k + Hu − 1|k)

1


Constraints on controlled variable ranges will be designated according to the Bladed

model. These are the rated values and not the true upper boundaries, as there is a safety
margin. As a rule of thumb, an additional 10 % padding will be added to the rated values
to get the upper limits. The rated value of ωr is 7.56 rpm corresponding to 0.7917 rad/s and
the upper boundary then becomes 0.8709 rad/s defined as ωr,max. The minimum value is 5
rpm corresponding to 0.5236 rad/s. However, as the project delimitation limits controller
operation to above-rated and below-rated wind speeds, a controller mechanism will not be
designed to handle cut-out wind speeds. Due to the stochastic nature of the wind model,
a range of mean wind speeds will occasionally produce wind speeds that fall below cut-
out speeds. To avoid the MPC crashing due to infeasibility, the lower boundary will not
be considered. This is technically not possible in a real life scenario but is necessary due
to the limited scope of the project. The optimal TSR will be left unconstrained as it is
only followed for rotor speeds of less than 7.56 rpm. According to the Bladed model, the
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maximum angular velocity of the blade pitch is limited to ±9 °/s, consequently defining
θ̇min = −0.1571 rad/s and θ̇max = 0.1571 rad/s. The constraint on the range of the blade
pitch is the same as that defined for the input. The rated power output is 15 MW with the
upper limit of Pe,max = 22 MW. Constraints are not placed on the tower and blade loads
as there are no fixed limits to these values. The controlled variable ranges are defined
accordingly:

ωr,min ≤ ωr ≤ ωr,max ⇔
{
−ωr + ωr,min ≤ 0

ωr −ωr,max ≤ 0
(4.41)

θmin ≤ θ ≤ θmax ⇔
{
−θ + θmin ≤ 0

θ − θmax ≤ 0
(4.42)

θ̇min ≤ θ̇ ≤ θ̇max ⇔
{
−θ̇ + θmin ≤ 0

θ̇ − θmax ≤ 0
(4.43)

0 ≤ Pe ≤ Pe,max ⇔
{
−Pe ≤ 0

Pe − Pe,max ≤ 0
(4.44)

The inequality constraints are defined accordingly:

G
[
Z(k)

1

]
≤ 0 (4.45)

where:

G =



−1 0 0 0 . . . 0 0 0 0 0 ωr,min
1 0 0 0 . . . 0 0 0 0 0 −ωr,max

0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0
0 0 0 0 . . . 0 0 −1 0 0 θmin
0 0 0 0 . . . 0 0 1 0 0 −θmax

0 0 0 0 . . . 0 0 0 −1 0 θ̇min
0 0 0 0 . . . 0 0 0 1 0 −θ̇max

0 0 0 0 . . . 0 0 0 0 −1 0
0 0 0 0 . . . 0 0 0 0 1 −Pe,max



,
[
Z(k)

1

]
=



ẑ1(k + 1|k)
ẑ2(k + 1|k)
ẑ3(k + 1|k)
ẑ4(k + 1|k)

...
ẑ5(k + Hp|k)
ẑ6(k + Hp|k)
ẑ7(k + Hp|k)
ẑ8(k + Hp|k)
ẑ9(k + Hp|k)

1
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4.3.3 Setpoints

The setpoints will combine with the weights to calculate the cost function in the MPC.
Not all setpoints will be active depending on the wind speed. This will be solved by
setting their respective weights to 0. The rated rotor speed ωr will follow a setpoint of
0.7917 rad/s at above-rated wind speeds. All of the tower and blade loads will follow a
setpoint of 0. λ will follow the optimal TSR of 9.0621 at below-rated wind speeds. The
blade pitch angles will follow a setpoint of 0° at below-rated wind speeds, and the power
output will follow a setpoint of 15 MW at above-rated wind speeds. The blade pitch rates
have no setpoint as they only exist as controlled variables to be constrained.

4.3.4 Weights

Before determining weights, scaling parameters will be define for all the input incre-
ment and output variables. The scaling parameters will be defined according to the full
span of their respective variables. The variables will be divided by their respective param-
eter, which achieves a normalising effect. This is especially important as variables differ by
several orders of magnitude. The benefit of scaling parameters is that it allows for a choice
of weights that only have to factor in the importance of tracking a given variable without
having to consider the magnitude of said variable. The span of variables will not consider
the additional 10 % added to the constraints of ωr and Pe as this additional range is never
intentionally entered. λ ranges from 21.12 at the cut-in wind speed of 3 m/s to 3.99 at the
cut-out wind speed of 24 m/s. From the Bladed model and pre-existing simulation data
for wind velocities of approximately 24 m/s, the following scaling parameters have been
chosen for the remaining variables:

∆rs =
[
1.8326 21, 030, 000

]T
(4.46)

qs =
[
1.0472 0.4 0.3 18.7 12 17.12 1.8326 0.3142 22, 022, 564

]T
(4.47)

Where the entries of qs correspond to those of Equation 4.34 and the entries of rs

correspond to the increments of Equation 4.2. Model uncertainties can result in large input
increments to correct for unpredictable deviations. Larger weights result in smaller input
increments due to penalising the input, which makes the controller more robust when
dealing with flaws in the model prediction at the cost of reducing tracking performance.
There is a substantial possibility of inaccuracies given the complexity of the turbine model.
However, it is important to note that the pitch and pitch rate have both been constrained
to within their physical operating limits. For this reason there is not much concern about
large input increments, and a default value of 0.1 for both input increments is chosen in
order to prioritise reference tracking. The weight matrix R is defined accordingly:

R =

[
0.1 0
0 0.1

]
(4.48)
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The weights for the controlled variables will be designated according to the importance
of tracking the corresponding variable and how large a tracking error is considered accept-
able, with lower weights being lower priority. The following weights will be considered:

• 0 - Setpoint does not apply

• 0.05 - Low priority; Large tracking error acceptable

• 0.2 - Below-average priority

• 1 - Average priority; Default value

• 5 - Above average priority

• 20 - High priority; Small tracking error desired

The tower loads are unavoidable, but it is still desirable to minimise them. Their
weights are all set to 1. Regardless of wind speed, the pitch rate has no reference and as
such will not have a weight.

For above-rated wind speeds, the main priority is to ensure that ωr maintains the
rated value of 0.7917 rad/s and does not go over that value to avoid straining the turbine,
and the secondary priority is to maximise power output Pe. For this reason, ωr will be
given a weight of 20. This weight alone will not maximise the power output as there
are two degrees of freedom in the generator torque and blade pitch, and a sub-optimal
combination could be chosen which does not maximise power output. For this reason the
power output will receive a weight of 5 to ensure it is given greater importance than the
loads such that the generator torque will be maximised without doing so at the expense
of ωr. The blade pitch angle is left with a weight of 0 as the remaining degree of freedom
for the MPC to alter to minimise the cost function. The weight for λ will also be set to 0
as the optimal TSR is not of interest here.

For below-rated wind speeds, the weights for λ and θi will be set to 20. This ensures
a maximisation of the power coefficient. The weight for ωr will be set to 0 as it is not de-
sirable to reach the rated rotor speed for below-rated winds. The MPC will automatically
apply the generator torque that accomplishes this, effectively maximising power output
without needing to apply a weight. To avoid penalising the below-rated power output, Pe

will be given a weight of 0 as it is not possible to reach the 15 MW setpoint. Two tracking
error weight matrices Q1 and Q2 are defined according to whether the rated ωr or optimal
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TSR is pursued respectively:

Q1 =



20 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 20


, Q2 =



0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 20 0 0 0
0 0 0 0 0 0 20 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.49)

4.4 Control Algorithm

The developed MATLAB code comprising the whole state estimation and control pro-
cedure follows the structure presented in Algorithm 1. The explanation of functions is
included when those functions have been implemented, that is, when they are not built-in
in MATLAB or taken from a third party.
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Algorithm 1 Estimation and control procedure

1: f (x), h(x) . Define non-linear model
2: xtv0 ← xi . Initialize true values, state estimations and inputs with initial conditions
3: ytv0 ← yi
4: x̂0 ← xi
5: uprev ← ui
6: zre f ← Desired reference . Define reference values for the MPC
7: xop ← xi . Initialize operating point for the MPC linear model
8: Q, R . Define process and measurement noise matrices
9: P0 ← Pi . Initialize error covariance matrix

10: for k = 0→ N do
11: ûk ←MPC(x̂k, xop, uprev, zre fk:k+Hp

) . Compute optimal control signal
12: uprev ← ûk
13: [xtvk+1 , ytvk+1 ]←NonLinearSim(xtvk , ûk, Q, R) . Simulate non-linear system
14: ymek+1 ← Sensor measurements (Bladed)
15: [x̂k+1, Pk+1]← UKF(x̂k, ymek+1 , uprev, f (x), h(x), Qk, R, Pk) . Perform state estimation

(if real measurements cannot be used, replace yme by ytv)
16: xop ← x̂k+1 . If ytv is used in UKF, xtv can replace x̂
17: end for

18: function UKF(x̂k, ymek+1 , ûk, f (x), h(x), Qk, R, Pk)
19: α, β, κ ← Tuning values
20: if Pk ≤ 0 then
21: Pk ←NearestSPV(Pk) . If Pk ≤ 0, find nearest symmetric positive definite

matrix using Higham’s algorithm
22: end if
23: ci ← Chol(Pk) . ith column of a lower Cholesky factorization of Pk
24: λ = α2(n + κ)− n
25: Xk =

[
x̂k x̂k +

√
(n + λ)ci x̂k −

√
(n + λ)ci

]
1 ≤ i ≤ n . Define sigma points

26: W(i) = 1
2(n+λ)

1 ≤ i ≤ 2n

27: Wc =
[

λ
n+λ W(i)

]
. Weight for transformed covariance

28: Wm =
[

λ
n+λ +

(
1− α2 + β

)
W(i)

]
. Weight for transformed mean

29: Xk+1|k ← RK4( f (x), h(x),Xk, ûk, n, v) . Prediction transformation

30: x̂k+1|k = ∑2n+1
i=1 W(i)

m X (i)
k+1|k . Mean of predicted state

31: Pk+1|k = Qk + ∑2n+1
i=1 W(i)

c

(
X (i)

k+1|k − x̂k+1|k

) (
X (i)

k+1|k − x̂k+1|k

)T
. Covariance of

predicted state
32: ψk+1|k = h

(
Xk+1|k, uprev

)
. Observation transformation

33: ŷk+1|k = ∑2n+1
i=1 W(i)

m ψ
(i)
k+1|k . Mean of predicted output
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34: Pyy
k+1 = R + ∑2n+1

i=1 W(i)
c

(
ψ
(i)
k+1|k − ŷk+1|k

) (
ψ
(i)
k+1|k − ŷk+1|k

)T
. Covariance of

predicted output

35: Pxy
k+1 = ∑2n+1

i=1 W(i)
c

(
X (i)

k+1|k − x̂k+1|k

) (
ψ
(i)
k+1|k − ŷk+1|k

)T
. Cross-covariance between

state and output
36: Kk+1 = Pxy

k+1

(
Pyy

k+1

)−1
. Kalman gain

37: x̂k+1 = x̂k+1|k + Kk+1(ymek+1 − ŷk+1|k) . Update state estimate
38: Pk+1 = Pk+1|k − Kk+1Pyy

k+1KT
k+1 . Update covariance estimate

39: return x̂k+1, Pk+1
40: end function

41: function NonLinearSim(xtvk , ûk, Q, R)
42: n =

√
Q · N(0, 1) . Process noise

43: v =
√

R · N(0, 1) . Measurement noise
44: [xtvk+1 , ytvk+1 ]← RK4( f (x), h(x), xtvk , ûk, nk, vk) . 4th order Runge-Kutta
45: return xtvk+1 , ytvk+1

46: end function

47: function MPC(x̂k, xop, uprev, zre fk:k+Hp
)

48: A, B, C, D . Define linear model
49: Q, R . Define weight matrices
50: Hp, Hu, Hw . Define prediction and control horizon, and window parameter
51: A,Bu,B∆u, C,Q,R . Lifting procedure
52: U = [ûT

k . . . ûT
k+Hu−1]

T . Vector comprising control signals to be computed
53: ∆U = [∆ûT

k . . . ∆ûT
k+Hu−1]

T . Vector comprising change in control signals
54: X = Ax̂k + Buuprev + B∆u∆U . State predictions
55: Ψ = CA, Υ = CBu, Θ = CB∆u
56: Z = Ψx̂k + Υuprev + Θ∆U . Predictions for controlled outputs

57: T =

zre fk+Hw
...

zre fk+Hp

 . Vector comprising reference values

58: E = T −Ψx̂k − Υuprev . Difference between reference trajectory and predicted
controlled outputs with ∆U = 0

59: G = 2ΘTQE , H = ΘTQΘ +R
60: V = ETQE − ∆UTG + ∆UTH∆U . Cost function
61: F, E, G . Define constraint matrices

62: Constraints← F
[
U
1

]
≤ 0, E

[
∆U
1

]
≤ 0, G

[
Z
1

]
≤ 0,

63: [ûk:k+Hu−1, xMPCk+1:k+Hp
]←MPCobj(Constraints, V, x̂k, xop, uprev, zre fk:k+Hp ) . Solve

using YALMIP-Mosek
64: return ûk
65: end function
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Chapter 5

RESULTS AND DISCUSSION

5.1 Introduction

The main results obtained will be presented in this chapter, followed by a discussion
regarding their correctness, stability and reliability, among other properties. All in all, the
feasibility of the estimation and control procedure derived to this point will be tested.

5.2 Non-linear Simulation

In order to simulate the non-linear model derived in Sections 2.2 to 2.6 and rewritten
in state space form in Section 4.2, it is necessary to discretize the model, and to provide it
with control inputs in each time step. The control inputs have been computed for a below-
rated power production scenario using the simple torque control derived in Section 3.4,
which sets the pitch angle of the blades to 0° while computing the torque reference as the
constant K times the rotor speed squared.

Initially, Euler’s method was chosen as the discretisation procedure due to its simplic-
ity, but it was found out to be not precise enough for our system, as it gave an unstable
response. The dynamics of the different mechanical components were analysed indepen-
dently, finding out that the poles of the linearised blade dynamics were particularly close
to the imaginary axis. This caused the poles of the discretised linear system to lie slightly
outside the unit circle, thus provoking instability. For this reason, a more precise approach
such as 4th order Runge-Kutta was chosen. A comparison of the edgewise blade deflection
using both Euler’s method and 4th order Runge-Kutta can be seen in Figs. 5.1a and 5.1b.

It is important to remark the apparent difference in oscillation frequency between the
Bladed signal and our model’s signal, noticeable in Fig. 5.1b. The high frequency oscil-
lations represent the blade dynamics, while the low frequency oscillations are induced
by the tower dynamics. The amplitude of the low frequency oscillations is much more
prominent in the Bladed simulation due to differences in the model that remain unknown,
although it is believed to be caused by the effect of gravity, as this mismatch is exclusively
seen in the edgewise blade dynamics. It is difficult to see these oscillations in the simula-
tion of our model, but as soon as the signal approaches steady state it becomes more clear
(in Appendix B see Fig. B.3k to find the plot for all the simulation time). Besides, a larger
amplitude can be observed in the high frequency oscillations during the signal transient
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of the simulation of our model, which is perfectly normal.
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Figure 5.1: Simulation of edgewise blade deflection using Euler (a) or 4th order Runge-Kutta (b) discretization
method for 20 s. Bladed data has been also added for comparison purposes.

The wind speed has an important randomness associated to it which makes it vary
differently in both Bladed and our simulation. The plot seen in Fig. 5.2 shows that they
present similar characteristics regarding mean and perhaps a slightly larger turbulent in-
tensity in the wind from Bladed. Regardless, the wind model used seems adequate.
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Relative wind speed at the rotor

Figure 5.2: Relative wind speed measured in the nacelle.

Apart from that, the wind speed experienced by each individual blade including the
effect of wind shear and tower shadow is plotted in Figs. 5.3a and 5.3b. The graphs shows
the characteristic periodic oscillations that had been previously depicted in Fig. 2.9.
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Figure 5.3: Wind speed experienced by each blade in their movement through the rotor plane (a), with zoom
into the first 30 s (b).

The mismatch in wind speed leads to different driving torque and thrust forces, which
will influence the generator’s reaction torque and the angular speed of the rotor, apart
from the structural dynamics. This can be observed in Figs. 5.4a and 5.4b. Besides, the
rotor speed is much more stable in the simulation from Bladed, which is explained by the
more sophisticated control used by the simulation tool.
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Figure 5.4: Generator torque (a) and rotor speed (b).

To check the plots for the rest of the system states, including structural dynamics, in
comparison with the simulation data from Bladed, see Fig. B.3 in Appendix B.
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5.3 Unscented Kalman Filter

The performance of the UKF seems to be greatly affected by the large mismatch be-
tween the model outputs and the Bladed data. For this reason, it has not been possible
to obtain acceptable results combining both simulation data, as the estimations soon tend
towards infinity. The problem was tackled by selecting the states or functions of states
that could be measured in real life from the non-linear simulation and adding noise to
simulate the typical inaccuracy of real sensor measurements. This way, the measurements
are closely related to the states and the previous large mismatch disappears. This solution
is not ideal at all, as it means that the designed estimation and control algorithm would
have problems when being implemented in a real life scenario, and shows the impor-
tance of using an accurate model to represent the system. Applying this change, the UKF
was able to accurately estimate the states with an error lower than 4.5%. The noise with
largest variance was applied to the wind speed to represent the inaccuracy of anemometer
measurements at the nacelle, and its UKF estimation can be seen in Fig. 5.5.

Figure 5.5: UKF estimation of mean wind speed measured in the nacelle.

The estimated tower and blade deflections are shown in Fig. 5.6 as an example of the
UKF performance in some of the other states. To check the rest of the plots, see Fig. B.4 in
Appendix B.
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(a) (b)

(c) (d)

Figure 5.6: UKF estimation for tower and blade deflection.

5.4 Linear Simulation

The linear prediction model used in the MPC is simulated separately using the same
torque controller that was previously used to simulate the non-linear model. The lin-
earisation has been performed around certain operating points that change with time,
which means that the system matrices must change with each time step. Besides, 4th or-
der Runge-Kutta has also been chosen as discretisation method for the reasons stated in
Section 5.2.

The structural dynamics shown in Fig. 5.7 exhibit high oscillations and considerable
instability. The oscillations are mainly induced by the partial derivatives of the blade
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flapwise and edgewise dynamics with respect to the azimuth angle, as they deal with
highly non-linear terms corresponding to the wind shear and tower shadow effects, that
are very dependent on the operating point of the azimuth angle, which at the same time
varies significantly with each iteration.
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Figure 5.7: Linear model simulation for tower and blade deflection.

Another simulation was performed removing the wind shear and tower shadow ex-
pressions from the system in order to check if it gives stable and more accurate responses,
and also to simplify the linearisation process, making it easier to detect any possible error.
This gave the results shown in Fig. 5.8, which exhibit much more acceptable responses. No
error was found in the linearisation process, although a certain offset can be observed in
some of the states, namely the out-of-plane blade and tower dynamics, now that there are
no large oscillations overshadowing it. Its cause remains unknown, as the maths behind
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the derivation of the linear model seem to be correct (see Section 2.8).
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Figure 5.8: Linear model simulation for tower and blade deflection without considering wind shear and tower
shadow.

As a last attempt to try to improve the linear system’s performance (including wind
shear and tower shadow), it was decided to reduce the sample time from 0.05 s to 0.01 s.
Figure 5.9 shows a less unstable behaviour in exchange of presenting oscillations of even
larger amplitude than in Fig. 5.7, which incline us to think that there is no way of obtaining
a more acceptable linear system response by using the simple torque controller derived in
Section 3.4 along with the non-linear model considered. Hence, it remains the job of the
MPC to try to change this.
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Figure 5.9: Linear model simulation for tower and blade deflection reducing the sampling time from 0.05 s to
0.01 s.

5.5 MPC

It was possible to obtain results using the MPC with the following settings: wind
speed of 6 m/s to simulate below-rated power production; wind shear and tower shadow
removed from the model and no constraints on the controlled variable ranges, as consid-
ering both causes the optimisation algorithm to become infeasible after some iterations.
This is believed to be caused by the way the incremental variables of the linearised system
have been used. Lets recall the way the linearised system is really defined, which can be
seen in Section 5.5, in contrast with how it is expressed in Eq. 2.120. This means that all
the variables are referenced to the corresponding operating point of the current iteration,
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something that was mistakenly ignored.

∆ẋ = A∆x + B∆u (5.1)

∆y = Cy∆x (5.2)

∆z = Cz∆x (5.3)

Taking this into account, a new term would appear by grouping the constant terms
(Section 5.5), which would have to be considered in the lifting procedure of the MPC [45].

ẋ− ẋop = A
(
x− xop

)
+ B

(
u− uop

)
→ ẋ = Ax + Bu + K (5.4)

y = Cyx (5.5)

z = Czx (5.6)

Anyways, the erroneous results obtained to this point will be analysed hereafter, leav-
ing the mentioned change to be implemented after hand in due to time constraints.

Taking into account that the data from Bladed uses a sampling time of 0.05 s, which has
been used to simulate the non-linear model, UKF and linearised model, and that the last
one already exhibits a highly oscillatory behaviour, it is believed that using the sampling
time of 0.25 s chosen in Section 4.3 would only worsen the performance. In addition to
this, prediction and control horizons were both set to 10. These values are, however, not
in accordance with the approach outlined by MathWorks.

With the settings considered, it is clear that performing IPC will not be possible, as the
deterministic cyclic loads produced by wind shear and tower shadow have been removed.
Still, as this simulation concerns below-rated power production, the control objectives
require that the pitch of the blades is kept at 0 rad while the TSR is kept at its optimal
value by regulating rotor speed through the generator torque.

The graphs shown below compare the performance of both the linear system and the
non-linear system using the control signals generated by the MPC. Fig. 5.10d shows that
the pitch is approximately kept in 0 rad. At the same time, the generator torque gradually
decreases until none is applied (Fig. 5.10c), which makes the rotor speed rise above not
only the rated, but also the maximum rotor speed (Fig. 5.10b). This would have violated
the constraints if they had been added to the optimiser. The reason for this behaviour is
that the MPC is trying to keep the TSR at the optimal value of 9.0621, but due to the issue
stated previously, its value is much lower than it should, which can be seen in Fig. 5.11
(around 0.1). Hence, the MPC tries to correct this by increasing the rotor speed, reducing
the generator torque. But it is easily seen that, in reality, the value of the TSR greatly
surpasses its optimal (as an example, the value of λ using the wind and rotor speed taken
after 100 s would be around 17, which can be also checked in Fig. 5.11).
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Figure 5.10: Mean wind speed (a), rotor speed (b), generator torque (c) and pitch angle of blade 1 (d) responses
of the linear and non-linear models applying the control signals computed by the MPC.
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Figure 5.11: Plots for the TSR used by the MPC in comparison to its expected value.

Apart from that, the structural dynamics show an acceptable behaviour, as seen in
Fig. 5.12. This is due to the fact that its not part of the below-rated control objective to
reduce structural loads, but maximising power production. Hence, the tower and blade
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deflections look the same as the ones plotted in Section 5.4 with no wind shear or tower
shadow.

At the present time, it was not possible to perform a simulation for above-rated wind
speed. It is expected that solving the issue regarding the incremental variables will allow
the simulation to be performed and provide acceptable results.
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Figure 5.12: Structural dynamics of the linear and non-linear models applying the control signals computed
by the MPC.

5.6 Requirement Fulfilment

This section will clarify if the requirements specified in Section 3.2 have been fulfilled
or not.

5.6.1 General control objectives

× Regulation of generator counter torque based on rotational speed ωr for optimal tip
speed ratio operation in partial load (obj. 1).
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× Regulation of generator counter torque based on tower sidewards loads for their
reduction (obj. 4).

× CPC based on the rotational speed ωr for rated power operation and reduced fore-aft
tower structural loads in full load (obj. 2, 4).

× IPC based on flapwise blade loads in order to reduce flapwise and edgewise bending
loads (obj. 3).

As specified in Section 5.5, the MPC did not consider that the states of the linearised
system are perturbations around the operating point, and thus the results do not fulfil the
requirements.

5.6.2 Kalman Filter

X The state estimator must be in the form of a UKF.

X The UKF must be able to estimate states with an average error of less than 5%.

– As stated in Section 5.3, the estimation error is lower than 4.5%

5.6.3 MPC

X× MPC must be computationally feasible on available hardware.

– The code has run in a laptop with an Intel Core i7-8750H processor and 16 GB
of RAM, and each iteration requires around 0.1 s. If the sampling time is set to
0.25 s, the requirement would be fulfilled in this hardware. Nevertheless, if the
sampling time is changed to 0.05 s, it would not be fulfilled.

X MPC must have control and prediction horizon that ensure stability.

X MPC must have rotor speed as main priority to avoid physical strain.

X MPC must have power output as secondary priority to avoid damaging the generator.

X MPC must have tower and blade loads as tertiary priority to minimise fatigue and
extend lifetime.
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Chapter 6

CONCLUSION

This project explores the possibility of controlling a 15 MW wind turbine by means of
an MPC in order to consider multiple objectives and acknowledge system constraints. A
simulation tool, GH Bladed, was provided by Mita-Teknik to simulate the behaviour of the
wind turbine in a detailed and accurate way. This way, the obtained data could be used
as measurements from the "real" system, and help evaluate and improve the correctness
of the model derived. The control objectives were defined to account for both partial and
full load operation of the wind turbine. In partial load, the pitch of the blades should be
kept constant while the rotor speed is regulated by the generator counter torque such that
power capture is maximised. Conversely, the rotor speed should follow its rated value in
full load conditions to limit the power generated, which is done by changing the pitch of
the blades collectively. Besides, cyclic loads produced by the wind shear and tower shadow
effects should be mitigated by pitching the blades independently based on their azimuth
angle. Hence, a non-linear model was designed to fulfil the control purposes, including
the wind, the aerodynamics, the mechanical structure using five DOF, the generator and
the corresponding actuators. Discretisation was achieved by making use of 4th order
Runge-Kutta, as Euler’s method was not precise enough to ensure the stability of the
discretised system. State estimation was performed using a UKF due to the non-linear
property of the model as well as the potential superiority in comparison with EKF. It was
found out that the large mismatch between the model outputs and Bladed data prevented
the UKF from converging, and thus it was decided to use the model outputs as system
measurements by adding typical sensor noise. Afterwards, the tuning parameters of the
MPC were chosen based on a structured approach and modified based on experimentation,
namely the prediction and control horizons, and the constraints for the system variables
and weights were defined. The MPC was provided with an adaptive linear model based
on successive linearisations of the original non-linear model around the current operating
point in order to compute its predictions. These local linear models were found out to be
particularly oscillatory when simulated separately due to the highly non-linear nature of
the original model. The results obtained using the MPC show the crucial importance of
taking into account that the linearised system states are perturbations around the operating
points and not absolute variables themselves, which gave rise to erroneous performance
when the optimiser tried to fulfil an apparently unattainable objective. It is expected to
acquire successful results as soon as this is taken into consideration.
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6.1 Future Work

First of all, some more work should be done regarding the non-linear model. For
instance, the fact that the rotor and nacelle centre of mass are situated at a certain distance
from the tower centre of mass has an influence in the tower top bending which could be
taken into account if the structural dynamics were defined as torque equations instead of
force equations. Furthermore, the effect of gravity could be considered to try to make the
blade edgewise dynamics resemble more the data taken from Bladed. The blade moment
of inertia could also be defined in a more precise way such that the equivalent mass of the
blades is more exact. Finally, the effect of centrifugal forces on the blade stiffness could be
considered.

In order to reduce the computational complexity of the successive linearisation of the
model, there is the possibility of applying model reduction based on the dominant eigen-
values of the system [46], ignoring the evolution of the fast modes in the calculations.

It would also be of interest to consider using soft constraints in the MPC due to advan-
tages regarding potential infeasibility when a large disturbance occurs, which is a possi-
bility when the prediction model differs substantially from the real plant.

Lastly, it could be of interest to compare the performance of the proposed control
strategy with that of a non-linear MPC to check if it provides more accurate results, but
taking into account that the computation of the future control moves can be non-convex
and thus exhibit several optima, apart from the remarkably higher computational cost.
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Appendix A

BEM METHOD

This section will explain BEM. Some aspects of the derivations will be glanced over.
This is to avoid dragging on at length, as the topic is quite extensive. The topic will
be split up into three parts: one part explaining the aerodynamics of individual blades,
one part examining one-dimensional momentum theory that leads to equations for thrust
and force coefficients, and finally the classical BEM which will be used to analyse the
aerodynamics of a wind turbine. While the iterative approach outlined in Appendix A.3
makes BEM unsuitable for control, it can still be used in wind turbine analysis, as well as
deriving some factors used in actual control synthesis, such as the Betz limit and the power
coefficient used in determining the torque acting on the rotor. Note that the variables in
this section do not necessarily conform to the rest of the report, and have all been defined
where they appear.

A.1 Two Dimensional Model of a Blade

The blades of a wind turbine are long and slender, and their design can be compared
to the wings of a plane in that their shape is meant to generate lift using the flow of air. As
the wind moving across the blade has far more velocity streamwise that it does spanwise,
an assumption is made that the flow at any given point is two-dimensional. Subsequently,
the aerofoil seen in Fig. A.1 can be considered.

The aerofoil assumes a blade of infinite span, as otherwise it would have to consider
different diameters as different sections of the blade are considered. Additionally, for a
more true representation, it is necessary to correct for vortices behind the blades which act
as disturbances for the angle of attack α. While difficult to realise, this approach is still of
interest as it allows for modelling the forces acting on individual segments of the blade as
seen in Fig. A.2.

The wind flow V∞ denotes the freestream velocity, which is the air far upstream from
the wind turbine before it is affected by changes in pressure and velocity caused by the
rotor. The wind flow has an angle of attack, which plays a large role in the direction of
the resulting force F. This force can be broken down into lift, L, and drag, D. The torque
on the rotor should be maximised in order to best exploit the wind. The lift coefficient, Cl ,
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Figure A.1: Aerofoil of a wind turbine blade [9].

Figure A.2: Forces acting on a wind turbine [9].

and drag coefficient, Cd, are defined as follows:

Cl =
l

1
2 ρV2

∞c
(A.1)

Cd =
d

1
2 ρV2

∞c
(A.2)

Where:

ρ : density of the air
[
kg/m3

]
c : length of the aerofoil, often called the chord [m]

l : force of lift per length [N/m]

d : force of drag per length [N/m]
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In practise, however, the lift and drag coefficients are usually found by looking up
values in tables rather than calculation. Lift is generated by the way air flows around the
aerofoil. The shape of the aerofoil results in lower pressure above it, which generates lift.
Both Cl and Cd depend on α. Cl increases linearly with α until a certain value, after which
the aerofoil stalls and Cl decreases quickly. After stalling, Cd begins to increase rapidly.
The actual points where stalling occurs depends on the shape of the aerofoil. Thin-nosed
aerofoils stall much more abruptly than thick-nosed ones [9].

A.2 One Dimensional Momentum Theory

The momentum theory examines the forces acting on the wind turbine which generates
mechanical energy from the kinetic energy in the wind, as well as how the wind speed and
pressure is affected by the wind turbine. Here it is assumed that the rotor is a permeable
disk that allows air flow to pass through while also acting as a drag device. It is also
assumed that it is ideal, i.e. being frictionless and having no rotational velocity component
in the wake. These assumptions require some adjustments to be made in order to correct
for some shortcomings, but these will be discussed in Appendix A.3.

As the blades of the wind turbine rotate, they create a system of vortices in the wake.
This wake can be simply described by an axial induction factor a and a tangential induction
factor a′. Here, a represents the induced velocity factor in the axial direction opposite the
direction of the wind; essentially the reduction of wind velocity in the rotor plane. The
factor a′ represents the rotational wind velocity opposite the rotation of the blades. In the
rotor plane and wake, this is given by a′ωr and 2a′ωr respectively where ω is the angular
velocity of the rotor and r is the radius from the centre of the rotor at a given point of
examination. If both a and a′ are known, the local angle of attack can be calculated by
Equation A.3.

α = φ− θ (A.3)

tan(φ) =
Va

Vrot
(A.4)

θ = θp + β (A.5)

Va = (1− a)Vo (A.6)

Vrot = (1 + a′)ωrr (A.7)

where:

α : local angle of attack [rad]

θ : local pitch of the individual blade with respect to the tip [rad]

θp : pitch angle of the blade [rad]

β : twist of the blade relative to the rotor plane [rad]

φ : angle of the incoming flow [rad]
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Figure A.3: Relative velocity seen by a section of a blade [9].

Va : axial wind velocity [m/s]

Vrot : tangential wind velocity [m/s]

ωr : angular velocity of the rotor [rad/s]

r : radius of the rotor [m]

The pitch angle is measured relative to the rotor plane. The pitch is calculated locally
as the blades of a wind turbine are not completely stiff, and the pitch at one part of the
blade will not necessarily match that of another part of the blade due to the forces acting
on it. How the blades are divided into sections will be explained further in Appendix A.3.
Figure A.3 shows the velocities seen by a section of an individual blade. As can be seen,
Vrel is a combination of the axial and tangential velocity at the rotor plane.

Figure A.4 shows how the wind speed and pressure are affected by the wind turbine.
The wind speed and pressure start at Vo and po coming in from a great distance from

the wind turbine. The disruption to the wind speed occurs some distance from the rotor
plane as the wind drops from Vo to u at the rotor plane to ul in the wake. From the ideal
properties of the rotor, the thrust T can be found:

T = ∆pA (A.8)

where:

∆p : the pressure drop over the rotor plane [Pa]

A : the area of the rotor
[
m2]

T : thrust [N]

Applying Bernoulli’s principle in regards to fluid dynamics, ∆p is found to be:

∆p =
1
2

ρ(V2
o − u2

l ) (A.9)
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Figure A.4: Pressure and velocity before and after the rotor plane [9].

Applying the axial momentum equation on integral form with the cross-sectional area
Acv yields [9]:

∂

∂t

∫∫∫
cv

ρu(x, y, z)dxdydz +
∫∫

cs
u(x, y, z)ρV · dA = Fext + Fpres (A.10)

where:

ρ : density of the fluid
[
kg/m3]

u : velocity of fluid particles with respect to a reference system [m/s]

V : velocity of the particles with respect to the surface that they cross [m/s]

dA : normal of the surface of the control volume [·]
Fpres : forces acting on the control volume in the axial direction [N]

Fext : external force not along the axial direction [N]

The first term in Equation A.10 is zero as the flow is assumed to be stationary. Addi-
tionally, since the pressure is the same on either end of the control volume (Vo and ul in
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Figure A.5: Lateral boundary of the control volume [9].

Figure A.4) Fpres is also zero. Figure A.5 shows the lateral boundary of the control volume
where ṁside is used in Equation A.11 and Equation A.12.

Using the assumptions of an ideal wind turbine, the thrust T can be found to be:

−T = ρu2
1Al + ρV2

o (Acv − Al) + ṁsideVo − ρV2
o Acv (A.11)

ṁside = ρAl(Vo − ul) (A.12)

where:

Al : area of the cross-section of the wake
[
m2]

Acv : area of the cross-section of the control volume
[
m2]

ṁside : the mass flow through the lateral boundary of the control volume [kg/s]

Note that the flow of mass was found by considering the conservation of mass, which
can also be used to find the relationship between A and Al :

ṁ = ρuA = ρul Al (A.13)

where:

ṁ : flow of mass through the wake [kg/s]

A : area swept by the rotor
[
m2]

Combining Equations A.10 to A.12 gives:

T = ρuA(Vo − ul) = ṁ(Vo − ul) (A.14)

Substituting Equation A.8 for T and Equation A.9 for ∆p demonstrates that the velocity
in the rotor plane is the mean of the undisturbed wind velocity and the final velocity in
the wake as seen in Equation A.15.

u =
1
2
(Vo + ul) (A.15)
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Figure A.6: Alternate control volume for a wind turbine [9].

Figure A.6 shows an alternate control volume which can be used to find the shaft power
P. The flow is assumed to be frictionless and there is no change in the energy between
the inlet and outlet of the control volume. The shaft power can be found from the control
volume in Figure A.6 using the integral energy equation.

P = ṁ(
1
2

V2
o +

po

ρ
− 1

2
u2

l −
po

ρ
) (A.16)

= ρuA(
1
2

V2
o +

po

ρ
− 1

2
u2

l −
po

ρ
) (A.17)

=
1
2

ρuA(V2
o − u2

l ) (A.18)

The velocity in the rotor plane, u, can also be defined based on the axial induction
factor a as seen in Equation A.19.

u = (1− a)Vo (A.19)

Combining Equation A.15 and Equation A.19 results in Equation A.20.

ul = (1− 2a)Vo (A.20)

Substituting Equation A.20 in Equations A.14 and A.18 allows for defining T and P
based on the axial induction factor in Equations A.21 and A.22 respectively.

T = 2ρV2
o a(1− a)A (A.21)

P = 2ρV3
o a(1− a)2A (A.22)

Both thrust and power are frequently used to define a thrust and power coefficient, the
latter can be used to find the maximum power that can be extracted from the wind.

CP =
P

1
2 ρV3

o A
(A.23)
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Figure A.7: CP and CT as functions of the axial induction factor.

CT =
T

1
2 ρV2

o A
(A.24)

Inserting Equations A.21 and A.22 in place of T and P gives:

CP = 4a(1− a)2 (A.25)

CT = 4a(1− a) (A.26)

Plotting Equations A.25 and A.26 as functions of the axial induction factor a in Fig-
ure A.7 gives an insight into how much power can be extracted from the wind.

Taking the derivative of CP with respect to a results in Equation A.27

dCP

da
= 4(1− a)(1− 3a) (A.27)

From Equation A.27 it can be seen that the maximum value of CP is attained for a =

1/3, corresponding to a value of CP = 16/27 ≈ 59.26%. This means that the theoretical
maximum of available energy that can be used is 59.26%. This is what’s known as the Betz
limit. This approach is, however, only valid for values of a under approximately 0.3 to 0.4.
An indication of this can be seen in Equation A.20, where the wind velocity in the wake
would be negative for a > 0.5, implying that the ideal model falls apart beyond a certain
limit [9].

A.3 Blade Element Method

The ideal wind turbine model allows for easy derivation of a usable model but as
mentioned, the equation for the thrust coefficient is invalid for a certain range of values
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for the axial induction factor. BEM assumes an infinite number of blades, which results in a
different vortex system in the wake, and additionally it represents the wake as a symmetric
and ideal streamtube that does not exist in reality. The problem of the axial induction
factor can be solved using the Glauert correction. The assumption of infinite blades can be
corrected by applying Prandtl’s tip loss factor. These corrections will be introduced where
they are applicable. BEM draws heavily upon one-dimensional momentum theory. The
streamtubes seen in Figure A.4 and Figure A.5 are used, but are now discretised into a
set amount of annular elements. An assumption is made that there is no flow across the
boundaries, and as such, the forces acting on each element of the blades can be considered
independently of each other. An additional assumption is made that the force applied
from the blade of each element on the flow is constant across the element, i.e. an infinite
number of blades is assumed. The thrust of the blades on the flow as well as the torque
on the annular element are calculated in Equation A.28 and Equation A.29 respectively.

dT = 2πrρu(Vo − ul)dr (A.28)

dM = 2πr2ρuCθdr (A.29)

Cθ = 2a′ωr (A.30)

where:

dT : thrust applied by the blades on the flow [N]

dM : torque on the annular element [N m]

dr : height of the annular element [m]

Cθ : rotational tangential velocity in the wake [m/s]

Substituting Equations A.19, A.20 and A.30 for their respective variables in Equa-
tions A.28 and A.29 gives Equations A.31 and A.32

dT = 4πrρV2
o a(1− a)dr (A.31)

dM = 4πr3ρVoω(1− a)a′dr (A.32)

If the lift and drag coefficients from Equations A.1 and A.2 are known, the lift and drag
can be isolated by replacing the freestream velocity by the relative velocity seen at a given
section of the blade, as this is what determines lift and drag generated by that section.

l =
1
2

ρV2
relcCl (A.33)

d =
1
2

ρV2
relcCd (A.34)

The lift and drag must subsequently be projected onto the rotor plane as it is the forces
relative to that plane which are of interest.

PN = l cos(φ) + d sin(φ) (A.35)
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PT = l sin(φ)− d cos(φ) (A.36)

where:

PN : force normal to rotor plane

PT : force tangential to rotor plane

Equations A.35 and A.36 can be normalized with respect to 1
2 ρV2

relc, such that l and d
are replaced with Cl and Cd respectively, leading to Equations A.37 and A.39.

Cn = Cl cos(φ) + Cd sin(φ) (A.37)

=
PN

1
2 ρV2

relc
(A.38)

Ct = Cl sin(φ)− Cd cos(φ) (A.39)

=
PT

1
2 ρV2

relc
(A.40)

From Figure A.3 it can be seen that Vrel can be found geometrically both by considering
the axial and tangential velocity.

Vrel sin(φ) = Vo(1− a) (A.41)

Vrel cos(φ) = ωr(1 + a′) (A.42)

A "solidity" variable σ is introduced, which defines the area of the control volume
which is covered by the blades of the wind turbine.

σ(r) =
c(r)B
2πr

(A.43)

where:

σ : proportion of annular volume covered by blades

c : chord length at radius r

B : number of blades

r : radius measured at the control volume

Since PN and PT are forces per length, dT and dM can be defined based on those.

dT = BPNdr (A.44)

dM = rBPTdr (A.45)

Inserting the definition of Vrel that can be isolated from Equation A.41 into Equa-
tion A.38, and then inserting the subsequent isolated definition of PN into Equation A.44
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yields a new definition for dT. The same can be done for Equation A.45 by using the two
definitions of Vrel from Equations A.41 and A.42 in Equation A.40. As a result, dT and dM
then become:

dT =
1
2

ρB
V2

o (1− a)2

sin2(φ)
cCndr (A.46)

dM =
1
2

ρB
Vo(1− a)ωr(1 + a′)

sin(φ) cos(φ)
cCtrdr (A.47)

However, dT and dM are calculated based on the assumption of infinite blades, which
must be addressed [9].

A.3.1 Prandtl’s tip loss factor

Here, Prandtl’s tip loss factor is introduced. The tip loss factor corrects the assump-
tion of infinite blades. The factor is valid as long as the loads are equally distributed
azimuthally, that is, the blades are all evenly distributed in the rotor plane, which is the
case for the wind turbine. Using Prandtl’s correction yields a result that should be very
close to the real world scenario for a set number of blades. Equations A.31 and A.32 can
be rewritten to include the correction factor F:

dT = 4πrρV2
o a(1− a)Fdr (A.48)

dM = 4πr3ρVoω(1− a)a′Fdr (A.49)

F =
2
π

cos−1(e− f ) (A.50)

f =
B
2

R− r
r sin(φ)

(A.51)

where:

R = total radius of the rotor [m]

Using this correction, Equations A.46 and A.47 can be set equal to Equations A.48
and A.49 respectively. Applying σ as a scalar value to the normalised thrust, a new defini-
tion of a can be isolated from the first equation while a new definition of a′ can be isolated
from the second equation.

a =
1

4Fsin2(φ)
σCn

− 1
(A.52)

a′ =
1

4Fsin(φ)cos(φ)
σCt

− 1
(A.53)

These variables are of fundamental importance in BEM, but as mentioned earlier, there
are shortcomings in this approach that must be corrected [9].
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A.3.2 Glaurt correction

It is now time to introduce Glauert correction for high values of a. Essentially, once a
passes a defined limit, a new equation for calculating it will be used. There is no single
way to define this limit, but in accordance with thr source material, the limit ac = 0.2 will
be used. Based on the value of a, the two equations seen in Equation A.54 can be used to
find the thrust coefficient.

CT =

{
4a(1− a)F a ≤ ac

4(a2
c + (1− 2ac)a)F a > ac

(A.54)

Equation A.24 gives the definition for the thrust coefficient. Adapting it to be used on
the control volume by replacing A with 2πrdr, it instead becomes:

CT =
dT

1
2 ρV2

o 2πrdr
(A.55)

(A.56)

Using Equation A.46 as dT results in Equation A.57.

CT =
(1− a)2σCn

sin2(φ)
(A.57)

This equation for CT can be equated to the two scenarios seen in Equation A.54.

4a(1− a)F =
(1− a)2σCn

sin2(φ)
(A.58)

4(a2
c + (1− 2ac)a)F =

(1− a)2σCn

sin2(φ)
(A.59)

For each of these scenarios, a new equation for a is defined:

a =
1

4Fsin2(φ)
σCn

− 1
(A.60)

a =
1
2

[
2 + K(1− 2ac)−

√
(K(1− 2ac) + 2)2 + 4(Ka2

c − 1)
]

(A.61)

K =
4Fsin2(φ)

σCn
(A.62)

Equation A.60 is the original definition of the axial induction factor whereas Equa-
tion A.61 is the new one to be defined if a is found to be greater than ac, in this case 0.2
[9].
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BEM process

The steps for BEM can now be outlined.

1. Set a=a’=0

2. Compute flow angle according to Equation A.4

3. Compute local angle of attack according to Equation A.3

4. Look up Cl and Cd for the given angle of attack

5. Calculate Cn and Ct according to Equations A.37 and A.39

6. Calculate a according to either Equation A.60 or Equation A.61 depending on the
value of a given in Equation A.60.

7. If a and a′ has changed beyond a designated tolerance, start from step 2 again. Oth-
erwise continue to the last step.

8. Compute dT and dM on the annular control volume according to Equations A.48
and A.49.

Each annular control volume must run through this calculation. It remains to be de-
cided how high each annular element must be, and consequently how many of them there
must be. For the purpose of implementing MPC, it must also be decided how many
iterations ahead BEM should be calculated. The resulting number of equations could po-
tentially be computationally heavy [9].

A.4 Coleman Transform-based Control

The flapwise blade root bending moments Mi are defined in the coordinate system
that rotates with the blades, and thus there is a phase shift of 120° between them. In order
to compute these loads in the fixed reference frame it is necessary to apply the Coleman
transform, which is a matrix that depends on the rotor azimuth angle and therefore varies
with time as can be seen below: M̄

Mtilt
Myaw

 =

 1
3

1
3

1
3

2
3 sin ψ(t) 2

3 sin ψ(t) + 2π
3

2
3 sin ψ(t) + 4π

3
2
3 cos ψ(t) 2

3 cos ψ(t) + 2π
3

2
3 cos ψ(t) + 4π

3

M1

M2

M3

 (A.63)

where the average flapwise blade bending moment M̄ can be interpreted in terms of hub
loadings, but is typically not considered.

Subsequently, the tilt and yaw flapwise root bending moments Mtilt and Myaw are used
to generate tilt and yaw pitch control signals θtilt and θyaw, wich are then projected back to
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the rotatory reference frame to obtain the individual pitch signals for each blade (Eq. A.64),
as depicted in Fig. A.8.θre f 1

θre f 2

θre f 3

 =

1 sin ψ(t) cos ψ(t)
1 sin ψ(t) + 2π

3 cos ψ(t) + 2π
3

1 sin ψ(t) + 4π
3 cos ψ(t) + 4π

3

 θ̄

θtilt
θyaw

 (A.64)

with θ̄ referring to the averaged blade pitch signal.
To decouple the IPC actions from those of CPC, the blade moments and the pitch

control signals are redefined as seen in Eq. A.65. Fig. A.8 depicts the whole process.θre f 1

θre f 2

θre f 3

 :=

θ̄re f + θ̃re f 1

θ̄re f + θ̃re f 2

θ̄re f + θ̃re f 3

 ,

M1

M2

M3

 :=

M̄ + M̃1

M̄ + M̃2

M̄ + M̃3

 (A.65)

Coleman 
transform 

 

Individual 
pitch 

controller 

 

Inverse 
Coleman 
transform 

 

IPC

Figure A.8: Coleman transform-based controller [17].

A.5 Softening the Constraints in MPC

The optimisation problem could become infeasible when adding constraints. This can
happen due to an unexpectedly large disturbance, such that the plant is not able to be
restricted within the constraints, or due to differences between the plant and the internal
model, which could be interpreted by the controller as large disturbances and eventually
provoke the same outcome.

This can be circumvented by ad hock measures such as applying the same control signal
û(k|k) as in the previous step, or the one computed as û(k + 1|k) or û(k + 2|k) last step, or
by "constraint management" strategies, in which the least important constraints are relaxed
to obtain feasibility.

One systematic strategy consists in softening the constraints, that is, allowing them
to be crossed if necessary. Input constraints are normally not softened, as actuators have
physical limitations that cannot be surpassed, not like output constraints.
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One way to soften the constraints is to add "slack variables" defined such that they are
non-zero only if the constraints are violated, and which values are strongly penalised by
the cost function in order to motivate the optimiser to keep them at zero as long as it is
possible. The slack variables are introduced in the form of a vector ε and a scalar ρ ≥ 0 as
follows:

min
∆U (k),ε

V(k) = −∆U (k)TG + ∆U (k)TH∆U (k) + ρ||ε|| (A.66)

subject to  F
ΓΘ
W

∆U (k) ≤

 −F1u(k− 1)− f
−Γ(Ψx̂(k|k) + Υu(k− 1))− g

w

+ ε (A.67)

ε ≥ 0 (A.68)

If ρ = 0 the problem becomes unconstrained, while as ρ → ∞ the original constrained
problem is recovered. A disadvantage of this formulation is that the original constraints
can be violated even if it is not necessary. An alternative would be to penalise the 1-norm
(sum of violations) or the ∞-norm (maximum violation) of the constraint violations.
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Appendix B

TESTS

This chapter will outline the simulations carried out in the GH Bladed simulation tool
for different scenarios as well as the tests of the components of the system in order to
document functionality and integration of said components into one system. Due to the
interdependent nature of the components, the testing will be carried out in the form of a
sequential integration starting with the non-linear model of the wind turbine, then adding
the UKF for an accurate estimation of the states of the model, the linear prediction model
used within MPC, and finally the MPC using the estimated states to test its functionality
and verify the effectiveness of the cost function.

B.1 Bladed Reference Test

For comparison purposes, a test of Mita-Teknik’s own controller will be tested. Two
tests will be carried out for two mean wind speeds of 6 m/s and 16 m/s with normal
turbulence as defined by the third edition of the IEC 64100-1 standard. These mean wind
speeds are chosen as they represent below-rated and above-rated wind speeds and will
show the two controllers pursuing an optimal pitch for both scenarios.
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B.1.1 6 m/s mean wind speed test
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Figure B.1: Bladed simulation plots for a wind speed of 6 m/s
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B.1.2 16 m/s mean wind speed test
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Figure B.2: Bladed simulation plots for a wind speed of 16 m/s.

B.2 Test of Turbine Model

The test of the turbine model must demonstrate the stability of the model using a
simple torque-based controller to create a closed-loop system. Furthermore, the values
of the state variables obtained from the simulation should be compared with the Bladed
data to check its accuracy. The reference pitch angle of the blades is set to 0° to simulate
below-rated power generating scenario, using a mean wind speed of 6 m/s. The generator
torque reference is subsequently computed as the constant K derived in Section 3.4 times
the rotor speed squared.

Even though the discretization of the model differential equations was initially done
using Euler’s method, it was found out that it was not accurate enough for this model,
as the poles of some subsystems, in particular the blade flapwise and edgewise dynamics,
were very close to the imaginary axis. Hence, it was decided to use 4th order Runge-Kutta,
which lead to the results seen in Fig. B.3.
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Figure B.3: Non-linear model simulation plots.

First, it can be seen that the wind speed varies slightly different in our model with
respect to Bladed model, as it is a stochastic variable defined differently, perhaps with a
larger turbulence intensity. Apart from this, the Bladed model uses a much more com-
plex control algorithm than the simple torque control used to simulate our model, which
provides a much more stable rotor speed regulated using the blade pitch angles.

A particularly noticeable deviation can be observed in the tower fore-aft deflection
graph (e). This is due to the fact that our model does not consider the hub overhang
torque, which affects the top of the tower by deflecting it around 0.8 m from its expected
position.

The Bladed data also shows considerably higher oscillations in the blade edgewise
deflection (k) in comparison with our simulation. The reason for this has not yet been
found out, but it is believed to be due to the effect of gravity on the blades depending on
their azimuth position. This mismatch leads to high deviations in the blade edgewise root
bending moments.

B.3 Test of UKF

The test of the Kalman Filter must demonstrate the filter’s ability to precisely estimate
the states of the turbine model. Using the data obtained from Bladed as system measure-
ments makes the filter unable to converge, due to the large mismatch between the outputs
of the system derived in this project and the outputs from Bladed simulation model. For
this reason, it was necessary to use some of the simulated true states of our model (adding
the corresponding sensor noise) as measurements. This gave the results shown in Fig. B.4.
It can be seen that the states are accurately estimated by the filter, as expected.
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(m) (n)

(o)

Figure B.4: UKF state estimation plots.

B.4 Test of Linear Model

The linearised model was tested using the basic torque controller also implemented in
the testing of the non-linear model. The operating points of the system are taken from
the non-linear model simulation and thus changed in every iteration. Besides, 4th order
Runge Kutta has also been used as discretization method instead of Euler’s method, as
the instability issues observed in the simulation of the non-linear model are still present
or even augmented by the linearization. The graphs obtained can be seen in Fig. B.5. Note
that some of the plotted states are not the same as the ones plotted in the linear model
due to their usefulness; for example, the tower acceleration plots have been substituted
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by the tower velocities, as they represent more clearly the structural loads (the tower fore-
aft and sidewards velocity were chosen in the MPC as variables to be controlled for that
reason). Furthermore, it would not have been very useful to show the tower velocities in
the non-linear model test as there is no Bladed measurement to compare to. The same
can be said for the blade root moments, which have now been substituted by the blade
velocities in each direction. The wind speed has not been plotted, as it is just a constant
after the linearization.
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Figure B.5: Linear model simulation plots.

It can be seen that the oscillations in the tower and blade dynamics increase with time,
provoking an effect on the rotor speed, generator torque and electrical power. These results
do not provide a satisfactory representation of the wind turbine’s dynamics. In order to
discard the possibility of an error in the linearisation, the wind shear and tower shadow
terms were removed from the non-linear system so that it becomes much easier to carry
out the procedure. The results obtained are shown in Fig. B.6, which still show slight
instability, suggest that a better controller is needed to obtain a more acceptable response.
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Figure B.6: Linear model simulation plots not considering wind shear and tower shadow.

B.5 Test of MPC

The test of MPC must demonstrate the capability of the controller to fulfil the control
objectives by computing optimal control signals, θire f and Tgre f . It was possible to obtain
results for a wind speed of 6 m/s, but not considering the wind shear, tower shadow and
the constraints on the controlled variables ranges. As explained in Section 5.5, the cost
function of the MPC should consider that the linearised system states are relative to the
operating point in each iteration, something that the results presented hereunder do not
include (Fig. B.7). Hence, they do not exhibit the expected behaviour. Making this change
in the implementation of the MPC should provide acceptable results.

0 100 200 300 400 500 600
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

Non-linear
Linear

(a)

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Non-linear
Linear

(b)

138



B.5. Test of MPC Aalborg University

0 100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Non-linear
Linear

(c)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5
106

Non-linear
Linear

(d)

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

2

Non-linear
Linear

(e)

0 100 200 300 400 500 600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 Non-linear
Linear

(f)

0 100 200 300 400 500 600
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Non-linear
Linear

(g)

0 100 200 300 400 500 600
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Non-linear
Linear

(h)

139



Group 934 Appendix B. TESTS

0 100 200 300 400 500 600
2

4

6

8

10

12

14

Non-linear
Linear

(i)

0 100 200 300 400 500 600
-1

0

1

2

3

4

5

6

7

Non-linear
Linear

(j)

0 100 200 300 400 500 600
-2

-1.5

-1

-0.5

0

0.5

1

Non-linear
Linear

(k)

0 100 200 300 400 500 600
-5

0

5

Non-linear
Linear

(l)

0 100 200 300 400 500 600
0

1

2

3

4

5

6
10-3

Non-linear
Linear

(m)

0 100 200 300 400 500 600
-0.01

-0.005

0

0.005

0.01
Non-linear
Linear

(n)

140



B.5. Test of MPC Aalborg University

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

Non-linear
Linear

(o)

Figure B.7: Linear and non-linear model simulation using MPC.
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Appendix C

GITHUB REPOSITORY

The MATLAB code can be found in the following GitHub repository:
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https://github.com/oierajenjo/MPC-Wind-Turbine
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